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Sommario

In questa tesi si presenta una teoria termodinamica per continui porosi multi-fase

basata sul lavoro di Biot e la relativa formulazione numerica mediante elementi finiti

non convenzionali che consentono di modellare fenomeni di localizzazione delle defor-

mazioni. In una prima fase si ricava una forma generale per le relazioni iperelastiche

incrementali. Si ottengono quindi espressioni particolari per gli operatori iperelastici

tangenti utilizzando argomenti tipici della teoria delle miscele. Si verifica la compati-

bilità di tali operatori con la suddetta teoria termodinamica utilizzando le condizioni di

simmetria e di Maxwell. Fra i principali risultati della trattazione considerata vi è una

semplice espressione della dissipazione, che sarà utilizzata in un approccio multi-scala

alla localizzazione delle deformazioni.

Si considera quindi una formulazione agli elementi finiti del modello costitutivo ot-

tenuto, concentrando l’attenzione sulla linearizzazione del sistema risolvente. Tra le

possibili fonti di non-linearità, si considerano anche quelle dovute a condizioni al con-

torno unilatere sul flusso fluido, introdotte per modellare efficacemente l’interfaccia

tra mezzo poroso e atmosfera. Si analizzano semplici esempi numerici monodimensio-

nali, allo scopo di valutare le prestazioni numeriche delle tecniche di regolarizzazione

di tipo penalty e Lagrangiano aumentato utilizzate. In tali esempi si evidenzia anche

l’analogia formale e numerica tra problemi di filtrazione con vincoli unilateri e problemi

di contatto in assenza di attrito. Si prendono inoltre in considerazione altre situazioni

di interesse pratico, come la propagazione di un fronte di saturazione in uno strato di

terreno e la parziale saturzione in una diga di calcestruzzo a gravità.

Per modellare meccanismi dissipativi localizzati, si analizza la presenza di discontinuità

negli spostamenti e nei flussi fluidi nel caso di mezzi porosi multi-fase. Nel corrispon-

dente metodo agli elementi finiti, l’insorgere di tali discontinuità è simulato mediante

“enhancement” locale delle funzioni interpolanti. Infine, si presentano i risultati della

simulazione numerica di una prova di compressione piana su un mezzo poroso parzial-

mente saturo. Tale simulazione consente di evidenziare tutte le caratteristiche delle

formulazioni teoriche e numeriche presentate in questa tesi.
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Abstract

In this thesis we present a thermodynamic theory for multiphase porous continua based

on Biot work and the corresponding numerical formulation by non-standard finite el-

ement methods modelling strain localization phenomena. Firstly, a general form of

hyperelastic rate equations is provided. Particular expressions for hyperelastic tangent

operators are then obtained by using arguments typically employed in the mixture

theory. The compatibility of such operators with the aforementioned thermodynamic

theory is then investigated by means of symmetry and Maxwell conditions. Among

the main results of the presented formulation there is a simple expression for dissipa-

tion, that will be used in a multi-scale approach to the localization of deformations in

multiphase solids.

A finite element formulation of this constitutive model is then presented, focusing

the attention on the linearization of the resulting solving system. Among the different

sources of non-linearity, also the ones due to unilateral boundary conditions on the fluid

flow are considered. Such boundary conditions are introduced to effectively model the

interface between the porous solid and the atmosphere. In order to investigate nu-

merical performance of penalty and augmented Lagrangian regularization techniques

employed herein, simple one-dimensional numerical examples are considered. In these

examples, both the numerical and formal analogies between seepage problems with

unilateral constraints and frictionless contact problems are pointed out. Further situ-

ations of practical interest are considered, as the propagation of a saturation front in

a soil sample and the partial saturation of a concrete gravity dam.

To model localized dissipative mechanisms, we analyze the presence of discontinuities

in displacements and fluid flows. In the corresponding finite element method, the

appearance of these discontinuities is simulated by local enhancement of interpolating

functions. Finally, results of the numerical simulation of a plain strain compression

test on a partially saturated porous solid are presented. This simulation allows us to

point out all the features of theoretical and numerical formulations presented in this

thesis.
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Introduction

Motivation

Theory of porous media is known as a powerful tool in solving problems of inter-

est in many fields of applied sciences, for example in engineering problems involving

strong interactions between structures and ground, such as dams during construction

and reservoir operations, or underground openings excavated under a water table. In

this context, also shakedown analysis in fully saturated porous solids [49] have been

performed. Furthermore, theory of porous media can be also successfully applied in

many other fields, such as in petroleum and mining engineering or in the analysis of

regional subsidence due to extracting activities [95]. Porous media laws can be effec-

tively employed also in concrete modelling, for example in evaluating the effects of high

temperatures [73], shrinkage, creep [72] and alkali-silicate reactions [53, 145]. Also bio-

mechanics problems have been investigated by means of poro-elasticity [57, 69]. Further

applications can be found in the safety assessment of nuclear waste disposal in porous

media [75]. Recently, the need to reduce emissions has motivated the research em-

ploying porous media concepts on injection and storage of carbon dioxide in depleted

aquifers and hydrocarbon reservoirs [115].

In many applications, the mechanical response of multiphase porous media can

be modelled by neglecting the coupling with fluid flows taking place in the porous

network, thus allowing the use of tools typically employed in classical continuum me-

chanics. For example, this simplifying assumption is reasonable when very different

time scales characterize evolutions of mechanical and hydraulic problems [28]. In Civil

1



INTRODUCTION 2

Engineering, these two situations are often indicated as drained and undrained condi-

tions. Of course, these two limit approaches are not satisfying in those frequent cases

where evolution times of mechanical and fluid problems are comparable. Effective the-

ories for porous media are then required to effectively model both the mutual couplings

between mechanical and hydraulic problems.

Even if the aforementioned limit hypotheses are removed, usually the simplifying

assumption of pores saturated by a single fluid, liquid or gas, is kept. Anyway, there

are many situations where this assumption is shown to be ineffective: for example,

when the portion above the water table cannot be considered completely dry or when

a multiphase flow characterizes the porous network.

A further crucial task is to effectively model failure phenomena localized in sliding

or fracture surfaces frequently observed in multiphase porous media. The resulting

collapse mechanisms are coupled with fluid flow fields and play a fundamental role

in observed failure events. For example, during excavation of shallow tunnels, “shear

bands” can propagates from the cavity up to the ground surface, thus leading to the

collapse of the tunnel roof or of the excavation face. Even more catastrophic events

have been registered in dam engineering, involving localized failure phenomena in-

duced by interaction between the solid skeleton and interstitial pore-pressures, in the

abutments, as in Malpasset Dam, or in the reservoir banks, as in Vajont Dam. Unfor-

tunately, standard finite element methods are not suitable for localization analysis, as

they show great difficulties in reproducing the concentration of strains. We denote as

“standard” the finite element formulations implementing rate-independent plasticity

models of the local continuum. Localized solutions eventually obtained with these con-

ventional methods are unacceptably dependent on the adopted discretization in terms

of mesh size and alignment [107, 144]. Such a pathological mesh dependence is due to

the lack of a characteristic length in the constitutive model [79, 105, 113, 139], leading

to an ill-posed problem in presence of softening and/or non associated evolution laws.

A number of non-standard techniques has been proposed to regularize the problem,

like viscous [100], high-gradient [50], non-local [17] and Cosserat [61] models. The

main goal of some of these approaches is to introduce small-scale lengths that are able
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to objectively characterize localized dissipative mechanisms along shear bands. These

small-scale effects can be effectively incorporated in a classical local continuum frame-

work by the strong discontinuity approach [129], a non-standard numerical technique

that allows to model the appearance of discontinuous displacement fields and that

can be viewed in the more general context of assumed strain enhanced finite element

methods [130]. More recently, the strong discontinuity concept has been considered

in the so-called extended finite element framework [136]. A comprehensive review on

strong discontinuity approaches can be found in [98] together with numerical examples

on two and three-dimensional problems. The strong discontinuity approach has been

also employed in problems involving fully saturated porous continua [9, 33, 34] in the

assumed strain enhanced finite element framework. The final goal of this thesis is to

extend the latter approach to the partially saturated case.

Objectives

The final objective of this thesis is a constitutive theory for multiphase media, devel-

oped in a thermodynamic macroscopic framework and able to model possible localized

failure phenomena by the strong discontinuity approach. This goal is attained by the

following intermediate steps.

• Hyperelastic constitutive equations are provided in a thermodynamic macroscopic

framework based on Biot work in terms of tangent operators obtained by using

arguments typically employed in mixture theories.

• A finite element implementation of the aforementioned hyperelastic constitutive

equation is developed in order to effectively model the reversible response in

multiphase continua.

• Interfaces between porous solid and atmosphere are properly modelled as unilat-

eral boundary conditions, to effectively employ the constitutive theory and the

relative finite element implementation to problems of interest in engineering.
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• An extension to irreversible phenomena of the aforementioned constitutive model

is obtained in the general framework of additive elasto-plastic decompositions of

strains and fluid mass contents.

• A simple expression for dissipation is obtained and employed in a multi-scale

approach to the localization of deformations in multiphase solids by the strong

discontinuity approach.

The main results reported in the present thesis are presented by Abati and Callari [3],

Callari and Abati [31, 32], Callari, Armero and Abati [37].

Dissertation overview

An outline of this thesis is as follows. In Chapter 1, governing equations for a three-

phase porous continuum are developed in a macroscopic thermodynamic framework.

Based on Biot theory [18, 54], a general rate form for hyperelastic relations is obtained

in terms of tangent operators (solid skeleton elastic tensor, coupling tensors, storage

modulus). Possible particular forms for these operators are obtained, based on tools

typically employed in alternative approaches as mixture theories [60, 95, 119]. The

compatibility of the so-obtained operators with the aforementioned macroscopic ther-

modynamical framework is investigated following the classical arguments introduced by

Coleman and Noll [52]. Such a thermodynamic framework leads to simple expressions

for the Clausius-Duhem inequality which can be easily employed in the multi-scale

approach to strain localization proposed in Chapter 4.

In Chapter 2, we present a finite element method discretization of the differen-

tial problem resulting from governing equations presented in Chapter 1. Quasi-static

conditions and the infinitesimal deformation hypothesis are assumed in the numerical

formulation. The discretization in the time domain is obtained by the Backward-Euler

implicit scheme: the resulting highly non-linear solving system is solved by a stan-

dard Newton-Raphson iterative procedure and a particular attention is payed on the

linearization process. Numerical examples are presented to validate the considered
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poro-elastic model and to assess the performance of the numerical formulation. In par-

ticular, a benchmark problem involving the desaturation of a sand column is simulated.

As a well-known severe test, we consider the propagation of a saturation front in an

initially dry solid. Finally, the formulation is applied to a problem of interest for dam

engineering.

In Chapter 3, the theoretical treatment and numerical formulation of boundary

conditions commuting between “imposed pressure” and “imposed flow” types, depend-

ing on the system response evolution, are presented. This kind of boundary conditions

effectively models interfaces between porous solid and atmosphere in many situations

of practical interest, e.g. the surfaces of dam abutments, reservoir banks, slope, under-

ground openings, only to cite few cases. In these situations, the geometric locus of zero

pore pressure intersects the boundary in contact with atmosphere. Different responses

are typically observed on the two boundary portions located above and below this in-

tersection: the interstitial pressure is lower than the atmospheric value in the upper

part and an outflow is observed in the remaining portion. The locus of zero fluid pres-

sure is not a priori known and it evolves with time in presence of unsteady fluid flow.

Therefore, in the analysis of these interfaces between porous solid and atmosphere,

the boundary condition to be applied may change between the two aforementioned

types during problem evolution. These boundary conditions can be considered in the

more general framework of unilateral constraints, leading to a more effective numeri-

cal formulation, especially for those frequent situations where large boundary regions

are almost instantaneously subjected to a switch of condition type. Two numerical

techniques, the penalty and the augmented Lagrangian method, typically employed

in contact mechanics [14, 92, 151, 153], are here introduced to treat fluid-flow uni-

lateral boundaries in the finite element formulation for coupled unsaturated porous

solids presented in Chapter 2 and the performance of such regularization techniques is

thoroughly investigated by representative numerical examples.

Finally, an analysis of strong discontinuities in partially-saturated porous solids is

considered in Chapter 4. The analysis considers discontinuous displacement fields and

corresponding singular distributions of strain, as well as singular distributions of fluid
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contents corresponding to discontinuous flows of gaseous and liquid phases, modelling

their accumulation and/or drainage in the localized failures of interest. The constitu-

tive model presented in Chapter 1 provides the proper framework for the extension of

the results presented in [33, 34] for the fully saturated case. In the multi-scale context

introduced firstly in [8], the small-scale problem is defined by the localized mass bal-

ances of liquid and gas contents, both related to singular dilatancy of the discontinuity,

besides the mechanical response driven by the assumed effective traction. This requires

the consideration of the proper pore pressures and saturation degrees on the disconti-

nuity. This small-scale problem is then connected to the large-scale coupled problem

through a weak equilibrium statement between this traction and the stresses in the

bulk. A main feature of the proposed method is the direct approximation of this equa-

tion by finite elements enhanced with singular fields of strain and fluid contents. These

enhancements are kept local at the element level, allowing the static condensation of

the different enhanced parameters and, hence, a simple and very efficient numerical

implementation in existing finite element codes. Different numerical simulations that

illustrate the range of application of the developed models and the performance of the

new finite element methods are then presented.



1

Hyperelastic constitutive equations

1.1 Introduction

Equations governing the evolution of a three-phase porous continuum are developed in

this chapter with a macroscopic approach. In macroscopic theories, balance equations

are obtained regarding the multiphase medium as a system of overlapping continua

filling the whole volume with a reduced density. At each time, this volume is identified

by the current configuration of the solid skeleton (Fig. 1.1).

A connection between balances characterizing the response of multiphase continua

at macroscopic and microscopic scales can be obtained by the use of alternative ap-

proaches, as averaging [95, 119] or homogenization [44, 62] techniques. Nevertheless,

in this work we are concerned only with the macroscopic scale. In particular, the

macroscopic approach based on the Biot work [18, 54] and mixture theories devel-

oped by means of the volume fraction concept [23, 55, 60, 82] are considered herein in

developing a hyperelastic constitutive model that is thermodynamically consistent.

In developments that follow, macroscopic thermodynamics based on Biot theory

are considered in obtaining a general rate form for hyperelastic relations in terms of

tangent operators (solid skeleton elastic tensor, coupling tensors, storage modulus). In

this framework, the porous continuum can be viewed as an open system exchanging

fluids with the environment. Only one free energy potential is considered for the whole

7



CHAPTER 1 HYPERELASTIC CONSTITUTIVE EQUATIONS 8

porous continuum. Symmetry and Maxwell conditions are then written in terms of this

unique potential. Coupling and storage parameters appearing in the aforementioned

hyperelastic rate equations are obtained independently herein following arguments typ-

ically employed in mixture theories. The thermodynamic consistency of these equations

is then investigated by the use of symmetry and Maxwell conditions obtained in the

aforementioned macroscopic framework. Therefore, the thermodynamic macroscopic

approach presented herein is to be contrasted with the other ones based on Biot theory,

where symmetry and Maxwell conditions are explicitly enforced in deriving particular

forms of hyperelastic tangent operators, as in [54, 56, 97].

Since in this work phase interfaces are neglected in mass and energy balances, we

prove that the total stress decomposition proposed by Bishop [21] is thermodynami-

cally consistent only if fluid pressure contributions are weighted by saturation degrees,

consistently with other approaches disregarding interfacial phenomena [23, 77, 82, 94].

On the other hand, it is often argued that a proper constitutive theory for multiphase

solids should take into account the presence of menisci at phase interfaces, the so-called

“contractile skin” [70]. In particular, the explicit consideration of such interfacial phe-

nomena can play a crucial role in problems characterized by very low values of liquid

saturation degree. We refer to the thermodynamical treatment proposed by Gray and

Schrefler [76] and applied in [72] to model high-temperature response of concrete, show-

ing that a measure of the solid surface fraction in contact with each fluid is to be used as

the weighting function of fluid pressure contributions in stress decomposition equation.

We remark that among the main features of the approach proposed herein is the

consideration of a thermodynamic framework employing the same primary variables

(solid-skeleton displacements and fluid pressures) normally employed in formulating

initial and boundary value problems and relative finite element approximations in mul-

tiphase porous continua. As a further result, the Clausius-Duhem dissipation inequality

takes a simple expression that can be used in the multi-scale approach to strain local-

ization phenomena in unsaturated porous media presented in Chapter 4, extending the

results reported in [9, 33, 34] for the fully saturated case.

In subsequent developments we indicate as “unsaturated” or “partially saturated”
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those situations where the porous space is filled by more than one fluid phase. An

outline of this chapter is as follows. In Section 1.2 fluid mass balances are written in

terms of fluid mass content rates by the use of the overlapping continua concept and

assuming exact kinematics for the solid skeleton as well as for both fluids. Infinitesimal

deformations of the solid skeleton are then assumed in the following. In Section 1.3

a general rate form for hyperelastic equations is obtained for quasi-static processes in

a macroscopic framework developed for thermodynamically open continua. Therefore,

we write in a general form symmetry and Maxwell relations, that can be viewed as ad-

missibility conditions for the particular forms of tangent operators obtained by the use

of mixture theory concepts in Section 1.4. Two different classes of hyperelastic tangent

operators are considered, as a consequence of two different constitutive hypotheses on

saturation degree models. In particular, if we assume a realistic dependency of satura-

tion degrees on the porosity, the obtained tangent operators are proved to be consistent

with the effective stress equation proposed by Lewis and Schrefler [94]. On the other

hand, if the simplifying assumption of saturation degrees depending only on capillary

pressure is considered, an approximated rate form of the aforementioned effective stress

equation is to be employed to ensure thermodynamical consistency. Such a simplified

version of the Lewis-Schrefler stress is coincident with the one proposed by Coussy [54].

Finally, it is shown how the presented thermodynamical framework leads to an

expression for the total mechanical power which includes as a particular case the one

proposed by Houlsby [80].

The main results reported in the present chapter are also presented by Callari and

Abati [31].

1.2 Fluid mass balance

As typically assumed in macroscopic theories, the solid skeleton and the fluid phases

filling the porous space are treated as overlapping continua and continuum mechanics

arguments are then employed in the developments that follows to obtain the equations

governing the porous solid.
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Figure 1.1: Reference and current configurations of a porous solid: superposition of equivalent
continua [1]

The reference configuration of the porous continuum is identified with a spatial do-

main Ω ⊂ Rndim for ndim = 1, 2 or 3, the spatial dimension of the problem. The current

configuration of this porous solid is characterized by the solid-skeleton deformation

ϕ : Ω × [0, T ] → Rndim for the considered time interval T . We denote by x = ϕ(X, t)

the position at time instant t of the solid-skeleton particle X ∈ Ω. The deformation

gradient and the corresponding Jacobian are defined by

F := Grad ϕ and J := detF > 0 (1.1)

respectively, where Grad(·) denotes the material gradient with respect to the reference

coordinates X.

In the macroscopic approach considered herein, the generic fluid phase α is charac-

terized in terms of the so-called “reduced” density ρ̄α, measuring the mass of fluid α

per unit current volume of the porous solid. Therefore, in addition to solid-skeleton,
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all the considered fluid phases are assumed to be present with their reduced densities

ρ̄α(x, t) at any position x in the deformed configuration of the porous solid ϕ(Ω). In

other words, x is the current position of a particle of fluid α initially located at Xα

and subjected to a motion ϕα(Xα, t). The material time derivatives with respect to

solid-skeleton and α-fluid motions are defined as

d(·)
dt

:=
∂(·)
∂t

∣∣∣∣
X

=: ˙(·) and
dα(·)
dt

:=
∂(·)
∂t

∣∣∣∣
Xα

(1.2)

to measure the time variations associated with fixed material particles of solid skeleton

and fluid α, respectively. These material time derivatives can be calculated for the

spatial field of reduced density ρ̄α(x, t), leading to:

˙̄ρα =
∂ρ̄α

∂t
+∇ρ̄α · v and

dαρ̄α

dt
=

∂ρ̄α

∂t
+∇ρ̄α · vα (1.3)

for the spatial velocities v := ϕ̇ ◦ϕ−1 and vα := ϕ̇α ◦ϕ−1
α of solid skeleton and fluid α,

respectively. In (1.3) we have denoted by “∇(·)” the gradient operator with respect to

spatial coordinates x and by “·” the standard Euclidean inner product between vectors

in Rndim . From (1.3), the following relation between material time derivatives with

respect to solid skeleton and fluid motion is obtained:

dαρ̄α

dt
= ˙̄ρα +∇ρ̄α · (vα − v) (1.4)

An arbitrary region included in the current configuration ϕ(Ω) of the porous solid

can be identified with the deformed configuration ϕα(Pα) of a material fluid region Pα

according to motion ϕα. The mass of fluid α contained in this region is

Iα :=

∫

ϕα(Pα)

ρ̄α dv (1.5)

for the elemental deformed volume dv. Applying the Reynolds transport theorem, the

material time derivative of integral (1.5) can be expressed as

dαIα

dt
=

∫

ϕα(Pα)

(
dαρ̄α

dt
+ ρ̄α divvα

)
dv (1.6)

where we have denoted by “div(·)” the divergence operator with respect to spatial

coordinates x. Relation (1.4) between material time derivatives is substituted in (1.6)
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and the following equation is obtained after some manipulation:

dαIα

dt
=

∫

ϕα(Pα)

( ˙̄ρα + ρ̄αdivv) dv +

∫

ϕα(Pα)

divqα dv (1.7)

where

qα := ρ̄α(vα − v) (1.8)

is the mass flow of fluid α in the porous solid, that is, the relative velocity of fluid mass

with respect to solid skeleton.

Under the assumptions that no sources of fluid exist and that no mass is exchanged

between all the considered phases, the mass balance for fluid α is given by imposing

dαIα/dt = 0 in (1.7). In view of the arbitrary choice of ϕα(Pα), such a mass balance

can be written in local form:

˙̄ρα + ρ̄αdv = −divqα (1.9)

where, denoting by 1 the second-order symmetric identity tensor in Rndim and by

“∇s(·)” the symmetric part of spatial gradient, we have introduced the trace dv := d : 1

of spatial strain rate d := ∇sv.

Following [19], [114] and [55], balance equation (1.9) can be written in terms of

fluid mass content function Mα : Ω × [0, T ] → R, defined as the mass of fluid α per

unit reference volume of the porous solid:

Mα := Jρ̄α (1.10)

for the solid-skeleton Jacobian (1.1)2, measuring the ratio between the current and the

initial volume of the porous continuum. As a consequence of relation

J̇ = Jdv (1.11)

the material time derivative of fluid content (1.10) combined with (1.9) leads to:

Ṁα = −Jdivqα (1.12)

In the range of infinitesimal deformations of solid skeleton, fluid-mass balance equation

(1.12) reads:

Ṁα = −divqα (1.13)
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1.3 Macroscopic thermodynamics of three-phase

porous solids

The main features of a macroscopic thermodynamic framework for multiphase porous

continua is presented in the following sections. A detailed analysis can be found in [54].

We consider isothermal and quasi-static processes as well as infinitesimal deformations

of the solid skeleton. On the other hand, a non-linearized kinematics is employed for

the fluid phases. We assume the fluid mixture filling the porous space as composed by

two immiscible fluid phases, namely a gaseous phase g and a liquid phase w.

1.3.1 Energy balance

At the macro-scale, the porous solid can be viewed as a thermodynamic open sys-

tem, exchanging fluids with the environment. Therefore, denoting by dV and dA the

elemental material volume and area, respectively, the internal energy balance for an

arbitrary region P included in the porous continuum Ω can be written as:

∫

P
ėi dV +

∑
α=w,g

∫

∂P
eimαqα · n dA = Pe,u + Pe,q ∀P ⊂ Ω (1.14)

where “Σα=w,g(·)” denotes the summation on index α over the two fluid phases, ei is the

internal energy volumetric density of the porous solid and eimα is the internal energy

for unit mass of fluid α. The first term on left side of (1.14) takes into account the

internal energy variation due to solid skeleton and fluids contained in P . The second

term accounts for the internal energy variation due to the flow of fluids through the

solid-skeleton boundary ∂P . Right side of (1.14) denotes the power of external loads,

whose terms Pe,u and Pe,q are due to porous continuum velocity field u̇ and fluid flows

qα, that is, respectively,

Pe,u :=

∫

P
ρf · u̇ dV +

∫

∂P
t · u̇ dA (1.15)

Pe,q :=
∑

α=w,g

(∫

P
f · qα dV −

∫

∂P

pα

ρα

n · qα dA

)



CHAPTER 1 HYPERELASTIC CONSTITUTIVE EQUATIONS 14

where f are the mass forces in P and t are the tractions on ∂P . In (1.15), ρ is the

porous solid density and ρα denotes the so-called “intrinsic” fluid density observed

at the microscopic scale, that is, the mass of unit current volume of fluid α. We have

assumed as ideal both the fluid phases, introducing in (1.15) a consistent spherical form

σα = −pα1 for their stress tensors σw and σg in terms of the corresponding pressures

pw and pg, respectively. We note that in this paper, compressive fluid pressures pw and

pg are considered as positive. On the other hand, tensile normal components of stress

tensors σw, σg and σ are considered as positive, with σ the (total) Cauchy stress tensor

defined in the porous solid.

Combination of (1.14) with (1.15)2 and with the weak form of momentum equation,

that is,

Pe,u =

∫

P
σ : ε̇ dV (1.16)

leads to:
∫

P
ėi dV =

∑
α=w,g

[∫

P
f · qα dV −

∫

∂P
hαqα · n dA

]
+

∫

P
σ : ∇su̇ dV (1.17)

where we have used the definitions ε := ∇su for the infinitesimal strain tensor of the

porous continuum and

hα := eimα +
pα

ρα

(1.18)

for the enthalpy of fluid phase α. So, applying divergence theorem to (1.17) and

considering the arbitrary choice of P , we obtain:

ėi = σ : ε̇−
∑

α=w,g

[∇Vext · qα + div(hαqα)] (1.19)

where we have assumed the existence of an external potential Vext for the mass forces,

that is, f = −∇Vext.

1.3.2 Dissipation inequality

For every thermodynamic process, the non-negative entropy production postulated by

the second law can be written for the multiphase medium as follows:
∫

P
η̇ dV +

∑
α=w,g

∫

∂P
ηα qα · n dA ≥ 0 ∀P ⊂ Ω (1.20)
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with η the entropy density of the porous medium and ηα the entropy for unit mass of

fluid α. On left side of (1.20) there are the entropy variations due to solid skeleton and

fluids contained in P (first term) as well as to the flow of fluids through ∂P (second

term).

The following local expression of the second law in terms of density Γ of entropy

production is then obtained from application of divergence and localization theorems

to (1.20):

Γ := η̇ +
∑

α=w,g

div(ηαqα) ≥ 0 (1.21)

Denoting by T the absolute temperature, entropies η and ηα appearing in (1.21) can

be expressed in terms of Helmholtz free energy density ψ := ei − Tη of the porous

continuum and free enthalpy µα := hα − T ηα for unit mass of the fluid phase α (or

Gibbs free energy). The so-obtained inequality can be combined with the local form

of first law (1.19) and with fluid mass balances (1.13), thus leading to the following

expression for dissipation D of the porous solid in the assumed isothermal setting

(T = T0):

D := ΓT0 = σ : ε̇ +
∑

α=w,g

µα Ṁα − ψ̇

︸ ︷︷ ︸
=:Dint

−
∑

α=w,g

∇(µα + Vext) · qα

︸ ︷︷ ︸
=:Dcond

≥ 0 (1.22)

According to a standard argument [52], non-negativeness of total dissipation D implies

the following dissipation inequalities in terms of Dint and Dcond:

Dint := σ : ε̇ +
∑

α=w,g

µα Ṁα − ψ̇ ≥ 0 (1.23)

Dcond := −
∑

α=w,g

∇(µα + Vext) · qα ≥ 0 (1.24)

Remark 1.1 A possible conduction law satisfying dissipation inequality (1.24) is

qα = −ρ2
αkα∇(µα + Vext) for α = w, g (1.25)

with positive semi-defined permeability tensors kw and kg. In particular, a typical

extension of Darcy’s law to the case of multiphase flow employs “relative” permeabilities

[99, 46], defined as

kα := krel
α ksat

α for α = w, g (1.26)
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where the relative permeability coefficient krel
α models the effects of interaction between

the fluid phases in terms of permeability reduction with respect to tensor ksat
α charac-

terizing the single-phase seepage of fluid α.

1.3.3 Porous solid hyperelastic equations

In the considered macroscopic point of view, the reversible response of porous contin-

uum is fully defined by solid-skeleton deformation and fluid mass contents, that is, in

terms of Helmholtz free energy: ψ = ψ̂(ε,Mw,Mg). As a consequence, the applica-

tion of Coleman’s method [52] in the treatment of internal dissipation inequality (1.23)

leads to:

σ =
∂ψ

∂ε
and µα =

∂ψ

∂Mα

for α = w, g (1.27)

These hyperelastic relations represent a so-called “pure stiffness” formulation [150],

that is, all the dependent variables have the dimension of stresses (1.27). However, we

are more interested to a a “mixed stiffness” formulation, based on the consideration of

solid-skeleton displacements u and fluid pressures pα as primary variables.

With this motivations, we introduce the potential φ = φ̂(ε, µw, µg) obtained as

the partial Legendre transform of the free energy function ψ = ψ̂(ε,Mw,Mg) in the

coniugate variables {µw,Mw} and {µg,Mg}:

φ̂(ε, µw, µg) := − max
Mw,Mg

[ ∑
α=w,g

µαMα − ψ̂(ε,Mw,Mg)

]
= (1.28)

= −
∑

α=w,g

µαM̂α(ε, µα) + ψ̂
(
ε, M̂w(ε, µw), M̂g(ε, µg)

)

where the functions M̂α(ε, µα) for α = w, g are obtained from the inversion of hypere-

lastic relations (1.27)2. Internal dissipation inequality (1.23) can then be rewritten in

terms of φ:

Dint = σ : ε̇−
∑

α=w,g

Mαµ̇α − φ̇ ≥ 0 (1.29)

which provides, after application of Coleman’s method [52], to the following hypere-

lastic laws, alternative to (1.27):

σ =
∂φ

∂ε
and Mα = − ∂φ

∂µα

for α = w, g (1.30)
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1.3.4 Rate form of hyperelastic relations

Rate form of porous solid hyperelastic relations (1.30) reads




σ̇

Ṁw

Ṁg




=




C̃sk −ρwbw −ρgbg

ρwbw ρ2
wCww ρwρgCwg

ρgbg ρgρwCgw ρ2
gCgg







ε̇

µ̇w

µ̇g




(1.31)

where we employed the following definitions for two coupling tensors and three specific

storage functions, respectively:

bα := − 1

ρα

∂2φ

∂ε∂µα

and Cαβ := − 1

ραρβ

∂2φ

∂µα∂µβ

for α, β = w, g (1.32)

Equation (1.31)1 is written also in terms of the elastic tangent tensor:

C̃sk :=
∂2φ

∂ε2
(1.33)

which relates the increments of solid-skeleton strain and (total) stress for the particular

case of vanishing free-enthalpy increments in both the fluid phases. As shown by

equations (1.31), coupling and storage operators defined by (1.32), can be seen as an

extension to the case of three-phase porous solid of Biot’s coefficient and of the inverse

of Biot’s modulus [18], respectively.

