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Preface

Water is the major chemical constituent of our planet’s surface and it is essential for
living organism survival. About 65% of the human body weight is due to water, some
tissues such as brain and lung being composed of nearly 80% water. Many biochemical
and industrial processes occur in aqueous solution and the role of the solvent in the
reactions is crucial.

Due to its ubiquity, we tend to consider water as a simple common substance but,
for such a seemingly elementary molecule, the complexity of behaviour is astonishing
and water is still surprisingly poorly understood.

The comprehension of the chemical and physical nature of water has been a long-
standing goal of science, and liquid water continues to attract intense interest and
motivate a large number of experimental and theoretical studies.

Recently, however, the theoretical studies of water [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] have
mostly focused on its structure and ground state properties whereas less effort has
been dedicated to its electronic structure and optical absorption spectrum. As a con-
sequence, experimental data about excited states are not yet completely understood.
One of the purposes of the present work is hence to solve these issues by carrying out
ab-initio many-body calculations of the electronic and optical properties of water.

Simultaneously, in the last years, great attention has been devoted to the study
of water confined in different nanoporous systems, or in proximity of macromolecules
and surfaces, because of its biological and technological importance (water in biology is
always confined) [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. It is well assessed that
microscopic properties of confined water molecules differ from those in the bulk phase
and the competition between water-water and water-confining medium interactions
leads to the appearance of new interesting physical properties. Moreover, changes
in both structural and dynamical properties occur. Up to now, however, there is no
general theory predicting the behavior of confined liquids or the relative importance
of surface interaction versus confinement.

The present work focuses on two complementary aspects of water: its excited state
properties, very important in many chemical reactions and therefore fundamental to
advance in many research fields, and the proton microscopic dynamics in confined wa-
ter, which is interesting for many biological processes such as catalysis, protein folding
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or ionic transport in membranes. These topics are faced with different investigative
approaches, both theoretical and experimental. The electronic and optical properties
of liquid water are studied with ab-initio theoretical calculations, taking into account
both self-energy and excitonic effects in the framework of many-body perturbation
theory. The study of the proton microscopic dynamics of confined water has been in-
stead made with deep inelastic neutron scattering experiments, performed at the ISIS
spallation neutron source.

This thesis is organized as follows: in the first chapter a brief introduction on water,
with an overview of its principal properties and anomalies and their importance for
life development and survival, is presented. Chapters 2-4 are devoted to the ab-initio
study of the excited state properties of liquid water; in the second chapter we describe
the theoretical methods at the base of our simulations, from Density Functional The-
ory to Many-Body perturbation theory and some hints on Time Dependent-Density
Functional Theory. In chapter 3 we illustrate how to apply these methods to a lig-
uid disordered system, such as water, and which approximations have been necessary.
Chapter 4 is at last devoted to the presentation and discussion of the results obtained
for electronic and optical properties of liquid water. Chapters 5-7 are instead related
to the experimental work for the study of the proton microscopic dynamics in confined
water. In chapter 5 we describe both the theoretical base for Deep Inelastic Neutron
Scattering, especially the Impulse Approximation, and the experimental technique. In
the sixth chapter we present the experiments performed on water confined in xerogel
nanopores, looking at the sample properties and at the experimental instrumentation.
Finally, in chapter 7, we show and discuss the results obtained for the proton momen-
tum distribution in confined water. A conclusive chapter closes the thesis.



Chapter 1

Introduction

Water is one of the most common substances on earth, so familiar that it is often
perceived as pretty ordinary. Despite the simplicity of its molecule (few molecules are
smaller), it presents some fascinating unusual properties which seem to fit perfectly all
the requirements for carbon-based life development and survival. In this chapter we
will describe both the single water molecule, Hy O, and the properties and anomalies of
liquid water, emphasizing their role in our planet balance.

1.1 Water molecule

The isolated water molecule is composed of two hydrogen atoms and one oxygen atom
and has a very simple molecular formula: HO.

Its structure, schematically shown in figure 1.1, is non-linear with a bonding angle
6 = 104.45°; the O-H bonds length is rog = 0.957 A.

The molecular orbital configuration of water in its ground state is

(1&1)2(2@1)2(1[72)2(3&1)2(1[71)2 (].].)

where la; corresponds to the oxygen 1s orbital and the others are mixed molecular
orbitals; the lowest unoccupied molecular orbitals are the ¢ antibonding orbitals 4a;
and 2b,.

The water molecule is usually considered to have four sp*-hybridized electron pairs,
arranged in an approximately tetrahedral structure. Two of them are shared along the
O-H bonds while the other four electrons form two lone pair orbitals on the oxygen
atom, schematically depicted as grey clouds in figure 1.2. The strong repulsion among
these two negative lone pairs give rise to the bending of the molecule, pushing the
hydrogen atoms closer each other, and resulting in a bonding angle # = 104.45° smaller
than the perfect tetrahedral angle of 109.47 °. In the figure it is also shown that, due
to these four unshared electrons, the water molecule has a negative charge near the

7



Figure 1.1: Schematic view of the isolated water molecule.

oxygen atom and a positive charge near the hydrogens. The uneven distribution of
electron density makes the water molecule polar, with a dipole moment ;. = 1.854 D*.

1.2 Liquid water

In order to describe liquid water, we have first to define the hydrogen bond. In general
terms, we can say that a specific attraction is found between an electronegative atom
(such as nitrogen, oxygen, fluorine and chlorine) and an hydrogen (or deuterium) atom,
particularly when the latter is itself chemically bonded to other electronegative atoms.
Hydrogen bonds have a strength (/& 0.22 eV per atom) intermediate between covalent
and van der Waals interactions and are strongly directional, meaning that the hydrogen
bond, between one electronegative atom and one hydrogen atom, tend to be collinear
with the bond between the hydrogen and the second electronegative atom. This is
schematically shown, for the case of water molecules, in figure 1.3.

The water molecule, containing two hydrogen and one oxygen atoms in a non-linear
arrangement, is ideally suited to engage in hydrogen bonding, with the possibility to
act both as a donor and as an acceptor and hence with the potentiality to form four

11 D = 1 Debye = 3.3356 x 1073°Cm
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g

Figure 1.2: Schematic view of the water molecule; grey clouds are the lone pair orbitals.
The partial charge transfer from the hydrogens to the oxygen atom is also indicated.

hydrogen bonds for each molecule, two from the hydrogens and two from the oxygen.
Both in the liquid and in the solid phases, water molecules present two types of O-H
interactions: strong covalent bonds within the single molecule and weaker hydrogen
bonds between the molecules. Since the strength of the hydrogen bonds is about a tenth
of the strength of the covalent ones, they are constantly broken and reformed in liquid
water and a wide three-dimensional random network of hydrogen bonds, continuously
changing, is formed (see the example in figure 1.3).

The striking number of unusual properties of liquid water may be largely ascribed
exactly to its ability to form hydrogen bonds. Some of the more notable physical
properties displayed by liquid water are the following:

1. negative volume of melting and density maximum along the coexistence curve at

4°C;
2. anomalously high specific heat;

3. anomalously high boiling point and evaporation heat, as shown in figures 1.4 and
1.5;

4. high dielectric constant and high mobility for HT and OH™ ions transport.
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Figure 1.3: Example of hydrogen bonds network among water molecules. Continuous
lines represent O-H covalent bonds within the HoO molecules while dashed lines are
O-H hydrogen bonds between water molecules.

In what follows, we describe the meaning and consequences of these properties:

1. Almost in all substances, the average distance among first neighbours tends
to increase with increasing temperature and the solid phase has in general a higher
density than the liquid one. This is not true for water/ice; due to the hydrogen bonds
among molecules, both water and ice tend to have a tetrahedral structure. When ice
is melting, this structure partially breaks and some water molecules can insert in the
holes which are developing in this structure. Therefore with increasing temperature
there are two opposite effects: the approach of the molecules causing an increase of the
density and the usual increase of the average distance among neighbours which tend
to decrease the density. Up to 4°C the first effect is dominant and the most evident
consequence is that ice float on top of water. In nature, this property is fundamental
because it allows ponds, lakes and seas to freeze on the top and to offer hospitable
underwater conditions for aqueous life form.

10
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2. The specific heat of water, 1.01 cal/g, is one of the highest among organic
compounds. It is defined as the energy that has to be furnished to 1 g of matter to
increase its temperature of 1 degree. This energy is generally used to break the bonds
among molecules, but hydrogen bonds are stronger than van der Waals interactions
and require a greater amount of energy. The high specific heat of water enables the
oceans to stabilize the world’s climate, because a great amount of heat is needed to
change their temperature of just 1 degree.

3. Water has an anomalously high boiling point, 100 °C, and the highest evapo-
ration heat of all known substances, 538 cal/g. This is again due to the strength of
the hydrogen bonds among the molecules and makes water an excellent cooler. This
property is also exploited by human body through the perspiration.
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Figure 1.4: Boiling point of various RH,, molecules and of noble gases, as a function
of the horizontal position of R in the periodic table.

4. The dielectric constant of liquid water, 81, is one of the highest among pure
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liquids (except for formamide and cyanidric acid) and this allows the easy dissociation
of polar molecules in solution. This property is mainly due to the polarity of the water
molecule, with a partial charge transfer from the hydrogens to the oxygen. Related
to the high value of the dielectric constant, water tends also to ionize giving rise to

H,OH™ and OH™ ions and promoting the mobility of ions and the occurance of chemical
reactions.
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Figure 1.5: Evaporation heat of various RH,, molecules and of noble gases, as a function
of the horizontal position of R in the periodic table.

Many other singular properties, together with their importance for life on our
planet, make water a fascinating substance but, in spite of much work, many of these
properties are still puzzling and lots of work, both theoretical and experimental is still
to be done. The aim of the thesis is to do some of this work by studying the proton
microscopic dynamics of confined water by neutron scattering experiments and the
excited state properties of liquid water by theoretical ab-initio calculations.

12



Chapter 2

First principles theoretical methods

In this chapter we review the theoretical methods employed in this thesis work for the cal-
culations of the excited state properties of liquid water. We will first describe the density
functional theory which is an exact theory for ground state calculations but is also a common
starting point for other ab-initio methods. Then we will show the need to go beyond density
functional theory in order to describe excitations in materials. We will illustrate the many
body perturbation theory, from the basic Green’s functions formalism, through the so-called
GW approximation, up to the Bethe-Salpeter equation, which gives good results for neutral
excitation spectra. At the end of the chapter, we will also introduce the time-dependent den-
sity functional theory, that represents an alternative method to obtain excited state properties,
computationally less expensive but not yet as reliable as many body perturbation theory.

2.1 Density functional theory

Density Functional Theory (DFT) aims to solve the many-body ground state problem
in terms of the one-particle electronic density alone. The first attempts to study solid
state problems focusing the attention on density functionals are ascribed to Thomas
and Fermi [24]-[25] and date back to 1927-1928.

The seminal paper of Hohenberg and Kohn [26] of 1964 and the following work of Kohn
and Sham [27] of 1965 lay the foundations for the density functional theory and in 1998
the importance of their work was acknowledged with the nobel prize for chemistry to
Kohn. For a detailed review on DFT see, for example, [28].

13



Chapter 2

2.1.1 The many-body problem

A system of interacting particles, both electrons and ions, in the non-relativistic regime
(relativistic effects are negligible in the range of energy of interest), is described by the
many-body Hamiltonian (in atomic units e = m = h = 1):

Z[ZJ 1 1 _ZI
H= Z V+Z v2 Z\RI—RJ\ 5;7\ri—rﬂ+;7\ri—fiz|’(2'1)

where the capital indices refer to ions and the small ones refer to electrons. The
terms of this Hamiltonian represent, in the order, the kinetic energies of the ions and
electrons and the interaction among the ions, among the electrons and between ions
and electrons. The knowledge of the eigenvalues and eigenstates of this Hamiltonian
is a very complex task, impracticable for realistic systems.

The first important simplification comes from the Born-Oppenheimer approximation
[29]: being the ion masses much greater (three orders of magnitude) than the electron
ones, for each ionic configuration electrons can be considered in their ground state. In
other words, the dynamic of ions and electrons is in well separated range of energies
and therefore the ionic and electronic degrees of freedom can be decoupled. This leads
to a simplified electronic Hamiltonian of the form:

H= X}—wﬂ+umm&Rg X: =T+ Ve + We_s; (2.2)

—r]|

we still have the electrons kinetic energy and the electron-electron interaction while the
other terms are grouped in the external potential where the ionic coordinates appear
just as parameters.

Anyway, finding eigenvalues and eigenstates of this Hamiltonian is still an impossible
task for complex systems, out of the present computers power. In order to obtain
some knowledge about the many-body problem it is therefore required to introduce
some other approximation. One appealing approach is to reduce the problem to the
study of a single particles Hamiltonian. In this context we have the Hartree [30] and the
Hartree-Fock [31] methods. Also the density functional theory, which is an exact theory
for ground state calculations, can be considered in this single particles framework.

2.1.2 Hohenberg and Kohn theorem

The basis of density functional theory are in the Hohenberg and Kohn theorem [26]. It
was originally formulated for a many fermions system subject to local, spin-independent
external potentials and for non-degenerate ground states. It affirms that, for a non-
relativistic, time independent Hamiltonian of the form

H=T+V+W, (2.3)

14
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the external potential is a unique functional of the electronic density and therefore,
once the mutual interaction among electrons is fixed, citing the original words of Ho-
henberg and Kohn,

the full many particle ground state is a unique functional of n(r).

To sum up, we will prove that the ground state density determines the entire
Hamiltonian of the system and that the energy functional, once the external potential
is fixed, has its minimum just at the ground state density.

The demonstration of this statement is now given only for the case of a non degenerate
ground state; an extension to degenerate ground states can be found in [28].

Let’s assume that in the Hamiltonian given by eq.(2.3), the external potential V'
belongs to a set of local, one-particle potentials, V, that lead to non-degenerate ground
states for the problem

H[p) = Egs[t)). (2.4)

If we collect all the ground states in the set ¥, we can define, through the solution of
eq.(2.4), a map between the sets V and ¥

C:V -, (2.5)

this map is surjective by construction.
Then we can calculate the ground state densities n(r) for each element of the set W
by

n(r) = N/w*(r, Toy oy TN )U(1, T, ooy Ty )T dr (2.6)

and collect them in a new set A; trivially we can define a second surjective map
D:V—N. (2.7)

To affirm that the ground state density univocally determines the Hamiltonian of the
system we have to demonstrate that the two maps C' and D are also injective and,
hence, fully invertible.

Let’s start by proving the invertibility of the map C'; we can suppose that two different
potentials (that differ by more than a constant) lead to the same ground state:

V # V' + const
Hly) = (T + W+ V)|) = Eglt))
H'ly) = (T+ W +V)) = EJv). (2.8)

15
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Since the potentials are just multiplicative operators and the states v are not zero on
a set of positive measure!, by subtraction we obtain

(V =VI) = (Egs = Eg)lb) = V = V' = Egs — Eyy (2.9)

or rather that the potentials differ just for a constant, in contradiction with our hy-
pothesis. This proves that C' is invertible.

We have now to prove that also the map D is fully invertible; we will start from the
hypothesis 1) # 1" and show that n(r) must be different from n(r’).

From the variational principle we have

Egs = (| H[) < (W[H[Y') = @'|[H' +V = V'[if) = By, + [ n'(r)(v(r) —v'(r))d*r
)
By < Ej + [n/(r)(v(r) — o' (r))d’r. (2.10)

In the same way, starting with E/ , we get:

Bl < Ep+ / n(r) (v (r) — v(r))dPr. (2.11)

If we assume that different states ¢ # 1’ lead to the same electronic density n(r) =
n'(r), by adding term by term eq.(2.10) and (2.11), we obtain

Ego+ B, < El + Eg (2.12)

that is an obvious contradiction.

We have just demonstrated that the electronic density of the system determines the ex-
ternal potential and thus, since the kinetic energy and the electron-electron interaction
are specified, the entire Hamiltonian.

The second part of the Hohenberg and Kohn theorem establishes the variational
character of the energy functional: since the map D between the densities and the
eigenfunctions, does not depend on the external potential, if 1} is the potential of a
system with ground state energy Fjy and ground state density ng(r), the variational
principle guarantees that

Ey = Ey,[ng| < Ey,[n] for each  n # ng; (2.13)

the ground state energy can therefore be obtained by minimizing the energy functional
over all the possible densities
Ey = m1j\r} Ey,[n]. (2.14)
ne

IThis is valid for well behaved potentials; rigorously on the Hilbert space of potentials V = L3/ +
L [32].

16
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There is also another consequence of the independence of the map D from the
external potential: the energy functional can in fact be divided in two parts

Ewﬂ:WMW+WWMD+/%QMthdﬁﬂm+/%@M@fﬁ (2.15)

the last part of the Hohenberg and Kohn theorem affirms that Fyg is a universal
functional of the density, n, independent on the fixed external potential V.

The three fundamental assertions of the theorem concern the invertibility, the vari-
ational character of the energy functional and the universality of the functional Fyg;
however, for many-body realistic systems, this functional is not known and its explicit
construction is only possible with some approximations.

2.1.3 Thomas-Fermi equation

We pointed already out that the main limit of the Hohenberg and Kohn theorem is
that the energy functional E[n| is not explicitly known. In this section we will show
how a particular choice of the energy functional leads to the Thomas-Fermi equation.
In the Thomas-Fermi approximation we neglect the exchange and correlation effects
in the electron-electron interaction, and consider the kinetic energy of the system as
that of a free-electron gas:

tvzl/ﬂﬂﬁldd' (2.16)

2 lr —r'|

T = C/ [n(r)]3dr, (2.17)

with C' = 3(37%)%/3.
By minimizing the total energy functional Ey[n] =T +V + W with the constraint of
constant number of particles (through the Lagrange multiplier )

5(&mﬂ—w/MMm):Q (2.18)
we obtain the Thomas-Fermi equation

= 0. (2.19)

5
3C(n()** + V(x) /d’
The Thomas-Fermi theory is based on the "right” variable, that is the electronic
density, but it is not able to bind atoms in molecules nor to describe their shell structure

and therefore it is not usable for realistic system calculations.

17
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2.1.4 Kohn and Sham single particle equations

One year after the publication of the Hohenberg and Kohn work, Kohn and Sham
proposed a single particle scheme to obtain the ground state density and total energy
[27]. Using the Hohenberg and Kohn approach they obtained a set of self-consistent
single particle equations where the various contributions to the total energy are sepa-
rated and the only approximation must be introduced for the exchange and correlation
interaction.

We can start the derivation of the Kohn and Sham equations by separating the total
energy functional contribution

Eyfn] = Tyln] + / den(r)or(r) + W] = / den(r)or(r) + Euln] + Glnl,  (2.20)

where Fy is the Hartree energy and the index I refers to the fact that we are dealing
with interacting particles; for the moment Gn| is just an unknown functional.

Let’s now introduce an auxiliary system of non-interacting (index NI) particles, de-
scribed by the Hamiltonian

Hyr = Tn1 + Vi, (2.21)

having the same density of the interacting system. According to the Hohenberg and
Kohn theorem, there will exist just one external potential of the non-interacting system
leading to a ground state density equal to the one of the interacting system:

Vi — Yinn — nnr = Z [vivn|? = nr. (2.22)

7

In the Kohn and Sham scheme we exploit the kinetic energy of the non-interacting
system to separate also the functional G[n| in two contribution:

Ern] = /drn(r)v;(r) + Eyn] + Tnrn] + Eyn]; (2.23)

E,. contains the difference between the kinetic energies of the interacting and non-
interacting systems and the exchange and correlation contributions to the total energy.
However, for an arbitrary system, F,. is unknown and must be approximated in some
way.

Following the Hohenberg and Kohn variational principle we can now minimize the
energy functional with respect to the density:

(5E[ . 5EH 5TNI 5Eacc

18



First principles theoretical methods

Defining the exchange and correlation potential v,. = % and the Hartree potential
vy = ‘Sf—nH, we obtain the Kohn and Sham set of self-consistent equations

[—%V2 + v + vy + Ve @i(r) = £:0i(x), (2.25)

n(r) =3, filei(r)?, (2.26)

where f; is the occupation number of the state 7.

