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Preface

So far the Standard Model of particle physics has given a remarkably suc-
cessful description of known phenomena, proving to be one of the great
successes in physics. The experiments carried out until the GeV range show
no deviations from the predictions of the Standard Model. However there
are hints for new physics.

First of all recent cosmological measurements severely constraint the
amount of baryon, matter and dark energy in the universe. In units of the
critical density, these energy densities are

ΩB = 0.044± 0.004
Ωmatter = 0.27± 0.04

ΩΛ = 0.73± 0.04

The non-baryonic dark matter component (at a confidence level of 95%)
is given by 0.094 < ΩDMh

2 < 0.129. Here h ' 0.71 is the normalized
Hubble expansion rate. These measurements clearly show that the known
particles make up only for a small fraction of the total energy density of the
universe. Also the microscopic properties of dark matter and dark energy
are unconstrained by cosmological and astrophysical observations. Therefore
particle physics must suggest candidates for dark matter and dark energy in
order to identify experiments and observations that may confirm or exclude
such speculations.

Besides cosmological observations, we know that a new framework must
appear at the Planck scale (∼ 1019 GeV) where gravitational effects become
important. Since the ratio between this scale and the electroweak scale
(∼ 100 GeV) is huge, all quantum corrections will turn out to be many orders
of magnitude greater than the tree values. This is the so called hierarchy
problem, related to fine-tuning and naturalness. Quantum corrections are
power-law divergent (usually quadratically) which means that the shortest-
distance physics is most important. More technically, the question is why
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the Higgs boson is so much lighter than the Planck mass. Indeed one would
expect that the large (quadratically divergent) quantum contributions to
the square of the Higgs boson mass would inevitably make the mass huge,
unless there is an incredible fine-tuning cancellation between the quadratic
radiative corrections and the bare mass.

During the last years many appealing ideas were used to overcome this
problem. The most popular theory but not the only one proposed to solve
the hierarchy problem is supersymmetry, even if this was not the historical
motivation for developing supersymmetry. In 1981 it was proposed the Min-
imal Supersymmetric Standard Model (MSSM), i.e. the minimal extension
of the Standard Model. Supersymmetry pairs bosons with fermions, there-
fore every Standard Model particle has a partner (yet to be discovered). If
these supersymmetric partners exist, it is likely that they will be observed
at the Large Hadron Collider. In the MSSM, the Higgs has a fermionic
superpartner, called the Higgsino (with the same mass if supersymmetry
was an exact symmetry). Because fermion masses are radiatively stable, the
Higgs mass inherits this stability. Supersymmetry removes the power-law
divergences of the radiative corrections to the Higgs mass. However, there
is no understanding of why the Higgs mass is so small from the beginning,
which is known as the mu problem.

The only unambiguous way to claim discovery of supersymmetry is to
produce superparticles in accelerators since we expected them to be 100
to 1000 times heavier than the proton. There are various particles which
are superpartners of the Standard Model ones: squarks, gluinos, charginos,
neutralinos, and sleptons. These superparticles have their interactions and
subsequent decays described by the MSSM. The MSSM imposes R-parity
to explain the stability of the proton. It adds supersymmetry breaking by
introducing explicit soft supersymmetry breaking, at least at weak scale
where we know for sure that supersymmetry is broken. Unfortunately there
are 120 new parameters in the MSSM. Most of these parameters lead to
unacceptable phenomenology such as large flavor changing neutral currents
or large electric dipole moments for the neutron and electron. To avoid
these problems, the MSSM requires all of the soft susy breaking terms to be
diagonal in flavor space and all of the new CP violating phases to vanish.

But the most intriguing feature of the MSSM is that it naturally provides
dark matter candidates with approximately the right relic density. In fact if
R-parity is preserved, then the lightest supersymmetric particle (LSP) of the
MSSM is stable and is a massive particle with weak interactions (WIMP).
This makes the LSP a good cold dark matter (CDM) particle. This fact pro-
vides a strong and completely independent motivation for supersymmetric
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theories. In the following we will focus on dark matter, where the connec-
tions between supersymmetry and cosmology are concrete and rich.

On theoretical grounds, we can go also beyond the MSSM considering
the most investigated proposal of grand unified theory (GUT), which merges
the three fundamental gauge symmetries. Grand unification is based on the
idea that at extremely high energies, all symmetries have the same gauge
coupling strength. GUTs predict that at energies above 1014 GeV, the elec-
tromagnetic, weak nuclear, and strong nuclear forces are fused into a single
unified field. A gauge theory where the gauge group is a simple group only
has one gauge coupling constant, and since the fermions are now grouped to-
gether in larger representations, there are fewer Yukawa coupling coefficients
as well.

In addition, the chiral fermion fields of the Standard Model unify into
three generations of two irreducible representations (10⊕ 5̄) in SU(5), and
three generations of an irreducible representation (16) in SO(10). This is
very significant since a generic combination of chiral fermions which are free
of gauge anomalies will not be unified in a representation of some larger Lie
group without adding additional matter fields.

GUT theory predicts also relations among the fermion masses but most
of them don’t hold, neither approximately. On the contrary, if we look at
the renormalization group running of the three-gauge couplings we find that
they meet at the same point if the hypercharge is normalized so that it is
consistent with SU(5) or SO(10) GUTs, which are precisely the GUT groups
which lead to a simple fermion unification. However, if the MSSM is used
instead of the Standard Model, the match becomes much more accurate.
The unification scale turns out to be MGUT ≈ 2 × 1016 GeV. This sets
a natural energy scale for grand unification. Although this energy scale
is lower than the Planck scale, it is yet too high to probe physics at low
energies. Even indirect evidences, such as proton decay, are limited by this
huge scale.

In [1] it was shown how to lower the unification scale. Indeed, it would
be strange to consider a unification of the MSSM gauge groups at lower scale
at which their couplings have not yet unified. There must exist a mechanism
to achieve gauge coupling unification at scales M �MGUT . If we add extra
matter states to the MSSM we get worse. Indeed such extra matter tends to
raise the unification scale, also driving the theory towards strong coupling.
Let us then investigate why unification occurs at such a high energy scale.In
the MSSM gauge couplings run logarithmically with energy scale. Since the
gauge couplings have different values at weak scale they can unify (if it is the
case) only after many orders of magnitude in energy. Then we need a way
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to change the running of the gauge couplings so that they run more quickly
(say exponentially rather than linearly) to achieve a faster unification.

Outstandingly, there does exist a physical effect that causes such an ex-
ponential running: the appearance of extra spacetime dimensions. Already
in the 20’s Kaluza and Klein looked for a model to unify gravitation and elec-
tromagnetism. A five dimensional spacetime gives rise to Einstein equations
and Maxwell equations in four dimensions. They proposed that the fourth
spatial dimension is curled up in a circle of very small radius. The size of
the dimension is given by the distance a particle can travel before reaching
its initial position. Since this extra dimension is compact we refer to this
mechanism as compactification. Extra spacetime dimensions are naturally
predicted in string theory, so we expect that such a scenario will take part
within a more fundamental theory. We will see that this scenario can also
be discussed in terms of field theory only. The drawback of this picture is
that in field theory, extra spacetime dimensions lead to a loss of renormal-
izability. All physical quantities such as gauge couplings do not run in the
usual sense. We must rephrase the ‘exponential running’ as an exponential
dependence on the cutoff pertaining a more fundamental theory (perhaps
string theory). Nevertheless we will see that there exists a renormalizable
theory essentially equivalent to the non-renormalizable one.

Given these motivations, in this thesis we shall analyze the consequences
of extra spacetime dimensions on the MSSM. We shall begin by reviewing
the MSSM in four dimensions. In chapter 1 we specify the superpotential
and all the possible soft terms to break supersymmetry, showing their renor-
malization group equations. Chapter 2 contains a pedagogical introduction
to the method of the effective potential. We apply this method to the MSSM
to obtain the renormalization group equations of the previous chapter. We
also do an analysis in terms of Feynman diagrams, which will be useful in
the following. In chapter 3 we present the string-inspired model by Dienes
and collaborators [1]. We treat different scenarios showing how extra di-
mensions give rise to ‘power-law’ running of the parameters. In chapter 4
we analyze the possible implications of extra dimensions related to the dark
matter problem. The result of the computation is that the neutralino is still
the lightest supersymmetric particle and it is higgsino like in most of the
parameter space.
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Chapter 1

Review of the MSSM

Supersymmetry is an extension of the known spacetime symmetries. It
emerges naturally in string theory and, in a sense, is the maximal possible
extension of Poincare symmetry. The basic prediction of supersymmetry
is, then, that for every known particle there is another particle, its super-
partner, with spin differing by 1/2. One may show that no particle of the
standard model is the superpartner of another. Supersymmetry therefore
predicts a plethora of superpartners, none of which has been discovered.
Mass degenerate superpartners cannot exist and so supersymmetry cannot
be an exact symmetry. The only viable supersymmetric theories are there-
fore those with non-degenerate superpartners. This may be achieved by
introducing supersymmetry-breaking contributions to superpartner masses
to lift them beyond current search limits. At first sight, this would appear
to be a loss in the appeal of supersymmetry. It turns out, however, that the
main virtues of supersymmetry are preserved even if such mass terms are
introduced. In addition, the presence of an electrically neutral LSP acting
as supersymmetric dark matter emerges naturally in theories with broken
supersymmetry. The treatment of the MSSM is entirely based on the work
of Martin [2].
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1.1 MSSM: the superpotential

1.1 MSSM: the superpotential

As in any renormalizable supersymmetric field theory, the interactions and
masses of all particles are determined just by their gauge transformation
properties and by the superpotential W . W is an analytic function of the
chiral complex fields φi. We recall here that a superfield is a single object
which contains as components all of the bosonic, fermionic, and auxiliary
fields within the corresponding supermultiplet. The gauge quantum num-
bers and mass dimension of a chiral superfield are given by that of its scalar
component. In the superfield notation we can write the superpotential as

W =
1
2
M ijΦiΦj +

1
6
yijkΦiΦjΦk (1.1)

The equation (1.1) shows that W determines not only the scalar interactions
in the theory, but also the fermion masses and Yukawa couplings. At first
sight, superfield methods might seem redundant; however they have the
great advantage of making invariance under supersymmetry transformations
manifest. The specification of the superpotential encodes the interactions
present in the lagrangian,

The form of the superpotential is restricted by gauge invariance. As a
result, only a subset of the couplings M ij and yijk will be allowed to be
non-zero. For example, mass terms M ij can only be non-zero for i and j
such that the supermultiplets Φi and Φj transform under the gauge group in
representations which are conjugates of each other. Indeed, we will see that
in the MSSM there is only one such term. Likewise, the Yukawa couplings
yijk can only be non-zero when Φi, Φj , and Φk transform in representations
which can combine to form a gauge singlet.

The superpotential for the MSSM is given by

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd (1.2)

The objects Hu, Hd, Q, L, u, d, e appearing in equation (1.2) are chiral
superfields corresponding to the chiral supermultiplets 1. The dimensionless
Yukawa coupling parameters yu,yd,ye are 3×3 matrices in family space.
The “µ term”, can be written out explicitly as

µ(Hu)α(Hd)βε
αβ (1.3)

where εαβ is the antisymmetric symbol which makes the expression gauge-
invariant. Likewise, the term uyuQHu can be written out as

ui
a (yu)i

j Qa
jα (Hu)βε

αβ (1.4)
1For simplicity, we have suppressed all of the gauge and family indices.
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Review of the MSSM

where i = 1, 2, 3 is a family index, and a = 1, 2, 3 is a color index which is
raised (lowered) in the 3 (3) representation of SU(3)C group.

The µ term in equation (1.2) is the supersymmetric version of the Higgs
boson mass in the Standard Model. It is unique, because other terms are
not analytic and thus cannot be included in the superpotential. From equa-
tion (1.2) we can see that both Hu and Hd are needed to give Yukawa
couplings, and thus masses, to all of the quarks and leptons. So we need
both Hu and Hd, even without invoking anomaly cancellation 2.

The Yukawa matrices determine the masses and CKM mixing angles,
after the occurrence of electroweak symmetry breaking and the neutral scalar
components of Hu and Hd get VEVs. Since the top quark, bottom quark
and tau lepton are the heaviest fermions in the Standard Model, it is often
used the approximation in which only the (3, 3) family components of each
of yu, yd and ye are important:

yu ≈

 0 0 0
0 0 0
0 0 yt

 yd ≈

 0 0 0
0 0 0
0 0 yb

 ye ≈

 0 0 0
0 0 0
0 0 yτ

 (1.5)

It is useful to write the superpotential in terms of the SU(2)L components

WMSSM ≈ yt(ttH0
u − tbH+

u )− yb(btH−
d − bbH

0
d)− yτ (τντH

−
d − ττH

0
d)

+µ(H+
u H

−
d −H

0
uH

0
d). (1.6)

Here we used the notation: Q3 = (t b); L3 = (ντ τ); Hu = (H+
u H0

u); Hd =
(H0

d H
−
d ); u3 = t; d3 = b; e3 = τ . The minus signs inside the parentheses

appear because of the antisymmetry of the εαβ symbol. These minus signs
were chosen so that the terms proportional to yt, yb and yτ have positive
signs when they will become the top, bottom and tau masses.

The Yukawa interactions yijk must be completely symmetric under in-
terchange of i, j, k; this implies that besides the Higgs-quark-quark and
Higgs-lepton-lepton couplings of the Standard Model, there are also squark-
Higgsino-quark and slepton-Higgsino-lepton interactions.

To see this more explicitly, one can look at Figs. 1.1 (a), (b), (c) which
show some of the interactions which involve the top-quark Yukawa coupling
yt. Figure 1.1(a) is the Standard Model-like coupling of the top quark to
the neutral complex scalar Higgs boson, which follows from the first term
in equation (1.6). The symbols tL and t†R stand for their synonyms t and t.

2Cancellation of gauge anomalies requires Tr[Y 3] = 0 and Tr[T 2
3 Y ] = 0, where T3 and

Y are the third component of weak isospin and the weak hypercharge, respectively. These
can be satisfied if there are two Higgs supermultiplets, one with each of Y = ±1/2.
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1.1 MSSM: the superpotential

Hu
0

tL

tR
†

(a)

Hu
0

tL

tR
†

(b)

Hu
0

tL

tR
*

(c)

Figure 1.1: Interactions proportional to yt: the top-quark Yukawa coupling
(a) and its supersymmetrizations (b), (c).

In Fig. 1.1(b), we show the coupling of the left-handed top squark t̃L to the
neutral higgsino field H̃0

u and right-handed top quark, while in Fig. 1.1(c)
the right-handed top-squark field couples to H̃0

u and tL. For each of the three
interactions, there is another with H0

u → H+
u and tL → −bL, corresponding

to the second part of the first term in equation (1.6). All of these interactions
are required by supersymmetry to have the same strength yt.

There are also scalar quartic interactions with strength proportional to
y2

t as can be seen from Fig. 1.2(b).

(a)

tR
* tR

tL tL
*

(b)

Hu
0 Hu

0*

tL tL
*

(c)

Hu
0 Hu

0*

tR
* tR

Figure 1.2: Some of the (scalar)4 interactions with strength proportional to
y2

t .

They are twelve in total; three of them are shown in Fig. 1.2 while
the other nine can be obtained by replacing t̃L → b̃L and/or H0

u → H+
u

in each vertex. This is a peculiar characteristic of supersymmetry; many
interactions are determined by a single parameter.

It turns out that the dimensionless interactions play a minor role for phe-
nomenology. This is because the Yukawa couplings are very small, except
for those of the third family (top, bottom and tau). Decay and production
processes for superpartners in the MSSM are instead dominated by the su-
persymmetric interactions which depend on gauge-coupling. The couplings
of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the
MSSM particles are determined as usual by the kinetic terms and by their
gauge invariance. The gauginos then also couple to (squark, quark), (slep-
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Review of the MSSM

ton, lepton) and (Higgs, higgsino) pairs. The Feynman diagram for the
interaction squark-quark-gluino is shown in Fig. 1.3(a). In Figs. 1.3(b), (c)

q

g

q

(a)

qL, lL, Hu, Hd

W

qL, lL, Hu, Hd

(b)

q, l, Hu, Hd

B

q, l, Hu, Hd

(c)

Figure 1.3: Couplings of the gluino, wino, and bino to MSSM (scalar,
fermion) pairs.

we show the couplings of (squark, quark), (lepton, slepton) and (Higgs, hig-
gsino) pairs to the winos and bino; their interactions are proportional to the
electroweak gauge couplings g and g′ respectively.

The winos only couple to the left-handed squarks and sleptons, while the
(lepton, slepton) and (Higgs, higgsino) pairs do not couple to the gluino since
they have no color number. The bino couplings for each (scalar, fermion)
pair are proportional to the weak hypercharges Y . The interactions shown
in Fig. 1.3 are responsible for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q.
The complication arises because W̃ and B̃ states are not mass eigenstates:
this is due to electroweak symmetry breaking.

There are also various scalar quartic interactions in the MSSM which
are uniquely determined by gauge invariance and supersymmetry, Among
them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential.
These can be thought as the direct generalization of the quartic term in the
Standard Model Higgs potential, to the case of the MSSM.

The only dimensionful parameter appearing in the supersymmetric part
of the MSSM lagrangian is the µ term. We find that µ gives rise to higgsino
mass terms

L ⊃ −µ(H̃+
u H̃

−
d − H̃

0
uH̃

0
d) + c.c. (1.7)

as well as Higgs (mass)2 terms in the scalar potential

−L ⊃ V ⊃ |µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−
d |

2
)

(1.8)

It is clear that equation (1.8) is positive-definite. Then, to understand elec-
troweak symmetry breaking we must include supersymmetry-breaking soft
terms 3 of dimension two for the Higgs scalars, letting them to be neg-

3Soft terms break supersymmetry without introducing quadratic divergences. We will
discuss them in detail in the next.
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1.2 Soft supersymmetry breaking interactions

ative. However, this leads to a puzzle. Since µ is related to the Higgs
VEV of order 174 GeV, we expect that µ should be roughly of order 102

or 103 GeV. But why should µ be roughly of the same order as msoft?
Why is so small compared to MPl? In this way, the scalar potential of the
MSSM seems to depend on two distinct dimensionful parameters, namely
the supersymmetry-respecting mass µ and the supersymmetry-breaking soft
mass terms. The observed value for the electroweak breaking scale suggests
that both these mass scales should be within an order of magnitude or so of
100 GeV. This puzzle is called “the µ problem”. A way to solve this prob-
lem 4 is to postulate that µ is absent at tree-level, and must be replaced by
the VEV(s) of some new field(s). This VEV is determined by minimizing
a potential which depends on soft supersymmetry-breaking terms. Thus,
the value of the effective parameter µ is strictly related to supersymmetry
breaking. From the point of view of the MSSM, however, we can just treat
µ as an independent parameter.

The µ-term and the Yukawa couplings in the superpotential equation (1.2)
give also (scalar)3 couplings of the form

L ⊃ µ∗(ũyuũH
0∗
d + d̃ydd̃H

0∗
u + ẽyeẽH

0∗
u

+ ũyud̃H
−∗
d + d̃ydũH

+∗
u + ẽyeν̃H

+∗
u ) + c.c. (1.9)

In Fig. 1.4 we show some of these couplings, proportional to µ∗yt, µ∗yb, and
µ∗yτ respectively. These play an important role in determining the mixing
of top squarks, bottom squarks, and tau sleptons.

Hd
0*

tR
*

tL

(a)

Hu
0*

bR
*

bL

(b)

Hu
0*

τR
*

τL

(c)

Figure 1.4: Some of the supersymmetric (scalar)3 couplings proportional to
µ∗yt, µ∗yb, and µ∗yτ .

1.2 Soft supersymmetry breaking interactions

To obtain a realistic phenomenological model we must require supersymme-
try breaking. Supersymmetry, if it exists at all, should be an exact symme-

4Some other attractive solutions for the µ problem are proposed in Refs.[3, 4, 5, 6, 7, 8].
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Review of the MSSM

try which is spontaneously broken. In other words, supersymmetry must be
hidden at low energies, exactly like it happens with electroweak symmetry
in the ordinary Standard Model. It turns out however, that spontaneous
breaking of global supersymmetry doesn’t give realistic models.

The hierarchy problem is solved if the theory is free of quadratic diver-
gences. The absence of this kind of divergences does not however imply that
the theory must be supersymmetric. It is possible to add some terms to the
supersymmetric lagrangian, breaking supersymmetry without introducing
quadratic divergences. These new terms are called soft breaking terms. At
one loop it is simple to count the possible terms because all divergences are
found in the wave function renormalization of chiral multiplets and vector
multiplets (equivalent to the renormalization of gauge coupling constants).