It can be easily shown that relations (1.31–1.33) leads to satisfaction of following

symmetry conditions:

C̃sk = C̃T
sk bα = bT

α Cαβ = Cβα for α, β = w, g (1.34)

and Maxwell relations:

∂C̃sk

∂µα

= − ∂

∂ε
(ραbα)

∂

∂µβ

(ραbα) =
∂

∂µα

(ρβbβ)

∂

∂µβ

(ραbα) =
∂

∂ε
(ραρβCαβ)

∂

∂µβ

(
ρ2

αCαα

)
=

∂

∂µα

(ραρβCαβ)





for α, β = w, g (1.35)
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On the other hand, for a set of constitutive equations directly formulated in rate form

(1.31), symmetry conditions (1.34) and Maxwell relations (1.35) represent not only

necessary but also sufficient conditions for the existence of a hyperelastic potential

(1.28), as shown in Appendix D. Moreover, also sufficient conditions for stability can

be obtained for a constitutive system given in the rate form (1.31). In fact, as shown

in Appendix C, the Helmholtz free energy ψ is a convex function of strains ε and fluid

mass contents Mα if the elastic tangent tensor C̃sk and the matrix of storage modulus

C are both positive defined, i.e.:

A : C̃sk A > 0 ∀A ∈ Sym \ {0} and a : Ca > 0 ∀ a ∈ R2 \ {0} (1.36)

where

C :=


Cww Cwg

Cgw Cgg


 (1.37)

1.4 Particular forms of hyperelastic relations

We suppose that the porous space is saturated by two immiscible barotropic fluids

where the density of each fluid is fully characterized by its own pressure, that is,

ρα = ρ̂α(pα) for α = w, g. In this case, we have the following expression for the free

enthalpies of fluids:
dµα

dpβ

=
1

ρα

δαβ for α, β = w, g (1.38)

with δαβ the Kronecker delta. Furthermore, the following general expression is assumed

for coupling tangent tensors (1.32)1:

bα = ζαb with ζα ∈ R for α = w, g (1.39)

and b a symmetric tensor.

As a consequence of (1.38) and (1.39), hyperelastic relations in general rate form

(1.31) can be rewritten as:




σ̇ = C̃skε̇− b
∑

γ=w,g

ζγ ṗγ

Ṁα

ρα

= ζαb : ε̇ +
∑

γ=w,g

Cαγ ṗγ for α = w, g
(1.40)
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In the following sections, arguments of mixture theories are employed to obtain

possible expressions for tangent coupling tensors bα and tangent storage modulus Cαβ

appearing in the general rate form (1.40) of porous solid hyperelastic relations (1.30).

In particular, we will separately consider in Sections 1.4.1 and 1.4.2 the tangent

operators appearing in stress equation (1.40)1 and in fluid content equation (1.40)2,

respectively. The so-obtained particular form of constitutive equations will then be

investigated by means of conditions (1.34–1.35), in order to assess its compatibility

with the macroscopic thermodynamical framework presented in Section 1.3.

1.4.1 Stress equation

In this work, as possible forms for tangent tensors C̃sk and bα = ζαb appearing in stress

equation (1.40)1, we consider the ones obtained from differentiation of the following

expression of (total) stress:

σ = σ′ − b pf (1.41)

where

pf :=
∑

α=w,g

sαpα (1.42)

is the average pressure of fluid mixture, expressed in terms of saturation degree sα,

which in turn is defined as the current volume of single fluid α per unit volume of

the deformed fluid mixture. In equation (1.41), tensor σ′ can be understood as the

so-called “effective” stress, that is, the part of total stress whose rate σ̇′ is directly

linked to solid-skeleton strain increment rate ε̇:

σ̇′ = Csk ε̇ (1.43)

The fourth-order symmetric tensor Csk characterize the so-called “drained” elastic

response of the solid skeleton. Under these assumptions, equation (1.41) can be viewed

as an extension to the general case of anisotropic solid skeleton and compressible solid

phase of the Bishop [21] effective stress equation form obtained by Lewis and Schrefler

[94], employing techniques of volume averaging.
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In the developments that follow, tensor b is assumed as constant and, in view of

(1.43), the general rate form of stress equation (1.41) is then

σ̇ = Csk ε̇− b ṗf (1.44)

where the rate of average pore pressure (1.42) reads:

ṗf =
∑

α=w,g

(sαṗα + ṡαpα) (1.45)

In general, saturation degrees can be functions of both the primary variables of

system (1.40), that is, solid-skeleton displacements and pore pressures. Therefore, the

increment rate of sα can be written in terms of ε̇, ṗw and ṗg as:

ṡα =
∂sα

∂ε
: ε̇ +

∑
γ=w,g

∂sα

∂pγ

ṗγ for α = w, g (1.46)

whose substitution in expression (1.45) for the rate of average pore pressure yields:

ṗf =
∑

α=w,g

(
sαṗα + pα

∂sα

∂ε
: ε̇ + pα

∑
γ=w,g

∂sα

∂pγ

ṗγ

)
(1.47)

Denoting by x any of the considered primary variables, it is:

∑
α=w,g

∂sα

∂x
= 0 for x = ε, pw, pg (1.48)

which is a consequence of the geometric constraint on the summation of saturation

degrees, that is,
∑

α=w,g

sα = 1 (1.49)

So, the following summations appearing in (1.47) can be simplified as follows:

∑
α=w,g

pα
∂sα

∂x
= (pg − pw)

∂sg

∂x
=

= pc
∂pc

∂pγ

∂sγ

∂x
for γ = w, g and x = ε, pw, pg (1.50)

where we have introduced the definition of capillary pressure

pc := pg − pw (1.51)
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and employed relations:

∂sα

∂x

∂pc

∂pα

=
∂sβ

∂x

∂pc

∂pβ

for α, β = w, g and x = ε, pw, pg (1.52)

resulting from (1.48) and definition (1.51). Therefore, in view of (1.50), expression

(1.47) of average pore pressure rate reads:

ṗf = pc
∂pc

∂pγ

∂sγ

∂ε
: ε̇ +

∑
α=w,g

ξαṗα for γ = w, g (1.53)

with

ξα := sα + pc
∂sα

∂pα

∂pc

∂pα

for α = w, g (1.54)

Finally, introduction of (1.53) in general rate form (1.44) of stress equation (1.41)

yields:

σ̇ =

[
Csk − pc

∂pc

∂pγ

(
b⊗ ∂sγ

∂ε

)]
ε̇− b

∑
α=w,g

ξαṗα for γ = w, g (1.55)

and a direct comparison between this equation and hyperelastic relation (1.40)1 leads

to the following general forms for the considered tangent operators:

C̃sk = Csk − pc
∂pc

∂pα

(
b⊗ ∂sα

∂ε

)
and ζα = ξα for α = w, g (1.56)

with ξα defined by (1.54). An expression for tensor b is evaluated in the next Section.

Coupling tensor expression resulting from unjacketed compression test

An expression for tangent coupling tensor b appearing in (1.40) and (1.41) can be

obtained by extending to the three-phase case the consideration of the so-called “un-

jacketed” test, proposed by Biot and Willis [20] to characterize the response of fully

saturated porous solids. In this test, an unjacketed sample of the porous continuum

is fully immersed in the same fluid mixture saturating the solid-skeleton voids, and a

uniform pressure puj is applied at the boundary of such a mixture (Fig. 1.2). In the

porous sample, the corresponding total stress is then:

σ = −puj1 (1.57)
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p >uj 0

Figure 1.2: Unjacketed compression test on a three-phase sample [2]

and the “unjacketed” volumetric stiffness modulus appearing in following equations

can be evaluated for solid skeleton, void space and solid phase, respectively:

ṗuj = −κuj
sk ε̇v ṗuj = −κuj

vd ε̇vd ṗuj = −κuj
s ε̇s (1.58)

for the traces εv := ε : 1, εvd and εs of infinitesimal strain tensors associated to

deformation of solid skeleton, void space and solid phase, respectively.

As often considered in mixture theories, surface and volumetric fractions of the

considered fluid phases are assumed to be coincident, thus leading to the following

equilibrium relation between the compressive load puj applied to the fluid mixture and

the pressures of single constituents:

puj =
∑

α=w,g

sαpα =: pf (1.59)

Stress equation (1.44) can then be easily written in terms of ṗuj and combined with

the rate form of (1.57) to obtain:

Csk ε̇ = (b− 1)ṗuj (1.60)
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In this equation, the rate of applied average pore pressure puj can be expressed by

means of (1.58)1, thus leading to the following expression for the coupling tensor:

b = 1− 1

3κuj
sk

Csk1 (1.61)

We introduce now the porosity n, defined as the current void volume per unit volume

of the deformed porous solid. As shown in Appendix A, among other implications of

solid-phase mass balance, there is the following rate equation between porosity and

volumetric strains of void space and solid skeleton:

ṅ = n0(ε̇vd − ε̇v) (1.62)

as well as the following relation among volumetric strains of solid skeleton, void space

and solid phase:

ε̇v = n0 ε̇vd + (1− n0) ε̇s (1.63)

with n0 the initial porosity value. Equations (1.58) and (1.63) can be combined to

obtain the following relation among the three aforementioned unjacketed volumetric

stiffness modulus [28]:
1

κuj
sk

=
n0

κuj
vd

+
1− n0

κuj
s

(1.64)

On the other hand, porosity rate equation (1.62) shows that for vanishing porosity

increments (ṅ = 0), coincidence is obtained between the volumetric strain increments

of solid skeleton and void space (ε̇v = ε̇vd). Therefore, keeping in mind relations (1.58),

if we assume as negligible the porosity variation measured in an unjacketed test, the

unjacketed volumetric stiffness modulus characterizing solid skeleton and void space

are approximately coincident:

κuj
sk ' κuj

vd (1.65)

and from relation (1.64) also the following approximate coincidence is obtained:

κuj
sk ' κuj

s (1.66)

Another common constitutive assumption on the unjacketed response of porous con-

tinua is:

κuj
s ' κs (1.67)
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for the microscopic volumetric stiffness modulus κs of the solid phase, that is,

ṗs = κsε̇s (1.68)

for the spherical part ps of microscopic stress acting on solid phase. The following

expression for the coupling tensor (1.61) is then obtained from (1.66) and (1.67):

b = 1− 1

3κs

Csk1 (1.69)

We note how this expression is consistent with the one obtained for anisotropic porous

media saturated by only a fluid phase in [41, 45, 140] and generalizing the results

presented in [103, 131] for an isotropic solid skeleton, where both partial stress and

unjacketed test concepts are considered together with the assumption κuj
sk ' κs. It is

also to be remarked that only the total stress decomposition (1.41) is able to ensure

that the expected relation (1.69) is obtained from the unjacketed test argument.

In the case of isotropic response of solid skeleton, relation (1.69) reads:

b = b1 where b := 1− κsk

κs

(1.70)

thus recovering expressions proposed by Skempton [131] for the coupling coefficient

appearing in effective stress equation.

In this section we have supposed that the coupling tensor b is constant. There-

fore, due to expression (1.69), a constant solid phase bulk modulus κs and a constant

“drained” elastic tensor will be consistently considered in subsequent developments.

Remark 1.2 If void space variations are assumed as negligible in unjacketed condi-

tions, it is:

κuj
sk =

κuj
s

1− n0

(1.71)

as shown by imposing 1/κuj
vd = 0 in relation (1.64) among unjacketed stiffness modulus.

As a consequence of (1.67) and (1.71), expression (1.61) of coupling tensor reads:

b = 1− 1− n0

3κs

Csk1 (1.72)

The consideration of expression (1.72) in (1.41) can be seen as an extension to the

general case of anisotropic three-phase porous continua of the effective stress definition

proposed by Suklje [135] and investigated by Lade and de Boer [89].
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1.4.2 Fluid content equations

The relation between reduced and intrinsic density of fluid α can be expressed as

ρ̄α = ραθα (1.73)

for the volumetric fluid content θα, defined as the current volume of fluid α per unit

volume of the deformed configuration of the porous solid. In the finite deformation

range of the solid skeleton, the following relation between mass and volumetric contents

of the generic fluid is then obtained from definition (1.10):

Mα = Jραθα (1.74)

whose material time derivative is

Ṁα = Jρα(θαėα + θ̇α + θαdv) (1.75)

as a consequence of differential relation (1.11) for the volumetric strain of solid skeleton,

and of the following rate equation between logarithmic volumetric strain eα and density

of fluid α.

ėα =
ρ̇α

ρα

(1.76)

The volumetric fluid content is typically expressed in terms of saturation degree

and porosity:

θα = nsα (1.77)

Expression (1.75) of fluid mass content increment rate can then be written as:

Ṁα = Jρα(nsαėα + sαṅ + nṡα + nsαdv) (1.78)

In the range of infinitesimal deformations of the solid skeleton considered herein, it is

dv ' ε̇v and J ' 1. So expression (1.78) reads:

Ṁα

ρα

= nsαε̇v + nsαėα + ṅsα + nṡα (1.79)

Assuming also infinitesimal deformations of the solid phase, the porosity expressions

ṅ = (1− n0)(ε̇v − ε̇s) (1.80)
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n = n0 + εv − εs (1.81)

obtained in Appendix A can be substituted in (1.79) and approximations 1 ∓ εv ' 1

as well as 1∓ εs ' 1 can be used to obtain:

Ṁα

ρα

= sαε̇v + nsαėα − sα(1− n0)ε̇s + nṡα for α = w, g (1.82)

In the developments that follow, we consider the following general rate form for the

constitutive equations of both the fluid phases:

ėα =
ṗα

κα

for α = w, g (1.83)

where κα = κ̂α(pα) is the tangent volumetric stiffness modulus of fluid α. Combination

of kinematic equation (1.76) with (1.83) leads to the following relation between densities

and pressures in the considered immiscible barotropic fluids:

∂ρα

∂pβ

=
ρα

κα

δαβ for α = w, g (1.84)

An elastic potential consistent with (1.83) and able to describe the non-linear response

of both the gaseous and liquid phases is for example proposed in [34].

In view of fluid constitutive equations (1.83) and of expression (1.46) for the rate

of saturation degrees, fluid-content rate equations (1.82) can be rewritten in terms of

primary variables (i.e. solid-skeleton strain and fluid pressures) and solid phase strain

as:

Ṁα

ρα

=

(
sα1 + n

∂sα

∂ε

)
: ε̇ + n

∑
γ=w,g

(
sα

κα

δαγ +
∂sα

∂pγ

)
ṗγ − sα(1− n0)ε̇s (1.85)

Tangent operators and porosity model resulting from the partial stress con-

cept

To fully characterize the evolution of fluid contents, constitutive equations for solid

phase strain εs and porosity n are to be defined in terms of considered primary variables

and introduced in (1.85). These goals motivates the developments presented in this

section.
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Following typical arguments of mixture theories the total stress can be decomposed

in the so-called “partial stress” tensors characterizing the solid and the fluid phases.

Assuming again surface fractions of constituents as coincident with volumetric contents,

the spherical part of such a decomposition is:

1

3
σ : 1 = (1− n)ps − n

∑
α=w,g

sαpα (1.86)

In the infinitesimal deformation range considered herein for the solid skeleton, cur-

rent and reference configuration of the porous space can be considered as coincident.

Equation (1.86) can then be rewritten as:

1

3
σ : 1 = (1− n0)ps − n0pf (1.87)

where we have also employed definition (1.42) of average pore pressure pf . Substitution

of the spherical part of total stress rate (1.44) and of microscopic solid-phase equation

(1.68) in rate form of partial stress decomposition (1.87) yields the required expression

for the solid-phase strain rate:

(1− n0)ε̇s = (1− b) : ε̇− 1

3κs

(b− n01) : 1 ṗf (1.88)

where expression (1.69) for the coupling tensor b was employed.

Substitution of (1.88) in (1.85) leads to the following expression for fluid content

increment rates:

Ṁα

ρα

=

(
sαb + n

∂sα

∂ε

)
: ε̇ + n

∑
γ=w,g

(
sα

κα

δαγ +
∂sα

∂pγ

)
ṗγ +

sα

3κs

(b− n01) : 1 ṗf (1.89)

for α = w, g. Fluid content rate equations in terms of ε̇, ṗw and ṗg are then obtained

by substituting expression (1.53) for average pore pressure rate in (1.89). A direct

comparison of such equations with hyperelastic relations (1.40)2 leads to the following

general form of considered tangent operators:

ζαb = sαb +

[
n + pc

∂pc

∂pα

sα

3κs

(b− n01) : 1

]
∂sα

∂ε

Cαβ = n

(
sα

κα

δαβ +
∂sα

∂pβ

)
+

sαξβ

3κs

(b− n01) : 1





for α, β = w, g (1.90)
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with coupling operators ξα and b given by (1.54) and (1.69), respectively.

We remark that two expressions are now available for tangent operators ζαb, that

is, (1.56)2 and (1.90)1. These two expressions obtained for stress equation and fluid

content equation, respectively, must be coincident to ensure major symmetry of system

(1.40). The implications of such a requirement will be discussed in Section 1.4.3 below.

Solid-phase strain rate equation (1.88), substituted in kinematic relation (1.80),

yields also a constitutive equation for porosity, that is,

ṅ = (b− n01) : ε̇ +
1

3κs

(b− n01) : 1 ṗf (1.91)

Rate relation (1.91) can be integrated with respect to solid-skeleton strain tensor ε and

average pore pressure pf to obtain a function n = n̂(ε; pf ). In particular, denoting

by pf0 the initial value of average pore pressure, the initial condition n̂(0; pf0) = n0

yields:

n̂(ε; pf ) = n0 + b : ε +
1

3κs

(b− n01) : 1 (pf − pf0) (1.92)

where we have employed the approximation 1− εv ' 1, consistently with the assumed

infinitesimal strains of the solid skeleton.

Developments that follow require the existence of a function expressing porosity

in terms of primary variables, that is, n(ε; pw; pg) = n̂(ε; pf ). For a general model

n̂(ε; pf ), partial derivatives of such a function can then be calculated as:

∂n

∂ε
=

∂n̂

∂ε
+

∂n̂

∂pf

∂pf

∂ε
and

∂n

∂pα

=
∂n̂

∂pf

∂pf

∂pα

for α = w, g (1.93)

where, in turn, the derivatives of average pore pressure obtained from rate expression

(1.53), that is,

∂pf

∂ε
= pc

∂pc

∂pα

∂sα

∂ε
and

∂pf

∂pα

= ξα for α = w, g (1.94)

can be substituted, thus yielding:

∂n

∂ε
=

∂n̂

∂ε
+ pc

∂n̂

∂pf

∂pc

∂pα

∂sα

∂ε
and

∂n

∂pα

= ξα
∂n̂

∂pf

for α = w, g (1.95)

For the porosity law (1.92), it is:

∂n̂

∂ε
= b and

∂n̂

∂pf

=
1

3κs

(b− n01) : 1 (1.96)
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which leads to the following particular form of derivatives (1.95):

∂n

∂ε
= b + pc

∂pc

∂pα

∂sα

∂ε

1

3κs

(b− n01) : 1

∂n

∂pα

=
ξα

3κs

(b− n01) : 1





for α = w, g (1.97)

1.4.3 Application of thermodynamic restrictions

In the following, we evaluate the implications of symmetry requirements (1.34) on the

poro-elastic model obtained in previous sections. In summary, such a model is given by

rate equation system (1.40), where the coupling tensor b is expressed by (1.69), tangent

operators appearing in stress equation (1.40)1 and in fluid content equation (1.40)2 are

given by (1.56) and by (1.90), respectively. The porosity evolution is described by

model (1.92).

Symmetry requirement (1.34)2 is satisfied by expression (1.69) assumed for b. The

following condition on fluid retention model is obtained from (1.56) by imposing re-

quirement (1.34)1 on symmetry of tangent tensor C̃sk:

∂sα

∂ε
= sα,ε b with sα,ε ∈ R for α = w, g (1.98)

Major symmetry of system (1.40) requires that the expression of ζα obtained for stress

equation, that is, (1.54, 1.562) must be coincident with the one obtained for fluid

content equation, that is, (1.901). Taking also into account condition (1.98), such a

symmetry requirement reads:

pc
∂sα

∂pα

∂pc

∂pα

=

[
n + pc

∂pc

∂pα

sα

3κs

(b− n01) : 1

]
sα,ε for α = w, g (1.99)

Furthermore, expression (1.90)2 must satisfy requirement (1.34)3 on symmetry of stor-

age modulus, that is,

n
∂sα

∂pβ

+
sαξβ

3κs

(b− n01) : 1 = n
∂sβ

∂pα

+
sβξα

3κs

(b− n01) : 1 (1.100)

for α, β = w, g.

We note that a very common simplifying assumption considers the saturation de-

grees as independent on the solid-skeleton strain. However, it is immediately apparent
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that such a widely used class of retention models considering sα,ε = 0 cannot satisfy

symmetry condition (1.99), with the trivial exception of a model assuming constant

saturation degrees, which is of interest in the analysis of porous continua saturated by

a single fluid phase.

On the contrary, as shown in Section 1.4.3 below, the aforementioned symmetry

requirements as well as Maxwell conditions (1.35) are fully satisfied by a class of poros-

ity dependent saturation models, and it will be also pointed out how the assumed

dependency is consistent with experimental results and recent advances in modelling

retention curves in deformable solids.

Furthermore, in the section that follows, we will show that a classical strain-

independent model for fluid retention is thermodynamically consistent with a sim-

plified version of the poro-elastic model presented in previous sections, implementing

an approximate expression of stress equation (1.44).

Poro-elastic laws based on a common class of strain-independent retention

models

In the analysis of partially-saturated porous continua, relations considering the satu-

ration degrees as fully characterized by capillary pressure are typically employed, that

is,

sα = šα(pc) for α, β = w, g (1.101)

For the class of retention models characterized by (1.101), the partial derivatives of the

saturation degrees with respect to considered primary variables are:

∂sα

∂ε
= 0 and

∂sα

∂pβ

= š′α
∂pc

∂pβ

for α, β = w, g (1.102)

with

š′α(pc) :=
dšα

dpc

for α = w, g (1.103)

In view of (1.102), general expressions (1.56) for tangent elastic tensor and coupling

operators ζw and ζg appearing in stress equation (1.40)1 reduce to:

C̃sk = Csk and ζα = sα + pc š′α =: ξ̌α for α = w, g (1.104)
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On the other hand, the particular form of expressions (1.90) for coupling operators and

storage modulus appearing in fluid content equation (1.40)2 is

ζα = sα

Cαβ = n

(
sα

κα

δαβ + š′α
∂pc

∂pβ

)
+

sαξ̌β

3κs

(b− n01) : 1





for α, β = w, g (1.105)

with ξ̌w and ξ̌g defined by (1.104)2. We observe that the so-obtained poro-elastic rate

equations, frequently occurring in the literature, violate major symmetry of system

(1.40), not only in terms of coupling operators, as previously shown for the whole class

of strain-independent retention models by means of condition (1.99), but also in terms

of storage modulus.

To recover such symmetries, a simplified version of this model can be obtained by

forcing the approximation for the coupling coefficient:

ξ̌α ' sα (1.106)

in tangent operators appearing in both the stress and fluid content rate equations, that

is,

C̃sk = Csk

ζα = sα and b = 1− 1

3κs

Csk1

Cαβ = n

(
sα

κα

δαβ + š′α
∂pc

∂pβ

)
+

sαsβ

3κs

(b− n01) : 1





for α, β = w, g (1.107)

In fact, symmetry condition (1.34)3 on storage modulus is verified by (1.107)3 since it

is

š′α
∂pc

∂pβ

= š′β
∂pc

∂pα

for α, β = w, g (1.108)

as a consequence of definition (1.51) of capillary pressure and of

∑
α=w,g

š′α = 0 (1.109)

resulting from (1.49).
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We observe that in view of (1.102)1, the consideration of approximation (1.106) in

(1.104)2 is equivalent to the following approximate evaluation of average pore pressure

rate (1.53):

ṗf ' ˙̌pf where ˙̌pf :=
∑

α=w,g

sαṗα (1.110)

is an exact differential as shown by relations (1.102)2 and (1.108). The introduction of

relation (1.110) in stress rate equation (1.44) leads to:

σ̇ = Cskε̇− b
∑

α=w,g

sαṗα (1.111)

which is an extension to the case of anisotropic solid skeleton of the total stress ex-

pression proposed by Coussy [54]. We refer to the work by Schrefler and Gawin [120],

among others, for an investigation of the comparison between stress equation (1.44)

and its approximated form (1.111).

In Appendix B.1, we employ Maxwell relations (1.35) to assess the thermodynamic

admissibility of the simplified model represented by system (1.40) with tangent oper-

ators (1.107) and porosity law (1.92) for pf = p̌f obtained from integration of (1.110).

Remark 1.3 For the class of saturation degree models (1.101), conditions (1.36) en-

suring the convexity of the Helmholtz free energy are satisfied if all the following con-

stitutive assumptions hold:

i) the “drained” elastic tensor Csk is positive defined;

ii) at least one phase (solid or fluid) is compressible;

iii) the liquid saturation degree is a monotonically decreasing function of capillary

pressure.

Beside their significance in stability issues with the consequent theoretical and numerical

implications, we remark that such constitutive assumptions are also physically mean-

ingful.
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Remark 1.4 The results presented in this section are to be contrasted with the ones

obtained by Coussy and co-workers [54, 56]. In these references, in fact, a strain-

independent retention model is proved to be thermodynamically consistent with approx-

imated forms of average pore pressure (1.110) and effective stress equation (1.111)

in the case of incompressible solid and liquid phases. Furthermore, particular forms of

hyperelastic tangent operators are obtained in a quite different way. In particular, sym-

metry and Maxwell conditions provided by the same macroscopic framework outlined in

Section 1.3 are explicitly enforced in deriving particular forms of hyperelastic tangent

operators. A similar approach can be also found in [97], where the direct application of

admissibility conditions allows to employ a Bishop effective stress equation with pres-

sure contributions weighted by general functions of capillary pressure. On the contrary,

in this work particular forms for hyperelastic tangent operators are obtained only by

means of mixture theory concepts and their thermodynamic consistency is investigated

independently.

Poro-elastic laws based on porosity-dependent retention models

In spite of frequent simplifying assumption (1.101), that is, of saturation degrees fully

characterized by capillary pressure, also the influence of solid-skeleton strain should be

considered in the formulation of retention models, as suggested by the experimentally

observed stress-dependency of liquid retention curves [71, 101, 146] and by results

obtained from mixture theories as, for example, in [4, 80, 82].

In the present section, consistently with these results indicating the strain depen-

dence as a requirement for an effective retention model, we will show that the following

class of retention laws:

sα = s̆α(npc) for α, β = w, g (1.112)

is a requirement for the thermodynamic admissibility of rate equation system (1.40),

if relations (1.56) and (1.90) are employed to express tangent operators appearing in

stress equation (1.40)1 and in fluid content equation (1.40)2, respectively.
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For the class (1.112) of retention models, the partial derivative of saturation degree

with respect to solid-skeleton strain can be computed recalling porosity derivatives

(1.95)1, that is,

∂sα

∂ε
=

∂sα

∂n

∂n

∂ε
= s̆′αpc

(
∂n̂

∂ε
+ pc

∂n̂

∂pf

∂pc

∂pα

∂sα

∂ε

)
for α = w, g (1.113)

with

s̆′α(npc) :=
ds̆α

d(npc)
for α = w, g (1.114)

and solving (1.113) with respect to ∂sα/∂ε:

∂sα

∂ε
=

pc

ω
s̆′α

∂n̂

∂ε
for α = w, g (1.115)

where the following assumption is introduced:

ω 6= 0 with ω := 1− p2
c

∂n̂

∂pf

s̆′α
∂pc

∂pα

for α = w, g (1.116)

We observe that function ω is independent on the choice of α (w or g), being

s̆′α
∂pc

∂pβ

= s̆′β
∂pc

∂pα

for α, β = w, g (1.117)

which is a consequence of definition (1.51) of capillary pressure and of

∑
α=w,g

s̆′α = 0 (1.118)

resulting, in turn, from (1.49).

Similarly, according to models (1.112) and using porosity derivative (1.95)2 as well

as definition (1.114), the partial derivatives of saturation degrees with respect to fluid

pressures reads:

∂sα

∂pβ

=
∂sα

∂n

∂n

∂pβ

+
∂sα

∂pc

∂pc

∂pβ

=

= s̆′α

(
pc

∂n̂

∂pf

ξβ + n
∂pc

∂pβ

)
for α, β = w, g (1.119)

In this expression, definition (1.54) of ξβ is substituted taking into account relation

(1.52), thus obtaining:

∂sα

∂pβ

= s̆′α

(
pc

∂n̂

∂pf

sβ + p2
c

∂n̂

∂pf

∂sα

∂pβ

∂pc

∂pα

+ n
∂pc

∂pβ

)
for α, β = w, g (1.120)
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which is finally solved with respect to ∂sα/∂pβ:

∂sα

∂pβ

=
s̆′α
ω

(
pc

∂n̂

∂pf

sβ + n
∂pc

∂pβ

)
for α, β = w, g (1.121)

with function ω previously defined by (1.116). Therefore, keeping in mind (1.121) and

using the following consequence of definition (1.51) of capillary pressure:

∂pc

∂pα

∂pc

∂pβ

= 2 δαβ − 1 (1.122)

we obtain a particular form of expression (1.54) for ξα:

ξα = sα

(
1 +

p2
c

ω

∂n̂

∂pf

s̆′α
∂pc

∂pα

)
+ npc

s̆′α
ω

=: ξ̆α for α = w, g (1.123)

From definition (1.116) of function ω, the following relation can be easily obtained for

the term in parentheses appearing in (1.123):

1 +
p2

c

ω

∂n̂

∂pf

s̆′α
∂pc

∂pα

=
1

ω
for α = w, g (1.124)

that, introduced in (1.123) leads to:

ξ̆α =
ξ̆∗α
ω

with ξ̆∗α := sα + npcs̆
′
α for α = w, g (1.125)

In view of (1.125), partial derivative (1.119) can be written in the following form,

equivalent to (1.121):
∂sα

∂pβ

= s̆′αςβ for α, β = w, g (1.126)

with:

ςβ :=
pc

ω

∂n̂

∂pf

ξ̆∗β + n
∂pc

∂pβ

for β = w, g (1.127)

Now it can be easily verified that class (1.112) of porosity-dependent retention mod-

els is able to satisfy the symmetry conditions (1.98–1.100) formulated at the beginning

of Section 1.4.3. In particular, condition (1.98) on symmetry of tangent tensor C̃sk

is satisfied as a consequence of partial derivative (1.115) and assumed porosity model

(1.92), yielding (1.96)1 and expression

sα,ε =
pc

ω
s̆′α for α = w, g (1.128)
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for the scalar part of ∂sα/∂ε.

Due to partial derivatives (1.121,1.128) and to relation (1.122), condition (1.99)

imposing the major symmetry in terms of ζα reduces to (1.96)2, which, in turn, is

satisfied as a consequence of the assumed porosity law (1.92).

Finally, satisfaction of condition (1.100) on symmetry of storage modulus can be

proven using again partial derivatives (1.96)2 and (1.121) as well as relations (1.117–

1.118,1.125).

In summary, all symmetry requirements on rate equation system (1.40) are ensured

by the following tangent operators:

C̃sk = Csk − p2
c

ω
s̆′α

∂pc

∂pα

b⊗ b

ζα =
ξ̆∗α
ω

and b = 1− 1

3κs

Csk1

Cαβ = n

(
sα

κα

δαβ + ns̆′α
∂pc

∂pβ

)
+

ξ̆∗αξ̆∗β
ω

(b− n01) :
1

3κs





for α, β = w, g

(1.129)

These operators have been obtained from the introduction in (1.56,1.90) of partial

derivatives (1.115,1.126–1.127) and (1.96), which, in turn, are consequences of assumed

retention and porosity models, respectively. In expressions (1.129), functions n, ω and

ξ̆∗α are given by (1.92), (1.116) and (1.125), respectively.

In Appendix B.2, the full thermodynamic admissibility of poro-elastic model pre-

sented in this Section is assessed by means of Maxwell relations (1.35).

Remark 1.5 Among the different features of the hyperelastic tangent operator set pre-

sented in this section, we remark that the functional dependency of the strain-dependent

retention model (1.112) is constrained by the admissibility condition (1.116). We also

remark that this constraint is satisfied by an arbitrary porosity-dependent model of the

type (1.112) if an incompressible solid phase is assumed, in view of equation (1.97) for

the partial derivative of the porosity with respect to the average fluid pressure.

Remark 1.6 For strain-dependent retention models (1.112), the implications of condi-

tions (1.36) ensuring convexity of Helmholtz free energy are commented in the following.