The main idea of the Kohn and Sham scheme is therefore to replace the problem of
an interacting particles system with a simpler fictitious non-interacting system whose
Hamiltonian is characterized by a potential

VKs = VU1 + Vg + Uge. (2.27)

It’s important to stress that this potential depends on the density, hence the equations
(2.25) and (2.26) must be solved in a self-consistent way.

2.1.5 Approximations for the exchange-correlation energy

In the previous section we derived the Kohn and Sham equations characterized by
the potential (2.27); we also said that, for an arbitrary system, F,. and hence v, are
unknown and must be approximated in some way. We will now describe two possible
approximations for the exchange and correlation potentials, that have been used in
this thesis: the local density approximation (LDA), first proposed in the original work
of Kohn and Sham [27], and the generalized gradient approximation (GGA) [33]-[34].

In the local density approximation, the exchange and correlation energy is given
by

BLDA _ / dr n(r) €9(n(r), (2.98)

29 is the exchange and correlation energy per electron of an homogeneous
electron gas of density n(r); we see that, in this approximation, the exchange and
correlation potential depends only on the local value of the density.

In actual calculations €% is taken from tables obtained with accurate Monte Carlo sim-
ulations of the homogeneous electron gas for different constant densities n(r) [35],[36].

The local density approximation is valid, in principle, only for systems with slowly
varying densities however, surprisingly, it turns out to be accurate and to give favor-
able ground-state results also for highly inhomogeneous systems such as atoms and
molecules or even more complex systems. This can be partially attributed to the
fact that it satisfies the correct sum rule for the exchange and correlation hole?(for a
detailed derivation see [28]).

where €

2The exchange and correlation hole represents a negative electronic density corresponding to the
fact that each electron repels the others creating a sort of hole around itself.
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One can imagine that a way to improve the local density approximation is to con-
sider also the variations of the density by adding gradient corrections. Unfortunately
this approximation, known as Gradient Expansion Approximation [37], yields worse
results than LDA because its exchange and correlation functionals do not obey the sum
rule for the exchange and correlation hole [38]. To go beyond LDA, we can introduce
new functionals, called Generalized Gradient Approximation functionals, of the form

EGGA — /drf(n(r),vrn), (2.29)

that are built taking care that the sum rule for the exchange and correlation hole
is satisfied. For many realistic systems, the use of these functionals turns out in an
appreciable improvement of the results of calculations, particularly for lattice constants
estimation. Anyway, this is not always the case and there are some systems, for instance
graphite, which are better described by LDA potentials.

2.1.6 Further approximations

When performing real calculations, further approximations must be introduced.
The electronic wavefunctions of a periodic system can be expressed, thanks to the
Bloch theorem [39], as a sum of plane waves of the form

Unk(r) = Z Cngerc €T, (2.30)
G

where k is a vector of the reciprocal lattice that covers the first Brillouin zone and G
is a reciprocal lattice vector.

In principle, both the k points and the G vectors must be infinite but it is obviously
impossible in real calculations.

What is done in practice is to perform a summation just on a finite number of k-points,
"representative” of the entire Brillouin zone, and to limit the summation over the G
vectors up to a fixed value.

To illustrate the first point we can imagine that the wavefunctions for k-points close to
each other in a region of the Brillouin zone are almost identical and can therefore be
replaced by just one wavefunction for the entire region. Obviously a good convergency
on the k-points set has to be reached. Fortunately, there are some special sets that,
thanks to the symmetry of the system, well represent all the first Brillouin zone, even
with a small number of k-points [40]-[41].

To limit the summation over the G vectors we take advantage from the fact that the
most important contributions in the wavefunction expansion come from the plane-
waves with the smaller kinetic energy associated. We therefore truncate the expansion
by introducing an energy cut-off E.,; and considering just the plane-waves with kinetic
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energy below this threshold
1

With a careful k-point sampling and the introduction of the energy cut-off F.,,
the Kohn and Sham equations seem to be tractable. Unfortunately there is also an-
other practical problem: a plane-waves basis set is in fact unsuitable for describing
the rapidly oscillating wavefunctions of the core electrons. Anyway, the most physical
properties of solids come from the valence electrons rather than the inner ones, and
the core wavefunctions are almost the same in different chemical frameworks. For this
reason, it is possible to introduce a further approximation that is the use of pseudopo-
tentials®: we replace the core electrons and the strong nuclear potential with a weaker
effective pseudopotential of the positive ion and, in this way, we simultaneously get rid
of the singularity of the nuclear potential, of the very localized core electrons and also
of the nodes of the valence wavefunctions (otherwise needed for the orthogonality to
the core wavefunctions).

Pseudopotentials are usually constructed through the inversion of the Schrodinger
equation for the pseudo-atom and must obey some conditions:

1. beyond a certain ‘core’ radius r., the original potential must be recovered,

2. beyond the same r., the valence pseudo-wavefunctions must be equal to the ones
of a reference configuration, such as the neutral free atom,

3. below r,. the pseudo-wavefunctions must not have any node,
4. the valence states energies must be equal for the pseudo-atom and the real atom,

5. the pseudopotential must be transferable, i.e. it has to represent the valence
electrons for different chemical environments.

2.1.7 Excited states in DFT

A last comment about density functional theory regards the fact that, after solving the
Kohn-Sham equations, one can be tempted to give a physical interpretation both to
the Kohn and Sham orbitals and eigenvalues as excited states and excitation energies
of the real system. This is not the case, in fact the Kohn and Sham eigenvalues in
eq.(2.25) are just Lagrange multipliers and their interpretation as excitation energies
of the real system has no foundation.

In spite of this, Kohn and Sham solutions are often used to have a first insight on the
excited state properties of real systems. This leads to the well known band gap problem

3This kind of effective potentials first appear in 1934 [42] and 1959 [43]; for details on "modern”
pseudopotential see [44]-[45].
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of DFT: the band gaps predicted by the theory are typically 30-50% (sometimes even
more) smaller then the experimental ones. For what concern the absorption spectra,
we can use the Kohn and Sham solutions through the one-electron approximation of
the Fermi’s golden rule:

€2 X Z ‘<¢C|€iqr|¢v>‘25(w — (€c — &0))- (2.32)

v,C

This approximation, in spite of its simplicity, can sometimes lead to descriptions of
the electronic spectra in qualitative and quantitative agreement with the experimental
ones (especially for electron energy loss spectra[46]); more often it provides just a first
indication on the absorption spectra of materials.

2.2 Many body Green’s functions approach

In the previous section we have described the density functional theory which is a very
powerful tool to study ground state properties. However, if we want to interpret or
even predict spectroscopic experiment results, we have to study the system in its ex-
cited states. Photoemission (both direct and inverse), electron-energy loss and optical
absorption will be the reference experiments we would like to describe.

In direct photoemission an electron is ejected from the system and, if one considers
this electron as being completely decoupled from the sample, from the energy and
momentum conservation one can obtain information about the energy level that ”was
occupied” by that electron, i.e. the energy level of the hole. On the contrary, inverse
photoemission yields information about the unoccupied states. In absorption exper-
iments there is not a change in the total number of electrons: the excited electron
remains inside the system and interacts with the hole; hence the two particles can-
not be treated separately and the joint density of states must be considered. Also in
electron-energy loss experiments the electrons impinge on the sample and lose their
energy by exciting electron-hole pairs, plasmons and other high-order multipair exci-
tations. Therefore, all these spectroscopic techniques, excite the system and look at
its response.

In the last paragraph, we have emphasized the necessity to go beyond DFT in order
to successfully describe excited state properties of materials. This is exactly the aim
of Time Dependent Density Functional Theory (TDDFT), which will be described in
the following section, and of Green’s functions theory that is the matter of this section
(details on this technique can be found in many textbooks[47]-[48] and reviews[49],[50]).
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2.2.1 The Green’s functions: basic theory

The single particle Green’s function is defined as

G(1,2) = —i(N|T{p(1)0t(2)}|N), (2.33)

where |N) is the ground state of a N particles system, 7 is the time ordering operator,
QZ(Z) (1 = 1,2) are field operators in the Heisenberg picture and in the index i are
included the five coordinates (position r;, spin o; and time ¢;; x; includes both the
position and the spin coordinates) of the i-th particle.
QZJ\]L(Z”N ) represents a (IV 4 1)-particles system in which an electron has been added
in r; at time ¢;; the Green’s function is also called propagator because for t; > ¢ it
gives the probability amplitude to find an electron in r; at time ¢; when an electron
has been added to the system in ro at time ¢, and viceversa, for to > tq, it represents
the propagation of a hole.

Depending on the time ordering, we can insert a complete set of (N +1) or (N —1)
particles states and perform a Fourier transform in time domain. In this way we obtain
the Lehmann representation of the Green’s function:

B fa(w1) fi(x2)
G(z1, 02, w) = XS: w—€s — insgn(p — €)’

(2.34)

where p is the Fermi energy of the system, s runs over the (N + 1) or (IV — 1) particles
excited states and

folz)) = (N —1,8|¢(x;)|N) and e, = E(N)— E(N —1,s) when e, <p
(2.35)
7 is an infinitesimal positive number needed for the convergence of the Fourier trans-
form.
In this representation it can be seen that the poles of the Green’s function are exactly
the electron addition and removal energies, that is the energy levels of unoccupied and
occupied states respectively.

{ fuolws) = (N|$(@)|N +1,8) and e, = E(N +1,5) — E(N) when e, > u

2.2.2 Quasi-particle equation

We can now start from the Lehmann representation of the Green’s function given in
eq.(2.34) and take just its imaginary part; we obtain the so called spectral function:

Az, x9,w) = %Im(G(xl,xQ,w))' = Z fs(x) fi(x2)d(w — €5). (2.36)
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In the case of non-interacting particles only the states |[N + 1,s) = cI|N) (where cf
is a creation operator) give non-zero Lehmann amplitudes and the spectral function
consists in a series of d-functions in correspondence of the Lehmann energies, i.e. at
the eigenvalues of the non-interacting Hamiltonian. Each peak hence corresponds to a
single particle state.

For interacting systems the states |[N+1, s) or [N —1, s) are instead linear combinations
of many one-electron wavefunctions and there will be more non-vanishing contributions
to the spectral function. However, these contributions merged together can form, also
for interacting systems, some kind of structure, as shown in fig. 2.1. These structures

non-interacting particles

interacting quasi-particles

A(w)

Figure 2.1: Schematic view of the spectral functions for a non-interacting system (the
d-peak) and for an interacting one. The quasi-particle peak has a different position
(the energy of the quasi-particle) and a finite width (linked to the finite lifetime of the
quasi-particle).

can be thought to derive from the J-functions of the non-interacting system but they
have different positions and a finite width. In this case we still are in a particle-
like framework and we talk of quasi-particles. Quasi-particles can be thought as real
particles plus a cloud of electron-hole pairs surrounding them and screening the mutual
interaction; they are not eigenstates of the real Hamiltonian and hence they have finite
lifetimes (connected to the finite width of the relative peak).

The differences between "bare” particles (subject only to the Hartree potential) and
quasi-particles can be accounted for by a new operator, called self-energy, . It is a
non-local, non-hermitian, energy-dependent operator which includes the Fock exchange
and all the remaining correlation effects.

If we consider the Hartree Hamiltonian as the non-interacting Hamiltonian H, and
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suppose to know the new operator ¥, we can write a Schrodinger-like equation for the
quasi-particles:

Ho () n (1, ) + / oS (1, T2, ) (22, @) = B ()t (1, @), (2.37)

where Hy(x1) = —3 Vi + Vear(@1) + Vi (21).
The Green’s function can be written as:

Glar,a2,w) =Y ¥n Jj’_ x)z’w>7 (2.38)

its poles are at the energies that obey the equation E,(w) = w and can be obtained by
solving eq.(2.37).

We have achieved a single-particle picture to solve the interacting problem but at the
price of the introduction of a non-local, non-hermitian, energy-dependent operator.
This means that the entire Hamiltonian is not hermitian, hence the 1, (x1,w) form a
complete set but are energy-dependent and not necessarily orthogonal; moreover the
E,(w) are in general complex.

As a last comment, we want to stress that the quasi-particle equation reduces to
the Hartree equations for ¥=0, to the Hartree-Fock equation for ¥ = «GV, and to
the Kohn-Sham equation when X is replaced by V.E9(r). This last consideration can
explain the qualitative agreement between DFT results and experimental energy levels:
Kohn-Sham equations already take into account exchange and correlation effects, even
if in an approximate way, and the exchange and correlation potential, V.X%(r), can be
a good approximation for Y.

n

2.2.3 Hedin’s equations

We just said that we have achieved a single-particle equation to solve the interacting

problem but at the price of the introduction of a non-local, non-hermitian, energy-

dependent operator, 3. Now we have to find an adequate expression for this operator.
From the Heisenberg equation of motion for the field operator ¥

6¢ .
H 2.
“ar = [¢, H] (2.39)
we can derive the equation of motion for the Green’s function:
{z% - Ho(l)} G(1,2) — /d3 %(1,3)G(3,2) = 0(1,2) (2.40)
1

where Hy is the Hamiltonian of eq. (2.37).
In the same way, for the non-interacting system we have

{z% — Hy(1 )} Go(1,2) = §(1,2). (2.41)
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From the equations (2.40) and (2.41) it can be derived a Dyson like equation for the
Green’s function:

G(1,2) = Go(1,2) + /d(34) Go(1,3)5(3,4)G(4,2). (2.42)

This is the first equation of a close set of five equations proposed by Hedin[51],[52] in
1965, which allow to obtain the self-energy in an iterative way and to solve exactly (at
least in principle) the many-body problem.

The other four coupled integral equations are:

$(1,2) =i [d(34) G(1,3)T(3,2, )W (4, 11); (2.43)
W(1,2) = V(1,2) + [d(34) W(1,3)P(3,4)V(4,2); (2.44)
P(1,2) = —i [d(34) G(1,3)G(4,11)(3,4,2); (2.45)

I(1,2,3) = 6(1,2)8(1,3) + [ d(4567) 5553 G(4,6)G(7,5)0(6,7,3);  (2.46)

where 17 stands for (rq, 01,1 +9) and ¢ is an infinitesimal positive number. Together
with the Green’s function and the self-energy operator, this set of equations involve
also the time ordered polarization operator P(1,2), the dynamical screened Coulomb
interaction W (1,2) and the vertex function I'(1, 2, 3).

The Hedin’s equations have the appealing characteristic to highlight the important

ingredients of the many-body physics. In fact, the response of the system to the
addition or removal of one particle is given by the polarization operator which contains
two Green’s functions (pairs of particle-hole) but contains also the vertex function, T
The vertex function yields information about the interaction between the particle and
the hole and it is determined by the change of the ”induced potential” ¥ with respect
to G.
Also the use of a screened potential is physically more adequate then using the potential
V: a perturbative expansion in terms of the bare Coulomb potential will lead to
convergency problems which arise from the strength of this kind of interaction while
the effective screened potential W, by which the particles interact, is much weaker and
does not lead to this kind of convergency problems.

2.2.4 The GW approximation

The Hedin’s equations together with the Dyson’s one for the Green’s function form a
set of equations that must be solved self-consistently. This leads in principle to the
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exact solution, but it is practically impossible for realistic systems and one has to face
the problem of finding some simplifications of the Hedin’s equations. The simplest
approximation consists in starting with a non-interacting system by putting > = 0; in
this case the Green’s function is simply Gy, the vertex correction are neglected with
I'(1,2,3) = 6(1,2)6(2, 3) and the irreducible polarizability is given by non-interacting
quasi-electron quasi-hole pairs P(1,2) = —iG(1,2)Go(2,17) (this independent particle
polarizability is also called Random Phase Approximation (RPA) polarizability). With
this first iteration step the self-energy becomes

$(1,2) = iGo(1, 3)Wy(3,1); (2.47)

this is the so-called GW approximation which was firstly introduced by Hedin[51] in
1965. The Green’s function can now be evaluated from the Dyson’s equation (2.42).
In principle more iterations should be performed but real calculations usually stop at
this first step.

As a starting point for self-energy calculation, instead of using the Hartree Green’s
function G and screening Wy, the most common choice is the use of Kohn and Sham
results; the Green’s function is therefore given by:

i (1) g ® (02)

G0($1,$2,W) = Z nk

. . (2.48)
R YT ene T insgn(elyy — pks)

Once Gy has been obtained, we can calculate the RPA polarizability P, and screening
Wy and the self-energy ¥ from eq. (2.47). This self-energy can hence be used in the
quasi-particle equation (2.37).
The similarity of equations (2.37) and (2.25) leads to treat the problem in a pertur-
bative way respect to the difference between the self-energy and the Kohn and Sham
exchange and correlation potential and to consider, at the first order, the quasi-particle
energies as*:

Bo(w) = e + (955 S(E,) — vES|gK5), (2.49)

Then the usual way to proceed is to expand the self-energy at the first order around
Ent

(S(E) = (S(z) + (B — e2) <a§£}“’)> s (2.50)

and calculate the GW corrections to the Kohn and Sham energies:

n n n 1 <8E(w)> . .
Ow wee,

41t has been shown [53],[54] that the quasi-particle wavefunctions and the Kohn and Sham ones
are similar for many materials; however this is not true for some cases like the (110) surface of GaAs
[55], or SiHy, [56] and particular care must be taken for every non-bulk system[49].
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To summarize, the usual way to calculate electronic excitation energies consists of
three steps:

1. DFT calculations of ground state energies and wavefunctions;

2. construction of GE® and calculations of the RPA polarizability P, of the screen-
ing W, and of the self-energy Xqw;

3. calculation of the GW corrections to obtain the quasi-particle energies.

This is the standard GW approximation and, even if it is just the first iteration of
Hedin’s equation, quite accurate results for one-particle excitations are obtained and
the underestimation of the band gap, peculiar of DF'T, is usually removed, as shown
in fig. 2.2.
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Figure 2.2: DFT (red circles) and GW (green squares) band gaps of different materials,
in units of the experimental gap. The DFT underestimation of the gap is removed by
the GW corrections.

2.2.5 The plasmon pole approximation

The screening Coulomb potential is obtained through the calculation of the inverse
dielectric function. In reciprocal space, we can express it as

WG,G'(q7 w) - gé%G’(cb W)V(q + Gl)? (252>
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where G and G’ are reciprocal lattice vectors and q belongs to the first Brillouin zone®.

5&%@/((1’ w) is the dielectric function and it is therefore a frequency dependent matrix;
its inversion, for each frequency, is a very heavy part of the calculation. Nevertheless
we can observe that the the inverse dielectric function is in general a peaked function
in w and can be approximated by

Q& a(9)
oo (Uw) =daa + —5 e

T Wg,G/(Q)’ (2.56)

where (2 and @ are parameters linked to the strength and the position of the peaks.
They can be obtained by imposing the fulfillment of particular sum rules [53] or by
calculating the inverse dielectric matrix just for two chosen frequencies along the imag-
inary energy axis, usually w = 0 and w greater than the plasma frequency. This is the
so called plasmon pole approximation, that has been used thorough all this thesis. For
a detailed description of this approximation see [57].

2.2.6 Beyond GW

In the previous paragraphs, we have seen that, despite its apparent simplicity, the GW
approach gives band gaps in quite good agreement with the experimental ones and
accurate results for one-particle electronic excitations are generally obtained. How-
ever, we are dealing with a set of equations which have to be solved iteratively and
hence one should calculate the vertex I' by using Gy and gy and then upgrade the
polarizability and so on so forth until convergency is reached. This is out of today
calculators possibility for every realistic system.

