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Introduction

Since the seminal work of Markowitz [25], portfolio theory has been improved in many

directions. In order to adapt this theory to the great varieties of investment opportu-

nities in modern large markets, many modifications of the mean-variance analysis have

been developed.

One of the greatest limits of the theory of Markowitz consists in the assumption that all

investors preferences can only be represented by the mean and the variance of returns.

This assumption is coherent with the utility maximization only in two cases: either

securities returns are assumed to be elliptically distributed or the investors utility func-

tion is quadratic (see for instance Ingersoll [18]).

Both hypothesis are subject to two traditional criticisms. As far as the elliptical distri-

butional hypothesis is concerned, many papers show the importance to include higher

moments of the portfolio return in the investment process (see e.g. [30] for the stock

market). In [19], it is shown that, even though hedge funds indices are often very at-

tractive in mean-variance terms, this is much less the case when skewness and kurtosis

are taken into account. The restriction on the class of utility functions also leads to

several inconsistences.

The non-elliptical modeling of financial returns has been the subject of many papers.

In our opinion, the Skew-Normal distribution of Azzalini and Dalla Valle [5], represents

one of the most attractive options. This distribution has been used by Meucci in [28]

for investment problems.

This choice has two main advantages: first, in opposition to many modeling propos-

als, the skew-normal distribution has a coherent multivariate formulation; second, this
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class maintains many useful properties that are typical of the normal distribution. Its

characteristics are analyzed in details in [3], [4] and [9].

It is worth recalling that a random vector Z ∈ Rn follows a skew-normal distribution

with location parameter µ ∈ Rn, (n×n)−scale matrix Ω and shape parameter α ∈ Rn

if its density has the following form:

fZ(x) = 2ϕn(x; µ,Ω)Φ(αT ω−1(x− µ)) (1)

where ω is the diagonal matrix ω = diag(
√

Ω11, . . . ,
√

Ωnn),
√

Ωii 6= 0 for i = 1, . . . , n,

ϕn(x; µ, Ω) is the density of a Nn(µ,Ω)-random vector and Φ(x) is the cumulative

distribution function of a univariate standard normal. In this case we write Z ∼
SNn(µ, Ω, α).

The main properties of the skew-normal distribution are analyzed in Chapter 1, in

which the most basic facts are proved. Several modifications of this distribution have

also been developed in literature. For instance, Liseo and Loperfido presented the so

called ”hierarchical” skew-normal (see [23]): this distribution has been conceived in a

Bayesian framework, therefore showing the great adaptability of the skew-normal class

to Bayesian inference. This class can also be obtained by conditioning a multivariate

normal to one of its components, with a constraint on this component. The same

generation method has been applied to other elliptical distributions, in particular to

the t-Student. The classes of distributions generated in this way are called, respectively,

skew-elliptical and skew-t. Sahu et al. in [34] introduced a slight modification of this

method for linear regression models where errors are assumed skew-t. Many interesting

applications of the skew-elliptical class are exposed in the survey of Genton [14] .

In this thesis, the skew-normal distribution is used to model securities returns. For the

purpose of our research, it is important to focus on this modeling assumption (explicitly

made in Chapter 4):

Given a vector of location parameters µ ∈ Rn, a vector of parameters (related to

the shape parameter α) δ ∈ Rn, a diagonal matrix of standard deviations ω and a

correlation matrix Ψ, we assume that the vector of returns of n risky securities is

described by the following model:

R = µ + (ωδ)|X| + ω(Id−∆2)1/2Z (2)

X ∼ N(0, 1)

Z ∼ Nn(0, Ψ)
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where X, Z are independent r.v.’s, ∆ = diag(δ1, . . . , δn) and Id denotes the identity

matrix (see Azzalini [3] on this representation). The link between (2) and (1) is given

by the following result:

Proposition. The random vector R given by (2) is skew normally distributed. More
precisely R ∼ SNn(µ, Ω, α) where

Ω = ωΩω

Ω = δδT + (Id−∆2)1/2Ψ(Id−∆2)1/2

α =
Ω −1δ

(1− δT Ω−1
δ)1/2

Note that for δ = 0 we have ∆ = 0 (the null-matrix) and therefore from (2)

R ∼ Nn(µ, ωΨω).

In the realistic example presented at the end of this thesis, we will show that for the

hedge funds market, the hypothesis δ 6= 0 can be accepted (i.e. δ = 0 is rejected),

validating the skew normal assumption.

We now come to the asset allocation problem which represents a considerable part of

this work and has significant practical implications.

We assume that an investor selects at time t a portfolio of assets which is hold unchanged

until time τ > t. A portfolio is defined as a vector

w ∈ Rn such that
∑

wi = 1.

By definition the portfolio return at time τ is a realization of the univariate random

variable

Rw = wT R

Given two portfolios and considered their random returns Rw1 and Rw2 , an investor is

faced with the following problem:

Among the two portfolios w1 and w2, which one should be preferred?

If Rw2(·) ≥ Rw1(·) was true for each scenario then the choice would be obvious.

Nonetheless portfolio returns usually do not satisfy the previous simple dominance

relation. Indeed Rw1 and Rw2 may have intersecting probability densities on ample
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regions of the returns space.

The Stochastic Dominance theory (SD) mainly developed by Levy in [21], [22] and

by Levy and Hanoch in [16], proposes a method to handle this problem. The final

output of SD is a set of reasonable rules which should be considered as guidelines for

the behavior of rational investors depending on their utility functions.

In Chapter 2, after having briefly recalled the principal aspects of SD, we develop

this theory for skew-normal variables.

In short, the setup of SD is the following one: given two univariate random vari-

ables R1 and R2, which in this context are often called uncertain prospects, we write

R1 º R2 if R1 is preferred to R2. We denote by Ui the following sets of utility functions:

U1 = {u ∈ C1(R) with u′(x) ≥ 0}

and

U2 = {u ∈ C2(R) with u′(x) ≥ 0, u′′(x) ≤ 0},

then the core of SD relies in the following definition:

Definition. aaa
(1)We say that R1 stochastically dominates at first order R2 , and write R1 º1 R2, if:

E(u(R1))− E(u(R2)) ≥ 0 (3)

for every u ∈ U1.
(2)We say that R1 stochastically dominates at second order R2 , and write R1 º2 R2,

if:

E(u(R1))− E(u(R2)) ≥ 0 (4)

for every u ∈ U2.
(whenever the inequalities (3) or (4) hold strictly for at least one u then we say that
SD holds in strong sense).

The use of SD criteria for portfolios ranking is motivated by this important classical

result:

Proposition. Given two uncertain prospects R1 ∼ N(µ1, σ1) and R2 ∼ N(µ2, σ2),
suppose µ1 ≥ µ2 and σ1 ≤ σ2. Then R1 º2 R2.
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In the applications to portfolio selection and management the uncertain prospects

are the returns of different portfolios. Due to the fact that the case of increasing and

concave utility, describing risk-averse agents, is the most realistic one, the previous

Proposition has a great worth: if two normal prospects have the same mean, the one

with the smaller variance is preferable .

The following natural question arises: how can the previous Proposition be extended

to skew-normal prospects whose distribution, compared to the normal law, contains a

further parameter ?

Our results are summarized by the following Propositions proved in Chapter 2:

Proposition. aaa
(i)Let R1 ∼ SN(µ, σ2, α1) and R2 ∼ SN(µ, σ2, α2) be skew-normal r.v’s. Suppose
α1 ≥ α2 then R1 º1 R2.
(ii)Let R1 ∼ SN(µ, σ2

1, α) and R2 ∼ SN(µ, σ2
2, α) be skew-normal r.v’s with α ≤ 0.

Suppose σ1 ≤ σ2 then R1 º2 R2.
(iii)Let R1 ∼ SN(µ1, σ

2, α) and R2 ∼ SN(µ2, σ
2, α) be skew-normal r.v’s. Suppose

µ1 ≥ µ2 then R1 º1 R2.

Proposition. Let R1 ∼ SN(µ, σ2
1, α1) and R2 ∼ SN(µ, σ2

2, α2) be skew-normal r.v’s.
Suppose σ1 ≤ σ2 and σ1δ1 = σ2δ2 then R1 º2 R2.

In Chapter 3 we outline the main aspects of the classical portfolio selection theory,

due to Markowitz [25]. In this framework the preferences of the investor are simply

codified by attitude towards mean and aversion towards variance. When market returns

are normal so are portfolio returns and therefore the approach of Markowitz ranks

portfolios in the same way as SD for risk-averse investors.

In the framework presented by Markowitz, the single investor fixes a level of expected

portfolio return E and solves the following quadratic problem:

Minw Var(Rw) (5)

with the constraints: E(Rw) = E

1T w = 1

Equivalently the agent fixes a level of risk, i.e. of standard deviation of the portfolio

returns, and tries to maximize the expected return of the portfolio. The space of means

and variances of portfolio returns is called the mean-variance space (MV).
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Note that no assumption is made on the distributional form of the random vector R

describing returns (which drives the portfolio return Rw), apart from having finite

means and covariances.

Markowitz in his approach does not really take into consideration the Expected Utility

(EU) maximization procedure, in the sense of Von-Neumann and Morgensten, rather he

presents his theory as a self-referring one and looks forward to the practical implications.

It is well known that, due to the absence of short-sale constraints1, problem (5) has an

explicit solution. The set of all solutions, spanned by varying the level E, is called the

minimum variance set and its generic element is given by:

w∗ = λ1
V −11

1T V −11
+ λ2

V −1m

1T V −1m
(6)

where λi = λi(E), i = 1, 2, are such that λ1 + λ2 = 1, m = E(R) and V = Var(R)

(assumed to be not singular).

As it is evident, each portfolio given by (6) is a linear combination of only two portfolios:

w1 =
V −11

1T V −11
, w2 =

V −1m

1T V −1m
.

Moreover it can be easily shown that any two distinct minimum variance portfolios will

serve in place of w1 and w2. This result is the first example of a mutual fund separation

theorem : investors, accordingly to their selected level E of portfolio return, can form

their minimum variance portfolio simply by buying (or selling) different amounts of

w1 and w2.

Let us now assume that the set of n basic market securities is enlarged by adding an

extra riskless asset, which assures to the investor a fixed not random return Rf . We

shall set R0 = Rf . Portfolios are now vectors with n + 1-components. It can be easily

proven that in this case the solution to (5) is:

w∗ = λ1wf + λ2wt (7)

with λ1 + λ2 = 1, and where:

wf = (1, 0, . . . , 0), wt =
(

0,
V −1(m− 1Rf )

1T V −1(m− 1Rf )

)

This is again a linear combination of only two portfolios, the portfolio wf and the ”so

called” tangency portfolio wt. Clearly, in this case, only the second one is risky. This
1In all this thesis the portfolio selection problem is studied admitting short-selling
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implies that the risky component of the investor’s portfolio is represented solely by the

proportion of tangency portfolio that the investor holds.

Now suppose there are M rational agents investing in the market. Assume that they

all are mean variance maximizers in the sense of (5). Furthermore assume they all

have the same estimates of the means and of the covariances of the returns of the risky

assets. These assumptions, together with some other ones fully listed in Chapter 3,

lead to a classical result known as Capital Asset Pricing Model (CAPM), which gives

the market securities expected returns and prices at equilibrium. The intuition behind

the CAPM of Sharpe and Linter is based on the identification of the tangency portfolio

with the market portfolio wm. Market portfolio is defined as the portfolio consisting

of all securities in the market, where the weight of each security is given by its relative

market value, that is, the aggregate market value of the security divided by the sum of

the aggregate market values of all securities. The reasoning applied to the derivation

of the CAPM can be summarized in this way: in equilibrium the aggregate demand

of risky assets, which is solely represented by the tangency portfolio, is equal to the

total supply of risky assets, i.e. the market portfolio. Being the tangency portfolio an

efficient one so is the market portfolio at equilibrium.

The well known CAPM pricing equation, a consequence of the above identification and

of the tangency condition, is then the following:

me − 1Rf = βm(mm −Rf ) (8)

where mm = E(Rwm), βi,m = Cov(Ri, Rwm)/Var(Rwm) and me is the vector of ex-

pected securities returns at equilibrium.

However if the investor’s preferences are not fully captured by mean and variance of

the portfolio return then the use of program (5) as decision rule for portfolio selection

is questionable either from the point of view of SD or from that of EU (unless market

returns are normal , or more in general elliptical). As a consequence the CAPM itself,

in the form derived above, is affected by these limitations or inconsistencies.

To overcame these problems we consider in this thesis a more general approach due

to Simaan [35]. More precisely, in Chapter 4 the framework considered by Simaan

is explicitly worked out for the case of skew normal returns. Simaan’s methodology

provides an interesting extension of the mean variance analysis since it incorporates in

an elegant way investors preferences on skewness.
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We remark that our interest in this extension is mainly motivated by the need of obtain-

ing an equilibrium result similar to (8), which is valid in case of skew-normal returns.

This step is necessary in order to produce a suitable generalization of Black Litterman

portfolio selection model, which we discuss in Chapter 5 and shortly present later on.

In the Simaan framework each investor controls the choice of his portfolio through the

control of the location parameter wT µ and of the spherical and non-spherical compo-

nents of the variance of the portfolio return Rw, which, assuming (2) for the market

returns distribution, is given by:

Var(Rw) = wT Ww +
(

1− 2
π

)
wT [(ωδ)(ωδ)T ]w. (9)

where W = (Id−∆2)1/2Ψ(Id−∆2)1/2. In (9) the first addendum represents the spher-

ical component of the variance while the second one the non spherical component.

With relation to portfolios, we shall call the three dimensional space (location,variance,non-

spherical component of the variance) the location-variance-skewness space (LVS)1 .The

name ”non spherical” component of the variance derives from the expression of the

skewness of Rw:

Skew(Rw) = Skew(|X|) · (wT (ωδ))3

which is non zero, unless δ = 0.

Maximization of expected utility turns out to be equivalent, for a risk-averse investor,

to the following portfolio optimization program in the (LVS) space2:

Minw
1
2wT Ww (10)

with the constraints: wT µ = L

wT (ωδ) = B

1T w = 1

for fixed L, B ∈ R.

The attractive property of (5), which is to admit an explicit solution, remains true for
1In his paper ,([35]), Simaan represents portfolios in the mean-variance-skewness space (MVS).

There is a one-to-one correspondence between points in the (LVS) space and points in the (MVS)

space (see chapter 4). When δ = 0 both spaces coincide with the mean-variance space (MV). More

important, when portfolio returns are skew-normal the expected utility of a risk-verse investor behaves,

as function of the parameters, much in the same way over the above two spaces.
2We recall that here µ identifies the locations of the returns R, while in Simaan’s paper the same

symbol denotes the returns means. They coincide only for δ = 0.
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the problem (10). We call the set of solution the minimum spherical variance set. This

set includes the single portfolios with the smallest spherical part of the variance for

given levels of location parameter and of non-spherical component of the variance. The

generic solution can be expressed (without the riskless asset) as:

w∗ = λ1
V −1µ

1T V −1µ
+ λ2

V −11
1T V −11

+ λ3
V −1(ωδ)

1T V −1(ωδ)
(11)

where λ1 + λ2 + λ3 = 1 and V = Var(R).

Adding as before the riskless asset Rf to the vector of returns, the solution to (10) is

given by:

w∗ = λ1wf + λ2wt + λ3w3 (12)

where λ1 + λ2 + λ3 = 1 and where:

wt =
(

0,
V −1(µ− 1Rf )

1T V −1(µ− 1Rf )

)
, w3 =

(
0,

V −1(ωδ)
1T V −1(ωδ)

)

It is evident both in (11) and (12) that the set of solution is now a linear combination

of only three portfolios. The validity of this property leads, as for the mean variance

analysis, to an equilibrium result. The pricing model we obtain is fully based on

Simaan results in [35], and is different from the one of Kraus and Litzenberger [20]

and of Adcock [1]. Kraus and Litzenberger CAPM is based on a three moment Taylor

expansion of the utility function ignoring higher moments.

This modified CAPM, obtained under the assumption (2) of skew-normality of the

random vector R, relates the location parameters of the assets, µi, to the location

parameters µm and µp of the portfolios wm and wp respectively. Here wm is the market

portfolio defined above and wp is defined as a portfolio whose return is uncorrelated to

the market portfolio return but which has its same skewness.

The CAPM equation we obtain is the following:

µe = 1Rf + βm[µm − µp] + (γm − βm)[µp −Rf ] (13)

where as before βi,m = Cov(Ri, Rwm)/Var(Rwm) and γi,m = (ωiδi)/Bm with Bm =

(wT
m(ωδ))

It can be proven that the minimum spherical variance set in the (LVS) space is an

elliptical paraboloid.
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The result (adapted from Simaan [35]), in absence of a risk-less asset, is stated below.

Let us denote Bi = (ωδ)T ai and Li = µT ai where ai, i = 1, 2, 3 are the following

portfolios:

a1 =
V −1µ

1T V −1µ
, a2 =

V −11
1T V −11

and a3 =
V −1(ωδ)

1T V −1(ωδ)
(14)

and denote by B = (ωδ)T w and L = µT w, then the following Proposition holds:

Proposition. If there’s no risk less asset and returns are skew normally distributed
according to (2), the efficient set in the (L,V, B)−space (the LVS space) is given by:

V2 = wT V w = σ2
2 + σ2

h3

(
B −B2

B3 −B2

)2

+ σ2
h1

c2
1 (15)

where σ2
2 = wT a2w, σ2

hi
= wT hiw,

c1 =
(L− E2)/(E3 − E2)− (B −B2)/(B3 −B2)

(E1 − E2)/(E3 − E2)− (B1 −B2)/(B3 −B2)

and portfolios hi, i = 1, 3, are given by

h1 = (a1 − a2)− B1 −B2

B3 −B2
(a3 − a2) ; h3 = a3 − a2

The final parts of Chapters 3 and 4 are devoted to the presentation of the ”so-

called” mutual funds separation results. We have already presented in this introduction

a particular instance of these type of theorems. More general results are available.

They are directly linked to the derivation of CAPM in a general framework and for the

sake of completeness are included in this thesis.

To give a rough description of general mutual funds separation results it is useful to

introduce first the following definitions (Ross [32])

Definition. We shall say that,
(A) the distribution of R has the (strong) 2-funds separation property if there exist two
portfolios w1,w2 such that for any portfolio wb there is a portfolio wa given by a linear
combination of w1 and w2 for which it holds

wT
a R º2 wT

b R.

(B) the distribution of R has the (strong) 3-funds separation property if there exist
three portfolios w1,w2, w3 such that for any portfolio wb there is a portfolio wa given
by a linear combination of w1, w2 and w3 for which it holds

wT
a R º2 wT

b R.

10



In a similar fashion k-funds separation (k ≥ 4) can be defined and discussed.

The expression for the efficient portfolios given by (6) and (11) strongly suggests that

the normal and skew-normal distributions have respectively the (strong) 2-funds and

3-funds separation property.

Ross in [32] gives a set of properties to be satisfied by classes of market return distri-

butions in order to have a k-funds separation property:

Theorem. 1 (2-funds separation with a risk-less asset) The distribution of R has the
(strong) 2-funds separation property iff
there exist a scalar r.v. Y , a vector r.v. ε, a (deterministic) vector b, and two portfolios
α, β such that
(a) each component of R can be written as

Ri = Rf + biY + εi, for i = 1, . . . , n + 1

(b) E[εi|Y ] = 0 ∀i
(c)

∑
αiεi = 0 =

∑
βiεi.

Theorem. 2 (3-funds separation with a risk-less asset) The distribution of R has the
(strong) 3-funds separation property iff:
there exist two univariate r.v. Y and Q, a random vector ε , two (deterministic) vectors
b, c and three portfolios α1,α2, α3 such that:
(a) each component of R can be written as

Ri = Rf + biY + ciQ + εi for i = 1, . . . , n + 1

(b) E[εi|Y, Q] = 0 ∀i
(c) αT

i ε = 0 for i = 1, 2, 3

In the thesis we show that normal and skew normal distributions satisfy the condi-

tions of Theorems 1 and 2 respectively.

We now come to the exposition of the arguments discussed in Chapter 5.

The first step of the investment process, from the investor point of view, consists in

the estimation of the parameters θ contained in the distribution of the market returns

R. Within the normal assumption θ = (m, V ), whereas in the skew-normal model

θ = (µ, Ω,α). The true values of these parameters being unknown, there are two pos-

sible approaches to the estimation problem: the classical frequentist methodology or

11



the Bayesian point of view.

By taking the first viewpoint θ is estimated directly using historical time series of re-

turns: the result is a set of classical estimated parameters that we denote by θ̂. These

values can be used as imput data to solve the portfolio problem. For instance, if the

investor agrees with the Markowitz’s approach then the values θ̂ = (m̂, V̂ ) are used to

solve (5), with Var(Rw) = wT V̂ w and E(Rw) = wT m̂.

There are two main drawbacks with this approach, both well known in the literature.

The first is that the selected portfolios could be not so diversified neither so intuitive.

Concerning the second, the solution weights turn out to be very sensitive to changes

in the estimated parameter values: when the investor updates his estimations he faces

the problem of a drastic portfolio change.

We take a Bayesian point of view which helps to smooth the great sensitivity of the

allocation to variations in the input data.

In the Bayesian approach parameters are considered random variables distributed ac-

cording to a prior distribution, which we denote by fΘ(θ). Then it is specified a

model for the observations given the parameters, represented by the likelihood density

fR|Θ(r|θ). From these two distributions it can be obtained the posterior density for

parameters using the well known rule:

fpo
Θ|R(θ|r) ∝ fΘ(θ)fR|Θ(r|θ) (16)

The expected utility of the portfolio return Rw is then defined conditionally on param-

eters:

E(u(Rw|Θ = θ)) =
∫

u(r)fRw|Θ(r|θ)dr (17)

The above quantity is hence averaged over parameters by using the posterior density

fpo
Θ|R, that is

∫
E(u(Rw|Θ))fpo

Θ|Rw
(θ|r)dθ. (18)

Then the investor can look for the optimal portfolio. However a more interesting

approach is to introduce the so called predictive posterior density and take the average

of the (conditional) expected utility with respect to it. Finding the optimum concludes

the procedure.

12



However a great difficulty in handling the Bayesian approach is the fact that for many

distributions the posterior density cannot be computed in closed form and numerical

methods like MCMC (Monte Carlo Markov Chain) are needed.