CHAPTER 1 HYPERELASTIC CONSTITUTIVE EQUATIONS 37

For the sake of simplicity, we will assume that the solid phase is incompressible. With

reference to condition (1.36)1, we note that a positive defined Csk does not necessar-

ily lead to a positive defined C̃sk. For example, in the isotropic case, the condition is

fulfilled if

Esk
1− νsk

(1 + νsk)(1− 2νsk)︸ ︷︷ ︸
=:Eed,sk

+p2
c s̆
′
w > 0 (1.130)

where Esk, νsk and Eed,sk are the Young modulus, the Poisson coefficient and the oedo-

metric modulus of the solid skeleton, respectively. Condition (1.36)2 is instead satisfied,

if we assume at least one fluid phase as compressible and the liquid saturation degree as

a monotonic decreasing function of quantity npc. As for strain-independent retention

models, the latter constitutive assumption is physically meaningful. In fact, there is ex-

perimental evidence that, for constant capillary pressures, the liquid saturation degree

decreases for increasing porosity [71, 146].

Unjacketed storage modulus

In Section 1.4.2, we employed the partial stress concept to evaluate possible expres-

sions for tangent operators appearing in fluid content equations. In the following,

such tangent operators are obtained following an alternative procedure, based on the

consideration of the unjacketed conditions described in Section 1.4.1.

Relation (1.63) among volumetric strain rates can be substituted in (1.85), thus

leading to the following expression for fluid content rate in terms of void-space strain

rate ε̇vd:
Ṁα

ρα

= n
∂sα

∂ε
: ε̇ + n

∑
γ=w,g

(
sα

κα

δαγ +
∂sα

∂pγ

)
ṗγ + n0sαε̇vd (1.131)

A direct comparison between equation (1.131) and general form (1.40)2 of fluid content

rate hyperelastic relation yields:

(
ζαb− n

∂sα

∂ε

)
: ε̇ +

∑
γ=w,g

[
Cαγ − n

(
sαδαγ

κα

+
∂sα

∂pγ

)]
ṗγ − n0sαε̇vd = 0 (1.132)

for α = w, g. The terms of this equation multiplying ε̇ and ε̇vd can be both rewritten for

the particular case of unjacketed compression in terms of ṗf = ṗuj, combining (1.60)
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and (1.61) to obtain the solid-skeleton strain rate and employing (1.58)2 to express

void-space strain rate in terms of the unjacketed modulus κuj
vd, that is,

(
ζαb− n

∂sα

∂ε

)
: ε̇− n0sαε̇vd =

[(
−ζαb + n

∂sα

∂ε

)
:

1

3κuj
sk

+
n0sα

κuj
vd

]
ṗuj (1.133)

Furthermore, elimination of ε̇ in relation (1.53) by means of (1.60– 1.61) yields:

ṗuj

(
1 +

pc

3κuj
sk

∂pc

∂pγ

∂sγ

∂ε
: 1

)

︸ ︷︷ ︸
=: η

=
∑

α=w,g

ξαṗα for γ = w, g (1.134)

Assuming the term in parentheses η 6= 0, the expression for ṗuj obtained from (1.134)

is substituted in (1.133), which, in turn, is combined with (1.132), leading to:

∑
γ=w,g

{
Cuj

αγ − n
sαδαγ

κα

− n
∂sα

∂pγ

−
[(

ξαb− n
∂sα

∂ε

)
:

1

3κuj
sk

− n0sα

κuj
vd

]
ξγ

η

}
ṗγ = 0 (1.135)

where expression ζα = ξα, with ξα defined by (1.54), was used for the coupling operators.

In view of the arbitrariness of ṗw and ṗg appearing in equation (1.135), the following

relations are obtained for tangent storage modulus in unjacketed conditions:

Cuj
αβ = n

(
sα

κα

δαβ +
∂sα

∂pβ

)
+

[(
ξαb− n

∂sα

∂ε

)
:

1

3κuj
sk

− n0sα

κuj
vd

]
ξβ

η
(1.136)

for α, β = w, g.

If the saturation degree is assumed to be fully characterized by the capillary pres-

sure, i.e. (1.101), it is η = 1, and as a consequence of (1.102,1.1042), expression (1.136)

of unjacketed storage modulus reads:

Cuj
αβ = n

(
sα

κα

δαβ + š′α
∂pc

∂pβ

)
+ ξ̌αξ̌β

1

3κuj
sk

b : 1− sαξ̌β
n0

κuj
vd

(1.137)

for α, β = w, g.

Therefore, based on assumed strain-independent retention models (1.101), a possi-
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ble set of hyperelastic tangent operators:

C̃sk = Csk

ζα = sα and b = 1− 1

3κuj
sk

Csk1

Cαβ = n

(
sα

κα

δαβ + š′α
∂pc

∂pβ

)
+ sαsβ

(
1

3κuj
sk

b : 1− n0

κuj
vd

)





for α, β = w, g

(1.138)

is obtained by introducing approximation (1.106) for the coupling coefficient (i.e. ξ̌α '
sα) in (1.137), thus recovering major symmetry of system (1.40) in terms of storage

modulus. Following the same arguments used in Appendix B.1, the full thermodynamic

admissibility of (1.138) can be shown by means of Maxwell conditions (1.35), indicating

that expressions
∂n̂

∂ε
= b and

∂n̂

∂pf

=
1

3κuj
sk

b : 1− n0

κuj
vd

(1.139)

are a requirement for the partial derivatives of the adopted porosity model n̂(ε, pf ).

As expected, hyperelastic operators (1.107) and porosity derivatives (1.96) pre-

viously considered in Section 1.4.3 are re-obtained from (1.138) and (1.139), respec-

tively, by introducing assumptions (1.65–1.67) on unjacketed compression modulus (i.e.

κuj
sk ' κuj

vd ' κs).

Another particular form of (1.138–1.139) is obtained by setting 1/κuj
vd = 0 and

κuj
s = κs, that is, a hyperelastic model based on Suklje form (1.72) of coupling tensor

b with κuj
sk = κs/(1− n0) (see Remark 1.2).

Remark 1.7 Setting 1/κuj
vd ' 0 directly in expression (1.137) ensure major symmetry

of system (1.40) in terms of storage modulus. However, thermodynamic admissibility of

the corresponding poro-elastic model still require approximation (1.106) for the coupling

coefficient, as it can be easily shown by imposing Maxwell condition (1.35)3.

1.5 Infinitesimal deformations of fluids

In this Section, in addition to solid phase and solid skeleton, we also assume both the

fluid phases as subjected to infinitesimal deformations. In such a case, logarithmic
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volumetric strain and current density of generic fluid phase α can be approximated by

trace εα of infinitesimal strain tensor and by initial value ρα0 of density, respectively,

that is,

eα ' εα and ρα ' ρα0 for α = w, g (1.140)

The fluids are assumed again to be barotropic and, in view of (1.38), definitions (1.32)

for coupling and storage operators can be rewritten as:

bα := − ∂2φ

∂ε∂pα

and Cαβ := − ∂2φ

∂pα∂pβ

for α, β = w, g (1.141)

and, as a consequence of (1.140), linearized form of (1.38–1.83,1.84) reads:

dµα

dpβ

=
1

ρα0

δαβ ε̇α =
ṗα

κα

∂ρα

∂pβ

=
ρα0

κα

δαβ for α, β = w, g (1.142)

Therefore, by taking into account also assumption (1.39) on coupling tensor expression,

hyperelastic relations in rate form (1.40) reads:





σ̇ = C̃skε̇− b
∑

γ=w,g

ζγ ṗγ

Ṁα

ρα0

= ζαb : ε̇ +
∑

γ=w,g

Cαγ ṗγ for α = w, g
(1.143)

Relations (1.33,1.141,1.143) leads to satisfaction of symmetry conditions (1.34) as well

as of the following form of Maxwell relations:

∂C̃sk

∂pα

= −∂ζα

∂ε
⊗ b

∂ζα

∂pβ

=
∂ζβ

∂pα

∂ζα

∂pβ

b =
∂Cαβ

∂ε

∂Cαα

∂pβ

=
∂Cαβ

∂pα





for α, β = w, g (1.144)

As possible forms for tangent operators C̃sk and ζα appearing in equation (1.143)1,

we consider again relations (1.54,1.56) obtained in Section 1.4.1 from differentiation

of Lewis-Schrefler decomposition (1.41) of total stress. Similarly, expression (1.69) for

coupling tensor b is taken into account.
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As a consequence of the now assumed infinitesimal deformations of fluid phases,

the expression obtained in Section 1.4.2 for tangent operators appearing in fluid con-

tent equation are slightly simplified, as briefly shown in the following. We consider a

macroscopic strain measure for the fluid phases, defined as:

ε̄α := θαεα = nsαεα (1.145)

whose linearized form in terms of initial value θα0 of volumetric fluid content, that is,

ε̄α = θα0εα (1.146)

can be effectively employed in the assumed infinitesimal deformation range. Therefore,

in view of (1.140) and (1.145–1.146), expression (1.82) of fluid content rate reads:

Ṁα

ρα0

= sαε̇v + θα0ε̇α − sα(1− n0)ε̇s + nṡα (1.147)

By means of the same arguments employed to obtain (1.90) from (1.82), using equations

(1.46,1.53,1.88,1.1422), expression (1.90)1 is recovered again for the coupling tensor and

expression (1.90)2 of the storage modulus now reads:

Cαβ =
θα0

κα

δαβ + n
∂sα

∂pβ

+
sαξβ

3κs

(b− n01) : 1 for α, β = w, g (1.148)

with coupling operators ξα and b given by (1.54) and (1.69), respectively.

As an example, we can consider strain-independent retention models (1.101) asso-

ciated to approximation ξ̌α ' sα ensuring satisfaction of symmetry requirements (see

Section 1.4.3). With these assumptions, expression (1.148) of storage modulus reduce

to:

Cαβ =
θα0

κα

δαβ +
sαsβ

3κs

(b− n01) : 1
︸ ︷︷ ︸

=: Ccp
αβ

+ nš′α
∂pc

∂pβ︸ ︷︷ ︸
=: Csd

αβ

for α, β = w, g (1.149)

where we have denoted by Ccp
αβ and by Csd

αβ the components of storage modulus due to

compressibility of the three phases and to changes in saturation degrees, respectively.

As expected, Maxwell conditions (1.144) are satisfied by tangent operator set con-

sisting of (1.107)1−2 and (1.149), as it can be easily shown by means of the same argu-

ments employed in Appendix B.1, that is, by using relations (1.49,1.97,1.102,1.106,1.108).
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Finally, it can be observed that due to infinitesimal deformations of fluid phases,

expression (1.138)3 of unjacketed storage modulus reads:

Cαβ =
θα0

κα

δαβ + nš′α
∂pc

∂pβ

+ sαsβ

(
1

3κuj
sk

b : 1− n0

κuj
vd

)
(1.150)

Remark 1.8 Assuming the porous solid as fully saturated by liquid phase (i.e. sw = 1),

a unique constant storage modulus is obtained from (1.149), that is,

Csat
w =

n0

κw

+
1

3κs

(b− n01) : 1 (1.151)

which is an extension to the anisotropic case of expression found by Rice and Cleary

[114] for the inverse of Biot modulus.

Remark 1.9 The thermodynamic framework presented in Sections 1.3–1.4 leads to an

expression for total mechanical power which includes the one proposed by Houlsby [80]

as a particular case. As shown in the following, such a particularization is obtained

assuming incompressibility of solid and liquid phases as well as infinitesimal strains of

gas phase. Assuming a gravitational field for the volume forces and keeping in mind

linearized expression (1.142)1, dissipation inequality (1.22) can be rewritten as:

D = σ : ε̇ +
∑

α=w,g

pα
Ṁα

ρα0

− ψ̇ −
∑

α=w,g

(∇pα − ρα0g) ·wα ≥ 0 (1.152)

with:

wα := nsα(vα − v) (1.153)

To obtain (1.152) we have also used definition (1.8) of fluid flow and expressions (1.73)

and (1.77) for reduced densities and volumetric contents of fluids, respectively. In view

of linearized expressions (1.1402,1.1422,1.146), the substitution in (1.152) of general

form (1.89) for the fluid mass content rate leads to:

D = (σ + bpf ) : ε̇− npcṡw +
∑

α=w,g

pα ˙̄εα + pf
ṗf

3κs

(b− n01) : 1 −

−ψ̇ −
∑

α=w,g

(∇pα − ρα0g) ·wα ≥ 0
(1.154)
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where we have also used definition (1.42) of average pore pressure, constraint (1.49) on

saturation degrees and definition (1.51) of capillary pressure. If solid and liquid phases

are assumed as incompressible, in view of (1.69), dissipation inequality (1.154) reduces

to:

D = (σ + pf1) : ε̇− npcṡw + pg ˙̄εg − ψ̇ −
∑

α=w,g

(∇pα − ρα0g) ·wα ≥ 0 (1.155)

In the isothermal case, the volumetric density pe of the mechanical power of the porous

solid equals the sum between dissipation and free energy rate, that is,

pe = (σ + pf1) : ε̇− npcṡw + pg ˙̄εg −
∑

α=w,g

(∇pα − ρα0g) ·wα ≥ 0 (1.156)

which is coincident with the work rate expression obtained by Houlsby [80].



2

Finite element formulation and

numerical simulations

2.1 Introduction

In this chapter we present the finite element approximation for the differential problem

resulting from governing equations presented in Chapter 1. In particular, in Section

2.2 we introduce the weak forms for linear momentum balance of the multiphase con-

tinuum and for the mass conservation of fluids. These equations are then rewritten in

Section 2.3 in a discrete residual form after nodal interpolation of the assumed primary

variables: solid skeleton displacements u and pore pressures pα. The discretization in

the time domain is obtained by the Backward-Euler implicit scheme. The resulting

highly non-linear solving system is solved by a standard Newton-Raphson iterative

procedure and a particular attention is payed on the different sources of non-linearity

as well as on the linearization process. In Section 2.3.1, a simplified version of the

constitutive model presented in Chapter 1 is considered to obtain an explicit form of

linearization operators. We also remark the differences between the operators obtained

by linearization of the continuum poro-elastic model and of time-integrated fluid mass

balances, respectively. Also a mass-conservative scheme is considered for the time in-

tegration of the fluid mass balance. The presented finite element formulation has been

44
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implemented in the general code FEAP [138]. Numerical examples are presented in

Section 2.4 to validate the poro-elastic model presented in Chapter 1 and to assess

the performance of the numerical formulation. In particular, a benchmark problem

involving the desaturation of a sand column is simulated. As a well-known severe test,

we consider the propagation of saturation front in an initially dry solid. Finally, the

formulation is applied to a problem of interest for dam engineering.

The main results reported in the present chapter are also presented by Callari and

Abati [32].

2.2 Governing equations

In this section we briefly summarize equations governing the problem of a porous solid

where both the liquid and gaseous phases fill the porous space. The linear momentum

balance of the whole porous solid and equations of fluid mass conservation for the fluid

phases are written in weak form for quasi-static problems and in the infinitesimal defor-

mation range. Hyperelastic rate equations presented in Chapter 1 are then employed

to formulate the problem in terms of the considered primary variables.

In the infinitesimal deformation range, current and reference configurations of the

multiphase porous solid are coincident with the domain Ω ⊂ Rndim , where ndim = 1, 2 or

3 is the spatial dimension of the problem. The weak form of the quasi-static equilibrium

of the porous solid can be expressed in terms of the total stress tensor σ by the principle

of virtual work as

∫

Ω

σ : ∇sη dΩ =

∫

Ω

f · η dΩ +

∫

∂tΩ

t̄ · η dA (2.1)

with f and t̄ being imposed volumetric body forces and tractions acting on the boundary

portion ∂tΩ ⊂ ∂Ω, respectively, and being ∇s(·) the symmetric part of the gradient

operator ∇(·). Equation (2.1) must hold for all admissible variations η ∈ Vu, where

Vu = {η : Ω → Rndim : η = 0 on ∂uΩ} (2.2)

for the part of the boundary ∂uΩ ⊂ ∂Ω with imposed displacements u = ū.
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If no volumetric fluid sources are present in Ω, the mass content Mα of the fluid α,

with α = w, g, can be obtained in terms of the relative mass flow qα by the following

weak form of the fluid mass balance:

∫

Ω

Ṁαwα dΩ =

∫

Ω

qα · ∇wα dΩ−
∫

∂qαΩ

q̄αnwα dA (2.3)

for all admissible variations w ∈ Vp of the pore pressure field, with

Vp = {w : Ω → R : w = 0 on ∂pΩ} (2.4)

where ∂pΩ ⊂ ∂Ω is the part of the boundary with an imposed pore pressure pα = p̄α

and ∂qΩ ⊂ ∂Ω is the part of the boundary with imposed normal component of the fluid

flow qα · n =: qαn = q̄wn, for the outward unit normal n to the domain boundary.

2.3 Finite element formulation

In the following, finite element methods for the solution of multiphase continuum gov-

erning equations presented in the previous sections are developed. Isoparametric in-

terpolations are employed to approximate displacement u and pore pressures pα at a

point x of a generic finite element Ωe, that is:

ue(x) = Ne(x)de and pαe(x) = Np
e(x)pαe for α = w, g (2.5)

where Ne(x) and Np
e(x) are shape functions used to interpolate nodal displacements de

and nodal pore pressures pαe , respectively. Approximations of strain and pore pressure

gradients are based on strain operator B̄e of a mixed B-bar type formulation [81] and

on a standard gradient operator Bp
e := ∇Np

e, respectively, that is:

εe = B̄ede and ∇pαe = Bp
epαe for α = w, g (2.6)

An ordinary differential system is obtained by using interpolations (2.5–2.6) in the

finite-element discretization of weak forms of linear momentum (2.1) and fluid mass

balances (2.3). This system is written in residual algebraic form for the generic time

step [tn, tn+1], with the linear momentum balance equation calculated at time tn+1
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and rate equations of fluid-mass balances approximated by a backward-Euler scheme.

Denoting by ∆t = tn+1 − tn the time increment and omitting index n + 1 to simplify

the notation, the coupled residual system reads:




rm = f ext −
nel

A
e=1

∫

Ωe

B̄T
e σ dΩ = 0

rα = f ext
α −

nel

A
e=1

[∫

Ωe

Np
e
T Mα −Mα,n

∆t
dΩ−

∫

Ωe

Bp
e
Tqα dΩ

]
= 0

(2.7)

with f ext and f ext
α the vectors of imposed external forces and flows, respectively, and

α = w, g. In system (2.7), symbol A denotes the assembly of contributions of all the nel

finite elements. This non-linear algebraic system can be solved by a Newton-Raphson

iterative procedure, where the increments ∆(·) = (·)(k+1)
n+1 − (·)(k)

n+1 of unknown nodal

variables at tn+1, are evaluated at iteration (k +1) by means of the following linearized

form of system (2.7):

r(k)
α = −

(
∂rα

∂d

)(k)

∆d−
∑

γ=w,g

(
∂rα

∂pγ

)(k)

∆pγ for α = m,w, g (2.8)

In the following, the linearized kinematics described in Section 1.5 is considered for

both the fluid phases. Extensions accounting for finite deformations of fluids can be

easily devised. So, in view of assumed barotropy of fluid phases (1.142)1, the following

finite element approximation of extended Darcy law (1.25) is obtained by introducing

interpolation (2.6)2:

qα = −ρα0kα (Bp
epαe − ρα0g) for α = w, g (2.9)

where the gravity acceleration g was considered as external mass loading, that is:

f = −∇Vext = g.

By applying the chain rule to differentiation of residuals (2.7), using relations (2.5–

2.6), it can be shown that linearized system (2.8) reads:





r(k)
m = K(k)∆d−

∑
γ=w,g

Q(k)
mγ∆pγ

r(k)
α =

(
Qαm

∆t
−Gα

)(k)

∆d +
∑

γ=w,g

(
Sαγ

∆t
−Gαγ + Hαδαγ

)(k)

∆pγ

(2.10)
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for α = w, g. System (2.10) is written in terms of global matrices of stiffness K, storage

Sαβ, fluid-mechanical coupling Qmα,Qαm and permeability Hα, defined as:

K =
nel

A
e=1

∫

Ωe

B̄T
e

∂σ

∂ε
B̄e dΩ (2.11)

Sαβ =
nel

A
e=1

∫

Ωe

NpT
e

∂Mα

∂pβ

Np
e dΩ for α, β = w, g (2.12)

Qmα =
nel

A
e=1

∫

Ωe

B̄T
e

∂σ

∂pα

Np
e dΩ

Qαm =
nel

A
e=1

∫

Ωe

NpT
e

∂Mα

∂ε
B̄e dΩ





for α = w, g (2.13)

Hα =
nel

A
e=1

∫

Ωe

ρα0B
pT
e kαB

p
e dΩ for α = w, g (2.14)

Remaining operators appearing in (2.10) are obtained from permeability linearization

with respect to strains and fluid pressures, respectively:

Gα =
nel

A
e=1

∫

Ωe

BpT

(
∂kα

∂ε
· quni

α

)
B̄e dΩ Gαβ =

nel

A
e=1

∫

Ωe

BpT
e

∂kα

∂pβ

quni
α Np

e dΩ (2.15)

with

quni
α := −ρα0(B

p
epαe − ρα0g) (2.16)

in the linearization operator (2.15)1 we have employed the following convention:

(
∂kα

∂ε
· quni

α

)

ik

=

(
∂kα

∂ε

)

ijk

quni
αj

= kαij,k
quni

αj
(2.17)

for i, j = 1 . . . ndim and k = 1 . . . a, being a the number of strain components of the

problem, and where repeated indexes are summated.

Remark 2.1 In general, relative permeability tensors kα can be functions of all the

considered primary variables, that is, pore pressures and solid-skeleton displacements.

In particular, a quite general constitutive assumption considers the single-phase perme-

ability tensors ksat
α and the relative permeability coefficients krel

α as dependent on strain

[132] and corresponding saturation degree [46, 99], respectively, that is:

kα = krel
α (sα)ksat

α (ε) for α = w, g (2.18)
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In such a case, the eventual dependance of krel
α on ε, pw and pg is regulated by the

assumed fluid retention model, and the derivatives appearing in (2.15) reads:

∂kα

∂ε
=

dkrel
α

dsα

Θα + krel
α

∂ksat
α

∂ε

∂kα

∂pβ

=
dkrel

α

dsα

∂sα

∂pβ

ksat
α





for α, β = w, g (2.19)

where the following notation has been used:

Θαijk
:= ksat

αij

(
∂sα

∂ε

)

k

(2.20)

for i, j = 1 . . . ndim and k = 1 . . . a, with a the number of strain components of the

problem. For example, if classic strain-independent models sα = šα(pc) are employed,

derivatives (2.19) reduce to:

∂kα

∂ε
= krel

α

∂ksat
α

∂ε

∂kα

∂pβ

=
dkrel

α

dsα

š′α
∂pc

∂pβ

ksat
α





for α, β = w, g (2.21)

as it can be easily shown by means of (1.102).

2.3.1 Time-integration consistent tangents

Stress-term tangent operators appearing in matrices (2.11) and (2.13)1 of finite element

system (2.10) can be obtained as follows by linearization of the continuum poro-elastic

model:
∂σ

∂ε
= C̃sk

∂σ

∂pα

= −ζαb for α = w, g (2.22)

that is, from rate form (1.143)1 of hyperelastic relation for stress. On the other hand,

the fluid-term tangents appearing in matrices (2.12) and (2.13)2 have to be consis-

tent with the time-integration scheme used to numerically solve the fluid-mass balance

equation. Therefore, the computation of such operators requires linearization of the

backward-Euler scheme employed for time discretization of fluid-content rate equation

(1.143)2.
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As an example, we consider such a time integration for the simplified hyperelastic

laws based on strain-independent retention models (1.101):

Mα

ρα0

=
Mα,n

ρα0

+ sαb : (ε− εn) +
∑

γ=w,g

Cαγ(pγ − pγ,n) for α = w, g (2.23)

where the storage modulus is given by expression (1.149). In view of scheme (2.23), the

consideration of derivatives of the porosity model (1.92) with respect to the primary

variables and (1.103) for the retention law, leads to the following consistent expressions

for tangents appearing in matrices (2.12) and (2.13)2, respectively:





∂Mα

∂ε
= ρα0 [sα + š′α(pc − pc,n)]bT

∂Mα

∂pβ

= ρα0š
′
α

∂pc

∂pβ

b : (ε− εn) +

(
∂Mα

∂pβ

)

C

(2.24)

where the tangent component defined as

(
∂Mα

∂pβ

)

C

:= ρα0

[
Cαβ +

∑
γ=w,g

∂Cαγ

∂pβ

(pγ − pγ,n)

]
(2.25)

is given in terms of the following derivative of storage modulus (1.149):

∂Cαγ

∂pβ

=
∂Ccp

αγ

∂pβ

+
∂Csd

αγ

∂pβ

(2.26)

with





∂Ccp
αγ

∂pβ

= (b− n01) :
1

3κs

(š′αsγ + sαš′γ)
∂pc

∂pβ

∂Csd
αγ

∂pβ

= (b− n01) :
1

3κs

š′αsβ
∂pc

∂pγ

+ nš′′α
∂pc

∂pβ

∂pc

∂pγ

(2.27)

and α, β = w, g. To obtain (2.24–2.27) we also used definitions (1.51,1.103,B.8) and

assumption (1.106).

Consistent tangent operators (2.24–2.27) can be seen as an extension to the me-

chanically coupled case of the results presented for example in [93] for the numerical

treatment of fluid flow in variably saturated rigid porous media. As expected, the

difference between the consistent and the following “continuum” tangents

∂Mα

∂ε
= ρα0sαb

T ∂Mα

∂pβ

= ρα0Cαβ for α, β = w, g (2.28)
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obtained from rate form (1.143)2 of fluid-content hyperelastic relation, vanishes as time

step increment ∆t approaches zero.

Furthermore, consistent (2.24–2.27) and continuum (2.28) tangent operators are

coincident for assumed constant saturation degrees, as it is the case of porous continua

saturated by a single phase. On the other hand, differences between the two tan-

gent operator sets are normally significant in the case of large variations of saturation

degrees, typically involving large absolute values of š′α.

2.3.2 Mass conservative scheme

For numerical time integration of saturation degree rate by means of a backward Euler

scheme, expression ṡα is to be preferred to š′αṗc considered in (2.23). In fact, time

discretization of latter expression can lead to unacceptable errors in fluid mass bal-

ance, especially in the case of strongly non-linear response, typically characterizing

infiltration problems.

Therefore, following the same arguments presented in [43] for the uncoupled case,

we consider also the time integration of a mixed form of fluid-content rate equation,

obtained by substituting the following relation in (1.143)2:

∑
γ=w,g

Cαγ ṗγ =
∑

γ=w,g

Ccp
αγ ṗγ + nṡα for α = w, g (2.29)

where we have used the notation introduced in (1.149) for the component Ccp
αγ of storage

modulus. Therefore, backward-Euler time discretization of (2.29), that is,

∑
γ=w,g

Cαγ (pγ − pγ,n) =
∑

γ=w,g

Ccp
αγ (pγ − pγ,n) + n(sα − sα,n) for α = w, g (2.30)

is substituted in (2.23) and the so-obtained integration scheme with improved mass

conservation properties can be considered to calculate the fluid-content term of residual

(2.7)2.

The consistent linearization of such a time-discretized equation employs the same

arguments used to obtain (2.24–2.27) and leads to the following consistent expressions
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for tangents appearing in matrices (2.13)2 and (2.12), respectively:





∂Mα

∂ε
= ρα0(2sα − sα,n)bT

∂Mα

∂pβ

= ρα0š
′
α

∂pc

∂pβ

bT (ε− εn) +

(
∂Mα

∂pβ

)

Ccp

+

(
∂Mα

∂pβ

)

θ

(2.31)

where (
∂Mα

∂pβ

)

θ

:= ρα0

[
nš′α

∂pc

∂pβ

+ (b− n01) :
1

3κs

(sα − sα,n)sβ

]
(2.32)

and (∂Mα/∂pβ)Ccp is obtained by setting C = Ccp in (2.25) and by (2.27)1.

Remark 2.2 In numerical simulations presented in Section 2.4 below, we investigate

also the ability of lumped forms of storage matrix (2.12) in avoiding oscillatory so-

lutions. We recall that improvements in solution quality resulting from the use of

diagonalized mass operators are often observed in the analysis of uncoupled infiltration

problems, for example in [43, 93] among many others. In fact, it is well known how

finite-element approximations of parabolic problems employing a finite-difference dis-

cretization, e.g the backward Euler scheme, of the time domain violate the discrete form

of the maximum principle [67, 110]. In this case, oscillatory solutions are attained if

the time step employed in calculations is smaller than a minimum value. This limit

value depends on the out-of-diagonal components of the storage matrix. Therefore, the

use of a lumped storage matrix is particularly suitable in those frequent situations where

very small time steps are necessary to solve highly non-linear problems [58, 93].

Remark 2.3 In numerical simulations presented in Section 2.4, a general backward-

Euler scheme, that is,

p̌f = p̌f,n +
∑

γ=w,g

sγ(pγ − pγ,n) (2.33)

was preferred to analytical time integration of the pore-pressure term (1.110) appearing

in stress-rate equation (1.143)1. From linearization of (2.33) and consideration of

relations (1.50,1.102,1.122), we obtained the operator:

∂σ

∂pα

= −b
∂p̌f

∂pα

= −b[sα + š′α(pc − pc,n)] (2.34)
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which was implemented in matrix (2.13)1, as an alternative to the “continuum” tangent

(2.22)2. Moreover, considering expression (2.33) in the porosity model (1.92), the

tangent coefficient expression (2.27)2 has to be modified into

∂Csd
αγ

∂pβ

= nš′′α
∂pc

∂pβ

∂pc

∂pγ

+ (b− n01) :
1

3κs

š′α
∂pc

∂pγ

[sβ + š′β(pc − pc,n)] (2.35)

For a similar reason, if we consider a mass conservative approach for the fluid mass

content rate, instead of tangent coefficient (2.32) we have
(

∂Mα

∂pβ

)

θ

:= ρα0

{
nš′α

∂pc

∂pβ

+ (b− n01) :
1

3κs

(sα − sα,n)[sβ + š′β(pc − pc,n)]

}
(2.36)

2.4 Representative numerical simulations

In the following, to assess the accuracy of the hyperelastic model and the performance

of the finite element method proposed in previous sections we present the results of

representative numerical tests. Firstly, we consider the bi-dimensional simulation of

two well-known one-dimensional problems: the desaturation of a sand column and the

infiltration of an almost initially dry porous layer. The obtained numerical results are

compared with experimental data presented in [96] for the former test and with the

semi-analytical solution of the infiltration problem proposed in [106].

Finally, the presented formulation is applied in a problem of interest for dam engi-

neering, that is, the analysis of the effects of rapid drawdown on a reservoir bank.

In the following, a strain-independent model for the saturation degree is considered.

Extensions of this numerical formulation to the more general case considered in Section

1.4.3 can be devised. However, practical applications of such an extension would require

the availability of models (1.112) validated by experimental data.

We assume an isotropic response of the solid skeleton, characterized by Young

modulus Esk, Poisson coefficient νsk and relation (1.70) for the coupling tensor b.

Similarly, we consider an isotropic permeability, that is, the following form for (2.18)

kα = krel
α (sα)ksat

α 1 for α = w, g (2.37)

where a constant value is assumed for the scalar single-phase permeability ksat
α .
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In all the test, the water density value ρw0 = 1000 kg/m3 is assumed. We refer to

[38] for the numerical treatment and application of strain-dependent models typically

employed for single-phase permeability ksat
α of rock masses.

In the presented simulations, a constant atmospheric value is assumed for the gas

pressure, that is, pg = 0. This simplifying assumption is reasonable in many situation

of interest in geomechanics. On the other hand, also the mass balance equation of the

gaseous phase has to be taken into account if accurate capillary pressure distributions

above the water table are required, for example in those cases where capillary pressures

affect the irreversible response [22, 117]. The simplifying assumption of a constant gas

pressure overcomes problems encountered in numerical simulation of the transition

from full to partial saturation conditions. We refer for example to [95, 122, 149] among

the many others investigating this issue.