Another kind of self-consistency could be tempted that is to iterate the calculations

°In real space, the screened Coulomb interaction, given in term of the microscopic dielectric func-
tion e(r1,re;w) and of the bare Coulomb interaction V (ry,rs) is:

W(r1,ro5w) = /dr'efl(rl,r’;w)V(r',rg). (2.53)

If we look at the Hedin’s equation (2.44), we see that the microscopic dielectric function is connected
to the irreducible polarizability P by:

e(ry,ro;w) = 0(ry —ra) — /dr’P(rl,r’;w)V(r’,rg). (2.54)

We can also introduce the reducible polarizability P,.q which is connected to the irreducible polariz-
ability by a Dyson like equation P.eq = P+ PV P,.4; the inverse of the microscopic dielectric function
is now given by

e H(ry,ro;w) = 6(r; —12) + /dr’V(rl,r’)Pred(r', ro;w). (2.55)
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of the Green’s function and of the self-energy, but keeping the vertex fixed, equal to
identity. There are many other possibility to operate in order to obtain self-consistent
results: i.e. to update just the Green’s function and not the screened potential or to
update also the wavefunctions; in any case this kind of calculations are much more
cumbersome from the computational point of view and the results are sometimes even
worse than those obtained within the non-self-consistent GW approximation. An ex-
ample of self-consistent GW calculations can be found in [58] and reference therein.

The simplest way to improve the GW approximation through the inclusion of the
vertex correction is the so-called GWTI' approximation [59]. This is based on the con-
sideration that the DFT exchange and correlation potential can be view as a quite
good approximation for the self-energy; the vertex I' is hence expressed as a functional
derivative of this potential with respect to the density

1 Juks
=—F— h zc — — 2.
R where  f, 5 (2.57)

This approximation corrects the quasi-particle energies but there is no significant im-
provement in the electronic gaps which remain close to the simple GW values.

A last comment regards the use of the GW approximation scheme to calculate
neutral excitation spectra, like the absorption one, through the use of the quasi-particle
energies instead of the Kohn and Sham eigenvalues. In these cases the calculated
spectra generally show a blue-shift with respect to the DFT-independent particle ones
(but also with respect to the experimental ones) and the lineshape are not improved
at all.

2.2.7 Neutral excitation spectra

As already mentioned, the GW quasi-particles energies and states are not adequate to
calculate neutral excitation spectra. The failure of this approach can be simply ex-
plained: in the GW approximation we describe excitations which involve a change in
the total number of particles (addition or removal of one electron) while in order to de-
scribe neutral excitations, like excitons or plasmons, we need to consider two-particles
excitations. Excitons are bounded electron-hole pairs and are mainly detected by opti-
cal absorption experiments; plasmons instead can be considered as coherent oscillations
of electronic charge and can be observed by electron energy loss (EEL) experiments.

In eq. (2.52) we have introduced the microscopic dielectric matrix. It can be shown®
that the optical absorption spectra are proportional to the imaginary part of the
macroscopic dielectric function while the EEL spectra, in the limit of vanishing mo-
mentum transfer, are proportional to the imaginary part of the inverse of the macro-

6Details about the link between microscopic properties of materials and experimental macroscopic
quantities can be found in [49], [58] and references therein.
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scopic dielectric function:

EEL x Jm{i} Abs o Im{gM}. (2.58)

According to refs. [60],[61] the macroscopic dielectric function can be directly related
to the microscopic dielectric matrix of eq. (2.52) by:

1
ear(w) = lim — . (2.59)
q—0 5G7G/(q, W)‘G:O,G’ZO

If eg.a/(q,w) is a diagonal matrix in G and G’, the macroscopic dielectric function is
simply
em(w) = (212% £c,¢/(q,w)|a=o0,c'=o- (2.60)

This is the case of the homogeneous electron gas; on the contrary, for non-homogeneous
systems, the microscopic dielectric function depends on both r; and rs and not only
on their difference and this leads, in reciprocal space, to a dielectric matrix whose off-
diagonal elements are not zero. This reflects the so-called local field effects that are as
much important as the system under study is non-homogeneous on microscopic scale.
To calculate the inverse of the microscopic dielectric matrix, one can use the reducible
polarizability P,.q through the equation e™! = 14 V P,.4 (as introduced in the note of
section 2.2.5.). However, a different formulation of the macroscopic dielectric function
can be used, which is more convenient because it allows the direct inclusion of excitonic
effects [49]. By introducing a modified reducible polarizability, P, we can rewrite the
€p as:

eyw)=1-— (llig(l) V(q)oP(q,w)|g=0.Gg'=0- (2.61)

The modified polarizability obeys a Dyson-like equation respect to the irreducible
polarizability:
P=P+PVP, (2.62)

where V is a modified Coulomb interaction defined as:

Ve ={ pioe e 269

The only difference between the bare Coulomb interaction and this modified Coulomb
interaction is in the G = 0 component. It’s worthwhile to notice that V is a correction
term entirely responsible for the local field effects: neglecting this interaction is in
fact equivalent to neglect the off-diagonal elements in the dielectric matrix and to use
equation (2.60) to compute ;.

In conclusion, both the optical and EEL spectra are related to the macroscopic di-
electric function which can be computed in terms of the reducible or the modified
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polarizability. In both cases a Dyson-like equation links these quantities to the irre-
ducible polarizability (F = P+PVPand Py =P+ PV P,¢q), which can be obtained
through the Hedin’s equations, at different levels of approximation. In particular, by
neglecting the vertex corrections as in the GW approximation, we obtain the RPA
dielectric matrix which is unable to reproduce the neutral excitation spectra.

2.2.8 Bethe-Salpeter equation

In the previous section we emphasized how, in order to describe optical and EEL
spectra, we need to consider two-particles excitations. The importance of the inter-
actions between holes and electrons in the polarization process of the system leads to
the duty to include vertex corrections. In fact, if we assume I'(1,2,3) = §(1,2)d(2, 3),
we obtain the RPA irreducible polarizability, given by non-interacting particles pairs
P(1,2) = —iGo(1,2)Go(2,17). The inclusion of the vertex correction can be achieved
through a second iteration of the Hedin’s equations. By using ¥ = «GW and approxi-
mating 0% /0G = iW, we obtain, from (2.46), an integral equation for the vertex:

['(123) = §(12)5(13) +z’W(1+2)/d(67) G(16) G(72)T'(673). (2.64)
We now define a generalized three point polarizability
3P(312) = —z'/d(67)G(16)G(72)F(673), (2.65)

and, by multiplying equation (2.64) on the left with —iG(41)G(25) and integrating
over d(12), we obtain:

3P(345) = —iG(43)G(35) +i/d(12)G(41)G(25)W(1+2)3P(312). (2.66)

Since the kernel of the integral equation (2.66) is a four-point function, it is convenient
to introduce also a four-point screened interaction,

T (1234) = W (12)6(13)5(24), (2.67)
and obtain the four-point integral equation for the irreducible polarizability *P:
P =t B+t PWR,. (2.68)

We can also generalize the equation for the modified reducible polarizability in terms
of four-point quantities:

tP(1234) =* P(1234) + / d(5678) *P(1256)5(56)5(78)V (57)* P(7834). (2.69)
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From equations (2.68) and (2.69) the Bethe-Salpeter equation for P can be derived:
‘P =* Py +* PK'P, (2.70)

where the kernel K is made of two terms, the electron-hole exchange contribution
coming from V and the electron-hole attraction due to —W,

K(1234) = 6(12)6(34)V(13) — 5(13)6(24)W (12). (2.71)
A similar equation can be also obtained for a four-point reducible polarizability APrcds
where V instead of V appears.

2.2.9 Two-particles Hamiltonian

In order to compute neutral excitation spectra, one should hence invert equation (2.70)
for each frequency, contract the indices of the four point polarizability and finally obtain
the macroscopic dielectric function. However, this procedure is a very demanding task
and in general is not performed in real calculations. Instead, an effective two-particles
excitonic Hamiltonian can be constructed which also carries much more information
regarding the excitonic eigenstates and eigenvalues. Details of its derivation can be
found in [49] and in [58]. Before writing down the Hamiltonian, we want to define the
projection of a four-point quantity into the transition space (that is a basis constituted
by couples of single quasi-particle states, usually labeled by a band and a wave vec-
tor indices grouped in the index n;,); for a generic four-point operator, O(1234), its
projection is given by

O(n1n2)(n3n4) - /drldr?dr3dr4 0(1234)¢n1 (r1)¢22 (r2)¢23 (r3)¢n4 (1'4). (272>
The two particle Hamiltonian will be given by

H(zflng)(n3n4) = (E%P - egf)5nln35n2n4 - (fnz - fn1)K(n1n2)(n3n4)' (27?))

This Hamiltonian has two contributions: the first one contains just the energy dif-
ference between a conduction and a valence state while the second one describes the
electron-hole interaction through the kernel K. With this Hamiltonian we can express
the four-point modified polarizability as:

F(n1n2)(n3n4) = [H2p - Iw](:llan)(n3n4)(fn3 - fn4); (274>

therefore, we still have to invert the excitonic Hamiltonian for each frequency. To
overcome this bottleneck of the calculations we exploit the spectral representation of
the inverse of an operator obtaining

Anlngs—l A*n3n4
H2p -7 -1 — A AN SN 2.75
[ w](nlnz)(%m) %/: E)e\m —w ) ( )
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where A{'"* and F) are solutions of the eigenvalue problem:

H?

(n1mn2)(n3ng

VAV = By AR, (2.76)

and S is the overlap matrix, which differs from identity because of the non-hermitianicity
of the two-particles Hamiltonian and is given by:

Sav =Y ATIRAR™. (2.77)

nin2

The factor (f,, — fn,) in equation (2.74) allows to consider only the matrix elements of
H?P for which n3 and ny have different occupation ({nsns} = {valence conduction} =
{ve} or {ngny} = {cv} ); within this subspace the two-particles excitonic Hamiltonian
will have the form:
" Hidwey  Kweyew)
H(mnz)(ngm) - _ . (2-78>
—Kepywe)y —Hig)ew

H {fcs)(v,c,) involves only positive frequency transition and is called resonant term; it is
given by:
H&ej)(vlcl) = (E?P — erP)(va/(SCC/ + K(UC)(’U/C/)' (279)

The fourth term, —H (o) (e is called anti-resonant term and involves only negative
frequency transitions while, in the off-diagonal blocks, positive and negative frequency
transitions are mixed and the two K terms are called coupling terms.

If one considers only the resonant part of the excitonic Hamiltonian, the operator
becomes hermitian (if the quasi-particle energies are assumed to be real) and its eigen-
states will be orthogonal. In this case a simple expression for the macroscopic dielectric
function can be written:

. 2
5 oy (1] XD o) A3

Ey—w—1n

en(w) =1—1limV(q) ) (2.80)

q—0

It is worth to point out two important characteristic of equation (2.80): first of all
the poles of the dielectric function are at the eigenvalues of the excitonic Hamiltonian
and are not given anymore by simple differences of occupied and unoccupied states;
this moves the positions of the structures in the spectra with respect to the RPA case.
Moreover, different independent transitions are mixed, each one contributing with a
weight given by the coefficients A{'"?, this mixing can cause a strong modification of
the spectra lineshape.

34



First principles theoretical methods

2.2.10 Calculations in practice

Before concluding this section, we want to summarize all the steps which lead to the
determination of neutral excitations spectra through the Bethe-Salpeter equation, and
to stress all the approximations that have been used in this thesis work.

1.

DFT

The first step consists in a DFT ground state calculation in order to obtain
Kohn-Sham eigenvalues X% and eigenfunctions ¢X°. In these calculations, many
approximations are yet introduced (see also section 2.1.5 and 2.1.6):

e use of pseudopotentials,
e approximated exchange and correlation potential,
e finite sampling of the Brillouin zone,
e introduction of an energy cutoff,
e finite number of conduction states considered.
Many body initial ingredients
From the Kohn-Sham energies and wavefunctions, the independent particle po-

larizability (F) is calculated together with the non-interacting Green’s function
(Go) and the dielectric function, pp 4.

e In this step the dielectric matrix is calculated within the RPA, without local
fields effects.

GW approximation
The energy levels are then corrected within the GW approximation. Some other
approximations are introduced in this step (see also section 2.2.4 and 2.2.5):

e just one iteration of the Hedin’s equations: ¥ = iGoW),

e use of Kohn-Sham wavefunctions to calculate the corrections to the energies
in a perturbative approach,

e use of the plasmon-pole model to take into account the frequency depen-
dence of the dielectric function.

Bethe-Salpeter equation ingredients

From the Kohn-Sham wavefunctions and the GW-corrected energies, the in-
dependent quasi-particle polarizability (Prgp) and the Bethe-Salpeter kernel
(K =V — W) are calculated.

Bethe-Salpeter calculation
The Bethe-Salpeter calculation is finally performed:
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e in this final step, just the resonant part of the excitonic Hamiltonian is often
considered.

To summarize, lots of approximations are introduced in a complete calculation, but
nevertheless very good results have been obtained through the Bethe-Salpeter method
for a large variety of systems. On the other hand, this kind of calculations are com-
putationally very cumbersome and this have yielded to the research of alternative and
less heavy approaches, like Time Dependent Density Functional Theory which will be
briefly introduced in the next section.

2.3 Time Dependent Density Functional Theory

In the first part of this chapter we described the density functional theory, which
is a time-independent theory and therefore is not able to manage with excited state
properties of materials. The generalization of the Hohenberg-Kohn-Sham theory to
arbitrary time dependent systems was given by Runge and Gross[62], in 1984, and
opened the way to Time Dependent DF'T calculations. In this section we just want to
describe the basic formalism of TDDFT; several reviews of this theory can be found
[63]-[64] and a comparison with the many body perturbation theory is in [49)].

2.3.1 TDDFT theorems

The Hohenberg and Kohn theorem in DFT establishes that, for a time independent
Hamiltonian of the form H = T4+ V + W, the external potential is a unique functional
of the electronic density. Now we have to consider a time dependent Hamiltonian

Hit)=T+W+V(t) (2.81)

given by the kinetic term, 7', the mutual electron-electron interaction, W, and a time-
dependent single-particle external potential, V' (¢); the system will be described by a
time-dependent Schrodinger equation

H(t)o(t) = i%aﬁ(t}, with initial state ¢(to) = ¢o. (2.82)
The first theorem shown by Runge and Gross, analogue to the Hohenberg and Kohn
theorem, assesses that for every single-particle potential V(r,?), expandable into a
Taylor series around ty, a corresponding density n(r,¢) can be found and the map
G : V(r,t) — n(r,t) is invertible up to an additive purely time-dependent function,
c¢(t), in the potential. At the same time, the time-dependent wavefunctions are unique
functionals of the density, up to a purely time-dependent phase:

o(t) = e Wn, ¢o)(t), (2.83)
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which cancels out when taking the expectation value of an operator, O (t), which does
not contain derivative or integral operators on ¢:

(B(1)]|O1)]6(1)) = On](t). (2.84)

The second part of the Hohenberg and Kohn theorem is based on the research of
the ground state exact density through the minimum principle for the total energy. A
similar theorem has been established by Runge and Gross for the time dependent case
but, since no minimum principle is now available, it refers to the stationary principle
of the Hamiltonian action integral. The time dependent Schrédinger equation (2.82)
corresponds to a stationary point of the action integral

t1 a
A= [ oz~ H@lol) (2.85)
to
where A is a functional of the density, A[n]. The exact time-dependent density is now
related to a stationary point of this action integral and can be computed from the
Euler equation
dA[n|
on(r,t)

In the last part of the Hohenberg and Kohn theorem the universal functional Fiy g [n]
was introduced. In this case, if all the time dependence is contained in the potential
V(t), the action can be written as:

= 0. (2.86)

Aszm—éwﬁ/ﬁmmwuﬁ, (2.87)

where B(n| is a universal function of the density and is given by:

Bln) = / o) i~ T~ Wlo(1). (2.88)

The last analogy between the stationary and the time dependent DFT concerns
the introduction of an auxiliary non-interacting particle system with the same density
of the interacting one, as in the Kohn and Sham scheme. The time-dependent density
can hence be computed from

n(rt) = 3 ¢l il ), (2:39)

where the single particle orbitals ¢;(r,t) obey the equation:

5+ SVl 1) = Vigs (. )u(e, ). (2.90)
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The effective potential is given by

Vesp(r,t) =Vir,t) + /dr'W(r, r')n(r',t) + Vie(r, 1), (2.91)
where V. = 5‘;:?;”;) has to be approximated in some way, as for the stationary exchange

and correlation potential in DFT.

2.3.2 Exchange and correlation kernel

When dealing with time dependent linear response theory it is useful to introduce also
the exchange and correlation kernel
OVie(r, 1)
wel(r, ) = 2 2.92

Of course, both the exchange and correlation potential and kernel are unknown.

A common approximation is the adiabatic local density approximation (ALDA)
which consider the f,. as the functional derivative of the static LDA exchange and
correlation potential (introduced in section 2.1.5):

VP4 (n(r), 1)
on(r)

Results obtained within this approximation can be quite good or rather bad regarding
optical absorption spectra of molecules and small clusters, while ALDA systematically
fails for solids and in the description of Rydberg states.

This is partially due to the incorrect asymptotic behaviour of the ALDA exchange
and correlation potential tail, which decays exponentially instead of the correct 1/r
behaviour. Omne can therefore try to use a simpler static kernel, known as RORO
kernel, with the proper asymptotic behaviour, i.e

fue(r, 1) = —

fALDA(I'7 I'/) _ (S(I‘ o I'/)

xc

(2.93)

@
—_— 2.94
lr — 1|’ (2.94)
where « is a constant to be determined [65]. The constant o depends on the material
considered and there is no simple recipe to calculate it. As proposed in [66, 67] for
semiconductors with weak excitonic effects, the constant a can be chosen following the
relation

a=4.615¢"—0.213, (2.95)

but this formula is not expected to work for bound excitons.

Since the main problems related to TDDFT is in the choice of the exchange and
correlation kernel, in the last years, several attempts to correct these problems have
been proposed and great deal of effort has been devoted to the research of more efficient
approximations for the exchange and correlation potential and kernel [66, 68, 69, 70].
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Application to water and
calculation details

This short chapter is divided into two parts. In the first one, we show how to apply the ab-
initio methods described in the previous chapter to a liquid, that s a complex and disordered
system. In particular we also illustrate how plane waves codes can be used also for these kind
of systems. In the second part of the chapter we present the convergence tests that have been
performed in order to choose the simulation parameters and the approrimations which have
characterized the subsequent calculations of this thesis work.

3.1 The unit cell

All the calculations presented in this thesis work are performed using codes which
employ plane wave basis set. This kind of basis set allows for the intensive use of fast
algorithms such as fast Fourier transforms (FFT) and moreover allows a systematic
check on the convergence of the calculation. However plane waves are suited to describe
periodic systems in which a certain unit cell is repeated in space, like for bulk crystals.
Anyway, also lower dimensionality systems such as surfaces, nanowires, and molecules
can be studied within the same scheme, even if special care has to be put in order to
avoid spurious effects due to the interactions between images of the cell. A similar
difficulty has to be faced when studying a liquid system such as water.

3.1.1 Molecular dynamics snapshots

The main problem regarding the study of liquids relies on the fact that, in order to
simulate a complex disordered system, one should in principle use a very large unit
cell, which could represent all the possible configuration; this would obviously have a
prohibitive computational cost. In order to avoid this, we try a different approach, in-
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spired by the ergodic hypothesis, i.e. that time average and average over the statistical
ensemble are the same.

In order to study liquid water, instead of using a huge unit cell, we decided to
exploit several molecular dynamics snapshots in a smaller unit cell and to average
the resulting electronic and optical results over these configurations. This approach is
schematically shown in figure 3.1. In particular, we use 20 configurations of 17 water
molecules in a cubic unit cell with 15 a.u. side. They will be denoted by the marks
E01...E20, ordered for increasing total energy.

The water configurations have been obtained by sampling every 2 ns a 40 ns long

classical molecular dynamics simulation trajectory. A TIP3P water model potential
[71] has been used to represent the water molecules in our simulation box. Equations
of motion have been integrated numerically using a time-step of 1 fs. The MD run
has been done in the NVT ensemble, where thermal equilibrium at 298 K has been
achieved applying a Nosé-Hoover thermostat [72, 73]. Electrostatic interactions were
treated using the particle mesh Ewald method; all Van der Waals interactions between
non-bonded atom pairs were included.
Some configurations with 32 water molecules in a cubic unit cell with 18.27 a.u. side
have also been considered to test the convergence on the system size. All the molecular
dynamics simulations have been performed by Dr. Michele Cascella, researcher at Ecole
Polytechnique Fédérale de Lausanne.