A modified version of the classic Bayesian allocation is the Black and Litterman model

(BL) appeared in [6], and discussed in detail by Black and Litterman in [7] and by He

and Litterman in [17].

In the BL model security returns are assumed to be normally distributed. This model

has the ability to blend together investors views and a prior on assets returns. Black

and Litterman trust V̂ (sample covariance) as good estimator of V but do not trust

the sample mean m̂. A ”modified” Bayesian approach to the estimation problem of m

is considered. They assume the following model for returns R′1 :

R′|M = m ∼ N(m; V̂ ) (19)

M ∼ N(Π, τ V̂ ) (20)

where the first requirement sets up a normal model for observed returns (given their

mean), while the second chooses the prior distribution on means inside the same family.

τ is a scaling parameter, usually taken small. The vector Π is the vector of the so called

”implied returns” . It is obtained by a slight modification of the CAPM pricing equation

(8) and its derivation is discussed in the chapter.

Having given a model for observations and a prior on means we could implement the

previous outlined Bayesian allocation scheme. However BL model aims to incorporate

into the investment process a further layer of information. This is achieved by inserting

random constraints on the prior representing investors opinions on the expected values

of the returns:

v − PM ∼ N(0, Ωv)

where v ∈ Rk is called the vector of the views, P is a k × n matrix, Ωv is a k × k

invertible diagonal matrix and k ≤ n. It is useful introduce the r.v. V (do not confuse

this vector with the covariance matrix V ), and rewrite the constraint equations in

”regression form”:

V = PM + ε

1More precisely R′ ≡ R−Rf are the excess of returns w.r.t the risk-free rate.

13



with ε ∼ N(0, Ωv). We can look to the previous relation as a model for the views (given

the means), that is

V |(M = m) ∼ N(Pm,Ωv)

Having a normal prior and a model for the views (again normal), we can easily obtain

the posterior law of M given the views and then, integrating over M , the posterior

predictive distribution of R|V . Being this distribution normal the utility is maximized

by solving problem (5) and using, in place of E(Rw) and Var(Rw), the analogous

moments of Rw|V which are:

mw
BL = wT mBL

Σw
BL = wT (V̂ + ΣBL)w

where:

mBL = [(τ V̂ )−1 + P T Ω−1
v P ]−1[(τ V̂ )−1Π + P T Ω−1

v v] (21)

ΣBL = [(τ V̂ )−1 + P T Ω−1
v P ]−1 (22)

Meucci in [28] and [29] extends the BL model to non normal markets relying some

new ideas. This is based on the previous two stages procedure, but the Bayesian in-

ference is replaced by an opinion pooling approach. Then he uses copulas to obtain

the market returns distribution. This approach has the great worth to be adaptable to

many non-normal markets.

On the contrary our approach preserves the Bayesian framework. This requires to make

the assumption that returns are skew normal, then it uses the good properties of the

skew-normal distribution under Bayesian inference , see Liseo and Loperfido [23].

In this way an analytical result for the predictive posterior of returns is obtained. More-

over it can be used as ”benchmark” for further non-normal distributional assumptions,

such as the skew-t.

As already explained, the BL model relies on considering the expected values of returns

random variables whose density can be combined with the views vector V . In order to

preserve this intuition in Chapter 6 we let the assumption (2) to be valid conditionally

on locations µ. We denote by Θ1 the random vector of location parameters and we

impose on it a normal prior. As a result, the expected values, which depend on the
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location parameters, turn out to be a random vector as well.

The market model which we assume is the following:

R|(Θ1 = µ) ∼ SNn(µ, Ω, α) (23)

Θ1 ∼ Nn(µe, τΩ) (24)

where the vector µe is given by the pricing equation (13), Ω is the scale matrix of R|Θ1,

α its shape parameter and τ ∈ R is a small scaling factor, as previously mentioned.

Our interest in the three moment CAPM is mainly due to the need of centering the

prior distribution (24) on an equilibrium vector of returns.

We prove that the model given by (23) and (24) has a skew-normal marginal for R,

validating our main assumption of skew normality for assets returns.

Denoting the r.v. of expected values by M = Θ1 +
√

2
π (ωδ) , the previous model can

also be written in the following way:

R|(M = m) ∼ SNn(m−
√

2
π

(ωδ),Ω, α) (25)

M ∼ Nn(me, τΩ) (26)

where me = µe +
√

2
π (ωδ).

As in the BL classical model, the views are assumed to be normal :

V |(M = m) ∼ Nn(Pm, Ωv), (27)

where, as before, P is a k × n matrix and Ωv is a k × k invertible diagonal matrix and

k ≤ n.

The posterior distribution of M |V is given by:

M |(V = v) ∼ N(mBL, ΣBL)

where:

mBL = [(τΩ)−1 + P T Ω−1
v P ]−1[(τΩ)−1me + P T Ω−1

v v]

ΣBL = [(τΩ)−1 + P T Ω−1
v P ]−1

The evaluation of the posterior predictive distribution of R|V is now possible.

The result that we find combining R|M and M |V and integrating over M is the

following:

R|V ∼ SNn(mBL −
√

2
π

(ωδ), Ω + ΣBL,αBL) (28)
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where

∆BL = (Ω−1 + Σ−1
BL)−1

αT
BL = αT ω−1Ω(Ω + ΣBL)−1(1 + αT

∆∆BLα∆)−1/2

αT
∆ = −αT ω−1dBL

and where dBL is the diagonal matrix of standard deviations of ∆BL and ∆BL its

correlation matrix.

After including the views in the investment process, the investor can complete the

allocation process. Due to the fact that the posterior predictive distribution turns

out to be skew-normal the expected utility can be maximized by the same procedure

followed in chapter 4. In other terms the problem to be solved is program (10), which

in this context takes the form :

Minw
1
2s2

BL (29)

with the constraints: µw
BL = E

wT (γBLδBL) = B

1T w = 1

where:

µw
BL = wT (mBL −

√
2
π

(ωδ)) (30)

s2
BL = wT (Ω + ΣBL)w − (wT (γBLδBL))2 (31)

with:

δBL =
(Ω + ΣBL)αBL√

1 + αT
BL(Ω + ΣBL)αBL

and γBL represents the diagonal matrix of standard deviations of Ω+ΣBL, and Ω + ΣBL

its correlation matrix.

The last part of Chapter 6 contains the main numerical example of this thesis

concerning a portfolio of 12 Hedge Fund Indexes (HFR Indexes), each one corresponding

to a different Hedge Funds strategy. Our assumption is that the 12 Strategies are a good

representation of the Hedge Funds Market. The example covers the entire investment
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Likelihood ratio Test (null hypothesis: α = 0)

log-lik normal (α = 0) -3967.99
log-lik skew-normal -3923.89
lik-ratio 88
Prob 0

Table 1: Likelihood ratio test: the lik-ratio is the likelihood ratio test statistics and
Prob the corresponding probability.

process in a skew normal market and its final output is a vector of weights that is

generated conditionally on views.

The method used to validate the assumption of skew normality is a classical likeli-

hood ratio test. The model with a restriction is the one with the vector α of all zeros,

which implies the normality of the restricted model. The values of the test, reported

in the Table, have been compared with the values from a chi-squared distribution with

12 degrees of freedom.

The results are very promising: the skew-normal assumption seems to be much more

appropriate for this very dynamic market.
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Nomenclature

R Random vector of returns.
w Generic portfolio, i.e.

∑
i wi = 1.

Rw Univariate random variable of portfolio returns, Rw = wT R.
u Utility function.
n The number of risky assets in the market.
1 A vector whose elements are 1.
0 A vector whose elements are 0.
m The expected value of the vector of returns.
V The covariance matrix of the vector of returns.
µ The location parameter for the vector of skew-normally distributed returns.
Ω The scale matrix for the vector of skew-normally distributed returns.
α The shape parameter for the vector of skew-normally distributed returns.
ϕn(·) The density of a multivariate standard normal.
Φ(·) The cumulative distribution function of a univariate standard normal.
M The number of investors in the market.
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1

The family of Skewed

Distributions

1.1 The univariate skew normal distribution

Lemma 1.1.1. If f is a density symmetric with respect to 0, if G is a one-dimensional
distribution function with density G′ symmetric about 0, then

φ(z) = 2f(z)G(w(z))

is a density for every odd function w(z)

Proof. Denote by Y a random variable with density f , and by X a random variable
with distribution function G, independent from Y . The first step in the proof consists
in proving that W = w(Y ) has a distribution function symmetric about 0. Denote by
A a Borel set of the real line and by −A its mirror set obtained by reversing the sign
of each element of A. The formula for the change of variables is

fY (y) = fX(g−1(y))| d

dy
g−1(y)| (1.1)

for two random variables X and Y = g(X), then, for Z = −Y we have:

fY (t) = | − 1| · fZ(−t) = fZ(−t) (1.2)

In addition, being f symmetric, we obtain

fY (t) = f−Y (t). (1.3)
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1.1 The univariate skew normal distribution

The following equalities hold:

P{W ∈ −A} (1)
= P{−W ∈ A} (2)

= P{w(−Y ) ∈ A} (3)
= P{w(Y ) ∈ A} (1.4)

Equality (1) is obtained by

P{W ∈ −A} =
∫

−A
hW (t)dt , (1.5)

where hW (w) is the density of W and by

P{W ∈ −A} =
∫

−A
hW (t)dt = −

∫

A
hW (t)dt

= −
∫

A
h−W (−t)dt = callings = −t = −

∫

A
h−W (s)(−ds) =

=
∫

A
h−W (s)ds = P{−W ∈ A} (1.6)

where we used

hW (t) = h−W (−t). (1.7)

As far as equality (2) is concerned, it holds

P{−W ∈ A} = P{−w(Y ) ∈ A} = P{w(−Y ) ∈ A} (1.8)

where we used w(x) is odd.
Finally for the equality (3) we note that

P{w(−Y ) ∈ A} =
∫

A
w(t)f−Y (t)dt

=
∫

A
w(t)fY (t)dt = P{w(Y ) ∈ A} (1.9)

As a result:

P{w(Y ) ∈ −A} = P{w(Y ) ∈ A} (1.10)

that implies that W = w(Y ) has a distribution function symmetric about 0.
The second step in the proof consists in noting that the random variable X −W has
distribution function symmetric about 0:

P{X −W < 0} = P{X < W} = P{X > −W}
= P{W > −X} = P{W < X} = P{X −W > 0} (1.11)
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1.1 The univariate skew normal distribution

Finally we have

1
2

= P{X < W} = E{P{X < w(Y )|Y = y}} =
∫ ∞

−∞
fY (y)dy

∫ w(y)

−∞
fX(x)dx (1.12)

and

1
2

=
∫ ∞

−∞
G{w(y)}fY (y)dy (1.13)

which gives the desired result.

Setting f(x) = ϕ(x) and G(x) = Φ(x), the density and the distribution function of

a standard normal r.v. respectively , and setting w(x) = αx with α ∈ R, we obtain the

following density:

f(x) = 2ϕ(x)Φ(αx), x ∈ R (1.14)

Definition 1.1.1. A random variable Z having density (1.14) is called skew-normal
(SN) with shape parameter α and denoted by

Z ∼ SN(α).

If

Y = µ + σZ,

with µ, σ ∈ R and σ > 0, then we write

Y ∼ SN(µ, σ2, α).

Its density is:

fY (y) = 2ϕ(
y − µ

σ
)Φ(α

y − µ

σ
), y ∈ R (1.15)

The following properties for (1.14) hold:

i) If α = 0 then Z ∼ N(0, 1)

ii) If Z ∼ SN(α) then −Z ∼ SN(−α)

iii) As α → ∞ then (1.14) converges point-wise to the half normal density 2ϕ(z) for

z ≥ 0
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1.1 The univariate skew normal distribution
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Figure 1.1: Density function SN(α) for three values of α

Proposition 1.1.1. The moment generating function of X ∼ SN(µ, σ2, α) is:

M(t) = E(eXt) = 2eµt+σ2t2/2 · Φ(δσt) (1.16)

where
δ =

α√
1 + α2

∈ (−1, 1)

The previous Proposition is immediate given the following result:

Lemma 1.1.2. If U ∼ N(0, 1) and a, b ∈ R then

E(Φ(a + bU)) = Φ
(

a√
1 + b2

)
(1.17)

Proof. We have

E(Φ(a + bU)) =
∫ ∞

−∞

[∫ 0

−∞

1√
2π

e−
t+(a+bu)2

2 dt

]
1√
2π

e−
u2

2 du

=
∫ 0

−∞

∫ ∞

−∞
e
−1
2

[u2(1+b2)+2ub(a+t)+(a+t)2]dudt (1.18)
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1.1 The univariate skew normal distribution

The following known result
∫ ∞

−∞
e−ax2+bxdx =

√
π

a
e

b2

4a

can be applied in order to obtain the desired equality
∫ 0

−∞

1√
2π

b2

√
1 + b2

e
b2(a+t)2

2(1+b2) e
(a+t)2

2 dt =
∫ 0

−∞

1√
2π

1√
1 + b2

e
− (a+t)2

2(1+b2) dt

which gives the result.

Proof of Proposition 1

We have for X ∼ SN(µ, σ2, α) that

∫ ∞

−∞
2

1√
2π

1
σ

etxe−
(x−µ)2

2σ2

[∫ α(x−µ)
σ

−∞

1√
2π

e−
t2

2 dt

]
dx

=
∫ ∞

−∞
2

1√
2π

1
σ

e−
(x2−2x(µ+σ2t)+µ2

2σ2

[∫ α(x−µ)
σ

−∞

1√
2π

e−
t2

2 dt

]
dx

=
∫ ∞

−∞
2

1√
2π

1
σ

e−
(x2−2x(µ+σ2t)+(µ+σ2t)2−2µσ2t−σ4t2

2σ2

[∫ α(x−µ)
σ

−∞

1√
2π

e−
t2

2 dt

]
dx

=
∫ ∞

−∞
2

1√
2π

1
σ

eµt+σ2t2

2 e−
(x−(µ+σ2t))2

2σ2

[∫ α(x−µ)
σ

−∞

1√
2π

e−
t2

2 dt

]
dx. (1.19)

By the following change of variable

u =
(x− (µ + σ2t))

σ

we obtain

2eµt+σ2t2

2

∫ ∞

−∞

1√
2π

e−
u2

2

[∫ ασt+αu

−∞

1√
2π

e−
t2

2 dt

]
du

and Lemma 1.1.2 can be applied to obtain the desired result:

M(t) = E{eXt} = 2eµt+σ2t2/2 · Φ(δσt) ¤ (1.20)

The cumulant generating function of X ∼ SN(µ, σ2, α) is the following:

K(t) = log M(t) = µt +
σ2t2

2
+ log(2Φ(δtσ))

Thus if Z ∼ SN(α) we have:

K(t) =
t2

2
+ log(2Φ(δt))
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1.2 The multivariate skew normal distribution

and therefore

µz := E(Z) =
d

dt
Kz(t)|t=0 = (t +

Φ′(δt)
Φ(δt)

δ)t=0 =

√
2
π

δ

and

E(X) = µ + µzσ = µ +

√
2
π

(σδ)

The second and the third moment are given by:

Var(X) =
d2

dt2
K(t)|t=0 = σ2 − 2

π
(δσ)2 = σ2(1− µ2

z) (1.21)

Skew(X) =
4

(2π)3/2
(4− π)(σδ)3 (1.22)

and furthermore

γ1 =
4− π

2
µ3

z

(1− µ2
z)3/2

, γ2 = 2(π − 3)
µ4

z

(1− µ2
z)2

where γ1, γ2 denote the standardized third and fourth-order moments.

1.2 The multivariate skew normal distribution

The following Lemma can be easily proven , it is a simple generalization of Lemma

1.1.1 to the multivariate case.

Lemma 1.2.1. If f0 is a n-dimensional density function such that f0(x) = f0(−x) for
x ∈ Rn, G is a one-dimensional differentiable distribution function such that G′ is a
density symmetric about 0, and w is a real valued function such that w(−x) = −w(−x)
for all x ∈ Rn, then

f(z) = 2f0(z)G(w(z)) (1.23)

is a density function on Rn

Generalizing the univariate case, we set f0(x) = ϕn(x; 0, Ω) where Ω is a positive

definite matrix, G(x) = Φ(x) and w a linear function. Then

f(x) = 2ϕn(x; 0,Ω)Φ(αT ω−1x) (1.24)

is a multivariate density, where we denoted with ω the diagonal matrix of standard

deviations of Ω. Allowing the presence of a location parameter µ the density becomes:

f(x) = 2ϕn(x;µ, Ω)Φ(αT ω−1(x− µ)) (1.25)
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1.2 The multivariate skew normal distribution

Definition 1.2.1. A n-dimensional random variable Z having density (1.25) is called
multivariate skew-normal and denoted by:

Z ∼ SNn(µ, Ω,α).

Remark: The factor ω−1 in (1.25) is needed in order to keep the shape parameter

unaltered when a location-scale transformation of the type Y ′ = ξ + BY is applied to

Y , for some positive definite diagonal matrix B and location vector ξ.

Proposition 1.2.1. The moment generating function of a random variable distributed
according to (1.25) is:

M(t) = 2exp(tT µ +
1
2
tT Ωt)Φ(tT (ωδ)) (1.26)

where:

δ =
Ωα√

1 + αT Ωα
(1.27)

and Ω = ω−1Ωω−1

Proof. It is a simple extension of Proposition 1.1.1.

The first two moments are obtained from M(t):

E(Z) = µ +

√
2
π

(ωδ) (1.28)

Var(Z) = Ω− 2
π

(ωδ)(ωδ)T (1.29)

and the multivariate index of skewness is:

γ1 =
(

4− π

2

)2
(

2
π (ωδ)T Ω−1(ωδ)

1− 2
π (ωδ)T Ω−1(ωδ)

)3

(1.30)

The skew-normal density can be ”extended” to a more general form widely analyzed in

literature (in particular see [9]). This extension is accomplished relaxing the condition

on the normalization factor to be 1/2 and introducing a new parameter τ ∈ R.

Definition 1.2.2. A n-dimensional random variable Z is distributed according to the
”extended” skew normal distribution if its density is:

fZ(x) = ϕ(x; µ,Ω)Φ(α0 + αT ω−1(x− µ))/Φ(τ) (1.31)

where α0 = τ(1 + αT Ωα)1/2. It is then denoted by

Z ∼ SNn(µ, Ω, α, τ).
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1.2 The multivariate skew normal distribution

Remark: In the case τ = 0 also α0 = 0 and (1.31) reduces to (1.25).

An important property of the class of distributions (1.31) is the closure under affine

transformations. This property will be essential in the study of portfolios returns.

Proposition 1.2.2. Given Z ∼ SNn(µ,Ω, α, τ), ξ ∈ Rn and A a (n× d) matrix then:

ξ + AZ = Zw ∼ SNd(µw, Ωw, αw, τ) (1.32)

where:

µw = ξ + Aµ (1.33)

Ωw = AΩAT (1.34)

αw =
ωwΩ−1

w HT α√
1 + αT (Ω−HΩ−1

w HT )α
(1.35)

where H = ω−1ΩAT and ωw is the diagonal matrix of standard deviations of Ωw.

Proof. See [4].

Another important property satisfied by the family (1.31) is the closure under

marginalization. If Z ∼ SNn(µ, Ω, α, τ) is partitioned as follows:

Z =
(

Z1

Z2

)
; µ =

(
µ1

µ2

)
; Ω =

(
Ω11 Ω12

Ω12 Ω22

)
; α =

(
α1

α2

)

then:

Z1 ∼ SNh(µ1, Ω11., α1(2), τ) (1.36)

where h is the dimension of Z1 and where:

α1(2) =
α1 + Ω−1

11 Ω12α2√
1 + αT

2 Ω22.1α2

; Ω22.1 = Ω22 − Ω21Ω
−1
11 Ω12 (1.37)

A detailed analysis of this property is presented in [4].

1.2.1 Bivariate skew normal

To better understand the properties of a skew normal distribution in this section we

analyze the bivariate case. Consider the following covariances matrix:

Ω =
(

ω2
1 ρω1ω2

ρω1ω2 ω2
2

)
(1.38)
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1.3 Skew-t distribution

where |ρ| ≤ 1 and ωi > 0, and the shape parameter α = (α1, α2)T with αi ∈ R.

The explicit expression of the bivariate skew normal density Z ∼ SN2(0, Ω, α) is, from

(1.25):

fZ(z1, z2) =
2

π
√

ω2
1ω

2
2(1− ρ2)

e
− 1

2

ω2
1z2

1−2ρz1z2ω1ω2+ω2
2z2

2
(1−ρ2)ω2

1ω2
2 Φ

(
α1

ω1
z1 +

α2

ω2
z2

)
(1.39)

From (1.36) the marginal distribution of Z1 is still skew normal:

Z1 ∼ SN(0, ω2
1, α1(2))

where:

α1(2) =
α1 + ρα2√

1 + α2
2(1− ρ2)

(1.40)

By (1.32) the random variable Zw = wT Z with w = (w1, w2)T and Z = (Z1, Z2) ∼
SN2(0,Ω, α) is distributed according to Zw ∼ SN(µw, ω2

w, αw) where:

µw = µ1w1 + µ2w2

ω2
w = w2

1ω
2
1 + 2ρw1w2ω1ω2 + w2

2ω
2
2

αw =
(α1 + α2ρ)ω1w1 + (α2 + α1ρ)ω2w2√

(1 + α2λω2
1w

2
1) + 2(ρα1α2λ)ω1ω2w1w2 + (1 + α2

1λω2
2w

2
2)

(1.41)

and where λ = (1− ρ2).

Remark: As a consequence of (1.40) the distribution of Z1 is not independent from

Z2 also in the case ρ = 0. To obtain the independence it is necessary the normality of

Z2, obtained setting α2 = 0.

1.3 Skew-t distribution

In this Section we present a further distribution generated by Lemma 1.2.1: the skew-t

distribution. The main worth of this distribution is its ability to capture both the

skewness and the thickness of the tails.

The expression of the density of a univariate t-distribution with n degree of freedom is

the following:

tX(x;µ, σ, n) =
Γ(n+1

2 )
(πn)1/2Γ(n/2)

(
1 +

(x− µ)2

nσ

)−(n+1)/2

, (1.42)
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1.4 SUN

and its multivariate formulation is:

tX(x; µ,Σ, n) =
Γ(n+d

2 )
(πn)d/2Γ(n/2)

(
1 +

(x−m)T Σ−1(x−m)
n

)−(n+d)/2

(1.43)

We denote by T1(x; n + d) the 1-dim t-cumulative distribution function with n + d

degrees of freedom. Being the t-density symmetric around the location parameter µ the

assumptions of Lemma 1.2.1 are satisfied if one chooses: f0 = tY , G(w) = T1(w; n + d)

and

w(y) =
αT ωy

yT Σ−1y
.