Soft terms are actually present in the low energy effective lagrangian of
spontaneously broken supergravity theories. This means that they can be
derived from a more fundamental theory (i.e. valid at higher energies) such
as N = 1 supergravity. We will see how it is possible to do this in the
next section, when we will treat the so called gravity-mediated scheme. In
general, these models extend the MSSM including new particles and interac-
tions at very high mass scales. For practical purposes, it is extremely useful
to parameterize these models just introducing extra terms which break su-
persymmetry explicitly in the effective MSSM lagrangian. In the context of
a general renormalizable theory, the possible soft supersymmetry breaking
terms in the lagrangian are 5

Lsoft = −1
2

(Mλ λ
aλa + c.c.)− (m2)i

jφ
j∗φi

−
(

1
2
bijφiφj +

1
6
aijkφiφjφk + c.c.

)
(1.10)

They consist of gaugino masses Mλ for each gauge group, scalar (mass)2

terms (m2)j
i and bij , and (scalar)3 couplings aijk. It is possible to show that

a softly-broken supersymmetric theory with Lsoft as given by equation (1.10)
has no quantum corrections which have quadratic divergences to all orders
in perturbation theory. For all the details see the work of Girardello and
Grisaru [9].

The lagrangian Lsoft breaks supersymmetry, since it involves only scalars
and gauginos, excluding their respective superpartners. In fact, the soft

5In the MSSM one might imagine that the D term for U(1)Y has a Fayet-Iliopoulos
term as the principal source of supersymmetry breaking. Unfortunately, this cannot work,
because the squarks and sleptons do not have superpotential mass terms.

7



1.3 Gravity-mediated susy breaking models

terms in Lsoft can give mass to all of the scalars and gauginos in the theory,
even if the gauge bosons and fermions in chiral supermultiplets are massless.
The gaugino masses Mλ are always allowed by gauge symmetry. The (m2)i

j

terms are allowed for i, j such that φi, φj∗ transform in complex conjugate
representations under all gauge symmetries. In particular, when i = j this
is certainly true, so every scalar can get a mass in this way.

(a) (b)

i j

(c)

i j

(d)

i

j

k

Figure 1.5: Soft supersymmetry-breaking terms: (a) gaugino mass insertion
Mλ; (b) non-analytic scalar (mass)2 (m2)i

j ; (c) analytic scalar (mass)2 bij ;
(d) (scalar)3 coupling aijk.

The remaining soft terms are restricted by the symmetries. It is worth
noting that the bij and aijk terms have the same form as the M ij and yijk

terms in the superpotential, so they will be allowed by gauge invariance if
and only if a corresponding superpotential term is allowed. The Feynman di-
agram interactions corresponding to the allowed soft terms in equation (1.10)
are shown in Fig. 1.5. For each of the interactions in Figs. 1.5 a,c,d there is
one with all arrows reversed, which corresponds to the complex conjugate
term in the lagrangian.

1.3 Gravity-mediated susy breaking models

In this section we systematically analyze the way in which the MSSM soft
terms arise. The gravity-mediated models are characterized by the fact that
the hidden sector of the theory communicates with the MSSM only (or pri-
marily) through gravitational interactions. In an effective field theory, this
means that the supergravity lagrangian contains non-renormalizable terms
which are suppressed by powers of the Planck mass, since the gravitational

8



Review of the MSSM

coupling is proportional to 1/MPl. These will include

LNR = − 1
MPl

FX

∑
a

1
2
faλ

aλa + c.c.

− 1
MPl

FX

(
1
6
y′ijkφiφjφk +

1
2
µ′ijφiφj

)
− 1
M2

Pl

FXF
∗
X ki

jφiφ
∗j + c.c. (1.11)

where FX is the auxiliary field for a chiral supermultiplet X in the hidden
sector, and φi and λa are the scalar and gaugino fields of the MSSM. The
terms in equation (1.11) are part of a non-renormalizable supersymmetric
lagrangian which contains other terms that we may ignore. Now if one
assumes that 〈FX〉 ∼ 1010 or 1011 GeV, then LNR will give us a lagrangian
of the form Lsoft in equation (1.10), with MSSM soft terms of order a few
hundred GeV.

The dimensionless parameters fa, ki
j , y

′ijk and the dimensionful µ′ij in
LNR are to be determined by the underlying theory, perhaps string theory.
Even without knowing this theory, we can simplify the task assuming a
“minimal” form for the normalization of kinetic terms and gauge interactions
in the non-renormalizable supergravity lagrangian. In that case, we have a
common coupling for the three gauginos ,fa = f , and for the scalars ki

j = kδi
j .

The other couplings are proportional to the corresponding superpotential
parameters, giving y′ijk = αyijk and µ′ij = βµij with universal dimensionless
constants α and β. Then all the soft terms in LMSSM

soft can all be written in
terms of just four parameters:

m1/2 = f
〈FX〉
MP

m2
0 = k

|〈FX〉|2

M2
P

A0 = α
〈FX〉
MP

B0 = β
〈FX〉
MP

(1.12)

In terms of these, one can write for the parameters appearing in the soft
lagrangian

M3 = M2 = M1 = m1/2 (1.13)

m2
Q = m2

u = m2
d

= m2
L = m2

e = m2
0 1 m2

Hu
= m2

0 = m2
Hd

(1.14)
au = A0yu ad = A0yd ae = A0ye (1.15)
b = B0µ (1.16)

Even if this choice of parameterization is not completely well-motivated on
theoretical grounds, from a phenomenological perspective it sounds very

9



1.4 Soft supersymmetry breaking in the MSSM

nice. Moreover, this framework avoids the most dangerous types of FCNC
and CP-violation. Equations (1.13)-(1.15) are also highly predictive, while
equation (1.16) is content-free unless one can relate B0 to other parameters
in the theory. They should be applied as RG boundary conditions at the
scale MPl. We must then RG evolve the soft parameters down to the elec-
troweak scale, predicting in this way the entire MSSM spectrum. This can
be done in terms of just five parameters m1/2, m2

0, A0, B0, and µ (plus the
already-measured gauge and Yukawa couplings of the MSSM). In practice,
one starts this RG running from the unification scale 6 MU ≈ 2× 1016 GeV
instead of MPl. The reason is that unification of gauge couplings suggests
that we have the theory under control only up to MU , but we know little at
scales between MU and MPl. The error is proportional to a loop suppres-
sion factor times ln(MPl/MU ) and can be partially absorbed redefining m2

0,
m1/2, A0 and B0. However, in some cases can lead to important effects. This
framework represents the bulk of phenomenological studies of supersymme-
try. It is sometimes referred to as the minimal supergravity (mSUGRA) or
supergravity-inspired scenario for the soft terms.

1.4 Soft supersymmetry breaking in the MSSM

To obtain insights from the MSSM, we need to specify the soft supersymme-
try breaking terms. In section 1.2, we learned how to write the most general
terms in a given supersymmetric theory. Applying this recipe to the MSSM,
we have

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃

)
+ c.c.

−
(
ũau Q̃Hu − d̃ad Q̃Hd − ẽae L̃Hd

)
+ c.c.

−Q̃†m2
Q Q̃− L̃†m2

L L̃− ũm2
u ũ

† − d̃m2
d
d̃
†
− ẽm2

e ẽ
†

−m2
Hu
H∗

uHu −m2
Hd
H∗

dHd − (bHuHd + c.c.) (1.17)

In equation (1.17), M3, M2, and M1 are the gluino, wino, and bino mass
terms respectively 7. The second line in equation (1.17) contains the (scalar)3

couplings, of the type aijk in equation (1.10). Each of au, ad, ae is a complex
3× 3 matrix in family space, with mass dimensions. They are in one-to-one

6We will see in the following that the presence of extra dimensions will lower the
unification scale by some order of magnitude.

7Here, and from now on, we suppress the adjoint representation gauge indices on the
wino and gluino fields, and the gauge indices on all of the chiral supermultiplet fields.

10



Review of the MSSM

correspondence with the Yukawa coupling matrices in the superpotential.
The third line of equation (1.17) contains squark and slepton mass terms
of the (m2)j

i type in equation (1.10). Each of m2
Q, m2

u, m2
d
, m2

L, m2
e is a

3× 3 matrix in family space which can have complex entries, but they must
be hermitian in order to have a real lagrangian 8. Finally, in the last line of
equation (1.17) we have supersymmetry-breaking contributions to the Higgs
potential; m2

Hu
and m2

Hd
are (mass)2 terms of the (m2)j

i type, while b is the
only (mass)2 term of the type bij in equation (1.10) which can appear in
the MSSM 9. The expression (1.17) is the most general soft supersymmetry-
breaking Lagrangian of the form (1.10) which respects gauge invariance and
conserves matter parity.

Unlike the supersymmetry-preserving part of the lagrangian, LMSSM
soft in-

troduces many new parameters in a number which is much greater than that
in the ordinary Standard Model. A careful count [10] shows that there are
105 masses, phases and mixing angles in the MSSM lagrangian which can-
not be rotated away by redefining the phases and flavor basis for the quark
and lepton supermultiplets. Thus, in principle, supersymmetry (or more
precisely, supersymmetry breaking) appears to introduce more arbitrariness
in the lagrangian than the Standard Model does. Fortunately, there are al-
ready experiments which limit this number. This is because most of the new
parameters in equation (1.17) involve flavor mixing or CP violation, which
is already restricted by experiment [11].

All of these potentially dangerous FCNC and CP-violating effects in
the MSSM can be avoided assuming that supersymmetry breaking is “uni-
versal”. In particular, one can suppose that the squark and slepton mass
matrices are flavor-blind. This means that they should each be proportional
to the 3× 3 identity matrix in family space:

m2
Q = m2

Q1 m2
u = m2

u1 m2
d

= m2
d
1

m2
L = m2

L1 m2
e = m2

e1
(1.18)

If so, then all squark and slepton mixing angles are trivial, because squarks
and sleptons with the same electroweak quantum numbers will be degener-
ate in mass and can be rotated into each other. Supersymmetric contribu-
tions to FCNC processes will therefore be very small, modulo the mixing
due to au, ad, ae. One can make the further simplifying assumption that
the (scalar)3 couplings are each proportional to the corresponding Yukawa

8To avoid confusion, we do not put tildes on the Q in m2
Q, etc.

9The parameter we call b often appears in the literature as Bµ.
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coupling matrix:

au = Au0 yu ad = Ad0 yd ae = Ae0 ye (1.19)

This ensures that only the squarks and sleptons of the third family can
have large (scalar)3 couplings. To avoid large CP-violating effects it is as-
sumed that the soft parameters do not introduce new complex phases. This
is certainly true for Higgs, squarks and sleptons mass matrices if equa-
tions (1.18) are valid. One can also fix µ in the superpotential and b in
equation (1.17) to be real, rotating the phase of Hu and Hd. One can also
assume that the masses of the gauginos are real and that the matrices Ai

appearing in equations (1.19) are real; then the only CP-violating phase in
the theory will be the ordinary CKM phase of the Standard Model.

The conditions (1.18) and (1.19) reflect the so called assumption of soft-
breaking universality. The soft-breaking universality relations have not a
well established theoretical background. One can just think that they come
from a specific model for the origin of supersymmetry breaking. The equa-
tions (1.18) and (1.19) must be taken as boundary conditions on the running
soft parameters at a certain RG scale Q0, much greater than the actual ex-
periments can probe. We must then RG-evolve all of the soft parameters,
the superpotential parameters, and the gauge couplings down to the elec-
troweak scale.

At the electroweak scale, equations (1.18) and (1.19) will not be satis-
fied. However, RG corrections coming from gauge interactions will respect
equations (1.18) and (1.19), while RG corrections coming from Yukawa in-
teractions are small except for the ones of the third family. In particular,
the (scalar)3 couplings should be negligible for the squarks and sleptons of
the first two families. We must stress that, if universality hold at the in-
put scale, then supersymmetry will contribute only with a small amount to
FCNC and CP-violating observables.

1.5 RG equations for the MSSM

In the next chapter we will describe in detail how to obtain the renormaliza-
tion group (RG) equations. However here we want to anticipate the result
for the MSSM. The 1-loop RG equations for the Standard Model gauge
couplings g1, g2, g3 are given by

d

dt
ga =

1
16π2

bag
3
a ⇒ d

dt
α−1

a = − ba
2π

(a = 1, 2, 3) (1.20)

12



Review of the MSSM

where t = ln(Q/Q0) with Q the RG scale. In the Standard Model, bSM
a =

(41/10, −19/6, −7), while in the MSSM one finds bMSSM
a = (33/5, 1, −3).

The latter coefficients are larger because of the presence of the extra MSSM
particles in the loops. The normalization for g1 here is chosen to agree
with grand unified theories like SU(5) or SO(10). Thus in terms of the
electroweak gauge couplings g and g′ with e = g sin θW = g′ cos θW , one has
g2 = g and g1 =

√
5/3g′. The quantities αa = g2

a/4π turn out to run linearly
with RG scale at one-loop order. In Fig. 1.6 it is shown the RG evolution

2 4 6 8 10 12 14 16 18
Log10(Q/1 GeV)

0

10

20

30

40

50

60

α−1 

α1
−1

α2
−1

α3
−1

Figure 1.6: RG evolution of the inverse gauge couplings α−1
a (Q) in the Stan-

dard Model (dashed lines) and the MSSM (solid lines). In the MSSM case,
α3(mZ) is varied between 0.113 and 0.123, and the sparticle mass thresholds
between 250 GeV and 1 TeV. Two-loop effects are included.

of the α−1
a , including two-loop effects, in the Standard Model (dashed lines)

and the MSSM (solid ones). Unlike the Standard Model, the content in
particle of the MSSM is right to ensure the gauge couplings unification,
at a scale 10 MU ∼ 2 × 1016 GeV. At first sight, the unification of gauge
couplings at MU might seem only an accident; but it may also be taken as a
hint for grand unified theory (GUT) or superstring models. Indeed, both the
theories predict gauge coupling unification below MPl. We then expect to
apply a similar RG analysis to the other MSSM couplings and soft masses.

10We will see in the following that in presence of extra dimensions, the unification scale
will lower towards values much smaller than the Planck scale.
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1.5 RG equations for the MSSM

The one-loop RG equations for the three gaugino mass parameters in
the MSSM are determined by the same quantities bMSSM

a which appear in
the gauge coupling RG equations (1.20):

d

dt
Ma =

1
8π2

bag
2
aMa (ba = 33/5, 1,−3) (1.21)

for a = 1, 2, 3. As we will see in the next chapter these equations can not be
achieved by means of effective potential alone, but to some extent they are
generalization of the corresponding RGEs of [12] to an arbitrary content of
particles. It is easy to show that the three ratios Ma/g

2
a are each constant,

in the sense that they are RG-scale independent 11. In minimal supergravity
models, we can therefore write

Ma(Q) =
g2
a(Q)

g2
a(Q0)

m1/2 (a = 1, 2, 3) (1.22)

at any RG scale Q < Q0, where Q0 is the input scale. Since the gauge
couplings are observed to unify at a scale MU ∼ 0.01MPl, one expects 12

that g2
1(Q0) ≈ g2

2(Q0) ≈ g2
3(Q0).

Therefore, one finds that

M1

g2
1

=
M2

g2
2

=
M3

g2
3

(1.23)

at any RG scale if we neglect small two-loop effects. In minimal supergravity
models, the common value in equation (1.23) is equal to m1/2/g

2
U , where gU

is the unified gauge coupling at the input scale and m1/2 is the common
gaugino mass. Since the gauge couplings g1, g2, and g3 are quite well known
at the electroweak scale, the prediction (1.23) can be extrapolated up to
MU . Moreover, we will see later that the gaugino mass parameters enter
into the RG equations for all of the other soft terms.

In the next chapter we will study the renormalization group equations
for softly broken supersymmetric theory, showing how to derive them in the
case of the MSSM. Here we simply present the complete set of equations.
Let us consider the running of the superpotential parameters at one loop

11This is true up to small two-loop corrections.
12In a GUT model, it is automatic that the gauge couplings and gaugino masses are

unified at all scales Q > MU and in particular at Q ≈ MPl, because in the unified theory
the gauginos all live in the same representation of the unified gauge group.
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level. The Yukawa couplings run with scale according to 13

d

dt
yt =

yt

16π2

[
6|yt|2 + |yb|2 −

16
3
g2
3 − 3g2

2 −
13
15
g2
1

]
(1.24)

d

dt
yb =

yb

16π2

[
6|yb|2 + |yt|2 + |yτ |2 −

16
3
g2
3 − 3g2

2 −
7
15
g2
1

]
(1.25)

d

dt
yτ =

yτ

16π2

[
4|yτ |2 + 3|yb|2 − 3g2

2 −
9
5
g2
1

]
(1.26)

Note that the β-function for each supersymmetric parameter is propor-
tional to the parameter itself. This is a consequence of the famous non-
renormalization theorem for susy theories. For the same reason, the equa-
tion for the µ parameter has the form

d

dt
µ =

µ

16π2

[
3|yt|2 + 3|yb|2 + |yτ |2 − 3g2

2 −
3
5
g2
1

]
(1.27)

Next we consider the 1-loop RG equations for the analytic soft parame-
ters au, ad, ae. In models obeying equation (1.19), these matrices are pro-
portional to the corresponding Yukawa couplings at the input scale. With
the approximation of equation (1.5), one can therefore write

au ≈

0 0 0
0 0 0
0 0 at

 ad ≈

0 0 0
0 0 0
0 0 ab

 ae ≈

0 0 0
0 0 0
0 0 aτ

 (1.28)

which defines 14 running parameters at, ab, and aτ . We must stress however,
that in this approximation we don’t neglect the masses of the lightest squarks
and sleptons. We instead assume a mass degeneracy for the first and second
generation as we will see in (1.33). In this limit, only the third family and
Higgs fields contribute to the MSSM superpotential.

13We will use the approximation, as is common, that only the third family Yukawa
couplings are significant.

14Usually in the literature rescaled soft parameters At = at/yt, Ab = ab/yb, and Aτ =
aτ/yτ are commonly used.
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The RG equations for the trilinear couplings are given by

16π2 d

dt
at = at

[
18|yt|2 + |yb|2 −

16
3
g2
3 − 3g2

2 −
13
15
g2
1

]
+ 2aby

∗
byt

+yt

[
32
3
g2
3M3 + 6g2

2M2 +
26
15
g2
1M1

]
(1.29)

16π2 d

dt
ab = ab

[
18|yb|2 + |yt|2 + |yτ |2 −

16
3
g2
3 − 3g2

2 −
7
15
g2
1

]
+ 2aty

∗
t yb

+2aτy
∗
τyb + yb

[
32
3
g2
3M3 + 6g2

2M2 +
14
15
g2
1M1

]
(1.30)

16π2 d

dt
aτ = aτ

[
12|yτ |2 + 3|yb|2 − 3g2

2 −
9
5
g2
1

]
+ 6aby

∗
byτ

+yτ

[
6g2

2M2 +
18
5
g2
1M1

]
(1.31)

while the RG equation for the b parameter (the one that appears in the
Higgs potential) is

16π2 d

dt
b = b

[
3|yt|2 + 3|yb|2 + |yτ |2 − 3g2

2 −
3
5
g2
1

]
+µ
[
aty

∗
t + 6aby

∗
b + 2aτy

∗
τ + 6g2

2M2 +
6
5
g2
1M1

]
(1.32)

The β-function for each of these soft parameters is not proportional to the
parameter itself. This is due to the fact that, parameters which violate
supersymmetry are not protected by non-renormalization theorems.

Next let us consider the RG equations for the scalar masses in the MSSM.
In the approximation of equations (1.5) and (1.28), the scalar masses satisfy
boundary conditions like equation (1.18) at an input RG scale. When they
are renormalized, they will stay almost diagonal

m2
Q ≈

m2
Q1

0 0
0 m2

Q1
0

0 0 m2
Q3

 m2
u ≈

m2
u1

0 0
0 m2

u1
0

0 0 m2
u3

 (1.33)

The first and second family squarks and slepton remain very nearly degen-
erate, but the third family squarks and sleptons will be affected by large
Yukawa couplings. The one-loop RG equations for the first and second fam-
ily squark and slepton squared masses can be written as

16π2 d

dt
m2

φ = −
∑

a=1,2,3

8g2
aC

φ
a |Ma|2 (1.34)
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for each scalar φ. Here the sum is over the three gauge groups U(1)Y , SU(2)L

and SU(3)C . Ma are the corresponding running gaugino mass parameters
and the constants Cφ

a are the quadratic Casimir invariants. Looking at
the equation (1.34), we note that the right-hand sides are strictly negative:
then scalar (mass)2 parameters will grow in the running from the input
scale (unification scale) down to the electroweak scale. The scalar masses
will receive large positive contributions at the electroweak scale, given by
the presence of the gaugino masses.