Figure 3.1: To simulate a liquid system such as water, instead of using a huge unit cell,
we exploit several molecular dynamics snapshots in a smaller unit cell and average the
results over these configurations.
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3.1.2 Radial distribution functions

We have used 20 configurations of 17 water molecules in a cubic box with 15 a.u.
side and sampled the Brillouin zone with 8 special k-points [41]. For calculations
of a periodic system, in order to perform an accurate integration over the Brillouin
zone, it is equivalent to increase the k-point sampling or to use larger supercells. For
disordered non-periodic systems, these two approaches are no longer equivalent and
more accurate results can be achieved by increasing the cell size. For the case of liquid
water, 17 molecules and 8 k-points is a quite small combination; still, the computational
effort of the many-body calculations for all the configurations would have been almost
prohibitive and just thank to some discovered short cuts, that will be illustrated in the
following, the calculations become feasible with a reasonable effort. In any case, the
results obtained for 17 molecules, averaged over several snapshots, well compare with
experiments as shown in the next chapter.

In particular, at the beginning of the work, we checked the adequacy of our input
geometries, i.e. the 20 molecular dynamics snapshots, looking at the oxygen-oxygen
and oxygen-hydrogen radial distribution functions; they are defined as the probability
to find an oxygen or hydrogen atom, respectively, at a certain distance from a second
oxygen atom belonging to another molecule. The resulting radial distribution functions
are in very good agreement with the experimental ones [74], as it is shown in figure 3.2.
This confirms that we are using good input geometries for the excited state calculations,
despite of the small size of our system.

3.2 Calculation details and convergence tests

In this section we specify the characteristics of the calculations, the codes exploited,
the approximations considered and a list of parameters which have been selected in
the various cases, through lots of convergence tests. All the results shown in the next
chapter, except if else specified, have been obtained within these approximations and
using these simulation parameters.

3.2.1 DFT calculations

All DFT calculations have been performed through the use of the FHI98MD code [75],
which is a plane wave basis set code.

The input geometry of the water molecules have been taken from the molecular
dynamics snapshots (see previous section).

We used norm conserving pseudopotentials; first calculations have been performed
in the Local Density Approximation; then we changed to the Generalized Gradient Ap-
proximation, using Perdew-Wang functionals [76, 34], that gives similar optical spectra
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Figure 3.2: Oxygen-oxygen (blue dashed line) and oxygen-hydrogen (red continuous

line) radial distribution functions, averaged over the 20 molecular dynamics snapshots,
compared to experimental data [74] (circles and squares, respectively).

N

and slightly larger energy transitions. This can be seen in figure 3.3 where the inde-
pendent particles DFT optical absorption spectra, averaged over the 20 configurations,
obtained within LDA and GGA are shown together with the experimental one [77, 78].
Except if otherwise specified, all DE'T results shown in the next chapter refer to GGA
calculations.

It has been shown [41, 10] that the choice of the I" point (k=(0,0,0)) as a single
sampling point has a particularly slow convergence with respect to cell size. The
interaction between neighboring cells leads to a k dependence of the electronic bands
related to cos(kR). In order to minimize this effect, it is necessary to consider a finite
set of k-points which zero the cosine for at least the nearest-neighbor cells. To this
aim, we sampled the first Brillouin zone with 8 k-points:

111 111 1 11 11 1
1 <47474)7 2 ( 47474)7 3 <47 474)7 4 (4747 4)

and those obtained by inversion, in units of 27 /a.
As explained in section 2.1.6, when using plane wave basis set, we have to truncate
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Figure 3.3: Independent particles DFT optical absorption spectra, averaged over the

20 configurations, obtained within LDA (blue continuous line) and GGA (red dashed
line). The experimental spectrum is also shown in the inset [77](squares),[78](stars).

an otherwise infinite summation over the G vectors and to limit the wavefunctions
expansion by introducing an energy cut-off. After some convergence tests both on
electronic and optical properties, we decided for a kinetic energy cut-off E.,; = 50Ry
(where not else specified). Results of these convergence tests are shown in table 3.1 and
in figure 3.4. In the table, the electronic gap, difference between the Highest Occupied
Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO)
energies, calculated for the molecular configuration E19, is reported for different values
of the kinetic energy cutoff, E.,;. In figure 3.4 we show the independent particles DF'T
optical absorption spectrum, calculated for the snapshot E19, for different values of
Ecut'

We have 17 water molecules in the unit cell, thus we have to arrange 136 valence
electrons in 68 occupied "bands”. We perform the calculations on all the configura-
tions considering also 100 unoccupied bands which is a good number for the optical
absorption spectra convergence, up to ~ 15 eV. Convergency tests on the number of
unoccupied levels have been performed, for the molecular dynamics configuration E19,
using just the I' point to sample the Brillouin zone. Results are shown in figure 3.5.
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Kinetic energy | HOMO-LUMO
cutoff gap
[Ry] [eV]
30 4.37
50 4.84
60 4.86

Table 3.1: Electronic gap, calculated for the snapshot E19, for different values of the
kinetic energy cutoff.

For some configurations, DFT wavefunctions and eigenvalues have to be used as
inputs for the calculation of the many-body screening and of the GW corrections!; in
these cases a larger number of unoccupied levels is needed, as shown in table 3.2 in
the next section, and therefore, for these configurations, we considered 600 unoccupied
bands.

We have also tested the cell size convergence looking at the density of states. In
ref. [10], it is emphasized that simulations of liquid water are accurate enough if one
uses unit cells with 32 HoO molecules and samples the Brillouin zone with 8 k-points
or equivalently considers just the I' point but has unit cells with 256 water molecules.
We sampled the Brillouin zone with 8 k-points, but our unit cells contains ”just”
17 molecules. We have hence calculated the Density of States (DoS) of our system
averaging the results obtained both for the 20 molecular dynamics configurations with
17 molecules and for other 20 configurations with 32 molecules. Results are shown in
figure 3.6. It can be seen the the density of occupied states is well converged already
for unit cells with 17 water molecules while there are some discrepancies in the higher
energy region of the DoS. However, as already mentioned, the computational effort
of the many-body calculations for all the configurations with 17 molecules, has been
almost prohibitive and the same calculations for 32 molecules configurations would not
be feasible.

However, in order to check the sensibility of the optical properties of liquid water
with respect to the cell size, it is more adequate to look at the joint density of states
(JDOS). In this case, the electronic transition from valence to conduction states are
considered instead of the single energy levels. Thus, the convergence of the JDOS with
respect to the number of molecules in the molecular dynamics configurations can be
considered as a first estimate of the optical absorption spectrum convergence. In figure
3.7 we show the JDOS calculated by averaging the DFT results over the 20 snapshots
and over the k-points, both for the snapshots with 17 molecules and with 32 molecules.

'We will demonstrate in the following that the calculation of the screening and of the GW correc-
tions, which are the most cumbersome parts of the work, can be restricted to just one configuration.
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Figure 3.4: Independent particles DFT optical absorption spectrum, calculated for the
molecular dynamics configuration E19, for different values of the kinetic energy cutoft:
30 Ry (black dottes line), 50 Ry (red continuous line) and 60 Ry (blue dashed line).

We note that no pronounced differences are present; this gives a first indication that
unit cells with 17 water molecules, together with sampling of the Brillouin zone with 8
k-points and average over several configurations are already sufficiently large for this
purpose.

3.2.2 GW calculations

The second step in our work consists in the calculation of the GW corrections to the
Kohn and Sham eigenvalues. This part has been faced within a first order perturbative
approach, as explained in section 2.2.4, exploiting the ” Nanoquanta”’-GW code.

First of all, the screened Coulomb interaction has been calculated. Starting from
a DFT calculation performed on a cubic unit cell with 15 a.u. side and with a kinetic
energy cut-off of 50 Ry, we have to manage with 20163 G vectors; we calculated the
screening, 7!, using just a fraction of all these plane waves: 13997. The screened
potential W has been obtained within the plasmon pole model and 600 empty states
have been considered. In table 3.2 we show the results of the GW convergence tests
for the number of unoccupied levels, i.e. the GW corrections obtained, to the HOMO

45



Chapter 3

3 T T i T T T
+ 50 unoccupied levels
i — — 100 unoccupied levels []
251 — 300 unoccupied levels ||
2 —
N
w 1.5
1 —
05 -
0 Il | Il Il | Il Il | Il Il | Il Il
3 6 9 12 15 18
E[eV]

Figure 3.5: Independent particles DFT optical absorption spectrum, calculated for the
snapshot E19, for different numbers of unoccupied levels: 50 levels (black dotted line),
100 levels (red dashed line) and 300 levels (blue continuous line). These calculations
have been realized using just one k-point, T'.

and LUMO energy levels, for different numbers of empty states. These convergence
tests have been performed for the snapshot E19, with a kinetic energy cutoff of 30 Ry
and using just 1021 G vectors.

Then we use the screened interaction in order to obtain the GW correction to the
Kohn and Sham energies. We calculate the correlation part of the self-energy using
13997 plane waves while, for the exchange term of the self-energy, we exploit 19933
plane waves. Exact GW corrections have been calculated for the last 10 occupied states
and for the first 10 unoccupied states. Anyway, we corrected all the filled bands and 100
of the empty ones by interpolating the GW corrections. As shown in table 3.3, where
the GW corrections to the HOMO and LUMO energy levels and to the gap calculated
for three different molecular dynamics snapshots are reported, these corrections result
to be independent on the configuration and it has been possible to calculate the self-
energy just for one configuration, reducing considerably the computational work.
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GW corrections [eV]
Empty states ‘ AHOMO ‘ ALUMO ‘ Agap

300 -0.3 24 2.7
500 -0.2 2.2 2.4
600 -0.2 2.2 2.4

Table 3.2: GW corrections to the HOMO and LUMO energy levels and to the electronic
gap, for different numbers of empty states. These tests have been performed for the
snapshot E19, with a reduced kinetic energy cutoff of 30 Ry and using just 1021 G
vectors.

GW corrections [eV]
Configuration ‘ AHOMO ‘ ALUMO ‘ Agap

E19 -2.02 1.83 3.85
EO01 -2.03 1.82 3.85
E14 -2.04 1.82 3.86

Table 3.3: GW corrections to the HOMO and LUMO energy levels and to the electronic
gap, for three different molecular dynamics snapshots (E19, EO1, E14). These values
have been calculated with a kinetic energy cutoff of 50 Ry, 600 conduction levels, 13997
plane waves for the correlation self-energy and 19933 plane waves for the exchange part
of the self-energy.
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Figure 3.6: Density of States, averaged over 20 molecular dynamics configurations with
17 (black continuous lines) and 32 (red dashed lines) water molecules.

3.2.3 Optical absorption spectra calculations

The third step of the work has been the calculation of the optical absorption spectra
through the solution of the Bethe-Salpeter equation; in this part of the work we exploit
the EXC code?. In the previous section, we have said that the GW corrections are
independent on the molecular dynamics configuration. In figure 3.8 we show the optical
absorption spectra obtained for the snapshot E19, exploiting its own screening function
and the screening functions calculated for the configurations EO1 and E14. From the
figure we cannot appreciate any difference between these three spectra. For this reason,
the calculation of the optical absorption spectra of liquid water has been performed on
all the 20 molecular dynamics snapshots by always exploiting the same screening and
GW corrections.

We consider all the 68 occupied states and 100 unoccupied levels (in figure 3.5 we
have just shown that convergence, up to 15 eV, is reached with this number of empty
states). The resulting excitonic Hamiltonian is a matrix with size 54400x54400; this is
a too large matrix to be diagonalized directly and to treat it we exploit the Haydock
algorithm [79].

We tried also some calculations of the optical properties in the Time Dependent-
DFT framework. In these simulations we try two different exchange and correlation

2EXC code - http://theory.polytechnique.fr/codes/exc and http://www.bethe-salpeter.org/
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Figure 3.7: Joint density of States, averaged over 20 molecular dynamics configurations
with 17 (blue dashed line) and 32 (red continuous line) water molecules.

kernels: the ALDA one and the RORO kernel, both described in section 2.3.2. We
consider the same number of empty bands as in the case of the Bethe-Salpeter equation,
i.e. 68 occupied bands and 100 unoccupied ones. To perform these calculations we
exploit the code "dp”3.

All the results will be shown in the following chapter.

3http:/ /theory.polytechnique.fr/codes/dp/
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Figure 3.8: Optical absorption spectra of liquid water obtained for the snapshot E19,
exploiting its own screening function (black line) and the screening functions calculated
for the configurations E01 (red circles) and E14 (blue crosses).
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Chapter 4

Excited state properties of liquid
water

In this chapter we illustrate and discuss the results obtained in the study of the ex-
cited state properties of liquid water. We first show some results regarding electronic
properties and electron energy loss spectrum of water. Then we describe the results ob-
tained in the calculation of the optical absorption spectrum, both through the solution
of the Bethe-Salpeter equation and with other techniques and approximations. We also
present a comparison with recent results obtained for hexagonal ice by Hahn et al.[80].
The last part of the chapter is devoted to the illustration of the main methodological
findings related to the study of the excited state properties of a liquid, hence disordered,
system.

4.1 Electronic properties: results and discussion

We performed the electronic and spectroscopic calculations on various theoretical
levels. We started with density functional theory (DFT) to obtain the Kohn-Sham
(KS) eigenvalues and eigenvectors and the independent-particle (DFT-RPA) absorp-
tion spectrum. As expected, DFT energy levels are not in agreement with the exper-
imental ones; therefore we corrected the Kohn-Sham energy levels using the Green’s
function perturbation approach, with the exchange-correlation self-energy calculated
within the GW approximation: 3 = iGW. The quasi-particle (QP) energies (that is,
the electronic 'band structure’ of water), were calculated in first order perturbation
theory, as explained in chapter 3.
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H Electronic gap [eV] H

Configuration || k; ko ks ks | Average
EO01 542 1541|541 | 543 5.42
E10 5.27 | 5.28 | 5.27 | 5.29 5.28
E20 5.33 | 5.32 | 5.33 | 5.34 5.33

Table 4.1: DFT-GGA electronic gaps obtained for three configurations (as an example)
for the k-points ky = (3, 4,5), k2 = (=5, ,3), ks = (5, =5, 3) and ks = (5,5, —5),
together with the average over these four k-points.

4.1.1 Electronic gap

DFT and GW results for the electronic ’band structure’ of water are presented in this
section. In table 4.1 we report the DFT electronic gaps obtained for three configura-
tions (as an example) for the k-points

111 111 1 11 11 1
1 <47474)7 2 ( 47474)7 3 <47 4a4)7 4 (4747 4)7

together with the average over all the k-points.

In table 4.2 we instead report the energy levels relative to the Highest Occupied
Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) and
the corresponding gaps, averaged over the 8 k-points, for each of the 20 molecular dy-
namics snapshots. These energy levels have been calculated, and hence are reported,
both within DFT-LDA and DFT-GGA. A slightly better agreement in the peaks po-
sitions of the optical absorption spectrum is however obtained in GGA and, where
not else specified, further results have to be regarded as relative to GGA calculations.
DFT HOMO and LUMO energy levels for each of the 20 configurations are also shown
in figure 4.1.

From both table 4.2 and figure 4.1, we can observe that the LUMO level is more
stable with respect to changing of configuration and that the gap is larger within GGA.

Averaging over both the 8 k points and the 20 configurations, the DF'T HOMO-
LUMO gap turns out to be 5.09 eV in GGA, and 4.85 ¢V within LDA, in good agree-
ment with previous DFT calculations [1] but strongly underestimating the experimen-
tal gap (8.7 £ 0.5 eV [81]), as expected in DFT. Values of the experimental gap are
obtained from direct photoemission measurements for the determination of the HOMO
level, and from work function measurements of charged water for the determination of
the LUMO level [81, 1].

In order to correct the KS energy levels, one has in principle to calculate the GW
corrections Ae@F for all the 20 molecular dynamics configurations, followed by an aver-
age. Instead, as it has been illustrated and discussed in details in the previous chapter,
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H Electronic energies and gap, in eV, averaged over the k-points H

Configuration || HOMO | HOMO | LUMO | LUMO || Gap | Gap
LDA GGA LDA GGA || LDA | GGA

EO01 -5.08 -4.86 0.06 0.56 5.14 | 5.42
E02 -4.97 -4.75 0.06 0.53 5.03 | 5.28
E03 -4.82 -4.59 0.04 0.52 4.84 | 5.11
E04 -5.07 -4.85 0.11 0.56 5.18 | 5.41
E05 -4.87 -4.25 0.09 0.46 4.96 | 4.71
E06 -4.92 -4.70 0.08 0.56 5.00 | 5.26
EO07 -4.87 -4.64 0.04 0.54 491 | 5.18
EO08 -4.51 -4.27 -0.04 0.44 447 | 4.71
E09 -4.80 -4.58 0.09 0.55 4.89 | 5.13
E10 -4.97 -4.77 0.01 0.51 5.07 | 5.28
El1 -5.15 -4.92 0.00 0.50 5.15 | 5.42
E12 -4.44 -4.24 0.00 0.46 4.44 | 4.70
E13 -4.84 -4.64 0.04 0.51 4.88 | 5.15
E14 -4.56 -4.34 0.06 0.54 4.62 | 4.88
E15 -4.76 -4.55 -0.03 0.45 4.73 | 5.00
E16 -4.65 -4.43 -0.08 0.42 4.57 | 4.85
E17 -4.74 -4.52 -0.10 0.37 4.64 | 4.89
E18 -4.71 -4.51 -0.06 0.44 4.65 | 4.95
E19 -4.83 -4.63 0.02 0.47 4.85 | 5.10
E20 -5.05 -4.83 0.01 0.50 5.06 | 5.33

Table 4.2: DFT HOMO and LUMO energies and the corresponding electronic gaps,
averaged over the k-points, obtained for each of the 20 configurations, both within
LDA and GGA. The zero of the energy is arbitrarily chosen at the LUMO of E11
configuration.
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Figure 4.1: DFT HOMO and LUMO energies, both within LDA (black continuous line)
and GGA (red dashed line), averaged over the 8 k-points, for each of the 20 molecular
dynamics configurations.
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H GW corrections H

Energy level | GW correction [eV]
HOMO-1 -1.7
HOMO -1.7
LUMO +1.6
LUMO+1 +1.8

Table 4.3: GW corrections averaged over the k-points, calculated for the snapshot E19.

we found that the differences between DFT and GW energies are almost constant going
from one snapshot to another. We could hence use the same corrections, Ae%”, for
all the configurations. GW corrections to the last two occupied levels (HOMO-1 and
HOMO) and to the first two unoccupied ones (LUMO and LUMO+1), averaged over
the k-points, are reported in table 4.3. These corrections have been calculated for the
snapshot E19 and applied to all the molecular dynamics configurations.

Starting from the GGA value of 5.09 eV, the GW corrections increase the electronic
HOMO-LUMO gap up to 8.4 eV, well within the experimental range, (8.7 + 0.5) eV
[81]. The opening of the gap is also schematically illustrated in figure 4.2.

4.1.2 EELS

As explained in section 2.1.7, from the Kohn and Sham eigenvalues it is possible to ob-
tain the DFT-independent particle absorption and electron energy loss spectra. While
the optical absorption spectrum is generally not in agreement with the experimental
one, the EELS spectrum is often well described within this approximation [46].

We have calculated the EELS spectra of liquid water at DFT-independent particle
level for each of the 20 configurations, for a wavevector transfer ¢ = 0. These calcula-
tions have been performed in the local density approximation, with an energy cut-off
of 30 Ry. The averaged spectrum is shown in figure 4.3. The experimental spectra for
finite wavevector transfers ¢ = 0.69 a.u. and ¢ = 0.19 a.u. are also shown for compar-
ison [82]. We can note that a good agreement is reached for what concerns the peak
position and lineshape even if, looking at the onset and in general at the low energy
region of the spectrum, where excitonic effects are more important, the agreement is
less satisfactory.