In this case we obtain the following density:

fY = tY (y;µ,Σ, n) · T1

(
αT ω−1(y −m)

(
n + d

Qy + n

)1/2

;n + d

)
(1.44)

with Qy = (y −m)T Ω−1(y −m), for any definite positive matrix Σ, location vector

µ ∈ Rd and shape parameter α ∈ Rd.

Definition 1.3.1. A n-dimensional random variable Z having density (1.44) is called
multivariate skew-t and we write Z ∼ Stn(µ,Ω, α, n).

Remark: In the case n →∞ (1.44) becomes (1.25.)

We do not give here the expression of the moments of the distribution and its main

properties. For a discussion of this distribution see Azzalini [3]. A modification of

this distribution has been analyzed by Sahu et. al. in [34]. This new form turns

out to be very useful in the regression models with skew-t errors. The main difference

between the skew-t of Sahu and that one of Azzalini relies in the fact that Sahu uses

the multivariate cumulative function of a t-Student as perturbation factor instead of

the univariate one as in (1.44).

1.4 SUN

Several modifications of the original skew-normal density (1.31) have been developed in

literature. Among these we mention the closed skew-normal (CSN) of Gonzalez-Farias

et al. [15], the hierarchical skew-normal (HSN) of Liseo and Loperfido [23] and the

unified skew normal (SUN) of Azzalini Arellano [2].
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1.4 SUN

In this section we briefly recall the SUN.

Consider a m + n-normal variate U = (U1,U2) :

U ∼ Nm+n(0, Ω̃) ; Ω̃ =
(

Γ ∆T

∆ Ω

)
(1.45)

where Ω̃ is a correlation matrix. Consider now the distribution of Z = (U2|U1+γ > 0)

for some γ ∈ Rn. The density function of Z is computed by the formula:

fZ(y) =
fU2(y)P{U1 > −γ|U2 = y}

P{U1 > c} .

After simple algebra one obtains the density of Y = µ + ωZ ∈ Rn:

fY (y) = ϕn(y;µ, Ω)
Φm(γ + ∆T Ω−1

ω−1(y − µ); Γ−∆T Ω−1∆)
Φm(γ; Γ)

(1.46)

Consider the vector of standard deviations ω = ω1 then:

Definition 1.4.1. A random variable Y with density given by (1.46) is called ”unified”
skew normal and is denoted by Y ∼ SUNn,m(µ,γ, ω, Ω̃)

Remark: In the case m = 1, the density given by (1.46) collapses to the density

of a multivariate skew-normal (1.25).

All the properties of a SUNn,m distribution are proved in the Appendices of Azzalini-

Arellano [2]. In Appendix A.1 we apply these results in order to obtain the two

different types of bivariate SUNn,m, resulting from the following choice of parameters:

[n = 2,m = 1] and [n = 2, m = 2].
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Figure 1.2: Contour plot and 3-d plot of a bivariate SN2(µ, Ω, α) with µ = (0, 0),
Ω = diag(3, 2.5) and α = (2,−3)
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2

Stochastic Dominance for a

skew-normal random variable

Assume an investor selects a portfolio w of risky assets. If R is the vector of assets

returns we denote by

Rw = wT R

the corresponding univariate random variable representing the portfolio return.

Given two portfolio returns Rw1 and Rw2 an investor is faced with the problem:

Among the two portfolios w1 and w2, which one should be preferred?

If Rw2(·) ≥ Rw1(·) was true for each scenario then the choice would be obvious.

Nonetheless portfolio returns usually do not satisfy the previous simple dominance

relation. Indeed Rw1 and Rw2 may have intersecting probability densities on ample

regions of the returns space.

The Stochastic Dominance Theory (SD), developed mainly by Levy in [21], [22] and

by Levy and Hanoch in [16], represents an attractive method to solve this problem.

This theory aims to find criterions to rank univariate r.v., which in this context are

often called risky prospects, depending on the underlying utility functions.

Being the portfolios returns univariate r.v. they can be ranked using SD. In this way

the set of all portfolios (the feasible set) breaks down into two sets: an efficient set

and an inefficient set of portfolios, where a portfolio is efficient if, and only if, its re-

turn is not stochastically dominated by another. Hence SD represents the base of the

Portfolio Selection Theory, developed in this thesis in Chapters 3 and 4 for normal and
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2.1 First and Second order Stochastic Dominance

skew-normal returns respectively.

In this Chapter after having briefly recalled the principal aspects of SD we analyze the

case of normal and skew-normal prospects.

2.1 First and Second order Stochastic Dominance

We denote by Ui the following sets of functions:

U1 = {u ∈ C1(R) with u′(x) ≥ 0}
U2 = {u ∈ C2(R) with u′(x) ≥ 0, u′′(x) ≤ 0}

Definition 2.1.1. Consider two random variables X1 and X2, we say that X1 stochas-
tically dominates at first order X2 , and we write X1 º1 X2, if:

E(u(X1))− E(u(X2)) ≥ 0

for every u ∈ U1.
(whenever the inequality holds strictly for at least one u, then we say that SD holds in
strong sense).

Lemma 2.1.1. Consider two random variables X1 and X2 which have F1(x) and F2(x)
as their cumulative distributions functions. Then if u ∈ U1:

E(u(X1))− E(u(X2)) =
∫ ∞

−∞
(F2(x)− F1(x))d(u(x))

Proof. In [16] pag. 336.

Theorem 2.1.1. Under the hypothesis of Lemma 2.1.1, then:

X1 º1 X2 ⇔ F1(x) ≤ F2(x) ∀x

Proof. In [16] pag. 337.

This criterion is simply interpretable: the probability to take a value smaller than

x for X1 is not larger than the same probability for X2.

Definition 2.1.2. Consider two random variables X1 and X2, we say that X1 stochas-
tically dominates at second order X2 , and we write X1 º2 X2, if:

E(u(X1))− E(u(X2)) ≥ 0
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2.1 First and Second order Stochastic Dominance

for every u ∈ U2.

(whenever the inequality holds strictly for at least one u, then we say that SD holds in
strong sense).

Remark 1: We have:

X1 º1 X2 ⇒ X1 º2 X2

Remark 2: If X1 ºi Y and Y ºi X2 then X1 ºi X2, for i = 1, 2; this is obvious

considering that for any u ∈ Ui:

E(u(X1))− E(u(X2)) = E(u(X1))− E(u(Y )) + E(u(Y ))− E(u(X2)) ≥ 0

Theorem 2.1.2. Consider two random variables X1 and X2 which have F1(x) and
F2(x) as their cumulative distributions functions. Then if u ∈ U2:

X1 º2 X2 ⇔
∫ x

−∞
(F2(t)− F1(t))dt ≥ 0 ∀x (2.1)

Proof. In [16] pag. 338.

Given two functions g1, g2 defined on R. We say that g1 intersects only once from

below g2 if g1 < g2 to the left of the intersection point.

Lemma 2.1.2. Consider two random variables X1 and X2 which have F1(x) and F2(x)
as their cumulative distributions functions. If F1(x) intersects only once from below
F2(x) in x0 , then :

E(X1)− E(X2) ≥ 0 ⇐⇒
∫ x

−∞
(F2(t)− F1(t))dt ≥ 0 ∀x.

Proof. (⇒): From Lemma 2.1.1:

E(X1)− E(X2) =
∫ ∞

−∞
(F2(x)− F1(x))dx (2.2)

If x ≤ x0 then ∫ x

−∞
(F2(t)− F1(t))dt > 0

If x > x0: ∫ x

−∞
(F2(t)− F1(t))dt ≥

∫ ∞

x
(F1(t)− F2(t))dt > 0

(⇐): For x →∞:
∫ ∞

−∞
(F2(t)− F1(t))dt ≥ 0 ⇒ E(X1)− E(X2) ≥ 0
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2.1 First and Second order Stochastic Dominance

In the next Theorem we give sufficient conditions for second order stochastic dom-

inance:

Theorem 2.1.3. Consider two random variables X1 and X2 which have F1(x) and
F2(x) as their cumulative distributions functions. If F1(x) intersects only once from
below F2(x) in x0 then:

E(X1)− E(X2) ≥ 0 ⇐⇒ X1 º2 X2

Proof. : Obvious from Theorem 2.1.2 and Lemma 2.1.2.

Normal random variables

Proposition 2.1.1. Consider two normal random variables X1 ∼ N(µ1, σ) and X2 ∼
N(µ2, σ). Suppose µ1 ≥ µ2, then X1 º1 X2.

Proof. If µ1 = µ2 then X1 ≡ X2. If µ1 > µ2 the result it’s immediate considering that
FX1(x) and FX2(x) have no intersection points and FX1(x) < FX2(x) for any x and
then applying Theorem 2.1.1.

Proposition 2.1.2. Consider two normal random variables X1 ∼ N(µ1, σ1) and X2 ∼
N(µ2, σ2). Suppose µ1 ≥ µ2 and σ1 ≤ σ2, then X1 º2 X2.

The proof is based on the following Lemma and on Theorem 2.1.3.

Lemma 2.1.3. Consider two normal random normal variables X1 ∼ N(µ1, σ1) and
X2 ∼ N(µ2, σ2) which have F1(x) and F2(x) as their cumulative distributions functions.
Then F1(x) intersects only once from below F2(x) if and only if σ1 < σ2

Proof. The cumulative distribution function of Z ∼ N(µ, σ) can be written as:

FZ(x; µ, σ) =
∫ x

−∞

1
σ

ϕ(
y − µ

σ
)dy =

∫ x−µ
σ

−∞
ϕ(t)dt = Φ(

x− µ

σ
) (2.3)

The intersection points of F1(x) and F2(x) are obtained by:

Φ(
x− µ1

σ1
) = Φ(

x− µ2

σ2
) (2.4)

assuming σ1 6= σ2 the previous expression implies the existence of a unique intersection
point in x∗ = (µ1σ2 − µ2σ1)/(σ1 − σ2). Furthermore it holds by De l’Hopital:

lim
x→−∞

F1(x)
F2(x)

= lim
x→−∞Exp[−(x− µ1)2

2σ2
1

+
(x− µ2)2

2σ2
2

] = lim
x→−∞Exp[−x2

2
(

1
σ2

1

− 1
σ2

2

)]

if σ1 < σ2 (σ1 > σ2) then the above limit is 0 (∞). This ends the proof.
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2.1 First and Second order Stochastic Dominance

Proof. (of Proposition 2.1.2) In the case σ1 = σ2:

µ1 ≥ µ2 ⇒ X1 º1 X2 ⇒ X1 º2 X2 (2.5)

where the first row is implied by Proposition 2.1.1.
The previous Lemma implies that, if σ1 < σ2, then F1 intersects only once from below
F2. In addition, considering the condition µ1 ≥ µ2 and the Theorem 2.1.3 we obtain
the result.

Skew-Normal random variables

Theorem 2.1.4. : (i) Let X1 ∼ SN(µ, σ2, α1) and X2 ∼ SN(µ, σ2, α2) be skew-normal
r.v’s. Suppose α1 ≥ α2 then X1 º1 X2.

(ii) Let X1 ∼ SN(µ, σ2
1, α) and X2 ∼ SN(µ, σ2

2, α) be skew-normal r.v’s with α ≤ 0.
Suppose σ1 ≤ σ2 then X1 º2 X2.

(iii) Let X1 ∼ SN(µ1, σ
2, α) and X2 ∼ SN(µ2, σ

2, α) be skew-normal r.v’s. Suppose
µ1 ≥ µ2 then X1 º1 X2.

Proof:

(i): Let X ∼ SN(µ, σ2, α) and denote by Fµ,σ,α(x) the corresponding distribution

function. For each fixed (µ, σ) and arbitrary x we consider the function α → h(α) :=

Fµ,σ,α(x). We have:

h′(α) =
2
σ

∫ x

−∞
ϕ(

y − µ

σ
)

∂

∂α
Φ(α

y − µ

σ
)dy = 2

∫ x

−∞

y − µ

σ
ϕ(

y − µ

σ
)ϕ(α

y − µ

σ
)d(

y − µ

σ
)

= 2
∫ x−µ

σ

−∞
tϕ(t

√
1 + α2)dt =

2
1 + α2

∫ √
1+α2

σ
(x−µ)

−∞
tϕ(t)dt = − 2

1 + α2
ϕ(
√

1 + α2

σ
(x−µ))

Therefore h(α) is decreasing, Fµ,σ,α1(x) ≤ Fµ,σ,α2(x) for all x, and the result follows by

Theorem 2.1.1.

(ii): For each fixed (µ, α) and arbitrary z we consider the function σ → l(σ) :=∫ z
−∞ Fµ,σ,α(x)dx. We have:

l′(σ) =
∫ z

−∞

∂

∂σ
[
∫ x

−∞

2
σ

ϕ(
y − µ

σ
)Φ(α

y − µ

σ
)dy]dx = 2

∫ z

−∞

∂

∂σ
[
∫ x−µ

σ

−∞
ϕ(t)Φ(αt)dt]dx

= −2
∫ z

−∞

x− µ

σ2
ϕ(

x− µ

σ
)Φ(α

x− µ

σ
)dx = −2

∫ z−µ
σ

−∞
tϕ(t)Φ(αt)dt
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2.1 First and Second order Stochastic Dominance

and by integrating by parts the last integral

l′(σ) = 2ϕ(
z − µ

σ
)Φ(α

z − µ

σ
)− 2α√

1 + α2
Φ(
√

1 + α2

σ
(z − µ))

which is non negative for all α ≤ 0. Henceforth l(σ) is increasing,
∫ z
−∞ Fµ,σ1,α(x)dx ≤∫ z

−∞ Fµ,σ2,α(x)dx for all z, and we get the result by Theorem 2.1.2.

(iii): For each fixed (σ, α) and arbitrary x we consider the function µ → k(µ) :=

Fµ,σ,α(x). We have:

k′(µ) =
∫ x

−∞

2
σ

∂

∂µ
[ϕ(

y − µ

σ
)Φ(α

y − µ

σ
)]dy

=
2
σ

∫ x

−∞
(
y − µ

σ
)ϕ(

y − µ

σ
)Φ(α

y − µ

σ
)d(

y − µ

σ
)− 2α

σ

∫ x

−∞
ϕ(

y − µ

σ
)ϕ(α

y − µ

σ
)d(

y − µ

σ
)

= − 2
σ

∫ x−µ
σ

−∞
ϕ′(t)Φ(αt)dt− 2α

σ
√

1 + α2

∫ x−µ
σ

−∞
ϕ(t)dt = − 2

σ
ϕ(

x− µ

σ
)Φ(α

x− µ

σ
)

where we have integrated by parts the first integral.

Therefore k(µ) is decreasing and Fµ1,σ,α(x) ≥ Fµ2,σ,α(x) for all x, the result follows

by Theorem 2.1.1.¤

Corollary 2.1.5. :
(i)Let X1 ∼ SN(µ1, σ

2, α1) and X2 ∼ SN(µ2, σ
2, α2) be skew-normal r.v’s. Suppose

µ1 ≥ µ2 and α1 ≥ α2 , then X1 º1 X2.
(ii)Let X1 ∼ SN(µ1, σ

2
1, α1) and X2 ∼ SN(µ2, σ

2
2, α2) be skew-normal r.v’s with

α1, α2 ≤ 0. Suppose µ1 ≥ µ2, σ1 ≤ σ2 and α1 ≥ α2, then X1 º2 X2.

Proof. (i)Let Y ∼ SN(µ1, σ, α2) then:

X1 º1 Y º1 X2.

(ii) Let Y ∼ SN(µ1, σ
2
1, α2) and Z ∼ SN(µ1, σ

2
2, α2) then, by Theorem 2.1.4,

X1 º2 Y º2 Z º2 X2.

Given a skew normal random variable X ∼ SN(µ, σ2, α) we shall call:

B2 := (σδ)2 : the non-spherical component of the variance: Vns (2.6)

s2 := σ2 − (σδ)2 : the spherical component of the variance: Vs (2.7)
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2.1 First and Second order Stochastic Dominance

where we recall the expression of δ :

δ =
α√

1 + α2
.

The expression of Var(X) in terms of (σ,B), reported below, justifies this terminology

(adapted from Simaan [35]).

In terms of B = B(σ, α) the density of X ∼ SN(µ, σ2, α) becomes:

fX(x) =
2
σ

ϕ(
x− µ

σ
)Φ(

B√
σ2 −B2

(x− µ)
σ

) (2.8)

and the first three moments are:

E(X) = µ +

√
2
π

B (2.9)

Var(X) = σ2 − 2
π

B2 = [σ2 −B2] + [(1− 2
π

)B2] = Vs + (1− 2
π

)Vns (2.10)

Skew(X) =
4

(2π)3/2
(4− π)B3 (2.11)

From the last relation we see that for B = 0 the skewness of X is zero and viceversa.

This justifies the name ”non-spherical component” for the part of the variance propor-

tional to B2. The following second order stochastic dominance result will be used later

in Section 4.3.1.

Proposition 2.1.6. Let X1 ∼ SN(µ, σ2
1, α1) and X2 ∼ SN(µ, σ2

2, α2) be skew-normal
r.v’s. Suppose σ1 ≤ σ2 and B1 = σ1δ1 = σ2δ2 = B2 then X1 º2 X2.

Proof. Let X ∼ SN(µ, σ2, α) in terms of (µ, σ2, B) its cumulative distribution function
is:

Fµ,σ,B(x) =
2
σ

∫ x

−∞
ϕ(

z − µ

σ
)Φ(

B√
σ2 −B2

(z − µ)
σ

)dz

=
∫ x−µ

σ

−∞
2ϕ(t)Φ(

B√
σ2 −B2

t)dt

For each fixed (µ,B) and arbitrary y we consider the function

σ → m(σ) :=
∫ y

−∞
Fµ,σ,B(x)dx.

We have:

m′(σ) = −2
∫ y

−∞

x− µ

σ2
ϕ(

x− µ

σ
)Φ(

B√
σ2 −B2

(x− µ)
σ

)dx

+ 2
∫ y

−∞

(∫ x−µ
σ

−∞
ϕ(t)ϕ(

B√
σ2 −B2

t)
−Btσ

(σ2 −B2)3/2
dt

)
dx
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2.1 First and Second order Stochastic Dominance

Denote by:

A = −2
∫ y

−∞

x− µ

σ2
ϕ(

x− µ

σ
)Φ(

B√
σ2 −B2

(x− µ)
σ

)dx

then:

m′(σ) = A + 2
∫ y

−∞

(∫ x−µ
σ

−∞

−Btσ

π1/2(σ2 −B2)3/2
ϕ(

σt√
σ2 −B2

)dt

)
dx

Integrating the gaussian part we obtain:

m′(σ) = A + 2
∫ y

−∞

B

σ(π(σ2 −B2))1/2
ϕ(

x− µ√
σ2 −B2

)dx

Notice that A can be written as:

A = 2
∫ y

−∞
(∂xϕ(

x− µ

σ
))Φ(

B√
σ2 −B2

(x− µ)
σ

)dx

therefore integrating by parts we get:

A = 2
[
Φ(

B√
σ2 −B2

(x− µ)
σ

)ϕ(
x− µ

σ
))

]y

−∞
(2.12)

− 2
∫ y

−∞
ϕ(

x− µ

σ
)ϕ(

B√
σ2 −B2

(x− µ)
σ

)
B

σ((σ2 −B2))1/2
dx

= 2
[
Φ(

B√
σ2 −B2

(x− µ)
σ

)ϕ(
x− µ

σ
))

]y

−∞
(2.13)

− 2
∫ y

−∞

B

σ(π(σ2 −B2))1/2
ϕ(

(x− µ)√
σ2 −B2

)dx

Inserting this result into the expression of m′(σ) we obtain:

m′(σ) = 2Φ(
B√

σ2 −B2

(y − µ)
σ

)ϕ(
y − µ

σ
))

Hence
∫ y
−∞ Fµ,σ,B(x)dx is increasing in σ and for fixed (µ,B):

∫ y

−∞
Fµ,σ1,B(x)dx ≤

∫ y

−∞
Fµ,σ2,B(x)dx (2.14)

for any y. The result follows by Theorem 2.1.2.

Corollary 2.1.1. Let X1 ∼ SN(µ1, σ
2
1, α1) and X2 ∼ SN(µ2, σ

2
2, α2) be skew-normal

r.v’s. Suppose µ1 ≥ µ2, σ1 ≤ σ2 and B1 = σ1δ1 = σ2δ2 = B2 then X1 º2 X2.

Proof. Let Y ∼ SN(µ1, σ
2
2, α2). We have X1 º2 Y and Y º1 X2. Hence:

X1 º2 Y º2 X2.
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3

Mean Variance Analysis and

CAPM

3.1 The mean variance framework

Consider a market of n risky assets; we denote by R ∈ Rn the random vector of assets

returns and by

Rw = wT R

the portfolio w ∈ Rn representing the univariate r.v. of portfolio return.

The Mean Variance analysis is based on the following assumptions:

i) the preferences of all investors about portfolios are based on an expected utility

function depending only on two parameters: the mean and the variance of the portfolio

returns

ii) all investors prefer high portfolio means and small portfolio variances.

Denoting by fRw(·) the density of Rw, the condition i) is expressed by the following

formula:

E(u(Rw)) =
∫

u(r)fRw(r)dr ≡ λ(E(Rw), Var(Rw)), (3.1)

that is the investor expected utility depends only on the first two moments of the port-

folio returns distribution.

In addition, to assure the preference towards high means and small variances, the func-

tion λ has to be increasing in means and decreasing in variances. Therefore denoting
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3.2 Portfolio selection

by mw = E(Rw) and by v2
w = Var(Rw), the condition ii) is expressed by:

∂

∂mw
λ(mw, v2

w) > 0 ;
∂

∂v2
w

λ(mw, v2
w) < 0 (3.2)

Hence, in this framework, given two portfolios w1 and w2 and denoting by Rw1 and

Rw2 their portfolio returns, the condition

E(u(Rw1)) ≥ E(u(Rw2)), (3.3)

is satisfied if the following inequalities

E(Rw1) ≥ E(Rw2) and Var(Rw1) ≤ Var(Rw2). (3.4)

hold. Note that the conditions (3.4) are sufficient but not necessary for (3.3). Indeed

mean variance analysis does not provide any advices for the cases:

1) E(Rw1) > E(Rw2) and Var(Rw1) > Var(Rw2)

2) E(Rw1) < E(Rw2) and Var(Rw1) < Var(Rw2),

In these cases the investor has to choose between w1 and w2 using other rules. Notice

that no explicit assumption is made on the distribution of returns R which drives

the portfolio return Rw. However when the utility function is quadratic or when R is

elliptically distributed the requirement implicitly made in (3.1) holds true. This will

be shown later on.