In all these three examples plane conditions are assumed for strain and flow fields.

The finite element method developed in previous sections is implemented over the

mixed triangle with linear interpolation of the displacement and constant interpolation

of volumetric strain and stress, that is, the so called P1/P0 three noded triangle [81].

Linear interpolations are also used for the pore pressure field and a three point Gauss

quadrature rule is employed in evaluating tangent and residual terms.

The presented finite element method has been implemented in general code FEAP

[138]. To assess the convergence of Newton-Raphson procedure, we set tol = 1 · 10−16

for the tolerance in the following energy criterion:

E(k+1) := ∆dT r(k+1)
m +

∑
γ=w,g

∆pT
γ r(k+1)

γ < tol E(1) (2.38)

2.4.1 Desaturation of a sand column

In this section we consider the numerical simulation of a well known drainage test [96]

considered by various researchers [66, 90, 95] to validate their numerical formulations.

In the original experimental test, a fully saturated 1.00 m high vertical sand column

contained in rigid and impervious lateral walls was initially characterized by uniform

descending flow and zero water pressures throughout the column due to a water supply
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from the top of the sample and a free drainage at the base. After instantaneous

interruption of inflow at the top of the column, water outflow at column base and

water pressures at different elevations were measured.
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Figure 2.1: Simulation of Liakopoulos test. Configuration of the problem with assumed
boundary conditions (a,b) and finite element discretization (c)

Consistently with the experimental test, we consider the boundary conditions on

displacements and pore water pressures illustrated in Figure 2.1a,b. In particular, to

reproduce the initial experimental conditions, we impose a homogeneous field pw0 = 0

for t < 0 (Fig. 2.1a). In the considered coupled setting, displacements are induced by

the gravity action and the assigned initial water pressure distribution. Initial displace-

ment are then set to zero and the calculated effective stress state is assumed as the

initial one. The zero water pressure constraint imposed to the whole domain is removed

at t = 0, with the exception of the column base which is assumed to be pervious (Fig.

2.1b).

The column is discretized with 2 × 4 × 40 triangular finite elements (Fig. 2.1c).

For the “Del Monte” sand used in the test, we employ the hydraulic properties listed
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in Table 2.1 and the following relations proposed in [96] to model water retention and

relative permeability, respectively:





šw(pc) = 1− 1.9722 · 10−11p2.4279
c

krel
w (sw) = 1− 2.207(1− sw)1.0121

(2.39)

for sw > 0.91 and pc ≥ 0. The mechanical parameters listed in the same table are the

ones suggested in [122].

Table 2.1: Material parameters considered in the simulation of Liakopoulos test

porous solid density ρ 1700 kg/m3

drained Young modulus Esk 1300 kPa

drained Poisson coefficient νsk 0.4

Biot coefficient b 1.0

solid phase volumetric stiffness κs 1.0 · 109 kPa

water stiffness modulus κw 2.0 · 106 kPa

single-phase permeability ksat
w 4.5 · 10−7 m2/(kPa · s)

initial porosity n0 0.2975

As shown in Figure 2.2, in spite of the simplifying assumption of a constant zero

value of gas pressure, the obtained numerical results are in good agreement with avail-

able experimental data, both in terms of water flow at the column base (Fig. 2.2a) and

pore water pressure distribution along the sample (Fig. 2.2b).

Settlements induced by the desaturation process are reported in terms of time

evolution at column top (Fig. 2.3a) and of distributions along the sample calculated

at different time instants (Fig. 2.3b). The comparison reported in Figure 2.3a shows

that a completely different displacement evolution is obtained under the unrealistic

assumption of a fully water-saturated column.

Numerical simulations have been repeated by employing both the “continuum”

(2.222,2.28) and the time-integration consistent (2.24–2.27,2.34) expressions of tangent
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Figure 2.2: Simulation of Liakopoulos test. Comparison between measured data [96] and
numerical results: a) volumetric water flow at the column base; b) pore water pressures
along the column
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Figure 2.3: Simulation of Liakopoulos test: a) settlement evolutions calculated at column
top for variably saturated and fully saturated conditions; b) settlement distributions along
the column (variably saturated case)

operators. With respect to the former tangents, the consistent operators led to sig-

nificant improvements in the convergence rate of adopted Newton-Raphson procedure,

namely a reduction of about 33% in terms of total iteration number. As expected, we

observed that such a difference between the convergence rate obtained with the two

tangent sets decreases with time step size. For example, reducing by 10 the size of time

steps, a 19% difference was observed in terms of total iteration number.
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2.4.2 Water-pressure driven infiltration problem

For the fluid-flow part of the numerical formulation, we consider a typical benchmark

test, namely the problem of water infiltration in an initially almost dry porous column.

For such a test, a semi-analytical solution has been obtained by Philip [106] assuming

as rigid the solid skeleton as well as the solid and the liquid phases. Due to the strongly

non-linear character of the problem, this semi-analytical solution has been considered

by several authors to validate their one-dimensional finite element implementations of

the Richard equation, as in [43, 93]. The same uncoupled setting is then considered

in our numerical simulations. So, storage modulus (1.149) reduces to component Csd

with constant porosity.
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Figure 2.4: Infiltration problem. Configuration of the problem with assumed initial setting
(a), boundary conditions (b) and finite element discretization (c)

To model water retention and relative permeability we employ the relations pre-

sented by van Genuchten [147] in terms of the so-called “effective saturation degree”

Sw, defined as:

Sw :=
sw − sres

w

1− sres
w

(2.40)
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that is, for pc ≥ 0,





šw(pc) = sres
w + Šw(pc)(1− sres

w ) with Šw(pc) =

[
1

1 + (avg pc)
nvg

]mvg

krel
w (sw) = S 1/2

w

[
1− (

1− S 1/mvg
w

)mvg
]2

with mvg = 1− 1/nvg

(2.41)

The employed values of residual saturation degree sres
w and of material constants avg, nvg,

as well as of other material parameters, are coincident with the ones assumed in [93]

and are reported in Table 2.2.

Table 2.2: Material parameters employed to simulate the water infiltration problem

single-phase permeability ksat
w 0.922 · 10−5 m2/(kPa · s)

van Genuchten parameter avg 0.335 kPa−1

van Genuchten parameter nvg 2.01

residual saturation degree sres
w 0.277

porosity n0 0.368

The geometry of problem domain and its discretization in 2 × 6 × 60 triangular

finite elements is shown in Figure 2.4c. As the initial condition, the homogeneous

water pressure field pw0 = −100 kPa is imposed in the sample for t < 0 (Fig. 2.4a),

thus obtaining from (2.41)1 a initial saturation degree sw0 = 0.298 close to the residual

one.

At t = 0, after removal of the imposed field pw0, the constant water pressures

p̄wt = −7.5 kPa and p̄wb
= −100 kPa are imposed at the top and at the base of the

column, respectively (Fig. 2.4b).

After first part of simulation, where 1000 time steps with ∆t = 1 s are used, the

step size is increased to ∆t = 10 s. The time step sizes considered in this work are

comparable with the ones assumed by other researchers [43, 93].

The use of a lumped storage matrix avoids oscillations in computed solutions, as

shown in Figure 2.5a in terms of propagation of water pressure front. In the same figure,
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Figure 2.5: Infiltration problem: a) calculated pore water pressure distributions at different
time instants and semi-analytical solution by Philip [106] at t = 21600 s; b) calculated profiles
of water saturation degree

we observe that numerical results are in very good agreement with the semi-analytical

solution by Philip [106]. The simulated saturation process is apparent in Figure 2.5b,

illustrating the distributions of water saturation degree calculated at different time

instants. Calculations have been repeated by using the time discretizations of both

the pore-pressure (1.143)2 and the mixed (2.30) forms of fluid-mass balance. For given

mesh refinement and time step size, the solutions obtained with the mass-conservative

approach are significantly more accurate than the ones calculated with the former

scheme. This result is shown in terms of water pressure distributions (Fig. 2.6),

by comparing the semi-analytical solution with numerical results obtained for different

meshes (2×6×60 and 2×2×20 elements) and time discretizations (the aforementioned

time stepping and a 10 times larger one).

2.4.3 Effects of rapid drawdown on a reservoir bank

In this section, the finite element method presented in Section 2.3 is applied in the

analysis of a dam engineering problem, namely the evaluation of the coupled hydro-

mechanical response of a 120 m high bank to rapid drawdown of reservoir water level.

Plane conditions are assumed for strain and flow. As shown in Figure 2.7, the
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assumed boundary conditions. To simulate drawdown effects, pore-pressures and fluid-flow
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changed from configuration (a) to (b)

reservoir is full in the reference configuration, with water level coincident with bank top

surface. In this initial configuration, displacements are set to zero after the attainment

of the steady states of stress and pore pressure equilibrating gravity and illustrated

initial boundary conditions p̄w0 and t̄0. To simulate a rapid reservoir drawdown, at t =
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Table 2.3: Material parameters considered in the analysis of rapid drawdown effects on a

reservoir bank

porous solid density ρ 2600 kg/m3

drained Young modulus Esk 4.7 · 106 kPa

drained Poisson coefficient νsk 0.15

Biot coefficient b 0.93

solid phase volumetric stiffness κs 1.0 · 109 kPa

water stiffness modulus κw 2.0 · 106 kPa

single-phase permeability ksat
w 7 · 10−8 m2/(kPa · s)

van Genuchten parameter avg 0.1 kPa−1

van Genuchten parameter nvg 2.2

residual saturation degree sres
w 0.01

initial porosity n0 0.02

0 we instantaneously change the boundary conditions as shown in Figure 2.7, including

zero boundary tractions, impervious bank top surface and pervious reservoir bottom.

For the bank sloping boundary, intersected by the phreatic surface (i.e. the locus of

pw = 0 points) after reservoir drawdown, unilateral constraints are imposed on flow in

order to simulate the two different boundary conditions, impervious and pervious, to

be assigned above and below the phreatic surface, respectively. We refer to Chapter 3

for full detail on the theoretical formulation and finite element implementation of such

unilateral boundary conditions.

The adopted material parameters, reported in Table 2.3, are representative of a

“fair quality” fractured rock mass. We note that the employed values of hydraulic

parameters and model (2.41)1 assumed for water retention can lead to very narrow

capillary fringes compared with the characteristic dimension of the problem, that is,

to the calculation of low values of saturation degree immediately above the phreatic

surface. In other words, above the phreatic surface, localized gradients are to be

expected in the saturation degree distribution and, in view of assumed model (2.41)2,
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Figure 2.8: Bank response to rapid reservoir drawdown. Number of vertical and horizontal
divisions defining the three finite element meshes used in simulations
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Figure 2.9: Bank response to rapid reservoir drawdown. Distributions of water permeability
(a) and piezometric head (b) calculated at t = 200 days with the medium mesh

especially in the relative permeability field. The eventual presence of such non-smooth

solutions makes the considered problem setting a severe test for the proposed finite

element formulation.
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To investigate this issue, computations have been repeated for three different spa-

tial discretizations, illustrated in Figure 2.8 and named in the following as “coarse”,

“medium” and “fine” mesh, respectively.
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Figure 2.10: Bank response to rapid reservoir drawdown. Distributions of water saturation
degree calculated at t = 200 days with the medium (a) and the fine mesh (b)

As expected, a localized gradient of water permeability is calculated at the phreatic

surface (Fig. 2.9a) and the corresponding water-flow field is practically discontinuous

across this surface, as shown by the contour plot of piezometric head (Fig. 2.9b).

From the different patterns of this piezometric head field calculated above and below

the phreatic surface, it can be inferred a vertically descendent flow and a seepage

oriented towards the reservoir, respectively.

In spite of some slight oscillations in the neighborhood of the phreatic surface, satu-

ration degree distributions (Fig. 2.10) and the positive part of capillary pressure fields

(Figs. 2.11,2.12a) calculated with the medium discretization are practically coincident
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with fine mesh results.
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Figure 2.11: Bank response to rapid reservoir drawdown. Distributions of positive part of
capillary pressure 〈pc〉 calculated at t = 200 days with the medium (a) and the fine mesh (b)

On the other hand, the coarse discretization show difficulties in capturing the cap-

illary pressure distribution (Fig. 2.12a). However, as shown in Figure 2.12b, no signif-

icant difference is apparent between the displacement fields calculated with the three

different meshes. To explain this latter result, it can be observed that the differences

between capillary pressure profiles above the phreatic surface (Fig. 2.12a) are negligible

with respect to water pressure changes calculated in the whole domain. Furthermore, in

view of the employed effective stress equation, the coupled effects of capillary pressure

are significantly reduced by the low values of saturation degree calculated immedi-

ately above the phreatic surface (Fig. 2.10). Effects of inaccurate computation of

capillary pressure on displacements can be significant if capillary-pressure dependent

elasto-plastic model are considered, as in [124, 125, 126].
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Figure 2.12: Bank response to rapid reservoir drawdown. Results calculated at t = 200 days
with the three considered meshes in terms of: a) positive part of the capillary pressures 〈pc〉
along vertical CT ; b) settlements along sloping surface BT
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Figure 2.13: Bank response to rapid reservoir drawdown. Time evolution of horizontal (a)
and vertical (b) displacements at points B, I, T on the bank sloping surface obtained with
the medium mesh

In the initial response to instantaneous drawdown, horizontal displacements of the

sloping bank surface are oriented towards the reservoir (Fig. 2.13a) and some heaving

of the bottom of the lake is observed (∼ 0.5 cm at point B in Fig. 2.13b). Such effects

of the undrained removal of water surface loads (tn0 in Fig. 2.7) are then immediately

followed by opposite displacement increments (Fig. 2.13) due to progressive decrease
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Figure 2.14: Bank response to rapid reservoir drawdown. Distributions of horizontal (a)
and vertical (b) displacements reported on deformed mesh with outline of the undeformed
mesh (displacement amplification factor = 500). Results calculated at t = 200 days with the
medium mesh

of pore water pressures and to seepage driving forces under the phreatic surface. The

displacement field calculated after 200 days is illustrated in Figure 2.14.



3

Unilateral boundary conditions for

unsaturated flow

3.1 Introduction

In porous solid mechanics there is often the need to deal with unconfined seepage

problems as, for instance, in stability analyses of dam abutments and reservoir banks

during reservoir operations as well as of slopes during rainfall events or of underground

openings below a water table. The problem of modelling fluid flow through porous

media can then be studied as a free boundary one or introducing the hypothesis of

partial saturation.

In the first approach the fluid flow domain is the portion Ωsat saturated by the

liquid phase below the free surface Γ (Fig. 3.1) and the portion above it is assumed

to be completely dry. The position of the free surface is a priori unknown and, in

transient problems, evolves with time. Moreover, this surface is a portion of the domain

boundary, i.e. Γ ⊂ ∂Ωsat, thus leading to a free boundary problem.

A rigorous mathematical treatment of a particular case, the well-known “dam prob-

lem”, began with the fundamental work of Baiocchi [15], where steady conditions were

considered. In particular, a function defined in the whole domain Ω was introduced to

reduce the free boundary problem in a variational inequality. This approach was also

68
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Figure 3.1: Fluid flow in porous solids: free-boundary approach [30]

applied for a similar problem involving unsteady conditions in [142]. In this framework,

boundary conditions prescribed on the free surface are not included explicitly in the

formulation: once the problem is solved, such a surface can be located according to

some conditions. In later works, Baiocchi and co-workers obtained numerical solutions

by means of finite difference and finite element methods. A comprehensive review of

these works can be found in [26], together with several application problems solved by

means of successive over-relaxation methods. The Baiocchi method is not the unique

way to solve unconfined fluid flow problems by variational inequalities and it can be

used only for dam problems with regular geometry. A possible way to overcome this

shortcoming is the “extended pressure” approach introduced by Brezis et al. [25],

where negative pore pressures are considered in the dry domain and the permeability

tensor is multiplied by the Heaviside step function, thus leading to a null flow in the

dry domain. Existence and uniqueness of the solution have been demonstrated con-

sidering a penalized problem, where the Heaviside step function has been replaced by

a penalized regularization, thus reducing the original variational inequality in a penal-

ized variational equality. The solution of such a penalized problem converges to the

variational inequality one as the penalty parameter tends to zero. Therefore, a finite

element approximation of the penalized problem has been considered. With respect to

the numerical formulations of the Baiocchi approach, such method leads to a better

approximation of the free surface and this is the reason of its widespread use, e.g. in
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[24, 88]. A further application can be also found in [155], where the regularization of

the Heaviside step function is introduced only to avoid numerical instabilities and the

variational inequality structure is kept in the numerical solution too.

The previously described approaches reduce a free boundary problem with unknown

and/or variable domain in a fixed domain problem, at least in their numerical imple-

mentations. In the “residual flow” procedure proposed in [63] for the steady problem

and extended to unsteady problems in [16, 64] the fluid flow domain is only the satu-

rated part below the free surface also in the finite element scheme; the free surface is

allowed to pass through the element and is determined iteratively.

Other methods allowing to deal only with the saturated variable domain are those

involving adaptive finite element techniques, as reported, for example, in [47], or other

numerical techniques allowing mesh manipulations, as in [48, 68].

As it can be noted, several numerical approaches to free boundary seepage problems

try to overcome the issue of dealing with a variable domain. This task can be naturally

circumvented by the second approach to unconfined fluid flow problems. In fact, if

partially saturated conditions are introduced in the theoretical model [55, 95], a fluid

flow can be defined in the whole porous solid Ω = Ωsat ∪ Ωuns. As shown in Figure

3.2, the free surface is not a part of the domain boundary, i.e. Γ 6⊂ ∂Ω, except for the

intersection points P1, P2 ∈ ∂Ω. On the contrary, it can be defined as the locus where

the liquid pore pressure pw takes a prescribed value p̂w, e.g. the atmospheric one:

Γ := {x ∈ Ω : pw = p̂w} (3.1)

The problem of the evaluation of pw in the whole domain Ω can thus be solved without

knowing the position of Γ, which can be obtained a posteriori in view of definition

(3.1).

Several reasons can make this second approach more appealing than the first one.

For example, in porous solids the transition zone from a saturated region to an almost

dry one is often more a fringe than a line, with a thickness depending on granulomet-

ric characteristics [127]. The simplification introduced by a free boundary approach

is reasonable, for example, if the fringe thickness is negligible with respect to the
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Figure 3.2: Fluid flow in porous solids: “partial saturation” approach [30]

characteristic size of the problem. If it is not the case, partially saturation effects

cannot be neglected and the pore pressure field is to be evaluated also in the partially

saturated region. Moreover, partial saturation approaches are normally simpler to im-

plement than free boundary problems, as numerical solutions of unconfined fluid flow

are needed. In fact, only the position of intersection points P1 and P2 is a problem

unknown. However, suitable boundary conditions able to deal with the a priori un-

known position of these intersection points have to be considered. In this chapter,

the main purpose is to provide a numerical approach to these boundary conditions

in the framework of finite element methods with unilateral constraints. An outline is

as follows. In Section 3.2, it is shown that conditions characterizing portions of the

boundary in contact with atmosphere and intercepted by the free surface may change

between imposed-pressure and imposed-flow types during problem evolution. These

boundary conditions are then considered in the more general framework of unilateral

constraints in Section 3.3. Therefore, after establishing in Section 3.4 a formal analogy

with frictionless contact mechanics, two regularization techniques typically employed

in contact problems, the penalty and the augmented Lagrangian methods described in

Section 3.5, are also applied to the hydraulic case. As described in Section 3.6, the

regularized problem is then numerically solved by the finite element method for the

fluid flow problem as well as for the analogous mechanical one. In Section 3.7, we in-
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vestigate numerical performance of penalty and augmented Lagrangian regularization

techniques employed herein by means of simple one-dimensional numerical examples.

In these examples, both the numerical and formal analogies between seepage problems

with unilateral constraints and frictionless contact problems are pointed out. Hence,

two-dimensional strongly non-linear transient problems of interest in environmental

and civil engineering are analyzed, as the propagation of a saturation front in a porous

sample and the partial saturation of a concrete gravity dam.

The main results reported in the present chapter are also presented by Abati and

Callari [3].

3.2 Interface between porous solid and atmosphere

During the solution process of unsaturated seepage problems, we have to know the

position of points where the boundary in contact with atmosphere is intercepted by the

geometric locus of zero pore pressure. In fact, different responses are typically observed

on the two boundary portions located above and below these intersection points (Fig.

3.3). If we consider, for example, the evolution of reservoir bank surfaces during a

rapid drawdown depicted (Fig. 3.3), we note that interstitial pressures are lower than

the atmospheric value in the upper part and an outflow is observed in the remaining

portion, which is the so-called “seepage surface”. The free surface is not a priori known

and it evolves with time in presence of unsteady fluid flow. Hence, in the analysis of

these interfaces between porous solid and atmosphere, the boundary condition to be

applied may change between the two types, “imposed pressure” and “imposed flow”,

during problem evolution. The potentially intercepted boundary portion is denoted as

the “potential seepage surface” and can be expressed by the following inequalities:

pw ≤ 0 qwn ≥ 0 pwqwn = 0 (3.2)

with qwn the normal component of fluid flow.

A more general situation takes place, for example, in stability analyses of slopes

during rainfall events [143] where, due to the rainfall inflow, the free surface raises
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Figure 3.3: Potential seepage surface: reservoir bank after a rapid drawdown [29]

up (Fig. 3.4). The entire rainfall q̄wn infiltrates through the slope surface if the pore

pressure is lower than the atmospheric value: the boundary condition above the free

surface is then an “imposed flow” one. The pore pressure can not exceed the atmo-

spheric value, if no water ponding is allowed on the slope surface. Hence, with the

attainment of atmospheric pressure, an “imposed pressure” boundary condition holds

and part of the rainfall flow is returned to the environment in the portion below the

free surface. This situation can be further generalized if a water ponding is allowed,

thus leading to a maximum pressure pw,max value greater than the atmospheric one.

This kind of constraint, typically indicated as the “rainfall boundary condition”, can

be expressed as

pw ≤ pw,max qwn ≥ q̄wn (pw − pw,max)(qwn − q̄wn) = 0 (3.3)

Boundary conditions (3.2) and (3.3) have been implemented by means of different

methods. In many variational approaches to free boundary problems, the application of

the successive over-relaxation method allows to deal directly with these kind of bound-

ary conditions. For the residual flow procedure, Desai and Li [65] proposed to model

the potential seepage surface with a layer of very thin elements with a very high per-

meability. In partial saturation fluid flow problems, the so-called “variable” boundary

conditions [83] are often employed, that is the switching between the two boundary
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Figure 3.4: Rainfall boundary condition: stability of a slope during a rainfall event

types, imposed flow and imposed pressure, depending on the problem evolution.

In a more effective way, these boundary conditions can be considered in the more

general framework of unilateral constraints, in particular for those frequent situations

where large boundary regions are almost instantaneously subjected to a switch of condi-

tion type. Therefore, the explicit consideration of a Signorini type boundary condition

(3.2) for the potential seepage surface recently allowed Zheng et al. [155] to keep

the variational inequality structure, despite of the regularization of the Heaviside step

function and thus leading to improved solutions. In the partial saturation approach,

we have considered the more general rainfall boundary condition [40], where the main

ideas concerning the aforementioned hydro-mechanical analogy have been introduced.

3.3 Seepage problem with unilateral constraints

In this section we consider a formulation of fluid flow through partially saturated porous

continua, including unilateral boundary conditions presented in Section 3.2. We also

show in detail the formal analogy with the frictionless Signorini contact problem.

For simplicity, we consider the case in which the porous space is partially saturated



CHAPTER 3 UNILATERAL CONSTRAINTS IN UNSATURATED FLOW 75

by a single fluid phase. Such a formulation can be easily extended to the case of a

two-phase fluid mixture, liquid plus gas, saturating the solid skeleton voids.

3.3.1 Poro-elastic model

The porous solid volume is identified by a region Ω ⊂ Rndim being ndim = 1, 2 or 3 the

spatial dimension of the problem. Denoting by “ ˙(·)” and “div(·)” the time derivative

and the standard divergence operator, the fluid mass balance can be written in strong

form as

Ṁw = −divqw in Ω (3.4)

where Mw is the fluid mass content, defined as the fluid mass per unit volume of the

porous solid, and qw is the fluid-mass velocity relative to solid skeleton.

Constitutive equations are employed to obtain both the fluid mass velocity qw and

the fluid mass content rate Ṁw from the interstitial fluid pressure field pw. Namely, a

generalized Darcy fluid flow law is used to describe unsaturated seepage through the

porous solid in terms of the gradient “∇(·)” of pore pressures:

qw = −ρw0k
rel
w ksat

w (∇pw − ρw0g) (3.5)

where ρw0 is the fluid mass density and ksat
w is the permeability tensor characterizing

the saturated porous solid. The so-called “relative” permeability coefficient krel
w is

typically assumed as dependent on the saturation degree sw, which in turn is defined

as the current fluid volume per unit volume of porous space.

Following another common simplifying assumption, the saturation degree is con-

sidered as a function of the capillary pressure, which in turn is defined as pc := −pw in

the single-fluid setting.

For a deformable isotropic solid skeleton, the fluid mass content rate can be related

to rates of pore pressures and strains:

Ṁw = ρw0swbε̇v + ρw0Cwṗw (3.6)

where εv := ε : 1 is the volumetric part of solid skeleton infinitesimal strain tensor ε

and 1 is the second-order identity tensor. The tangent storage modulus Cw appearing
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in (3.6) can be expressed in terms of the current porosity n, defined as the void volume

for unit volume of porous solid, and of the derivative s′w of saturation degree with

respect to capillary pressure pc:

Cw = s2
w

b− n

κs

+
nsw0

κw

− ns′w (3.7)

where sw0 is the initial saturation degree and κs, κw are the volumetric stiffness mod-

ulus of solid and fluid phases, respectively. Equation (3.6) is coupled to the following

constitutive relation for (total) stress σ (see Chapter 1):

σ̇ = Cskε̇− swbṗw1 (3.8)

for the drained elastic tensor Csk. The Biot coupling coefficient appearing in (3.6-3.8)

reads

b = 1− κsk

κs

(3.9)

with κsk the volumetric stiffness modulus of solid skeleton. We refer to Chapter 1

and references therein for an extension of such a model to the case of two fluid phases

saturating the porous space. Furthermore, a non isotropic solid skeleton and saturation

degrees depending also on strains are considered in Chapter 1.

In some applications, an acceptable approximation of the pore pressure field can be

evaluated by means of an uncoupled approach, assuming a vanishing total stress rate

in volumetric part of constitutive equation (3.8). With this assumption, the volumetric

strain rate of solid skeleton can be expressed just in terms of the pore pressure rate:

ε̇v =
swb

κsk

ṗw (3.10)

which, in turn, is substituted in (3.6), leading to

Ṁw = ρw0

(
Cw +

s2
wb2

κsk

)

︸ ︷︷ ︸
=: C∗

w,k

ṗw (3.11)

If oedometric conditions are assumed, expressions formally identical to (3.10) and (3.11)

are obtained for volumetric strain and fluid-mass content rates, that is, respectively:

ε̇v =
swb

Eed,sk

ṗw Ṁw = ρw0

(
Cw +

s2
wb2

Eed,sk

)

︸ ︷︷ ︸
=: C∗

w,ed

ṗw (3.12)
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with Eed,sk the oedometric modulus of the solid skeleton. If fully saturated conditions

and a rigid solid phase are assumed, that is sw = 1 and 1/κs = 0, fluid-mass content

rate expression (3.12)2 reduces to the well-known relation proposed in [84].

We recall that (3.11) and (3.12)2 provide exact evaluation of fluid mass content rate

in some particular coupled cases, including the classical Terzaghi’s one-dimensional

consolidation, and more generally represented by that oedometric problems where only

changes in hydraulic boundary conditions are applied. In these problems, in fact, pore

pressures can be calculated by means of (3.4-3.5) and the solid skeleton strain is ob-

tained from combination with equations (3.12). For simplicity, only the fluid problem

is considered in the rest of this chapter. In fact, boundary conditions presented in

Section 3.2 affect only the fluid flow. Therefore, the equations governing the problem

evolution are the fluid mass balance (3.4), the generalized Darcy law (3.5) and the con-

stitutive equation (3.12)2 for the fluid mass content rate in the Jacob form. Application

examples of unilateral boundary conditions on fluid flow to fully coupled problems are

presented in Chapters 2 and 4.

3.3.2 Unilateral boundary conditions

Standard conditions on fluid pressure or flow are prescribed at disjoint portions ∂pΩ

and ∂qΩ of the porous solid boundary ∂Ω, that is, respectively:

pw = p̂w on ∂pΩ

qwn = q̂wn on ∂qΩ
(3.13)

for the flow normal component qwn := qw · n with n the outward unit normal to the

domain boundary ∂Ω. In addition, we consider also a boundary portion ∂cΩ, such that:

∂Ω = ∂pΩ ∪ ∂qΩ ∪ ∂cΩ

∂pΩ ∩ ∂qΩ = ∂qΩ ∩ ∂cΩ = ∂cΩ ∩ ∂pΩ = ∅
(3.14)

where a normal inflow q̄wn is prescribed if the pore pressure is less than a maximum

prescribed value pw,max. On the contrary, an outflow is returned to the environment
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as the pore pressure attains the limit value pw,max. These requirements on ∂cΩ can be

effectively expressed by means of the following complementarity conditions

g := ρw0 (pw − pw,max) ≤ 0

λ := qwn − q̄wn ≥ 0

λg = 0





on ∂cΩ (3.15)

in terms of the pore pressure “gap” g and of the runoff flow λ. We remark that a

potential seepage surface can be effectively modelled by setting pw,max = 0 and q̄wn = 0

in unilateral boundary conditions (3.15), as schematically illustrated in Figure 3.5.
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Figure 3.5: Bilateral and unilateral boundary conditions in the hydraulic seepage problem

The weak form of fluid mass balance (3.4) takes the form
∫

Ω

Ṁwδpw dΩ =

∫

Ω

qw · ∇δpw dΩ−
∫

∂Ω

qwnδpw dA (3.16)

for all admissible variations δpw ∈ Vp, with

Vp := {δpw : Ω → R : δpw = 0 on ∂pΩ} (3.17)

As a consequence of standard boundary conditions (3.13) and gap definition (3.15)1,

the weak balance (3.16) can be rewritten as
∫

Ω

Ṁwδpw dΩ =

∫

Ω

qw · ∇δpw dΩ−
∫

∂qΩ

q̂wnδpw dA−
∫

∂cΩ

qwn

ρw0

δg dA (3.18)
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for all δpw ∈ Vp and where δg, due to the gap definition (3.15)1, takes the form

δg = ρw0δpw (3.19)

After substitution of runoff flow definition (3.15)2, the preceding weak balance reads:

∫

Ω

Ṁwδpw dΩ =

∫

Ω

qw · ∇δpw dΩ−
∫

∂qΩ

q̂wnδpw dA−

−
∫

∂cΩ

q̄wn

ρw0

δg dA−
∫

∂cΩ

λ

ρw0

δg dA (3.20)

for all δpw ∈ Vp.

3.4 A formally identical mechanical problem: the

Signorini contact

In this section, we consider the problem of frictionless contact of an elastic body against

a rigid obstacle. In particular, it will be noted how complementarity conditions de-

scribing contacts are formally identical to (3.15). In the contact problem, the field

equation is represented by the quasi-static linear momentum balance:

div σ + f = 0 (3.21)

where σ is the Cauchy stress tensor (positive for the tensile case) and f is the volume

force vector. Standard conditions on displacements u or normal stresses are prescribed

at disjoint portions ∂uΩ and ∂tΩ of the solid boundary ∂Ω, that is, respectively:

u = û on ∂uΩ

σn = t̂ on ∂tΩ
(3.22)

A non-linear hyperelastic model can be assumed:

σ̇ =
∂2ψ

∂ε2
ε̇ = C ε̇ (3.23)

for the Helmholtz free energy ψ, the elastic tangent tensor C and the infinitesimal

deformation tensor ε = ∇su.