95



Chapter 4

2_ —
O_ —]
% 2| DFT GW |
M L 5.09eV 8.4eV
4 _
6 \ -

Figure 4.2: Schematic view of the HOMO-LUMO gap, calculated within DFT-GGA
and GW, averaged over both the 8 k-points and the 20 configurations.
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Figure 4.3: DFT-independent particle energy loss spectrum for liquid water, averaged
over 20 configurations, for a wavevector transfer ¢ = 0 (red line). The experimental
spectra for finite wavevector transfers ¢ = 0.69 a.u. and ¢ = 0.19 a.u. are also shown
(black circles and squares) [82].
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Figure 4.4: DFT-independent particle optical absorption spectra of liquid water, for

each of the 20 configurations (brown lines) and their average (blue bold line). The
experimental spectrum is also shown in the inset [77]|(squares),[78](stars).

4.2 Optical absorption spectrum: results and dis-
cussion

The optical absorption spectrum of liquid water has been calculated at different levels
of approximation. We have first evaluated the DFT-independent particle absorption
spectrum but, as expected, the results are not in agreement with experiments. There-
fore we looked at the GW-independent particle spectrum with even worst results.
Solving the Bethe-Salpeter equation we obtained at last a good optical spectrum. We
also tried to reach similar good results with less expensive calculation methods, such
as Time Dependent-DFT, without success.

4.2.1 Optical absorption spectrum - BSE calculation

First we performed the calculation of the optical absorption spectrum of liquid water
at the DFT independent particles level. Results obtained for the 20 molecular dynam-
ics snapshots, together with their average are shown in figure 4.4; the experimental
absorption spectrum, obtained from reflectance measurements, is also reported in the
inset [77, 78]. From the figure we can observe that the 20 absorption spectra and,
more important, their average do not compare in a satisfactory way with the experi-
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mental one: the onset of the absorption is strongly underestimated in our calculation,
the peak positions are red-shifted in comparison with the experiment, and the relative
intensities of the first two absorption peaks are not well reproduced.

Since the calculated GW shifts to the occupied and unoccupied energy levels are
almost constant (see table 4.3), GW-independent particle optical spectra and their
average show lineshapes very similar to DFT ones, but shifted to higher energies.
This can be seen in figure 4.6, where both DFT (black dashed line) and GW (blue
dotted line) averaged spectra are shown. The agreement with the experimental optical
absorption spectrum is hence not at all improved, since the relative intensities of the
two structures (seen in experiments at 8.3 eV and 9.6 eV) are still not reproduced,
and their positions, from being red shifted in DFT calculations, are now strongly blue
shifted.

We have hence clear hints that it is necessary to include the electron-hole interaction
to describe the optical properties of water. To this end we solved the Bethe-Salpeter
equation (derived in section 2.2.8), where electrons and holes interact through the
screened Coulomb potential . These cumbersome calculations have been done for all
the 20 molecular dynamics configurations, but using always the same screening function
(see sections 3.2.3 and 4.3). Results are shown in figure 4.5 for all the snapshots
together with their average. The averaged spectrum is also reported in figure 4.6 (red
continuous line), together with the DFT (black dashed line) and GW (blue dotted line)
ones.

From these figures, it can be noted that dramatic many-body effects are present.
The agreement with the experiment, both in energy peak positions and onset as well
as in the relative intensities of the first two peaks, is significantly improved. The main
remaining discrepancy is an overall red shift, that might be due to a residual error
arising from the limited size of our cell, and to the fact that our GW calculations are
not self-consistent but use DFT wavefunctions and energies.

The first peak in the spectrum turns out to be a bound exciton with a binding
energy of 2.4 eV and large oscillator strength. These are a consequence of the weak
electronic dielectric screening of water (€., ~ 1.8). The second peak results from an
excitonic enhancement of the oscillator strength of interband transitions with respect
to the single quasi-particle case.

4.2.2 Optical absorption spectrum - other calculations

We also tried to obtain the optical absorption spectrum of liquid water with less ex-
pensive calculation methods.

Test calculations have been done, for one molecular dynamics snapshot (E01), using
a constant value for e7!, in the screened potential . The resulting spectrum for a
value of e7! = 1/1.7 (near to the experimental macroscopic electronic value 1/1.8)
is shown in figure 4.7 (blue continuous line), together with the absorption spectrum
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Figure 4.5: Optical absorption spectra of liquid water, for each of the 20 config-
urations (brown lines) and their average (blue bold line), obtained by solving the

Bethe-Salpeter equation. The experimental spectrum is also shown in the inset
[77](squares),[78](stars).
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Figure 4.6: Optical absorption spectra of liquid water, averaged over the 20 con-
figurations, calculated at DFT-independent particle level (black dashed line), GW-
independent particle level (blue dotted line) and by solving the Bethe-Salpeter equa-

tion (red continous line). The experimental spectrum is also shown in the inset
[77](squares),[78](stars).
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Figure 4.7: Optical absorption spectra of liquid water, calculated for the molecular dy-
namics configuration E01, using the full screened electron-hole interaction (red dashed
line) and using for W a constant dielectric function e ! = 1/1.7 (blue continous line).
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obtained, for the same configuration, with the full screened electron-hole interaction
(red dashed line). We can observe that a good agreement is achieved and this can
be interpreted as a further indication that the optical absorption spectrum is not
particularly sensible to the details of the screening function.

The optical absorption spectrum of liquid water has been also calculated within
Time Dependent-DFT. In principle this method represents an exact way to calculate
optical spectra, but the quality of the results depends on the approximation used to
describe exchange-correlation effects, i.e. on the choice of the exchange-correlation ker-
nel. A widely used and computationally efficient approximation is the Adiabatic Local
Density Approximation (ALDA), described in section 2.3.2. The optical spectrum
obtained, for one molecular dynamics configuration (E01), with the ALDA kernel is
shown in figure 4.8 together with the DFT-RPA spectrum for the same configuration;
unfortunately the TD-LDA result shows no improvement with respect to the DFT
independent-particles result. Long-range and/or dynamical effects that are missing in
the ALDA kernel should hence be important for the absorption spectrum of water, and
one has to resort to more elaborate (hence time-consuming) TDDFT approximations
(66, 68, 69, 70].

Since one of the main problems related to the ALDA kernel is the incorrect asymp-
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Figure 4.8: Optical absorption spectrum, for the molecular dynamics configuration
EO01, obtained within Time Dependent-DFT, with the ALDA kernel (green dashed
line), and within the DFT-independent particle framework (black continous line).
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totic behaviour of the exchange and correlation potential tail, which decays exponen-
tially instead of the correct 1/r, one can try to use a simpler static kernel, with the
proper asymptotic behaviour, i.e

fre(r, 1) = —W>

where « is a constant [65] to be determined; this is the so called "RORO” kernel.
The constant « depends on the material considered and there is no simple recipe to
calculate it. As proposed in [66, 67] for semiconductors with weak excitonic effects,
the constant o can be chosen following the relation

a=4.615¢" —0.213, (4.2)

(0%

(4.1)

but this formula is not expected to work for bound excitons.

We tried to calculate the optical absorption spectrum of one molecular dynamics
snapshot (E19) using this static kernel, for different values of a: from aw = 2.3, obtained
from equation (4.2), to @ = 12. Results are shown in figure 4.9 together with the
spectrum obtained by solving the Bethe-Salpeter equation; it can be seen that no
agreement is achieved, whatever « is chosen: either the peak position is strongly blue
shifted (for smaller values of «), or the peak intensity is enormously overestimated (for
larger values of «).

4.2.3 Comparison with ice

In a recent paper [80], a similar work (excited state properties, from DFT to BSE) for
hexagonal ice has been reported; we now discuss a comparison of the results.

Looking at the electronic gap, we found that the GW corrections increase the
HOMO-LUMO gap to 8.4 €V; a larger gap, ~ 9.5 eV, is instead obtained for hexagonal
ice. The gap reduction in the liquid phase is probably due to the disordered structure
of liquid water with respect to the reference ordered system, i.e. ice; similar results
are in fact found for semiconductor alloys where it has been shown that disorder can
cause a decrease of the band gap [83].

The optical absorption spectra of hexagonal ice, obtained in the frameworks of the
independent particle DFT and GW and by solving the Bethe-Salpeter equation, are
shown in figure 4.10. From the comparison of the spectra of liquid water and hexagonal
ice we can observe that the binding energy of the lower water exciton, although quite
large (2.4 eV), is smaller than the value E,= 3.2 eV found for ice. In fact, one can
expect that the mixing of electron-hole pairs of different energy, which leads to the
bound exciton, partially counterbalances the disorder effect on the quasi-particle gap
[83]; hence excitons are less bound in disordered systems since they do not follow
completely the decrease of the band gap. Moreover, the higher density in the liquid
phase with respect to ice (around 7%), may also play a role in reducing the exciton
binding energy, by allowing a greater mobility of electrons and holes.
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Figure 4.9: Optical absorption spectrum, for the molecular dynamics configuration
E19, obtained with the kernel f,.(r,r’) = — g, for different values of o (colored

lines), and by solving the Bethe-Salpeter equation (black bold line).
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Figure 4.10: Optical absorption spectra of hexagonal ice, obtained within the frame-
works of the independent particles DFT and GW and by solving the Bethe-Salpeter
equation, from [80]. The experimental spectrum is also reported [84].
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4.3 Methodological results

Due to the heaviness of this kind of calculations, it has been of fundamental impor-
tance to explore to which extent a detailed calculation of each single configuration was
mandatory. We summarize here the main methodological results:

1. the effect of the electron-hole interaction does not depend significantly on details
of the screened Coulomb interaction W, but rather on macroscopic averages [49]
and therefore we could expect, as effectively found out, that the optical spectra
of the various molecular dynamics snapshots can be calculated using the same
screening obtained for any one of them. This has been explicitly proven in the
previous chapter, in figure 3.8.

2. Gw corrections turn out to be independent on the molecular dynamics snapshot,
as shown in the previous chapter, in table 3.3.

3. Another important test regards the number of configurations needed to obtain
good averaged results. In figure 4.11 we report the optical absorption spectrum of
liquid water obtained by averaging over different numbers of molecular dynamics
snapshots, randomly chosen. We can note that a ”"good” absorption spectrum is
found (in agreement with the average over all the configurations) already for a
5-snapshots average.

These two methodological findings can be very important for future calculations on
similar disordered systems, since they allow to significantly reduce the computational
cost of a work which otherwise will be almost prohibitive.
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Figure 4.11: Optical absorption spectra of liquid water obtained by averaging over
different numbers of molecular dynamics snapshots, randomly chosen.
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Deep Inelastic Neutron Scattering

In this chapter we will illustrate the basic theory and the experimental technique for Deep
Inelastic Neutron Scattering. In the first part of the chapter we will introduce neutrons
as a probe for spectroscopic studies of materials showing their properties, advantages and
drawbacks. Then we will show the main ideas, assumptions and approrimations involved in
deep inelastic neutron scattering theory, with special regards to the Impulse Approximation.
In the last part of the chapter, we will describe the whole neutron experiment instrumentation,
from the neutron sources to the spectrometers and detectors.

5.1 The neutron probe

In 1994 the Nobel prize in physics was awarded to Brockhouse and Shull for their
contributions to the development of neutron scattering techniques, both diffraction
and spectroscopy, designing the path to answer the questions:

where atoms are and what atoms do.

Neutrons are electrically neutral subatomic particles that, together with protons,
form nearly the entire mass of the atomic nuclei. Some of their properties are listed in
table 5.1.

Mass 1.675 x 10727 Kg
Charge 0
Spin %
Magnetic moment | -9.66 x 10727 JT~!

Table 5.1: Main properties of neutrons

Neutrons are a powerful probe and present significant advantages over many other
radiative probes. One of the reasons is that neutrons are uncharged particles and
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therefore they interact with the nuclei of the atoms rather than their electronic clouds.
Consequently the neutron scattering cross section of an atom is not at all related to
its atomic number and this gives some interesting advantages over other spectroscopic
techniques as X-rays and electron scattering. First of all, with neutron scattering
experiments, it is possible to probe also light atoms, as hydrogen, in the presence of
heavier ones too. Moreover, the neutron scattering cross sections can be substantially
different for neighboring elements in the periodic table and also for isotopes of the same
element. One drawback is that neutrons do not interact much with matter but, on the
same time, this makes neutrons a highly penetrating and non-destructive probe, thus
allowing the study of the bulk of materials and also of delicate biological systems.
Neutrons are fermions and their magnetic moment can couple with the magnetization
of materials; moreover the magnetic scattering and the nuclear scattering cross sections
are of the same order of magnitude. Because of these reasons, neutrons are an ideal
probe also for the study of microscopic magnetism and general magnetic phenomena.

Standard nomenclature classifies neutrons in different categories depending on their
energy, as shown in table 5.2. Neutron pulses from a spallation source, after passing a
cold and/or hot moderator, have typical energies in the range from meV up to hundreds
of eV; this is exactly the same scale of energies of the principal atomic and electronic
processes, i.e. quantum tunneling, molecular translations, rotations and vibrations and
also electronic transitions, thus allowing neutrons to answer the question

"What atoms do”.

Moreover neutron wavelengths, in the range (0.05 - 20) A, are similar to atomic
spacings, allowing diffraction experiments both on periodic crystal structures and on
macromolecules, hence answering the question

"Where atoms are”.

| | Energy (meV) | Temperature (K) |

Ultracold < 0.1 <1
Cold 0.1-10 1-120
Thermal 10 - 100 120 - 1000

Hot 100 - 500 1000 - 6000
Epithermal > 500 > 6000

Table 5.2: Neutron categories depending on their energy
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5.2 Deep Inelastic Neutron Scattering theory

Deep Inelastic Neutron Scattering (DINS) was first proposed by Hohenberg and Platz-
mann [85], and Ivanov and Sayasov [86, 87], in 1966, to directly observe the distribution
of atomic momentum in condensed matter systems. Presently, it represents the only
effective technique to perform measurements of single-particle dynamical quantities,
such as atomic momentum distribution and mean kinetic energy.

DINS events are characterized by large energy and momentum transfers and the
method relies on the impulse approximation which considers the struck particle as a
free particle.

5.2.1 The impulse approximation

The double differential cross section for neutron scattering by a system of N identical
atoms can be simply expressed in terms of the dynamic structure factor, S(q,w), via
88]:

d*o N (k’

h\k

dQdE,  h ) (16128 (a,w) + ([6| = [b*)Si(a,w)] , (5.1)

where b is the bound atomic scattering length, hw and hq are the energy and mo-
mentum transferred by the neutron to the struck atom and k, &” are the incident and
scattered neutron wave vectors respectively.

The dynamic structure factor is given by:

S(q,w) = L /+0<> dt e ™' F(q,t), (5.2)

217 J_o

where F'(q,?) is related to the correlation function Y; ;(q,t) through
1

where the indexes 7, 7 run over all the nuclei and
Yij(q,t) = (e’ OeHan), (5.4)

The brackets denote a thermodynamic average, and T is the position operator of nuclei
in the Heisenberg representation.

In DINS experiments, the scattering geometry is chosen such that the wavevector
transfer ¢ is high enough to treat the problem in the incoherent approximation. Hence
the interference effect in equation (5.3) can be neglected and the scattering event is
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considered to occur from a single particle. In this case, just the incoherent dynamic
structure factor has to be retained:

“+o00
Siqw) = — / it et I O) HieF (D)) (5.5)

— o0

For high momentum transfers, the scattering event occurs in a time interval 7 short
enough that the scattering atom can be considered as it were a free particle. This
is the Impulse Approximation (IA) (exactly valid for ¢ — oo) and is based on the
assumption that the interatomic forces among the scattering atom and the other ones
can be neglected in its final state. Within this approximation we can replace r(t) by:

(1) = #(0) + 1-B(0), (56)

where M is the mass of the scattering nucleus and p is the momentum operator. By
exploiting standard commutation relations between position and momentum operators,
the single particle correlation function can be expressed as [89]:

Yii(q,t) = exp <2§%) <eXp <%q . §)> : (5.7)

We can now substitute the thermodynamic average with an integral over the momen-

tum states
it PN —/d ( ) it ‘ (5 8)
€Xp _Mq p = P n{P)exp _Mq | S .

where n(p) is the single particle momentum distribution; from equations (5.5), (5.7)
and (5.8), by performing the integration over time ¢, the impulse approximation for
the dynamic structure factor is simply obtained [88]:

Sralq,w) = /dp n(p)d (w — Wy — thp) : (5.9)

where hw, = % is the recoil energy, i.e. the energy the struck particle would have
providing it were stationary and absorbed all the momentum transferred by the neu-
tron. It gives the center of the observed peak at a given ¢ associated to the particle
of mass M. Since the position of the peak depends on M, different mass particles in
the sample can be distinguished in the observed spectrum. The J-function in equa-
tion (5.9) represents the conservation of kinetic energy and momentum for the system

neutron-particle.
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5.2.2 Y-scaling

In 1975, in the framework of electron scattering, West introduced a scaling variable, y,
which represents the component of p along the scattering direction [90]. This variable,
known as West scaling variable, couples the two dynamic quantities ¢ and w through
the relation:

M
y= h—q(w — Wr). (5.10)
The dynamic structure factor of equation (5.9) can hence be written as:
M e
Sra(Qoo, w) = h—qJ(y,Q), (5.11)

where J(y,q) is called neutron Compton profile and is formally the Radon transform
of the momentum distribution [91]:

J(y.3) = h / dpn(p)S(hy — b - 9). (5.12)

It represents the probability for an atom to have a momentum parallel to ¢ with mag-
nitude between Ay and h(y + dy). For an isotropic system like a liquid, the dependence
from the direction ¢ is irrelevant and equation (5.12) becomes

(e.e]

J(y) = 27Th/ dp p n(p). (5.13)

|hyl

By inverting this equation, from the neutron Compton profile of an isotropic system,
the momentum distribution can be reconstructed by:

1 d

_727rh3yd_y(](y>|y:p' (5.14)

n(p) =

The single particle mean kinetic energy, (Fk), is related to the second moment of the
Compton profile via:

Hoo 2M
| dvetaw) =t = 2B, (5.15)

The properties of J(y) when ¢ — oo are known as y-scaling and the presence or absence
of y-scaling in the experimental data can be interpreted as a test for the validity of the
impulse approximation. Some of these properties are now listed [92]:

e the magnitude of S(q,w) is proportional to 1/q for a fixed y,

e the width of S(q,w) is proportional to g,
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e the physical interpretation of the J(y) as a probability distribution for atomic
momenta implies that J(y) has to be an even function of y with its maximum
value at y = 0.

We also recall a useful relation among the initial and final neutron velocities [92]:

v _ cos(20) + [](M%)2 — sin2(29)]’ (5.16)
Vo oy +1

where m and M are the neutron and the recoiling atom masses, respectively. It has
to be noted that, scattering from hydrogen atoms, with M = m, occurs only in the
angular range 26 < 90°.

5.2.3 Limits of the Impulse Approximation and Final State
Effects

Now we want to illustrate the physical meaning of the assumptions implicit in the TA
and the range of validity of this approximation, which is exact for an infinite momentum
transfer.

The applicability of the IA relies on two main assumptions:

1. the scattering is incoherent, i.e. the scattering is insensitive to correlation be-
tween neighboring atoms,

2. the struck atom behaves as a free recoiling particle.

The first assumption is valid provided the nearest-neighbor distance is much greater
than 27/q, so that the interference of the scattering amplitudes from the atoms aver-
ages to zero. In typical experiments on VESUVIO, that is the spectrometer exploited
for our measurements which will be described in the next section, this condition is well
satisfied.
The second assumption is strictly related to the short time approximation in equa-
tion (5.6). A characteristic time 7 is associated to the scattering event and, at high
momentum transfer ¢, can be expressed by:

T= ﬁ, (5.17)

qAp

where Ap is the width of the momentum distribution of the struck particle. Detailed
discussions about this ”"scattering time” can be found in [92, 93, 94]. Providing there
are no significant deviations from a free motion in the time interval 7, then the TA will
hold. In the case of molecular systems, if the characteristic times of the intra and inter
molecular motions are well separated, two distinct regimes of validity for the A can
be considered:
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e neutron energy larger than the average collective excitation energy, but smaller
than the minimum internal single-particle excitation energy

e necutron energy larger than all the internal excitations of the molecules.