3.2 Portfolio selection

Definition 3.2.1. The mean-variance efficient set is the set of all portfolios with
smallest variance for a given level of mean and greatest mean for a given level of
variance.

The efficient set is a subset of the minimum-variance set. This is the set of port-

folios of minimum variance for each level of mean. They are compared in Figure 3.2.

In the next two subsections we analyze the fundamental property of the minimum vari-

ance set: portfolios in this set can all be obtained as linear combination of only two

distinct minimum variance portfolios (called the separating funds).
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3.2 Portfolio selection

Separating funds without risk-less asset

In this section we analyze the nature of the minimum variance set and we find the two

separating funds in absence of a risk-less asset. Let R ∈ Rn be the random vector of

assets returns (all assets are assumed to be risky). Denote by

m = E(R) and V = Var(R)

For each portfolio w, we have:

mw = E(Rw) = wT m (3.5)

v2
w = Var(Rw) = wT V w (3.6)

with Rw = wT R.

Consider a fixed level of poertfolio returns E ∈ R and the following associated opti-

mization problem:

Minw
1
2wT V w (3.7)

with the constraints: wT m = E

1T w = 1

Short sales are permitted: no constraints of the kind wi ≥ 0 have been imposed on the

components of w.

Each portfolio which solves this problem is said to belong to the minimum variance

set. Varying the values of E ∈ R we span the minimum variance set. To obtain a

portfolio lying in the mean-variance efficient set an investor selects among portfolios

in the minimum variance set which have equal variance the portfolio with the highest

value of E ∈ R.

Proposition 3.2.1. It holds the following: the minimum variance set is spanned by
the two portfolios (called separating funds):

a1 =
V −1m

1T V −1m
, a2 =

V −11
1T V −11

(3.8)

Proof. Starting from the problem (3.7) we can write the following Lagrangian:

L =
1
2
wT V w − λ1(1T w − 1)− λ2(wT m− E) (3.9)
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3.2 Portfolio selection

and derive the first order conditions:

∂

∂w
L = V w − λ11− λ2m = 0 (3.10)

so the efficient set satisfies:

w = λ1V
−11 + λ2V

−1µ (3.11)

Multiplying (3.11) once for 1T and once for mT and using constraints we obtain re-
spectively:

1 = λ1A + λ2B ; E = λ1B + λ2C (3.12)

where A = 1T V −11, B = mT V −11 and C = mT V −1m. Solving (3.12) for λ1, λ2 we
obtain:

λ1 =
C − EB

AC −B2
; λ2 =

EA−B

AC −B2
(3.13)

where AC −B2 > 0 . Inserting expressions of λ1, λ2 into (3.11):

w =
C − EB

AC −B2
V −11 +

EA−B

AC −B2
V −1m (3.14)

which leads to:

w∗ = c1
V −11

1T V −11
+ c2

V −1m

mT V −11
(3.15)

where c1 + c2 = 1. This is the desired result.

We call the two dimensional space generated by (mw, v2
w) the mean variance space

(MV). The equation of the minimum variance set in the MV space is obtained mul-

tiplying equation (3.14) for wT V (where now E = mw):

v2
w = wT V w =

C −mwB

AC −B2
+

mwA−B

AC −B2
mw =

m2
wA− 2Bmw + C

AC −B2
(3.16)

The previous equation describes a parabola. If we plot the mean on the vertical

axes we obtain, in the mean-standard deviation space, an hyperbola of equation:

mw =
B

A
±

√
A∆v2

w −∆
A

(3.17)
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3.2 Portfolio selection

σ

µ

mean variance efficient set
minimum variance set

Feasible Portfolios

µµ

σ

Figure 3.1: Two graphs in the space (mw, vw), where the mean is represented in the
vertical axes. On the left: the minimum variance set and the efficient subset. On the
right: the set of feasible portfolios.

where ∆ = AC−B2. The graph of this function is illustrated in Figure 3.2. The slopes

of the asymptotes of the hyperbola are obtained by the partial derivative of mw with

respect to v2
w:

lim
mw→±∞

∂

∂v2
w

mw = lim
mw→±∞

v2
w

AC −B2

Amw −B
= lim

mw→±∞

√
AC −B2

Amw −B

√
m2

wA− 2Bmw + C

= ±
√

AC −B2

A
(3.18)

Separating funds with a risk-less asset

We now enlarge the assets set adding an asset whose return Rf is not random. In this

case we have

(R0, R) ∈ Rn+1,

, with the first component given by R0 = Rf . Furthermore, continuing to denote by V

the covariance matrix of the risky returns R, we set:

Σ = Var((R0, R)) =
(

0 0
0 V

)
∈ R(n+1)×(n+1), (3.19)

hence the first row and the first column of Σ are made of all zeros. Each portfolio w is

a vector in Rn+1: we denote it by w = (w0, w̃)T , where w̃ ∈ Rn.
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3.2 Portfolio selection

The optimization problem (3.7), which defines a minimum variance portfolio, now

takes the following form:

Min 1
2wT Σw (3.20)

with the constraints: w0Rf + w̃T m = E (3.21)

w0 + 1T w̃ = 1 (3.22)

Proposition 3.2.2. Under the previous assumptions it holds the following: the mini-
mum variance set is spanned by the following two portfolios (or separating funds):

wf = (1, 0, . . . , 0)T wt =
(

0,
V −1(m− 1Rf )

1T V −1(m− 1Rf )

)T

(3.23)

Proof. The Lagrangian of the problem assumes the form:

L =
1
2
wT Σw − λ(w0 + 1T w̃ − 1)− γ(w0Rf + w̃T m− E) (3.24)

and we can derive the first order conditions:
∂

∂w̃
L = V w̃ − λ1− γm = 0 (3.25)

∂

∂w0
L = −λ− γRf = 0 (3.26)

Inserting the expression λ = −γRf in the first of the two equations above and extracting
w̃ we obtain:

w̃ = γV −1(m− 1Rf ) ; w0 = 1− 1T w̃ (3.27)

Using both the constraints γ can be obtained, its value is:

γ =
E −Rf

(m− 1Rf )T V −1(m− 1Rf )
=

E −Rf

C − 2RfB + R2
fA

(3.28)

Using this result we can write the generic solution to (3.20) as:

w∗ = wfw0 +
(E −Rf )1T V −1(m− 1Rf )
(m− 1Rf )T V −1(m− 1Rf )

wt (3.29)

where w0 = 1− 1T w̃.

As in the previous Section we can now obtain the equation of the minimum variance

set in the MV space. Multiplying (3.27) for w̃T V , denoting mw = w0Rf + mw̃,

mw̃ = w̃T m and considering that E −Rf = mw −Rf = mw̃ −Rf1T w̃, we get:

v2
w = wT Σw = w̃T V w̃ =

(E −Rf )2

C − 2RfB + R2
fA

(3.30)
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3.2 Portfolio selection

In the M-V space this is the equation of two rays with common intercept in Rf :

mw = Rf ± vw

√
C − 2RfB + R2

fA (3.31)

Again the minimum variance set is spanned by only two funds. The portfolio wt is

called the tangency portfolio: it is the only minimum variance portfolio that belongs

to the hyperbola representing portfolios investing only in risky assets. The mean and

variance of this portfolio are:

mt = wT
t m =

C −BRf

B −ARf
(3.32)

v2
t = wT

t V wt =
C − 2RfB + R2

fA

(B −ARf )2
=

mt −Rf

B −ARf
(3.33)

The tangent line drawn from the risk-less asset through the tangency portfolio in the

MV space is called security market line.

Expected returns of assets

In this Section we characterize the expected returns of the assets in the market.

Given any portfolio wp and its return Rwp = wT
p R we define the beta of the portfolio

to be the vector

βp = vp/v2
p

where vp = V wp is the vector of covariances of R with Rwp and where v2
p = Var(Rwp).

We begin to analyze expected returns when a risk-less asset is available.

For the tangency portfolio we have:

vt = V wt =
(m− 1Rf )

1T V −1(m− 1Rf )
=

(m− 1Rf )
B −ARf

, (3.34)

so, by using (3.33), we obtain the fundamental relation:

m− 1Rf = vt
mt −Rf

v2
t

= βt(mt −Rf ) (3.35)

Therefore any asset uncorrelated with the tangency portfolio, has an expected return

equal to Rf

Let us consider a market where all assets are risky. As mentioned above, in this case

the minimum variance set is an hyperbola spanned by the two portfolios a1 and a2.
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3.3 Capital Asset Pricing Model

The covariance vector va of the generic portfolio wa lying in the minimum variance

set,

wa = (1− λ)a1 + λa2,

is given by:

va = V wa =
1− λ

A
1 +

λ

B
m (3.36)

where we have used (3.15). Let wp a further portfolio of the minimum variance set,

multiplying (3.36) once for wa and once for wp:

v2
a =

1− λ

A
+

maλ

B
, vpa =

1− λ

A
+

mpλ

B
(3.37)

Substituting into (3.36) the above equalities we obtain:

m =
mpv

2
a −mavap

v2
a − vap

1 +
ma −mp

m2
a − vap

va (3.38)

If in addition the portfolio wa is uncorrelated to portfolio wp, namely σap = 0, then

m = mp1 +
ma −mp

v2
a

va = mp1 + (ma −mp)βa. (3.39)

3.3 Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) is maybe the most widely used model in

finance. The CAPM equation is a pricing equation relating the expected return of each

asset to the expected return of the market portfolio.

The CAPM result relies on the following assumptions:

Assumption 3.3.1. All the M investors are utility maximizers and they all maximize
expected utility through mean variance analysis, that is among all portfolios of equal
mean returns they prefer the portfolio with the smallest variance of returns. All have
the same time horizon and the same beliefs about the values of the parameters (m, V ),
representing mean and covariance of securities returns.
N is the total number of Firms and each Firm contributes in the market with ni secu-
rities with

∑
ni = n.

The risk-less asset can be bought or sold in unlimited amounts.
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3.3 Capital Asset Pricing Model

Under these assumptions all investors hold a minimum variance portfolio. Since all

portfolios in the minimum variance set are combination of only two portfolios the j-th

investor’s portfolio can be written as:

w(j) = γjwf + (1− γj)wt.

Then the aggregate portfolio w∗ =
∑M

j=1 w(j) representing the investments of all the

M investors will be again a linear combination of only the two portfolios written above.

Furthermore the risky component of the aggregate portfolio will consist solely of the

tangency portfolio. Next we have the following

Definition 3.3.1. The market portfolio is the portfolio representing the total supply
of assets in the market.

By consequence if pi is the price of the security of the i-th Firm, and

Ctot =
N∑

i=1

nipi,

then the market portfolio is given by:

wm =
(

n1p1

Ctot
, . . . ,

nNpN

Ctot

)
(3.40)

In equilibrium the aggregate demand of risky assets, represented solely by the tangency

portfolio, is equal to the total supply, i.e. the market portfolio. Therefore:

wm = wt

The CAPM equation is then easily obtained inserting this result into (3.35):

me − 1Rf = βm(mm −Rf ) (3.41)

where mm = wT
mR.

In absence of a risk-less asset a similar way of reasoning together with the use of (3.39),

leads to the following version of the CAPM equation

me = mz1 + (mm −mz)βm (3.42)

due to F.Black. In (3.42) mz = wT
z R where wz is a zero beta portfolio whose returns

are uncorrelated with the market.
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3.4 Compatibility with expected utility maximization

3.4 Compatibility with expected utility maximization

As argued in Section 3.2 mean variance analysis is fully compatible with utility max-

imization only in two cases: when the utility is quadratic or when the returns are

elliptically distributed. In this Section we prove this statement.

First of all consider the case of n risky assets whose returns are described by R which

is normal Nn(m, V ). We know from the standard properties of the normal distribution

that each affine transformation of R gives rise to another normal r.v. Specifically the

random variable Rw = wT R is distributed as

Rw ∼ N(wT m, wT V w)

Hence expected utility is a function only of the mean and of the variance of portfolio

return:

E(u(Rw)) =
∫

1
(wT V w)1/2

u(r)ϕ(
r −wT m

(wT V w)1/2
)dr ≡ λ(wT m, wT V w) (3.43)

In addition Proposition 2.1.2, which states the SD properties for normal prospects,

implies that , given two portfolios w1 and w2, if:

E(Rw1) ≥ E(Rw2) and Var(Rw1) ≤ Var(Rw2) (3.44)

then:

E(u(Rw1)) ≥ E(u(Rw2)) (3.45)

for all u ∈ U2. Therefore we recover the same conditions stated in (3.2).

These properties assure that in the normal assumption mean variance analysis and

utility maximization are compatible.

The normal is not the only distribution that guarantees compatibility between utility

maximization and mean variance analysis. The larger class of elliptical distributions

preserves the same fundamental property.

Elliptical distributions

It can be shown that a class of distributions will give rise to an utility maximization

procedure compatible with the mean variance analysis whenever: i)the class is closed

under affine transformations; ii) all moments can be written as functions only of the first
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3.4 Compatibility with expected utility maximization

two moments;iii) a portfolio with given variance and expected return is stochastically

dominated (at second order) by another one with same expected return but smaller

variance.

From results of Appendix A we already know that the class of elliptical distributions

satisfies conditions i) and ii). We now prove the validity of condition iii).

From (A.1) a 1-dim elliptical random variable Y has a density of the form:

fY (y; µ, σ2) =
1
σ

f(
y − µ

σ
) (3.46)

Proposition 3.4.1. Given two elliptical random normal variables, with the same dis-
tribution, X1 ∼ Ell(µ1, σ1) and X2 ∼ Ell(µ2, σ2) which have F1(x) and F2(x) as their
cumulative distributions functions, then F1(x) intersects only once from below F2(x) if
and only if σ1 < σ2

Proof. By (3.46) the cumulative distribution function of Z ∼ Ell(µ, σ) can be written
in the form:

FZ(x; µ, σ) =
∫ x

−∞

1
σ

fZ(z; µ, σ2)dz =
∫ x−µ

σ

−∞
fZ(z)dz (3.47)

Performing the partial derivative with respect to σ pointwise in x and with µ fixed we
obtain:

∂

∂σ
FZ(x;µ, σ) = −x− µ

σ2
fZ(

x− µ

σ
) (3.48)

This implies ∂σFZ(x; µ, σ) < 0 for each x > µ and ∂σFZ(x;µ, σ) > 0 for each x <

µ. That is the intersection point is unique in x = µ and for x < µ FZ(x;µ, σ1) <

FZ(x; µ, σ2) if σ1 < σ2.

Corollary 3.4.1. Given two elliptical random normal variables, with the same distri-
bution, X1 ∼ Ell(µ1, σ1) and X2 ∼ Ell(µ2, σ2), if µ1 ≥ µ2 σ1 ≤ σ2 then X1 º2 X2

Proof. The result is obvious considering the previous result and the Theorem 2.1.2.

This Corollary implies the validity of iii). As a consequence the elliptical class is

consistent with utility maximization in case of concave utility functions.
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3.5 Ross’s Separation Theorems

Quadratic Utility

Here we drastically restrict the class of utility functions assuming the utility is quadratic:

u(x) = x− 1
2
bx2 b > 0 (3.49)

For this specific form the expected utility of any random variable (or uncertain prospect)

X can be explicitly computed:

E(u(X)) =
∫

u(x)fX(x)dx =
∫

(x− 1
2
bx2)fX(x)dx

= E(X)− 1
2
b(E(X)2 + Var(X)) (3.50)

Clearly it holds:
∂

∂Var(X)
E(u(X)) < 0

and, if we restrict our considerations to the region of increasing utility, which is x < 1/b,

then we also have:
∂

∂E(X)
E(u(X)) > 0.

3.5 Ross’s Separation Theorems

In this Section we briefly recall the Theory developed by Ross on k-funds separability,

presented in [32]. The main references are Ross [32] and Ingersoll [18].

All the proofs of this Section are reported in Appendix 2.

Proposition 3.5.1. (i) Y º1 X iff X ∼ Y + Z for some r.v. Z such that Z ≤ 0
(ii) Y º2 X iff X ∼ Y +Z + ε for some r.v.’s Z, ε such that Z ≤ 0 and E(ε|Y +Z) = 0.

Proof. : Given in Appendix 2

Definition 3.5.1. : We shall say that,
(A) the distribution of R has the (strong) 1-fund separation property if there exists a
portfolio wa such that for any portfolio wb it holds

wT
a R º2 wT

b R
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3.5 Ross’s Separation Theorems

(B) the distribution of R has the (strong) 2-funds separation property if there exist two
portfolios w1,w2 such that for any portfolio wb there is a portfolio wa given by a linear
combination of w1 and w2 for which it holds

wT
a R º2 wT

b R.

(C) the distribution of R has the (strong) 3-funds separation property if there exist
three portfolios w1,w2, w3 such that for any portfolio wb there is a portfolio wa given
by a linear combination of w1, w2 and w3 for which it holds

wT
a R º2 wT

b R.

Remark: In a similar fashion k-funds (k ≥ 4) can be defined and discussed. We

give details of the three funds separation in Section 4.6.

Ross in [32] characterizes the families of distributions of R which have the k-fund

separation property. Here we discuss such results for the case of 1-fund SP and 2-fund

SP.

Theorem 3.5.1. The distribution of R has the (strong) 1-fund separation property iff
there exist a scalar r.v. Y , a vector r.v. ε and a portfolio α such that
(a) each component of R can be written as Ri = Y + εi, for i = 1, . . . , n

(b) it holds E(εi|Y ) = 0
(c) the portfolio α is orthogonal to the vector ε (i.e. αT ε = 0).

Remark: For obvious reasons Y is called the ”common (risky) factor” and the

noise εi the asset-specific ”residual risk”.

Proof. : Given in Appendix 2

Theorem 3.5.2. (2-funds separation without risk-less asset) The distribution of R has
the (strong) 2-fund separation property iff
there exist two scalar r.v.’s Y,Z, a vector r.v. ε, a (deterministic) vector b, and two
portfolios α and β such that
(a) each component of R can be written as Ri = Y + biZ + εi, for i = 1, . . . , n

(b) E[εi|Y + biZ] = 0 ∀i
(c)

∑
αiεi = 0 =

∑
βiεi
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3.5 Ross’s Separation Theorems

Proof. : Given in [18], pag 156.

Theorem 3.5.3. (2-funds separation with a risk-less asset) The distribution of R has
the (strong) 2-fund separation property iff
there exist a scalar r.v.Y , a vector r.v. ε, a (deterministic) vector b, and two portfolios
α, β such that
(a) each component of R can be written as Ri = Rf + biY + εi, for i = 1, . . . , n + 1
(b) E[εi|Y ] = 0∀i
(c)

∑
αiεi = 0 =

∑
βiεi

Proof. : Given in [18], pag 152.

Remark 1:Theorem 3.5.2 provides for two conditions to be checked in a market

model for risky assets:

1) the return of each asset can be written in the form specified by (a)

2) there are two distinct portfolios orthogonal to the vector ε of the residual risks,

namely α and β.

Whenever these conditions are verified by the distributional model for the asset returns,

any portfolio generated by the linear combination of the portfolios α and β will have a

return which always stochastically dominates (at the second order) the returns of any

other portfolio. The viceversa holds true as well.

Proposition 3.5.2. The normal distribution has the 2-funds separating property.

Proof. When risky assets are assumed to be normal distributed the mean variance
analysis is consistent with utility maximization. Then for normal returns Proposition
3.2.1 holds true.
Consequently each portfolio is dominated by a portfolio lying in the minimum variance
set. In addition, the expression (3.15) implies that the generic portfolio of the minimum
variance set is a linear combination of only two portfolios.

The previous result is equivalent to the following one:

Proposition 3.5.3. If the vector of returns is normally distributed then it satisfies
conditions of Theorem 3.5.3

Proof. : Given in Appendix 2.
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4

Investing in non-normal Markets

4.1 The Simaan model

If the returns of assets are assumed to be non-elliptical or the utility function to be non

quadratic, the mean variance analysis loses its validity. As a consequence the CAPM

equation itself needs to be reconsidered.

In relation with these problems Simaan in [35] presents a novel framework. In his

work, among various results, he is able to obtain a consistent equation of CAPM-type

relaxing the standard assumption of normality (or ellipticity) on the distribution of

assets returns. It is worth noting that in Simaan’s approach the expected utility ,

rather than being a function of only the mean and the variance, is a function of three

parameters: the mean, the variance and the skewness of the portfolio return. That is

to say:

E(u(Rw)) = λ(E(Rw), Var(Rw), Skew(Rw)) (4.1)

Furthermore, in his model, the distribution of the assets returns turns out to have the

3-funds separation property.

The peculiarity of the model is that, contrary to the mean variance analysis where the

only risk measure was the variance, it admits two measures of risk. This is a direct

consequence of the specific form of the variance of the portfolio return which splits into

two components respectively called the spherical and the non-spherical components.

The returns are no more symmetric, moreover their skewness is a function only of the

non-spherical part of the variance.
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4.1 The Simaan model

In the Simaan model an investor controls his portfolio choice through three parameters:

the mean and the two components of the portfolio variance. Minimizing the spherical

variance of the portfolio return for given mean and non-spherical variance is the correct

optimization procedure which a risk-averse agent must implement in order to select the

most efficient portfolio.

In the following Section we recall briefly the main aspects of the Simaan model.

4.1.1 The Simaan Market Model

Assumption 4.1.1. Given two deterministic vectors µ, b ∈ Rn, the assets returns are
distributed according to:

Ri = µi + bi Y + εi (4.2)

ı = 1, . . . , n, where the joint distribution of ε is elliptical 1 conditionally on Y , with
law:

ε|Y ∼ Elln(0,W, ψ), (4.3)

and where Y follows a univariate non-elliptical distribution.

In vector notation (4.2) can be written:

R = µ + b Y + ε (4.4)

The following straightforward results, see Simaan [35] , illustrate some aspects of R:

Theorem 4.1.2. The characteristic function of any random vector R distributed ac-
cording to formula (4.2) is given by:

ΦR(t) = exp(itT µ)Φε(t)ΦY (tT b) (4.5)

where Φε(t) and ΦY (tT b) are the characteristic functions of the vector ε and of the
random variable Y respectively.