The RG equations for the mass parameters of the Higgs scalars receive
contributions from the Yukawa (yt,b,τ ) and the soft couplings (at,b,τ ). It
turns out to be useful to introduce the following combinations

Xt = 2|yt|2(m2
Hu

+m2
Q3

+m2
ū3

) + 2|at|2 (1.35)

Xb = 2|yb|2(m2
Hd

+m2
Q3

+m2
d̄3

) + 2|ab|2 (1.36)

Xτ = 2|yτ |2(m2
Hd

+m2
L3

+m2
ē3

) + 2|aτ |2 (1.37)

In terms of these quantities, the RG equations for the soft Higgs mass pa-
rameters are

16π2 d

dt
m2

Hu
= 3Xt − 6g2

2|M2|2 −
6
5
g2
1|M1|2 (1.38)

16π2 d

dt
m2

Hd
= 3Xb +Xτ − 6g2

2|M2|2 −
6
5
g2
1|M1|2 (1.39)

The third family mass parameters also get contributions from Xt, Xb

and Xτ . Their RG equations are given by

16π2 d

dt
m2

Q3
= Xt +Xb −

32
3
g2
3|M3|2 − 6g2

2|M2|2 −
2
15
g2
1|M1|2(1.40)

16π2 d

dt
m2

ū3
= 2Xt −

32
3
g2
3|M3|2 −

32
15
g2
1|M1|2 (1.41)

16π2 d

dt
m2

d̄3
= 2Xb −

32
3
g2
3|M3| −

8
15
g2
1|M1|2 (1.42)

16π2 d

dt
m2

L3
= Xτ − 6g2

2|M2|2 −
6
5
g2
1|M1|2 (1.43)

16π2 d

dt
m2

ē3
= 2Xτ −

24
5
g2
1|M1|2 (1.44)

Examining the RG equations (1.29)-(1.32) and (1.38)-(1.44) we note that
if the gaugino mass parameters are non-zero at the input scale, then all of
the other soft terms will be non null. While if the gaugino masses vanish at
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tree level, then they don’t get any contributions to their masses at one-loop
order. In that case the gaugino masses M1,M2 and M3 will be very small.

Before concluding this section, we must comment on a peculiar property
of mSUGRA models. There are also terms in the scalar (mass)2 RG equa-
tions which are proportional to Tr(Y m2) (the sum of the weak hypercharge
times the soft (mass)2 for all scalars in the theory). However, these con-
tributions vanish in the case of minimal supergravity boundary conditions
for the soft terms, as one can see by explicitly calculating Tr(Y m2) in each
case. If Tr(Y m2) is zero at the input scale, then it will remain zero under
RG evolution, i.e. is a RG invariant. Therefore we neglect such terms in our
discussion. We will see however that in presence of KK excitations Tr(Y m2)
is no longer invariant and those terms will have an effect.

1.6 Mass spectrum: the neutralinos

The electroweak symmetry breaking is responsible for the mix of higgsi-
nos and electroweak gauginos. The neutral higgsinos (H̃0

u and H̃0
d) and the

neutral gauginos (B̃, W̃ 0) form four neutral mass eigenstates, called neu-
tralinos. In this section we will denote 15 the neutralino mass eigenstates by
Ñi (i = 1, 2, 3, 4). The lightest neutralino, Ñ1, is usually assumed to be the
LSP, the lightest supersymmetric particle. As we will see this is the only
MSSM particle which can make a good cold dark matter candidate. We now
describe the mass spectrum and mixing of the neutralinos in the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass

terms in the lagrangian are

L ⊃ −1
2
(ψ0)TM eNψ0 + c.c. (1.45)

where

M eN =


M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0

 (1.46)

Here we have introduced the usual standard abbreviations sβ = sinβ, cβ =
cosβ, sW = sin θW and cW = cos θW . The gaugino masses M1 and M2 in
this matrix come from the MSSM soft Lagrangian in equation (1.17), while µ
is the supersymmetric higgsino mass terms appearing in equation (1.7). The

15Other common notations use eχ0
i or eZi for neutralinos.
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terms proportional to mZ are the result of Higgs-higgsino-gaugino couplings.
The mass matrix M eN can be diagonalized by a unitary matrix, giving rise
to positive real eigenvalues.

In general, the parameters M1, M2, and µ can have arbitrary complex
phases. In mSUGRA models satisfying the unification conditions equa-
tion (1.13), M2 and M1 will have the same complex phase preserved by
RG evolution equation (1.21). In that case, redefining the phases of B̃ and
W̃ we can make M1 and M2 both real and positive. The phase of µ then
cannot be rotated away. However, if µ is not real, CP-violating effects in
low-energy physics will arise. Therefore, it is common to assume that µ is
real. The sign of µ remains still undetermined by this constraint and will
be a parameter of the model.

In models which satisfy equation (1.23), one has the result

M1 ≈
5
3

tan2 θW M2 ≈ 0.5M2 (1.47)

at the electroweak scale. Then the neutralino masses and mixing angles
depend on only three parameters. This assumption is usually made in almost
all phenomenological models.

There is an interesting limit in which electroweak symmetry breaking
effects can be treated as small perturbation on the neutralino mass matrix.
If

mZ � |µ±M1|, |µ±M2| (1.48)

then the neutralino mass eigenstates are very nearly Ñ1 ≈ B̃; Ñ2 ≈ W̃ 0;
Ñ3, Ñ4 ≈ (H̃0

u ± H̃0
d)/
√

2, with mass eigenvalues:

m eN1
= M1 −

m2
Zs

2
W (M1 + µ sin 2β)
µ2 −M2

1

+ . . . (1.49)

m eN2
= M2 −

m2
W (M2 + µ sin 2β)

µ2 −M2
2

+ . . . (1.50)

m eN3
= |µ|+

m2
Z(1− ε sin 2β)(|µ|+M1c

2
W +M2s

2
W )

2(|µ|+M1)(|µ|+M2)
+ . . . (1.51)

m eN4
= |µ|+

m2
Z(1 + ε sin 2β)(|µ| −M1c

2
W −M2s

2
W )

2(|µ| −M1)(|µ| −M2)
+ . . . (1.52)

Here we have assumed that µ is real, but its sign ε = ±1 is undetermined.
It turns out that a “bino-like” LSP Ñ1 can have the right cosmological
abundance to make a good dark matter candidate. For this reason, the large
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1.6 Mass spectrum: the neutralinos

|µ| limit is preferred. Moreover, this limit tends to emerge from mSUGRA
boundary conditions on the soft parameters, which require |µ| to be larger
than M1 and M2 to have electroweak symmetry breaking. In practice, the
masses and mixing angles for the neutralinos can be computed numerically.
The corresponding Feynman rules can be found in Refs. [13, 14, 15, 16].
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Chapter 2

Renormalization group
equations

In general supersymmetric gauge theories are renormalizable field theories,
and renormalization can be performed to all orders in perturbation theory
without breaking supersymmetry. Using the superfield formalism for quan-
tum corrections it is possible to show that any perturbative contribution
to the effective action must be expressed as one integral over the whole su-
perspace. This leads to the celebrated non renormalization theorems. In
particular, there are no quadratic divergences, which are responsible for the
so called hierarchy problem. This is the main reason to introduce supersym-
metry in the Standard Model.

In order to have a realistic model, however, it is necessary to add su-
persymmetry breaking terms. These terms can be chosen in such a way to
avoid quadratic divergences even if susy is broken. These are the so called
soft terms. The running of these terms doesn’t follow the rules of supersym-
metry. It turns out at this scope to use the method of effective potential. In
this way it is possible to obtain the renormalization group equations for all
the parameters: gauge couplings, Yukawa couplings and all the soft terms.
Once the equations are obtained, one can rephrase all the contribution in
terms of usual Feynman diagrams.

In the MSSM the gauge couplings unify at a scale near the Planck mass.
When we will introduce extra dimensions in the next chapter, the KK towers
will give rise to power-law behavior. These exotic properties, make the
model more appealing because the unification of gauge couplings happens
at energies much lower than the usual.
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2.1 Method of effective potential

2.1 Method of effective potential

Before discussing the renormalization group equations (RGEs), we want
to review a powerful method to obtain the running without making use
of Feynman diagram calculations. This method, known as the effective
potential method, will be useful even to treat soft breaking terms. We
saw in the previous chapter that supersymmetry reduces the number of
independent diagrams. However, when we introduce soft breaking terms,
we must deal with a usual field theory. In this case the number of diagrams
to analyze will grow fast, raising the amount of work to do in calculating the
RGE. The method of the effective potential, avoiding the use of Feynman
diagrams, is more suitable in this case. Indeed, in this framework, it will be
sufficient only to calculate the mass matrices for the various fields involved.
The quantum corrections will depend on these matrices.

To begin with, let us consider the simple case of a real scalar field with
lagrangian

L(x) =
1
2
∂µφ(x)∂µφ(x)− V (φ(x))

V (φ) =
α0

4!
φ4 − m2

0

2
φ2

(2.1)

wherem0 is the bare mass and α0 is the bare self-coupling. In this lagrangian
we can put φ(x) = ρ+ φ1(x) where ρ is the value that φ(x) assumes at the
minimum of the potential. Then we have

S[φ] =
∫
d4x

[
1
2
∂µφ1∂

µφ1 − V (φ1 + ρ)
]

= −1
2

∫
d4xφ1

[
�2 + V ′′(ρ)

]
φ1 + · · · (2.2)

where the omitted terms involve a constant piece plus higher powers of φ1.
From field theory, we know that the action is expressed in terms of the
potential

S[ρ] =
∫
d4xL(x)|φ=ρ = −ΩV (ρ) (2.3)

where Ω is the total volume of space-time, while the effective action is defined
as

Γ[ρ] = −ΩU(ρ) (2.4)

The function U is known as effective potential. The relation between the
usual potential and the effective one can be inferred by second order terms
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Renormalization group equations

in the saddle point expansion 1

U(ρ) = V (ρ)− i~
2

Ω−1 ln det{i∆−1[ρ]} (2.5)

where ∆[ρ] is the propagator. To calculate the second term we note that

ln det{i∆−1[ρ]} = Tr ln{i∆−1[ρ]}

=
∫

d4k

(2π)4
ln〈k|i∆−1[ρ]|k〉 (2.6)

Hence we obtain

U(ρ) = V (ρ)− i~
2

∫
d4k

(2π)4
ln〈k|i∆−1[ρ]|k〉 (2.7)

We must now evaluate the propagator. From the usual definition we have

〈x|i∆−1[ρ]|y〉 =
δ2S[φ]

δφ1(x)δφ2(y)

∣∣∣∣∣
φ1=0

= −
[
�2 + V ′′(ρ)

]
δ4(x− y) (2.8)

In the formula (2.7) we need the propagator in momentum space. We find
then

Ω−1〈k|i∆−1[ρ]|k〉 = k2 − V ′′(ρ) (2.9)

We can now substitute this into (2.7) to obtain

U(ρ) = V (ρ) +
~
2

∫
d4kE

(2π)4
ln[k2

E + V ′′(ρ)] +O(~2) (2.10)

where we have rotated into Euclidean momentum space. The above integral
is divergent, but we can cut it off at a scale k2

E = Λ2, getting∫
d4kE ln(k2

E + V ′′) = π2

[
Λ4

(
lnΛ− 1

4

)

+Λ2V ′′ +
1
2
(V ′′)2

(
ln
V ′′

Λ2
− 1

2

)]
+O

(
1
Λ2

)
(2.11)

Using this result, we have

U(ρ) = V (ρ) + ~V1(ρ) +O(~2) (2.12)
1In this section we leave ~ to make the expressions more clear.
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2.1 Method of effective potential

where

V1(ρ) =
Λ2

32π2
V ′′(ρ) +

(V ′′(ρ))2

64π2

[
ln
V ′′(ρ)

Λ2
− 1

2

]
(2.13)

In this expression we have dropped a constant of the order of Λ4 lnΛ because
this has no effect on the location of the minimum of U(ρ). Note that the
second derivative of the potential is just the (squared) mass of the scalar
field. This will prove useful when we will deal with supersymmetric theories.

To separate V1(ρ) into its divergent part and its convergent one, we must
introduce an arbitrary scale parameter µ, so that we can write

ln
V ′′

Λ2
= ln

V ′′

µ2
+ ln

µ2

Λ2
(2.14)

This allows us to rewrite expression (2.13) as

V1(ρ) =
1

32π2

[
Λ2V ′′ − 1

2
(V ′′)2 ln

Λ2

µ2

]
+

(V ′′)2

64π2

(
ln
V ′′

µ2
− 1

2

)
(2.15)

As we can see, the terms in square brackets are divergent, while the rest
is finite. To eliminate the divergences in V1(ρ) we make use of the renor-
malization procedure. It is known that in order to do this, the divergent
terms must have the same form as those present in the lagrangian. Then one
can absorb the divergences defining new parameters. Indeed, this is what
happens for any renormalizable theory.

For a potential V (ρ) of polynomial degree n, V ′′(ρ) is a polynomial of
degree n − 2 and subsequently the divergent part of V1(ρ) is a polynomial
of degree 2n − 4. Thus we find the known result that the theory is renor-
malizable if n ≤ 4.

To display the counter terms, we rewrite the parameters in L(x) as

α0 = α1 + δα

m2
0 = m2

1 + δm2
(2.16)

where δα and δm2 may be divergent in perturbation theory, while the pa-
rameters α1 and m2

1 must be finite. The corrections δα and δm2 will be
of order ~. Introducing the expressions (2.16) into the Lagrangian, we can
rewrite

L(x) =
1
2
∂µφ(x)∂µφ(x)− V (φ(x)) +

δm2

4
φ2 − δα

4!
φ4

V (φ) =
α1

4!
φ4 − m2

1

4
φ2

(2.17)
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Renormalization group equations

The last two terms in the lagrangian are the counter terms. Since they are
of order ~, they can be simply added to the one loop effective potential,
giving

U(ρ) = V (ρ) + ~V1(ρ)−
δm2

4
φ2 +

δα

4!
φ4 (2.18)

We choose δα and δm2 so as to cancel the divergent part of V1(ρ):

δα =
3α2

1~
32π2

ln
Λ2

µ2

δm2 =
2α1~
32π2

(
Λ2 +

m2
1

2
ln

Λ2

µ2

) (2.19)

The right hand side of these equations are ambiguous up to additive finite
terms, but they can always be absorbed into the scale parameter µ. We note
that from the first equation in (2.19) we can recover the usual beta function
for a self interacting scalar field, which is2

β =
3α2

1

16π2
(2.20)

In the next section we will make use of this powerful method to renormalize
supersymmetric theories.

2.2 Effective potential and supersymmetry

We can generalize the previous analysis to the case of supersymmetric the-
ories [17]. At this end we note that the second derivatives of the potential
are just the squared masses of the various particles. The mass matrices will
involve bosons as well as fermions. In the last case, we must take into ac-
count the minus sign coming from the ordering of propagators in a fermion
loop. Thus we introduce the supertrace

STrM2 =
∑

j

(−)j(2j + 1)m2
j (2.21)

where the sum is over all particles, j is the spin and (2j + 1) is the number
of degrees of freedom for a massive particle of spin j. The formula (2.13)
then becomes

δV =
Λ2

32π2
STrM2(z) +

1
64π2

STrM4(z) ln
(
M2(z)

Λ2

)
(2.22)

2To be consistent with the standard notation we have set ~ = 1, as usual.
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2.2 Effective potential and supersymmetry

where Λ is the cut-off mass parameter 3 and z stands for a scalar field.
For supersymmetric theories the quantity (2.21) vanishes and this ensures
that there are no quadratic divergences at all. As we will see, it is even
possible that a theory with broken susy has no quadratic divergences. This
is peculiar of soft breaking terms.

We will consider the one-loop renormalization of the scalar potential,
which contains a gauge part depending on the gauge coupling, to determine
all renormalization constants of the theory. The one-loop divergent contri-
butions to the scalar potential are given by the expression (2.22). We will let
the scalar fields belong to a certain representation of a gauge group and we
will denote them as za. Fields in the conjugate representation are denoted
with a lower index za. The index a actually hides various indices such as
flavour number, number generation and gauge index. To make the formulas
less cumbersome, we will use only one collective index.

The supertrace STrM2(z) must be considered as a function of the scalar
fields and not only of their vacuum expectation values. The supertrace
STrM4(z) is the analogous for the fourth power of the mass matrices. The
second term contains all logarithmic one-loop divergences. The problem of
finding soft breaking terms corresponds to add new gauge invariant terms to
the lagrangian such that STrM2(z) does not receive any new field dependent
contributions. These terms otherwise, would correspond to new quadratic
divergences. With this simple recipe, we can investigate easily one-loop soft
breaking terms. It is also possible to show that these terms are also soft to
all orders, provided they do not give any field dependent contribution to the
trace of M2(z) for all states of a given spin [9].

We must outline that soft breaking terms arise naturally in the effective
low-energy theory of spontaneously broken supergravity theories. In these
theories, local supersymmetry can be spontaneously broken, using the super-
Higgs mechanism. At energy scales much lower than the Planck scale, or
equivalently in the limit MP → ∞, gravitation decouples. As a result,
one has an effective gauge theory which is globally supersymmetric and
embodies a set of soft breaking terms. In general, every soft term can be
generated choosing the appropriate sector in which Higgs breaking occurs.
However, these models are strongly constrained by phenomenology and not
all the terms are allowed. For instance, all scalar mass terms are equal:
(m2)i

j = m2δi
j . These constraints are useful to reduce the arbitrariness

of the soft terms. However they are subject to runnings governed by the

3In the formula (2.22) we omitted a constant term proportional to Λ2, which is irrele-
vant in dealing with the effective potential.
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Renormalization group equations

renormalization group. We will now derive these equations at the one-loop
level.

We consider the most general 4 supersymmetric lagrangian with arbi-
trary soft terms, gauge group G and chiral multiplets in the representation
R. For simplicity all the formulas will be given for a simple gauge group,
with a unique gauge coupling constant. The generalization to non simple
gauge group is straightforward. Indeed, for the MSSM it will be the usual
standard model gauge group SU(3)×SU(2)×U(1). The scalar potential is
given by

V (za, za) = Vsusy(za, za) + Vsoft(za, za) (2.23)

where Vsusy is the standard supersymmetric potential and Vsoft is the soft
breaking piece. The susy potential, as usual, has the form

Vsusy(za, za) = faf
a +

1
2
DADA (2.24)

where f is the superpotential. For a renormalizable theory, it is at most
cubic in the fields

f =
1
2
µabz

azb +
1
6
fabcz

azbzc (2.25)

We made use of the notation

fa =
df

dza
fa =

df

dza
(2.26)

and similar expressions hold for higher order derivatives. The D-terms read
instead

DA = −gzaTAa
bz

b (2.27)

where TA are the generators of the gauge group acting on the chiral multi-
plets za. The most general soft terms are

Vsoft(za, za) = (m2)a
bzaz

b +η(z)+ η̄(z̄)− 1
2
∆ABλAλB− 1

2
∆̄ABλ̄Aλ̄B (2.28)

The first term gives masses to scalar particles, while η(z) is an arbitrary
gauge invariant polynomial of third degree in the scalar fields za. We have
also included a gaugino mass term, that can always be chosen real by a
phase redefinition of the gauginos. In the following we will diagonalize this
mass matrix putting it in the form ∆AB = ∆AδAB.

With the method of the effective potential one can obtain all the renor-
malized constants but the gaugino mass terms. The gaugino mass indeed

4We will assume that there are no Fayet-Iliopoulos terms.
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2.2 Effective potential and supersymmetry

involves spinors and thus cannot be studied through the analysis of the scalar
potential. One then has to make use of Feynman diagrams or the method
of the pure spinor [18].

The gauge coupling constant appears in the gauge potential, while the
Yukawa couplings are either proportional to g or directly given by fabc. Since
all soft breaking terms are at most of dimension three, Yukawa couplings
cannot be affected by them: their renormalization goes in the same way
as in the supersymmetric case. This is an interesting result concerning the
hierarchy problem, since the Yukawa couplings running is still proportional
to the coupling itself. From the scalar sector only, is thus possible to obtain
all the renormalization group (RG) equations 5. We will now compute all
renormalization constants and the corresponding RG equations to one loop
order. The one loop contributions to the scalar potential are given in equa-
tion (2.22). Since, by definition of soft breaking terms, STrM2 does not
receive any field dependent contribution, our theory will be free of quadratic
divergences. All divergences are then logarithmic and we can define hatted
quantities in the following way

V̂ (ẑ) = V (z)− kSTrM4(z) (2.29)

where k = ln(Λ/Q)/32π2 and Q is an energy scale. Now the main task is
to compute the supertrace of the quartic mass matrix for arbitrary values
of the fields za. Let’s start with the mass matrix for spin one. It is easy to
see that

(M2
1)

AB = DA
a D

B
a +DB

a D
A
a (2.30)

The trace of the fourth power is then

3TrM4
1 = 6

(
DA

a D
Ba
) (
DAbDB

b

)
) + 6

(
DA

a D
Ba
) (
DA

b D
Bb
)

(2.31)

The fermionic mass matrix contains the gaugino masses

M1/2 =
(

fab i
√

2DA
a

−i
√

2DBa ∆AB

)
(2.32)

One can obtain

− 2TrM4
1/2 = −2fabf

bcfcdf
da − 16fabf

acDA
c D

Ab − 16(DA
a D

Ab)(DBaDB
b )

+8fabD
Aa∆ABDBb + fabDA

a ∆̄ABDB
b − 16∆̄AC∆CBDA

a D
Ba

−2∆AB∆̄BC∆CD∆̄DA (2.33)
5Except for gaugino mass terms, as explained before.
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The mass matrix squared of scalar fields, as usual, can be expressed in terms
of second derivatives of the potential

M2
0 =

(
V a

b V ac

Vdb V c
d

)
(2.34)

where we have defined

Vab = fabcf
c +DA

a D
A
b + ηab (2.35)

V ab = fabcfc +DAaDAb + η̄ab (2.36)
V a

b = facfbc +DAa
bD

A +DAaDA
b + (m2)a

b (2.37)

Putting together all the mass matrix squared we can verify our assertion
about the renormalization properties of the soft breaking terms. Forgetting
susy terms we have

TrM2
soft = 2(m2)a

a − 2∆AB∆̄BA (2.38)

This trace is actually field independent, and thus we have no quadratic
divergences.