In the first case, the molecular system recoils with a mass equal to the mass of the
molecule and the translational kinetic energy of the whole molecule can be measured.
In the second regime, scattering occurs from the single nuclei of the molecule and both
the translational kinetic energy of the whole molecule and the roto-vibrational motion
of the nuclei within the molecule have to be considered.

Real experiments are always performed at finite wavevector transfers ¢, and some
deviations from the IA occur; they are generally referred to as Final Sate Effects
(FSE)!. These effects are due to the confinement of the recoiling particle by the sur-
rounding atoms, through the inter-particle potential V', and make the neutron Compton
profile dependent on the finite wavevector transfer ¢:

J(y,q) — J(y,q). (5.18)

According to Sears [93], deviations from the IA can be accounted for through a series
of powers of 1/¢:

As &3 Ay d*
J(y,q)—J(y)—?d—wJ(y)+?d—¢J(y)+... (5.19)

Az and Ay are related to the inter-particle potential via [93]:

M M? =
:36h2<v2v> and A4:W((VV)2>, (5.20)

As

where the brackets stand for statistical averages. Considering typical values of con-
densed matter inter-particle potentials, FSE are strongly reduced if the wavevector
transfer exceeds 20 A~ that is a regime easily attainable on the VESUVIO spectrom-
eter.

5.2.4 Born-Oppenheimer potential

The momentum distribution is also a sensitive probe of the local environment of the
scattering system, as explained in detail in [92, 96]. In some cases, when the tem-
perature is low enough so that the target atom is in its ground state and surrounded
by heavy nuclei, many body effects can be neglected and the environment can be de-
scribed by an effective one-particle potential. It is then possible to reconstruct the

!The Impulse Approximation makes assumptions about the way in which is treated the initial
state of the system too, as discussed in [95].
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spatial wavefunction and the Born-Oppenheimer potential of the scattering atoms as
follows [96]:

1
o) = s [ o) espipo) (5.21)
where 9(r) is the ground state wave function of the target nucleus. Under the assump-

tion that the ground state momentum wave functions, ¥ (p), are real, they may be
taken to be 1(p) = ++4/n(p). The potential may then be found from:

[ dp £ exp(iB)¢(p)
J dp exp(i%)¢(p)

V(r)=E (5.22)

5.3 Deep Inelastic Neutron Scattering technique

The instrumentation to perform neutron experiments is composed of several parts. The
sources are divided in reactors and spallation sources, while the instruments can almost
be grouped in diffractometers and spectrometers. Diffractometers look at neutrons that
are scattered elastically from the sample; they are used to measure atomic structures
of crystals or to study short-range order in disordered materials such as liquids and
amorphous metal alloys.

Inelastic neutron scattering experiments, where the energy of neutrons changes after
the interaction with the sample, are instead performed by the use of spectrometers.

5.3.1 ISIS: a pulsed neutron source

In the past, neutrons could be produced only by reactors but, in the last decades, a
new kind of neutron sources has become available, based on the spallation process. In
a spallation neutron source a heavy metal target is bombarded by pulses of energetic
protons produced by powerful accelerators. In this way intense pulses of neutrons
can be obtained with only a limited heat production in the target. On the contrary,
one of the major drawbacks of reactors is the intense heat production in the core and
this is also the main limit to further technological developments of this traditional
reactor sources. Another important advantage of a pulsed source is that neutrons can
be obtained in a wide range of energies that includes also epithermal neutrons, with
energies greater than 500 meV.

ISIS is a spallation neutron source at the Rutherford Appleton Laboratory (Chilton-
Didcot, UK)2 The production of neutron proceeds in this way: intense beams of
protons, accelerated up to 800 MeV, bombard a heavy metal tantalum target; the
hitted target nuclei are promoted to highly excited states, then they release the energy
by evaporating some nucleons, most of all neutrons, that can leave the target or trigger

http:/ /www.isis.rl.ac.uk/
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further reactions. For each proton hitting the target, approximately 30 neutrons are
produced.

These neutrons have very high energies and hence velocities and, in order to use
them for condensed matter studies, they must be slowed down by some moderators.
Exploiting the large scattering cross section of hydrogen, neutrons at ISIS are under-
moderated by surrounding the target with hydrogenous moderators such as ambient
temperature water (316 K), liquid methane (100 K) or liquid hydrogen (20 K).

The spectral distribution of the produced neutrons depend on the moderators tem-
perature and can be tailored for different kind of experiments. As an example, the
energy spectrum of the neutron beam after crossing the ambient temperature water
moderator is shown in figure 5.1 [97].

Neutron Spectrum from the I1SIS Water Moderator
(200 mA protons Tantalum Target)
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Figure 5.1: Energy spectrum of the neutron beam from the ambient temperature water
moderator, at the ISIS spallation neutron source.

5.3.2 Direct and inverse geometry spectrometers

Inelastic neutron scattering experiments aim at measuring the intensity of the scattered
neutrons as a function of the energy, Aw, and of the momentum, hq, transferred from
the incident neutrons to the sample; these measurements are obtained by spectrometers
which, at a pulsed neutron source, operate via the time of flight technique.

To obtain the energy and the momentum transfers we should know the scattering angle,
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20 (see figure 5.2), and the incident and scattered neutrons velocities, vy and vy,
B RN ST S
hw=FEy— FE| = 2m(vo vy), (5.23)

and

hq = h|k_0) — k_1>| = h\/k:% + k? — 2koky cos(20) = m\/vg + v — 2upvy cos(26).  (5.24)

Moderator

Sample
LO

Resonant foil

Detectors

Figure 5.2: Schematic view of an inverse geometry spectrometer (the resonant foil
monochromate the final neutron energy, as explained in the following section).

The time of flight technique consists in the measurement of the total time of flight
for a neutron traveling from the moderator to the detector (see figure 5.2), given by
t27+@+&, (5.25)
Vo U1
where 7 is the time delay introduced by the instrument electronics, L is the distance
from the moderator to the sample, L; is the distance from the sample to the detector
and vy and v; are the incident and scattered neutron velocities. From the knowledge
of the flight paths Ly and L; and one of the neutron velocities (vg or v1), and from the
measurement of the total time of flight ¢, it is possible to obtain both the transferred
energy and the transferred momentum.
Neutron spectrometers are conventionally divided in two categories depending on
the energy selection: direct and inverse geometry instruments. Direct geometry spec-
trometers fix the incident neutron energy while in inverse geometry instruments the
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final neutron energy is selected and the incident velocity is determined from ¢.
For a direct geometry spectrometer, where Fj is fixed and E; = Ey — hw, from eq.
(5.24) is simple to obtain

h2 q2

For an inverse geometry spectrometer, F; is fixed and Ey = F; + hw and eq. (5.26)
becomes

h2 q2

Pl 2F) + hw — 2\/ Ey (B + hw) cos(26). (5.27)
The main kinematic difference that arises from this two formulas is that in a direct
instrument the energy loss is limited to Ey while there is no upper limit, within the
maximum energy of the incident neutron beam, to the transferred energy for an inverse
geometry spectrometer. This is evidenced in figure 5.3 where the contour plots of equal
scattering angles are plotted as a function of momentum and energy transfers both for
a direct and for an inverse geometry instrument. For a complete description of neutron
scattering instruments, see for example [98, 88].
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Figure 5.3: Contour plots of equal scattering angles as a function of momentum and
energy transfers for a direct geometry instrument (on the left panel) and for an inverse
geometry instrument (on the right panel).

5.3.3 Resonance foil technique

Both direct and inverse geometry spectrometers need to select a neutron energy window
either in the primary beam, for direct geometry instruments, or in the secondary path,
for inverse geometry ones. There are mainly three methods of energy selection in
common use:
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1. exploiting the Bragg’s law of reflectivity with single crystals,
2. placing a chopper in the incident beam,
3. using the resonance foil technique.

The first two methods have the main drawback in the limited upper value of pos-
sible selected energies; in fact reflectivity of crystals decreases rapidly with increasing
energies and the maximum rotational speed of choppers allows to select energies up to
about 2 eV [98].

The resonance foil technique, exploited in this thesis work, consists in placing in the
beam a nuclear resonance absorption foil which strongly absorb neutrons over narrow
energy ranges. The absorption foil is usually cycled in and out of the neutron path and
two measurements (with and without the foil) are taken. The difference between these
two data sets provides the measurement of the neutrons with energy determined by
the foil resonance. The resonance foil technique can be used to obtain neutron energy
transfers up to 100 eV, depending on the choice of the resonance foil. It turns out that
much better resolution can be obtained if the resonance foil method is employed on an
inverse geometry instrument, with the foil in the secondary flight path 2, and this is
actually the method employed at ISIS on the VESUVIO spectrometer.

5.3.4 VESUVIO spectrometer

VESUVIO* is an inverse geometry neutron spectrometer operating at the ISIS pulsed
source since the year 2002. It exploits the resonance foil technique to monochromate
the scattered neutron energy and the standard time of flight technique to determine
the incident energy of neutrons. With this instrument, energy transfers in the range (1-
100) eV and momentum transfers between 5 A7 and 200 A™" are achieved [100, 101].
The VESUVIO spectrometer is equipped both with 6Li glass scintillators to reveal
directly the scattered neutrons and with v scintillators, as the YAP (YAlO3) detectors,
in the resonance detector (RD) configuration. We will describe just the first technique,
in the experimental arrangement which has been used in this thesis work; details about
the resonance detector technique can be found in [102].

When neutron detectors (such as %Li glass scintillators) are employed, two experi-
mental arrangement are possible: the Single Difference (SD) method and the Double
Difference (DD) method. In the ”resonant filter - single difference” configuration, two
measurements are taken, the first one with the absorbing filter between the sample
and the detector and the second one without the foil. The raw data are given by the

3A comparison of the efficiency of the resonance foil technique on direct and inverse geometry
instruments can be found in [99]
4http://www.isis.rl.ac.uk/molecularSpectroscopy/vesuvio/
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difference among these two measurements.

The second experimental arrangement, known as Double Difference (DD) method, con-
sists in taking three measurements: one without the resonant foil and the other two
with two filters of different thickness. In this way better resolutions are reached but
at the price of lower count rates. For a detailed description of these techniques see, for
example, [103].

The resolution function of an inverse geometry spectrometer exploiting the reso-

nance foil technique, as VESUVIO, is mainly due to two components [104]: a first one
(geometrical) related to the uncertainties in the neutron flight paths, scattering angles
and time of flight measures and a second one generated by the resonance width of the
analizer foil. The geometrical component is constituted by several distinct distribution
and is assumed to be Gaussian. The energetic component can instead be modeled by
a Voigt function given by the convolution of a Gaussian and a Lorentzian function.
The former takes into account the Doppler broadening coming from the lattice motion
while the latter is due to the intrinsic shape of the nuclear resonance of the foil. This
term of the model represents the main resolution limitation because of its extensive
wings and its infinite second moment.
Since the functional form of the wings scales with the thickness of the foil, it is possible
to overcome this problem via the DD method, by an appropriate weighted difference of
two measurements with foils of different thickness. In this way, a finite second moment
of the energetic component and much narrower resolution functions are obtained, even
if at the expenses of the count rates.
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Chapter 6

Sample description and
experimental details

In this chapter we will provide details about the Deep Inelastic Neutron Scattering experiments
that have been performed in order to study the single particle dynamics of confined water.
In the first part of the chapter we will illustrate the samples characteristics and preparation,
from the synthesis to the hydration procedure. We will then give a detailed description of the
instruments and of the experimental setup exploited in these experiments.

6.1 The sample: water confined in nanoporous xe-
rogel matrices

This part of the thesis regards the study of the single particle dynamics of water con-
fined in silica xerogel matrices. In particular we examined the momentum distribution
of the protons by embedding water in the pores of xerogel powders. We analyze sam-
ples with two different pore dimensions, namely xerogel with average pore diameter
d=24 + 7 A and d=82 + 11 A: for both sizes, measurements were performed on the
hydrated sample and on the dry powder too.

6.1.1 Xerogel synthesis and characterization

Silica xerogel are transparent materials which can be produced in a wide range of
macroscopic densities with controlled porosity. They are obtained by porous glasses
originally produced from Sol-Gel bulk samples. In the Sol-Gel process the starting com-
ponents are metalloid elements, like tetraethoxysilane (TEOS) or tetramethylortho-
silicate (TMOS) surrounded by various solvents as water and ethanol [105]. Specific
catalysts and control chemicals are often added in order to improve the process. Final
solutions are then stirred and stored at room temperature for some weeks, in order to
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Alkoxide precursor | Average Total Specific
pore size | pore volume | surface area
(A) (cm?/g) (n*/g)
TEOS 24 0.348 727
TMOS 82 1.10 500

Table 6.1: Physical parameters of the two xerogel samples used in the experiments, as
derived from BET analysis [107].

complete the polymerization process. The final drying process gave rise to the dried
gel, called xerogel.

Our samples have been synthesized at the NEMO Laboratory! at the Physics De-
partment of the University of Rome Tor Vergata. The synthesis procedure involved
different alkoxide precursors (both TEOS and TMOS), water and ethanol solvents,
nitric acid as catalyst and different control chemicals and give rise to two different
xerogel samples, with average pore diameters d = 24 A and d = 82 A. Both samples,
after the drying treatment, have been grinded and reduced to powders. Details about
the synthesis procedure can be found in [106].

After grinding, the xerogel powders are formed by little spheres which present
a microporous structure. Their characterization can be obtained in terms of both
pore size distribution and surface area, via an analysis named Brunauer-Emmet-Teller
(BET) [107], based on the measurements of the Ny adsorption/desorption isotherms.
The BET analysis on our xerogel powders have been realized at the University of
Trento and give the results listed in table 6.1.

6.1.2 Xerogel hydration

Xerogel powders are hygroscopic materials, i.e. when exposed to air, they tend to
adsorb water vapour until equilibrium is reached. Obviously, this process occurs just
if the vapour pressure of water inside the xerogel is lower than the one relative to the
atmosphere the powder is exposed to.

For both our samples, water has been adsorbed in dry xerogel powder by an hydra-
tion protocol in a controlled environment. The hydration procedure made use of three
Petri dishes filled with dry xerogel powder and a fourth Petri dish containing a sat-
urated solution of potassium nitrate (KNOj3) and water; all dishes were introduced
in a desiccator to ensure an insulated environment during all the hydration process
time. The sample was maintained in this controlled environment for about 96 hours,
saturated with aqueous solution of KNOj3. The level of hydration was determined by
weight measurements. Once the equilibrium between the xerogel and the solution was

Thttp://optoweb.fis.uniromaz2.it /opto/index.html
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Average pore size || Hydration level | Pore filling
(A) % %
24 26.4 76
82 108 98

Table 6.2: Hydration parameters of the two xerogel samples used in the experiments.
The hydration level is defined as the ratio between water and dry xerogel weights.

reached, the xerogel with pore size of 24 A and 82 A were hydrated at a water content
of 26.4% and 108 % of the dry weight, respectively. Due to the hygroscopic properties
of materials with these pore dimensions, one can assume that water is completely ad-
sorbed by the pores of the powders. Assuming the water molecule to be a sphere with
diameter of 3.16 A, the corresponding pore filling values can be calculated: 76% and
98% for xerogel with average pore size of 24 A and 82 A, respectively (see table 6.2).

6.2 Experimental setup

DINS experiments on confined water have been performed on the inverse geometry
spectrometer VESUVIO at the ISIS spallation neutron source?. This spectrometer
allows to explore a range of energy and momentum transfers with hAw > 1leV and
q> 25 A™". In order to measure the proton momentum distribution, looking at equa-
tion (5.16) about the scattering from hydrogen atoms, detector banks with ®Li detectors
in forward scattering direction have been used. The final energy has been determined
via the resonance filter technique in the single difference configuration, using a gold
analyzer foil. All samples were contained in flat cylindrical Al cans, with section diam-
eter of 5 cm and internal thickness of 0.1 cm. The main parameters of the experimental
setup of VESUVIO are summarized in table 6.3.

6.2.1 Detectors

Neutron detection has been achieved through the use of 6Li glass detectors at forward
scattering direction. Four banks of 8 detectors each have been used covering the
angular range between 30° and 70°. They were placed at a distance of about 0.7 m
from the sample and 0.35 m from the gold analyzer foil. The exact angular positions
and distances from the sample? are listed in table 6.4 for all the 32 detectors.
Lithium glass detectors are scintillation type detectors which emit light in response
to the excitation due to ionizing radiation [108, 102] and are suitable for neutron

2A detailed description of the neutron source and of the spectrometer is given in chapter 5.
3These numbers are listed in the experimental IPfile which is assigned at each experiment: 0621
and 0711 for the measure on the xerogel 24 A and 82 A, respectively.
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H VESUVIO experimental setup H

Instrument inverse geometry spectrometer
Energy selection resonance foil technique
Neutron detectors 32 °Li detectors
Detectors angular range 30° — 70°
Initial flight path L 11.055m
Final flight path L, ~ 0.7m
Recoil momentum transfer Grec > 30 A

Table 6.3: Main parameters and characteristics of the VESUVIO spectrometer ex-
ploited in the experiments for the measurement of confined water momentum distri-
bution.

detection. These detectors are silicate-based glasses which contain small percentage
of lithium (enriched in the isotope SLi) and of an activator species, like an oxide of
cerium. The detectors used in our experiments had a surface of 25 cm? and a thickness
of 10 mm.

The pulses from the scintillator are then collected in a photomultiplier through an
aluminum light guide and hence stored by the Data Acquisition Electronics (DAE)
[108].

6.2.2 Resolution functions

In the last chapter, in section 5.3.4, we described the functional form of the resolu-
tion of an inverse geometry spectrometer exploiting the resonance foil technique, like
VESUVIO. This instrument can operate in two distinct configurations, namely in the
single difference and in the double difference configurations. DINS experiments on con-
fined water have been performed exploiting the resonance foil technique in the single
difference configuration. The resonance foil was a gold °7Au filter of 3 mm thickness;
its resonance shape is shown in figure 6.1. The resolution of this kind of spectrometers
has a geometrical component, due to the uncertainties in the neutron flight paths, scat-
tering angles and time of flight measures and an energetic component related to the
nuclear resonance of the foil. The geometrical component is assumed to be Gaussian,
Ggeom(y). The energetic component is instead a Voigt function given by the convolu-
tion of an intrinsic Lorentzian lineshape, L(y), and of a Gaussian function that takes
into account the Doppler broadening coming from the lattice motion, G pep,(y).