CHAPTER 3 UNILATERAL CONSTRAINTS IN UNSATURATED FLOW 80

For the frictionless contact against a rigid obstacle, we consider a boundary portion

∂cΩ, such that:

∂Ω = ∂uΩ ∪ ∂tΩ ∪ ∂cΩ

∂uΩ ∩ ∂tΩ = ∂tΩ ∩ ∂cΩ = ∂cΩ ∩ ∂uΩ = ∅
(3.24)

On this portion, the gap can be defined [92, 151] as the (negative) distance between

a point on the potential contact surface ∂cΩ and the closest point on the rigid body

(Fig. 3.6). The compression on ∂cΩ, given by

tn := −σn · n (3.25)

is equal to the prescribed value t̄n as far as the point in not in contact with the rigid

obstacle and then the gap is negative. On the other hand, as contact is attained, the

gap is zero and the compression tn raises up due to the obstacle reaction. These require-

ments on ∂cΩ can be effectively expressed by means of the following complementarity

conditions

g := g0 + u · n ≤ 0

λ := tn + t̄n ≥ 0

λg = 0





on ∂cΩ (3.26)

where the particular form of the current value of the gap g in terms of displacement

field u, initial value g0 and outward normal n to surface ∂cΩ has been obtained in the

infinitesimal deformation range [86]. We note that the positive sign in the definition

of the compression surplus λ is due to the opposite conventions used to define tn and

t̂n (t̄n), that is, (3.25) and (3.22)2, respectively.

It can be noted how unilateral boundary conditions characterizing the frictionless

contact against a rigid obstacle are formally identical to the ones introduced in the

hydraulic problem, described by complementarity conditions (3.15).

The weak form of the linear momentum balance taking into account unilateral

constraints in frictionless contacts reads
∫

Ω

σ : ∇s(δu) dΩ =

∫

Ω

f · δu dΩ +

∫

∂tΩ

t̂ · δu dA +

+

∫

∂cΩ

t̄nδg dA−
∫

∂cΩ

λδg dA (3.27)
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Figure 3.6: Bilateral and unilateral boundary conditions in the mechanical Signorini problem

for all admissible variations in the displacement field δu ∈ Vu where

Vu = {δu : Ω → Rndim : δu = 0 on ∂uΩ} (3.28)

and with

δg = δu · n (3.29)

Remark 3.1 It can be argued that, to obtain a mechanical problem formally identical

to the hydraulic one presented in Section 3.3, time should appear explicitly in the lin-

ear momentum balance (3.21), thus leading to a parabolic problem. This result could

be easily obtained by replacing the hyperelastic model (3.23) with a visco-elastic one.

However, the formal analogy of interest in this work concerns the unilateral boundary

conditions, not the model. Furthermore, the previously described hydraulic parabolic

problem reduces to an elliptic one formally identical to its mechanical counterpart if we

assume as incompressible the solid skeleton and both the solid and fluid phases.

3.5 Numerical regularization techniques

Several numerical techniques can be employed to treat unilateral constraints expressed

by complementarity conditions (3.15) and (3.26) for hydraulic and mechanical prob-
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lems, respectively. In a finite element formulation, the solution on each node subjected

to a unilateral constraint can be obtained iteratively, by means of a switch between

imposed pressure (displacement) and flow (traction) type boundary conditions. This

algorithm performs well with linear problems but for non-linear problems it may not

be stable, failing to converge, especially when the number of nodes simultaneously

subjected to this numerical switch becomes very high [111]. However, for seepage

problems through unsaturated porous continua, this approach is commonly used and

implemented in the so-called “variable boundary conditions” [83].

As an alternative, we consider two techniques typically employed in contact me-

chanics: the penalty and the augmented Lagrangian methods [92, 151]. Furthermore,

in the following sections, we present a physical interpretation of the application of

these two techniques for the hydraulic problem considered herein, comparing it with

the well-known interpretation of the same techniques in the contact problem.

3.5.1 Penalty method

The penalty method is the simplest way to regularize complementarity conditions:

constraints (3.15)2 and (3.26)2 are both satisfied by imposing

λ = κ〈g〉 (3.30)

where κ is a positive coefficient and “〈·〉” is the classical Macaulay operator returning

the positive part of (·). In view of (3.30), we can observe that conditions (3.15)1 and

(3.15)3 for the hydraulic problem and (3.26)1 and (3.26)3 for the mechanical problem

are not in general satisfied. It can also be shown that the constraint violation decreases

as the penalty coefficient increases. Complementarity conditions are hence fulfilled only

in the limit for κ → ∞ (Fig. 3.7). However, only a finite value of κ can be set in a

numerical solution and it is well known that a high value of the penalty coefficient can

lead to numerical problems as ill-conditioning and reaction inaccuracy. However, this

method is widely used, especially for those problems where accuracy is not a primary

concern. We refer to [86] for numerical application of this technique in the mechanical

framework.
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Figure 3.7: Schematic representation of complementarity condition and of its penalty regu-
larization

We recall the physical interpretation of this method for the contact problem: the

rigid obstacle is substituted with a very stiff non-linear spring that, as contact is at-

tained, allows a small penetration. For the hydraulic problem, equation (3.30) can

be viewed as a (non-linear) Darcy law governing the flow through a zero-thickness

interface with a “surface” permeability κ. Increasing the permeability of this surface

reduces the values of pore pressures exceeding the maximum prescribed value

3.5.2 Augmented Lagrangian method

The augmented Lagrangian method was firstly introduced to solve general constrained

optimization problems by Hestenes [78] and Powell [108]. It was successively applied

to frictionless contact in [152]. This method can be viewed as a compromise between

Lagrange multipliers and penalization of constraint violations. A very simple numer-

ical implementation of the augmented Lagrangian method is the Uzawa algorithm

[13], where the problem solution is achieved iteratively: being m the Uzawa iteration

counter, hydraulic and mechanical problems are solved taking λ(m) fixed in (3.20) and
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(3.27), respectively. The multiplier value is then locally updated setting

λ(m+1) = 〈λ(m) + κg(m)〉 (3.31)

This procedure continues until achievement of convergence, established in terms of λ

or g [92].

As in the penalty method, complementarity conditions (3.15) and (3.26) are fulfilled

in the limit, but for m →∞, not for κ →∞. In this way, a finite value of κ does not

compromise constraint violation, thus circumventing the penalty method shortcomings.

The number of Uzawa iterations decreases for increasing κ. However, improvements

with respect to the penalty method become less remarkable for increasing κ.

For the mechanical problem, the physical interpretation of the Uzawa procedure is

quite simple. In the first step, the problem is solved as in the penalty method, thus

obtaining a penetration g(1). By imposing λ(1) = 0, penalty method provides a first

estimate of the multiplier, that can be iteratively refined by the update (3.31). The

Uzawa update (3.31) can be viewed as the application of a force λ(2) = 〈κg(1)〉 to the

spring; this force reduces the penetration in the rigid obstacle to g(2) < g(1). A new

force λ(3) = 〈λ(2)+κg(2)〉 is then applied to the spring, further reducing the penetration,

and the procedure continues until convergence is reached. In the hydraulic problem,

every single Uzawa update can be viewed as the extraction of an outflow through the

boundary portion ∂cΩ that iteratively reduces the excess pore pressure stored in a

boundary surface of permeability κ.

3.6 Finite element formulation

In this section finite element methods for the hydraulic and the mechanical problems

described in Sections 3.3 and 3.4, respectively, are developed. The attention is focused

on nodal terms taking into account unilateral constraints by means of penalty and

augmented Lagrangian methods.
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3.6.1 Seepage problem

Isoparametric interpolations are employed to approximate pore pressures pw at a point

x of a generic finite element Ωe, that is:

pwe(x) = Ne(x)pe (3.32)

where Ne(x) is the shape function matrix used to interpolate nodal pore pressures

pwe . Approximation of pore pressure gradient is based on a standard gradient operator

Be := ∇Ne, that is:

∇pwe = Bepe (3.33)

An ordinary differential system is obtained by using interpolations (3.32) and (3.33)

in the finite-element discretization of fluid mass balance (3.20). This system is written

in residual algebraic form for the generic time step [tn, tn+1], with the rate equation

of fluid-mass balance approximated by a backward-Euler scheme. Denoting by ∆t =

tn+1 − tn the time increment and omitting index n + 1 to simplify the notation, the

residual system reads:

rw = f ext
w + fw,c −

nel

A
e=1

[∫

Ωe

NT
e

Mw −Mw,n

∆t
dΩ−

∫

Ωe

BT
e qw dΩ

]
= 0 (3.34)

where

f ext
w = sw −

nel

A
e=1

[∫

∂Ωe∩∂qΩ

NT
e q̂wn dA +

∫

∂Ωe∩∂cΩ

NT
e q̄wn dA

]
(3.35)

is the external hydraulic load vector, with sw the concentrated source vector, and

fw,c = −
nel

A
e=1

∫

∂cΩe

NT
e λ dA (3.36)

is the runoff outflow vector on ∂cΩe := ∂Ωe ∩ ∂cΩ, that is, the portion of the element

boundary subjected to the unilateral constraint.

The algebraic system (3.34) is strongly non-linear, due not only to the unilateral

constraint term (3.36), but also to the generalized Darcy law (3.5) and storage mod-

ulus (3.7). Therefore, a Newton-Raphson iterative procedure can be used, where the

increments ∆(·) = (·)(k+1)
n+1 − (·)(k)

n+1 of unknown nodal variables at tn+1, are evaluated
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at iteration (k + 1) by means of the following linearized form of the solving system:

r(k)
w = −

(
∂rw

∂p

)(k)

∆p (3.37)

By means of the approximated form of the generalized Darcy law

qw = −ρw0k
rel
w ksat

w (Bepe − ρw0g) (3.38)

and the interpolations (3.32) and (3.33), the application of the chain rule to the residual

equation (3.34) allows us to rewrite the linearized solving system (3.37) as

r(k)
w =

(
S

∆t
−G + H̃

)(k)

∆p (3.39)

where S, the global storage matrix, is defined as

S =
nel

A
e=1

∫

Ωe

NT
e

∂Mw

∂pw

Ne dΩ (3.40)

operator G, resulting from the linearization of relative permeability coefficient krel
w with

respect to pore pressure pw, takes the form

G =
nel

A
e=1

∫

Ωe

BT
e

∂krel
w

∂pw

ksat
w quni

w Ne dΩ (3.41)

with

quni
w := −ρw0(Bepe − ρw0g) (3.42)

and operator H̃ is given by

H̃ = H + Pw (3.43)

where H is the standard global permeability matrix, that is,

H =
nel

A
e=1

∫

Ωe

ρw0B
T
e krel

w ksat
w Be dΩ (3.44)

and Pw is a further operator due to linearization of the non-linear unilateral term

(3.36):

Pw =
nel

A
e=1

∫

∂cΩe

NT
e

∂λ

∂pw

Ne dΩ (3.45)
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Remark 3.2 Fluid mass content derivative with respect to pore pressure in the global

storage matrix (3.40) must be consistent with the time-integrated form of (3.11) or

(3.12)2 used in the residual (3.34). In order to avoid oscillatory solutions, a lumped

storage matrix should be used, in particular for very small time increments. Moreover,

in the time-integrated form of (3.11) or (3.12)2, expression ṡw should be preferred to

s′wṗc, thus limiting mass balance errors. For details about these considerations, see

Chapter 2 and references cited therein.

In the developments that follow, the attention is focused on the linearization of

the extra term due to the unilateral constraint, thus providing an explicit form for

the operator Pw, depending on which one of the regularization techniques described in

Section 3.5 is employed.

Penalty method linearization

By means of substitution of runoff flow expression (3.30), vector (3.36) reads

fw,c = −κ
nel

A
e=1

∫

∂cΩe

NT
e 〈g〉 dA (3.46)

The derivative of runoff flow (3.30) with respect to the pore pressure can be easily

obtained from gap definition (3.15)1:

∂λ

∂pw

=
∂λ

∂g

∂g

∂pw

= κρw0H(g) (3.47)

where “H(·)” is the Heaviside function, returning 1 when (·) is positive, 0 otherwise.

This expression allows us to rewrite explicitly the linearization operator (3.45) as

Pw = κ
nel

A
e=1

∫

∂cΩe

ρw0H(g)NT
e Ne dΩ (3.48)

Augmented Lagrangian method linearization

Two nested iterative schemes are needed when the augmented Lagrangian method is

implemented. In fact, as pointed out in Section 3.5.2, the non-linear problem is solved

by means of the Newton-Raphson iterative procedure taking the runoff flow λ(m) fixed.
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The update (3.31) is performed and, with the new value λ(m+1), the non-linear problem

is solved again.

Now, taking the Uzawa iteration counter m as fixed and omitting the Newton-

Raphson iteration counter k, the runoff flow vector (3.36), in view of (3.31), takes the

form

f (m)
w,c = −

nel

A
e=1

∫

∂cΩe

NT
e 〈λ(m) + κg(m)〉 dA (3.49)

By means of the gap definition (3.15)1, the derivative of the runoff flow λ(m+1) with

respect to the pore pressure p
(m)
w takes the form

∂λ(m+1)

∂p
(m)
w

= κρw0H(λ(m) + κg(m)) (3.50)

that, substituted in the linearization operator (3.45), leads to

P(m)
w = κ

nel

A
e=1

∫

∂cΩe

ρw0H(λ(m) + κg(m))NT
e Ne dΩ (3.51)

3.6.2 Contact problem

In the mechanical counterpart of the seepage problem considered in previous section,

the same isoparametric interpolation is employed to approximate displacement u, i.e.:

ue(x) = Ne(x)de (3.52)

and the strain approximation is achieved by means of a mixed B-bar [81] operator:

εe = B̄ede (3.53)

Substitution of interpolations (3.52) and (3.53) in the linear momentum balance (3.27)

leads to the following residual algebraic system:

rm = f ext
m + fm,c −

nel

A
e=1

∫

Ωe

B̄T
e σ dΩ = 0 (3.54)

where

f ext
m = sm +

nel

A
e=1

[∫

Ωe

NT
e f dΩ +

∫

∂Ωe∩∂tΩ

NT
e t̂ dA +

∫

∂cΩe

NT
e t̄nne dA

]
(3.55)
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is the external mechanical load vector, with sm the vector of nodal loads, and

fm,c = −
nel

A
e=1

∫

∂cΩe

NT
e λne dA (3.56)

is the compression surplus vector.

Remark 3.3 It can be easily shown how the hydraulic problem is quite simpler then

its mechanical counterpart: in fact, comparing gap definitions (3.15)1 and (3.26)2 and

concentrated terms (3.36) and (3.56), we may note that only scalar quantities are in-

volved in the hydraulic problem. On the contrary, in the contact problem, an important

role is played by the numerical treatment of geometrical arguments.

A Newton-Raphson procedure may be used to solve the algebraic system (3.54),

where non-linearities are due to the contact term (3.56) and to the non-linear elastic

model (3.23), leading to

r(k)
m = −

(
∂rm

∂d

)(k)

∆d (3.57)

The discretized form of the non-linear elastic relation (3.23) can be obtained by means

of substitution of strain approximation (3.53), thus leading to

σ̇ = CB̄eḋe =
∂σ

∂de

ḋe (3.58)

that, substituted in the residual (3.54), allows to rewrite the linearized system (3.57)

as

r(k)
m = K̃(k)∆d (3.59)

with

K̃ = K + Pm (3.60)

where

K =
nel

A
e=1

∫

Ωe

B̄T
e CB̄e dΩ (3.61)

is the standard tangent stiffness global matrix, and

Pm =
nel

A
e=1

∫

∂cΩe

NT
e

∂

∂u
(λne)Ne dΩ (3.62)

is a linearization operator due to the unilateral term (3.56). In the linearization oper-

ator (3.62), ne is the vector normal to ∂cΩ.
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Penalty method linearization

Substitution of the compression surplus (3.30) in vector (3.56) leads to

fm,c = −κ
nel

A
e=1

∫

∂cΩe

NT
e 〈g〉ne dA (3.63)

by means of the gap definition (3.26)1 the derivative of the compression surplus λne

with respect to the displacement u reads

∂

∂u
(λne) =

∂

∂g
(λne)

∂g

∂u
= κH(g)(ne ⊗ ne) (3.64)

thus leading to the following explicit expression for the linearization operator (3.62):

Pm = κ
nel

A
e=1

∫

∂cΩe

H(g)NT
e (ne ⊗ ne)Ne dΩ (3.65)

Augmented Lagrangian method linearization

Substitution of the compression surplus (3.31) in vector (3.56) leads to

f (m)
m,c = −

nel

A
e=1

∫

∂cΩe

NT
e 〈λ(m) + κg(m)〉ne dA (3.66)

by means of the gap definition (3.26)1, the derivative of the compression surplus

λ(m+1)ne with respect to the displacement u(m), reads

∂

∂u(m)
(λ(m+1)ne) = κH(λ(m) + κg(m))(ne ⊗ ne) (3.67)

that, substituted in linearization operator (3.62), gives

P(m)
m = κ

nel

A
e=1

∫

∂cΩe

H(λ(m) + κg(m))NT
e (ne ⊗ ne)Ne dΩ (3.68)

3.7 Representative numerical simulations

In this section, numerical examples performed by means of the finite element formu-

lation presented in Section 3.6 are considered. Firstly, two simple one-dimensional

problems are analyzed. The main goal is to assess the analogy between hydraulic and
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mechanical problems in terms of penalty and augmented Lagrangian algorithm perfor-

mance. Linear interpolation on one-dimensional elements is considered both for the

pore-pressures and the displacements, with one Gauss quadrature point.

The problem of infiltration into a partially saturated porous layer is then considered,

as an example of application of unilateral boundary condition to model the so-called

“rainfall boundary condition”. Finally, partial saturation of a concrete gravity dam

during reservoir operations is analyzed, focusing the attention on the drainage system

in the dam body, modelled by means of proposed unilateral boundary constraints. In

both problems, we employ bi-dimensional three-node triangles with linear interpolation

of pore-pressure and three Gauss quadrature points. These last two numerical tests

are performed by means of the penalty method implementation of unilateral boundary

conditions in a two-node linear element, which is then connected to boundary ∂Ωc of

the porous solid. In these elements, a two-node Newton-Cotes/Lobatto quadrature

rule is considered in order to avoid an oscillatory pressure profile on the interface.

The same quadrature rule is typically employed for interface elements in mechanical

problems [74, 118].

3.7.1 One-dimensional mechanical and hydraulic examples

In this section, two formally equivalent one-dimensional problems are considered: the

contact of a linear elastic truss against a rigid obstacle and the infiltration into a

saturated soil column. The main goal is to compare the numerical performances of

penalty and augmented Lagrangian methods observed in the numerical simulation of

both the problems.

The analytical solution of these problems is employed here to estimate accuracy in

the reaction calculated by numerical methods. In the contact problem illustrated in

Figure 3.8a we consider a steel truss with L = 2 m, clamped at one end and loaded by

a concentrated force F = 2 · 103 kN . Initially, the loaded end is distant |g0| = 10−3 m

from a rigid obstacle. We assume E = 2 · 108 kPa for the Young modulus and A =

1.3 · 10−2 m2 for the a cross area. With this setting, the applied load is greater than
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the maximum traction allowed by the initial gap g0 and effectively loading the truss,

that is,

N = −|g0|EA

L
(3.69)

We note that N is negative, consistently with definition (3.25) of normal stresses on

the contact surface. The compression surplus due to rigid obstacle reaction is

Rv = N + F (3.70)

which can be compared with its general expression (3.26)2.

R F g EA Lv 0= - | | /

L = 2 m

F = 2000 kN

N g EA L= | | /0

| | = 10 mg0

-3

HEB 280

Fe 360

pw = 0

rainfall

runoff
R qv wn wn= - q

infiltration

impervious
H = 1 m

Hp = 0.1 m

qwn = -1.1 10 kg/m s�
-3 2

q kwn w0 w0 w= � �
sat ( + )H Hp

H

q kwn w0 w0 w= � �
sat ( + )H Hp

H

Figure 3.8: One-dimensional linear problems: frictionless contact of an elastic truss against
a rigid obstacle (a) and infiltration into a saturated soil column (b)

A formally equivalent hydraulic problem is shown in Figure 3.8b. A porous column

H = 1 m high is contained in a cylinder of height H + Hp = 1.1 m, with impervious

lateral surface and draining base. The water inflow q̄wn = −1.1 × 10−3 kg/(m2s) is

prescribed at the top surface. Solid skeleton, solid and liquid phases are assumed to be

incompressible. Therefore, in the hydraulic equation, time contributions vanish, thus

leading to an elliptic problem. Moreover, if the full saturation hypothesis holds, the

permeability tensor does not depend on the pore pressure. The solving system (3.39)

takes then a form similar to the mechanical one (3.59), as storage and fluid linearization



CHAPTER 3 UNILATERAL CONSTRAINTS IN UNSATURATED FLOW 93

operators disappear. The only non linear term is due to the unilateral constraint. As

in the contact problem, the applied load is greater than the maximum allowed one. In

fact, the water ponding on the top surface of the soil column is limited by the cylinder

height, with a maximum pressure value pw,max = γw0Hp, where γw0 is unit weight of

water. Therefore, the water inflow into the soil column cannot exceed the limit value

qwn = −ρw0γw0k
sat
w

H + Hp

H
(3.71)

If the permeability of the soil is ksat
w = 10−7 m2/(kPa s), the absolute vale of this limit

flow is lower than |q̄wn|. Hence, in order to keep pw = pw,max on the top surface, a

runoff outflow

Rv = qwn − q̄wn (3.72)

is returned to the external environment through the same surface.

Analytical solutions (3.69–3.72) are now employed to investigate the accuracy of

numerical solutions. Denoting by λ the unilateral reaction computed by means of

relations (3.30) and (3.31) adopted in penalty and augmented Lagrangian method,

respectively, the error measure

reac.err. :=
|λ−Rv|

Rv

(3.73)

can be introduced. The performance of numerical methods considered herein may be

assessed not only in terms of reaction accuracy, but also considering relevant quantities:

• the minimum tolerance in solution error which is admissible for the Newton-

Raphson algorithm;

• the ratio between the constraint violation to the initial gap value (in the hydraulic

problem we may set g0 = ρw0pw,max);

• the condition number

Nc := ‖A‖p‖A−1‖p (3.74)
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where “‖ · ‖p” is the norm induced by the vectorial p-norm and A is equal to tangent

stiffness K̃ and to permeability H̃, for the mechanical and the hydraulic problems,

respectively. In order to reduce the computational effort, the p = 1 norm, defined as

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij| (3.75)

can be employed to estimate the condition number. All the aforementioned quantities

are mutually linked. For example, it is well known how the accuracy of the solution

of a linear system obtained by means of direct or iterative solvers is strongly affected

by the condition number [109]. In the following, it will be shown how such interaction

appears also in numerical results.

Numerical solutions are obtained by means of a uniform discretization of 100 one-

dimensional linear element. Firstly, solutions obtained by means of the augmented

Lagrangian algorithm are presented. In Figure 3.9 the convergence path of the Uzawa

algorithm is shown; numerical results refer to two different values of the ratio of penalty

coefficient κ to a characteristic stiffness, or permeability, that can be defined as

κ∗ :=
EA

he

(3.76)

for the mechanical problem and

κ∗ := ρw0
ksat

w

he

(3.77)

for the hydraulic problem, where he is the finite element size. As it can be expected, in

the Uzawa algorithm the penalty coefficient plays the role of a convergence acceleration

factor for the hydraulic problem (Fig. 3.9b) as well as for the mechanical one (Fig.

3.9a).

For strongly non-linear transient problems as, for example, the infiltration in par-

tially saturated porous continua, the use of the augmented Lagrangian method could

results in an unacceptable computational effort. For this reason, the numerical results

of the penalty method are considered and compared with the ones obtained by Uzawa

algorithm. In Figure 3.10 some quantities related to solution accuracy are plotted as

functions of the penalty coefficient. In view of relation (3.30), the constraint violation
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Figure 3.9: One-dimensional linear problems: Uzawa algorithm convergence path for me-
chanical (a) and hydraulic (b) problems

decays as the penalty coefficient increases. This is not the case of the reaction error: in

fact, the condition number Nc increases when high penalty coefficients are employed,

thus leading to the well known ill-conditioning issues, as, for example, an increasing

minimum admissible tolerance for the Newton-Raphson algorithm. Therefore, it can

be shown for the mechanical problem in Figure 3.10a, as well as for the hydraulic one in

Figure 3.10b, how the reaction error decreases when the penalty coefficients increase up

to an “optimal” value. Below such a value, the positive effect of an increasing accuracy

in the final gap prevails on ill-conditioning issues. Above such an optimal value of the

penalty coefficient, the reaction error increases, as a consequence of the precision loss

due to ill-conditioning effects. The optimal penalty value can be taken approximatively

equal to 106÷107 κ∗ for both the problems, which is consistent with penalty coefficient

values recommended for penalty methods by Taylor [138] and satisfies the condition

κ ≤ κmin√
nuer

(3.78)

obtained in [102] by means of an error analysis taking into account roundoff and penalty

induced errors, where κmin is the smallest term of the stiffness matrix, nu is the number

of unknowns (here it is nu = 100) and er is the roundoff error (er ' 10−17 for a double

precision machine).

Finally, reaction errors obtained with penalty and augmented Lagrangian approach
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Figure 3.10: One-dimensional linear problems: penalty method performance for mechanical
(a) and hydraulic (b) problems

are compared in Figure 3.11. If augmented Lagrangian does not converge at the second

Uzawa iteration, the obtained reaction error is obviously smaller with respect to the

penalty one. Also in the augmented Lagrangian method, the reaction error increases

with the penalty coefficient. On the other hand, the Uzawa iteration number rapidly

increases for very small penalty coefficients. A good compromise between reaction

accuracy and convergence rate is κ = 101 ÷ 103 κ∗, as indicated in [138] for many

problems.

Figure 3.11: One-dimensional linear problems: augmented Lagrangian vs. penalty perfor-
mance in terms of reaction accuracy for mechanical (a) and hydraulic (b) problems
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However, in hydraulic problems, requirements on runoff flow accuracy and on the

pressure constraint fulfillment are typically less severe than in contact problems. It can

be reasonable to accept a constraint violation and a reaction accuracy of 10−2 ÷ 10−3.

Therefore, the penalty method is suitable for solution of the highly non-linear transient

problems involving partial saturation.

3.7.2 Infiltration through a partially saturated layer

In this section, the application of unilateral boundary conditions to a strongly non-

linear transient problem is considered. An initially nearly dry 10 m deep soil layer is

subjected to a rainfall event. Hence, an infiltration process takes place, leading to the

propagation of a wetting front in the porous solid.
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Figure 3.12: Infiltration into a partially saturated soil: initial setting (a) and (b) boundary
conditions

Initial and boundary conditions of the problem are shown in Figure 3.12a,b, re-

spectively. Assuming that the water table is placed on the layer base, hydrostatic

initial conditions could be imposed to the problem. Anyway, in order to avoid unre-

alistic capillary pressure values, a cutoff on the initial pressure is imposed, such that

pw0 ≥ −30 kPa. In the following, we will provide motivations for the consideration of
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a cut-off on the initial distribution of pore pressures and for the particular assumed

value. Lateral surfaces are impervious, thus leading to a one-dimensional problem that

is simulated here with a plane analysis. A null value of the pore pressure is prescribed

on the base, thus modelling a water table position not affected by the infiltration pro-

cess. The interface between porous solid and atmosphere on the top surface is modelled

Table 3.1: Infiltration into a partially saturated soil: material parameters

solid skeleton Young modulus Esk 5000 kPa

solid skeleton Poisson coefficient νsk 0.3

Biot coefficient b 1.0

solid phase bulk stiffness κs 109 kPa

water bulk stiffness κw 2× 106 kPa

porosity n 0.38

water-saturated permeability ksat
w 6× 10−6 m2/(kPa s)

van Genuchten parameter avg 0.1 kPa−1

van Genuchten parameter nvg 5.6

residual saturation degree sres
w 0.4

by means of unilateral boundary conditions, where the prescribed rainfall is q̄wn and

no water ponding is allowed, that is, pw,max = 0. Before the pressure reaches such a

maximum value, the infiltration is a “flow-driven” process. After a null pressure value

is attained at the top of the layer, a positive runoff is returned to the environment to

keep such a pressure condition, thus representing a “pressure-driven” process.

Saturation degree and relative permeability functions are assumed to follow the van

Genuchten model [147]:




Sw(pc) =

[
1

1 + (avg pc)
nvg

]mvg

with Sw :=
sw − sres

w

1− sres
w

krel
w (sw) = S 1/2

w

[
1− (

1− S 1/mvg
w

)mvg
]2

with mvg = 1− 1/nvg

(3.79)

for pc ≥ 0 and the residual saturation degree sres
w . Mechanical and hydraulic properties

of the sandy loam considered herein are reported in Table 3.1.
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Figure 3.13: Infiltration into a partially saturated soil: saturation degree (a) and relative
permeability coefficient (b)

As shown in Figure 3.13, the assumed values for van Genuchten parameters avg and

nvg are obtained by interpretation of experimental data reported by Topp [141] for this

soil.

a) “initial” pressure b) “initial” saturation

Figure 3.14: Infiltration into a partially saturated soil: pore pressure (a) and saturation
degree (b) distributions after a desaturation analysis

With the assumed hydro-mechanical properties, the pressure cutoff on the initial

conditions can then be easily motivated. In fact, from the simulation of a desaturation

process of such a soil layer, the assumed initial pore pressure distribution corresponds
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approximatively to a 4 months desaturation period (Fig. 3.14a). A further reduction

in pore pressure distribution needs a very long desaturation period, because above the

water table the saturation degree is almost equal to the residual value (Fig. 3.14b).

With these settings, the infiltration process is analyzed for several values of rainfall

q̄wn. Unilateral boundary conditions on the top surface are numerically treated by the

penalty technique, with a coefficient κ = 105 m/(kPa s). The runoff flow is calculated
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Figure 3.15: Infiltration into a partially saturated soil: water inflow through the top surface
(a) and pore pressure distribution (b) obtained for q̄wn = −0.10 kg/(m2s)

by means of approximation (3.30) and is plotted in Figure 3.15a. It can be noted how

the whole rainfall q̄wn infiltrates in the porous solid until the top pressure is lower than

the maximum (null) value. As this maximum value is attained, a positive runoff reduces

the infiltration amount. All curves lay approximatively on a hyperbole shaped branch:

time required by the pore pressure to attain the limit value deceases for increasing

rainfall events. Moreover, increasing rainfall events lead to increasing pore pressure

gradients near the top surface and to more rapid infiltration reductions as the limit

pore pressure value is attained. As a limit case, a prescribed null pore pressure value on

the top surface at t = 0 result in a divergent infiltration reduction. In Figure 3.15a it

can also be shown how there is an asymptotic infiltration value. In fact, as the wetting

front moves in the porous solid (Fig. 3.15b), the pore pressure distribution in the layer

becomes closer to the steady-state uniformly null distribution, with the corresponding
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infiltration qwn = ρw0γw0k
sat
w . Finally, the evolution of pore pressure distributions is

shown in Figure 3.15b.

3.7.3 Partial saturation of a concrete gravity dam

In this section an example of application of hydraulic unilateral boundary conditions

to dam engineering is considered. In the body and in foundation of concrete gravity

dams a system of drainage holes is often placed near the upstream face in order to

relief uplift pressures at the dam base. Here this drainage system is modelled as

a unilateral constraint in an uncoupled analysis of seepage through the dam body.

Material properties of concrete are summarized in Table 3.2. A relatively high value

Table 3.2: Partial saturation of a concrete gravity dam: material parameters

solid skeleton Young modulus Esk 2.5× 107 kPa

solid skeleton Poisson coefficient νsk 0.2

Biot coefficient b 0.5

solid phase bulk stiffness κs 2.8× 107 kPa

water bulk stiffness κw 2× 106 kPa

porosity n 0.12

water-saturated permeability ksat
w 10−9 m2/(kPa s)

van Genuchten parameter avg 0.05 kPa−1

van Genuchten parameter nvg 2.3

residual saturation degree sres
w 0.1

of saturated permeability has been chosen to simulate the fissured concrete of an old

dam.