Our theory is invariant under gauge transformations as well as STrM4

is. Then we can express all the terms by means of group invariants. The
gauge transformations act over the fields as δgza ∝ (TA)a

bz
b. We can thus

exploit the gauge invariance of the superpotential, obtaining

faD
Aa = −gfaT

Aa
bz

b = 0 (2.39)

Differentiating once we have

fabD
Aa = −faD

Aa
b (2.40)

and differentiating twice

fabcD
Aa = −fabD

Aa
c − facD

Aa
b (2.41)

The invariance of the gauge potential reads

DADA
a D

Ba −DADAaDB
a = 0 (2.42)

At the same time we have for the polynomial η(z)

ηaD
Aa = 0 (2.43)
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2.2 Effective potential and supersymmetry

These identities help us to rewrite STr(M4) in terms of group invariants of
the representation R

Tr(TATB) = T (R)δAB (2.44)
TAa

cT
Ac

b = C(R)δa
b (2.45)

and the quadratic Casimir of the adjoint representation

fACDfBCD = C2(G)δAB (2.46)

The mass terms (m2) gauge invariance leads to

(m2)a
bzaD

Ab − (m2)a
bz

bDA
a = 0 (2.47)

By combining these various identities, one gets the following expressions
involving the superpotential. From the equations (2.40) and (2.41) we obtain

2facfbcD
Ab

a = −fabcf
abDAc = −fabcfabD

A
c (2.48)

facfbcD
A
a D

Ab = g2C(R)faf
a (2.49)

Many of the terms appearing in STr(M4) can now be expressed in a different
form. For instance

fabcf
cDAaDAb = g2C(R)fafa − g2C(R)zaf bfab (2.50)

fabcfcD
A
a D

A
b = g2C(R)fafa − g2C(R)zafbf

ab (2.51)

The equation (2.51) is also obtained from (2.50) by complex conjugation.
Besides we have

fabDA
a D

A
b = −g2C(R)faza (2.52)

fabD
AaDAb = −g2C(R)faz

a (2.53)

For the soft terms involving the polynomial and the scalar masses we obtain

ηabD
AaDAb = −g2C(R)ηaz

a

η̄abDA
a D

A
b = −g2C(R)η̄aza (2.54)

(m2)a
bD

A
a D

Ab = g2C(R)(m2)a
bzaz

b

30



Renormalization group equations

Finally, we have identities involving group invariants

DA
(
DA

a D
Ba

bD
Bb
)

= g2C(R)DADA

DA
(
DB

a D
Aa

bD
Bb
)

= g2

[
C(R)− 1

2
C(G)

]
DADA (2.55)

DADB
(
DAa

bD
Bb

a

)
= g2T (R)DADA

After some calculations and making use of equations (2.48)- (2.55), we finally
obtain

STrM4 = +2g2[T (R) + 2C(R)− 3C(G)]DADA − 8g2C(R)fafa

+4facfbcD
Ab

aD
A + 2fabcfabdf

dfc − 16g2C(R)∆2
Az

aza

−2g2C(R)[zaf bfab + zafbf
ab] + 2ηabη̄

ab

−8g2C(R)∆A(faz
a + faza)− 2∆4

A

+2fabcfcηab + 2fabcf
cηab − 2g2C(R)(η̄aza + ηaz

a)
+4fabfac(m2)c

b + 4g2C(R)(m2)a
bzaz

b + 2(m2)a
b (m

2)b
a

+4(m2)a
b (D

A)b
aD

A (2.56)

Notice that the last term vanishes as a consequence of Schur’s lemma for
traceless generators of semi-simple groups 6. This is not generally true for
possible U(1) factors present in the gauge group. This fact is important
for the MSSM, which contains indeed a U(1) group. One can rewrite this
expression in terms of the scalar fields, the coupling constants and the mass
parameters by inserting the expansions in the superpotential. In STrM4

the following terms are present:

• terms of order zzz̄z̄;

+ 2g2[T (R)− 3C(G)]DADA + gzaX,T
Aa

bz
bDA

+ 4g2C(R)DADA − 4g2C(R)fabcfadezbzcz
dze

+
1
2
Xa

b facdf
bc′d′zczdzc′zd′

(2.57)

• terms of order zzz̄;

− 7g2C(R)fabcµ
adzbzczd + h.c.

+Xa
b facdµ

bezez
czd + h.c.

(2.58)

6Actually we have STr(Tm2) = m2STr(T ).
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2.2 Effective potential and supersymmetry

• terms of order zzz;

− 2g2C(R)η(3)abcz
azbzc + h.c.

+ 2fabcfcdeη(3)abd′z
dzezd′ + h.c.

− 4g2C(R)
∑
A

∆Afabcz
azbzc + h.c.

(2.59)

• terms of order zz̄;

− 12g2C(R)µabµ
bczazc + 2Xa

b µ
bcµadzcz

d

+ 4g2C(R)(m2)a
bzaz

b + 8η(3)abcη
(3)abdzczd

+ 4g2Tr(TAm2)(TA)b
az

azb

− 16g2C(R)
∑
A

(∆A)2(zaza) + 4(m2)a
bfacdf

bcezez
d

(2.60)

• terms of order zz;

+ fabcfcdeη(2)abz
dze + h.c.

+ 4fabcµcdη(3)abez
dze + h.c.

− 2g2C(R)η(2)abz
azb + h.c.

− 8g2C(R)
∑
A

∆Aµabz
azb + h.c.

(2.61)

• terms of order z;

+ 4fbcdµ
ac(m2)b

az
d + h.c.

+ 2fabcµcdη(2)abz
d + h.c.

− 2g2C(R)η(1)az
a + h.c.

+ 4η(3)abcη
ab
(2)z

c + h.c.

(2.62)

Here, to avoid cumbersome notation, we have defined the useful quantity

Xa
b = facdfbcd (2.63)

With the help of these formulas, we can renormalize our theory. In super-
symmetric theories all divergences are found in the wave function renor-
malization of chiral multiplets and in the renormalization of gauge coupling
constants (which is equivalent to wave function renormalization of vector
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multiplets). We then introduce a parameter ρ to exploit the running of the
gauge couplings, while the wave function renormalization is governed by εab

ẑa =
(
δa
b −

1
2
εab

)
zb (2.64)

ĝ = (1 + ρ)g (2.65)

The dimension four terms zzz̄z̄ are not affected by soft terms, so the renor-
malization of the gauge coupling constant g as well as the Yukawa couplings
fabc are the same as with unbroken supersymmetry

f̂abc = fabc +
1
2
εa

′
a fa′bc +

1
2
εb

′
b fab′c +

1
2
εc

′
c fabc′ + fa′b′c′

abc fa′b′c′ (2.66)

µ̂ab = µab +
1
2
εa

′
a µa′b +

1
2
εb

′
b µab′ + µa′b′

ab µa′b′ (2.67)

Inserting expressions (2.64) into the formula (2.29) we obtain

ρ = −2kg2[T (R)− 3C(G)] (2.68)
εab = 4kg2C(R)δa

b − 2kXa
b (2.69)

while for the other parameters we have

µa′b′
ab = 2kg2[C(A) + C(B)]δa′

a δ
b′
b (2.70)

fa′b′c′
abc = 2kg2[C(A) + C(B) + C(C)]δa′

a δ
b′
b δ

c′
c (2.71)

In these last two formulas we can recognize the famous renormalization
properties of supersymmetry

µab = (Z1/2)a′
a (Z1/2)b′

b µa′b′ (2.72)
fabc = (Z1/2)a′

a (Z1/2)b′
b (Z1/2)c′

c fa′b′c′ (2.73)

The renormalization constant Z corresponds to the wave function renormal-
ization applied to chiral superfield in the case of unbroken supersymmetry

(Z1/2)a
b = δa

b + 4kg2C(A)δa
b − kXa

b (2.74)

We note that Z1/2 6= 1 + ε/2. This difference is due to the presence of the
vector multiplet. We recall here that za is just the scalar component of the
chiral multiplet and not the chiral field itself. All other parameters will not
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2.2 Effective potential and supersymmetry

be multiplicatively renormalized, because of the presence of soft breaking
terms. For the masses one gets the corrections

(m̂2)a
b = (m2)a

b − kXa
c (m2)c

b − kXc
b (m

2)a
c − 4kfadefbce(m2)c

d

−8kη(3)acdη
bcd
(3) + 8kg2[C(A)∆2

A + C(B)∆2
B]δa

b

+4g2Tr(TAm2)(TA)a
b (2.75)

The last term is present only for U(1) group. The function η(z) is a polyno-
mial of degree three and every power of fields must be analyzed separately.
For the cubic terms we obtain

η̂(3)abc = η(3)abc + 4kg2[C(A) + C(B) + C(C)]η(3)abc

−2k
[
fbcdf

b′c′dη(3)ab′c′ + facdf
a′c′dη(3)a′bc′ + fabdf

a′b′dη(3)a′b′c

]
−k
[
Xa′

a η(3)a′bc +Xb′
b η(3)ab′c +Xc′

c η(3)abc′

]
+4kg2[C(A)∆A + C(B)∆B + C(C)∆C ]fabc (2.76)

while for the quadratic pieces we have

η̂(2)ab = η(2)ab + 4kg2[C(A) + C(B)]η(2)ab − k[Xa′
a η(2)a′b +Xb′

b η(2)ab′ ]

−2kfabcf
cdeη(2)de − 4kf cde[η(3)acdµeb + η(3)acdµeb]

+8kg2[C(A)∆A + C(B)∆B]µab (2.77)

Finally for the linear terms

η̂(1)a = η(1)a + 4kg2C(A)η(1)a − kXb
aη(1)b − 2kf bcdµabη(2)cd

−4kη(3)abcη
bc
(2) − 4kfabcµ

cd(m2)b
d (2.78)

Now it is easy to obtain the renormalization group equations. To properly
renormalize our theory we need to specify a energy scale Q, using the quan-
tity k defined after (2.29). For example, for the gauge coupling we have

Q
d

dQ
g = − g3

16π2
[3C(G)− T (R)] (2.79)

which is the usual formula for the one-loop beta function that can be derived
with standard field theory techniques, taking into account the content of
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multiplets. The full set of renormalization group equations is listed below

Q
d

dQ
fabc = − 1

32π2

[
4g2[C(A) + C(B) + C(C)]fabc

−(Xa′
a fa′bc +Xb′

b fab′c +Xc′
c fabc′)

]
(2.80)

Q
d

dQ
µab = − 1

32π2

[
4g2[C(A) + C(B)]µab − (Xa′

a µa′b +Xb′
b µab′)

]
(2.81)

Q
d

dQ
(m2)a

b = − 1
32π2

[
−Xa

c (m2)c
b −Xc

b (m
2)a

c − 4fadefbce(m2)c
d +

−8η(3)acdη
bcd
(3) + 8g2[C(A)∆2

A + C(B)∆2
B]δa

b

−4g2Tr(TAm2)(TA)a
b

]
(2.82)

Q
d

dQ
η(3)abc = − 1

32π2

[
+ 4g2[C(A) + C(B) + C(C)]η(3)abc

−2
(
fbcdf

b′c′dη(3)ab′c′ + facdf
a′c′dη(3)a′bc′ + fabdf

a′b′dη(3)a′b′c

)
−Xa′

a η(3)a′bc −Xb′
b η(3)ab′c −Xc′

c η(3)abc′

+4g2[C(A)∆A + C(B)∆B + C(C)∆C ]fabc

]
(2.83)

Q
d

dQ
η(2)ab = − 1

32π2

[
+ 4g2[C(A) + C(B)]η(2)ab − [Xa′

a η(2)a′b +Xb′
b η(2)ab′ ]

−2fabcf
cdeη(2)de − 4f cde[η(3)acdµeb + η(3)acdµeb]

+8g2[C(A)∆A + C(B)∆B]µab

]
(2.84)

Q
d

dQ
η(1)a = − 1

32π2

[
+ 4g2C(A)η(1)a −Xb

aη(1)b − 2f bcdµabη(2)cd

−4η(3)abcη
bc
(2) − 4fabcµ

cd(m2)b
d

]
(2.85)

To generalize these equations to non simple gauge groups we must simply
replace combinations like g2[C(A) + C(B)] by a sum over all factors in the
gauge groups, including also U(1) factors. For every gauge group we will
have a gauge coupling constant and the respective group invariant C(R).

2.3 RGEs for the MSSM

In this section we show how to derive the RG equations of section (1.5). In
order to do this we recognize that fabc are just the Yukawa couplings yt,
yb and yτ . For every fermion only the respective Higgs will be involved:
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2.3 RGEs for the MSSM

up-type for the top and down-type for the bottom and the tau. The µ-term
is given by the parameter µab when a = Hu and b = Hd or vice versa.
The soft scalar masses (m2)a

b are diagonal: there is a term for every quark
and lepton and one for every Higgs. To obtain the equations (1.29)-(1.31)
for the trilinear terms attention must be paid. The parameters at, ab and
aτ are given by 2η(3)abc. Similar considerations discussed for the Yukawa
couplings hold in this case. The b parameter must be identified with the
only non vanishing η(2)ab, where a and b stand for the up-type Higgs and
the down-type or vice versa. As can be seen from the equation (1.6) of the
previous chapter, in the case of the MSSM there is no linear term in the
superpotential. We note also that there is a change in sign for the gaugino
masses: we have ∆A = −MA

λ for every gauge group. At this point we need
the quadratic Casimir for the various gauge groups. For SU(N) groups the
following formula holds

C2(SU(N)) =
N2 − 1

2N
(2.86)

We then have a value of 3/4 for SU(2), and 4/3 for SU(3). For U(1)
we have simply C2 = 3/5 Y 2 where Y is the weak hypercharge and the
factor 3/5 comes from the normalization in grand unified theories. The
value of the hypercharges are 1/6, 2/3, 1/6,−1/3,−1/2,−1, 1/2,−1/2 for
t, t̄, b, b̄, τ, τ̄ , Hu,Hd respectively. The quantities defined in equation (2.63)
are not null only when the two indices are the same. In particular we have
for the quarks of the third family

X t̄
t̄ = 4|yt|2 (2.87)

X b̄
b̄ = 4|yb|2 (2.88)

Xt
t = 2|yt|2 + 2|yb|2 (2.89)

The corresponding Xa
b for b is the same as for t since they belong to the

same weak doublet. For the leptons we have

Xτ
τ = 2|yτ |2 (2.90)

X τ̄
τ̄ = 4|yτ |2 (2.91)

while for the Higgs

XHu
Hu

= 6|yt|2 (2.92)

XHd
Hd

= 6|yb|2 + 2|yτ |2 (2.93)

It is now a simple task to retrieve the equations for the MSSM of the previous
chapter, taking care of the multiplicities due to color charge.
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2.4 Feynman diagrams analysis of the soft terms

In the previous section we obtained all the renormalization group equations.
Here we want to translate those equations in terms of Feynman diagrams.
This will prove useful when we will deal with higher dimensional theory to
manage soft terms in presence of Kaluza-Klein particles.

We will not show a generic treatment of the renormalization for all the
parameters, but we will limit to the most interesting case of the MSSM. In
section 1.1 there are all the vertices of the supersymmetric extension of the
Standard Model. From those vertices we can construct all the diagrams that
renormalize the soft parameters.

Let’s start with the b parameter which plays a crucial role in the elec-
troweak breaking sector. Looking at the equation (2.84) we note that there
are five different kind of terms. However, the first on the second line in-
volving two fabc and η(2)ab doesn’t give any contribution in the case of the
MSSM. Indeed, the only non vanishing η(2)ab is the one where both a and
b stand for Higgs fields; since there is no Yukawa coupling with two Higgs
fields, we conclude that this term is not present. Thus we are left with four
kind of diagrams. Every diagram must be logarithmically divergent and the
nature of the couplings will suggest us which interaction vertex must be
take into account. The first terms in (2.84) contain the square of the gauge
coupling and a Higgs mass insertion. We can immediately recognize that
the corresponding diagram is

�
Hu Hd

b(−3g2
2 −

3
5
g2
1) (2.94)

One propagator in the loop is the one of the gauge boson, which can
belong to the SU(2) or the U(1) gauge group, since the Higgs are colorless.
The other propagator is the Higgs one with a “mass” insertion. In four
dimensions both the propagators carries a factor of 1/p2, where p is the
internal momentum. In the limit of large p, the integrand goes like 1/p4.
Then, we have a logarithmically divergent integral, as we expected.

In (2.84) there is another piece proportional to the b parameter and it
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2.4 Feynman diagrams analysis of the soft terms

comes form the following diagram

�
t, b, τ

Hu Hd
b(3y2

t + 3y2
b + y2

τ ) (2.95)

Clearly, there is another diagram in which the b (mass) insertion stays
on the other external leg. Both the contributions are included in (2.95).
The particles which circulate in the loop are quarks and leptons. Since we
work in the third family approximation only the bottom, top and tau will
give rise to significant contribution. Even if at first sight this diagram might
seem quadratically divergent (two fermion propagators which carry a factor
1/p each), it is actually logarithmic divergent, thanks to gauge invariance.

The other two diagrams responsible for the renormalization of b are
proportional to the soft term µ. The first involves a gaugino and its mass
insertion

�
λ

Hu Hd
µ(6g2

2M2 +
6
5
g2
1M1) (2.96)

Note that this diagram is related to the diagram (2.94). The four fermion
propagators provide a logarithmically divergent integral even in this case.
The second diagram involving the µ term contains three-scalar vertices

�
t̃, b̃, τ̃

Hu Hd
2µ(3atyt + 3abyb + aτyτ ) (2.97)

However, the nature of the two vertices is quite different. One comes
directly from the trilinear couplings ai, while the other is due to the su-
perpotential (µyi). Again, two scalar propagators give rise to 1/p4 in the
loop integral. As usual, only squarks and sleptons of the third family which
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can circulate in the loop. Putting together all these pieces (2.94)-(2.97), we
easily retrieve the equation (1.32) of chapter 1.

We now move to discuss the renormalization of the Higgs masses. The
equation (2.82) contains a term proportional to the trilinear couplings. The
diagram responsible for this term is

�
t̃

Hu Hu
6a2

t (2.98)

In (2.98) we show the case of the up-type Higgs where only the stop
enters in the loop. In the diagram for the down-type, instead, both the
sbottom and the stau can circulate. In the first line of (2.82) all the terms
contain the soft squared masses. The first two are proportional to the Higgs
mass itself since the quantity Xa

b is always diagonal in the MSSM. These
terms correspond to a mass insertion in the external leg

�
t

Hu Hu
6y2

tm
2
Hu

(2.99)

Clearly, the mass insertion can be put the same way on the other external
leg. As explained above, in the case of the up-type Higgs only the top can
circulate in the loop, while for the down-type Higgs both the bottom and
the tau can circulate. The last term in the first line of (2.82) involves mass
insertions within the loop and it is proportional to the Yukawa coupling.
The corresponding diagram is given by

�
t̃

Hu Hu
6y2

t (m
2
t +m2

t̄ ) (2.100)

The quartic vertex needed for the loop comes from the superpotential;
thus it is proportional to the Yukawa couplings. There are similar diagrams
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2.4 Feynman diagrams analysis of the soft terms

for the down-type Higgs: we need only to substitute the top squark with
the sbottom and stau particles. In the second line of (2.82) there are pieces
containing the gaugino masses. The corresponding diagram is

�
λ

H̃u

Hu Hu
−
(

6
5
g2
1M

2
1 + 6g2

2M
2
2

)
(2.101)

Actually we have two gaugino mass insertions within the loop. This
guarantees the presence of four fermionic propagators which give rise to a
logarithmically divergent diagram, as it should be. The diagram with the
down-type Higgs gives the same contribution. Finally the last line in (2.82)
is present only for the U(1) gauge group

	
Hu Hu 3

5
g2
1Tr(Y m

2) (2.102)

In this case the quartic interaction comes from the presence of the gauge
bosons in the kinetic terms of the various particles. Indeed, the trace
Tr(Y m2) defined in paragraph 1.5 is over all the matter states and the
Higgses as well. The contribution of the corresponding diagram for the
down-type is opposite with respect to (2.102). Collecting the terms (2.98)-
(2.102) we obtain the equations (1.38) and (1.39).