1See Appendix 1 for elliptical distributions. We remark that Simaan in [35] (Definition1. on

pg.569) calls spherical what here and in Appendix 1 is called an elliptical distribution. Usually the

statistical literature assigns the name ”spherical” only to the class Elln(0, Id, ψ).
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4.2 The skew normal case

Theorem 4.1.3. If E(Y ) = 0 and V ar(ε) is finite then the first three joint moments
of R are given as

E(R) = µ (4.6)

Var(R) = k W + bbT σ2
Y = Vs + σ2

Y Vns (4.7)

Skewijk(R) = E[(Ri − µi)(Rj − µj)(Rk − µk)] = bibjbkE(Y 3) (4.8)

where k is a positive constant and σ2
Y = V ar(Y ).

This shows that the skewness of R is a function of b and, in general, of the dis-

tribution parameters of Y . We also observe in (4.7) the splitting of the variance into

two components that Simaan calls respectively the spherical and non-spherical compo-

nents1 (only the latter depends on the vector b).

We now come to the properties of the portfolio return Rw = wT R :

Theorem 4.1.4. The characteristic function of the r.v. Rw depends only on wT µ,
wT b and wT Ww

Proof. By (4.5) we have:

ΦwT R(t) = exp(it(wT µ)))Φε(tw)ΦY (twT b)

= exp(itwT µ)ψ(t2wT Ww)Φ(twT b))

= h(t, wT µ, wT b, wT Ww) (4.9)

Corollary 4.1.1. The expected utility of any portfolio w is determined by its mean,
its variance and its skewness

4.2 The skew normal case

The main purpose of this Section is to show that a skew normal distributed random vec-

tor R, with parameters taking a certain form, can be recognized to satisfy the Simaan’s

assumptions [35] .

1We have chosen to preserve here the original Simaan’s names
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4.2 The skew normal case

The following Proposition provides for a new representation (called the represen-

tation for convolution) of a multivariate skew-normal r.v. See Azzalini [3] for more

details.

Consider two vectors µ = (µ1, . . . , µn)T ∈ Rn and δ = (δ1, . . . , δn)T where δi ∈ (−1, 1),

and two (n× n) matrices:

∆ =




δ1 . . . 0
...

. . .
...

0 . . . δn


 , ω =




ω1 . . . 0
...

. . .
...

0 . . . ωn




where ωi > 0 ∀i.
Then it holds:

Proposition 4.2.1. Given two random independent variables X ∼ N(0, 1) and Z ∼
Nn(0,Ψ), the random vector:

R = µ + (ωδ)|X|+ ω(Id−∆2)1/2Z (4.10)

is skew normally distributed with R ∼ SNn(µ,Ω, α) where Ω = ωΩω,

Ω = δδT + (Id−∆2)1/2Ψ(Id−∆2)1/2 (4.11)

and where α = Ω −1δ

(1−δT Ω
−1

δ)1/2
.

Remark: The matrix Ω is a correlation matrix: calling with ψij the elements of

Ψ, we have (ψii = 1 because Ψ is a correlation matrix):

Ω =




δ2
1 . . . δ1δn
...

. . .
...

δ1δn . . . δ2
n


 +




1− δ2
1 . . . ψ1n

√
1− δ2

1

√
1− δ2

n
...

. . .
...

ψ1n

√
1− δ2

1

√
1− δ2

n . . . 1− δ2
n




and so:

Ω =




1 . . . δ1δn + ψ1n

√
1− δ2

1

√
1− δ2

n
...

. . .
...

δ1δn + ψ1n

√
1− δ2

1

√
1− δ2

n . . . 1




with −1 ≤ δiδj + ψij

√
1− δ2

i

√
1− δ2

j ≤ 1 being |ψij | ≤ 1 and |δi| < 1. 1

1Claim: If a, b, c ∈ [−1, 1] then −1 ≤ ab + c
√

1− a2
√

1− b2 ≤ 1. Proof: it holds ab +

c
√

1− a2
√

1− b2 ≤ ab +
√

1− a2
√

1− b2 = y and y2 ≤ 1 because a2 + b2 ≥ 2ab
√

1− a2
√

1− b2.

Then ab + c
√

1− a2
√

1− b2 ≤ 1. The proof that ab + c
√

1− a2
√

1− b2 ≥ −1 is analogue.
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4.2 The skew normal case

Proof. We have to show that the random vector R has (1.25) as density . We denote
by R̃ the random vector such that:

R = µ + ωR̃

or equivalently:

R̃ = δ|X|+ (Id−∆2)1/2Z (4.12)

If we prove that R̃ ∼ SNn(0, Ω, α) the result is then easily obtained applying the
standard properties of a multivariate skew-normal r.v.
To obtain the density of R̃ first we consider the distribution of R̃ conditionally on X:

R̃|X = x ∼ N(δx,W ) (4.13)

where

W = (Id−∆2)1/2Ψ(Id−∆2)1/2. (4.14)

Then

fR̃(z) =
∫

fR̃|X(r, x)f|X|(x)dx

=
∫ ∞

0
2ϕ(x; 0, 1) ϕ(r − δx; 0,W )dx (4.15)

Some algebraic manipulation is needed in order to prove that:

(r − δx)T W−1(r − δx) + x2 = rT (w + δδT )−1r +
(x− δT Ω−1

r)2

1− δT Ω−1
δ

(4.16)

Using the previous equality, formula (4.15) becomes:

fR̃(r) = 2ϕ(r; 0,W + δδT )
∫ ∞

0
ϕ(x; δT Ω−1

r, 1− δT Ω−1
δ)dx

= 2ϕ(r; 0,Ω)
∫ ∞

− δT Ω
−1

r√
1−δT Ω

−1
δ

ϕ(x; 0, 1)dx

= 2ϕ(r; 0,Ω)
∫ δT Ω

−1
r√

1−δT Ω
−1

δ

−∞
ϕ(x; 0, 1)dx

= 2ϕ(r; 0,Ω)Φ


 δT Ω−1

r√
1− δT Ω−1

δ


 (4.17)
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4.2 The skew normal case

Finally adding the location parameter µ and the scale parameter ω we obtain the
desired result:

fR(r) = 2ϕ(r; µ,Ω)Φ


δT Ω−1

ω−1(rµ)√
1− δT Ω−1

δ


 (4.18)

= 2ϕ(r; µ,Ω)Φ
(
αT ω−1(r − µ)

)
(4.19)

To summarize, the model (4.10) given by:

R = µ + (ωδ)|X|+ ω(Id−∆2)1/2Z (4.20)

can be obtained by (4.2):

R = µ + b Y + ε (4.21)

with the following choices:

µ ⇒ µ

b ⇒ ωδ

Y ⇒ |X|
ε ⇒ ω(Id−∆2)1/2Z. (4.22)

The moments of (4.20) can be obtained by formulas (1.28), (1.29) but it is useful to

derive them directly from (4.101). Being E(|X|) =
√

2
π , the mean value is

E[R] = µ +

√
2
π

ωδ. (4.23)

and the covariance matrix is

V = Var(R) = Cov((ωδ)|X|+ ω(Id−∆2)1/2Z, ωδ|X|+ ω(Id−∆2)1/2Z)

= Var(ωδ|X|) + Var(ω(Id−∆2)1/2Z))

= Var(|X|)[(ωδ)(ωδ)T ] + W

with W as in (4.14).

Following Simaan, we call
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4.3 Portfolio selection

• Vs := W the spherical component of the variance

• Vns := [(ωδ)(ωδ)T ] the non spherical component of the variance,

then

V = Vs + σ2
|X|Vns,

We notice that the covariance V can also be written in the form

V = Ω− 2
π

[(ωδ)(ωδ)T ] (4.24)

Indeed this follows easily from Ω = ωΩω, (4.11), (4.14) and the fact that σ2
|X| = 1− 2

π .

Furthermore, the generic element (i, j, k) of Skew(R),the skewness of the returns ,

takes the form:

Skewijk(R) = (ωiδi)(ωjδj)(ωkδk)Skew(|X|)
To conclude the section we remark that the representation (4.10) can also be rewrit-

ten in the form

R = (µ +

√
2
π

ωδ) + (ωδ)(|X| −
√

2
π

) + ω(Id−∆2)1/2Z (4.25)

≡ µ′ + b Y ′ + ε (4.26)

with µ′ = E[R]. This decomposition verifies the hypothesis of Theorem 4.1.3.

However, in this thesis we have chosen to continue to work with the representation

(4.21)rather than (4.25)1.

4.3 Portfolio selection

In this section we discuss the expected utility of an investor who holds a portfolio in a

market of risky assets. The main underlying assumption is that assets returns R follow

a (multivariate) skew-normal distribution according to (4.10).

At time t, the investor is faced with the decision to choose the best portfolio between

all feasible portfolios. We assume that when the investment is made, he invests 1 euro.

Then the portfolio is hold unchanged until time τ > t.

At time τ the value of the portfolio is therefore given by the realization of the univariate

r.v.

Rw = wT R ∼ SN(µw, σ2
w, αw), (4.27)

1There, differently from Simaan’s paper, the symbol µ denotes the location of the returns distri-

bution
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4.3 Portfolio selection

representing the portfolio return.

For market parameters (µ, Ω,α) as in (4.2.1), by using (1.32)1, the portfolio parameters

in (4.27)are given by

µw = wT µ (4.28)

σ2
w = wT Ωw (4.29)

αw =
σwσ−2

w HT α√
1 + αT (Ω−Hσ−2

w HT )α
, (4.30)

(notice we have set the new notation σ2
w for Ωw).

Clearly the portfolio mean is

E(Rw) = µw +

√
2
π

(σwδw) (4.31)

where δw = αw√
1+α2

w

. At the same time the portfolio variance is

Var(Rw) = σ2
w −

2
π

δ2
wσ2

w (4.32)

By using (4.24)we reach an alternative way of writing it

Var(Rw) = wT V w = wT Ωw − 2
π

wT [(ωδ)(ωδ)T ]w = σ2
w −

2
π

(wT (ωδ))2 (4.33)

By comparing the two formulas we deduce

δwσw = wT (ωδ) (4.34)

Lastly, the variance can also be expressed by means of the matrix W , which has been

previously introduced. In this case

Var(Rw) = wT Ww + (1− 2
π

)(wT (ωδ))2. (4.35)

By defining the three symbols

v2
w := Var(Rw), s2

w := wT Ww, bw := wT (ωδ)
1In this section w replaces A appearing in (1.32)
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4.3 Portfolio selection

one can immediately verify that the following relationships hold

v2
w = s2

w + (1− 2
π

)b2
w (4.36)

s2
w = σ2

w − b2
w (4.37)

σ2
w = v2

w +
2
π

b2
w (4.38)

bw = σwδw (4.39)

For obvious reasons it is natural to call s2
w the spherical component of the portfolio

variance and b2
w the non spherical component.

Coming back to the investment process, we recall that the investor’s utility is a function

of the total wealth and therefore the investment decision is based on maximizing the

following expected utility:

E(u(Rw)) =
∫

u(r)fRw(r)dr. (4.40)

We have:

Proposition 4.3.1. The density of Rw is a function only of µw, σ2
w, bw.

Proof. Immediate from previous considerations.

By consequence, defining

Λ := E(u(Rw)),

the previous result states that

Λ = λ(µw, σ2
w, bw) (4.41)

4.3.1 Portfolio Selection with increasing and concave utilities func-

tions

In this section we consider an utility function u(·) ∈ U2. The following result holds:

Theorem 4.3.1. Suppose µw = L, bw = B, then the expected utility E(u(Rw)) is a
non-increasing function of the spherical part of the variance s2

w.

Proof. By Proposition 2.1.6 we know that expected utility is a non increasing function
of σ2

w. Furthermore we have:

σ2
w = b2

w + s2
w (4.42)

This expression implies that expected utility, for fixed bw, is non increasing in sw.
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4.3 Portfolio selection

The following Corollary states that a risk-averse investor who aims to maximize

the expected utility of his terminal wealth can reframe the problem in terms of an

equivalent one, based on a quadratic program.

Corollary 4.3.1. Let u(·) ∈ U2 . Then there exists a pair (L, B) for which the following
quadratic problem

Minw s2
w (4.43)

with the constraints: µw = L

bw = B

1T w = 1

is solved by the same portfolio that maximizes the expected utility.

Proof. 1 Denote by w̄ the portfolio which gives the highest expected utility, that is

E(u(Rw̄)) ≥ E(u(Rw))

for any other portfolio w. Define B = w̄T (ωδ) and L = w̄T µ.; for fixed bw the expected
utility is non increasing in s2

w, then for bw = B and µw = L

sw̄ ≤ sw

therefore w̄ solves problem (4.43).

Remark:

i) Considering that:

E(Rw) = µw +

√
2
π

bw

this problem implies that by fixing the pair (L,B) the expected portfolio return is fixed

to the value E(Rw) = L +
√

2
πB ≡ E. Viceversa, as in Simaan’s paper, one can take

the point of view of fixing E(Rw) = E and bw = B. This last choice looks clearly

more natural from a mean-variance point of view, however in the present framework it

is tantamount to fixing L = E −
√

2
πB as location parameter for the portfolio return

distribution. In other terms, an investor who explicitly wishes to consider the pair

(E,B) then he is implicitly considering the pair (L,B), the other way round being true
1adapted from Simaan [35]
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4.3 Portfolio selection

as well.

ii) Minimizing sw with fixed bw means maximizing αw because

δw =
bw√

b2
w + s2

w

and the function x/
√

1− x2 is increasing for any x ∈ (−1, 1).

iii) The quadratic shape of the objective function typical of the mean-variance analysis

is preserved by this approach.

We call the space generated by the location/variance/non spherical component of

the variance of portfolio return, (µw, v2
w, bw), the (LVS) space. There is a one-to-one

correspondence between points in the (LVS) space and points in the (MVS) space (

mean/variance/non spherical component of the variance ) discussed by Simaan in [35]

: concepts expressed in one space can be easily translated in the other space.

We call minimum spherical variance set, the set of all the solutions (portfolios) to

the problem (4.43) obtained by varying the pair values (L,B). Below we prove that

the minimum spherical variance set is represented in the (LVS) space by points of an

elliptical paraboloid, with the location parameter plotted on the vertical axes.

Furthermore we say that a portfolio belongs to the efficient set, or it is an efficient

portfolio, if it is a portfolio of minimum spherical variance with the highest location

among all minimum spherical variance portfolios having the same spherical variance and

skewness 1. In the market under consideration, where short sales allowed, the efficient

set corresponds to the upper surface of the paraboloid. Indeed, by Theorem 2.1.4 (iii),

we know that for fixed (σ2
w, αw) the expected utility is increasing in location; however,

the same is remains true by fixing (v2
w, bw) because of the relationships existing among

the two pairs (see the previous section). The following Proposition states that the

minimum spherical variance set is spanned by three portfolios:

Proposition 4.3.2. Assume the asset returns R are distributed as in Prop.4.2.1. The
minimum spherical variance set is spanned by the following three funds:

a1 =
V −1µ

1T V −1µ
, a2 =

V −11
1T V −11

and a3 =
V −1(ωδ)

1T V −1(ωδ)
(4.44)

1Simaan, who works in the (MVS) space, makes in [35] the following comment ”With restriction

on short sales and non negativity of constraints is quite difficult to provide a characterization of the

efficient set of portfolios...”. This is not the case when short sales are allowed, as in this thesis.
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4.3 Portfolio selection

Proof. 1 Set b = (ωδ), the objective function to be minimized is

s2
w = v2

w − σ2
|X|b

2
w (4.45)

The Lagrangian is obtained by the constraints of the problem (4.43):

L =
1
2
v2
w −

1
2
b2
wσ2

|X| + δ1(L− µw) + δ2(1−wT1) + δ3(B − bw) (4.46)

The first order conditions are easily derived:

∂L

∂w
= V w − bσ2

|X| − δ1µ− δ21− δ3b = 0

= V w − δ1µ− δ21− (δ3 + σ2
|X|)b = 0 (4.47)

Taking the linear combinations of the last equation respectively by 1T V −1, µT V −1 and
bT V −1 and calling

A = 1T V −11, C = 1T V −1µ, D = 1T V −1b, (4.48)

F = µT V −1b, G = µT V −1µ, H = bT V −1b (4.49)

we obtain the following linear system:

1−Dσ2
|X| = δ1C + δ2A + δ3D

L− Fσ2
|X| = δ1G + δ2C + δ3F

B −Hσ2
|X| = δ1F + δ2D + δ3H

Solving for δ1, δ2 and δ3 and inserting the result into (4.47) we obtain

w∗ = δ1C
V −1µ

1T V −1µ
+ δ2A

V −11
1T V −11

+ (δ3 + σ2
|X|)D

V −1b

1T V −1b

= λ1
V −1µ

1T V −1µ
+ λ2

V −11
1T V −11

+ λ3
V −1b

1T V −1b
(4.50)

where λ1 + λ2 + λ3 = 1. This ends the Proof.

Remark: Portfolio a2 is the global minimum variance portfolio. It plays a role

analogous to that of the risk-less asset for this risky market.

1adapted from Simaan [35]
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4.3 Portfolio selection

Portfolio a3 is the portfolio whose return maximizes the correlation with |X|. To

show this let us write the correlation between a generic portfolio return wT R and |X|:
Given R = µ + ωδ|X|+ ω(Id−∆2)1/2Z the correlation is:

Cor(wT R, |X|) =
σ2
|X|(w

T b)2 + Cov(wT (ω(Id−∆2)1/2Z), |X|)
wT V w

=
σ2
|X|(w

T b)2

wT V w
(4.51)

where in the last step we used E(wT (ω(Id−∆2)1/2Z)||X|) = 0 that implies Cov(wT (ω(Id−
∆2)1/2Z), |X|) = 0. Solving for w the first order condition we obtain:

d

dw
Cor(wT R, |X|) = 0 ⇒ w =

wT V w

wT b
V −1b (4.52)

Since Cor(wT R, |X|) is independent of the scale of w it is clear that a3 is the portfolio

with the maximum correlation with the factor |X|.

We now enlarge the list of the market primary assets by adding a risk-less asset

which offers a fixed return Rf .

At the same time we modify the vector of the asset returns (4.10) in the following way:

R̃ =
(

Rf

R

)
=

(
Rf

µ

)
+

(
0

(ωδ)

)
|X|+

(
0
Z̃

)
(4.53)

where Z̃ = ω(Id − ∆2)1/2Z. Notice that, so doing, we interpret the value Rf as a

location. Indeed, for this asset location and mean do coincide.

It is immediate to prove that now the portfolio problem is equivalent to the following

quadratic problem:

min s2
w (4.54)

with the constraints:

wT µ + w0Rf = L,

bw = B,

wT1 + w0 = 1

and we have
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4.4 Location Variance Skewness efficient frontier without a risk-less asset

Proposition 4.3.3. Assume that assets returns are described by (4.53). Then the
efficient set is spanned by the risk free asset portfolio wf = (1, 0, . . . , 0)T ,

w3 = (0,a3)T

and:
wt = (0, a)T

where

a =
V −1(µ−Rf1)

1T V −1(µ−Rf1)
(4.55)

Proof. 1 Writing down the Lagrangian and the first order conditions for the portfolio
problem (4.54), after some easy computations it is obtained:

w∗ = λ1
V −1(µ−Rf1)

1T V −1(µ−Rf1)
+ λ2

V −1b

1T V −1b
(4.56)

and w0 = 1− λ1 − λ2.

4.4 Location Variance Skewness efficient frontier without

a risk-less asset

The following result characterizes the geometry of the efficient set in the (µw, v2
w, bw)−space,

the (LVS) space, in absence of riskless asset.

Denote by Bi = (ωδ)T ai and Li = µT ai where ai are the portfolios given by (4.44).

We have the following parameters correspondence with the notation used in (4.48),

(4.49):

E1 =
G

C
; E2 =

C

A
; E3 =

F

D
; B1 =

F

C
; B2 =

D

A
; B3 =

H

D

Proposition 4.4.1. The minimum spherical variance set in the LVS space is given
by:

v2
w = v2

2 + v2
h3

(
bw −B2

B3 −B2

)2

+ v2
h1

c2
1 (4.57)

where v2
2 = aT

2 V a2, v2
hi

= hT
i V hi,

c1 =
(µw −E2)/(E3 −E2)− (bw −B2)/(B3 −B2)
(E1 − E2)/(E3 − E2)− (B1 −B2)/(B3 −B2)

1adapted from Simaan [35]
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4.4 Location Variance Skewness efficient frontier without a risk-less asset

and portfolios hi, i = 1, 3, are given by

h1 = (a1 − a2)− B1 −B2

B3 −B2
(a3 − a2) ; h3 = a3 − a2

Proof. 1 By Corollary (4.3.2) any efficient portfolio is a combination of the ai portfolios;
it is therefore of the form:

w = c1a1 + (1− c1 − c3)a2 + c3a3 = a2 + c1(a1 − a2) + c3(a3 − a2)

Multiplying for (ωδ)T we obtain:

c3 =
bw −B2

B3 −B2
− c1

B1 −B2

B3 −B2

and inserting c3 in the expression for w:

w = a2 + h1c1 + h3
bw −B2

B3 −B2
(4.58)

Multiplying now for µT and solving for c1:

c1 =
(µw −E2)/(E3 −E2)− (bw −B2)/(B3 −B2)
(E1 − E2)/(E3 − E2)− (B1 −B2)/(B3 −B2)

To prove (4.57) is now sufficient to show that:

aT
2 V h3 = aT

2 V h1 = hT
3 V h1 = 0 (4.59)

Since a2 ∝ 1T V −1 it is immediate that being ai portfolios it holds:

1T V −1V (a3 − a2) = 1T V −1V (a1 − a2) = 0

The third equality in (4.59) is valid because:

aT
3 V a1 − bw −B1

B3 −B1
aT

3 V (a3 − a2)

∝
[
(ωδ)T (a1 − a2)− B1 −B2

B3 −B2
(ωδ)T (a3 − a2)

]
= 0

Remark: If the location parameter is represented on the vertical axes then equa-

tion (4.57) describes an elliptical paraboloid in the LVS space. The efficient set is the

upper surface of this paraboloid.