Geometry, initial and boundary conditions are depicted in Figure 3.16 a. A uniform

initial negative pressure pw0 = −100 kPa is assumed into the dam body in order to

simulate nearly dry conditions. A rapid reservoir filling is simulated by instantaneous

activation (t=0) of a hydrostatic water pressure distribution on the upstream face and
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Figure 3.16: Partial saturation of a concrete gravity dam: initial and boundary condition (a)
and unilateral constraint on the drainage system (b)

of a uplift pressure distribution at the dam base. Such an uplift distribution is reduced

with respect to the triangular shape to simulate the effects of a drainage system [42].

In particular, the uplift pressure under the drainage line is a prescribed fraction of the

pressure at the dam heel, i.e. pwd = αpwh (here it is set α = 0.25); so, the water level

in drains must not exceed the limit value hmax = pwd/γw0.

As illustrated in Figure 3.16b, in the upstream face of the drainage system, the

pressure is constrained by the unilateral condition pw ≤ γw0(hmax − z) below the

maximum water level and by pw ≤ 0 above it. If the drainage system is effective,

when the water table in the upstream part of the dam body is higher than hmax, a

runoff flow qwn is extracted from the drainage system to keep the water level in the

drains below the limit value (Fig. 3.16b). At the downstream face of the drainage

system and below the maximum water level, the pore pressure is imposed equal to

the upstream value at the same elevation to simulate the impounding of the drains.
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Figure 3.17: Partial saturation of a concrete gravity dam: pore pressure on upstream (a) and
downstream face of the drainage system

Figure 3.18: Partial saturation of a concrete gravity dam: pore pressure (a) and saturation
degree (b) 103 days after the (instantaneous) reservoir filling

Above hmax, the downstream face of the drainage system is modelled as impervious.

Pressure distributions on both faces of the drainage system are shown in Figure 3.17. In

particular, the unilateral condition applied on the upstream face is apparent in Figure

3.17a. The final distributions of pore pressure and saturation degree are plotted in
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Figure 3.18. It can be noted how the main hydraulic effect of the drainage system in

the dam body is that the portion located upstream the drains is almost fully saturated,

while the downstream portion is practically dry, except for the portion close to dam

foundation (Fig. 3.18b).



4

Strong discontinuities in multiphase

solids

4.1 Introduction

In multiphase porous media, deformations are often characterized by concentration of

strains in narrow bands. Propagation of these bands can lead to failure phenomena lo-

calized in sliding or fracture surfaces. Moreover, the presence of fluid flow fields strongly

affects evolution of these failure mechanisms, as shown for collapse of foundations and

for stability of excavations, slopes and tunnels [27, 33, 34, 66].

It is well known that standard finite element methods are not suitable for local-

ization analysis, as they show great difficulties in reproducing the concentration of

strains. We denote as “standard” the finite element formulations implementing rate-

independent plasticity models of the local continuum. In particular, localized solutions

obtained with these conventional methods are unacceptably dependent on the adopted

discretization in terms of mesh size and alignment [107, 144]. Such a pathological

mesh dependence is due to the lack of a characteristic length in the constitutive model

[79, 105, 113, 139], leading to an ill-posed problem in presence of softening and/or non

associated evolution laws.

In order to circumvent these drawbacks, a number of non-standard techniques has

105
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been proposed, like viscous [100], high-gradient [50], non-local [17] and Cosserat [61]

models. A common feature of some of these approaches is the introduction of small-

scale lengths that are able to objectively characterize localized dissipative mechanisms

along shear bands.

Small-scale effects can be effectively incorporated in a classical local continuum

framework by the strong discontinuity approach [129], a non-standard numerical tech-

nique that allows to model the appearance of discontinuous displacement fields and

that can be viewed in the more general context of assumed strain enhanced finite el-

ement methods [130]. This approach has been employed in problems involving fully

saturated porous continua [9, 33, 34].

In this chapter, we present a numerical analysis of strain localization in multi-

phase porous solids, generalizing the results presented in the last references to the

partially saturated case. The analysis considers discontinuous displacement fields and

corresponding singular distributions of strain, as well as singular distributions of fluid

contents corresponding to discontinuous flows of gaseous and liquid phases, modelling

their accumulation and/or drainage in the localized failures of interest. Pore pressure

fields are continuous in the proposed approach, in contrast with strong discontinuity

analyses presented in [91, 112] for the coupled case, where pore pressure fields are

assumed to be discontinuous.

The constitutive model presented in Chapter 1 provides the proper framework for

a generalization of the multi-scale approach presented in [34] for the fully saturated

case. In particular, a simplified version of the hyperelastic laws presented in Chapter

1 is extended to irreversible phenomena in the general framework of additive elasto-

plastic decompositions of strains and fluid mass contents. Therefore, we obtain a

simple expression for the Clausius-Duhem inequality, which can be easily employed in

the multi-scale approach to strain localization, thus extending the procedure proposed

by Armero [8] for purely mechanical problems. A crucial task of this framework is

the distinction between the large-scale problem, exhibiting the standard regularity

requirements, and the small-scale one, where displacement and fluid flow fields can

be discontinuous. In this framework, the internal contribution to dissipation can be
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viewed as a distribution, with regular and singular parts. The singular part allows

to objectively take into account localized dissipative mechanisms and to introduce

localized softening relations between displacement jumps and effective tractions acting

on the discontinuity. The small-scale problem is then connected to the large-scale

coupled problem through a weak equilibrium statement between this traction and the

stresses in the bulk.

An outline of the rest of the chapter is as follows. In Section 4.2, we develop

kinematics of the aforementioned multi-scale framework. In particular, the large-scale

problem exhibiting standard regularity requirements is described in Section 4.2.1, with

Section 4.2.2 introducing strong discontinuities in the small scale. Small and large-

scale problems are then connected in Section 4.2.3 by means of the same approach

introduced in [6] for purely mechanical problems.

Section 4.3 focuses on the multi-scale poro-plastic constitutive model. The contin-

uum poro-plastic model is developed in Section 4.3.1 in the context of the maximum

plastic dissipation principle. The condition for the appearance of a strong discontinuity,

as well as a localized softening law are introduced in Section 4.3.2, following arguments

similar to the ones employed in [33]. Localized dissipative mechanisms are then in-

troduced in the multi-scale framework adopted herein. In this context, in Section

4.3.3, we consider a particular model example represented by a dilatant poro-plastic

cohesive-frictional law.

The enhanced finite element formulation of the proposed multi-scale model is pre-

sented in Section 4.4. Singular fields of strain and fluid contents are included as local

enhancements and are kept at the element level, thus allowing their static condensa-

tion. As a consequence, the numerical implementation in the general finite element

code FEAP [138] is relatively simple.

Finally, numerical simulations of different plain strain compression tests on a par-

tially saturated porous solid are presented in Section 4.5. The obtained results illustrate

the range of application of developed models and the performance of new finite element

methods in simulating localized failure phenomena in multiphase continua.

The main results reported in the present chapter are also presented by Callari,
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Armero and Abati [37].

4.2 Discontinuous solutions in multiphase porous

continua

In this section the equations governing deformations and fluid mass content rates in

a multiphase porous solid exhibiting discontinuous displacement and fluid flow fields

are presented; the arguments employed herein are the same ones considered in [33]

for the fully saturated case, where the approach presented in [6, 8] for the uncoupled

mechanical problem has been adopted. In this framework localized dissipative mech-

anisms developing in shear bands are incorporated in the large-scale problem, defined

by the classical governing equations with the usual regularity requirements, by the

strong discontinuity concept. The equations describing large and small-scale problems

in the infinitesimal range are briefly summarized in Sections 4.2.1 and 4.2.2, respec-

tively: these two independently introduced problems are connected in Section 4.2.3,

where the approach introduced in [6] is considered.

4.2.1 Mechanical and fluid flow problems at the large scale

Due to the infinitesimal deformation assumption, reference and current configurations

of the multiphase porous solid are coincident with the domain Ω ⊂ Rndim , with ndim =

1, 2 or 3 the spatial dimension of the problem. The large-scale deformation of the porus

solid can be written in terms of the solid skeleton displacement u as

ε = ∇su (4.1)

being ∇s(·) the symmetric part of the gradient operator ∇(·), and where the large-scale

u is characterized by the standard regularity requirements.

The quasi-static equilibrium of the solid can be expressed in terms of the total stress

tensor σ by the principle of virtual work as
∫

Ω

σ : ∇sη dΩ =

∫

Ω

f · η dΩ +

∫

∂tΩ

t̄ · η dA (4.2)
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with f and t̄ imposed volumetric body forces and tractions acting on the boundary

portion ∂tΩ ⊂ ∂Ω, respectively. Equation (4.2) must hold for all admissible variations

η ∈ Vu satisfying the aforementioned regularity conditions, where

Vu = {η : Ω → Rndim : η = 0 on ∂uΩ} (4.3)

for the part of the boundary ∂uΩ ⊂ ∂Ω with imposed displacements u = ū. In the

model considered herein, the total stress field σ in the weak balance (4.2) depends not

only on the large-scale strain field ε but also on other effects that are introduced at

the small scale in Section 4.2.2.

In a similar way, introducing Mα, the large-scale mass content of the fluid α, the

mass balance law with no volumetric fluid source reads:

Ṁα = −divqα for α = w, g (4.4)

where the large-scale fluid flow qα can be defined by a generalized Darcy law:

qα = −ραkα(∇pα − ραg) (4.5)

where pα, ρα and kα are the pressure, the density and the permeability tensor of the

fluid α respectively and g is the gravity acceleration vector. The weak form of fluid

mass balance (4.4) is:

∫

Ω

Ṁαwα dΩ =

∫

Ω

qα · ∇wα dΩ−
∫

∂qαΩ

q̄αnwα dA (4.6)

for all admissible variations w ∈ Vp of the pore pressure field, with

Vp = {w : Ω → R : w = 0 on ∂pΩ} (4.7)

where ∂pΩ ⊂ ∂Ω is the part of the boundary with an imposed pore pressure pα = p̄α

and ∂qΩ ⊂ ∂Ω is the part of the boundary with imposed normal component of the

fluid flow qα · n =: qαn = q̄wn, for the outward unit normal n to the domain boundary.

Similarly to the mechanical problem, the classical regularity conditions are assumed to

be satisfied by the large-scale fluid flow problem and localized small-scale effects are

introduced independently in Section 4.2.2.
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4.2.2 Mechanical and fluid flow problems at the small scale

In the previous section only solutions satisfying standard regularity conditions have

been presented: it is well known how such regular fields are not able to correctly

capture non-smooth localized dissipative mechanism. In this section, singular fields

arising from discontinuous solutions are introduced in the problem at the small scale,

following the very same arguments employed in [33] for the saturated case.

In a local neighborhood Ωx ⊂ Ω of a material point x ∈ Ω (Fig. 4.1) crossed by

a surface Γx with unit normal n, the discontinuous small-scale displacement field uµ

takes the form

uµ = u + ζ Ψu
Γ in Ωx (4.8)

where the displacement jump across Γx is denoted by ζ : Ωx × [0, T ] → Rndim and is

parametrized by the function Ψu
Γ : Ωx → R given by

Ψu
Γ = HΓ −Nu

Γ in Ωx (4.9)

where HΓ is the Heaviside step function across Γx and Nu
Γ is a smooth function Nu

Γ , so

the function Ψu
Γ exhibits a unit jump [[Ψu

Γ]] = 1 across Γx.

Infinitesimal strains relative to the non-smooth small-scale displacement field uµ

may be introduced in the distributional sense [133] as

εµ := ∇suµ = ε(u) + Ψu
Γ ∇sζ− (ζ⊗∇Nu

Γ)s

︸ ︷︷ ︸
regular distribution

+ (ζ⊗ n)s δΓ

︸ ︷︷ ︸
singular distribution

(4.10)

for the Dirac delta distribution δΓ across Γx. The strain components

εunr = εµ − ε(u) (4.11)

are defined unresolved because large-scale strains ε(u) are not capable to capture them

in the large-scale model: unresolved strains εunr characterize the model response at

the small-scale in Ωx by means of the localized dissipative mechanisms introduced in

Sections 4.3.2 and 4.3.3.

As in [33], a discontinuous small-scale flow field for the generic fluid α is written in

the form

qαµ = qα + υαΨq
Γ for α = w, g (4.12)
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where Ψq
Γ is defined as

Ψq
Γ = HΓ −N q

Γ in Ωx (4.13)

for the general smooth function N q
Γ : Ωx → R and the fluid jump υα = [[qαµ ]] across Γx.

By applying the divergence operator to (4.12) and with argument similar to the ones

used to obtain small-scale deformation εµ in (4.10), it can be written:

divqαµ = divqα + Ψq
Γ∇υα : 1− υα · ∇N q

Γ + υα · nδΓ (4.14)

which, in turn, is substituted in the following strong form of the small-scale fluid mass

balance

Ṁαµ = −divqαµ (4.15)

leading to

Ṁαµ = Ṁα −Ψq
Γ∇υα : 1 + υα · ∇N q

Γ︸ ︷︷ ︸
regular distribution

− υα · nδΓ

︸ ︷︷ ︸
singular distribution

(4.16)

where large-scale balance (4.4) has been employed. Fluid mass contents can be also

written as

Mαµ = M̄αµ + M̃αµδΓ (4.17)

where M̃αµ is the localized fluid content on Γx. Continuum and localized mass-balance

equations are given by the regular and the singular parts of (4.16), that is, respectively:

˙̄Mαµ = −div
[
qαµ

]∣∣
Ωx\Γx

=

= −divqα −Ψq
Γ∇υα : 1 + υα · ∇N q

Γ in Ωx\Γx (4.18)

and

˙̃Mαµ = −[[qαµ ]] · n = −υα · n on Γx (4.19)

The employed approach is different by the one adopted in the saturated case in

[91, 134] where discontinuous pore pressure fields are assumed: in fact, discontinuous

pressure profiles are physically meaningless, as experimental evidences show [148]: only

pressure “kinks”, due to concentrated deformations along shear bands and modelled by

the present approach, as it can be shown in the numerical results presented in Section

4.5.1, have been observed.
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Figure 4.1: Small-scale displacement ζ and fluid flow υα jumps and relative singular distri-
butions of deformation ε̃µ and fluid mass content M̃αµ [35, 36]

4.2.3 Connection between large and small-scale problems

In Sections 4.2.1 and 4.2.2 large and small-scale displacement and fluid flow fields

have been introduced independently. The main goal of this section is to introduce the

small-scale effects in the large-scale problem preserving the local continuum character:

this implies that no length scale parameter has to be introduced in the final problem.

Therefore, in order to construct a well-posed local continuum formulation, the approach

introduced in [6, 8] is considered herein. It is well known how the weak form of linear

momentum balance at the large scale (4.2) implies regularity of tractions on a given

surface of normal unit n [51]; in particular, the local equilibrium condition

tΓ = σn|Γx (4.20)

must hold between the (total) traction vector tΓ acting on Γx and the (total) stress σ

in Ωx. In [6] it is shown how this condition can be written in a local weak form as

− 1

measure(Ωx)

∫

Ωx

γ · σn dΩ +
1

measure(Γx)

∫

Γx

γ · tΓ dΓx = 0 (4.21)

for all the variations γ of local displacement jumps ζ: therefore, the stress field σ,

depending on large scale displacements u by the large scale constitutive model described

in Section 4.3.1 is connected to displacement jumps ζ by the traction vector tΓ, that is

given as a function of the jumps ζ by the localized dissipative mechanisms introduced

in Sections 4.3.2 and 4.3.3. Therefore, equation (4.21), coupled with the large scale
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linear momentum balance (4.2), allows us to solve the mechanical problem in terms of

the kinematic variables u and ζ.

The local equilibrium condition (4.20) is obtained from the weak balance (4.21) in

the limit hx := measure(Ωx)/measure(Γx) → 0, i.e. in the large scale, thus avoiding

the introduction of a length scale parameters and preserving the local character of

the formulation. An equivalent approach is the “equi-dissipation bridge” introduced

in [8], where, by means of equalization of dissipations at large and small scales, the

orthogonality of the unresolved strains with the stress field is obtained: for the same

limit hx := measure(Ωx)/measure(Γx) → 0 such a condition, that allows us to think

at the unresolved strains as an enhancing of the large-scale ones, leads to the local

equilibrium condition (4.20).

In a similar way fluid flow jumps υα are related to the large scale fluid flows qα by

means of equations (4.18) and (4.19): in particular, large-scale flows are related to pore

pressures pα by the generalized Darcy flow laws (4.5) and fluid flow jumps are obtained

in terms of displacement jumps ζ by the localized dissipative response described in

Section 4.3.2.

4.3 Constitutive equations for strong discontinu-

ities in multiphase media

In this section the constitutive equations relating deformations and pore pressure fields

to stresses and fluid mass contents in the quasi-static problem are outlined. The case of

infinitesimal deformations for multiphase poro-elastoplastic solids is considered herein.

A constitutive equation set developed in Chapter 1 in a macroscopic thermodynamic

framework based on the Biot work [18, 54] for the hyperelastic response of multiphase

porous solids, is generalized to take into account dissipative mechanisms in the bulk

response at the small-scale Ωx \ Γx in Section 4.3.1 as well as on the discontinuity Γx

in Section 4.3.2.
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4.3.1 Continuum poro-elastoplastic model

The characterization of the bulk response is introduced in this section at the small-scale

in the general framework of additive elasto-plastic decompositions of strain and fluid

mass contents:

εµ = εe
µ + εp

µ Mαµ = M e
αµ

+ Mp
αµ

(4.22)

Elastic components in (4.22) are related to stresses σ and pore pressures pw and pg

by hyperelastic relations considered in Chapter 1: in the considered formulation, con-

sistently with a “Biot type” macroscopic thermodynamic approach, the poro-elastic

continuum is considered as an open system exchanging fluid with the environment,

thus leading to a simple expression for the dissipation in the local neighborhood Ωx.

In particular, the contribution due to internal processes takes the form

Dintµ := σ : ε̇µ +
∑

α=w,g

µα Ṁαµ − ψ̇ ≥ 0 (4.23)

with the fluid free enthalpies µα, α = w, g and the rate of the Helmholtz free energy

ψ = ψ̂(εµ,Mwµ ,Mgµ , αµ). The general strain-like internal variable vector introduced

in the elasto-plastic case has been indicated as αµ.

Following a very common simplifying assumption, saturation degrees sα are con-

sidered to depend only on the capillary pressure pc, defined as

pc := pg − pw (4.24)

Moreover, if the porous space is assumed to be filled by two immiscible barotropic

fluids and it is further supposed that these fluids are characterized by infinitesimal

deformations, by the use of the standard Coleman and Noll procedure [52], the following

simple form of hyperelastic rate equations is proved to be consistent with the dissipation

inequality (4.23):





σ̇ = Cskε̇
e
µ︸ ︷︷ ︸

=: σ̇′

−b
∑

γ=w,g

sγ ṗγ

Ṁ e
αµ

ρα0

= sαb : ε̇e
µ +

∑
γ=w,g

Cαγ ṗγ for α = w, g

(4.25)
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for the so-called “drained” elastic tangent tensor Csk and the Biot coupling tensor b.

For the generic anisotropic case, the latter tensor takes the form:

b = 1− 1

3κs

Csk1 (4.26)

with κs the volumetric stiffness modulus of solid phase.

Denoting by n0 and n initial and current values of porosity, respectively, tangent

storage modulus appearing in (4.25)2 are defined as:

Cαβ =
sαsβ

3κs

(b− n01) : 1 +
θα0

κα

δαβ + nes′α
∂pc

∂pβ

for α, β = w, g (4.27)

for the initial volumetric fluid content θα0 = (nsα)0, the stiffness modulus of fluid κα,

the Kronecker delta δαβ, the derivative of saturation degree

s′α :=
dsα

dpc

(4.28)

and the component ne of current porosity due to elastic processes, which is in turn

evaluated by means of the following rate equation in terms of primary variables:

ṅe = b : ε̇e
µ +

1

3κs

(b− n01) : 1
∑

α=w,g

sαṗα (4.29)

The aforementioned expressions for poro-elastic tangent operators as well as the elas-

tic porosity model (4.29) are a simplified form of the constitutive model obtained in

Chapter 1 by means of typical arguments of mixture theories and averaging techniques,

where the consistency of the constitutive equation set has been assessed by means of

symmetry requirements and Maxwell conditions obtained in the aforementioned macro-

scopic thermodynamic framework.

An isotropic hardening/softening regulated by a single scalar strain-like internal

variable αµ with a conjugate stress-like variable q is assumed therein for the sake of

simplicity. In the associated case, the evolution of plastic internal variables εp
µ, Mp

αµ

and αµ is given by rate equations:




ε̇p
µ = λ ∂σf

α̇µ = λ ∂qf

Ṁp
αµ

= λ ρα0∂pαf

(4.30)
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in terms of the yield function f(σ, pw, pg, q), where the plastic consistency parameter

λ is determined by the Kuhn-Tucker loading/unloading conditions and the consistency

conditions

f ≤ 0, λ ≥ 0, λf = 0, and λḟ = 0 (4.31)

Following arguments typically employed in mixture theory thermodynamics, the yield

condition can be written in terms of effective stresses σ′, internal stress-like variable

q and capillary pressure pc, i.e. f(σ, pw, pg, q) = fsk(σ
′, pc, q): this model is able to

predict some experimental evidences, such as a structural collapse during wetting in

collapsible soils and the hysteresis typically observed in retention curves during wetting

and drying cycles (e.g. see [5, 22, 85, 117, 126]). However, if the contribution of a

capillary pressure reduction to the unrecoverable strain εp
µ can be neglected and, as

commonly assumed in practice, a unique expression of the saturation degree in terms

of the capillary pressure is considered both for drying and wetting paths, the yield

function can be written only in terms of the effective stress and the internal stress-like

variables, i.e. f(σ, pw, pg, q) = fsk(σ
′, q). From effective stress equation (4.25)1, the

following relations are then obtained:

∂σf = ∂σ′fsk and ∂pαf = sαb : ∂σ′fsk (4.32)

which, in turn, are substituted in (4.30)1 and (4.30)3, leading to the following expression

for the rate of plastic fluid content:

Ṁp
αµ

= ρα0sαb : ε̇p
µ (4.33)

Therefore, from additive decomposition (4.22), hyperelastic relation (4.25)2 and equa-

tion (4.33), the fluid mass content rate can be written as

Ṁαµ = ρα0sαb : ε̇µ +
∑

γ=w,g

ρα0Cαγ ṗγ (4.34)

Remark 4.1 Expression (4.34) for the (total) fluid mass content rate is to be con-

trasted with the one obtained by means of mixture theories for the unrecoverable part

too. Within this framework, the fluid mass content rate can be written as

Ṁαµ = ρα0sαb : ε̇µ +
∑

γ=w,g

ρα0C
∗
αγ ṗγ (4.35)
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with:

C∗
αβ =

sαsβ

3κs

(b− n01) : 1 +
θα0

κα

δαβ + ns′α
∂pc

∂pβ

(4.36)

Therefore expression (4.36) differs from (4.27), where only the elastic part of current

porosity is considered. The simplification n ' ne introduced in (4.27) allows to de-

compose the fluid mass content rate by an additive decomposition. On the contrary,

equation (4.35) is characterized by an elasto-plastic coupling, thus leading to significant

modifications required not only to ensure thermodynamic consistency of the continuum

model, but also to extend strain localization analysis by the strong discontinuity ap-

proach to the elasto-plastic coupled case. Such an approximation of the third term of

tangent operator (4.36) can be considered acceptable, since the component of porosity

change due to plastic strain is normally negligible with respect to s′α variation, with the

latter one typically exhibiting a very wide range in standard multiphase problems.

4.3.2 Formation of strong discontinuities in multiphase media

Because of the yield condition is assumed here to be only a function of the effective

stress and the internal stress-like variable, the localization condition as well as the

localized softening relation between stress and displacement jump are coincident with

those one presented in [9] and are only briefly summarized in this section. In particular,

a localized poro-plastic form

λ = λ̃δΓ (4.37)

is assumed, consistently with the hypothesis made in [129] for the solid problem. There-

fore, the softening modulus can be viewed only in a distributional framework, i.e.

H−1q̇ := −α̇µ = −λ̃∂qf δΓ =⇒ H−1 = H̃−1 δΓ (4.38)

that, together with the consistency condition ḟsk = 0, after some manipulations, leads

to the localized equation

‖ζ̇‖ =
1

H̃ Ξsk

∂σ′fsk : σ̇′ (4.39)

with

Ξsk =
(∂qfsk)

2

∂σ′fsk : Csk∂σ′fsk

Csk∂σ′fsk : (m⊗ n) (4.40)
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providing the displacement jump rate magnitude ‖ζ̇‖ in terms of the normal to the

discontinuity n and of the direction of the displacement jump rate m, which in turn is

given imposing the regular character of the traction rate ṫ = σ̇n, thus leading to the

condition

Qep
skm = 0 where Qep

sk = n ·
[
Csk − 1

∂σ′fsk : Csk∂σ′fsk

Csk∂σ′fsk ⊗ Csk∂σ′fsk

]
· n

(4.41)

necessary to the strain localization, with Qep
sk the “drained” elastic perfectly plastic

acoustic tensor. By means of equation (4.41) also the normal to the discontinuity n

can be obtained: in fact, equation (4.41)1 has a solution if and only if

det(Qep
sk) = 0 (4.42)

which provides the normal to discontinuity n.

Substitution of small-scale strain field (4.10) in (4.34) leads to the following expres-

sion for the rate of small-scale fluid content:

Ṁαµ = Ṁα + ρα0sαb :
[
Ψu

Γ ∇ζ̇− ζ̇⊗∇Nu
Γ

]
︸ ︷︷ ︸

regular distribution

+ ρα0sαb ζ̇ · n δΓ

︸ ︷︷ ︸
singular distribution

(4.43)

where the large-scale fluid content rate Ṁα = Ṁα(u) is given by (4.34) for the large-

scale strain ε(u) and the pore pressure fields pα. Comparing equation (4.43) with

(4.17), the following expressions for the singular and regular parts of unresolved fluid

content, respectively can be obtained:

˙̃Mαµ = −υα · n = ρα0 sαb ζ̇ · n on Γx (4.44)

and

˙̄Mαunr = −Ψqα

Γ ∇υα : 1 + υα · ∇N qα

Γ

= ρα0sαb :
[
Ψu

Γ ∇ζ̇− ζ̇⊗∇Nu
Γ

]

= ρα0sαb : ˙̄εunr (4.45)

for regular ε̄unr and singular ε̃unr parts, respectively, of unresolved strains. A compar-

ison between equations (4.44) and (4.45) allows to assume

Nu
Γ = N q

Γ =⇒ Ψu
Γ = Ψq

Γ in Ωx (4.46)
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as considered in the finite element methods developed in Section 4.4.

4.3.3 Localized multiphase dissipative model

In the previous section the localized softening law (4.39) has been obtained directly by

the large-scale model in terms of the yield function characterizing the large-scale dis-

sipation. Therefore, it seems that the post-localization response has to be determined

by the pre-localization one. However, in a multi-scale thermodynamic framework de-

veloped in [6] in the context of purely mechanical theories, the localized dissipative

mechanism can be modelled independently by the continuum one, thus leading to a

possible localized softening law different from equation (4.39).

The aforementioned multi-scale approach has been extended to coupled fully satu-

rated porous solids in [34] in the finite strain range. The generalization to the case of

multiphase porous solids is straightforward; the internal contribution to the dissipation

in the small scale Dintµ defined in (4.23) can be decomposed as

Dintµ = D̄intµ + D̃intµδΓ (4.47)

where D̄intµ takes into account bulk dissipation and D̃intµ is the contribution due to

localized dissipative mechanisms. If a decomposition into regular and singular parts is

assumed for the Helmholtz free energy too, i.e.

ψ(εµ,Mwµ ,Mgµ , αµ) = ψ̄(ε̄µ, M̄wµ , M̄gµ , ᾱµ) + ψ̃(ε̃µ, M̃wµ , M̃gµ , α̃µ)δΓ (4.48)

regular and singular parts of the internal dissipation take the form

D̄intµ = σ : ˙̄εµ +
∑

α=w,g

µα
˙̄Mαµ − ˙̄ψ

= σ : ˙̄εp
µ +

∑
α=w,g

µα
˙̄Mp

αµ
+ q ˙̄αµ

(4.49)

and

D̃intµ = σ : ˙̃εµ +
∑

α=w,g

µα
˙̃Mαµ − ˙̃ψ

= σ : ˙̃εp
µ +

∑
α=w,g

µα
˙̃Mp

αµ
+ q ˙̃αµ

(4.50)
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respectively, where the standard Coleman and Noll procedure [52] has been employed

to obtain dissipation expressions in terms of irreversible strain-like variables. The total

dissipation in a local neighborhood Ωx can be computed as

∫

Ωx

Dintµ dΩx =

∫

Ωx

D̄intµ dΩx +

∫

Γx

D̃intµ dΓx (4.51)

where the second term on the right side takes into account in an objective way localized

dissipative mechanisms. In particular, the singular contribution, in view of (4.50), can

be rewritten as

D̃intµ = tΓ · ζ̇ +
∑

α=w,g

µαΓ

˙̃Mαµ − ˙̃ψ

= tΓ · ζ̇p
+

∑
α=w,g

µαΓ

˙̃Mp
αµ

+ qΓ
˙̃αµ

(4.52)

where the classical result of distribution theory [133]

∫

Ωx

σ : (γ⊗ n)s dΩx =

∫

Γx

tΓ · γ dΓx (4.53)

for all the variation γ of the displacement jumps ζ, has been used together with the

small-scale deformation definition (4.10) (second term on the right side) and with

ζp and M̃p
αµ

the plastic parts of the displacement jump and fluid mass content, re-

spectively, qΓ and α̃µ respectively the stress-like and the strain like scalar variables

describing a localized isotropic hardening/softening and µαΓ
the driving enthalpy on

the discontinuity.

In the localized dissipation expression (4.52) it has been assumed that the displace-

ment jump field ζ is generally given by sum of an elastic part ζe and a plastic part ζp

as in [8]. Therefore, reversible and dissipative phenomena on the discontinuity can be

modelled in a thermodynamically coherent framework by means of (4.52). However, in

this work we assume a rigid-plastic response in the post-localization range along the

discontinuity. Therefore, the displacement jump is fully irreversible, i.e. ζ = ζp, and,

due to expression (4.44), also the elastic singular part of the fluid mass content is null,

i.e. M̃αµ = M̃p
αµ

. Hence the localized contribution to the internal dissipation takes the

form

D̃intµ = tΓ · ζ̇ +
∑

α=w,g

µαΓ

˙̃Mαµ + qΓ
˙̃αµ (4.54)
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and, in this context, localized dissipative mechanisms on the discontinuity can be

described by the yield function

f̃(tΓ, µwΓ
, µgΓ

, qΓ) = f̃sk(t
′
Γ, qΓ) (4.55)

with the effective stress vector t′Γ := σ′n|Γx acting on the discontinuity. Therefore, it

can be assumed that the pre-localization small-scale dissipative response is governed

by the bulk dissipation D̄intµ . In this context, a yield function fsk(σ
′, q) has been

introduced in Section 4.3.2. The bulk response is also able to capture the localiza-

tion condition, given by equation (4.41) in terms of the bulk yield function. In the

post-localization range, localized dissipative mechanisms along the discontinuity are

described by the singular part D̃intµ and hence the localized softening law (4.39) can

be described in terms of the localized yield function f̃sk(t
′
Γ, qΓ).