The analysis for the squark and slepton soft squared masses is much the
same as for the Higgs. Indeed the renormalization are governed by the same
equation (2.82). We will present the diagrams for the stop, following the
same order we used for the Higgs mass. The first diagram is



H̃u

t, b

t̃ t̃
(2y2

t + 2y2
b )m

2
t (2.103)
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This diagram is valid for the SU(2) left doublet. For the singlets every
diagram will contribute with its own Yukawa. For the sbottom, as for the
stau, we must substitute the up-type Higgs with the down-type one. In
every case, the term turns out to be proportional to the mass of the particle
involved. The second diagram which is built from three-scalar vertices is

�
Hu

t̃, b̃

t̃ t̃
2(a2

t + a2
b) (2.104)

Similar arguments discussed for the diagram (2.103) hold for this dia-
gram too. The diagram proportional to the Yukawa couplings is instead

�
t̃ t̃

2y2
t (m

2
Hu

+m2
t̄ ) + 2y2

b (m
2
Hd

+m2
b̄) (2.105)

The quartic vertex comes directly from the superpotential. In the loop
both the Higgs can circulate. The diagram with two gaugino mass insertions
for squarks and sleptons is



λ

t

t̃ t̃
−
(

32
3
g2
3M

2
3 + 6g2

2M
2
2 +

2
15
g2
1M

2
1

)
(2.106)

We must take care of the Casimir under the full gauge group. For the
stau there is no term proportional to g3, while there is no g2 for the singlets.
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The last diagram is present only for U(1) gauge group.

�
t̃ t̃ 1

5
g2
1Tr(Y m

2) (2.107)

Note the different factor with respect to (2.102). This resembles the
hypercharge of the various particles. Combining all the diagrams (2.103)-
(2.107) we arrive at the formula (1.40). The other formulas (1.41)-(1.44)
can be derived in the same way.

Finally we analyze the diagrams which renormalize the trilinear cou-
plings. First we look for those terms in (2.83) which are proportional to the
gauge coupling and to the trilinear coupling itself. The relative diagrams
are

�Hu

t̃

t̃

−at

(
3
10
g2
1 +

3
2
g2
2

)
(2.108)

�t̃ Hu

t̃

−at

(
17
30
g2
1 +

3
2
g2
2 +

16
3
g2
3

)
(2.109)

It is easy to see that on the left we have one of the diagram which
renormalizes the wave function of the Higgs or the top. This “subdiagram”
is proportional to the square of the gauge coupling: for the Higgs clearly
we have no term regarding SU(3). Attached to this subdiagram there is a
three-scalar vertex, precisely the one appearing at tree level. For the other
trilinear couplings we must substitute the up-type Higgs with the down-type
one.

There are other two diagrams which are connected to those diagrams
before
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�
H̃u

t, b

t̃

t̃

H

at(3y2
t + y2

b ) (2.110)

�
t

t
Hu

Hu

t̃

t̃

3aty
2
t (2.111)

Indeed we simply replace the subdiagram on the left with the other
responsible for the renormalization of the wave functions. We must take
into account that the trilinear coupling involve a squark and its complex
conjugate. This explains the factor y2

b in the first diagram. Of course there
are the corresponding diagram involving the sbottom and the stau.

There are other two diagrams which are proportional to the trilinear
coupling and to the Yukawa couplings

�
t̃

Hu

Hu

t̃

t̃

6aty
2
t (2.112)

�
Hu

t̃, b̃

t̃

Hu

t̃

6aty
2
t + 2abytyb (2.113)

The quartic interactions come from the superpotential and thus their
strengths are given by the product of two Yukawas. In the first case we
have only stop and up-type Higgs, while in the other case we must take
into account the complex nature of the squark. When there is a three-scalar
vertex with the sbottom, the quartic coupling includes also the sbottom.

Lastly, we have two diagrams proportional to the gaugino masses
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�tHu

t̃

t̃

t

−yt

(
16
3
g2
3M3 + 3g2

2M2 +
13
15
g2
1M1

)
(2.114)

�t
t̃

Hu

t̃

H̃u

−yt

(
16
3
g2
3M3 + 3g2

2M2 +
13
15
g2
1M1

)
(2.115)

In this case one of the internal line in the triangle loop is a gaugino
with its mass insertion. On the left we can note the Yukawa vertex. The
difference between the two is just a reshuffle of the external legs. Again,
putting together all the terms (2.108)-(2.115) we find the equation (1.29).
For the sbottom and the stau, using the same arguments one can obtain the
equations (1.30) and (1.31) respectively.
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Chapter 3

Extra dimensions

It is possible to incorporate extra spacetime dimensions into a field-theoretic
analysis of the MSSM. In this case, there will be the appearance of Kaluza-
Klein modes and this leads to the resulting lack of renormalizability that
afflicts higher-dimensional field theories, where the couplings are not dimen-
sionless. This kind of scenario is called a bottom-up approach: one starts
from a four dimensional theory and then adds extra dimensions in such a way
to reproduce the physical observables measured in the actual experiments.
This is in contrast with the top-down approach which starts from a higher
dimensional theory to fall to our world. This is what string theory tries to
do, even if a phenomenologically interesting model is not available so far. In
the bottom-up, there is a “minimal” scenario that consistently embeds the
MSSM into higher dimensions. In the future, this model would be derived
from a more complete high-energy theory (perhaps string theory).
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3.1 Kaluza-Klein model

Actual experiments show that our world consists of only four flat dimensions.
It is thus clear that the only way to discuss extra spacetime dimensions is
to assume that they are little enough. Then, they would be invisible at the
energies accessible so far. Let us study in detail the case of extra dimensions
compactified on a circle of fixed radius R. Extra dimensions become impor-
tant at the energy scale µ0 ≡ R−1. Here we review the simple case of a
complex scalar field Φ(x). This field depends on the usual four dimensional
spacetime x ≡ (x0, x1, x2, x3), but also on the additional (space) coordinates
y ≡ (y1, y2, · · · , yδ) where δ = D−4 is the number of extra dimensions. Since
we are compactifying on a circle we must demand periodicity of Φ(x) under

yi → yi + 2πR (3.1)

which implies that Φ(x) takes the form

Φ(x) =
+∞∑

ni=−∞
Φ(n)(x) exp(in · y/R) (3.2)

where n ≡ (n1, n2, · · · , nδ) with ni ∈ Z. The four dimensional fields Φ(n)(x)
are called Kaluza-Klein (KK) modes, and ni are the corresponding Kaluza-
Klein excitation numbers. The mass of each KK mode can be inferred
substituting the expansion (3.2) into the equations of motion. This gives

m2
n = m2

0 +
n · n
R2

(3.3)

where m0 is the mass of the zero-mode. At energies below R−1 only the
zero-mode can be observed: it corresponds to the usual four dimensional
state. Raising the energy, extra dimensions become significant through the
appearance of an infinite tower of associated KK states. Their mass increases
with the KK number. As explained before, we must assumed that R−1 is
much greater than the observable energies. Then the mass of the zero-mode
m0 will be completely negligible.

All the massive KK states look like copies of the zero-mode state. How-
ever, in the case of the MSSM, KK states must fall into given representation.
Then it turns out that not every state can have KK excitations. Indeed, chi-
ral MSSM state alone cannot form a KK mass; we must introduce its chiral
conjugate mirror.
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3.2 Extra dimensions in the MSSM

In this section we follow the notation of Dienes and collaborators [1, 19].
We denote by η the number of generations of MSSM chiral fermions that
will have KK excitations. Of course, the simplest scenario is the one with
η = 0, i.e. no chiral MSSM fermions have KK excitations. Thus, in this
scenario, gauge bosons and Higgs fields will be the only fields with KK
excitations, while the quark and lepton representations will not have KK
excitations. This scenario is said the “minimal scenario”. In the following
we will also consider the other cases in which η = 1, 2, 3. This scenarios are
perfectly consistent with the framework of string theory, as we shall see in
the following.

We now want to consider the spectrum of KK excitations for the various
kind of particles that appear in the MSSM. Let’s start with the Higgs fields.
We saw in section 1 that the MSSM contains two kind of Higgs fields, thus for
each KK mass level there will be two massive chiral N = 1 supermultiplets
Hu,d. In [1] it was convenient to assemble the two N = 1 Higgs chiral
fields into an N = 2 hypermultiplet. To be invariant under N = 2 SUSY,
besides the kinetic terms for the vector multiplet and the hypermultiplet the
lagrangian must also contain an interaction term of the following form∫

d2θ
(√

2HuΦHd + µHuHd

)
+ h.c. (3.4)

where µ plays the role of the usual µ-term appearing in the MSSM, while Φ
is the chiral multiplet contained in the N = 2 vector multiplet. These are
the only admissible terms for an N = 2 theory. The first term is a coupling
between the hypermultiplet and the vector multiplet, and it is needed to
enlarge the amount of supersymmetry. To check how robust the scenario
is with respect to the presence of this term, we have studied two different
cases which we call Higgs N = 1 and N = 2. In the former case we assume
that the KK states behave as their zero-modes and that the first term in
(3.4) is absent. In the latter case this term is switched on.

We then pass to discuss gauge bosons. A massless gauge boson is an
N = 1 vector supermultiplet. On the contrary, a massive gauge boson is
represented by a massive N = 1 vector supermultiplet. This is equivalent
to join an N = 1 massless vector supermultiplet A ≡ (A, λ) with an N = 1
chiral supermultiplet A′ ≡ (φ, ψ). Taken together, these form a massive
N = 2 vector supermultiplet:

V (n) =
(
A(n) φ(n)

λ(n) ψ(n)

)
(3.5)
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The chiral supermultiplet contains two real fields (or a complex one). One
of the real field of A′ represents the longitudinal component of the massive
gauge boson, while the other field and the Weyl fermion remain massive.
Thus, these KK towers of states are effectively N = 2 supersymmetric. This
is true for δ = 1 or 2, i.e. for five or six dimensions. For higher dimensionality
the situation can be different. In general the minimal number of supercharge
grows with the dimension 1.

Finally, in the cases η ≥ 1 some of the chiral fermions have KK excita-
tions and these excitations will have the form

F (n) =

(
φ

(n)
1 φ

(n)
2

ψ
(n)
1 ψ

(n)
2

)
(3.6)

where F (n)
1 ≡ (φ(n)

1 , ψ
(n)
1 ) are the KK excitations of the MSSM fermions

and F (n)
2 ≡ (φ(n)

2 , ψ
(n)
2 ) are the corresponding KK excitations of the mirrors.

Taken together they form an N = 2 hypermultiplet.
It will not be necessary to use the N = 2 formalism to describe these

towers of KK states. What we must bear in mind is that we shall give KK
excitations to the gauge bosons, to the Higgs fields, and to only η generations
of the MSSM fermions. The effects of extra dimensions are constrained to
this subset of the MSSM spectrum.

There are two important points. The first is how to avoid KK excita-
tions only for some of the fields. The second concerns the fact that starting
from a higher dimensional theory, we must be faced with a extended four-
dimensional theory, i.e. a theory with at least N = 2 supersymmetry. To
explain both the points we discuss the simplest case. In five dimensions, as
in every odd dimension, it is indeed impossible to define a chiral projector.
Then, there is no Weyl fermion at all. Constructing all the matrices needed
for the Clifford algebra, and in particular the conjugacy matrix, it is even
possible to demonstrate that there are no Majorana fermions in five dimen-
sions. A Dirac charge will split into two four-dimensional Weyl fermions
giving rise to a N = 2 theory. For higher dimensions the situation is much
the same. Then, how can we have KK towers of gauge bosons falling into
N = 2 representations, while their zero-modes are only N = 1 supersym-
metric?

At this end, let us consider the case of a single additional dimension. The
spacetime now consists of x ≡ (x0, x1, x2, x3) and the extra y coordinate.

1This is due to the nature of the spinor fields, whose number of components grows with
the dimension.
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The complex scalar field can be written as Φ(x) = Φ+(x) + iΦ−(x), where

Φ+(x, y) =
∞∑

n=0

[Φ(n)(x) + Φ(−n)(x)] cos(ny/R)

Φ−(x, y) =
∞∑

n=0

[Φ(n)(x)− Φ(−n)(x)] sin(ny/R)

(3.7)

Since Φ(x) is a complex field, in general even Φ±(x) are complex. However
it is possible to distinguish between Φ+ and Φ− through their properties
under the Z2 transformation y → −y. In particular we have

Φ+(x,−y) = +Φ+(x, y) (3.8)
Φ−(x,−y) = −Φ−(x, y) (3.9)

The decomposition (3.7) has a special property: Φ− lacks a zero-mode.
When we compactify a N = 1 theory from five to four dimensions, we end
up with aN = 2 theory. However, the MSSM is onlyN = 1 supersymmetric.
If a field of a given multiplet transforms as an odd function under reflection
of the extra coordinate, then the zero-modes are only N = 1 supersymmetric
even though the KK tower is N = 2.

By demanding specific properties for our wave function, we are actually
not compactified on a circle. The identification y ≈ −y changes the circle
into a so-called Z2 orbifold. This is a simple example of a quotient manifold
that is natural from the string theory point of view. The compactification
on a orbifold explains how to have 3−η generations with no KK excitations.
In our orbifold there are two particular points: y = 0 and y = πR, which
are invariant under the action y → −y. Such special points are called fixed
points of the orbifold. The presence of these points changes the expansion
of the fields, which now takes the form

Φ(x) = ΦA(x)δ(y) + Φ(B)(x)δ(y − πR) (3.10)

Such mode expansion respects the symmetries of the orbifold. However, this
expansion does not give rise to infinite KK towers, because these states exist
only on the fixed points. In this way a given MSSM fermion will have no
KK tower simply by requiring that it only sits on the fixed points. In string
theory such states are called twisted states, because of the twisting caused
by the orbifold action 2. Summarizing, we have a higher dimensional theory

2These considerations apply to closed string theory. However, for open string, D-branes
allow a different mechanism.
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consisting of four flat dimensions and a certain number of extra dimensions
compactified on orbifolds. Our zero-modes will consist of the usual MSSM
particle. For what concern the higher KK mode, we will have infinite towers
for the gauge bosons and the Higgs fields, while for the chiral sector we will
have η generations with KK excitations. The remaining 3 − η generations
will not have KK states and they will be restricted to fixed points.

Let us summarize our framework. The higher-dimensional MSSM is
described in terms of a spacetime consisting of four flat dimensions and
some extra dimensions compactified on orbifolds of radius R. The massless
zero-mode states form the particle content of the MSSM. The higher levels
consist of an infinite towers of KK states associated with the Higgs field, the
gauge-boson states, and η generations of the chiral MSSM fermions. The
variable η can assume the values 0, 1, 2 or 3. The remaining 3−η generations
instead lie on the fixed points of the orbifold and thus they don’t have KK
states.

The non minimal scenarios will be understood in the following way. We
distinguish three different cases: η = 1 in which only the third family has
a KK tower, η = 2 in which only the first two families have a KK tower
and η = 3 in which all the families have KK tower. This choice is dictated
by the usual third family approximation (see section 1) and by a constraint
imposed by the ISASUGRA code [20] concerning the mass degeneracy of
the first two families.

3.3 “Running” of the gauge couplings

The non-chiral sector of the MSSM, gauge and Higgs bosons, live in D flat
spacetime dimensions, where D = 4+ δ and δ is the number of extra dimen-
sions. This spacetime consists of four flat dimensions and δ circles of fixed
radius R = µ−1

0 which is actually different from a flat (4+δ)-dimensional
spacetime. Increasing the energy scale µ is equivalent to decrease the ef-
fective length which will become much shorter than the radius R. From a
purely four-dimensional point of view we can evaluate the vacuum polariza-
tion diagram including the effects of the MSSM particles as well as the KK
excitations circulating in the loops. For pedagogical reason, we will consider
the most simple case of a single Dirac fermion, compactified on a single ex-
tra dimension (δ = 1). The KK excitations will contribute the same as the
zero-modes for each particle.

For a single Dirac fermion with KK excitations, the vacuum polarization
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diagram is given by

Πµν(k) = −
∞∑

ni=−∞
g2

∫ ∞

0

d4q

(2π)4
Tr

(
γµ

1
6 q −mn

γν
1

6 k+ 6 q −mn

)
(3.11)

We took the ground state mass to be zero for simplicity. Indeed, the zero-
mode mass in the MSSM is of the order of 100 GeV, while the compactifica-
tion scale will be taken greater than 105 GeV and thus all the MSSM masses
can be neglected. The term in equation (3.11) with ni = 0 amounts to con-
sider only the original fermionic state without its KK excitations. Opposite
values of ni correspond instead to momenta (in the extra dimension) which
have opposite directions. The minus sign comes from the fermionic nature
of the loop. All our calculations will suppose a suitable ultraviolet regulator
with cutoff Λ.

Making use of gauge invariance

Πµν(k) =
(
kµkν − gµνk

2
)
Π(k2) (3.12)

and contracting the Lorentz indices we can write

Π(k2) = −8g2

3k2

∞∑
ni=−∞

∫ ∞

0

d4q

(2π)4

{
−(k + q) · q + 2m2

n

(q2 −m2
n)[(k + q)2 −m2

n]

}
(3.13)

To evaluate the integral we must now pass to euclidean momenta. As usual
we combine the propagators by means of the Feynman x parameter

1
AB

=
∫ 1

0
dx[Ax+B(1− x)]−2 (3.14)

The terms in the integrand that are odd in q vanish and thus only terms
that are even in q will contribute, yielding

Π(k2) = −8g2

3k2

∞∑
ni=−∞

∫ 1

0
dx

∫ ∞

0

d4q

(2π)4

{
q2 − x(1− x)k2 + 2m2

n

[q2 + x(1− x)k2 +m2
n)]2

}
(3.15)

We can rewrite this expression in terms of a Schwinger parameter t using
the following identity

1
A2

=
∫ ∞

0
dt t e−At (3.16)

This yields

Π(k2) = −8g2

3k2

∞∑
ni=−∞

∫ 1

0
dx

∫ ∞

0
dt t

∫ ∞

0

d4q

(2π)4
[q2 − x(1− x)k2 + 2m2

n]

× exp
{
−t[q2 + x(1− x)k2 +m2

n]
}

(3.17)
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3.3 “Running” of the gauge couplings

We make use of the following identities∫ ∞

0

d4q

(2π)4
e−tq2

=
1

16π2t2
,

∫ ∞

0

d4q

(2π)4
q2e−tq2

=
1

8π2t3
(3.18)

to obtain

Π(k2) = − g2

6π2k2

∞∑
ni=−∞

∫ 1

0
dx

∫ ∞

0

dt

t

[
2
t
− x(1− x)k2 + 2m2

n

]
× exp

{
−t[x(1− x)k2 +m2

n]
}

(3.19)

After integration by parts we have

Π(k2) =
g2

2π2

∞∑
ni=−∞

∫ 1

0
dx x(1− x)

∫ ∞

0

dt

t
exp

{
−t[x(1− x)k2 +m2

n]
}

(3.20)
We can now express the sum over KK states appearing in (3.20). We first
recall the definition of the Jacobi θ3 function:

θ3(τ) =
∞∑

n=−∞
exp(iπτn2) (3.21)

where τ is a complex number. By means of the Poisson resummation for-
mula we can infer a nice property of this function that will be useful in the
following

θ3(−1/τ) =
√
−iτθ3(τ) (3.22)

In order to avoid polidromy, one chooses the branch of the square root with
non negative real part. The expression (3.20) can be put in terms of the
Jacobi function as

Π(k2) =
g2

2π2

∫ 1

0
dx x(1− x)

∫ ∞

0

dt

t
e−tx(1−x)k2

{
θ3

(
it

πR2

)}δ

(3.23)

In conclusion, we find that Π(0) is given by

Π(0) =
g2

12π2

∫ ∞

0

dt

t

{
θ3

(
it

πR2

)}δ

(3.24)

This expression is clearly divergent. Actually there are problems both in the
lower limit as in the upper one. To regulate (3.24) we must introduce both
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infrared and ultraviolet regulators in order to eliminate these divergences.
To make (3.24) finite, we modify the integral in the following way∫ ∞

0
dt→

∫ rµ−2
0

rΛ−2

dt (3.25)

Here Λ is a ultraviolet cutoff, while µ0 is the infrared one. The numerical
coefficient r is defined as

r ≡ π(Xδ)−2/δ (3.26)

The quantities Xδ and r cannot be deduced in the framework of a non-
renormalizable theory. We will discuss this issue in the next chapter. How-
ever here we anticipate that Xδ is just the volume of a δ-dimensional sphere
of unitary radius and take into account the number of states included in this
region.