1adapted from Simaan [35]
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L

B
V

L

B
V

Figure 4.1: Plot of the minimum spherical variance set in the (L,V, B) space and
intersection curve with the generic plane B = k

4.5 CAPM in three moment space

In this Section, following Simaan [35], we prove an exact equilibrium result which takes

into account skewness and extends the classical CAPM.

The result we obtain is different from that one of Kraus and Litzenberger [20] and the

more recent one of Adcock [1]. Their CAPM is based on a Taylor expansion of the

utility function, on the contrary we do not need such an expansion: we completely base

our analysis on the three parameters driving the expected utility values.

To derive the pricing model we keep all the assumptions listed for the classical CAPM

(see the corresponding section) and add the further requirement that a Pareto optimal

market equilibrium exists. This assumption is needed to guarantee the efficiency of the

market portfolio, defined as in Section 3.3(see Ingersoll in [18] pag. 194-195 for a proof

of this fact).

Under this set of conditions we are able to derive a CAPM equation when assets returns

are assumed to be skew normally distributed.

4.5.1 Three moment CAPM

We recall here equality (4.47):

V w − δ1µ− δ21− (δ3 + σ2
|X|)(ωδ) = 0 (4.60)

where B = wT (ωδ) and the three separating funds are:

w∗ = λ1
V −1µ

1T V −1µ
+ λ2

V −11
1T V −11

+ λ3
V −1(ωδ)

1T V −1(ωδ)
(4.61)
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4.5 CAPM in three moment space

Let us call ck the amount of money invested by k-th investor in the market and by

λ̃k
1 = λ1

ck

1T V −1µ
; λ̃k

2 = λ2
ck

1T V −11
; λ̃k

3 = λ3
ck

1T V −1(ωδ)

Denote by wk the minimum spherical variance portfolio which is held by the k-th

investor , and with w̃k
i the money invested by the k-th investor in the i-th Firm, namely

w̃k
i = wk

i ck. Considering the equality (4.61) for the k-th investor and multiplying it for

V we obtain:

M∑

j=1

Vijw̃
k
j = λ̃k

1µ̃i + λ̃k
2 + λ̃k

3(ωδ)i (4.62)

valid for i = 1, . . . , n and k = 1, . . . , M. The market portfolio, defined in Section 3.3, is

defined by the vector of weights wm.

The i-th component of this vector is the relative weight of the the i-th Firm in the

market and satisfies

M∑

k=1

w̃k
j = (wm)jCtot = njpj for j = 1, . . . ,M (4.63)

where Ctot =
∑M

k=1 ck is the total amount of money in the Market and pi is the price

of the security of the i-th Firm.

Equality (4.63) states that the aggregate demand by all investors for the i-th stock

must be equal to the value of the i-th Firm in the market which is true in equilibrium,

that is when the supply is equal to the demand.

Summing (4.62) over all investors and using (4.63) we obtain:

Ctot

M∑

j=1

Vij(wm)j =
M∑

k=1

λ̃k
1µ̃i +

M∑

k=1

λ̃k
2 +

M∑

k=1

λ̃k
3(ωδ)i (4.64)

valid for i = 1, . . . , n. The covariance of the i-th asset with the market portfolio is given

by:

Cov(Ri, R
T wm) =

n∑

j=1

Vij(wm)j =: vi,m (4.65)

Denoting with λ̄i =
∑M

k=1 λ̃k
i /Ctot we can rewrite (4.64) in the following form:

vi,m = λ̄1µ̃i + λ̄2 + λ̄3(ωδ)i (4.66)
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4.6 Three funds Ross Separation Theorem

Let µm = µT wm and Bm = (ωδ)T wm then:

σ2
m = λ̄1µm + λ̄2 + λ̄3Bm (4.67)

Furthermore given a portfolio wa we denote by

βa :=
n∑

i=1

wi
avi,m/σ2

m

and with

γa := wT
a (ωδ)i/Bm.

The following two portfolios exist:

1)a portfolio w0 such that β0 = 0 and γ0 = 0

2)a portfolio wp such that βp = 0 and γp = 1

Since 1 = γp := wT
p (ωδ)i/Bm then (ωδ)T wp = (ωδ)T wm. Let µT w0 = µ0 and

µT wp = µp, multiplying (4.65) for (w0)i and for (wp)i respectively and adding over i

we obtain equalities:

λ̄1E0 + λ̄2 + λ̄2 = 0 (4.68)

λ̄1Ep + λ̄2 + λ̄2 + λ̄3Bm = 0 (4.69)

Solving for λ̄i equations (4.67),(4.68) and (4.69) and inserting the results into (4.65)

we obtain the following pricing model:

µe
i = µ0 + βi[µm − Ep] + γi[µp − µ0] (4.70)

where βi and γi are the β and γ of the portfolio having all zeros except than 1 in

the i−th component. If the presence of a risk-less asset is taken into account then Rf

replaces µ0 in the previous equation, and we obtain the following result:

µe
i = Rf + βi[µm −Rf ] + (γi − βi)[µp −Rf ] (4.71)

4.6 Three funds Ross Separation Theorem

Definition 4.6.1. The distribution of R has the (strong) 3-funds separation property
if there exist three portfolios α1, α2, α3 such that for any portfolio β there is a portfolio
α given by a linear combination of α1, α2 and α3 for which it holds

αT R º2 βT R.
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4.6 Three funds Ross Separation Theorem

The separating properties of the minimum spherical variance set, previously showed,

imply that the 3-funds separation obtains for the skew-normal distribution. Nonetheless

it is also interesting to prove directly that the skew-normal has the 3-funds separating

properties of Ross.

Ross in [32] gives the following sufficient condition for three funds separability with

risk-less asset:

Theorem 4.6.1. (3-funds separation with a risk-less asset) The distribution of R has
the (strong) 3-fund separation property iff:
there exist two univariate r.v. Y and Q, a multivariate r.v. ε̃ (the residuals), two
(deterministic) vectors b, c and three portfolios α1, α2, α3 such that:
(a) each component of R can be written as

Ri = Rf + biY + ciQ + ε̃i for i = 1, . . . , n + 1

(b) E[ε̃i|Y, Q] = 0 ∀i
(c) αT

i ε̃ = 0 for i = 1, 2, 3

Proposition 4.6.1. If R is skew-normal then it satisfies conditions of Theorem 4.6.1

Proof. The expression of the return vector R̃ ∈ Rn+1 in presence of the risk-less asset
is given by formula (4.53) that can be rewritten in such a way E(Y ) = 0 (i.e. Y =

|X| −
√

2
π ):

R̃ =

(
Rf

R

)
=

(
Rf

µ̃

)
+

(
0

(ωδ)

)
Y +

(
0
Z

)
(4.72)

where µ̃ = µ +
√

2
π (ωδ), Z ∼ Nn(0,W ), and W = ω(Id−∆2)1/2Ψ(Id−∆2)1/2ω. The

variable µ̃ + Z being normal satisfies a two fund separability Theorem, and can be
decomposed in the following way (see Appendix 2):

µ̃ + Z = Rf + ξQ + ε

where ξ = µ−Rf and:

Rf = Rf1

Q = (ξT V −1ξ)−1ξT V −1(Z −Rf )

εi = Zi − ξiQ
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4.6 Three funds Ross Separation Theorem

Furthermore the portfolio:

α1 =
V −1ξ

1T V −1ξ

is orthogonal to the residuals vector ε, i.e. αT
1 ε = 0. Inserting this expression of µ̃ + Z

expression into (4.72) we obtain:

R̃ =

(
Rf1
R

)
=

(
Rf

Rf

)
+

(
0

(ωδ)

)
Y +

(
0
ξ

)
Q +

(
0
ε

)
(4.73)

Let αi for i = 1, 2, 3 the three following portfolios:

α̃1 = (1, 0, . . . , 0)T ; α̃2 = (0, α1)T ; α̃3 = (0, α3)T (4.74)

where

α3 =
V −1(ωδ)

1T V −1(ωδ)
and let:

b = (0, (ωδ))T ; c = (0, ξ)T . (4.75)

In addiction we define the vector ε̃ in the following way:

ε̃0 = 0 ; ε̃i = εi i = 1, . . . , n− 2 (4.76)

ε̃n−1 = εn−1 + B ; ε̃n = εn + A (4.77)

where:

A =
(ξT V −1)n−1

(ξT V −1)n

(ωδ)T V −1ε

((ωδ)T V −1)n−1 − (ξT V −1)n−1

(ξT V −1)n

(4.78)

B = − (ωδ)T V −1ε

((ωδ)T V −1)n−1 − (ξT V −1)n−1

(ξT V −1)n

(4.79)

the reason of this definition will be clear below. The previous definition completes the
set (Y, Q, b, c, α1,α2, α3, ε̃) so that:

R̃ = Rf + bY + cQ + ε̃ (4.80)

Now we have to prove (b) and (c).
A little bit of algebra is needed to show that:

α̃T
3 ε̃ =

(ωδ)T V −1

1T V −1(ωδ)
ε̃ = 0

α̃T
2 ε̃ =

ξT V −1

1T V −1ξ
ε̃ = 0

(4.81)
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4.6 Three funds Ross Separation Theorem

and furthermore is obvious:

α̃T
1 ε̃ = 0

(4.82)

so (c) is proved.
As far as condition (b) is concerned, it is enough to show that E(εi|Y, Q) = 0. The
two fund separability result (4.73) implies E(εi|Q) = 0. Furthermore we have E(εi|Z) =
E(εi) = 0 because εi and Z are independent random variables for any i.
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5

Black Litterman model

5.1 Bayesian allocation

Two well known problems of the mean-variance portfolio optimization are the high

sensitivity to the input parameters and the lack of diversification in the optimal portfolio

weights.

In this Section we face the problem of reducing the sensitivity of optimal portfolios to

changes in the values of the inputs using a Bayesian allocation approach. In particular

we will show that, through the Bayesian approach, it is possible to modify the utility

maximization process in order to select a set of more stable optimal portfolios.

As in the previous sections utility is a function of the investor terminal wealth which

is represented by the final period return of the portfolio, assuming a unitary initial

investment. Once again, given a portfolio w, the portfolio return will be given by

Rw = wT R,

where R represents the vector of assets returns. We know that the classical approach to

the expected utility maximization, described in Chapter 3 and 4 for normal and skew-

normal market returns respectively, prescribes that each risk-averse investor solves the

problem:

Maxw∈CE(u(Rw)) = Maxw∈C

∫
u(r)fRw(r)dr (5.1)

where fRw(r) is the density of Rw, u ∈ U2 is the investor’s utility function and C is a

set of constraints.
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5.1 Bayesian allocation

In general the assets returns distribution depends on a vector of parameters θ and

therefore the portfolio return density depends on the same vector as well. In this case

fRw(r|θ) is a more appropriate notation for the return and the associated expected

utility is better written in the form

E(u(Rw)|θ) =
∫

u(r)fRw(r|θ)dr (5.2)

To give a couple of examples consider first a market in which returns are assumed to

be normal distributed . Therefore we have:

θ = (m, V )

and the investor’s decision depends on solving

Maxw∈CE(u(Rw|)θ) = Maxw∈Cλ(wT m, wT V w). (5.3)

In this special case the maximum can be obtained by solving the quadratic program

(3.7).

Similarly, for a market with skew normal returns, we have

θ = (µ,Ω, α)

and the problem is

Maxw∈CE(u(Rw)|θ) = Maxw∈Cλ(wT µ, wT Ωw, wT (ωδ)) (5.4)

The solution gives the optimal portfolio.

In both cases small changes in θ can lead to an optimal allocation completely different

from the initial one, a behaviour that many investors and portfolio managers greatly

dislike.

In the Bayesian allocation approach the vector θ is considered to be the realization of

a random variable Θ which is modeled by means of a prior distribution fpr
Θ (θ).

The density of the posterior distribution of the parameters given the observed vector

of returns R = r is then obtained by the Bayes rule:

fpo
Θ|R(θ|r) ∝ fpr

Θ (θ)fR|Θ(r|θ) (5.5)
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5.2 Black Litterman model

In the same way, given observed portfolio returns Rw = r′ the posterior density of the

parameters is

fpo
Θ|Rw

(θ|r′) ∝ fpr
Θ (θ)fRw|Θ(r′|θ) (5.6)

where fRw|Θ(r′|θ) ≡ fRw(r′|θ).

The key idea of the Bayesian allocation is then the following: to limit the sensitivity

of the allocation process to inputs changes we can average over all values θ by using

fpo
Θ|Rw

.

In this framework the utility maximization problem, given the observation Rw = r′,

becomes:

Maxw∈C

∫
E(u(Rw)|θ)fpo

Θ|Rw
(θ|r′)dθ (5.7)

By inserting (5.2) into (5.7) and interchanging the order of the double integration it is

easily seen that the previous maximization problem can be rewritten in following form

Maxw∈C

∫
u(r)fpre(r|r′)dr (5.8)

where the density fpre(r|r′) is given by

fpre(r|r′) =
∫

fRw|Θ(r|θ)fpo
Θ|Rw

(θ|r′)dθ (5.9)

and takes the name of predictive posterior density. This is the Bayesian allocation

approach to the utility maximization. In this context the utility is maximized using

the predictive posterior distribution instead of the density of the portfolio returns.

5.2 Black Litterman model

Black and Litterman in [6] proposed an allocation method based on ideas similar to

those of the Bayesian approach but introducing some novelty. The resulting model is

known as the Black Litterman model (BL).

The main difference between the two approaches is the following one: rather than

evaluating the posterior distribution of Θ given the returns R, as in the Bayesian

allocation (see (5.5)), BL evaluates the posterior of Θ on a new vector, V , which

represents the views of the investors, or of market experts, on the mean values of

(future) returns. In other words in this model the investors views and the prior on
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5.2 Black Litterman model

the parameters are directly blended in order to obtain a posterior distribution on the

parameters. So doing Black and Litterman are able to include into the investment

process the investors beliefs about future returns of assets or of classes of assets, a

fact which helps to obtain more diversified portfolios and bounds the sensitivity of the

optimal weights to the inputs.

5.2.1 The Black Litterman framework

Black and Litterman trust the estimate of the covariance of the returns by the historical

covariance matrix but do not trust the historical mean as good estimator for the mean

of the returns. As a consequence, looking to the estimation problem, they are only

”half-bayesian” and put a prior distribution just on the vector of expected returns.

More precisely, they consider the vector

R′ = R− 1Rf (5.10)

whose components measure the excess of return of the risky assets over the risk-free

asset, and make the following assumption

Assumption 5.2.1. The vector of returns R′, given its mean, is distributed as:

R′|Θ = θ ∼ Nn(θ; V̂ ), (5.11)

moreover

Θ ∼ Nn(Π, τ V̂ ) (5.12)

where V̂ and τ are known parameters (V̂ represents the estimated covariance matrix)
and Π is the vector of implied (excess) returns.

The definition of the vector Π which appears in (5.12) is important and goes as

follows. Since returns are assumed to be normally distributed all market investors,

who are believed to maximize their utility functions, select their portfolios by mean-

variance theory. As shown in chapter 3, in presence of a risk-less asset the risky part

of the portfolio will be given by (see (3.27)):

w̃ = γV̂ −1(m− 1Rf ) = γV̂ −1E(R′). (5.13)

Following an idea of Sharpe, Black and Litterman then look to the equation (5.13) in

a reversed way, that is: they assign to w̃ the role of input variable in the equation
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5.2 Black Litterman model

and consider E(R′) as the value to be determined, a procedure known as ”reversed

optimization”. So doing, by inserting different numerical values w̃ in (5.13) one can get

different estimates for E(R′). BL estimate E(R′) by using as input w̃ the weights de-

termined by the relative capitalization of each risky asset traded in the concrete market

where the investment process takes place. Their choice correspond to the assumption

that the market is at equilibrium so that the tangency portfolio is given by the market

portfolio. The result of the estimate obtained in this way is Π, the vector of implied

(excess) returns. Denoting by w̃m the previous input weights (which now, differently

from chapter 3, sum up to 1), the formula defining Π becomes

w̃m = γV̂ −1Π (5.14)

or explicitly

Π =
1
γ

V̂ w̃m (5.15)

In order to get Π numerically it remains to asses the value of γ appearing in (5.15).

Recalling equations (3.28) and (3.30) we see that δ ≡ 1
γ

1 can be written in Sharpe’s

ratio form

δ =
mw̃m −Rf

v2
w̃m

. (5.16)

Rf being known, to evaluate δ it is sufficient to plug-in (5.16)the estimated values for

mean and standard deviation of the market portfolio return. So we are back to the

CAPM point of view: at equilibrium the expected return of the i-th asset deviates from

the risk-free return by a term proportional to the market risk premium w̃m − Rf , the

proportionality coefficient βi = v−2
w̃m

(V w̃m)i being asset-specific.

Further properties of the vector Π are analyzed by He and Litterman in [17].

By standard computations the model given by (5.11) and (5.12) implies a marginal

distribution for R′ of normal type:

R′ ∼ Nn(Π; (1 + τ)V̂ ) (5.17)

(5.18)

The parameter τ is usually chosen in the range 0.02 < τ < 0.05 , corresponding to a

prior belief on expected returns having a small spread around the values Π.
1The coefficient δ takes the name of parameter of risk aversion and measures the aggregate

propencity of the market investors to invest in risky securities
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5.2 Black Litterman model

5.2.2 Incorporating views

The model for the returns involved in formulas (5.11) and (5.12) could be used directly

for implementing the Bayesian allocation outlined in Section 5.1. However, BL aims

to incorporate investor views into the investment process. This is accomplished by

putting random constraints on the vector m using the views vector V ∈ Rk, k ≤ n.

The constraints are of the form:

PM − V ∼ N(0, Ωv) (5.19)

P is a (k×n) matrix and Ωv is (k×k) invertible diagonal matrix expressing confidence

in the views.

The number k represents the total number of views, and it can be different from the

total number of assets involved in the constraints. Each view may contain as many

assets as the investor wants. This information is codified in the matrix P , called the

”pick” matrix. The rows of this matrix represent the views and the columns represent

the assets. See the example in the next Section for a realistic form of the matrix P .

The constraints (5.19) can also be written in the following regression form

V = PM + ε

ε ∼ N(0, Ωv) (5.20)

from which we get

V |M = m ∼ N(Pm, Ωv) (5.21)

This last relation can be interpreted as a model for the ”observed” views, given expected

values of assets. The prior distribution specified by (5.11) and the previous distribution

for the views given the expected returns can be combined in order to obtain the following

posterior distribution:

M |V = v ∼ N(mBL, ΣBL) (5.22)

where:

mBL = [(τV )−1 + P T Ω−1
v P ]−1[(τV )−1Π + P T Ω−1

v v] (5.23)

ΣBL = [(τV )−1 + P T Ω−1
v P ]−1 (5.24)
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5.2 Black Litterman model

These last formulas are classical and well-known in the bayesian approach to parameters

estimation of multivariate normal models. We refer also to Meucci [27] for a proof and

further discussions. However it is important to notice that for P = 0 (no views!) they

reproduces the original ”equilibrium estimate” for the mean values, that is mBL = Π.

The vector mBL represents the mean of the posterior distribution of expected returns

given the views. It includes both information coming from the market and the investor

views.

Given the posterior distribution of expected returns it is possible to evaluate the pre-

dictive distribution of returns given the views.

5.2.3 Predictive distribution

The evaluation of the predictive distribution is easy because both the posterior (5.22)

and the likelihood (5.11) are normally distributed. The predictive posterior, defined by

formula (5.8), in this case takes the form:

fpre
R|V (r|v) =

∫
fR|M (r|m)fpo

M |V (m|v)dm (5.25)

The distribution of R|V is obtained by applying the standard technique to handle the

product of two normal densities and the result is:

R|V ∼ N(mBL, V + ΣBL) (5.26)

5.2.4 The modified Portfolio Problem

The predictive posterior density (5.26) substitutes the density of returns in the bayesian

approach to utility maximization, see formula (5.8). For any portfolio w ∈ Rn the

random variable Rw|V = wT R|V , describing the portfolio return given the views, is

distributed in the following way:

Rw|V ∼ N(mw
BL,Σw

BL) (5.27)

where

mw
BL = wT mBL ∈ R

Σw
BL = wT (V + ΣBL)w ∈ R

(5.28)
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5.2 Black Litterman model

Assume now u ∈ U2. The expectation of the utility with respect to the predictive

posterior is given by:

E(u(Rw)|V ) =
∫

u(r)fpre
Rw|V (r)dr =

∫
u(r)ϕ(

r −mw
BL

Σw
BL

)dr (5.29)

The normality of the predictive distribution implies the validity of mean-variance anal-

ysis, see the remark in Section 5.1. Therefore the expected utility can be maximized

by solving the portfolio problem (3.7).

Fixing E ∈ R the related quadratic program is then the following one:

Min Σw
BL (5.30)

with the constraints: mw
BL = E (5.31)

1T w = 1. (5.32)
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Black Litterman model in

non-normal markets

In [28] and in [29], Meucci extends the BL approach to markets in which assets re-

turns are assumed to be non-normal. Rather than using a Bayesian inference approach,

Meucci is able to include views into the investment process by a two steps computation

based on opinion pooling and copulas. This approach has the attractive property to

be adaptable to several non-normal distributions, including the skew elliptical class.

Nonetheless his approach does not provide for a closed analytical form of the distribu-

tion of returns given the views.

The theory developed in this Chapter shows that, with the assumption of skew-normality

for the returns of assets, it is possible to extend BL theory to non-normal markets pre-

serving its Bayesian nature. In particular, we will show that, under this assumption,

it is possible to obtain a closed form for the predictive distribution of returns given

the views. In addition, thanks to the fact that this density is skew-normal, it is also

possible to complete the allocation process by using a bayesian utility maximization

procedure.

6.1 Market model

We have seen in the previous chapter that BL framework is characterized by its ability

to blend historical market information with subjective investors views. In this approach,

the manager rather than expressing views directly on possible realizations of the vector
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of returns, expresses views on the realizations of its expected value, which is considered

a random variable. As underlined by Meucci in [28], this could create some difficulties

due to the fact that in many distributions there is no clear relationship between the

expected returns and the parameters that characterize the distribution itself. In the case

of a market modeled by normal returns, the parameters on which the manager expresses

his views are the means, because of the equivalence between location parameters and

means. Therefore expressing views on the location parameters in case of normality

is quite intuitive. However, this correspondence may not hold for other distributions.

This problem occurs in general for the class of skew-elliptical distributions, due to the

fact that the expected return is a complex combination of all the parameters contained

in the density function.