For the gold analyzer foil, the Breit-Wigner nuclear resonance can be approximated
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Figure 6.1: Nuclear resonance lineshape for a gold (17Au) foil.

by a Lorentzian of the form:

L(E) = : (6.1)

N | =

[(%EV +(E - Ey)?

where F/ is the resonance energy and %E is the resonance Half Width at Half Maximum
(HWHM). The overall resolution function, for each individual detector, can hence be
expressed as the convolution of the Gaussian and of the Lorentzian contributions, as

R(y,q) = G(y,q) ® L(y,q) = /dn G(n,q) Ly —n,q); (6.2)

from now on, with the symbol ® we will denote the convolution with respect to the y
variable. G(y, ¢) is in turn the convolution of all the gaussian components

G(Y, @) = Ggeom(y,7) ® Gpopp(y q)- (6.3)

The ¢ dependence derives from the fact that the wavevectors transfer accessible in
real experiments are always finite (see section 5.2.3). Parameters characterizing the
resolution function for each detector are listed in table 6.4.
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H Xerogel, 24 A pore size H Xerogel, 82 A pore size
20 Ly q og 20 L q oc £
(degree) (m) (A7) (A7) (A7) | (degree) (m) (A7) (ATH (AT
32.1 0.704 30.6 0.71 1.24 32.5 0.689 31.2 0.67 0.74
33.8 0.692 32.6 0.71 1.18 33.6 0.691 324 0.67 0.71
34.5 0.699 33.5 0.70 1.14 34.4 0.688 334 0.67 0.69
35.9 0.684 35.3 0.71 1.08 35.6 0.685 35.0 0.67 0.66
36.6 0.695 36.3 0.69 1.06 36.4 0.678  36.0 0.68 0.64
38.2 0.687 38.3 0.69 1.00 37.5 0.685 37.7 0.67 0.62
38.7 0.682 39.1 0.70 1.00 38.2 0.686 38.7 0.67 0.60
40.0 0.680 40.9 0.69 0.94 39.7 0.674 40.5 0.67 0.57
40.7 0.698 42.0 0.68 0.92 40.4 0.684 41.9 0.66 0.56
42.0 0.697 43.9 0.67 0.88 41.7 0.669 43.6 0.68 0.54
43.0 0.689 454 0.68 0.86 42.5 0.684 45.0 0.66 0.52
44 .4 0.694 47.7 0.67 0.82 43.9 0.687 47.0 0.66 0.50
45.0 0.693 48.8 0.67 0.80 44.7 0.688 484 0.66 0.49
46.3 0.697 51.0 0.67 0.76 45.7 0.693 50.5 0.65 0.47
47.2 0.690 52.7 0.67 0.74 46.7 0.690 52.2 0.65 0.45
48.4 0.703 55.1 0.66 0.71 477 0.685 54.1 0.66 0.44
51.5 0.691 614 0.66 0.64 51.2 0.688 61.6 0.65 0.39
52.7 0.696 064.1 0.65 0.62 52.7 0.693 64.5 0.65 0.37
52.9 0.695 64.7 0.66 0.61 53.4 0.682 66.5 0.66 0.36
53.6 0.692 66.3 0.66 0.60 54.7 0.680 69.6 0.66 0.34
54.7 0.683 69.1 0.66 0.57 55.3 0.680 71.9 0.66 0.34
55.8 0.686 71.8 0.66 0.55 56.8 0.692 75.3 0.64 0.32
56.8 0.686 74.6 0.66 0.53 57.4 0.679 775 0.66 0.31
57.9 0.678 778 0.66 0.51 58.9 0.680 8&1.5 0.65 0.30
59.2 0.697 R&1.9 0.65 0.49 59.6 0.670 &4.3 0.66 0.29
59.9 0.684 &84.3 0.66 0.48 60.9 0.689 &84 0.65 0.28
61.2 0.690 &9.1 0.65 0.45 61.6 0.679 91.9 0.66 0.27
61.9 0.684 91.5 0.66 0.44 62.9 0.688 96.4 0.65 0.26
63.3 0.700 97.5 0.64 0.42 63.8 0.680 1004 0.65 0.25
64.5 0.692 102.8 0.65 0.40 64.9 0.692 105.5 0.64 0.24
65.6 0.704 108.1 0.64 0.38 65.7 0.687 110.1 0.65 0.23
67.3 0.709 117.2 0.63 0.34 66.5 0.705 114.0 0.63 0.22

Table 6.4: For each detector, the scattering angle 260 and the final flight path L,
are listed, for both xerogel powders. The wavevector transfer ¢ corresponding to the
maximum of the recoil peak, i.e. toy = 0 (see sec. 5.2.2), are also reported. Parameters
describing the resolution function R(y) on VESUVIO are also listed: g indicates
the standard deviation of the whole Gaussian component (energy plus geometrical
contributions) whereas I'g/2 is the Half Width at Half Maximum (HWHM) of the
Lorentzian energy contribution. 36



Chapter 7

Proton microscopic dynamics of
confined water

In this chapter we present the results obtained by the DINS experiments we performed
on confined water. In the first part of the chapter we illustrate the procedures followed
for the initial data reduction. Then we describe all the steps which have characterized
the data analysis, stressing the physical meaning of the main assumptions. The last
part of the chapter is devoted to the description and discussion of the results.

7.1 Data reduction

DINS experiments on confined water have been performed on the inverse geometry
spectrometer VESUVIO at the ISIS spallation neutron source. Detector banks with 32
SLi detectors in forward scattering direction have been used and the final energy has
been determined via the resonance filter technique in the single difference configuration,
using a gold analyzer foil. Both hydrated and dry xerogel powders with average pore
diameter d of 24 A and 82 A have been measured. All samples were contained in flat
geometry Al cans. Experimental data were recorded by the DAE; the total integrated
proton currents for the various measurements are reported in table 7.1. In the following
the reduction procedure applied to these data sets will be described.

7.1.1 Foil-in/foil-out subtraction

As already mentioned, VESUVIO is an inverse geometry spectrometer which allows
to perform DINS measurements by selecting the neutron final energy through the
resonance filter technique. In the single difference configuration (see also section 5.3.4),
two data sets are recorded: the first one with the resonance foil in front of the detectors
(foil-in) and the second one without the foil (foil-out). The difference between the foil-in
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Sample Integrated proton current [pAh]
Hydrated xerogel - d = 24 A 22315
Hydrated xerogel - d = 82 A 15473
Dry xerogel - d = 24 A 8578
Dry xerogel - d = 82 A 7811

Table 7.1: Integrated proton currents for the DINS experiments on confined water, for
various kind of measurements.

and foil-out data sets provides the measurement of the neutron with energy determined
by the filter and constitutes the experimental time of flight (tof) spectrum.

The first steps of the data reduction are given by the proper subtraction of the
foil-in/foil-out data sets and by a subsequent rebinning and normalization procedure.
This part of the reduction has been performed exploiting the standard VESUVIO
routines [109] through the commands ndiff, reb and norm. During the foil-in/foil-
out subtraction, for each scattering angle, data have been normalized between 550
pus and 600 ps where no recoil peaks are present. This normalization procedure is
generally preferred with respect to normalize to incident beam monitor counts; the
reason is that small drifts in the monitor detector efficiency, which may occur with
time, would introduce a spurious background in the difference spectra.

Examples of time of flight spectra, obtained in this way, are shown in figure 7.1
for three selected values of scattering angles. We can observe that, at each angle,
two peaks are present: the first one, at smaller tof, is the recoil peak associated to
the hydrogen atoms present in the sample, both belonging to water molecules and to
silanol groups of the xerogel matrix; the second peak, centered at about 370 us, is
instead due to the recoil from all the heavy masses in the sample (silicon, oxygen and
the aluminum from the can). It is worth noticing that the two peaks tend to be closer
for smaller scattering angles.

7.1.2 Multiple scattering and non-hydrogenous peak subtrac-
tions

Two unwelcome contributions have to be removed from the tof spectra: the multiple
scattering signal and the non-hydrogenous recoil peak. The small sample thickness
(0.1 cm) guarantees a small contribution of multiple scattering signal. This has been
evaluated by a Monte Carlo simulation [110] which considers the final neutron energy
fixed by the gold analyzer foil at E; = 4908 + 148 meV, takes into account the geo-
metrical parameters of the detectors and of the aluminum can and treats the sample
as constituted of hydrogen, oxygen, silicon and aluminum atoms with the proper con-
centrations. An example of multiple scattering signal obtained by the Monte Carlo
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Figure 7.1: Time of flight DINS spectra from water confined in a xerogel powder with
average pore size of 24 A, for three scattering angles: 34.5° (black circles), 52.9° (red
squares), 65.6° (blue stars).

simulation is reported in figure 7.2. Second and third order scattering events have
been then subtracted for each scattering angle.

In order to obtain spectra with better statistics, data from xerogel powder with
average pore diameter of 24 A, recorded at scattering angles within 2 degrees have
been summed together.

The last step of tof data reduction consists of subtracting the recoil peak due to
the non-hydrogenous masses. This has been done by fitting the data through two close
Gaussian or Voigt functions and hence by removing the lineshape of the unwanted
peak. Sometimes we noticed the opportunity of fitting the data with a three peaks
function (one for the hydrogens and the other two for the other masses) and this is
justified by the presence of different masses in the second recoil peak (silicon, aluminum
and oxygen).

At the end of the data reduction, we transformed the tof spectra in y-spectra (see
section 5.2.2). This last step has been done exploiting the standard VESUVIO routine
ytrans. Examples of y-spectra at three different scattering angles are shown in figure
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Figure 7.2: DINS spectra obtained from the Monte Carlo simulation. The first (green
line) second (red line) and third (blue line) order scattering contributions are shown,
together with the total scattering signal (black line).

7.3, for both powders. From this figure one can observe that, by increasing the scatter-
ing angle (from top to bottom), the right tail of the spectra (at y > 0, corresponding
to tof < 100us) has a worse statistics; simultaneously the recoil peak moves towards a
value centered at y = 0, as expected within the Impulse Approximation. It has to be
noted that, even for the smaller scattering angles (top panels), the spectra are centered
at y ~ 0 and this is the first indication of a likely absence of final state effects.

7.1.3 Spectrometer resolution functions

Within the convolution approximation [92], the experimental response function, F*(y, 26),
can be expressed as a convolution of the proton response function, J(y, 20), introduced
in section 5.2.2, and of the resolution function, R, (y, 20):

FP(y,20) = J(y,26) ® Rn(y,20), (7.1)
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Figure 7.3: Experimental y-spectra, with error bars, for water confined in xerogel with
average pore diameter d = 24 A, for three scattering angles: 38.4° (left-top panel), 52.4°
(left-central panel), 63.9° (left-bottom panel); and for water confined in xerogel with
average pore diameter d = 82 A, for three similar scattering angles: 38.2° (right-top
panel), 52.7° (right-central panel), 63.8° (right-bottom panel).

where the index n run over the 32 detectors and 26 is the scattering angle. Before
analyzing the data, we have also generated the experimental resolution functions. Their
functional form, given by the convolution of a Gaussian and a Voigt functions has
been described in sections 5.3.4 and 6.2.2. To obtain the resolution functions we have
exploited the parameters in table 6.4. An example of y-spectrum together with its
resolution function is shown in figure 7.4.

7.1.4 Constant g spectra

In order to interpret data in terms of dynamical structure factor and Neutron Compton
profile

Sta.w) = 20 1y.0), (72
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Figure 7.4: Experimental y-spectrum, with error bars, for water confined in xerogel
with average pore diameter d = 24 A, for a scattering angle 20 = 38.4°: the relative
resolution function (red dashed line) is also shown.

where ¢ is fixed, it is useful to express experimental spectra in terms of constant
wavevector transfer hq. Triple-axis-spectrometers have the advantage to directly record
constant ¢ data. On VESUVIO, this goal has been achieved by converting constant
angle spectra to constant wavevector ones. This conversion involves the application of
the Jacobian factor, always required when there is a change of variables of a function

[111]. Since

2
S(q,w) = 5(20,) |22 (73)
dq
where S(26,w) is the fixed angle dynamical structure factor, then
q |0(20)
= —|—=|5(2 ) A4
Io.0) = 25 |22 (20,0 (7.4)

To this aim, an algorithm has been developed which reads out all the spectra recorded
by detectors at different angles and groups together those data with associated mo-
mentum transfer within a small window of ¢ values. These constant-g data are then
rebinned onto y-bins, weighted by their errors. This procedure transforms intensities
versus constant scattering angle to intensities versus constant wavevector transfer in a
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unique way, which depends only on the choice of the width in ¢q. A set of four F**?(y, q)
spectra, in y space, have been obtained for the following values of momentum transfer:
g=238+2A"" ¢=45+2A"" ¢ =53+3A " and ¢ = 70+ 5A". An identical
procedure has been used to express the resolution function at each individual angle in
terms of constant g values. The convolution approximation [92] has then been applied.
Examples of F*P(y, q) spectra at constant g are shown in figure 7.5 together with the
corresponding resolution functions.
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Figure 7.5: Experimental response functions, F**?(y,q) (with error bars) and corre-
sponding resolution functions (dashed lines), for water confined in xerogel with average
pore size of 24 A (left panel) and 82 A (right panel), at constant momentum transfers

g=53+3A"

7.2 Data analysis

In order to derive the proton momentum distribution and mean kinetic energy, a several
steps analysis has been performed. The main objective of this work is to determine the
response functions for two distinct kinds of hydrogen atoms, with overlapping recoil
peak: hydrogens belonging to water molecules, which are (for our purpose) the more
interesting ones, and silanol-hydrogens belonging to the confining xerogel matrix.

At first, the contribution due to silanol-hydrogens have been evaluated using dry
xerogel data sets (hereafter indicated with suffix D). A second step consisted in cal-
culating the contributions from both water-hydrogens and silanol-hydrogens using the
hydrated xerogel data sets (hereafter indicated with suffix H). The percentage of
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silanol-hydrogens with respect to the total number of hydrogens, has then been esti-
mated and a combined analysis of dry and hydrated xerogel data sets allowed to obtain
information about water hydrogens only (hereafter indicated with suffix W).

7.2.1 Hydrated and dry samples data analysis

Previous DINS experiments on water [112, 113, 114] have shown that a simple Gaussian
model is not adequate to accurately describe the single particle proton dynamics. For
this reason, the individual spectra for dry and hydrated xerogel data sets, at both
constant wavevector transfer (F°*?(y,q)) and constant scattering angle (F¢*(y,260)),
have been fitted using a general model distribution function [115]. It can be regarded as
a non-Gaussian function expressed by a Gaussian lineshape multiplied by a truncated
series of even Hermite polynomials, H,(z), as in equation (7.5).

(67

def(y7X) = \/W

2
e 1+c4§H4(u) + cg Hg(u) + . .. (7.5)

with x being 26 or ¢, and u = (?\’/_2%). a is a normalization factor, o and 7, are the

second moment and the centroid of the Gaussian function, respectively, and ¢,, are the
Hermite polynomials coefficients.

As explained in section 5.2.3, at finite wavevector transfer ¢, some deviations from
the impulse approximation occur, which are generally referred to as Final Sate Effects
(FSE). According to Sears [93], these effects can be accounted for through a series
of powers of 1/q. Hence, in order to consider also these deviations from the impulse
approximation, we added to the model distribution function of equation (7.5) corrective
polynomials multiplied by powers of 1/g¢:

2 1 1
6_u2 1+ Cy g H4(U) + ¢g H@(U) + ...+ k‘g gHg(u) + ]{?4 ?HLL(U) + ...

(7.6)
In order to fit the experimental spectra, the model distribution function of equation
(7.6) have also to be convoluted with the experimental resolution functions:

FP(y, x) = Jmar (Y, X) ® Ba(y, X)- (7.7)

This is the distribution function used through all the data analysis in this work and
it had been already successfully employed for liquid HoO [116, 92] and for ice [116].
The fitting parameters are «, g, o, and the Hermite polynomials coefficients ¢y, cg, k3
and ky.

In the following, it will be shown that just few terms in the expansion of equation
(7.6) have to be retained in order to obtain a good fit of the experimental spectra; in
particular, for this case of confined water, we can neglect the FSE terms (asimmetries

(8%
def(y7 X) = \/ﬁ
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in the peaks are accounted for by the centroid shift which take care of possible errors
in angles calibration) and truncate the Hermite polynomials expansion just at the
H, term. Therefore, all results presented in the next section (where not else specified)
have been obtained by fitting the experimental response functions through the following

expression:
«

V2mo?

It has to be stressed that for a truncated expansion as in equation (7.8), where
just the fourth Hermite polynomial is present, two interesting relations regarding the
second, f9, and fourth moment, p4, of the distribution turn out. The second moment is
indeed given by the square of the standard deviation, ps = 02, as in a simple Gaussian
function and the first non Gaussian coefficient, c4, is related to the fourth momentum
of the distribution by:

FP(y, x) = e {1 + ¢4 % H4(U)] ® Ry(y, x)- (7.8)

Cq

1 pa — 3(u3)?
=—90, 0=——"" 7.9
o miE 1)
where ¢ is the kurtosis of the single particle momentum distribution.

We want also to recall that the single particle mean kinetic energy, (Ek), is related
to the second moment of the Compton profile, 02, via the equation 5.15:

,  2M
=32

g

E). (7.10)

7.2.2 Combined data analysis: water contribution

In the last part of the data analysis, results from hydrated and dry samples data sets
have been combined, with the aim of deriving the response function associated to water
protons only. One has to note that in DINS measurements, recoil peaks from different
types of hydrogen do appear at the same time of flight and y range. Thus, within
the incoherent approximation, one can express the response functions for hydrated
samples in terms of hydrogens belonging to water and to silanol groups: hence, for
each individual detector, F5;7(y, 20) may be expressed as a weighted sum of these two
components, Fi57"(y,20) and Fp™(y,26):

FiP(y,20) = ¢ F5"(y,20) + (1 — ¢) Fi;/"(y, 26). (7.11)
From this relation it follows, from the distributive property of convolution, that
Ju(y,20) = cJp(y,20) + (1 — ¢) Jw(y, 20), (7.12)
with a second moment given by:
oy =con+(1—c)opy. (7.13)
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Pore diameter || ¢ obtained from | ¢ obtained from recoil peaks intensities
d fit (eq. (7.11)) and weight/volume ratio (see text)
(A) % %
24 - 26
82 29+ 2 31

Table 7.2: Values of the fraction of silanol/total hydrogens in the samples, ¢, obtained
from a two lineshape fit as in equation (7.11) and from some considerations about
theoretical densities of the samples, experimental weight/volume ratio and relative
intensities of the hydrogen recoil peak with respect to the second peak due to silicon,
aluminum and oxygen.

Subscripts W and D label hydrogen contributions associated to water and silanol
groups; subscript H refers to all hydrogens together. The coefficient ¢ represents the
fraction of silanol/total hydrogens in the samples.

For both hydrated xerogel samples, experimental response functions, F " (y,26)
have been fitted, referring to equation (7.11), keeping F5(y, 26) lineshape fixed to the
value obtained from the dry data sets analysis and with ¢, oy and cuw (for Fij/"(y, 26))
as free parameters. This procedure allowed to reliably fit the hydrated spectra only for
the xerogel with larger pore diameter (82 A) while, in the case of the hydrated sample
confined in smaller pore (24 A), the fitting procedure did not allow to fit all parameters
with sufficient accuracy. Therefore, in both cases, ¢ has also been determined by com-
bining information from the adsorbed water content and from spectra intensities, both
by comparison of theoretical densities of the samples and experimental weight /volume
ratio and from the relative intensities of the hydrogen recoil peak with respect to the
second peak due to silicon, aluminum and oxygen. These approaches provide values of
¢ = 31% for xerogel with average pore diameter d = 24 A and ¢ = 26% for d = 82 A, as
shown in table 7.2. Advancing the results of the combined fitting procedure, which will
be illustrated in the next section, we report the value of the ¢ coefficient obtained for
the xerogel 82 A: ¢ = 29%. It has to be noted that for higher pore diameter sample,
values of ¢ obtained in the two ways agree well with each other (see table 7.2).

We also stress that, if ¢, F;”(y, 26) and F;;*(y, 20) are determined independently,
Fi7?(y,20) can be reconstructed by inverting equation (7.11):

Fir(y,20) — cFp™ (y, 26)
1—c

F?(y,20) = (7.14)

and then, by exploiting the relation (5.14) between the response function and the
momentum distribution, one can calculate the ”water proton” momentum distribution
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nw(p) as: Ly
nw(p) = —md—yt]w(y)‘hyzp- (7.15)

7.3 Results and discussion

In the following we present and discuss all the results obtained with the data analysis
described in the previous sections. For all the samples (both dry and hydrated powders
for both pore sizes) we have performed two distinct sets of fits. Presenting the results,
we refer to single fits when we talk about fits performed on individual spectra (both
at constant angle and momentum transfer); global results, in this case, are obtained
through a weighted average of all the individual results. Simoultaneous fits refer to
fits performed on the whole set of spectra by exploiting a unique model distribution
function Ji,q(y,20) (same o and ¢4 parameters for all scattering angles), convoluted
with the individual resolution functions.

7.3.1 Hydrated and dry samples results

Examples of the results obtained from the single fits on the hydrated and dry samples
for the powder with average pore size of 24 A are reported in table 7.3 for six scattering
angles. In figure 7.6, two examples of experimental spectra, for a scattering angle of
38.4 degrees, together with the resulting fitting function are reported, the first one, in
the left panel, relative to the dry xerogel powder while the second one, in the right
panel, corresponding to the hydrated sample.