In the limit R→ 0 with only one extra dimension, we retrieve the usual
result. Indeed, in this case we can safely substitute θ3 with one to find

Π(0) =
g2

6π2
ln

Λ
µ0

=
g2b

8π2
ln

Λ
µ0

(3.27)

where b = 4/3 is the beta-function for a single Dirac fermion (2/3 is for a
Weyl one). We can generalize the formula (3.24) to the full MSSM. At this
end we denote by b̃i the beta-function coefficients for the KK modes but the
zero-mode. We find

Π(0) =
g2
i bi

8π2
ln

Λ
µ0

+
g2
i b̃i

16π2

∫ rµ−2
0

rΛ−2

dt

t

{[
θ3

(
it

πR2

)]δ

− 1

}

=
g2
i (bi − b̃i)

8π2
ln

Λ
µ0

+
g2
i b̃i

16π2

∫ rµ−2
0

rΛ−2

dt

t

{
θ3

(
it

πR2

)δ
}

(3.28)

In the first line we put in evidence the term coming from the zero-mode;
since the theta function contains this contribution also, we must subtract it
in the integral. This term can be easily integrated and gives rise to the first
term in the second line of (3.28). This results in a modified beta-function
coefficients, while the contribution of the KK modes is given by the second
term.

From (3.28) we can easily infer

α−1
i (Λ) = α−1

i (µ0)−
bi − b̃i

2π
ln
(

Λ
µ0

)
− b̃i

4π

∫ rµ−2
0

rΛ−2

dt

t

{
θ3

(
it

πR2

)}δ

(3.29)
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3.4 More on power-law behavior

This result is exact in the case of δ extra dimensions compactified on circles
of equal radii R. This is also valid for any mass scales Λ and µ0; only at the
end we will identify the scale µ0 with R−1. The presence of KK modes is
incorporated in the θ3 function.

Let us now suppose that both Λ and µ0 are greater than R−1. In this
case we have t/R2 � 1 and the θ3 function can be approximated by means
of (3.22)

θ3

(
it

πR2

)
≈ R

√
π

t
(3.30)

If we insert this approximation in (3.29) we obtain

α−1
i (Λ) = α−1

i (µ0)−
bi − b̃i

2π
ln
(

Λ
µ0

)
− b̃iXδ

2πδ
Rδ
(
Λδ − µδ

0

)
(3.31)

Finally, if we identify µ0 with R−1 we have

α−1
i (Λ) = α−1

i (µ0)−
bi − b̃i

2π
ln
(

Λ
µ0

)
− b̃iXδ

2πδ

[(
Λ
µ0

)δ

− 1

]
(3.32)

This is the relation we were searching for. We conclude with a comment
about the approximation that µ0 � R−1. At the end we identified µ0 with
R−1. It is not possible to manage in an analytical way integrand of theta
functions. However numerical results show that actually the equation (3.32)
holds with good approximation 3.

3.4 More on power-law behavior

In this section we will further analyze the approximations adopted in the
previous section [21]. We start by rewriting the evolution of αi

α−1
i (µ0) = α−1

i (Λ) +
bi − b̃i

2π
ln
(

Λ
µ0

)
+
b̃i
4π

∫ rµ−2
0

rΛ−2

dt

t

{
θ3

(
it

πR2

)}δ

(3.33)

Assuming Λ � µ0 we can deduce the numerical factor r appearing in the
integral. We can compare the limit with the usual renormalization group
analysis once we have decoupled all the excited states with masses above
Λ; we also assume that the number of KK states below a certain scale µ

3See [1] for details.
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between µ0 and Λ is well approximated by the volume of a δ-dimensional
sphere of radius µ/µ0

N(µ, µ0) = Xδ

(
µ

µ0

)δ

(3.34)

where Xδ is given by

Xδ =
πδ/2

Γ(1 + δ/2)
(3.35)

Here Γ is the Euler gamma function satisfying Γ(x+ 1) = xΓ(x), Γ(1) = 1.
Thus, as expected we find X0 = 1. For higher values of δ we have X1 = 2,
X2 = π, X3 = 4π/3, and so forth. The result is then a power-law behavior
of the gauge coupling constants given by

α−1
i (µ) = α−1

i (µ0)−
bi − b̃i

2π
ln
(
µ

µ0

)
− b̃i

2π
Xδ

δ

[(
µ

µ0

)δ

− 1

]
(3.36)

When the mass of the zero-mode can be neglected, which is the most com-
mon case, the mass of a KK mode is well approximated by

µ2
n = µ2

0

δ∑
i=1

n2
i (3.37)

At each mass level µn, the number of KK modes is given by the solutions
of the equation (3.37). In the case of a single extra dimension, each KK
level will have two KK states of opposite KK number. On the contrary, the
zero-mode is not degenerate and corresponds to a particle of the MSSM.
In higher extra dimensions the KK level are not equally spaced and the
spectra contains the excited levels with energy in the δ-dimensional box.
Let us consider in detail the case of a single extra dimension. The one-
loop renormalization group equations for energies just above the n-th level
(µ > nµ0) are

d

d lnµ
α−1

i = −bi + 2nb̃i
2π

(3.38)

This formula can be easily understood taking into account that all the low
energy particles contribute through bi (which include the zero-modes) and
all the excited states in the first n KK levels contribute twice. The boundary
conditions imply that

α−1
i (µ) = α−1

i (nµ0)−
bi + 2nb̃i

2π
ln
(

µ

nµ0

)
(3.39)
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With a similar argument we obtain

α−1
i (nµ0) = α−1

i ((n− 1)µ0)−
bi + 2(n− 1)b̃i

2π
ln
(

n

n− 1

)
(3.40)

and so on, up to

α−1
i (2µ0) = α−1

i (µ0)−
bi + 2b̃i

2π
ln 2 (3.41)

Combining the equations together we finally get

α−1
i (µ) = α−1

i (µ0)−
bi
2π

ln
(
µ

µ0

)
− b̃i

2π
· 2
[
n ln

(
µ

µ0

)
− lnn!

]
(3.42)

This equation shows a logarithmic behavior corrected by the presence of n
threshold states below µ.

In the limit of large n we can make use of Stirling’s formula

n! ≈ nne−n
√

2πn (3.43)

The expression (3.42) then takes the form of a power-law running

α−1
i (µ) = α−1

i (µ0)−
bi
2π

ln
(
µ

µ0

)
− b̃i

2π
· 2
[(

µ

µ0

)
− ln

√
2π
]

(3.44)

The term inside the square brackets is ln
√

2π ≈ 0.9189. Thus we recover
the usual result (3.32) with a good approximation. The small discrepancy
could be corrected by high energy thresholds or second order corrections.
Now we can move to the case of higher dimensions. In these case each level
is characterized by a set of numbers n1, ..., nδ which satisfy equation (3.37).
While the zero-mode is unique, each KK level is (2δδ!)-fold degenerate. In-
deed there are δ! ways of distributing these δ (absolute) values between the
δ numbers ni, and there are 2δ different combinations of the signs for each
one of the combinations. However, we must take into account that some of
these numbers could be equal or even zero, then the degeneracy of each level
is

gN = 2δ−p δ!
k1!k2! · · · kl!p!

(3.45)

where ki is the number of times that the value (without sign) of ni appears
in the array n1, ..., nδ, and p is the number of zero elements in the same

56



Extra dimensions

array. The index N stands for the label of the level corresponding to the
squared ratio of masses

δ∑
i=1

n2
i =

(
µN−1

µ0

)2

(3.46)

where N is an integer number. Some levels have additional degeneracies.
For instance, for δ = 2, we have 52+0 = 42+32 = 25, thus level 25 is 12-fold
degenerated (4 times from the first plus 8 times from the second one), while
level 5 is just 8-fold degenerated (5 = 22 + 1) and level 3 does not exist at
all. The renormalization group equations for energies above the N-th level
receive contributions from bi and of all the KK excited states in the levels
below, giving

fδ(N) =
N∑

n=1

gδ(n) (3.47)

where gδ(n) represents the total degeneracy of the level n. The evolution of
the coupling then looks like

α−1
i (µ) = α−1

i (µN−1)−
bi + fδ(N)b̃i

2π
ln
(

µ

µN−1

)
(3.48)

We can iterate this result for all the first N levels. Combining all of them
together and considering equation (3.46), we get the logarithmic running

α−1
i (µ) = α−1

i (µ0)−
bi
2π

ln
(
µ

µ0

)
− b̃i

2π

[
fδ(N) ln

(
µ

µ0

)
− 1

2

N∑
n=1

gδ(n) lnn

]
(3.49)

where now the correction of the N thresholds appears in a explicit way. As
it should be, for δ = 1 we recover the equation (3.42). We now show that for
large N these expression reduces to a power-law running. Let us consider
only the terms in parentheses in (3.49). We define those terms as

Fδ

(
µ

µ0

)
≡ fδ(N) ln

(
µ

µ0

)
− 1

2

N∑
n=1

gδ(n) lnn (3.50)

Regarding that gδ(n) = fδ(n)− fδ(n− 1) we can write

Fδ

(
µ

µ0

)
= fδ(N)

[
ln
(
µ

µ0

)
− 1

2
lnN

]
−1

2

[
N∑

n=1

(fδ(n)− fδ(n− 1))− fδ(N) lnN

]
(3.51)
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3.4 More on power-law behavior

In the limit when N is large we have N ≈ (µ/µ0)2. Hence the first term
vanishes and the rest becomes

Fδ

(
µ

µ0

)
≈ −1

2

[∫ N

1
dn
dfδ

dn
(n) lnn− fδ(N) lnN

]
=
∫ µ

µ0

dt

t
fδ(n(t)) (3.52)

In this limit we can assume that fδ(n(µ) ≈ Xδ(µ/µ0)δ − 1 and we recover
the customary approximation for large N

Fδ

(
µ

µ0

)
≈ Xδ

δ

[(
µ

µ0

)δ

− 1

]
− ln

(
µ

µ0

)
(3.53)

We can easily extend our analysis to the case where the δ compactifica-
tion radii are not all equal. In this case the masses of the excited KK states
are given by

m2
n =

δ∑
i=1

n2
iµ

2
i (3.54)

where we have defined µi = 1/Ri. Let us also define the scale µ0 = 1/Rmax,
where 1/Rmax is the inverse of the largest radius. We have a new threshold
each time that µ reaches a level in the tower characterized by the squared
ratio of masses

Mn ≡
(
mn

µ0

)2

=
δ∑

i=1

n2
i

(
µi

µ0

)2

(3.55)

We can follow the same steps as before, but now Fδ is given by

Fδ(µ, µ0, · · · , µδ) = fδ(N) ln
(
µ

µ0

)
− 1

2

N∑
n=1

gδ(n) lnMn (3.56)

for µ just above the N-th level. In the continuum limit we may assume that
the number of states below the energy scale µ is well approximated by the
volume of the δ dimensional ellipsoid defined by

N(µ, µ0, · · · , µδ) ≈ Xδ

δ∏
i=i

(
µ

µi

)
(3.57)

In this limit we have

Fδ(µ, µ0, · · · , µδ) ≈
Xδ

δ

[
δ∏

i=i

(
µ

µi

)
−

δ∏
i=i

(
µ0

µi

)]
− ln

(
µ

µ0

)
(3.58)
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with the explicit extraction of the zero-modes. Clearly, when all the radii
are equal we reproduce the result (3.53).

Ghilencea and Ross [22] pointed out that in the MSSM the energy range
between µ0 and Λ is relatively small due to the power-law behavior in the
evolution of the couplings. For instance, in the case of one single extra
dimension we have an upper limit Λ/µ0 of order 30, which decreases for
higher δ to be less than 6. This fact seems to clash with the assumption
which justifies the volume approximation. Only the first few levels appear
to be relevant for µ ≈ µ0. However, we can do a careful analysis defining
the integral

I =
+∞∑

n=−∞

∫ r

r(µ0/Λ)2

dx

x
e−n2x (3.59)

We can compute this integral with the help of the Poisson resummation
formula

+∞∑
n=−∞

e−n2x =
√
π

x

+∞∑
n=−∞

e−π2n2/x (3.60)

Then the integral (3.59) can be approximated by

I = 4

(
Λ
µ0
− 1 +

1
2

∞∑
n=1

1− Erf(2n
√
π)

n

)

≈ 4
(

Λ
µ0
− 1 +

1
4π
e−4π

)
(3.61)

where Erf is the error function. In the second line we took into account
only the n = 1 dominant mode. Numerically we have e−4π/4π ≈ 10−7. This
shows how good the approximation is.

3.5 Extra dimensions: gauge couplings

In this section we analyze the effect of extra dimensions on the gauge cou-
plings. In four spacetime dimensions, the gauge couplings gi are dimension-
less. In D spacetime dimensions, however, the gauge couplings g̃i

4 have the
engineering mass dimension

[g̃i] = 2− D

2
(3.62)

4The tilde is to distinguish this coupling with the standard one, obtained after passing
to four dimensions.
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3.5 Extra dimensions: gauge couplings

and thus the structure constants α−1
i have dimensionD−4 = δ. The relation

between the higher- and lower-dimensional couplings can be easily inferred.
Since the extra spacetime dimensions have a fixed radius R, the standard
compactification gives

αi = R−δα̃i (3.63)

From standard field theory technique it is known that higher-dimensional
field theories are non-renormalizable. From the four dimensional point of
view, this non-renormalizability, at the end, comes from the presence of
infinite towers of KK states. These states can circulate in the loops, giving
rise to new quantum corrections.

In four dimensions there exists an elegant result, which shows the running
of gauge couplings at one-loop level. Let us define the structure constants
αi ≡ g2

i /4π. Then we have

d

d lnµ
α−1

i (µ) = − bi
2π

(3.64)

This equation can be easily integrated to provide

α−1
i (µ) = α−1

i (MZ)− bi
2π

ln
µ

MZ
(3.65)

where the coefficients for the MSSM are given by

(bY , b2, b3) = (11, 1,−3) (3.66)

This is the famous logarithmic running, where we have chosen the mass
of the Z boson as the input scale. To be consistent with grand unified
theory 5, like SU(5) or SO(10), it is common to define α1 ≡ (5/3)αY and
b1 ≡ (3/5)bY . Unlike the standard model case, in the MSSM the evolution
of the couplings leads to a unification at a scale of the order of 1016 GeV,
with a common gauge coupling given by

α1(MGUT ) = α2(MGUT ) = α3(MGUT ) ≈ 1
24

(3.67)

In a extra dimensions model the corrections are given by the presence of
KK towers. After resumming vacuum polarization diagrams we obtain the
gauge coupling as a function of the cutoff

gi(Λ) =
(

1
1−Π(0)

)1/2

gi (3.68)

5In the case of grand unified theories the MSSM gauge groups come from the unified
gauge group. All the generators of a given group must have the same normalization.
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From (3.24) we obtain

α−1
i (Λ) = α−1

i − bi − b̃i
2π

ln
Λ
µ0
− b̃iXδ

2πδ

[(
Λ
µ0

)δ

− 1

]
(3.69)

The beta-function coefficients bi, given in (3.66), correspond to the contri-
bution of the zero-mode states. The beta-function coefficients b̃i are instead
given by

(b̃1, b̃2, b̃3) = (3/5,−3,−6) + η(4, 4, 4) (3.70)

These beta-function coefficients come from the contributions of the KK
states: gauge bosons, Higgs fields and η generation of chiral fermions with
the appropriate mirrors 6.

To be consistent, we must impose matching conditions on αi, which
represent the uncorrected value of the effective four-dimensional couplings.
This must coincide with the value of the coupling at the scale µ0, paying
attention that under the scale µ0 equation (3.65) holds. We then obtain

α−1
i (Λ) = α−1

i (MZ)− bi
2π

ln
Λ
MZ

+
b̃i
2π

ln
Λ
µ0
− b̃iXδ

2πδ

[(
Λ
µ0

)δ

− 1

]
(3.71)

valid for all Λ ≥ µ0.
The equation (3.71) must be not confused with a renormalization group

equation. It simply expresses the dependence of the couplings on the value
of the cutoff Λ. The gauge couplings depend on the parameters of the
theory (µ0, δ and η) and the scale Λ at which a new fundamental theory
must appear. The presence of the extra dimensions makes the unification of
couplings possible for any given values of Λ. Moreover, the unification will
take place for every parameters µ0, δ and η.

In Fig. 3.1 we show the dependence of the gauge couplings as a function
of the compactification scale µ0. Before µ0 we have the usual logarithmic
running, while for µ > µ0 the couplings evolve in a power-law way. The
matching conditions ensure that the couplings evolve in a smooth way, giv-
ing rise to continuous curves. As can be seen, the unification happens a
decade after the compactification scale. This is a common feature of models
with extra dimensions. If we increase the number of extra dimensions the
unification will take place sooner.

In Fig. 3.2 we show the dependence on η, once we fix the compactification
scale. If the number of families with KK towers increases, the common value

6These are necessary to give mass to KK excitations.
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of the couplings at the unification scale increases too. For this value of µ0,
we see that the unification remains perturbative for all η; we can then trust
in our one-loop equations.

Figure 3.1: Unification of gauge couplings in the minimal scenario for δ = 1.
Four typical cases: µ0 = 105 GeV (top left), µ0 = 108 GeV (top right),
µ0 = 1011 GeV (bottom left), and µ0 = 1015 GeV (bottom right).

Let us now explain this unification in a physical way. First suppose that
all the MSSM states have KK excitations. In this case we have b̃i = bi
for all i. Then at each level we have heavier copies of the entire MSSM
spectrum. In the context of the MSSM we know that the unification is
independent of the number of generations. Indeed, every generation fits
into complete grand unification group multiplets (whatever the gauge group
is). We conclude that the KK modes don’t spoil the unification if this would
occur in the MSSM case.
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Figure 3.2: Unification of gauge couplings for different values of η. We fix
µ0 = 1012 GeV and δ = 1.

In general, we have b̃i 6= bi. To achieve unification we must require that

Bij ≡ b̃i − b̃j
bi − bj

(3.72)

be independent of i and j. Equivalently, we must require

B12

B13
=

B13

B23
= 1 (3.73)

Even tough in our case these relations are not exactly satisfied, we have the
approximate result

B12

B13
=

72
77

≈ 0.94
B13

B23
=

11
12

≈ 0.92 (3.74)

This result is independent of the value of η because it simply shifts all the b̃i
by the same amount: then the unification occurs as well. The experimental
uncertainties (although smaller than in the past) ensure that the unification
is preserved for all values of µ0, δ, and η.
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Figure 3.3: The ratio of the unification scale M ′
GUT to the scale µ0, as a

function of µ0. The dot stands for the limit of the usual four-dimensional
MSSM.

It is also easy to explain why the unification scale is independent of η.
When we increase the value of η we simply add complete multiplets to the
spectrum at each KK mass level. These extra complete multiplets always
preserve the unification scale to one-loop order shifting the unified coupling
towards higher values. This behavior can be seen in Fig. 3.2.

This gauge coupling unification will occur at a scale Λ, which we identi-
fied as a new unification scale M ′

GUT . Indeed, in the previous, we interpret
the cutoff Λ as the hint of a new fundamental theory, such as grand unified
theory (GUT). In the framework of our renormalizable truncated KK the-
ory, M ′

GUT can be interpreted as the scale of unification 7. This scenario
then predicts the appearance of a higher (4+δ) dimensional GUT at the
scale M ′

GUT .
This new unification scale M ′

GUT is generally much lower than the usual
unification scale MGUT ≡ 2× 1016 GeV in the ordinary MSSM. In order to
solve equation (3.71) at the unification point, we make the approximation

7This is not possible for the non abelian case, see [23].
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Figure 3.4: The unified coupling (α′GUT )−1 as a function of the unification
scale M ′

GUT , for η = 0, 1, 2, 3.

that the Bij in (3.72) are equal for all i and j. We denote the common value
as Bij = B. We then find

M ′
GUT ≈ µ0 f

1/δ (3.75)

for any value of µ0 and δ. The factor f is given by

f = 1 +
δ

XδB
ln
MGUT

µ0
≥ 1 (3.76)

In the limit δ → 0 the compactification scale µ0 tends towards MGUT and
we recover the MSSM, since f → 1 and M ′

GUT will coincide with MGUT .
However, in general, we see that the new unification scale M ′

GUT can be
much lower than the usual MGUT . The ratio of the unification scale M ′

GUT

to the scale µ0 for different values of δ is shown in Fig. 3.3. For δ > 1 we
see that the unification is very quick, being M ′

GUT at most six times the
compactification scale.

Of course, also the new unified coupling α′GUT will differ from its MSSM
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value. We find the approximate result

(α′GUT )−1 ≈ α−1
GUT +

2
πB

(1− η) ln
MGUT

M ′
GUT

(3.77)

where αGUT ≈ 1/24 is the unified MSSM coupling. The behavior (3.77)
is plotted in Fig. 3.4. We see that in the η = 0 case, α′GUT is always less
than αGUT , i.e. the higher dimensional theory is more perturbative than
the usual MSSM.

For η = 1 the theory is always perturbative as the MSSM, and the unified
coupling is invariant under changes in the unification scale. For η = 2 the
theory is less perturbative than the usual MSSM, and the theory can be
applied only for values of the compactification scale greater than 105 GeV.
There is then a lower bound on the radii of the extra dimensions. In a similar
way, for η = 3 we have a lower bound on the radii of extra dimensions of
1010 GeV.