In order to solve this problem, we will first define a model that refers to a non normal

market. We will work under the following assumption:

Assumption 6.1.1. The vector of returns R is described by the following model:

R|(Θ1 = µ) ∼ SNn(µ, Ω, α) (6.1)

Θ1 ∼ Nn(µe, τΩ) (6.2)

where Ω, α and τ are known parameters and µe is given by the equilibrium result (4.71).

Remark: The reader should notice that in this chapter we make our assumptions

directly on the returns vector R rather than on the excess of returns R′. We do this for

our own convenience in handling some formulas, the two formulations being equivalent.

It is worth mentioning that Θ1 represents the uncertainty of the location parameter.

This vector coincides with the vector of expected values of returns only in the case

α = 0.

The parameter τ , as in BL, is a small parameter ( we already mentioned that its value

is commonly fixed in the interval (0.02, 0.05)). It assures that the location parameters

are much less volatile than the returns. Furthermore we recall the expression of µe (see

(4.71)):

µe
i = Rf + βi[µm −Rf ] + (γi − βi)[µp −Rf ]

where µm and µp are the location parameters respectively of the market portfolio wm

and of the portfolio wp having βp = 0 and γp = 1 (see sec. 5 in chapter 4) and where
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βi = vi,m/σ2
m and γi = (ωδ)i/Bm.

The vector of the expected values of R|Θ1, denoted by M , is given by :

M := E(R|Θ1) = Θ1 +

√
2
π

(ωδ)

where ω and δ are linked to Ω and α by the usual relations.

Rather than expressing the returns conditionally to the location parameters, as in (6.1),

we express them conditionally to the vector of expected values M :

R|(M = m) ∼ SNn(m−
√

2
π

(ωδ),Ω, α) (6.3)

M ∼ Nn(me, τΩ) (6.4)

where me = µe +
√

2
π (ωδ).

For the sake of completeness we give two other equivalent expressions of the market

model. From the Proposition 4.2.1, the previous model can be written as:

R|(Θ1 = µ) = µ + (ωδ)|X|+ ω(Id−∆2)1/2Z (6.5)

Θ1 ∼ Nn(µe, τΩ)

X ∼ N(0, 1)

Z ∼ Nn(0, Ψ)

where Θ1, X, Z are independent and we refer the reader to Section 4.2 for the expression

of the other parameters.

Finally using the expected returns vector M , the model can be further modified in the

following way:

R|(M = m) = m + (ωδ)X̃ + ω(Id−∆2)1/2Z (6.6)

Θ1 ∼ Nn(µe, τΩ)

X̃ = |X| −
√

2
π

X ∼ N(0, 1)

Z ∼ Nn(0,Ψ)

84



6.1 Market model

6.1.1 Marginal distribution of R

Lemma 6.1.1. Given the following Bayesian model:

R|M = m ∼ SNn(m− χ, Ω, α0) (6.7)

M ∼ Nn(m0, Ω0) (6.8)

where χ ∈ Rn is a deterministic vector, then the marginal distribution of R is skew-
normal.
More specifically, if the parameters (χ,Ω, Ω0, α0,m0) are those ones specified in (6.3)
and (6.4), then the marginal distribution of R is:

R ∼ SNn(me −
√

2
π

(ωδ), (1 + τ)Ω,

α√
1+τ√

1 + τ
1+τ αT Ωα

) (6.9)

Proof. Calling r̃ = r + χ the marginal distribution of R is given by:

fR(r̃) =
∫

fR|M (r̃, m) · fM (m)dm

=
∫

2√
|Ω|ϕ(r̃; m,Ω) · 1√

|Ω0|
ϕ(m; m0,Ω0)Φ(αT

0 ω−1(r̃ −m))dm (6.10)

Using the standard decomposition for the product of two gaussians we obtain:

2√
|Ω|ϕ(r̃;m, Ω) · 1√

|Ω0|
ϕ(m; m0, Ω0)

=
2√

|Ω||Ω0|
ϕ(r̃; m0, Ω + Ω0) · ϕ(m; z(r̃, m0)), ∆) (6.11)

where

z(r̃, m0) = ∆(Ω−1r̃ + Ω−1
0 m0)

∆ = (Ω−1 + Ω−1
0 )−1

In this way formula (6.10) becomes:

fR(r̃) =
∫

2√
|Ω||Ω0|

ϕ(r̃; m0, Ω + Ω0) · ϕ(m; z(r̃, m0), ∆)Φ(αT
0 ω−1(r̃ −m))dm

=
∫

2√
|Ω||Ω0|

ϕ(r̃; m0, Ω + Ω0) · ϕ(m; z(r̃, m0), ∆)

Φ(αT
0 ω−1(r̃ − z(r̃,m0))−αT

0 ω−1(m− z(r̃, m0)))dm

=
∫

2√
|Ω||Ω0|

ϕ(r̃; m0, Ω + Ω0) · ϕ(m; z(r̃, m0), ∆)

Φ(ρ0 + αT
1 δ−1(m− z(r̃, m0)))dm (6.12)

85



6.1 Market model

where δ is the diagonal matrix of standard deviations of ∆ and

αT
1 = −αT

0 ω−1δ

ρ0 = ρ

√
1 + αT

1 ∆α1

ρ = αT
0 ω−1(1 + αT

1 ∆α1)−1/2(r̃ − z(r̃, m0))

= αT
0 ω−1Ω(Ω + Ω0)−1(1 + αT

1 ∆α1)−1/2(r̃ −m0) (6.13)

Finally formula (6.12) can be rearranged in the following form:

fR(r̃) =
∫

2√
|Ω + Ω0|

ϕ(r̃; m0, Ω + Ω0)Φ(ρ) · 1
Φ(ρ)

ϕ(m; z(r̃,m0),∆)

Φ(ρ0 + αT
1 δ−1(m− z(r̃, m0)))dm

=
2√

|Ω + Ω0|
ϕ(r̃; m0,Ω + Ω0)

Φ(αT
0 ω−1Ω(Ω + Ω0)−1(r̃ −m0)(1 + αT

1 ∆α1)−1/2)

·
∫

1
Φ(ρ)

ϕ(m;z(r̃, m0), ∆)Φ(ρ0 + αT
1 δ−1(m− z(r̃, m0)))dm (6.14)

The expression inside the integral is the density of a multivariate skew normal random
variable of the extended form (see 1.31) and its integral is one. Hence it holds:

fR(r̃) =
2√

|Ω + Ω0|
ϕ(r̃;m0, Ω + Ω0)Φ(αT

0 ω−1Ω(Ω + Ω0)−1(r̃ −m0)(1 + αT
1 ∆α1)−1/2)

Using an opportune shape parameter α2 it is possible to rewrite the previous expression
in the following form:

fR(r̃) =
2√

|Ω + Ω0|
ϕ(r̃; m0, Ω + Ω0)Φ(αT

2 γ−1(r̃ −m0)) (6.15)

where γ is the diagonal matrix of standard deviations of Ω + Ω0.

Assuming that the values of the parameters in (6.7) and (6.8) are those ones specified
in (6.3) and (6.4), we get the following expression for the marginal:

R ∼ SNn(me −
√

2
π

(ωδ), (1 + τ)Ω,

α√
1+τ√

1 + τ
1+τ αT Ωα

). (6.16)

86



6.2 Incorporating views

6.2 Incorporating views

We assume that all investors have the same beliefs about the values of the parameters

(µe, Ω,α, τ). They represent the information coming from the market.

The second step of BL relies on modeling the investors views. These add an investor

or market-expert subjective input into the investment process.

The information about investors’ opinions on the expected values of assets is carried

by the q-vector of views V and by the (q×n) ”pick” matrix P , where q represents the

number of views.

Even though expected returns are non-normal there is no reason to modify the condi-

tional distribution of the investor’s views given the expected returns.

Assumption 6.2.1. The random vector of views is given by:

V |(M = m) ∼ N(Pm,Ωv) (6.17)

where Ωv is a (q × q) matrix , with (Ωv)ij = 0 if i 6= j, which measures the confidence
on the market-expert opinions, and P is a (q × n) pick-matrix.

In the following Section we evaluate the posterior distribution of expected values

given the views following the same procedure described in Chapter 5

6.2.1 Posterior distribution of M |V
To find the posterior distribution fpo

M |V (m|v), the prior distribution of the expected

values, given by formula (6.4), is combined with the distribution of the views, specified

by formula (6.17).

Let us write the basic Bayes rule:

fV (v)fpo
M |V (m, v) = fM (m)fV |M (v|m) (6.18)

Substituting the corresponding densities one finds:

fV (v)fpo
M |V (m|v) =

(
2√
|(τΩ)|

)
ϕ(m; me, (τΩ))

(
1√
|Ωv|

)
ϕ(v; Pm,Ωv)
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Using the standard result for the product of two gaussians densities, the previous

expression becomes:

fV (v)fpo
M |V (m|v) =

(
2√

|(τΩ) + Ωv|

)
ϕ(v; me, (τΩ) + Ωv) ·

·
(

1√
|ΣBL|

)
ϕ(m; mBL,ΣBL) (6.19)

where the location parameter and the covariances matrix in the second line of the

previous expression are the same as those ones specified in Section 5.2.3, namely:

mBL = [(τΩ)−1 + Ω′v]
−1[(τΩ)−1me + P T Ω−1

v v] (6.20)

ΣBL = [(τΩ)−1 + Ω′v]
−1 (6.21)

Ω′v = P T Ω−1
v P (6.22)

Therefore the posterior distribution of returns given the views is the same as the one

obtained in the classical BL:

fpo
M |V (m|v) =

(
1√
|ΣBL|

)
ϕn(m; mBL, ΣBL) (6.23)

6.2.2 Posterior predictive distribution of R|V
The predictive posterior density fpr

R|V (r|v) is given by the following equality:

fpr
R|V (r|v) =

∫
fR|M (r|m) · fpo

M |V (m|v)dm (6.24)

Introducing (6.3) and (6.23) in the previous equation and using the scaled variable r̃

we get:

fpr
R|V (r̃|v) =

∫
2√
|Ω|ϕn(r̃; m,Ω) ·

(
1√
|ΣBL|

)
ϕn(m; mBL, ΣBL)

Φ(αT ω−1(r̃ −m))dm (6.25)

Using the standard rule for the product of two gaussians we obtain:

fpr
R|V (r̃|v) =

∫
2√

|Ω + ΣBL|
ϕn(r̃;mBL,Ω + ΣBL)

·
(

1√
|∆BL|

)
ϕn(m; zBL(r̃, mBL), ∆BL)Φ(ξ + γT σ−1

BL(m−mBL))dm
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where:

zBL(r̃,mBL) = [Ω−1 + Σ−1
BL]−1[Ω−1r̃ + Σ−1

BLmBL]

∆BL = (Ω−1 + Σ−1
BL)−1

With the same algebra of Section 6.1.1 it can be proven that the posterior predictive

density of R|V is given by the following:

fpr
R|V (r̃|v) =

2√
|Ω + ΣBL|

ϕn(r̃;mBL,Ω + ΣBL)Φ(αT
BLγ−1

BL(r̃ −mBL)) (6.26)

where γBL is the diagonal matrix of the standard deviations of Ω + ΣBL. The shape

parameter αBL is given by:

αT
BL = αT ω−1Ω(Ω + ΣBL)−1(1 + αT

∆∆BLα∆)−1/2 (6.27)

where

αT
∆ = −αT ω−1dBL,

dBL is the diagonal matrix of standard deviations of ∆BL and ∆BL its correlation

matrix.

Therefore the random vector R|V is distributed according to:

R|V ∼ SNn(mBL −
√

2
π

(ωδ), Ω + ΣBL,αBL) (6.28)

and we have the following expressions for the parameters:

Ω′v = P T ΩvP

mBL = [(τΩ)−1 + Ω′v]
−1[(τΩ)−1me + P T Ω−1v]

ΣBL = [(τΩ)−1 + Ω′v]
−1

From (6.28) the expected value of R|V can be easily evaluated:

E(R|V ) = mBL +

√
2
π

((γBLδBL)− (ωδ)) (6.29)

where δBL is given by:

δBL =
(Ω + ΣBL)αBL√

1 + αT
BL(Ω + ΣBL)αBL

(6.30)

(Ω + ΣBL) being the correlation matrix of Ω + ΣBL.
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6.3 The Portfolio Problem revisited

The evaluation of the predictive posterior distribution, described in the previous Sec-

tion, completes the Bayesian ”part” of the investment process. At this stage the investor

has all the inputs he needs for the implementation of the portfolio problem.

For any portfolio w ∈ Rn we consider again the random variable Rw|V := wT R|V .

It describes the portfolio return given the views. The distribution of Rw|V is obtained

by an affine transformation of R|V , whose expression is given by formula (6.28). Using

standard rules we therefore obtain:

Rw|V ∼ SN(µw
BL, Ωw

BL, αw
BL) (6.31)

where the parameters (µw
BL, Ωw

BL, αw
BL) ∈ R× R× R, depending on w, are given by :

µw
BL = wT (mBL −

√
2
π

(ωδ))

Ωw
BL = wT (Ω + ΣBL)w

αw
BL =

δBL
w√

1− (δBL
w )2

with:

δBL
w =

wT (γBLδBL)√
Ωw

BL

The portfolio problem that each risk-averse investor, with utility function u ∈ U2,

faces in a market of skew-normal assets returns is described in Section 4.3.1. The

expression of the expected utility given the views is the following:

E(u(Rw|V = v)) =
∫

u(r)fpre
Rw|V (r|v)dr

=
∫

u(r)
2√
Ωw

BL

ϕ(r; µw
BL,Ωw

BL)Φ(αw
BL(Ωw

BL)−1/2(r − αw
BL))dr

Denoting by

s2
BL := Ωw

BL − (wT (γBLδBL))2

the spherical component of the variance, the portfolio problem resulting is simply ob-

tained adapting the problem (4.43). Fixed the values of the location and of the non
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spherical component of the variance respectively to L,B ∈ R, then each minimum

spherical variance portfolio is a solution of the following problem:

Minw s2
BL (6.32)

with the constraints: µw
BL = L

wT (γBLδBL) = B

1T w = 1.
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6.4 The Hedge Funds Market

In this Section we apply the main theoretical results obtained in this Thesis to a Port-

folio composed of 12 Hedge Funds Strategies Indexes. The data set used in this study

is made of 12 HFR Indexes Strategies monthly returns. Although those indexes are

not investable they represent an ideal framework to analyze skewness in returns. We

assume the 12 Hedge Funds Strategies cover the entire Hedge Funds Market (excluding

Funds of Hedge Funds).

The historical monthly series of the 12 indexes goes from 01/1990 to 10/2007 and

the total number of observation is 214. They are: Convertible Arbitrage, Distressed

Securities, Emerging Markets (Total), Equity Hedge, Equity Market Neutral, Equity

Non-Hedge, Event-Driven, Fixed Income (Total), Macro, Market Timing, Merger Ar-

bitrage and Relative Value Arbitrage.

The risk-free rate taken is the 1-month Euribor.

We assume that investors invest 1 Euro at time t in their portfolio and that portfolios

are hold unchanged until time τ > t, with τ − t = 1 month. As a result, the returns

are assumed to be monthly returns.

6.4.1 Mean Variance Analysis

In the next section we prove that the normality assumption is much less attractive than

the skew normal one. This is proven both statistically by the likelihood ratio test and

graphically by the QQ-plots of some strategies.

Nonetheless the mean variance analysis continues to be interesting due to the fact that

the results obtained in this framework can used as benchmark for more complex cases.

We assume here that the joint distribution of the 12 strategies is normal:

R ∼ N12(m̂, V̂ ) (6.33)

where R1, . . . , R12 represent respectively the returns of the 12 strategies in the order in

which they have been mentioned above. This assumption validates the mean variance

analysis.

The estimated parameters (m̂, V̂ ) have been obtained by the maximum likelihood

method. The values of the estimated m̂ are reported in Table 6.1 whereas we do
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not report the values of V̂ . Given a portfolio w the portfolio return Rw = wT R is

normally distributed:

Rw ∼ N(wT m̂, wT V̂ w) (6.34)

Suppose an investor sets the monthly target return to 1, 2%, then its portfolio problem

is by (3.7):

Min 1
2wT V̂ w (6.35)

with the constraints: 1T w = 1

wT m̂ = 1, 2%

The optimal portfolio w∗ resulting from this quadratic programming problem together

with optimal portfolio return and standard deviation are reported in Table 6.2.

It results:

Rw∗ ∼ N(1.2, 1.45) (6.36)

In Figure 6.1 is represented the efficient frontier in the mean variance space.

Suppose now the investor owns personal views relating the Hedge Funds Strategies.

The BL model described in chapter 5, permits to include this views in the investment

process. The BL model is implementable imposing uncertainty on the values of ex-

pected returns by a prior distribution.

The market model we assume is (as in 5.11):

R|M = m ∼ N12(m; V̂ ) (6.37)

M ∼ N12(µe, τ V̂ ) (6.38)

where me are the CAPM equilibrium values given by (3.41):

me − 1Rf = βm(mm −Rf ) (6.39)

and τ = 0, 03. Even though in the original BL model the prior (5.11) is centered on the

implied returns we prefer here to use the CAPM equilibrium values, the two quantities

being related as shown in chapter 5. This choice will allow us to compare the mean

values derived from the CAPM with those derived from the three moments CAPM.

The market capitalization weights (the market portfolio) wm are reported in Table 6.1
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Figure 6.1: Mean variance efficient set for the portfolio of 12 strategies in the normal
assumption. The tangency portfolio (0, 85%, 0, 74%) and the equally weighted portfolio
(1, 06%, 2, 03%) are also represented.
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1 2 3 4 5 6 7 8 9 10 11 12

wm 0.04 0.03 0.06 0.40 0.06 0.08 0.08 0.10 0.03 0.04 0.04 0.04
βm 0.28 0.63 1.70 1.28 0.17 1.98 0.86 0.34 0.84 0.80 0.38 0.34

µ̂ 0,80 1,17 1,39 1,33 0,71 1,33 1,14 0,80 1,20 1,05 0,83 0,94
me 0.51 0.82 1.79 1.41 0.40 2.05 1.02 0.56 1.01 0.97 0.59 0.56

mBL 0.47 0.73 1.94 1.37 0.38 1.99 0.95 0.54 1.02 0.98 0.55 0.52

Table 6.1: wm is the vector of weight of the market portfolio, βm and me are the
coefficients needed for the two moment CAPM. m̂ is the vector of historical means.
mBL is the BL mean vector.

together with the values of the vector of ”betas” βm.

It gives

Rm ∼ N(1.15, 3.42).

and the results relating the equilibrium values me are reported in Table 6.1.

Suppose now the investor owns the following personal views on the expected monthly

returns:

i) The Distressed Security Strategy will almost surely perform−2% the following month

ii) It’s highly probable that the Emerging Markets Strategy will over-perform the Event

Driven Strategy by +4%

iii) It’s probable that the Fixed Income Strategy will perform the same as the average

between the three Equity Strategies (Equity Hedge, Equity Market Neutral and Equity

non-Hedge)

By the BL model it is possible to codify those views in a vector of views v (the real-

ization of the r.v. V ), an opportune ”pick” (3 × 12)−matrix P , a confidence (3 × 3)

diagonal matrix Ωv. By (5.21) the views are distributed according to:

V |M = m ∼ N3(Pm,Ωv) (6.40)

By i) ii) and iii):

v =
(

-2% +4% 0%
)

(6.41)

P =




0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0
0 0 0 1/3 1/3 1/3 0 −1 0 0 0 0


 (6.42)
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Ωv =




1,5% 0 0
0 2,5% 0
0 0 4%


 (6.43)

The views can also be written in the following more intuitive form.

m2 = v1 + ε1

m3 −m5 = v2 + ε2
m4 + m5 + m6

3
−m8 = v3 + ε3

(6.44)

where ε ∼ N3(0, Ωv). Using the prior for the means (6.38) and the distribution of the

views (6.41) we can obtain the posterior of M |V (see formula (5.22)), which is normal

with the following mean and variance:

mBL = [(τ V̂ )−1 + P T Ω−1
v P ]−1[(τ V̂ )−1me + P T Ω−1

v v] (6.45)

ΣBL = [(τ V̂ )−1 + P T Ω−1
v P ]−1 (6.46)

In Table 6.1 are reported values of mBL whereas values of ΣBL are not reported here

to save space. Setting the target return again to 1, 2% the modified portfolio problem

is:

Min wT (V̂ + ΣBL)w (6.47)

with the constraints: 1T w = 1

wT mBL = 1, 2%

brings to the optimal weights showed in Table 6.2. It results:

Rw∗
BL
∼ N(1.2, 3.76) (6.48)

6.4.2 The skew-normal assumption

The portfolio of the 12 strategies is assumed now to be joint skew normal:

R ∼ SN12(µ, Ω, α) (6.49)
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1 2 3 4 5 6 7 8 9 10 11 12

w∗ −0.26 0.42 −0.07 0.54 −0.25 −0.49 0.15 0.05 0.10 0.29 0.06 0.47
w∗

BL 0.04 0.04 0.06 0.42 0.05 0.09 0.09 0.09 0.04 0.03 0.03 0.03

Table 6.2: Optimal portfolio w∗BL obtained by the portfolio problem (6.47) compared
with the optimal weights w∗ obtained by (6.35)

where R1, . . . , R12 represent respectively the 12 strategies in the order in which they

have been mentioned at the beginning of this Section.

The results of the ML estimation of parameters (µ, Ω, α) (in this Section we don’t use

a different symbol for the estimated parameters) are reported in Tables 6.4 and 6.5.

The assumption (6.49) has been tested by a standard likelihood ratio test. The model

with a restriction is that one with the vector α of all zeros , implying the normality of

the restricted model. The values of the test have been compared with the values from

a chi-squared distribution with 12 degrees of freedom. The results given in Table 6.3

prove that the skew-normal assumption is much more appropriate.

Likelihood ratio Test (null hypothesis: α = 0)

log-lik normal (α = 0) -3967.99
log-lik skew-normal -3923.89
lik-ratio 88
Prob 0

Table 6.3: Likelihood ratio test: lik-ratio is the likelihood ratio test statistics and Prob
the corresponding probability.