In tables 7.4 and 7.5 are instead reported the results of all kind of fits performed on
the xerogel with average pore diameter d = 24 A and d = 82 A, respectively. Results
relative to single fits at constant scattering angle and constant momentum transfer are
obtained through a weighted average of the individual fit parameters.

From the previous two tables (7.4 and 7.5) we can note that the values of the quan-
tities o, (Ek) and ¢4 are in quite good agreement within the statistical uncertainties.
This feature demonstrates the internal consistency of the individual (both at constant
scattering angle and at constant wavevector transfer) and simultaneous fitting proce-
dures. Moreover, the simultaneous fits reduce the uncertainties in the whole set of
physical quantities, allowing a more reliable lineshape analysis of both the response
function and the momentum distribution function, with special regards for the non
Gaussian components.

The third Hermite polynomial, Hz(u), the first one needed to take into account
the Final State Effects, does not modify appreciably the results and is not reported
nor considered any more in the following data analysis. At the same time, the non
Gaussian term cqH, is the only term which needs to be included in the whole fitting
procedures in order to reproduce the experimental data with good accuracy.
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H Single fits H
H Dry powder H Hydrated powder
Angle ) oD <EK>D C4D . OH <EK>H C4sH
deg [A71]  [meV] x 1072 [A71] [meV] x 1072

38.4 6.41+0.26 256+21 3.124+0.46 5.61+0.07 196+5 2.18+0.15
40.3 6.74+0.14 283+12 2.734+0.22 5.71£0.06 203£4 2.50£0.11
44.7 7.24+0.15 327+14 2.46+0.20 5.86+0.07 213+5 2.54+£0.13
47.3 7.09+£0.13 313£12 2.61+0.19 5.54+0.12 1918 2.01£0.24
26.8 6.71+0.18 281+15 2.9540.29 6.01£0.08 225+6 2.73+0.15
61.5 7.09+£0.23 313+£20 3.1440.35 5.90+0.13 216+9 2.58+0.24

Table 7.3: Examples of results obtained from single fits of F'**P(y,26) data sets for both
the dry (denoted by suffix D) and hydrated (denoted by suffix H) xerogel samples with
average pore size of 24 A. ¢ and (Ey) represent standard deviation of n(p) and mean
kinetic energy of the hydrogen atoms while ¢4 is the coefficient of the fourth Hermite
polynomial, as in equation (7.8).

H | Dry powder | Hydrated powder |
op (Ex)p cup oy (Ex)m cuy
A7 [meV] x 1072 A7 [meV] x 1072

Single (20) 7.05+£0.15 311£16 2.70%0.12 5.78+0.07 209+4 2.58+0.11

Simult (26) 6.90£0.05 296+£5 2.87£0.08 5.95£0.03 221£2 2.81£0.05

Single (q) 6.73+0.07 282+5 2.98+0.12 5.81£0.03 210£2 2.90£0.06

Table 7.4: Results obtained from fits of F'**?(y,20) and F*"?(y,q) data sets for both
the dry (denoted by suffix D) and hydrated (denoted by suffix H) xerogel samples with
average pore size of 24 A. Both simultaneous and single fits (averaged) results are
reported. ¢ and (Efk) represent standard deviation of n(p) and mean kinetic energy
of the hydrogen atoms while ¢, is the coefficient of the fourth Hermite polynomial, as
in equation (7.8).
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Figure 7.6: Examples of experimental spectra (circles with error bars) for dry (left
panel) and hydrated (right panel) xerogel powders with average pore diameter d =
24 A, at a scattering angles of 38.4 degrees. The resulting fitting functions (red con-
tinuous line) are also shown.

A last comment regards the comparison of the results for the xerogel with pore
size of 24 A and 82 A. Both the mean kinetic energy (Ek) and the fourth Hermite
polynomial coefficient ¢4 are higher for the smaller pore with respect to the larger
one. The larger value of ¢4, in particular, is an indication of a more pronounced non
Gaussian character, with higher kurtosis, of the momentum distribution. Moreover,
dry samples parameters are different for the two pore sizes, indicating a microscopic
hydroxyl dynamics changing for different pore diameters.

7.3.2 Combined analysis results

In the last part of the work, a combined analysis of hydrated and dry samples data
sets have been performed in order to derive the response function associated to water
protons only. In section 7.2.2 we explained the methods exploited to obtain ¢, i.e.
the fraction of silanol hydrogens with respect to the whole hydrogens in the samples.
We said that for the powder with larger pores, the experimental response functions
of the hydrated sample, F7”(y,20), have been fitted, referring to equation (7.11),
keeping F7,”(y, 20) lineshape fixed to the value obtained from the dry data sets analysis
(table 7.5, simultaneous fits results) and with ¢, ow and ¢ (for Fij/"(y, 20)) as free
parameters. Results obtained with this fitting procedure are shown in the left part of
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Dry powder

H Hydrated powder

op (Ex)p cp
A7 [meV] x 1072

ou (Ex)u Can
A7 [meV] x 1072

Single (26)

6.56+0.35 267+29 2.4040.60

5.46+0.42 185+29 1.5640.71

Simult (20)

6.60+0.08 271+£7 2.76£0.13

5.47+0.02 186+1 1.56+0.07

Single (q)

6.51+0.27 264+10 2.63+£0.47

0.49+0.10 187+6 1.53£0.21

Table 7.5: Results obtained from fits of F**P(y,20) and F*"P(y,q) data sets for both
the dry (denoted by suffix D) and hydrated (denoted by suffix H) xerogel samples with
average pore size of 82 A. Both simultaneous and single fits (averaged) results are
reported. ¢ and (Ek) represent standard deviation of n(p) and mean kinetic energy
of the hydrogen atoms while ¢, is the coefficient of the fourth Hermite polynomial, as
in equation (7.8).

From fit (see eq. (7.11)) From equations (7.13)
d & ow <EK>W & ow <EK>W
A] % A7 [meV] % A7 [meV]
24 - - - 31£3 548 £0.06 187 +£4
82 29£2 494004 152+£3 26 £3 5.01 £0.04 156 £ 3
bulk [92] - 4.87 £0.05 147 £ 3 - 4.87 £0.05 147 £ 3

Table 7.6: Values of oy and (Ek )y relative to protons from confined water molecules,
obtained from equation (7.13), (right part of the table) and by a two lineshape fit,
referring to equation (7.11) (left part of the table). Last row reports value obtained
from previous DINS measurements in bulk water [92].

table 7.6 together with values obtained by previous DINS measurements on bulk water
[92], as a reference.

For both powders, ¢ has also been determined through theoretical/experimental
considerations (see section 7.2.2); within this approach we obtain values of ¢ = 31% for
xerogel with average pore diameter d = 24 A and ¢ = 26% for d = 82 A. Exploiting the
relations (7.13) and (7.14) and the results obtained for the hydrated and dry samples
response functions (simultaneous fits results in tables 7.4 and 7.5), we are able to
reproduce the response function of water hydrogens only, Jyy (y,260), and to calculate
its second moment oy and kinetic energy, (Fx)w. These results are shown in the
right part of table 7.6 together with values obtained by previous DINS measurements
on bulk water [92], as a reference.

A plot of (Ek)w values as a function of pore diameters is reported in figure 7.7,
together with the value obtained from previous DINS experiments on bulk water [92].
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Figure 7.7: Kinetic energies of protons in water confined in xerogel matrices, (Fx)w,

as a function of the pore diameter. The dashed line represents the value obtained from
previous DINS experiments on bulk water [92].

From table 7.6 and figure 7.7 one can observe that the (Fx)y values of water
confined in xerogel matrices are always higher than in bulk water. In particular, for
the smaller pore diameter sample, this value is about 40 meV higher than for bulk
water. It is possible that the additional kinetic energy is largely due to the molecules
near the surface being strongly bonded to the pore surface. In the smaller pores
the fraction of water molecules interacting closely with the confining matrix surfaces
is larger. One can estimate about 12% and 35% of water molecules ”on the first
adsorption layer” in pores with diameter of 82 A, and 24 A, respectively. Moreover
we have just observed that both the kinetic energy, (F)p, and the second moment of
the momentum distributions 0% of the dry samples are different for the two pore sizes.
Thus the water proton dynamics of molecules close to the pore surface is modified by
both geometrical effects of confinement and proximity to hydroxyl species of different
microscopic dynamics.
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7.3.3 Momentum distribution function and Born-Oppenheimer
potential

In the last section, we noted that, if ¢, F,7(y, 26) and F7"(y, 20) are determined inde-
pendently, Fi57"(y, 26) and Jy (y, 26) can be reconstructed through equation (7.14). In
this way, using values of tables 7.4 and 7.5 (results of simultaneous fits), we determined
the water protons response functions, for both pore sizes.

Exploiting the relation between the response function and the momentum distri-
bution (equation (5.14)), one can hence calculate the n(p) for the protons in water
confined in xerogel matrices. The resulting plots of spherical averages of the proton
momentum distributions, 47p?n(p), are shown in figure 7.8. Uncertainties in n(p)

0,15 L T T T 1 L T T T L

L
.
I
|

41p(p) [A]

0,05 - o -

O | I | | I | | I | |
0 5 10 15 20 25

pIAT]
Figure 7.8: Spherical averages, 4mp?n(p), of the proton momentum distribution for

water confined in xerogel matrices, for pore diameters of 24 A (black line), 82 A (red
dotted line) and for bulk water (blue line, from [92]).
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functions, /(dn(p)?), are obtained by the following expression [92]:

I

irj pj

) (5p:6p;). (7.16)

where p; and p; stand for fit parameters, ag_;@ is the partial derivative of the momentum

distribution relative to the i-th parameter, and (0p;0p;) is the element of the covariance
matrix relative to ¢-th and j-th parameters.

From figure 7.8 it can be noticed that the momentum distribution of confined water
differs substantially from that of bulk liquid. In particular, it can be observed that
lineshapes narrow in the range 10 A+ 15 A_l, and a second structure in the range
15 A7' = 20A7" develops. This behaviour is more evident for the smaller pore powder,
with a minimum for p ~ 13 A7 and a second maximum for p~18 A™". In this case,
the bi-modal distribution suggests that changes in the local structure around protons
occur, such as distortions of the hydrogen-bond network. These effects are related to
the local proton potential (see also section 5.2.4).

We inferred the shape of this Born-Oppenheimer effective potential by fitting the
momentum distribution with a model describing the motion along the bond by a wave-
function that corresponds in real space to two Gaussians separated by a distance 6 [116].
When ¢ # 0 one has an anisotropic momentum distribution given by:

2c0s? (L2 &

e
) 207
: 717
T 717)

ShE g (270

n(pxa Dy, pz) -

This lineshape has been spherically averaged and fitted using as fit parameters o, §
and, for the transverse direction, o, = o, [116]. In figure 7.9 we show the spherical
average of the water proton momentum distribution together with the fit obtained
from equation (7.17). From the figure we can observe that a good fit of momentum
distribution is obtained with values of fitting parameters given by o, = 8.67 A_l, Oy =
oy = 4.12 A_l, and § = 0.304 A. Following section 5.2.4, the effective potential along
the bond, that gives rise to this momentum distribution, has been calculated. In figure
7.10, this Born-Oppenheimer potential and the relative ground state wavefunction are
shown, demonstrating clearly the bimodal nature of the ground state that leads to the
oscillation seen in figure 7.8.
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Figure 7.9: Water proton radial momentum distribution, 47p?n(p), for water confined
in xerogel matrices with average pore diameters d = 24 A, obtained fitting the ex-
perimental data (continuous line with error bar) with a spherically averaged model
function, as in equation (7.17) (dashed line).
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Figure 7.10: Effective single particle potential (continous line) and wave function

(dashed line) for protons in water confined in xerogel matrices, for pore diameters
d=24A.
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Despite its apparent simplicity and its importance for biological, chemical and in-
dustrial processes and for the advancement in many research fields, liquid water still
presents several anomalous and not fully understood properties. In the last years great
effort has been devoted to the comprehension of structural and ground state proper-
ties of liquid water and to the study of water in various confined geometries such as in
nanoporous systems, or in proximity of macromolecules and surfaces.

The present thesis work is based on the study of various properties of water faced
with different investigative approaches: the excited state properties of liquid water,
both electronic and optical, have been studied with ab-initio theoretical methods
whereas the microscopic proton dynamics of confined water has been investigated with
Deep Inelastic Neutron Scattering experiments.

Proton microscopic dynamics of confined water

DINS experiments on water confined in nanoporous xerogel powders with average
pore diameter d of 24 A and 82 A have been performed on the inverse geometry
spectrometer VESUVIO at the ISIS spallation neutron source. Both the hydrated and
the dry samples have been measured.

After an accurate data reduction, the experimental spectra have been fitted using
a general model distribution function given by a Gaussian lineshape multiplied by a
truncated series of even Hermite polynomials, H,(x). The final state effects, which
turn out at finite momentum transfer ¢, have been also accounted for through a series
of powers of 1/q.

The hydrated and dry samples have been first analyzed separately and the response
functions of all the hydrogen atoms and of silanol-hydrogens alone have been obtained.
Then the percentage of silanol-hydrogens with respect to the total number of hydrogens
has been estimated and a combined analysis of dry and hydrated xerogel data sets has
been performed in order to obtain information about water hydrogens only. For all
the samples (both dry and hydrated powders for both pore sizes) we performed single
fits on the individual spectra at constant scattering angle and at constat wavevector
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transfer and simultaneous fits on the whole sets of spectra.

We determined the water protons response function and hence we calculated its
momentum distribution; by fitting this momentum distribution we also inferred the
shape of the local proton potential.

The main results and conclusions are now shortly recalled:

just few terms in the expansion of the model response function have to be retained
in order to obtain an accurate fit of the experimental spectra; in particular, we
can neglect the final state effects and truncate the Hermite polynomials expansion
just at the Hy term. The fact that the longitudinal momentum distribution is
well described by a non-gaussian lineshape reflects the anharmonic short-scale
structure surrounding the protons.

For what concerns the separated analysis of the hydrated and dry samples, both
the mean kinetic energy (Ff) and the fourth Hermite polynomial coefficient ¢4
are higher for the smaller pore sample with respect to the larger one. This is an
indication of a more pronounced non Gaussian character, with higher kurtosis,
of the momentum distribution. Moreover, dry samples parameters are different
for the two pore sizes, indicating a microscopic hydroxyl dynamics changing for
different pore diameters.

Results regarding water hydrogens, both for the mean kinetic energy and for the
¢4 coefficient, are always higher than in bulk water (for the smaller pore sample
(Ek) is about 40 meV higher). This is partially due to the molecules near the
surface, strongly bonded to the confining matrix, more numerous for the xerogel
with pore diameter of 24 A. Moreover, the proton dynamics of these molecules is
modified both by geometrical effects of confinement and by proximity to hydroxyl
species of different microscopic dynamics.

The proton momentum distribution of confined water presents substantial dif-
ferences from that of bulk water, especially for the smaller pore sample. In this
case, a second structure evidently develops for p ~ 18A™". This bi-modal distri-
bution suggests that changes in the local structure around protons occur, such as
distortions of the hydrogen-bond network, related to the local proton potential.

The Born-Oppenheimer potential and the relative ground state wavefunction
clearly confirm the bimodal nature of the ground state that leads to the oscillation
in the momentum distribution.

The main conclusion is that the layers of water near the confining surface are
strongly perturbed. This perturbation penetrates the entire pore in the smaller pore

case,

but is limited to a surface layer in the larger pore sample. The changes in
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the water dynamics clearly depends on the interaction of water with the hydrophilic
substrate but the nature of this interaction is still not clear.

Hydrogen bond network responds to impurities or disorder induced by confinement
by developing effective double well potentials leading to coherent motions of protons in
the two wells. We note that coherence has also been seen in water confined in carbon
nanotubes at low temperatures [117] and for water on the surface of lysozime [118].
Evidently the coherence is developing in the surface layers.

In order to explore the nature of this surface layer and to achieve a better com-
prehension of the interaction between water and hydrophilic substrate, further experi-
ments with lower hydration levels and hence lower coverage of the pore surface would
be needed.

Excited state properties of liquid water

The electronic and optical properties of water have been studied with ab-initio the-
oretical methods. To simulate liquid water, that is a disordered system, instead of
using a huge unit cell, we exploited several molecular dynamics snapshots in a smaller
unit cell and averaged the results over these configurations. In particular, we used 20
configurations of 17 water molecules in a cubic unit cell with 15 a.u. side, obtained by
classical molecular dynamics simulations.

The calculations have been performed on more steps. We started with DFT to ob-
tain the Kohn-Sham eigenvalues and eigenvectors and the independent-particle (DFT-
RPA) absorption spectrum. Then we corrected the energy levels using the Green’s
function perturbative approach, with the exchange-correlation self-energy calculated
within the GW approximation. The third step consisted in the calculation of the op-
tical absorption spectrum by solving the Bethe-Salpeter equation. We also tried less
expensive calculation methods, such as Time Dependent-LDA and the RORO kernel,
without success.

We now present the main results and conclusions.

e We averaged all our results over 20 molecular dynamics configurations and ob-
tained good agreement with the experiments, both for what concerns the struc-
tural properties such as the radial distribution functions and regarding the ex-
cited state properties of water. Moreover, we found that the optical absorption
spectrum of water is quite good already averaging over just five snapshots.

e Looking at the energy loss spectrum of water, we obtained really good agreement
for what concerns the peak position and lineshape, already at the independent-
particles DFT level; anyway, in the low energy region of the spectrum, where
excitonic effects are more important, the agreement is less satisfactory as ex-
pected.
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e The electronic gap, defined as the difference between the energy levels of the
HOMO and LUMO, averaged over both the 8 k-points and the 20 molecular dy-
namics snapshots, turns out to be 5.09 eV within DFT-GGA, in good agreement
with previous DFT calculations [1] but strongly underestimating the experimen-
tal gap (8.7 = 0.5 eV [81]). GW corrections open the gap up to 8.4 eV, well
within the experimental range [81].

e The optical absorption spectrum calculated at the independent-particles DFT
level does not compare in a satisfactory way with the experimental one. GW
corrections, in this case, do not improve the agreement, since their effect is just to
shift the spectrum towards higher energies. In order to obtain a good absorption
spectrum it has been necessary to include the electron-hole interaction through
the solution of the Bethe-Salpeter equation. We observed that dramatic many-
body effects are present in water and the first absorption peak is due to a strongly
bound exciton with a binding energy of 2.4 V. Time dependent-DFT, both with
the ALDA and with the RORO exchange and correlation kernels, is not able to
reproduce the experimental spectrum.

e GW corrections turned out to be almost independent with respect to the molec-
ular dynamics configuration and it has been possible to calculate them just for
one snapshot.

e We found that also the optical absorption spectrum is not so much sensible to
screening details and therefore the spectra of the various molecular dynamics
snapshots could be calculated using always the same screening function.

e Also a constant screening works well, giving an optical absorption spectrum al-
most identical to the one calculated with the full screened electron-hole interac-
tion.

This work is the first study of excited state properties of a liquid system with ab-
initio methods, beyond simple DFT. The main idea, which has allowed such kind of
calculation, has been to average the results over many ”small” unit cell configurations
instead of exploiting a huge unit cell.

Our findings concerning the stability of GW and Bethe-Salpeter calculations with
respect to the configuration may have important consequences on future calculations
for water (and maybe for other liquids), since the ab-initio evaluation of the dynamical
dielectric matrix is the real bottleneck of many-body calculations, and its evaluation
for many different snapshots makes this approach too cumbersome for becoming a state
of the art method. Hence, to be able to determine accurate optical spectra for many
configurations using the same dielectric constant to screen the electron-hole interaction,
will enormously speed up future calculations.
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The main perspective in this field is the study of excited state properties of aqueous
solutions of biological interest, since biological systems live in solution and not in
vacuum. Solvent shifts, fluorescent proteins and rhodopsin photo-cycle are just few
examples of possible future applications of these methods.
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