We pointed out that higher-loop corrections could be particularly signif-
icant because the gauge couplings have power-law behavior. Thus, higher-
loop effects might be particularly large. However, the massive KK excita-
tions fall into N = 2 supermultiplets. In this way, we are guaranteed that
power-law corrections to the gauge couplings must vanish at higher-loop.
Thus, the only corrections beyond one-loop order are the logarithmic cor-
rections due to zero-modes. All the higher-loop corrections will be small and
we then expect that gauge coupling unification will be achieved also beyond
one-loop order.

Now that we have established that gauge coupling unification occurs at
scales lower than the usual GUT theories, we face with the issue of fermion
mass hierarchy.

3.6 Extra dimensions: Yukawa couplings

In this section we describe the evolution of Yukawa couplings. These cou-
plings are strictly related to the fermion mass through the electroweak sym-
metry breaking mechanism. Following what we have done with the gauge
couplings we can define a sort of Yukawa structure constants αF ≡ y2

F /4π,
where F stands for the various quarks and leptons (F = u, d, s, c, b, t, e, µ, τ).
When we deal with the fermion masses we face with values that differ by
many orders of magnitude. Indeed, αF goes from 1 for the top quark to
1012 for the electron. The hope is that the power-law behavior (as we will
see in a moment) of these couplings in presence of extra dimensions could
solve this problem, providing the observed mass hierarchy.
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As in the previous section, we start by reviewing how the Yukawa cou-
plings run in the usual (4-dimensional) MSSM. The electroweak symmetry
breaking provides mass to the fermion in the form

mF = yF v cosβ (3.78)

for down-type quarks and leptons, while for the up-type quarks we have

mF = yF v sinβ (3.79)

Here v ≈ 174 GeV enters in the Higgs potential and tanβ is the ratio of
up-type and down-type Higgs VEV’s. As we saw in paragraph 1.1, the
superpotential has the generic form

W =
∑
F

yF FF Hu,d (3.80)

In the MSSM, these Yukawa couplings run logarithmically with the energy.
Their RG evolution is given by

d

d lnµ
α−1

F (µ) = −bF (µ)
2π

(3.81)

We must note that here the one-loop beta-function coefficients bF (µ) are
not constant as in the gauge coupling case, but they depend on the energy
scale. For example for the top quark we have

bt = 6 +
1
αt

(
αb + 3αu + 3αc −

16
3
α3 − 3α2 −

13
15
α1

)
(3.82)

Only the first term on the right hand side is constant, while the others evolve
with the energy scale µ. The situation is similar for the other fermions. In
order to generalize the equation (3.81), we review how it was derived in
section 2.2.

As can be seen in (3.80) the Yukawa coupling yF is responsible for the su-
persymmetric triple vertex involving a Higgs field and a fermion-antifermion
pair. The supersymmetric non-renormalization theorem ensures that the
renormalization of αF depends only on the wave function renormalization
factors Zi

α−1
F (µ) = ZHZFZF α−1

F (µ0) (3.83)

The factors Zi can be calculated through the formula (2.74). The general
result is

Zi = 1− γi

2π
ln

µ

µ0
(3.84)
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where γi is the anomalous dimension of the field i. Specifically we have for
the quarks

γt = αt + αb −
1
30
α1 −

3
2
α2 −

8
3
α3

γb = 2αb −
2
15
α1 −

8
3
α3

γt = 2αt −
8
15
α1 −

8
3
α3

(3.85)

while for the leptons we have

γτ = ατ −
3
10
α1 −

3
2
α2

γτ = 2αt −
6
5
α1

(3.86)

Finally the anomalous dimensions of the Higgs fields are

γHu = 3αt −
3
10
α1 −

3
2
α2

γHd
= 3αb + ατ −

3
10
α1 −

3
2
α2

(3.87)

Taking into account equation (3.83) and limiting to linear terms in the log-
arithms we obtain the running (3.81), with beta-function coefficients given
by

αF bF ≡ γF + γF + γHi (3.88)

We can now pass to discuss the situation in presence of extra dimensions.
The δ extra spacetime dimensions appear at the energy scale µ0 ≡ R−1.
Below this scale there is no effect due to KK states and the Yukawa couplings
run logarithmically according to (3.81). When we go over the energy µ0 we
have finite one-loop corrections as functions of the cutoff Λ. We have

α−1
F (Λ) = ZHZFZF α−1

F (µ0) (3.89)

Following what we obtained for the gauge couplings, we expect the form of
the anomalous dimensions to be

Zi = 1− γi(µ0)− γ̃i(µ0)
2π

ln
Λ
µ0
− γ̃i(µ0)

2π
Xδ

δ

[(
Λ
µ0

)δ

− 1

]
(3.90)

The power-law term arise from the summation over KK states which enter
the loops. As we will see, the anomalous dimensions γ̃i corresponding to the
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excited KK modes differ in general from the anomalous dimensions γi of the
zero-modes. Only in that case a logarithm term will appear in (3.90).

It is worth noting that opposite to the case of gauge coupling, these
anomalous dimensions γi depend on the scale µ0. In (3.89) and (3.90), these
coefficients must be evaluated at the (fixed) scale µ0. This is due to the
nature of this theory as an effective theory.

Hu,dt t

t,b

t t

t

g,W,Z,γ

Hu,d Hu,dW,Z,γ

Hu,d

Hu,d Hu,d

t,b

t,b

(a)

(c)

(b)

(d)

Figure 3.5: Wave function renormalization diagrams in the MSSM. Dia-
grams (a,b) contribute to Zt and Zt, while diagrams (c,d) contribute to
ZHu,d

.

Our goal is now to evaluate the functions γ̃i, which are responsible of the
one-loop corrections coming from the KK massive levels. For convenience we
collect the diagrams responsible for the anomalous dimensions in Fig. 3.5.
We will deal first with the minimal scenario. Let us then consider the
diagram (a). In the loop a fermion and a Higgs field circulate. In the minimal
scenario the MSSM fermions do not have KK towers, so the fermion in the
loop must be a zero-mode. Regarding the Higgs tower, we note that each
massive level contribute the same as the zero-mode of the Higgs fields itself,
in both the cases N = 1 and N = 2. As a consequence γ̃F is the same as the
four dimensional one. Looking at the diagram (b) in Fig. 3.5, we see that the
situation is much the same. The fermion must be a zero-mode again, while
the massive gauge bosons can be KK modes. Even though the towers are
N = 2 supersymmetric, they couple with the fermions only through their
N = 1 components. This is due to the symmetry properties of the wave
function (see section 3.2). Even in this case we find that the contribution
to the fermion anomalous dimension coming from this diagram is the same
as the usual four-dimensional one. In conclusion, for the minimal scenario
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we find
γ̃F = γF γ̃F = γF (3.91)

for all fermions.
The anomalous dimensions of the Higgs fields are given by the diagrams

(c) e (d) shown in Figs. 3.5. In Fig. 3.5(c), the only particles that propagate
in the loop are fermions. Since the fermions have no KK states, this diagram
does not affect the anomalous dimension γ̃H .

For what regards the diagram in Fig. 3.5(d) we note that the full N = 2
set of KK states for the gauge boson can circulate in the loop . Now we
must separate the two cases: Higgs zero-modes N = 1 and N = 2. In the
first case we have a N = 1 diagram which contributes to the anomalous
dimensions. Then γ̃Hu and γ̃Hd

have only the gauge terms, which are the
same in this case as can be seen from equation (3.87).

In the case N = 2 after imposing KK momentum conservation at each
of the vertices, we find that there is no contribution to γ̃H . This is a conse-
quence of N = 2 theorems, once we take into account also the term (3.4). In
conclusion, for the minimal scenario, we find that both γ̃Hu and γ̃Hd

are null.
The presence of extra dimensions has no effect on the Higgs wave function
renormalization.

Let us now discuss the non minimal scenarios. In section 3.2, we isolated
the three different cases. When η = 2 only the first two families will have
KK towers and we fall in the case of the minimal scenario. In the third
family approximation indeed the Yukawa couplings of the first two families
are completely negligible. In the other two cases, η = 1 or η = 3, the third
family will have KK states.

Let us take again the diagrams in Fig. 3.5. In diagram (a) also the
fermions can propagate in the loop. Since we must impose KK momentum
conservation, we have a single sum over KK modes. Indeed, the external
states are zero-modes 8 and KK momentum conservation implies that the
levels of the particles in the loop must be opposite. Then we have a single
sum. We must outline that this diagram cannot vanish due to N = 2
properties, since the external states are not N = 2 and the whole diagram is
a N = 1 diagram. The situation is much the same in the case of Fig. 3.5(b).
Then we have the same result (3.91) found in the minimal scenario.

Finally we consider the Higgs fields. In diagram (c) both the fermions in
the loop will have KK towers. After imposing KK momentum conservation
we end again with a single sum. For what regards the last diagram in
Fig. 3.5 we must distinguish between the two cases. If we treat the Higgs

8Recall that we are calculating corrections to the MSSM states, i.e. zero-modes.
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(zero-modes) as belonging to a full N = 2 multiplet, then this diagram is a
N = 2 diagram and thus vanishes. In this case the anomalous dimensions
γ̃Hi have only the terms containing the couplings in (3.87). In the other
case, when the Higgs (zero-modes) are N = 1 particles, the diagram (d) in
Fig. 3.5 does not vanish and gives rise to a single sum. Then the anomalous
dimensions due to KK modes are the same as the zero-modes.

3.6.1 Higgs N=1: minimal scenario

In this case the anomalous dimension receives a contribution from the dia-
grams in which particles from the KK tower of the gauge bosons circulate in
the loop leading to a power-law contribution. For the Higgs fields we have

γ̃Hu = − 3
10
α1 −

3
2
α2 (3.92)

γ̃Hd
= − 3

10
α1 −

3
2
α2 (3.93)

For what the Yukawa couplings are concerned, we get

16π2 d

dt
yt = yt

[
3|yt|2 +Xδ

(
Λ
µ0

)δ (
3|yt|2 + |yb|2 −

16
3
g2
3

−3g2
2 −

13
15
g2
1

)]
(3.94)

16π2 d

dt
yb = yb

[
3|yb|2 + |yτ |2 +Xδ

(
Λ
µ0

)δ (
|yt|2 + 3|yb|2

−16
3
g2
3 − 3g2

2 −
7
15
g2
1

)]
(3.95)

16π2 d

dt
yτ = yτ

[
|yτ |2 + 3|yb|2

+Xδ

(
Λ
µ0

)δ (
3|yτ |2 − 3g2

2 −
9
5
g2
1

)]
(3.96)

Finally we analyze the (supersymmetric) Higgs mass

16π2 d

dt
µ = µ

[ (
3|yt|2 + 3|yb|2 + |yτ |2

)
+Xδ

(
Λ
µ0

)δ (
−3g2

2 −
3
5
g2
1

)]
(3.97)
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3.6.2 Higgs N=1: non minimal scenarios

In the non minimal scenarios we introduce KK towers also for the matter
fields. As we saw in section 3.2 we must distinguish among three different
cases: η = 1 in which only the third family has a KK tower, η = 2 in which
only the first two families have a KK tower and η = 3 in which all the
families have KK tower.

One of the consequences of having KK towers for the matter fields is
that they no longer live at the orbifold fixed point and they are allowed to
be in the bulk. The anomalous dimensions of the Higgs fields in the η = 2
case is the same as in the minimal scenario. For η = 1, 3 we find

γ̃Hu = γHu (3.98)
γ̃Hd

= γHd
(3.99)

For the chiral fields t, b, τ we have a similar situation, the contribution of
the KK towers is the same of the zero-modes. Then the coefficients of the
β-function have only a power-law contribution.

3.6.3 Higgs N=2 scenarios

We discuss first the minimal scenario. As in [1] the wave function renormal-
ization of the Higgs fields are given by

γ̃Hu = 0 (3.100)
γ̃Hd

= 0 (3.101)
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The one-loop beta-functions for the Yukawa couplings are then

16π2 d

dt
yt = yt

[
3|yt|2 −

3
10
g2
1 −

3
2
g2
2 +Xδ

(
Λ
Q0

)δ (
3|yt|2 + |yb|2 −

16
3
g2
3

−3
2
g2
2 −

17
30
g2
1

)]
(3.102)

16π2 d

dt
yb = yb

[
3|yb|2 + |yτ |2 −

3
10
g2
1 −

3
2
g2
2 +Xδ

(
Λ
Q0

)δ (
|yt|2 + 3|yb|2

−16
3
g2
3 −

3
2
g2
2 −

1
6
g2
1

)]
(3.103)

16π2 d

dt
yτ = yτ

[
|yτ |2 + 3|yb|2 −

3
10
g2
1 −

3
2
g2
2 +Xδ

(
Λ
Q0

)δ (
3|yτ |2

−3
2
g2
2 −

3
2
g2
1

)]
(3.104)

For the (supersymmetric) Higgs mass, in virtue of the non-renormalization
theorem, we have

d

dt
µ = 0 (3.105)

This equation holds for any η. For what concerns the non minimal scenarios,
the results we found in section 3.7.2 for N = 1 are still valid.

3.7 Extra dimensions: soft terms

In presence of KK modes the effect of the thresholds is to contribute to the
running of the soft terms with power-like terms. The general form of the
running of a parameter 9 g will be of the type

Q
dg

dQ
= (b− b̃g) ln

Λ
Q

+Xδ b̃g

(
Λ
µ0

)δ

(3.106)

where bg is the standard one-loop value of the coefficient, while b̃g is the
contribution of the thresholds.

While the effective potential method is powerful in determining the run-
nings for the parameters in the SUSY Lagrangian, it is difficult to apply it to

9Here we used g for a generic soft term and bg for the relative one-loop coefficient.
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the computation of the soft terms in presence of the KK states. This is why
we have decided to also carry on an analysis in terms of Feynman diagrams
in paragraph 2.4. In section 2 we saw the general form of the running of the
couplings and masses. All the contributions to the renormalization of these
parameters are collected in paragraph 2.4.

The computation of the effect of extra dimensions is now straightforward:
each time that in a Feynman diagram KK states are allowed to circulate in
the loop (external states can only be zero-modes), the contribution of the
diagram must be added to the b̃ coefficient in (3.106). We finally remind the
reader that in an orbifold compactification the KK momentum is conserved
only in the bulk. The wave function in the compactified dimension must,
in fact, be expanded in a basis which is invariant under the discrete group
acting on the compactified dimension. Furthermore the orbifold fixed points
break translation invariance along the extra dimensions.

Following the previous prescription we can obtain the β-functions for all
the soft terms. As usual, we must distinguish between the minimal and non
minimal scenarios in both the cases, “Higgs N = 1” and “Higgs N = 2”.

3.7.1 Higgs N=1: minimal scenario

We start with the trilinear couplings

16π2 d

dt
at = 9at|yt|2 +Xδ(

Λ
Q0

)δ

{
at

[
9|yt|2 + |yb|2 −

16
3
g2
3 − 3g2

2 −
13
15
g2
1

]

+2aby
∗
byt + yt

[
32
3
g2
3M3 + 6g2

2M2 +
26
15
g2
1M1

]}
(3.107)

16π2 d

dt
ab = 9ab|yb|2 + ab|yτ |2 + 2aτy

∗
τyb +Xδ(

Λ
Q0

)δ

{
ab

[
9|yb|2 + |yt|2

−16
3
g2
3 − 3g2

2 −
7
15
g2
1

]
+ 2aty

∗
t yb

+yb

[
32
3
g2
3M3 + 6g2

2M2 +
14
15
g2
1M1

]}
(3.108)

74



Extra dimensions

16π2 d

dt
aτ = 3aτ |yb|2 + 3aτ |yτ |2 +Xδ(

Λ
Q0

)δ

{
aτ

[
9|yτ |2

−3g2
2 −

9
5
g2
1

]
+ 6aby

∗
byτ

+yτ

[
6g2

2M2 +
18
5
g2
1M1

]}
(3.109)

The β-function for the b parameter (crucial for the electroweak symmetry
breaking mechanism), is given by

16π2 d

dt
b = b

(
3|yt|2 + 3|yb|2 + |yτ |2

)
+ µ [6aty

∗
t + 6aby

∗
b + 2aτy

∗
τ ]

+Xδ

(
Λ
Q0

)δ
{
b

(
−3g2

2 −
3
5
g2
1

)

+µ
(

+6g2
2M2 +

6
5
g2
1M1

)}
(3.110)

Now we can show the β-function for all the soft squared masses. For the
two Higgs mass parameters we have
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In order to avoid cumbersome expressions, we have introduced the quantity

Tr′(Y m2) ≡ Tr(Y m2)−m2
Hu

+m2
Hd

(3.113)
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where the usual trace over the hypercharge, defined in the MSSM, is given
by

Tr(Y m2) = m2
Hu
−m2

Hd
+m2

Q − 2
(
m2

ū +m2
c̄ +m2

t̄

)
+m2

d̄ +m2
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b̄ −m
2
L +m2

ē +m2
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τ̄ (3.114)

Moreover, in our computations we have assumed the first two families to be
degenerate in mass, such that

m2
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m2
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(3.115)

The equations for the squarks mass terms read
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Finally, for the sleptons masses we have
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3.7.2 Higgs N=1: non minimal scenarios

In this case for the b parameter we must distinguish between the η = 2 and
η = 1, 3 cases. In the former case the running is the same as in the minimal
case due to the third family approximation. In the latter case, once again,
the β-functions coefficients have only a power-law behavior.

Finally the running of soft scalar masses in the non minimal cases is
given by a logarithmic term multiplied by

Tr′(Y m2) (3.121)

and a power-law term given by

Tr(Y m2)− Tr′(Y m2) (3.122)

In the η = 1 case the primed trace is defined as

Tr′η=1(Y m
2) = 2m2
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− 2

(
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)
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s̄ − 2m2
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ē (3.123)

while for η = 3
Tr′η=3(Y m

2) = 0 (3.124)

because all the families have KK tower and there is no logarithmic contri-
bution. Finally for the case η = 2 we have

Tr′η=2(Y m
2) = m2

Q3
− 2

(
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)
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b̄ −m
2
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3.7.3 Higgs N=2: minimal scenario

We begin with the trilinear terms, which look like
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The β-functions for the b parameter reads
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The β-functions for the soft squared masses of the Higgs fields are
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while for the squarks we have

16π2 d

dt
m2

t = 2|yt|2m2
t̄ + 2|yb|2m2

b̄ +
1
5
g2
1Tr

′(Y m2)

+Xδ

(
Λ
Q0

)δ
{
− 32

3
g2
3|M3|2 − 6g2

2|M2|2 −
2
15
g2
1|M1|2

+2|at|2 + 2|ab|2 + 2|yt|2
(
m2

Hu
+m2

t

)
+ 2|yb|2

(
m2

Hd
+m2

t

)
+

1
5
g2
1

(
m2

Hu
−m2

Hd

)}
(3.132)

16π2 d

dt
m2

t̄ = 4|yt|2m2
t −

4
5
g2
1Tr

′(Y m2)

+Xδ

(
Λ
Q0

)δ
{
− 32

3
g2
3|M3|2 −

32
15
g2
1|M1|2 + 4|at|2

+4|yt|2
(
m2

Hu
+m2

t̄

)
− 4

5
g2
1

(
m2

Hu
−m2

Hd

)}
(3.133)

16π2 d

dt
m2

b̄ = 4|yb|2m2
t +

2
5
g2
1Tr

′(Y m2)

+Xδ

(
Λ
Q0

)δ
{
− 32

3
g2
3|M3|2 −

8
15
g2
1|M1|2 + 4|ab|2

+4|yb|2
(
m2

Hd
+m2

b̄

)
+

2
5
g2
1

(
m2

Hu
−m2

Hd

)}
(3.134)

79



3.8 Connection with string theory

Finally the equations for the leptons read
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We must outline that our results (3.132)-(3.136) for the masses of the
squarks and sleptons differ from those reported in [24] in two respects: on
the one hand the terms proportional to Y and m2

Hu
−m2

Hd
, due to the U(1)

gauge factor 10, are absent in [24]. On the other hand in (3.132)-(3.136) there
are terms coming from the diagrams (2.105) which do not get contributions
from the KK states and therefore do not have a power-law type running.

3.7.4 Higgs N=2: non minimal scenarios

The results we found in section 3.7.2 for N = 1 are still valid. The only
difference concerns the soft mass terms: for the Higgs masses, m2

Hu
,m2

Hd
no

diagrams will contribute to the power-law. The equations are then the same
as in the MSSM. On the other hand the squark masses have only power-law
contributions. For the other soft terms the equations are the same of the
minimal scenario, regardless of the value of η.

3.8 Connection with string theory

So far the calculations of the beta functions were made using field theory
methods only. In this section we want to elucidate the connection of extra

10For an explicit evaluation of this term, given by the diagram (2.107), see for example
(4.12) in [25].
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space-time dimensions with the framework of string theory. For example,
the notion of orbifold is borrowed from strings, where it is a symmetry of
the entire theory.