In this work it is assumed for the bulk dissipative response an associated elasto-

plastic Drucker-Prager model, with a yield function written in terms of effective stresses

as

fsk (σ′, q) = ‖s‖+ β
1

3
σ′ : 1 +

√
2

3
q (4.56)

with s := dev(σ′) the deviatoric part of the effective stress tensor, and the pressure

coefficient β. Denoting by σ′1, σ′2 the in-plane principal effective stresses (σ′1 ≥ σ′2) and

by s3 the out-of-plane principal deviatoric stress, the localization condition (4.41) is

satisfied for
‖s‖
r

=

√
2

1− β2/6
with r =

σ′1 − σ′2
2

(4.57)

or, equivalently

s3 +
1

3
β = 0 (4.58)

As previously done in [33] and [39] for fully saturated and purely mechanical problems,

respectively, a dilatant perfectly plastic model describing the localized dissipation is

assumed consistently with the continuum model. Therefore, the same yield function

(4.56) is considered for the post-localization response. Denoting by t the unit tangent

to Γx, the localized dilatancy is defined under the assumption of plane strain as the
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ratio

Φ :=
ζ̇n∣∣∣ζ̇t

∣∣∣
where ζn := ζ · n and ζt := ζ · t (4.59)

are the normal and the tangential components of displacement jump, respectively. For

the considered associated Drucker-Prager model, the appearance of the localized plastic

flow (4.37) leads to the expression for the localized dilatancy and of the discontinuity

orientation, respectively

Φ =

√
2 β

2
√

1− 2β2/3
and θ =

1

2
arctan

[
sign(ζ̇t)

Φ

]
(4.60)

where θ is the angle between n and the major (in-plane) principal stress direction.

Futhermore, the localized relation (4.39) between the stress and the displacement

jump rates reads in this case

τ̇Γ sign(ζ̇t) + Φ σ̇′Γ =
H̃

3− 2β2
|ζ̇t| where τΓ := t′Γ · t σ′Γ := t′Γ · n (4.61)

are the tangential and the normal components of effective traction vector on Γx. In

this section the equations describing the localization triggering as well as the localized

softening are only briefly summarized: more details can be found in [39].

4.4 Enhanced finite element formulation

The finite element method of the localized coupled poro-plastic model described in

the previous sections is developed here in the context of the enhanced finite element

method as formulated in [130]. In particular, the developments presented for the fully

saturated case in [33, 34] are extended in the partially saturation range.

4.4.1 Finite element interpolations

Standard isoparametric interpolations of the general form

ue(x) = Nu
e (x)de (4.62)



CHAPTER 4 STRONG DISCONTINUITIES IN MULTIPHASE SOLIDS 123

are considered to approximate the large-scale displacement field u, where Nu
e (x) and de

are shape functions and nodal displacements, respectively; in the following, a regular

partition of the domain of interest Ω = ∪nel
e=1Ωe in nel 6-node quadratic triangle is

assumed.

The multi-scale framework developed in previous sections is implemented in the

proposed finite element method by identifying the local neighborhood Ωx with the

element Ωe,loc ⊂ Ω where localization is detected. In particular, the function Ψu
Γ in

(4.9) is approximated by

ΨΓe(x) = HΓ(x)−N
(i)
Γ (x) where N

(i)
Γ (x) = 1− (x(i) − x) · n(i)

h(i)
(4.63)

is the linear shape function associated to node (i) sustaining the discontinuity line Γe,

assumed piece-wise straight at the different elements. The element size h(i) in (4.63) is

defined in Figure 4.2, together with the unit normal n(i) to the side opposite to node

(i). As pointed out in [11, 98], the use of the discontinuous function ΨΓe instead of the

Heaviside function HΓ alone, allows to satisfy the condition ΨΓe|∂Ω = 0 thus leading to

a compatible strain enhancement, i.e. Dirichlet boundary conditions involve only the

large-scale displacement ue.

node (i)

n
(i)

n

�e

��e

h
(i)

Figure 4.2: Displacement and fluid flow discontinuous interpolation function ΨΓe [35, 36]

Having in mind that ∇N (i) = n(i)/h(i), the assumed enhanced strain field takes the
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form

εe = Bu
ede

︸ ︷︷ ︸
conforming

−Ge ze + Pe ze δΓ

︸ ︷︷ ︸
enhanced

(4.64)

for the standard strain matrix Bu
e := ∇Nu

e (x) associated with the conforming part of

the displacements (the large-scale strain field), and for the enhanced strain operators

Ge =

[
1

h(i)
(n⊗ n(i))s 1

h(i)
(t⊗ n(i))s

]
Pe = [n⊗ n (t⊗ n)s] (4.65)

where it has been assumed a constant approximation over the element of the dis-

placement jump vector ζe = [n t] ze and with a vector ze of normal and tangential

displacement jump taking the form

ze =


ζne

ζte


 (4.66)

Fluid flow fields in the porous space are approximated in a very similar way. Pore

pressures can be written in terms of nodal values pα,e by the isoparametric interpola-

tions

pα,e(x) = Np
α,e(x) pe (4.67)

for the shape functions Np
e(x). In the notation of Section 4.2.1, the large-scale fluid

flow fields are given by

qα = −ρα0kα (Bp
epα,e − ρα0g) (4.68)

for the conforming gradient operator Bp
e := ∇Np

e(x). In a localized element Ωe,loc, the

small-scale flow fields are approximated through the enhanced interpolation

qαµ(x) = − ρα0kα (Bp
epα,e − ρα0g)

︸ ︷︷ ︸
conforming

+ υα,e ΨΓe(x)
︸ ︷︷ ︸
enhanced

(4.69)

for the constant approximation over the element of the fluid flow jump vectors υα,e.

The use of the same discontinuous interpolation function ΨΓe , given by (4.63) for the

displacement field, is consistent with expression (4.44) for the unresolvable fluid mass

content rate obtained in Section 4.3.2.
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Remark 4.2 The conforming part of the small-scale deformation in equation (4.64)

can be generalized by the use of a general strain operator B̄u
e due to mixed assumed

strain finite element methods [81]: forthcoming developments are the same for a mixed

assumed strain operator B̄u
e as well as for the general strain operator Bu

e ; then, with-

out loss of generality, the finite element formulation will be developed for the basic

displacement method.

4.4.2 Finite element equations

The nodal values of displacement d, pore pressure p and enhanced parameters ζe in the

elements where localization is detected, are determined by the solution of discretized

counterparts of large-scale linear momentum equilibrium (4.2), small-scale local equilib-

rium (4.21) and large-scale fluid balance equation (4.6). These finite element equations

are derived in the following sections.

The large-scale mechanical conforming equations

The introduction of the finite element interpolations (4.62) and (4.64) into the weak

form of the linear momentum balance (4.2) leads, after standard algebraic manipula-

tions, to the residual equation

rm = f ext −
nel

A
e=1

∫

Ωe

Bu
e

T σ dΩ = 0 (4.70)

for the nodal external force vector f ext, (including any imposed boundary displace-

ments). A standard quadrature rule is employed to evaluate the integral in (4.70). The

symbol A used in (4.70) denotes the assembly of all the nelem element contributions.

Total stresses σ are obtained in terms of effective stresses σ′ and pore pressures pα,e,

given by (4.67), by the constitutive equation (4.25)1; by the same constitutive equation,

effective stresses are obtained in terms of the regular part ε̄e := Bu
ede −Ge ze of the

enhanced strain field (4.64).
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The enhanced mechanical equations: connection of large and small-scale

multiphase discretized problems

Enhanced strain parameters ζe are obtained in terms of large-scale displacement ue

by the weak form (4.21) of the (total) traction continuity along the discontinuity. In

finite element formulations of the multi-scale approach, the local neighborhood Ωx is

identified with the element Ωe,loc depicted in Figure 4.3 where localization is detected.

Therefore, denoting by Ae the area of Ωe,loc and by le the length of discontinuity

approximation γe in Ωe,loc, the finite element discretization of equation (4.21) is

− 1

Ae

∫

Ωe,loc

γe · σn dΩ +
1

le

∫

Γe

γe · tΓ dΓ = 0 (4.71)

for all (approximated) variations γe of displacement jumps across the discontinuity.

In the equation (4.71), total stress and traction vector can be written in terms

of effective stress σ′ and average pore pressure pf by means of the following stress

decompositions:

σ = σ′(ue, ζe)− pfb

tΓ = t′Γ(ζe)− pfΓ
bn

(4.72)

Accordingly with the localized constitutive law (4.39) in Section 4.3.2, the effective

traction vector t′Γ is given as a function of the displacement jump ζe, which, in turn,

is approximated as constant on Γe. As a consequence, the effective traction vector is

obtained as constant on the discontinuity and also a constant approximation of average

pore pressure pfΓ
is to be consistently considered on Γe. For example, a driving value

pfΓ
can be taken as coincident with the average value of pf on the discontinuity, that

is,

pfΓ
=

1

le

∫

Γe

pf dΓ (4.73)

Substitution of stress equations (4.72) allows to rewrite the weak balance (4.71) in

terms of effective stresses and effective tractions, i.e.

− 1

Ae

∫

Ωe,loc

γe · σ′n dΩ +
1

le

∫

Γe

γe · t′Γ dΓ = 0 (4.74)

if the weak equation

1

Ae

∫

Ωe,loc

γe · pfbn dΩ− 1

le

∫

Γe

γe · pfbn dΓ = 0 (4.75)
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holds for all variations γe of the local displacement jump approximation. As a conse-

quence of the piecewise constant approximation of the jump field and of the straight

segment line Γe used to approximate the discontinuity in the element Ωe,loc, equation

(4.75), in view of arbitrariness of γe and of the definition (4.73), yields:

pfΓ
=

1

Ae

∫

Ωe,loc

pf dΩ (4.76)

The effects of this assumption on the definition of driving values of single fluid pressures

(pw, pg) and saturation degrees (sw, sg) on the discontinuity are now investigated.

In the effective stress equation (4.25)1, an approximated average pore pressure rate

˙̌pf of equation pf =
∑

α=w,g sαpα is considered, such that

˙̌pf =
∑

α=w,g

sαṗα (4.77)

In view of the constraint on saturation degrees

∑
α=w,g

sα = 1 (4.78)

and using definition (1.51) of the capillary pressure, equation (4.77) can be rewritten

as

˙̌pf = ṗα + sβ ṗc
∂pc

∂pβ

for α, β = w, g and α 6= β (4.79)

To ensure consistency between large and small scales, equations (4.77) and (4.79) must

hold also on the discontinuity. For example, equation (4.79) could be written in terms

of values assumed constant on Γe for single-fluid pressures and saturation degrees, that

is,

˙̌pfΓ
= ṗαΓ

+ sβΓ
ṗcΓ

∂pcΓ

∂pβΓ

for α, β = w, g and α 6= β (4.80)

In view of assumption (4.76) on the average pore pressure driving value and of contin-

uum relation (4.79), equation (4.80) reads:

ṗαΓ
+ sβΓ

ṗcΓ

∂pcΓ

∂pβΓ

=
1

Ae

∫

Ωe,loc

ṗα dΩ +
1

Ae

∫

Ωe,loc

sβ ṗc
∂pc

∂pβ

dΩ (4.81)

for α, β = w, g and α 6= β. Consistently with assumption (4.76) on the average pore

pressure, single fluid pressures on the discontinuity are assumed to satisfy the following
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relation:

pαΓ
=

1

Ae

∫

Ωe,loc

pα dΩ (4.82)

whose rate forms are introduced in equation (4.81), leading to:

sαΓ
ṗcΓ =

1

Ae

∫

Ωe,loc

sαṗc dΩ for α = w, g (4.83)

An other consistency requirement for the multi-scale approach is the satisfaction on

the discontinuity of the constraint (4.78). Such a condition can be written in terms of

values sαΓ
assumed constant on Γ, that is,

∑
α=w,g

sαΓ
= 1 (4.84)

Time integration of equation resulting from combination of (4.83) with (4.84) leads to

the following expression for the driving value of capillary pressure on the discontinuity

pcΓ =
1

Ae

∫

Ωe,loc

pc dΩ (4.85)

which is consistent with definition (1.51) of the capillary pressure in the continuum,

as shown by substitution of such a definition in the right side of equation (4.85) and

application of (4.82), leading to pcΓ = pgΓ
− pwΓ

.

Finally, the following value of the saturation degree on the discontinuity is obtained

from substitution of the rate form of the driving capillary pressure (4.85) in relation

(4.83):

sαΓ
=

∫

Ωe,loc

sαṗc dΩ

∫

Ωe,loc

ṗc dΩ
for α = w, g (4.86)

that is, the ṗc-weighted average value of sα in the continuum: it can be noted how,

with the driving quantities defined above, the case of a porous solid saturated by a

single fluid phase is fully recovered.

The consideration of the driving quantities described before, due to a piecewise con-

stant approximation for displacement jumps and, consequently, of effective tractions,

allow to numerically solve the local equilibrium by the following discretized form of the
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weak balance (4.74):

r̂enhe = − 1

Ae

∫

Ωe,loc

PT
e σ′ dΩ + t′Γ = 0 (4.87)

As a consequence of the dilatant model considered in Section 4.3.3 for the localized

response, the enhanced equation (4.87) can be rewritten in terms of a single enhanced

strain parameter ζte in the following scalar form

renhe = − 1

Ae

D

∫

Ωe,loc

PT
e σ′ dΩ + s′Γ = 0 (4.88)

where D :=
[
sign(ζ̇te)Φ 1

]
denotes the projection operator [39], with Φ the local-

ized dilatancy defined by (4.60)1, and s′Γ is the projected traction, defined as

s′Γ := Dt′Γ = τΓ + sign(ζ̇te) Φ σ′Γ . (4.89)

and given by integrating the localized softening law

˙̂s′Γ(ζte) =
H̃

3− 2β2
ζ̇te (4.90)

In the evaluation of the integral in the equation (4.88), a standard quadrature rule is

employed.

�

x
�

�e
n

�

t’�

s��

�e,loc

Figure 4.3: Driving effective traction and saturation degree along the discontinuity [35, 36]
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The fluid flow finite element equation

The coupled fluid problem is determined by the weak fluid flow balances (4.6) in the

large-scale. By means of interpolation of fluid pore pressures Np
e and of fluid flows Bp

e

considered in Section 4.4.2, the following residual equation is written for the generic

fluid α = w, g:

rα = f ext
α + fα,c −

nel

A
e=1

[∫

Ωe

NpT
e Ṁα dΩ −

∫

Ωe

BpT
e qα dΩ

]
= 0 (4.91)

with f ext
α being the vector taking into account external nodal sources and prescribed

boundary conditions for the fluid α = w, g; the constitutive equation for the large-scale

fluid mass content rate Ṁα can be derived by the conforming part of its small-scale

counterpart (4.25)2. In the residual equation (4.91) the vector fα,c arises from unilateral

boundary conditions prescribed on the flow of the fluid α = w, g along the boundary

portion ∂cΩe = ∂cΩ ∩ ∂Ωe and introduced in Chapter 3: in the present work, such a

contribution can be evaluated by a penalty method, i.e.

fα,c = −κ
nel

A
e=1

∫

∂cΩe

NpT
e 〈gα〉 dA (4.92)

with the penalty coefficient κ, the gap gα = pα − pα,max and the classical Macaulay

operator 〈·〉 returning the positive part of (·).

4.4.3 Solution of the finite element system

The coupled discretized problem in the unknowns d, ζe and pα can be solved by equa-

tions (4.70), (4.88) and (4.91). In particular, a standard backward-Euler approximation

of the fluid balance (4.91) may be considered, where, in a typical time step [tn, tn+1]

(with ∆t = tn+1 − tn), rate terms are approximated as ˙(·) = [(·)n+1 − (·)n]/∆t and

all the other terms are evaluated at tn+1. A standard closest-point projection return

mapping [128] is employed for the bulk elastoplastic model [39] to evaluate the effec-

tive stress σ′n+1 at each quadrature point. A similar procedure is used for the localized

softening model: the details of the algorithm can be found in [10, 11].

The resulting coupled solving system is highly non-linear due to the bulk elasto-

plastic constitutive model, to the localized softening law and to the partial saturation
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assumption: assuming the solution known at tn, a standard Newton-Raphson iterative

procedure is employed to achieve the solution at tn+1. The details of the linearization

process are omitted here: the interested reader is referred to [33] for the treatment of

mechanical non-linearities and to Chapters 2 and 3 for the fluid part; in the forthcom-

ing developments the sub-index (·)n+1 will be omitted to simplify the notation. The

linearized algebraic solving system takes the form





r(k)
m = K(k)∆d−

∑
γ=w,g

Q(k)
mγ∆pγ −

nel

A
e=1

LGe ∆ζte

r(k)
α =

(
Qαm

∆t

)(k)

∆d +
∑

γ=w,g

(
Sαγ

∆t
−Gαγ + Hαδαγ + Pαδαγ

)(k)

∆pγ

(4.93)

for α = w, g, with the enhanced parameters ∆ζte obtained at the elemental level by

the linearized form of equation (4.88)

r
(k)
enhe

− LT
Pe

∆de +He ∆ζte = 0 (4.94)

Linearized equations (4.93) and (4.94) are to be solved in the increments ∆(·) = (·)k+1
n+1−

(·)k
n+1, where indexes (k) and (k + 1) denote the solution at the previous iteration and

the newly obtained solution estimate, respectively.

The global coupled solving system (4.93) is written in terms of global matrices of

stiffness K, storage Sαβ, fluid-mechanical coupling Qmα,Qαm and permeability Hα,

defined as:

K =
nel

A
e=1

∫

Ωe

BuT
e

∂σ

∂ε
Bu

e dΩ (4.95)

Sαβ =
nel

A
e=1

∫

Ωe

NpT
e

∂Mα

∂pβ

Np
e dΩ for α, β = w, g (4.96)

Qmα =
nel

A
e=1

∫

Ωe

BuT
e

∂σ

∂pα

Np
e dΩ

Qαm =
nel

A
e=1

∫

Ωe

NpT
e

∂Mα

∂ε
Bu

e dΩ





for α = w, g (4.97)

Hα =
nel

A
e=1

∫

Ωe

ρα0B
pT
e kαB

p
e dΩ for α = w, g (4.98)
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Remaining matrices Gαβ, Pα and LGe appearing in (4.93) are linearizing operators

due to the dependence of the permeability kα on the pore pressure pβ in the partially

saturated range, to the unilateral boundary condition on the fluid α and to localized

enhancement ζte , respectively:

Gαβ =
nel

A
e=1

∫

Ωe

BpT
e

∂kα

∂pβ

quni
α Np

e dΩ

Pα = κ
nel

A
e=1

∫

∂cΩe

ρα0H(gα)NpT
e Np

e dΩ

LGe = LGeD
T

(4.99)

with the standard Heaviside function H(·) and

quni
α := −ρα0(B

p
epαe − ρα0g) and LGe =

∫

Ωe,loc

Bu
e

TCsk Ge dΩ (4.100)

In a similar way the operators in the enhanced equation (4.94) can be determined as:

LPe =
1

Ae

∫

Ωe,loc

Bu
e

TCsk Pe dΩ He =
1

Ae

∫

Ωe,loc

PT
e Csk Ge dΩ +

ds′Γ
dζte

(4.101)

with Pe = PeD
T and Ge = GeD

T . Because of no continuity requirements are prescribed

for the local enhancement ζte and then no assembly operation is requested for enhanced

equations (4.94), a staggered static condensation strategy proposed in [129, 130] and

employed, for instance, in [33, 39], is considered: firstly, the enhanced equation (4.94)

is iteratively solved for fixed value of d(k) and p
(k)
α and then such values are iteratively

updated in the solution of the global problem (4.93), after static condensation of the

mechanical part (4.93)1; further details are omitted for the sake of brevity. The use

of unregularized discontinuity and of static condensation allows to avoid the use of

non-standard quadrature rules: this is to be contrasted with alternative approaches

based on numerical regularization of the discontinuity [104].

4.5 Representative numerical simulations

In this section the results of numerical tests are presented to assess the performance

of the finite element formulation proposed in Section 4.4. A plane strain compression
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test is presented in Section 4.5.1, where the effects of mesh size and alignment on

the solution are investigated, as done for the same test in [33] and [34] for fully sat-

urated porous media subjected to infinitesimal and finite deformations, respectively.

Moreover, results obtained with the proposed formulation are contrasted with the ones

obtained with a standard finite element formulation of the multiphase problem, where

“standard” stands for the classical continuum strain softening implemented with the

conventional Galerkin interpolations, with no enhancement of the strain field. Finally,

we analyze differences between the results obtained in partially and in fully saturated

conditions. Furthermore, two different boundary conditions are considered to model

top and bottom surfaces of the sample: a prescribed null liquid pressure and the uni-

lateral constraint described in Chapter 3.

In the numerical simulations the pressure of the gaseous phase is constantly hold

equal to the atmospheric value, i.e. pg = 0.

The enhanced finite element method developed in previous sections is implemented

over the mixed triangle with quadratic interpolation of the displacement and linear

interpolation of volumetric strain and stress, that is, the so called P2/P1 six noded

triangle; quadratic interpolations are also used for the pore pressure field. The same

finite element, but with no strain enhancement, is used to perform computations in

the standard finite element framework for a comparison with the response obtained by

the enhanced finite element.

As in [33], the enhanced fields are added after propagation of the discontinuity

through the use of the localization condition (4.57), evaluated with a tolerance of

1.0× 10−3. After the localization is detected, the localized linear softening law

q̃(αµ) = −σy − H̃αµ (4.102)

is used, with H̃ and σy the localized softening modulus and the yield stress, respectively.

A linear isotropic response is considered to model the hyperelastic part of the solid

skeleton constitutive law, with drained Young modulus Esk and Poisson coefficient νsk,

as well as the flow law, with a saturated permeability matrix ksat = ksat 1.
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4.5.1 Plane strain compression test
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Figure 4.4: Plane strain compression test. Configuration of the problem and assumed bound-
ary conditions with unilateral (a) and bilateral (b) ends

In this section the numerical simulation of a plain strain compression test is con-

sidered, with geometry and boundary conditions illustrated in Figure 4.4, where a

constant vertical displacement rate v = 5.0× 10−6 m/s is applied at the top of an ini-

tially fully saturated sample (sw0 = 1). In particular, two different kinds of boundary

conditions have been considered to model the sample bases.

Free-drainage conditions can be imposed to both ends by a prescribed constant

null value of the pore pressure as depicted in Figure 4.4b, thus leading to the so-

called globally “drained” test: this boundary condition simulates a continuous water

supply through the bases, that flows into the specimen center due to the negative

pore pressure concentration developing along the dilatant discontinuity. However, it

could be argued that, starting from fully saturated conditions, if lateral surfaces are

impervious (to liquid and gaseous phases) and both ends are constantly saturated due

to the boundary condition, the air can not enter into the specimen from the outside and

partially saturated conditions can be attained only with cavitation [116, 121]. Because
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Table 4.1: Material parameters considered in numerical simulations of the plane strain com-
pression test

solid-skeleton bulk modulus κsk 13300 kPa

solid-skeleton shear modulus µsk 8000 kPa

Drucker-Prager pressure coefficient β 0.56

initial yield stress σy 63.41 kPa

localized softening modulus H̃ −25000 kPa/m

continuum softening modulus H 0 kPa

Biot coefficient b 1.0

liquid-saturated permeability ksat 10−8 m2/(kPa s)

initial porosity n0 0.423

van Genuchten parameter avg 0.04 1/kPa

van Genuchten parameter nvg 3.3

residual liquid saturation degree sw,res 0.1

solid phase volumetric stiffness κs 1.0 · 109 kPa

liquid phase volumetric stiffness κw 1.42 · 106 kPa

liquid density ρw 1.0 · 103 kg/m3

initial liquid pressure pw0 0 kPa

of this phenomenon is not considered in the present multiphase model, a different

desaturation mechanism is considered herein.

In particular we assume that no water supply is provided at the bases and the porous

solid is in contact with the atmosphere. When in the compression early stages a pore

pressure positive distribution arises in the specimen, a null pressure value is prescribed

at the bases and a positive outflow takes place. As the pore pressure distribution

becomes negative, the bases become impervious to the water flow and a desaturation

process takes place at sample bases. This boundary condition is depicted in Figure

4.4a and is dealt herein by the unilateral interfaces introduced in Chapter 3.

Parameters assumed for solid skeleton, porous solid, solid and fluid phases are
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Figure 4.5: Plane strain compression test: enhanced finite elements with strong discontinu-
ities. Contours of vertical displacements on deformed meshes obtained at indicated time with
structured finite element meshes of 2×4×14 (a), 2×8×28 (b) and 2×16×56 (c) elements, and
with unstructured meshes of 110 (d), 478 (e) and 1964 (f) elements, respectively

reported in Table 4.1: it can be noted that the obtained hydraulic liquid-saturated

permeability is kh,sat = ρw0|g|ksat = 1.0 · 10−7 m/s and that, according to (4.27), the

Biot modulus relative to the fully saturated case is Q = 3.33 · 106 kPa. Furthermore,

expressions introduced in [147] for saturation degree sw and relative permeability co-

efficient krel
w are considered:





Sw(pc) =

[
1

1 + (avg pc)
nvg

]mvg

with Sw :=
sw − sres

w

1− sres
w

krel
w (sw) = S 1/2

w

[
1− (

1− S 1/mvg
w

)mvg
]2

with mvg = 1− 1/nvg

(4.103)
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Figure 4.6: Plane strain compression test: enhanced finite elements with strong discontinu-
ities. Contours of pore liquid pressure on deformed meshes obtained at indicated time with
structured finite element meshes of 2×4×14 (a), 2×8×28 (b) and 2×16×56 (c) elements, and
with unstructured meshes of 110 (d), 478 (e) and 1964 (f) elements, respectively

The test is performed employing six different finite element discretizations of the

sample (Fig. 4.5): three structured meshes consisting of 2×4×14 (a), 2×6×22 (b) and

2×8×28 (c) elements, as well as three unstructured meshes consisting of 110 (d), 272 (e)

and 478 (f) elements, respectively. The obtained solutions are all practically coincident,

both in terms of vertical reaction (Fig. 4.9a) and of pore liquid pressure (Fig. 4.6 and

Fig. 4.9b), thus showing the objectivity of the described method with respect to the

mesh size and alignment. Largest differences can be noted for the saturation degree
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Figure 4.7: Plane strain compression test: enhanced finite elements with strong discontinu-
ities. Contours of saturation degree on deformed meshes obtained at indicated time with
structured finite element meshes of 2×4×14 (a), 2×8×28 (b) and 2×16×56 (c) elements, and
with unstructured meshes of 110 (d), 478 (e) and 1964 (f) elements, respectively

(Fig. 4.7 and Fig. 4.10a) and for the relative permeability coefficient (Fig. 4.10b): this

is mainly due to the employed retention model (4.103), whose analytical form strongly

amplifies the observed small differences in pore liquid pressures.

The effectiveness of the method in capturing discontinuity propagation across the

sample is shown in Figure 4.5, where the localized elements are clearly highlighted by

contours of vertical displacements and by the deformed configuration of the mesh. We

remark that no displacement amplification is employed in the representation of the
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deformed meshes reported herein. We also remark that no imperfection is introduced
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Figure 4.8: Plane strain compression test. Elements crossed by discontinuity, numbered to
show the time sequence of discontinuity activation. Results obtained with structured finite
element meshes of 2×4×14 (a) and 2×8×28 (b), and with unstructured meshes of 110 (c)
and 478 (d) elements, respectively

to trigger the onset of localization. On the contrary, condition (4.57) for discontinuity

activation is satisfied by the heterogeneous effective stress state induced by fluid flow

coupling since the early stages of the test. In Figure 4.8, elements crossed by strong

discontinuities are highlighted and numbered to show the time sequence of discontinuity

activation. It can be observed that practically the same propagation history is obtained

for the employed meshes. In particular, discontinuity is firstly activated in the central

part of the sample and antisymmetrically propagates towards the lateral boundaries.

The instants corresponding to first and last localization registered in finite elements

are marked on curves plotted in Figures 4.9 and 4.10.

The same test is also simulated by means of the standard finite element formulation,

settingH = −200 kPa for the continuum strain-softening modulus. Conventional finite

elements show difficulties in capturing localization in an objective way, as demonstrated

by the structured deformed mesh reported in Figure 4.11. A considerable mesh-

size dependence is exhibited by the standard finite element solution, both in terms of

vertical reaction (Fig. 4.13a) and pore liquid pressure (Fig. 4.12 and Fig. 4.13b).
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Figure 4.9: Plane strain compression test: enhanced finite elements with strong disconti-
nuities. Results corresponding to structured meshes with 2×4×14, 2×8×28, 2×16×56, and
unstructured meshes with 110, 478 and 1964 elements: vertical reaction (a) and pore liquid
pressure (b) at sample center, both versus the imposed vertical displacement
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Figure 4.10: Plane strain compression test: enhanced finite elements with strong disconti-
nuities. Results corresponding to structured meshes with 2×4×14, 2×8×28, 2×16×56, and
unstructured meshes with 110, 478 and 1964 elements: liquid phase saturation degree (a) and
relative permeability (b) at sample center, both versus the imposed vertical displacement

Due to the draining action of the dilatant discontinuity and to subsequent negative

pore liquid pressures (Fig. 4.6 and Fig. 4.9b), conditions of partial saturation are

calculated in the proximity of the strong discontinuity (sw < 1 in Fig. 4.10), as

expected. Moreover, the main effect of the unilateral constraint on both ends is that

partially saturated conditions are attained not only on the discontinuity but also in
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Figure 4.11: Plane strain compression test: standard coupled finite element formulation
(Galerkin formulation with no strong discontinuities). Contours of vertical displacements on
deformed configuration obtained at the indicated time with structured mesh of 2×4×14 (a),
2×8×28 (b) and 2×16×56 (c) elements, respectively
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Figure 4.12: Plane strain compression test: standard coupled finite element formulation
(Galerkin formulation with no strong discontinuities). Contours of pore liquid pressure on
deformed configuration obtained at the indicated time with structured mesh of 2×4×14 (a),
2×8×28 (b) and 2×16×56 (c) elements, respectively

the whole specimen. In fact, as it can be noted in Figure 4.14, as the discontinuity is

completely formed and begins to drain the specimen, the pore liquid pressure begins

to drop instantaneously in the whole sample, but with increasing velocity near the

discontinuity. Therefore, the specimen begins to desaturate at the same time in its

whole length, but, as air has entered in the domain from the outside, the saturation
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Figure 4.13: Plane strain compression test: standard coupled finite element formulation. Re-
sults corresponding to structured meshes with 2×4×14, 2×8×28, 2×16×56 elements: vertical
reaction (a) and pore liquid pressure (b) at sample center, both versus the imposed vertical
displacement

degree decreases more rapidly near the dilatant discontinuity.

The response calculated with the formulation proposed herein is compared in Figure

4.15 with the response obtained assuming the porous solid as constantly fully saturated

by the liquid phase. Differences between the vertical reactions calculated with the two
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Figure 4.14: Plane strain compression test: enhanced finite elements with strong disconti-
nuities (structured mesh with 2×16×56 elements). Desaturation process in terms of pore
pressure evolution in three points (a) and in terms of pore pressure distribution at different
instants

formulations are apparent in the post-localization response (Fig. 4.15a), due to the
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development of negative pore pressures (Fig. 4.15b). With respect to the case of

variable liquid saturation, the assumption of full saturation together with unilateral

boundary conditions, leads to difficulties in capturing a post-localization softening

branch. In fact, when a negative pore liquid pressure distribution arises in the whole

sample, globally “undrained” conditions are attained and a softening branch can be

obtained only if partial saturation effects are taken into account.

A different behavior can be noted if pore liquid pressure is constantly kept equal

to the null value at the sample ends, as in [33, 34]. In this case, the full saturation

assumption implies an overestimation of negative pore pressures (Fig. 4.16b) with the

related strengthening effects (Fig. 4.16a), due to underestimation of storage modulus

in fluid content equation (4.34) and to overestimation of the role played by liquid phase

in stress equation (4.25)1.
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Figure 4.15: Plane strain compression test: enhanced finite elements with strong discon-
tinuities (structured mesh with 2×16×56 elements). Response obtained with formulations
assuming variably saturated and fully saturated conditions and with unilateral ends, both
for the displacement rates v = 1.00 · 10−6 m/s and v = 5.00 · 10−6 m/s. Vertical reaction (a)
and pore liquid pressure at sample center (b) vs. vertical imposed displacement

The test is also simulated for a slower vertical displacement rate (v = 1.00 ·
10−6 m/s). With respect to the assumed fully saturated case and consistently with

the above considerations, rate effects are less apparent if variable liquid saturation is

taken into account (Fig. 4.16a). For the slower displacement rate, results obtained
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Figure 4.16: Plane strain compression test: enhanced finite elements with strong discon-
tinuities (structured mesh with 2×16×56 elements). Response obtained with formulations
assuming variably saturated and fully saturated conditions and with bilateral ends, both for
the displacement rates v = 1.00 · 10−6 m/s and v = 5.00 · 10−6 m/s. Vertical reaction (a)
and pore liquid pressure at sample center (b) vs. vertical imposed displacement

with the two formulations are practically coincident, due to the small magnitude of

post-localization negative pore pressures (Fig. 4.16b).