1 2 3 4 5 6 7 8 9 10 11 12

µ 1.13 2.01 3.68 2.34 0.84 3.34 2.51 1.17 1.86 1.40 1.98 1.31
α 0.42 0.66 -1.63 1.25 -0.22 -1.12 -1.72 0.01 0.14 1.41 -4.49 0.57

Table 6.4: Values of µ and α

In Figure 6.2 are represented the marginal densities of two Strategies with the

corresponding histograms. It can be noticed, also from the graphical point of view,

that it would be inappropriate a normal assumption for these two skewed Strategies.
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Figure 6.2: Histograms of Merger Arbitrage and Event Driven Strategies and the two
marginal densities. The curve on the left is the density of a SN(1.98, 1.65,−2.81), on
the right of a SN(2.51, 2.27,−1.40)

This is also evident from the QQ-plots represented in Figure 6.3.

For comparison purposes we solve three location variance skewness problems all

having fixed expected value:

E(Rw) = 1.2

in order to do this we choose the following three couples of location/non-spherical

component of the variance: (L,B) = (4,−3.5); (0, 1.5); (−4, 6.5).

The location variance skewness problem (4.43) is:

Minw s2
w (6.50)

with the constraints: µw = L

wT (ωδ) = B

1T w = 1

The values of the the three optimal portfolios w∗
i , i = 1, 2, 3 solutions of the previous

problem are reported in Table 6.6.

Suppose now the investor has the same views as in section 6.4.1. The skew-normal
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Figure 6.3: QQ-plots for the Merger Arbitrage and the Event Driven Startegies

1 2 3 4 5 6 7 8 9 10 11 12

1 1.10 1.19 2.33 1.44 0.23 2.31 1.48 0.58 1.15 0.75 0.93 0.73
2 1.19 3.46 6.17 3.24 0.40 5.75 3.54 1.38 2.34 1.56 1.98 1.44
3 2.33 6.17 21.71 8.77 0.63 15.83 8.22 3.14 7.08 5.23 4.72 2.82
4 1.44 3.24 8.77 7.01 0.93 10.59 4.84 1.64 4.06 3.84 2.63 1.71
5 0.23 0.40 0.63 0.93 0.78 0.97 0.55 0.24 0.64 0.46 0.40 0.30
6 2.31 5.75 15.83 10.59 0.97 19.24 8.56 2.98 6.38 6.52 4.78 2.74
7 1.48 3.54 8.22 4.84 0.55 8.56 5.19 1.63 3.24 2.51 3.16 1.68
8 0.58 1.38 3.14 1.64 0.24 2.98 1.63 1.03 1.44 0.83 0.83 0.69
9 1.15 2.34 7.08 4.06 0.64 6.38 3.24 1.44 5.72 2.67 1.63 1.18

10 0.75 1.56 5.23 3.84 0.46 6.52 2.51 0.83 2.67 4.15 1.22 0.79
11 0.93 1.98 4.72 2.63 0.40 4.78 3.16 0.83 1.63 1.22 2.74 0.99
12 0.73 1.44 2.82 1.71 0.30 2.74 1.68 0.69 1.18 0.79 0.99 1.15

Table 6.5: Matrix Ω

1 2 3 4 5 6 7 8 9 10 11 12

w∗
1 −0.74 0.35 0.14 0.42 −0.49 −0.34 0.79 −0.52 0.14 −0.23 1.38 0.09

w∗
2 −0.01 0.49 −0.20 0.66 −0.15 −0.60 −0.21 0.35 0.09 0.61 −0.74 0.72

w∗
3 −2.43 2.32 −0.10 2.87 −2.65 −2.10 1.93 −2.19 0.75 0.49 0.55 1.57

Table 6.6: Three optimal portfolios w∗i obtained by the portfolio problem (6.50)
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6.4 The Hedge Funds Market

market model is given by formula (6.3) which is recalled here:

R|(M = m) ∼ SNn(m−
√

2
π

(ωδ), Ω, α) (6.51)

M ∼ Nn(me, τΩ) (6.52)

where me = µe +
√

2
π (ωδ).

The equilibrium vector is given by (its values are reported in Table 6.7):

µe
i = Rf + βi[µm −Rf ] + (γi − βi)[µp −Rf ] (6.53)

The univariate skew-normal distribution of the market is:

Rm ∼ SN(2.13, 2.09,−0.83)

hence E(Rm) = 1.39, Var(Rm) = 1.55 and Bm = wT
m(ωδ) = −0.91.

In Table 6.7 are reported the values of the covariances vi,m, of the vector βm of com-

ponents (βm)i = vi,m/σ2
m and of the vector of components γi = (ωδ)i/(ωδ)m.

The portfolio wp is defined as a portfolio uncorrelated to the market portfolio vp,m = 0

but having its skewness γp = 1. It has been obtained solving the following linear

programming problem:

Minw v1,mw1 + . . . + v12,mw12 (6.54)

with the constraints: v1,mw1 + . . . + v12,mw12 ≥ 0

(ωδ)1w1 + . . . + (ωδ)12w12 = Bm

w1 + . . . + w12 = 1 (6.55)

The results relating the values of µe and me are in Table 6.7.

To obtain the r.v M |V we use the prior on the expected return and the distribution

of the views, the theoretical result is the same as in the normal case. The values of

the vectors mBL and αBL are reported in Table 6.7. While the values of ΣBL are not

reported to save space. Finally it’s possible to evaluate the predictive posterior R|V .

The resulting location variance skewness problem is:

Minw s2
BL (6.56)

with the constraints: µw
BL = L

wT (γBLδBL) = B

1T w = 1
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V

B

L

V

B

L

Figure 6.4: Plots of 30000 feasible portfolios (in grey) and of 30000 portfolios lying
in the minimum spherical variance set (in black) in the (L, V = v2

w, B)-space for the
portfolio of the 12 HF Strategies
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1 2 3 4 5 6 7 8 9 10 11 12

vi,m 0.92 2.02 5.41 4.21 0.55 6.44 2.69 1.11 2.76 2.68 1.08 1.09
βm 0.59 1.30 3.49 2.71 0.35 4.15 1.73 0.72 1.78 1.73 0.70 0.70

γ 0.49 1.24 3.40 1.50 0.18 2.98 2.03 0.54 0.96 0.51 1.70 0.54

µ 1.13 2.01 3.68 2.34 0.84 3.34 2.51 1.17 1.86 1.40 1.98 1.31
µe 1.25 2.63 6.71 4.01 0.73 6.76 3.83 1.40 2.69 2.15 2.67 1.40
me 0.89 1.72 4.22 2.92 0.59 4.58 2.35 1.01 1.99 1.78 1.43 1.00

mBL 0.82 1.52 4.06 2.73 0.56 4.27 2.14 0.94 1.89 1.71 1.30 0.92
αBL 0.29 0.25 −0.25 0.34 −0.18 −0.18 −0.53 0.01 0.04 0.49 −1.91 0.38
δBL −0.26 −0.41 −0.44 −0.34 −0.19 −0.42 −0.62 −0.30 −0.21 −0.09 −0.82 −0.28

Table 6.7:

1 2 3 4 5 6 7 8 9 10 11 12

wp 0.00 0.00 −0.22 0.00 0.21 0.00 0.00 0.00 0.00 0.00 1.01 0.00

Table 6.8: Portfolio wp

We solve this problem for the following three couples of location/non-spherical part of

the variance (the same as above): (L,B) = (4,−3.5); (0, 1.5); (−4, 6.5).

Results are reported in Table 6.9.

1 2 3 4 5 6 7 8 9 10 11 12

w∗
BL,1 −0.66 −0.27 0.04 −0.46 0.53 0.03 0.48 0.01 −0.06 −0.54 2.74 −0.85

w∗
BL,2 0.61 0.07 0.04 0.44 −0.04 −0.06 −0.41 0.56 0.01 0.49 −1.45 0.74

w∗
BL,3 −0.61 −0.31 0.20 −0.10 0.27 0.19 0.61 −0.22 −0.00 −0.59 2.34 −0.78

Table 6.9: Three optimal portfolios w∗BL,i obtained by the portfolio problem (6.56)
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Appendix A

Mathematical results

A.1 Bivariate SUN

In this section the fundamental properties of the bivariate SUN are analyzed, the main

reference is [2].

The general expression of the density of a SUN, given by (1.46), leads to two different

bivariate random variables: SUN2,1 and SUN2,2.

Starting from the former and considering the general formula of the density (1.46), we

have that the r.v.

Y ∼ SUN2,1(ξ, 0, ω̄,Ω∗)

has the following density :

fY (y) = 2ϕ2(y − ξ; Ω)Φ(∆T Ω̄−1ω−1(y − ξ); 1−∆T Ω̄−1∆)

where Ω, ∆ are obtained by the opportune partition of the (3× 3) correlation matrix:

Ω∗ =
(

1 ∆T

∆ Ω̄

)

and where:

ξ =
(

ξ1

ξ2

)
; ∆ =

(
δ1

δ2

)
; Ω = ωΩ̄ω

with

ω =
(

σ1 0
0 σ2

)
; Ω̄ =

(
1 ρ
ρ 1

)
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A.1 Bivariate SUN

with σi > 0 and |ρ| ≤ 1. Expliciting the previous expression of the density we have:

fY (y) = 2ϕ2(y − ξ; Ω)

Φ(
δ1 − ρδ2

σ1(1− ρ2)
√

1− δ2
1 − δ2

2 + 2ρδ1δ2

(y1 − ξ1)

+
δ2 − ρδ1

σ2(1− ρ2)
√

1− δ2
1 − δ2

2 + 2ρδ1δ2

(y2 − ξ2))

which corresponds to the density of of a r.v distributed according to SN2(ξ, Ω,α). This

can be easily proven introducing the parametrization given by

α =
(

α1

α2

)
= (1− δT Ω̄−1δ)−1/2Ω̄−1δ

and inserting this expression in the cumulative function. The result is:

fY (y) = 2ϕ2(y − ξ; Ω)Φ(αT ω−1(y − ξ))

A linear transformation applied to the vector Y leads obviously to the same results

(1.41) obtained for the bivariate skew normal. It is however helpful to rewrite the same

results in the parametrization given by δ. If we take

w =
(

w1

w2

)
,

then Z = wT Y is a univariate random variable with the following density:

fZ(z) = 2ϕ(z − ξ̃; Ω̃)Φ(
w1δ1 − δ2w2

w1σ1 + w2σ2
Θ(z − ξ̃); 1− (δ2

1 + δ2
2)Θ)

where:

ξ̃ = wξ1 + (1− w)ξ2

Ω̃ = w2σ11 + 2w(1− w)σ12 + (1− w)2σ22

Θ =
w2 + (1− w)2

w2 + (1− w)2 + 2ρw(1− w)

Let’s now consider a r.v distributed according to Y ∼ SUN2,2(ξ, 0, ω̄,Ω∗), its density

has the following expression:

fY (y) = 2ϕ2(y − ξ; Ω)Φ2(∆T Ω̄−1ω−1(y − ξ); I −∆T Ω̄−1∆)
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A.1 Bivariate SUN

where the parameters Ω, ∆ are obtained by the opportune partition of:

Ω∗ =
(

I ∆T

∆ Ω̄

)

and where:

ξ =
(

ξ1

ξ2

)
; ∆ =

(
δ1 0
0 δ2

)
; Ω = ωΩ̄ω

with

ω =
(

σ1 0
0 σ2

)
; Ω̄ =

(
1 ρ
ρ 1

)
.

Differently from the previous case, now Ω∗ is a 4×4 matrix (in the SUN2,1 it was 3×3).

Its density can therefore be written as:

fY (y) = 2ϕ2(y − ξ; Ω)

Φ2

(
1

1− ρ2

(
δ1
σ1

(y1 − ξ1)− δ1ρ
σ2

(y2 − ξ2)
δ2
σ2

(y2 − ξ2)− δ2ρ
σ1

(y1 − ξ1)

)
;
(

1− δ2
1 −ρδ1δ2

−ρδ1δ2 1− δ2
2

))

It is worth mentioning that the main differences between the two bivariate SUN is

that if ρ = 0 only SUN2,2 factorizes in two independent components. In order to get

the same property for SUN2,1, is required the normality of one of the two components.

Therefore a complete set of assumptions for the independence is in this case either

[ρ = 0, δ1 = 0] or [ρ = 0, δ2 = 0].

Given a non singular matrix B of dimension k × k acting on Y ∼ SUN2,2(ξ, 0, ω̄, Ω∗),

the random variable

BT Y ∼ SUN2,2(ξ̃, 0, ω̃, Ω̃∗)

is obtained by the opportune partition of

Ω̃∗ =

(
I ∆̃T

∆̃ ˜̄Ω

)

105



A.1 Bivariate SUN

with

ξ̃ =
(

ξ1

ξ2

)
= BT ξ

ω̃ =
(

ω̃1 0
0 ω̃2

)
= BT ωB

˜̄Ω =

(
˜̄Ω11

˜̄Ω1
˜̄Ω12

˜̄Ω22

)
= B−1Ω̄(BT )−1

Ω̃ =
(

Ω̃11 Ω̃1

Ω̃12 Ω̃22

)
= BT ΩB = ω̃ ˜̄Ωω̃

∆̃ =
(

∆̃11 ∆̃12

∆̃21 ∆̃22

)
= B−1∆

If we take

B =
(

w1 −w2

w2 w1

)
; |B| = w2

1 + w2
2 6= 0 ∀ w1, w2 ∈ R

we obtain a bivariate random variable Z given by

Z = BT Y =
(

w1 w2

−w2 w1

)(
Y1

Y2

)
=

(
w1Y1 + w2Y2

w1Y2 − w2Y1

)
=

(
Z1

Z2

)

The marginal distribution of Z1 is:

Z1 ∼ SUN1,2(ξ̃1, 0, ω̃1, Ω̃∗1)

obtained by an opportune partition of

Ω̃∗1 =

(
I ∆̃T

1

∆̃1
˜̄Ω11

)
; ∆̃1 =

(
∆̃11 ∆̃12

)

and the explicit expression of the density is:

fZ1(z) = 2ϕ2(z − ξ̃1; Ω̃11)

Φ2

((
w1δ1

w2δ2

)
Θ

z − ξ̃1

w1σ1 + w2σ2
; I −Θ

(
w2

1δ
2
1 w1w2δ1δ2

w1w2δ1δ2 (1− w)2δ2
2

))

with:

Ω̃11 = w2
1σ11 + 2w1w2σ12 + w2

2σ22

Θ =
w2

1 + w2
2

w2
1 + w2

2 + 2ρw1w2
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A.2 Elliptical Distributions

A.2 Elliptical Distributions

A d-dimensional random variable Y is elliptical if its density function is constant on

ellipsoids, that is to say:

fY (y; m,Ω) =
cd

|Ω|1/2
fd{(y −m)T Ω−1(y −m)} y ∈ Rd (A.1)

where m ∈ Rd, Ω is a covariance matrix, fd is a suitable function from R+ to R+ called

the density generator and cd is a normalizing factor; we then write Y ∼ Elld(m, Ω, fd).

The condition
∫ ∞

0
yd/2−1fd(y)dy < ∞ (A.2)

guarantees that fd(y) is a density generator. In addition the normalizing constant cd

can be explicitly determined:

cd =
Γ(n/2)
(2π)n/2

[∫ ∞

0
yd/2−1fd(y)dy

]−1

(A.3)

If Y is elliptically distributed then its characteristic function has the following form

ϕY (t) = eitT mψ
(
tT Ωt

)
. (A.4)

The function ψ(t) is called the characteristic generator. To denote elliptical laws we

shall also use the notation Y ∼ Elld(m, Ω, ψ).

The density of a normal variate is obtained by taking

f̃(x) = e−
x
2 , cd = (2π)−d/2

The multivariate Pearson type VII distribution is obtained by

f̃(x) = (1 + x/ν)−M , cd =
Γ(M)

(πν)d/2Γ(M − d/2)

where ν > 0, M > d/2 and which gives the multivariate t density in the case M =

(d + ν)/2.

The multivariate Pearson type II density is obtained by

f̃(x) = (1− x)−ν , cd =
Γ(d/2 + ν + 1)
(π)d/2Γ(ν + 1)

where 0 ≤ x ≤ 1, ν > −1.
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A.2 Elliptical Distributions

Theorem A.2.1. Suppose X ∈ Rn is elliptically distributed and A a (k × n) matrix.
Then the random vector Y = A ·X is elliptically distributed.

Proof. This can be easily proven showing that the the characteristic function of Y

has the same form of the characteristic function of any subvector of X with the same
number o components.
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Appendix B

Stochastic Dominance and

Separation’s Theorems

Proposition B.0.1. (i) Y º1 X iff X ∼ Y + Z for some r.v. Z such that Z ≤ 0
(ii) Y º2 X iff X ∼ Y +Z + ε for some r.v.’s Z, ε such that Z ≤ 0 and E(ε|Y +Z) = 0.

Proof. :(i) we just prove the ”if” part. From X ∼ Y + Z follows E(u(X)) = E(u(Y +
Z)) ≤ E(u(Y )), because Z ≤ 0 and u is increasing.
(ii) again we just prove the ”if” part. Set S = Y + Z, we have

E(u(X)) = E(u(S + ε)) = E(E(u(S + ε)|S)) ≤ E(u(E(S + ε)|S)))

= E(u(E(S|S) + E(ε|S))) = E(u(S)) ≤ E(u(Y )).

We have used in the first line the conditional Jensen inequality (which applies to concave
functions) and in the second line all the remaining hypothesis (moreover we have used
everywhere the basic properties of conditional expectation).

Consider now a market of n risky assets (numbered from 1 to n). Denote by

R = (R1, . . . , Rn)

the random vector of assets returns (at a future fixed time) and by RT the corresponding

column vector. Set 1 = (1, . . . , 1), then the return of a portfolio β = (β1, . . . , βn), is

simply the scalar r.v.

βT R =
n∑

i=1

βiRi
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Theorem B.0.2. The distribution of R has the (strong) 1-fund separation property iff
there exist a scalar r.v. Y , a vector r.v. ε and a portfolio α such that
(a) each component of R can be written as Ri = Y + εi, for i = 1, . . . , n

(b)it holds E(εi|Y ) = 0
(c) the portfolio α is orthogonal to the vector ε (i.e. αT ε = 0).

Remark: For obvious reasons Y is called the ”common (risky) factor” and the

noise εi the asset-specific ”residual risk”.

Proof. We prove the sufficiency. Using (a), and the existence of α we have αT R =
αT1Y + αT ε. Therefore, by (c), αT R = αT1Y = Y . Let β be any portfolio and set
η = β −α, then clearly 1T η = 0. Hence

E(βT R|αT R) = E(βT R|Y ) (B.1)

= E(αT R + ηT R|Y ) = E(Y + ηT ε|Y ) = E(Y |Y ) +
∑

i

E(εi|Y ) = Y (B.2)

where we have used (b). Summarizing we have βT R = αT R + ηR. Now considering
PropositionB.0.1(ii) we can take Z = 0, moreover we have

E(ηT R|αT R) = E(βT R−αT R|αT R) = E(βT R|αT R)−αT R = Y −αT R = 0

therefore all the conditions of (ii) are verified so that αT R º2 βT R. The necessity
argument requires some more efforts.

Proposition B.0.2. If the vector of returns is normally distributed then it satisfies
conditions of Theorem 3.5.3

Proof. Consider a market of n + 1 assets with modified vector of returns

R = (R0, R1, . . . , Rn)

where R0 = Rf and assume it has finite mean and variance, i.e. E(R) = E ∈ R(n+1)

and Var(R) = Σ ∈ R(n+1)×(n+1).
Since cov(R0, Ri) = 0 for all i = 0, . . . , n the first row and the first column of the

covariance matrix Σ are made of zeros. The remaining square matrix V of dimension n

is assumed to be not degenerate, i.e. detV 6= 0, and the vector R̃ = (R1, . . . , Rn) such
that

R̃ ∼ Nn(µ̃, V )
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where µ̃ = E(R̃). We also set R̃f = (Rf , . . . , Rf ) ∈ Rn, ξ = µ̃ − R̃f . We shall prove
that R verifies all the hypothesis of Theorem 3, that is we shall exhibit (Y, Z, b, ε, α, β)
such that (a) holds true for R and all the other requirements are also satisfied.
First, for all i = 0, . . . , n, we choose

Y = Rf and Z = ν̃T (R̃− R̃f )

with the vector ν̃ to be specified below.
Then for i = 0 we choose b0 = 0 = ε0 and therefore we have R0 = Y + 0Z + 0 = Rf

which is obviously true. Next, for i = 1, . . . , n, we wish to show that

Ri = Rf + biZ + εi

holds for suitable choices of (bi, ν̃, εi) and E(εi|Z) = 0.
Indeed define,

ν̃ = (ξT V −1ξ)−1V −1ξ

so that ν̃T ξ = ξT ν̃ = 1).
Hence Z ∼ N(1, σ2

Z), with σ2
Z = ν̃T V ν̃.

We then choose
bi = ξi,

(i = 1, . . . , n), and , for i = 1, . . . , n, we have

Ri = Rf + ξiZ + (Ri − E0 − ξiZ) =: E0 + ξiZ + εi

with εi ∼ N(0, σ2
εi
) (E(εi) = ξi − ξi1 = 0), being a difference of two normal r.v.’s. We

now show that E(εi|E0 + ξZ) = E(εi|Z) = 0. To this aim we prove εi is independent
from Z, and therefore E(εi|Z) = E(εi) = 0. Since Z, εi are both gaussian r.v.’s their
independence is equivalent to the condition cov(εi, Z) = 0. Indeed, for any γ = (γ0, γ̃) ∈
R(n+1), we have

cov(γT ε, Z) = cov(γ̃T [R̃− R̃f − ξZ], Z)

= cov(γ̃T [R̃− R̃f ], Z)− cov((γ̃T ξ)Z, Z)

= (γ̃T Σν̃)− cov((γ̃T ξ)ν̃T R, ν̃T R)

= (γ̃T Σν̃)− cov(γ̃T (ν̃T ξ)R,νT R) = (γ̃T Σν̃)− cov(γ̃R, ν̃T R) = 0

from which cov(εi, Z) = 0 follows as particular case. We now set ν = (0, ν̃) and consider
the portfolios (the riskless portfolio and the tangency portfolio)

wt =
ν

1T ν
, wf = (1, 0, . . . , 0).
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Since ε0 = 0 we have wT
f ε = 0, moreover

wT
t ε = ν̃T [R̃− R̃f − ξZ] = ν̃T (R̃− R̃f )− (ν̃ξ)Z = Z − Z = 0

which shows that these two portfolios are both orthogonal to ε and therefore can be
chosen to span the whole set of dominating portfolios. This ends the Proof
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