The strengthening effect due to more rapid vertical displacement rates can be ob-

served, for the partially saturated case, also when unilateral constraints are employed

to model sample ends (Fig. 4.15a). However, this difference is less remarkable with

respect to the case of globally “drained” conditions. It can also be shown how, in the

saturated case, no coupling effects arise from the application of a different displacement

velocity when no inflow is allowed at the sample bases, because globally “undrained”

conditions hold as negative pore liquid pressures are attained in the whole length.

Finally, for slower rates, as already observed in [33], pre-localization excess pore

pressures are practically negligible and the corresponding effective stress state is not

“heterogeneous enough” to avoid the numerical sensitivity of the localization onset.

So, to trigger the localization onset in this computation, a 1% yield stress imperfection

is introduced in the element marked with “1” in Figure 4.8.



Conclusions

In this thesis we have presented a constitutive theory for multiphase porous solids

developed in a macroscopic thermodynamic framework. Numerical formulations of

this model in the framework of non-standard finite element methods have been also

considered to model strain localization phenomena in multiphase continua.

As a first step, a general form of hyperelastic rate equations has been provided for a

three-phase porous continuum in terms of tangent operators (solid skeleton elastic ten-

sor, coupling tensors, storage modulus). Particular forms for these operators have been

obtained by means of tools typically employed in mixture theories. The compatibility

of the so-obtained operators with the aforementioned macroscopic thermodynamical

theory has been investigated by employing symmetry and Maxwell conditions. The

aforementioned constitutive model is also presented by Callari and Abati [31].

A finite element formulation of the proposed hyperelastic laws for porous media

has been developed for quasi-static problems in the infinitesimal deformation range

and is presented by Callari and Abati [32]. The highly non-linear solving system re-

sulting from discretization in space and time domains has been solved by a standard

Newton-Raphson iterative procedure, focusing the attention on the linearization pro-

cess. Numerical examples have been also presented to assess the effectiveness of the

numerical formulation. In particular, benchmark problems involving the desaturation

of a sand column [96] and the propagation of a saturation front in an initially dry solid

[106] have been simulated. The formulation has been also applied to analyze a problem

of interest for dam engineering, namely the analysis of the effects of rapid drawdown

on a reservoir bank.
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We have also considered the theoretical treatment and the numerical formulation

of boundary conditions commuting between “imposed pressure” and “imposed flow”

types, depending on the system response evolution. This kind of boundary conditions

effectively models interfaces between porous solid and atmosphere in many situations of

practical interest where the geometric locus of zero pore pressure intersects the bound-

ary in contact with atmosphere. In this thesis these boundary conditions have been

formulated in the general framework of unilateral constraints. Penalty and augmented

Lagrangian numerical techniques have been introduced to treat fluid-flow unilateral

boundaries in the finite element formulation for multiphase porous solids presented in

Chapter 2. The performance of such regularization techniques has been investigated

by representative numerical examples. Firstly, simple one-dimensional problems have

been considered, where both the numerical and formal analogies between seepage prob-

lems with unilateral constraints and frictionless contact problems have been pointed

out. Further situations of practical interest have been numerically simulated, as the

propagation of a saturation front in a soil sample during a rainfall event and the partial

saturation of a concrete gravity dam. The numerical formulation of unilateral bound-

ary conditions on fluid flow, as well as applications to representative examples, is also

presented by Abati and Callari [3].

The extension to irreversible phenomena of a simplified form of the aforementioned

hyperelestic model has been presented in the general framework of additive elasto-

plastic decompositions of strains and fluid mass contents. This constitutive theory has

led to a simple expression for the Clausius-Duhem inequality, which has been employed

in a multi-scale approach to strain localization [8] in multiphase continua. In particular,

we have extended to partially saturated conditions the analysis of strong discontinuities

presented in [33, 34] for fully saturated porous solids. With this aim, we have considered

discontinuous displacement fields and corresponding singular distributions of strain, as

well as singular distributions of fluid contents corresponding to discontinuous flows

of gaseous and liquid phases, modelling their accumulation and/or drainage in the

localized failures of interest. In the multi-scale context employed herein, the small-scale

problem has been defined by the localized mass balances of liquid and gas contents,
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both related to singular dilatancy of the discontinuity, besides the mechanical response

driven by the assumed effective traction. The localized dissipative mechanism has been

modelled by an associated Drucker-Prager criterion [39], thus leading to particular

forms for the localization condition and the localized softening law relating effective

traction on the discontinuity surface to the displacement jump. Pore pressures and

saturation degrees on the discontinuity have been properly defined to connecte small

and large-scale problems through a weak equilibrium statement between traction acting

on the discontinuity surface and stresses in the bulk. The governing equations have

been approximated by finite elements enhanced with singular fields of strain and fluid

contents. These enhancements have been kept local at the element level, allowing

the static condensation of the different enhanced parameters. The aforementioned

theoretical and numerical formulation of localization analysis in multiphase porous

media is also presented by Callari, Armero and Abati in [37], together with numerical

representative examples.

Finally, results of the numerical simulation of a plain strain compression test on

a partially saturated porous solid have been presented. The effects of mesh size and

alignment on the solution have been investigated. The obtained results have shown the

effectiveness of the proposed method in capturing discontinuity propagation across the

sample in terms of displacements, pore pressures, saturation degree and propagation

history of the discontinuity. These results have been contrasted with the ones obtained

with a standard finite element formulation of the multiphase problem. The so-obtained

results have shown the difficulties of conventional finite elements in capturing localiza-

tion in an objective way. Finally, results obtained in variably saturated conditions are

contrasted with the ones obtained in the fully saturated case. Moreover, two different

boundary conditions have been considered on top and bottom surfaces: a prescribed

null liquid pressure value and the aforementioned unilateral boundary conditions. In

the latter case, we have simulated the localization-induced desaturation of a porous

sample in contact with the atmosphere.

The numerical simulations presented in this work show how the proposed model

and the relative non-standard finite element formulation are able to effectively cap-
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ture strain localization phenomena in multiphase continua. Differences from solutions

obtained by assuming different boundary conditions occurring in the variably satu-

rated case have been also analyzed. Moreover, we have pointed out the lack of any

pathological mesh size dependence as well as an efficient solution of the highly oriented

deformation patterns, independent of the mesh alignment. This situation has been

contrasted with standard finite element treatments of the problem at hand.



Appendix A

Relations between porosity and

volumetric strains

In this Appendix, relations between porosity and volumetric strains of solid skeleton,

solid phase and void space are obtained by imposition of mass balance for solid phase.

Such a balance is expressed in terms of solid mass content, defined as

Ms := Jρsk = J(1− n)ρs (A.1)

where ρs is the solid “intrinsic” density, that is, the mass of unit current volume of the

solid phase. The material time derivative of (A.1) is

Ṁs = Jρs[(1− n)dv − (1− n)ės − ṅ] (A.2)

for ės = −ρ̇s/ρs the rate of logarithmic volumetric strain es of solid phase. The mass

balance for the solid phase (Ṁs = 0) leads to the following rate relation for porosity

ṅ = (1− n)(dv − ės) (A.3)

in terms of the difference between the volumetric strain rates of solid skeleton and solid

phase, respectively.

A straightforward calculation based only on porosity definition shows that the

porosity increment rate can be in general related to the logarithmic volumetric strain

evd of void space according to:

ṅ = n(ėvd − dv) (A.4)
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Therefore, combination of (A.3) with (A.4) leads to the following relation between the

aforementioned volumetric strain rates:

dv = n ėvd + (1− n) ės (A.5)

Assuming infinitesimal deformations for solid skeleton, solid phase and void space,

we have:

dv ' ε̇v ės ' ε̇s ėvd ' ε̇vd (A.6)

for the traces εv, εs and εvd of infinitesimal strain tensors associated to deformation of

solid skeleton, solid phase and void space, respectively. Furthermore, the porosity rate

can be expressed as a linear combination of ε̇v and ε̇s or ε̇v and ε̇vd. In other words,

we neglect nonlinear geometric effects in rate relations (A.3) and (A.4), respectively:

ṅ ' (1− n0)(ε̇v − ε̇s) (A.7)

and

ṅ ' n0(ε̇vd − ε̇v) (A.8)

for the initial porosity value n0. Therefore, the linearized form of relation (A.5) among

volumetric strain rates is

ε̇v = n0 ε̇vd + (1− n0) ε̇s (A.9)

Finally, by means of a time integration of (A.7) we obtain:

n ' n0 + (1− n0)(εv − εs) ' n0 + εv − εs (A.10)

where we employed the approximations 1∓ εv ' 1 and 1∓ εs ' 1.



Appendix B

Thermodynamic consistency of

poro-elastic model

B.1 Strain-independent retention laws

In this Appendix, we employ Maxwell relations (1.35) to assess the thermodynamic ad-

missibility of the simplified model represented by system (1.40) with tangent operators

(1.107) and porosity law (1.92) for pf = p̌f obtained from integration of (1.110).

Maxwell condition (1.35)1 can be easily verified keeping in mind that the elastic

tensor Csk is assumed as constant. In view of relation (1.108), also Maxwell condition

(1.35)2 is satisfied, as shown by the following equation:

∂

∂µβ

(ραbα) = ραρβ

(
sα

κα

δαβ + š′α
∂pc

∂pβ

)
b for α, β = w, g (B.1)

which is a consequence of (1.107)2 as well as of the considered retention model (1.102)2

and of the assumed barotropic behaviour (1.38,1.84).

As a consequence of barotropy and of expression (1.107)3 as well as of the assumed

strain-independency of the retention model, the right side of Maxwell condition (1.35)3

can be calculated as:

∂

∂ε
(ραρβCαβ) = ραρβ

∂Cαβ

∂n

∂n

∂ε
= ραρβ

(
sα

κα

δαβ + š′α
∂pc

∂pβ

)
∂n

∂ε
(B.2)
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for α, β = w, g. Therefore, a direct comparison between (B.1) and (B.2) shows that

Maxwell condition (1.35)3 is verified if

∂n

∂ε
= b (B.3)

which is fully consistent with the porosity model (1.92) employed herein, as shown by

(1.97)1 after introduction of (1.102)1.

In view of barotropy (1.38,1.84) of fluid phases, left and right sides of Maxwell

condition (1.35)4 can be calculated as, respectively:

∂

∂µβ

(ρ2
αCαα) = ρ2

αρβ

(
2

κα

Cααδαβ +
∂Cαα

∂pβ

)
(B.4)

∂

∂µα

(ραρβCαβ) = ρ2
αρβ

(
1 + δαβ

κα

Cαβ +
∂Cαβ

∂pα

)
(B.5)

As a consequence of storage modulus expression (1.107)3 and assumed retention model

(1.102)2, the derivatives appearing in right sides of (B.4-B.5) can be expressed as,

respectively:

∂Cαα

∂pβ

=
∂n

∂pβ

(
sα

κα

+ š′α
∂pc

∂pα

)
+ n

(
š′α
κα

+ š′′α
∂pc

∂pα

)
∂pc

∂pβ

+

+ 2sαš′α
∂pc

∂pβ

(b− n01) :
1

3κs

(B.6)

∂Cαβ

∂pα

=
∂n

∂pα

(
sα

κα

δαβ + š′α
∂pc

∂pβ

)
+ n

(
š′α
κα

δαβ + š′′α
∂pc

∂pβ

)
∂pc

∂pα

+

+ (š′αsβ + sαš′β)
∂pc

∂pα

(b− n01) :
1

3κs

(B.7)

with:

š′′α(pc) :=
dš′α
dpc

for α = w, g (B.8)

A consequence of definition (1.51) of capillary pressure is:

∂pc

∂pα

∂pc

∂pβ

= 2 δαβ − 1 (B.9)

and the coincidence between (B.4) and (B.5) can be easily verified for α = β. For

the significant case α 6= β, after some manipulation employing (1.49), (1.107)3, (1.108-
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1.109), it is:

∂

∂µβ

(ρ2
αCαα)− ∂

∂µα

(ραρβCαβ) = ρ2
αρβ

{
sα

κα

[
∂n

∂pβ

− sβ(b− n01) :
1

3κs

]
−

−š′α
∂pc

∂pβ

[ ∑
γ=w,g

∂n

∂pγ

− (b− n01) :
1

3κs

]}

(B.10)

So, also in view of (1.49), satisfaction of Maxwell condition (1.35)4, that is, vanishing

of right side of (B.10), is obtained for

∂n

∂pα

= sα(b− n01) :
1

3κs

for α = w, g (B.11)

which is again fully consistent with assumed porosity model (1.92), as shown by direct

comparison between (B.11) and (1.97)2, after the introduction of (1.106).

B.2 Porosity-dependent retention laws

In this Appendix, the full thermodynamic admissibility of the poro-elastic model pre-

sented in Section 1.4.3 is assessed by means of Maxwell relations (1.35). We recall that

such a model is represented by rate equation system (1.40), with tangent operators

given by (1.129). In expressions (1.129), functions n, ω and ξ̆∗α are given by (1.92),

(1.116) and (1.125), respectively.

The developments that follows require the evaluation of partial derivatives of rele-

vant functions with respect to primary variables. For the assumed porosity function,

such derivatives are obtained by substitution of (1.115,1.125) and consideration of

(1.124) in general expressions (1.95), yielding:

∂n

∂ε
=

1

ω

∂n̂

∂ε
and

∂n

∂pα

=
ξ̆∗α
ω

∂n̂

∂pf

for α = w, g (B.12)

Following the same formal arguments employed in the developments leading to (1.115,1.126),

partial derivatives of function s̆′α(npc) (1.114) can be obtained as:

∂s′α
∂ε

=
pc

ω
s̆′′α

∂n̂

∂ε
and

∂s′α
∂pβ

= s̆′′αςβ (B.13)
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for α, β = w, g, with:

s̆′′α(npc) :=
ds̆′α

d(npc)
for α = w, g (B.14)

It can be observed that a consequence of (1.118) is:

∑
α=w,g

s̆′′α = 0 (B.15)

so, in view of definition (1.51) of capillary pressure, it is:

s̆′′α
∂pc

∂pα

= s̆′′β
∂pc

∂pβ

for α, β = w, g (B.16)

In porosity model (1.92), a linear dependency on strain and average pore pressure is

assumed, thus leading to the following expressions for partial derivatives of function ω

defined by (1.116):

∂ω

∂ε
= −p2

c

∂n̂

∂pf

∂s′α
∂ε

∂pc

∂pα

∂ω

∂pβ

= −pc
∂n̂

∂pf

∂pc

∂pα

(
2s̆′α

∂pc

∂pβ

+ pc
∂s′α
∂pβ

)





for α, β = w, g (B.17)

In view of (B.13), these derivative reads:

∂ω

∂ε
= −p3

c

ω

∂n̂

∂pf

s̆′′α
∂pc

∂pα

∂n̂

∂ε

∂ω

∂pβ

= −pc
∂n̂

∂pf

∂pc

∂pα

(
2s̆′α

∂pc

∂pβ

+ pcs̆
′′
αςβ

)





for α, β = w, g (B.18)

Similarly, partial derivatives of coupling coefficient ξ̆∗α are obtained by substitution of

(1.115,1.126–1.127,B.12,B.13) in

∂ξ̆∗α
∂ε

=
∂sα

∂ε
+ pcs̆

′
α

∂n

∂ε
+ npc

∂s̆′α
∂ε

∂ξ̆∗α
∂pβ

=
∂sα

∂pβ

+ pcs̆
′
α

∂n

∂pβ

+ npc
∂s̆′α
∂pβ

+ n
∂pc

∂pβ

s̆′α





for α, β = w, g (B.19)

leading to:
∂ξ̆∗α
∂ε

= (2s̆′α + npcs̆
′′
α)

pc

ω

∂n̂

∂ε

∂ξ̆∗α
∂pβ

= (2s̆′α + npcs̆
′′
α) ςβ





for α, β = w, g (B.20)
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after some simple algebra. Finally, partial derivatives of ξ̆w and ξ̆g, are evaluated by

substitution of equations (B.18) and (B.20) in

∂ξ̆α

∂ε
=

1

ω2

(
∂ξ̆∗α
∂ε

ω − ξ̆∗α
∂ω

∂ε

)

∂ξ̆α

∂pβ

=
1

ω2

(
∂ξ̆∗α
∂pβ

ω − ξ̆∗α
∂ω

∂pβ

)





for α, β = w, g (B.21)

thus obtaining, after some manipulation employing (1.122) and (1.127):

∂ξ̆α

∂ε
=

pc

ω2

(
2s̆′α + pcs̆

′′
α

∂pc

∂pα

ςα

)
∂n̂

∂ε

∂ξ̆α

∂pβ

=
1

ω

[
2s̆′α

∂pc

∂pβ

(
ςα

∂pc

∂pα

+ ςβ
∂pc

∂pβ

− n

)
+ pcs̆

′′
α

∂pc

∂pα

ςαςβ

]





(B.22)

for α, β = w, g. With reference to partial derivatives (B.22)2, it can be observed that:

∂ξ̆α

∂pβ

=
∂ξ̆β

∂pα

for α, β = w, g (B.23)

as shown by (1.117) and (B.16).

Since elastic tensor Csk is assumed constant in (1.129)1 and as a consequence of

barotropic relation (1.38), the left side of Maxwell condition (1.35)1 can be written as:

∂C̃sk

∂µα

= −ρα
∂

∂pα

(
p2

c

ω
s̆′α

)
∂pc

∂pα

b⊗ b =

= −ρα
pc

ω

(
2
∂pc

∂pα

s̆′α −
pc

ω

∂ω

∂pα

s̆′α + pc
∂s̆′α
∂pα

)
∂pc

∂pα

b⊗ b (B.24)

for α = w, g. Substitution of partial derivatives (B.13)2 and (B.18)2 in (B.24) leads to:

∂C̃sk

∂µα

= −ρα
pc

ω2

(
2s̆′α + pcs̆

′′
α

∂pc

∂pα

ςα

)
b⊗ b (B.25)

after some manipulation employing (1.122,1.124). In view of (1.129)2 and (B.22)1, right

side of Maxwell condition (1.35)1 can be calculated as:

− ∂

∂ε
(ραbα) = −ρα

∂ξ̆α

∂ε
⊗ b =

= −ρα
pc

ω2

(
2s̆′α + pcs̆

′′
α

∂pc

∂pα

ςα

)
∂n̂

∂ε
⊗ b (B.26)
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Maxwell condition (1.35)1 is then satisfied, as shown by a direct comparison between

(B.25) and (B.26), recalling relation (1.96)1 for porosity derivative.

Due to relation (B.23), also Maxwell condition (1.35)2 is satisfied, as shown by the

following equation:

∂

∂µβ

(ραbα) = ραρβ

(
ξ̆α

κα

δαβ +
∂ξ̆α

∂pβ

)
b for α, β = w, g (B.27)

which is obtained considering expression (1.129)2 for coupling operator and barotropic

relations (1.38,1.84).

As a consequence of assumed barotropic behavior, intrinsic densities of fluid phases

are independent on strain of porous continuum. In view of expression (1.129)3 for the

storage modulus and of relation (1.125), right side of Maxwell condition (1.35)3 can be

calculated as follows:

∂(ραρβCαβ)

∂ε
= ραρβ

[
∂n

∂ε

(
sα

κα

δαβ + 2ns̆′α
∂pc

∂pβ

)
+

n

κα

∂sα

∂ε
δαβ + n2∂s̆′α

∂ε

∂pc

∂pβ

+

+

(
∂ξ̆α

∂ε
ξ̆∗β +

∂ξ̆∗β
∂ε

ξ̆α

)
(b− n01) :

1

3κs

]
(B.28)

In this equation, expressions (1.115,B.121,B.131,B.201,B.221) of involved partial deriva-

tives are substituted. The so-obtained equation, after manipulation using relations

(1.96,1.117,1.122,1.125,1.127,B.16), reads:

∂

∂ε
(ραρβCαβ) = ραρβb

{
ξ̆α

κα

δαβ + (B.29)

+
1

ω

[
2s̆′α

∂pc

∂pβ

(
ςα

∂pc

∂pα

+ ςβ
∂pc

∂pβ

− n

)
+ pcs̆

′′
α

∂pc

∂pα

ςαςβ

]}

Therefore, Maxwell condition (1.35)3 is shown to be verified by means of a direct

comparison between (B.27) and (B.29), taking into account relation (B.22)2.

Left and right sides of Maxwell condition (1.35)4 can be again calculated by means

of (B.4) and (B.5), respectively. The derivatives appearing in right sides of (B.4-B.5)



APPENDIX 157

can now be evaluated considering expression (1.129)3 for storage modulus, that is,

∂Cαα

∂pβ

=
∂n

∂pβ

(
sα

κα

+ 2ns̆′α
∂pc

∂pα

)
+

n

κα

∂sα

∂pβ

+ n2 ∂s̆′α
∂pβ

∂pc

∂pα

+

+

(
∂ξ̆α

∂pβ

ξ̆∗α +
∂ξ̆∗α
∂pβ

ξ̆α

)
(b− n01) :

1

3κs

(B.30)

∂Cαβ

∂pα

=
∂n

∂pα

(
sα

κα

δαβ + 2ns̆′α
∂pc

∂pβ

)
+

n

κα

∂sα

∂pα

δαβ + n2 ∂s̆′α
∂pα

∂pc

∂pβ

+

+

(
∂ξ̆α

∂pα

ξ̆∗β +
∂ξ̆∗β
∂pα

ξ̆α

)
(b− n01) :

1

3κs

(B.31)

In these equations, expressions (1.126,B.122,B.132,B.202,B.222) of involved derivatives

are substituted and some simplification is achieved by applying relations (1.962,1.117,1.122,

B.16), thus obtaining:

∂Cαα

∂pβ

=

(
∂n̂

∂pf

sαξ̆∗β
ω

+ ns̆′αςβ

)
1

κα

+

+
2s̆′α
ω

∂n̂

∂pf

[
n

(
∂pc

∂pα

ξ̆∗β −
∂pc

∂pβ

ξ̆∗α

)
+

∂pc

∂pα

∂pc

∂pβ

ξ̆∗αςα + 2ξ̆∗αςβ

]
+

+s̆′′α
∂pc

∂pα

ςβ

[
n2 +

pc

ω

∂n̂

∂pf

ξ̆∗α

(
ςα + n

∂pc

∂pα

)]
(B.32)

∂Cαβ

∂pα

=

(
∂n̂

∂pf

sαξ̆∗α
ω

+ ns̆′αςα

)
δαβ

κα

+

+
2s̆′α
ω

∂n̂

∂pf

[
n

(
∂pc

∂pβ

ξ̆∗α −
∂pc

∂pα

ξ̆∗β

)
+

∂pc

∂pα

∂pc

∂pβ

ξ̆∗αςα + 2ξ̆∗βςα

]
+

+s̆′′α
∂pc

∂pβ

ςα

[
n2 +

pc

ω

∂n̂

∂pf

(
∂pc

∂pα

∂pc

∂pβ

ξ̆∗βςα + n
∂pc

∂pα

ξ̆∗α

)]
(B.33)

For the trivial case α = β, the coincidence between (B.4) and (B.5) is equivalent to

the coincidence between equations (B.32) and (B.33), which, in turn, can be easily

verified applying (1.122). For the relevant case α 6= β, further manipulation employing
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(1.125),(1.127) and (1.129)3 is required to obtain:

∂

∂µβ

(ρ2
αCαα) − ∂

∂µα

(ραρβCαβ) =

= ρ2
αρβ

(
− 1

κα

Cαβ +
∂Cαα

∂pβ

− ∂Cαβ

∂pα

)
=

= ρ2
αρβ

[
− 1

κα

Cαβ +

(
∂n̂

∂pf

sαξ̆∗β
ω

+ ns̆′αςβ

)
1

κα

]
= 0 (B.34)

Therefore, also Maxwell condition (1.35)4 is satisfied by the class of models presented

in Section 1.4.3.



Appendix C

Convex Helmholtz free energy

In this Appendix we prove that conditions (1.36) are sufficient for the Helmholtz free

energy ψ to be (strictly) convex. Firstly, in developments that follow it is useful

to rewrite rate constitutive equations (1.31) in a more compact form. Therefore we

introduce the following vectors and matrices

M :=


Mw

Mg


 µ :=


µw

µg


 bT

ρ :=


ρwbw

ρgbg


 Cρ :=


 ρ2

wCww ρwρgCwg

ρgρwCgw ρ2
gCgg




(C.1)

thus allowing to rewrite system (1.31) as


 σ̇

Ṁ


 =



C̃sk −bρ

bT
ρ Cρ





 ε̇

µ̇


 (C.2)

Inversion of the second equation with respect to fluid free enthalpies provides

µ̇ = C−1
ρ

(
Ṁ− bT

ρ ε̇
)

(C.3)

that, substituted in the first equation of system (C.2), leads to the following “pure

stiffness” formulation of rate constitutive equations:


σ̇

µ̇


 =



Cundr −bρC

−1
ρ

−C−1
ρ bT

ρ C−1
ρ





 ε̇

Ṁ


 (C.4)
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where

Cundr := C̃sk + bρC
−1
ρ bT

ρ (C.5)

is the “undrained” elastic tensor providing the reversible response of the porous solid

when both the fluid mass content rates are null. Due to hyperelastic equations (1.27),

the global coefficient matrix appearing in system (C.4) can be viewed as the Hessian

matrix of the Helmholtz free energy ψ. Therefore, this function is (strictly) convex if

and only if

ψ̄(A, a) := A : Cundr A + a ·C−1
ρ a− 2A : bρC

−1
ρ a > 0 (C.6)

∀ (A, a) ∈ Sym× R2 \ {(0,0)}

In view of definition (C.5) and due to the symmetry of Cρ, condition (C.6) takes the

form

ψ̄(A, a) = A : C̃sk A +
(
bT

ρ A− a
) ·C−1

ρ

(
bT

ρ A− a
)

> 0 (C.7)

∀ (A, a) ∈ Sym× R2 \ {(0,0)}

Positive definiteness (1.36)1 of the drained elastic tensor implies

ψ̄(A, a) >
(
bT

ρ A− a
) ·C−1

ρ

(
bT

ρ A− a
) ∀A ∈ Sym \ {0} (C.8)

Positive definiteness (1.36)2 of the matrix of storage modulus implies the positive def-

initeness of C−1
ρ , which in turn, together with (C.8), allows to write

ψ̄(A, a) >
(
bT

ρ A− a
) ·C−1

ρ

(
bT

ρ A− a
) ≥ 0 (C.9)

∀A ∈ Sym \ {0} and ∀ a ∈ R2

moreover

ψ̄(0, a) = a ·C−1
ρ a = 0 ⇔ a = 0 (C.10)

that, together with (C.9), is equivalent to (C.7).



Appendix D

Integrability conditions

In this Appendix we provide necessary and sufficient conditions for a matrix to be the

Hessian operator of a scalar function. For the sake of simplicity, we restrict to the

three-dimensional case. Therefore, we consider a point (x1, x2, x3) ∈ D ⊂ R3 with

D connected and H(x1, x2, x3) a matrix of sufficiently smooth functions, at least with

continuous derivatives:

H(x1, x2, x3) =




H11(x1, x2, x3) H12(x1, x2, x3) H13(x1, x2, x3)

H21(x1, x2, x3) H22(x1, x2, x3) H23(x1, x2, x3)

H31(x1, x2, x3) H32(x1, x2, x3) H33(x1, x2, x3)


 (D.1)

It is well known that the necessary conditions for H to be the Hessian matrix of a

scalar function f , i.e.

H(x1, x2, x3) = ∇2f(x1, x2, x3) (D.2)

can be written in this way:

H(x1, x2, x3) = HT (x1, x2, x3) (D.3)

∂Hij

∂xk

=
∂Hik

∂xj

for i, j, k = 1 . . . 3 (D.4)

for all (x1, x2, x3) ∈ D.

This lemma, providing necessary conditions for the integrability of a matrix of

functions, can be inverted if D ⊂ R3 is simply connected. In this case, it is well known
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that conditions (D.4) are also sufficient for the existence of scalar functions φi such

that

Hij =
∂φi

∂xj

=: φi,j for i, j = 1 . . . 3 (D.5)

These functions can be obtained by integrating the i row of (D.1) on an arbitrary path

γ in D ⊂ R3. For example, we may consider the piecewise linear path

γ = γ1 ∪ γ2 ∪ γ3 (D.6)

with γi being a line connecting points Pi−1 and Pi, where P0 ≡ (0, 0, 0), P1 ≡ (x1, 0, 0),

P2 ≡ (x1, x2, 0) and P3 ≡ (x1, x2, x3). Therefore, we may write:

φi =

∫ Pk

Pk−1

Hik dxk (D.7)

with summation on the repeated index. Finally, we have to prove the existence of a

scalar function f such that

φi =
∂f

∂xi

=: f,i (D.8)

This scalar function exists if the following conditions hold in the simply connected set

D ⊂ R3:
∂φi

∂xj

=
∂φj

∂xi

for i, j = 1 . . . 3 (D.9)

These conditions can be easily verified by means of (D.3), (D.4) and (D.7). We may

conclude that, for a matrix of functions given in the form (D.1), conditions (D.3) and

(D.4) are not only necessary, but also sufficient for the existence of a scalar function

such that relation (D.2) holds, providing that the domain is simply connected.
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editors, Computational Plasticity, Proceedings of the 4th International Confer-

ence, Barcelona, 1995, 547-561.

[11] Armero, F. and Garikipati, K., An analysis of strong discontinuities in multi-

plicative finite strain plasticity and their relation with the numerical simulation

of strain localization in solids, International Journal of Solids and Structures,

33, 1996, 2863-2885.

[12] Armero, F. and Park, J.G., An analysis of strain localization in a shear layer

under thermally coupled dynamic conditions. Part 1: Continuum thermoplastic

models, International Journal for Numrical Methods in Engineering, 56(14),

2003,2069-2100.

[13] Arrow, K.J., Hurwicz, L. and Uzawa, H., Studies in Non-Linear Programming,

Stanford University Press, 1958.

[14] Auricchio, F. and Sacco, E., Augmented lagrangian finite-elements for plate

contact problems, International Journal for Numerical Methods in Engineering,

39(24), 1996, 4141-4158.

[15] Baiocchi, C., Su un problema di frontiera libera connesso a questioni di

idraulica, Annali di Matematica Pura e Applicata, 92, 1972, 107-127.



REFERENCES 165

[16] Bathe, K.J., Sonnad, V. and Domigan, P., Some experiences using finite el-

ement methods for fluid flow problems, Proceedings of the 4th International

Conference on finite Element Methods, Hannover, 1982, 9.3-9.16.

[17] Bazant, Z.P., Belytschko, T. and Chang, T.P., Continuum theory for strain-

softening, Journal of Engineering Mechanics, ASCE, 110, 1984, 1666-1691.

[18] Biot, M.A., General theory of three-dimensional consolidation, Journal of Ap-

plied Physics, 12, 1941, 155-164.

[19] Biot, M.A., Theory of finite deformations of porous solids, Indiana University

Mathematics Journal, 21, 1972, 597-620.

[20] Biot, M.A. and Willis, D.G., The elastic coefficients of the theory of consolida-

tion, Journal of Applied Mechanics, 24, 594-601, 1957.

[21] Bishop, A.W., The principle of effective stress, Teknisk Ukeblad, 39, 859-863,

1959.

[22] Bolzon, G., Schrefler, B.A. and Zienkiewicz, O.C., Elastoplastic soil constitutive

laws generalized to partially saturated states, Géotechnique, 46(2), 1996, 279-
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