In string theory it is known that beside the KK momentum there are
also winding numbers, which are related to nature of the string itself. A
string can wrap around the compactified dimensions. In our model however
we can safely neglect the winding modes since our radii are presumed large.
Besides there are also extra states coming from string theory. However the
nature of these states depends on the model and it is not possible to take
into account their contribution without a full understanding of the string
model.

Usually in GUT theories, the unification scale is close to the perturbative
heterotic string scale Mstring ≈ 5×1017 GeV . If we could identify these two
scales then we could think of those model as embedded into string theory.
In our model, the power-law running however lowers the scale of unification.

Note that the appearance of the GUT symmetry in string theory has a
profound effect. From a field theory point of view we can say that the gauge
couplings unification signals a grand unified theory at the scale M ′

GUT . In
the meanwhile, GUT symmetry is broken in string theory through the action
of the orbifold. As a consequence, there are extra GUT states which are not
present in the standard MSSM. For example, in the SU(5) model, there
appear the X and Y gauge bosons, which are responsible for proton decay.
These states exist in the string spectrum, with masses m ∼ n/R, n ∈ Z,
with n ≥ 1.

We must outline that the presence of such states with masses nµ0 means
that these states, together with their KK towers, should influence the gauge
couplings between µ0 andM ′

GUT . The effects of theX and Y bosons must be
included below the unification scale as a consequence of GUT breaking via
an orbifold projection. Breaking GUT symmetry in string theory through
an orbifold doesn’t mean that the GUT symmetry is restored above M ′

GUT .
Actually GUT symmetry is restored at the scale µ0 since the states with
masses m ≥ µ0 fall into GUT multiplets. These states are then called GUT
precursors [26]. Since the KK towers corresponding to the X and Y bosons
appear in complete GUT multiplets the rapid gauge coupling unification is
still preserved. This property is common to all the GUT group.

String theory can also address the question of whether it is possible to
have such a small scale µ0 = R−1. There are two ways of answering. Let us
start with a perturbative description, i.e. a weakly coupled heterotic string
with a large radius of compactification. As was done in Ref. [27, 28], the
Planck scale remains at the perturbative heterotic string value 5×1017 GeV.
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In this perturbative framework, it is not possible to explain why the scale of
gauge coupling unification should be lower than the Planck scale. Indeed,
weakly coupled heterotic strings [29] lead to gauge coupling unification near
the Planck scale. To escape this, we can interpret the unification scale as
the string scale embedding directly our scenario into string theory.

In weakly coupled heterotic strings, the tree-level string scale Mstring is
related to the Planck scale in the following way

Mstring ∼ gstring MPl (3.137)

where gstring is the unified string coupling. This relation does not depend
on the number of extra dimensions nor the radii of compactification.

String dualities change the situation. Heterotic strings at strong coupling
can indeed be described as (open) Type I strings at weak coupling. We can
study the non-perturbative regime of heterotic string theory by analyzing
weakly coupled Type I strings. In Type I string theory there exists the
intriguing possibility [30, 31] of lowering the fundamental string scale. In
this case equation (3.137) is no longer valid and it is substituted by the
relation

Mstring ∼ eφ/2 ggaugeMPl (3.138)

where φ is the so-called ten-dimensional dilaton field and ggauge is the Type I
gauge coupling. Choosing the VEV of the dilaton in a suitable one, we can
lower Mstring with respect to MPl.

Let us recall the ten dimensional action

S =
∫
d10x

{
e−2φR+ e−φF 2

}
(3.139)

It is then possible to relate Mstring and MPl, eliminating the dependence on
the dilaton. We find

Mstring ∼

√
1

αgaugeMPl
V −1/4 (3.140)

where αgauge ≡ g2
gauge/(4π) and where (2π)6V is the six-dimensional volume

of the compactification. The relation (3.140) is just an order of magnitude
estimate, which could be deduced on dimensional grounds.

We will try to identify αgauge with α′GUT and Mstring with M ′
GUT = 10

TeV � 1016 GeV. Let us assume, as usual, δ extra dimensions of radius
R ≡ µ−1

0 . From the relation (3.140) we can determine the (common) radius
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r for the 6 − δ compactified dimensions. The normalized compactification
volume is given by

V ∼ Rδr6−δ (3.141)

thus we find

M ′
GUT

MPl
∼ α′GUT (M ′

GUTR)δ/2(M ′
GUT r)

3−δ/2 (3.142)

GUT
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1/r’
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gravity:
gauge:
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10D
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Figure 3.6: Sketch of the evolution of the gauge couplings within a Type I′

realization of our scenario. The corresponding effective number of spacetime
dimensions felt by the gauge and gravitational couplings are indicated.

We start with the case δ = 1. If we take M ′
GUT = 10 TeV, from Figs. 3.3

and 3.4 we see that M ′
GUTR ≈ 20 and α′GUT ≈ 1/50. This implies that

M ′
GUT r ≈ 10−6. Thus we find that the radius r of the five extra dimensions

must be smaller than the string length scale. This signals that we must make
use of the so called Type I′ description. In string theory this is possible
thanks to T -duality 11. In general a Type I theory with a compactified
radius r is equivalent (in the sense of the T -duality) to a Type I′ theory

11T -duality is a symmetry which links the large scale behavior of string theory to its
small scale structure.
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with a compactified radius r′ ≡ (M2
stringr)

−1

Mstringr ↔ (Mstringr
′)−1 (3.143)

We therefore pass to a Type I′ description with

(r′)−1 ∼ 10−6M ′
GUT ∼ 10MeV (3.144)

We thus found a way to associate the scale of gauge coupling unification
at 10 TeV with the string scale of a Type I′ theory: one dimension has
radius R−1 ≈ 0.5 TeV and the five remaining dimensions have radii r′ ∼
(10MeV )−1. This scenario is sketched in Fig. 3.6. Below the unification scale
we have an effective field theory and above the Type I′ string description is
adequate. We identify the string scale with the unification scale M ′

GUT ≈ 10
TeV. The gauge couplings feel a new dimension at R−1 ≡ µ0 ≈ 0.5 TeV.
Gravity instead feels five new dimensions.

A similar calculation for the case δ = 2 provides the result r′ ∼ (0.1GeV )−1

for the remaining four dimensions. We point out that these results depend
on the string scale. Indeed, if we take M ′

GUT = 1012 GeV we have now the
same result r′ ∼ (109GeV )−1 both for the case δ = 1 and δ = 2.
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Chapter 4

Susy and dark matter

In astronomy there is overwhelming evidence that most of the mass in the
universe is some non luminous dark matter of yet unknown composition.
The bulk of this dark matter is of non baryonic nature. The presence of an
exact discrete symmetry, R-parity, in the MSSM guarantees that the lightest
supersymmetric particle (LSP) is stable. Such a weakly interacting massive
particle (WIMP) would have a cosmological abundance Ω ∼ 1 today. It is
then natural to consider the possibility that this LSP is the dark matter. In
most cases, this particle is the neutralino, a linear combination of the susy
partners of the photon, the neutral Z0 and the Higgs bosons. Although dark,
in the sense that they cannot emit nor absorb electromagnetic radiation,
WIMPs must have nonzero coupling to ordinary matter, because they must
annihilate into it during the freeze out period in the early universe. The
presence of extra dimensions will modify the expansion law of the universe,
which is crucial in studying Boltzmann equation for the relic density. In this
way the resultant relic density can be altered and the allowed region for the
MSSM can be dramatically modified from the one in standard cosmology.
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4.1 Neutralino cosmology

The most of dark matter candidates are of non-baryonic nature. The main
distinction is between “hot” and “cold” dark matter. A dark matter is called
“hot” if it was moving at relativistic speeds at the time galaxies could just
start to form. It is called “cold” if it was moving non-relativistically at that
time. This categorization has important ramifications for structure forma-
tion. Experimental studies on galaxy formation may provide an important
hint on whether dark matter is hot or cold. Hot dark matter can cluster
only when it has cooled to non-relativistic speeds. N-body simulations of
structure formation in a universe dominated by hot dark matter, fail to
reproduce the observed structure.

The non-baryonic cold dark matter candidates are basically elementary
particles which have not yet been discovered. The leading candidates are
axions and weakly-interacting massive particles (WIMPs). These are stable
particles which arises in supersymmetric extension of the Standard Model.
WIMP masses are typically in the range 10 GeV-10 TeV, and they have
interactions with ordinary matter which are characteristic of the weak in-
teractions. The most promising WIMP candidate is the neutralino [32, 33],
and in the rest of the chapter we will focus on this possibility.

Then, among the dark matter candidates, the neutralino in supersym-
metric models is a suitable one. Two conditions must be satisfied: the
neutralino must be the lightest supersymmetric particle (LSP) and R-parity
must be conserved. The first one occurs in a broad region of the space
parameter of minimal supergravity (mSUGRA) model, while the second is
required to ensure the neutralino to be a stable particle.

Such a particle exists in thermal equilibrium and in abundance in the
early universe, when the temperature of the universe exceeds the mass mχ

of the particle. The equilibrium abundance is maintained by annihilation of
the particle with its antiparticle χ̄ into lighter particles l (χχ̄→ ll̄) and vice
versa (ll̄→ χχ̄). In many cases, the particle is a Majorana particle in which
case χ = χ̄. As the universe cools to a temperature less than the mass of
the particle, the equilibrium abundance drops exponentially until the rate
for the annihilation reaction χχ̄ → ll̄ falls below the expansion rate H, at
which point the interactions which maintain thermal equilibrium freeze out,
and a relic cosmological abundance freeze in.

This idea was used in the late 70’s to constrain the mass of a heavy neu-
trino and subsequently to suggest that the dark matter could be composed of
weakly interacting massive particle (WIMPs). Since then many calculations
have been done and improved. The result of the cosmological abundance
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calculation for a thermal relic is crucial to the argument for WIMP dark
matter.

At this scope let’s do a simple estimate. Suppose that in addition to the
known particles of the Standard Model there exist a new, yet undiscovered,
stable particle χ. In thermal equilibrium, the number density of χ particles
is

neq(χ) =
g

(2π)3

∫
f(p)d3p (4.1)

where g is the number of internal degrees of freedom of the particle and
f(p) is the familiar Fermi-Dirac or Bose-Einstein distribution 1. At high
temperatures (T >> mχ), we find the usual relation neq(χ) ∝ T 3. At low
temperatures, instead, we have

neq(χ) ' g

(
mχT

2π

)3/2

e−mχ/T (4.2)

so that their density is Boltzmann suppressed. If the expansion of the uni-
verse were so slow that thermal equilibrium was always maintained, the
number of WIMPs today would be exponentially suppressed. Essentially,
there would be no WIMP at all. However the universe is not static, so
equilibrium thermodynamics is not the whole story.

At high temperatures, χs are abundant and rapidly converting to lighter
particles and vice versa. After T drops below mχ, the number density of χs
drops exponentially, and the rate for annihilation drops below the expansion
rate. This rate is Γ =< σAv > nχ, where < σAv > is the thermally averaged
total cross section for annihilation of χχ̄ into lighter particles times relative
velocity v.

4.2 Freeze out: the Boltzmann equation

In the very early universe, when the temperature is very high, all particles
are in thermal equilibrium. As the universe expands, however, it cools and
the interaction rates become too low to maintain this equilibrium. We say
that the particles “freeze out.” Unstable particles that freeze out will decay
and thus will disappear from the universe. However, the number of stable
particles will tend towards a non-vanishing constant, and their thermal relic
density survives to nowadays.

1Actually, for a neutralino the Fermi-Dirac statistic is the suitable one.
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4.2 Freeze out: the Boltzmann equation

This kinetic process is described quantitatively by the Boltzmann equa-
tion

dnχ

dt
= −3Hnχ − 〈σAv〉

(
n2

χ − neq
2
)

(4.3)

where nχ is the number density of the dark matter particle, H is the Hubble
parameter and neq is the dark matter number density in thermal equilibrium.
The quantity 〈σAv〉 is the thermally averaged annihilation cross section for
annihilation of χχ̄ into lighter particles times relative velocity v.

A detailed derivation of this equation can be found in appendix A. Any-
way (4.3) can be easily understood. The second term on the left-hand
side accounts for the expansion of the universe. In the absence of num-
ber changing interactions, the right-hand side would be zero, and we would
find nχ ∝ a−3, as we should. The first term in brackets on the right-hand
side of equation (4.3) accounts for depletion of WIMPs due to annihilation
and the second term arises from creation of WIMPs from inverse reaction. It
can be naively derived by noting that, in equilibrium, the rate for depletion
and creation of particles is equal. This equation both describes Dirac as
well as Majorana particles, such as neutralinos. For the case of Majorana
particles, the annihilation rate is < σAv > n2

χ/2, but in each annihilation
two particles are removed, which cancels the factor of 2 in the annihilation
rate.

It turns out to be convenient to change variables from time to tempera-
ture,

t→ x ≡ mχ

T
(4.4)

where mχ is the χ mass, and to replace the number density by the co-moving
number density

n→ Y ≡ n

s
(4.5)

where s ' 0.4g∗T 3 is the entropy density. Here g∗ is the effective number of
relativistic degrees of freedom. Since s scales inversely with the volume of
the universe when entropy is conserved, the expansion of the universe has
no effect on Y . In terms of these new variables, the Boltzmann equation
(4.3) becomes

x

Yeq

dY

dx
= −neq〈σAv〉

H

(
Y 2

Yeq
2 − 1

)
(4.6)

It is now clear that before freeze out, when the annihilation rate is large
compared with the expansion rate, Y trails the equilibrium value Yeq. After
freeze out, Y approaches a constant. This constant is determined by the
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annihilation cross section 〈σAv〉. Y will follow its exponentially decreasing
equilibrium value. This behavior is shown in Fig. 4.1.

1 10 100 1000

0.0001

0.001

0.01

Figure 4.1: The co-moving number density Y of a dark matter particle as a
function of temperature and time. From Ref. [34].

If we consider the neutralino as our WIMP, the mass and annihilation
cross section are set by the weak scale: m2

χ ∼ 〈σAv〉−1 ∼Mweak
2. Freeze out

takes place when the decay width is of the order of the Hubble parameter

neq〈σAv〉 ∼ H . (4.7)

For a non-relativistic particle we have the behavior (4.2) and the Hubble
expansion rate falls with temperature as H ≡ 8πG/3 ' 1.66g1/2

∗ T 2/MPl.
From these relations, we find that WIMPs freeze out when

mχ

T
∼ ln

[
〈σAv〉mχMPl

(mχ

T

)1/2
]
∼ 30 (4.8)

Since mχv
2 = 3T , WIMPs freeze out with velocity v ∼ 0.3.

At first sight one can think that freeze out should occur at T ∼ mχ. But
this is not the case: gravity is weak since MPl is large. The expansion rate is
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then extremely slow, and freeze out occurs much later than one might expect.
For mχ ∼ 300 GeV , freeze out occurs at temperature T ∼ 10 GeV and the
corresponding time is t ∼ 10−8 s. In the book of Kolb and Turner [35], one
can find also the freeze out density

Ωχ = mχsY∞ ∼ 10−10 GeV −2

〈σAv〉
(4.9)

An estimate of the weak cross section gives

〈σAv〉 ∼
α2

2

M2
weak

∼ 10−9 GeV −2 (4.10)

where α2 is the weak coupling. Equation (4.10) corresponds to a thermal
relic density of Ωχh

2 ∼ 0.1. This analysis has ignored many numerical fac-
tors, but the orders of magnitude is correct. WIMPs therefore naturally
have thermal relic densities of the right order of magnitude to close the uni-
verse. This coincidence is a hint that connects the problems of electroweak
symmetry breaking and the topic of dark matter.

Figure 4.2: Regions of the (m0,M1/2) parameter space in mSUGRA with
A0 = 0, tanβ = 10, and µ > 0. The lower shaded region is excluded by the
LEP chargino mass limit. The stau is the LSP in the narrow upper shaded
region. In the rest of parameter space, the LSP is the lightest neutralino, and
contours of its gaugino fraction Zg (in percent) are shown. From Ref. [36].
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4.3 Neutralino annihilation

The two processes which govern nearly all of neutralino cosmology are anni-
hilation of neutralino pairs and scattering of neutralinos off ordinary matter.
In this section we discuss the annihilation cross sections. We provide results
for all the final states that appear at tree level and for those one loop final
states that are also important. The annihilation cross sections are needed in
cosmology for calculations of the cosmological neutralino relic abundance,
the flux of energetic neutrinos from neutralino annihilation in the sun and
earth.

On general theoretical grounds the annihilation cross section should have
the velocity dependence 〈σAv〉 ∝ vp. It is then sufficient to expand the
annihilation cross section in the non-relativistic (v � 1) limit 2

〈σAv〉 = a+ bv2 +O(v4) (4.11)

where a is the s-wave contribution at zero relative velocity and b contains
contributions from both the s and p waves. In the simplest case, the s wave
is unsuppressed and 〈σAv〉 is almost energy independent. Thus, only the a
term is necessary. However, it often happens that χ is a Majorana particle
and the annihilation into light fermions is suppressed by helicity. In this
case also the b term is needed. For practical purposes, the first two terms in
(4.11) are sufficient. We can then find the quantity Y∞ appearing in (4.9).
The result for the relic abundance is

Y −1
∞ = 0.264g∗MPlmχ

[
a

xf
+

3(b− 1
4a)

x2
f

]
(4.12)

where xf = Tf/mχ is the freeze out epoch and g∗ is the number of degrees
of freedom evaluated at Tf .

For what regards neutralinos in the galactic halo, sun and earth they
move with velocities O(10−3) (in units where c = 1), so only the a term in
equation (4.11) is needed for calculations involving relic neutralinos. As we
saw in equation (4.8), when neutralino interactions freeze out in the early
universe, their relative velocity are approximately v ' 0.3 so both the a and
b terms are generally needed for relic abundance calculations. Results for
the a and b terms can be found in [32, 37, 38].

Neutralino can annihilate into numerous final states. The processes
which dominate are those at tree level (lowest order in perturbation the-
ory), i.e. the two body final states. Other than fermion-antifermion pairs

2A detailed derivation of (4.11) can be found in the appendix B.
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(neutrinos, leptons and quarks), there are

W+W−, Z0Z0, W+H−, W−H+, Z0A0, Z0H0, Z0h0, H+H−

and all the combinations (six) of the neutral states A0, h0 and H0. Many
Feynman diagrams contribute to each of these processes [39], so the compu-
tation of the total annihilation cross section turns out to be a difficult task.
In one of the following sections we shall concentrate on the γγ final states,
since they can be a proof of the existence of neutralino dark matter 3.

The analytic results for the a term are not cumbersome expressions. On
the other hand, calculations of the b terms are more involved. They can be
obtained by “brute force” evaluation of Feynman diagrams, giving rise to
results which are valid for any value of the center of mass energy, including
non relativistic limit. Since there is a large number of diagrams involved 4, a
simple check about the calculation is the high energy behaviour of the cross
sections, which must be consistent with unitarity. The complete analytic
results for the a and b terms can be found in several works [39, 41, 42].

Almost all the parameters of the MSSM are involved in the calculation.
Given this large freedom in adjusting the parameters, there is a plethora of
ways to achieve the desired relic density for neutralino dark matter. We will
see that many of these different ways may be found in minimal supergravity
(mSUGRA). In various regions of mSUGRA parameter space it is possible
to obtain the desired thermal relic density.

4.4 Thermal relic density: the bulk region

Numerical analysis show that the LSP is a bino-like neutralino in much of
mSUGRA parameter space. We can thus consider the limit in which the
neutralino is a pure bino. In this case, all processes with final state gauge
bosons vanish 5.

The process χχ → ff̄ can now occur through a sfermion exchange (t-
channel). As susy partners of Standard Model bosons, neutralinos are Ma-
jorana fermions. If the initial state neutralinos are in an S-wave state, the
Pauli exclusion principle implies that the initial state is CP-odd, with total
spin S = 0 and total angular momentum J = 0. If the neutralinos are gaug-
inos, the vertices preserve chirality, and the final state ff̄ has spin S = 1.

3We must stress, however, that this contribution is negligible for abundance calcula-
tions.

4In order to manage this complicated task, we made use of a publicly available code [40].
5This follows from supersymmetry and the absence of 3-gauge boson vertices for abelian

gauge group.
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In order to have J = 0 we need a mass insertion on the fermion line. This
process is therefore either P -wave-suppressed (no a term in equation 4.11) or
chirality suppressed. This conclusion actually holds also for mixed gaugino-
Higgsino neutralinos and can be applied to all other processes that contribute
to the ff̄ final state [39].
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Figure 4.3: The bulk and co-annihilation regions of mSUGRA with A0 = 0,
tanβ = 10 and µ < 0. In the light blue region, the thermal relic
density satisfies the pre-WMAP constraint 0.1 < ΩDMh

2 < 0.3. In
the dark blue region, the neutralino density is in the post-WMAP range
0.094 < ΩDMh

2 < 0.129. The bulk region is the dark blue region with
(m0,M1/2) ∼ (100 GeV, 200 GeV). The stau LSP region is given in dark
red, and the co-annihilation region is the dark blue region along the stau
LSP border. Current bounds on b → sγ exclude the green shaded region,
and LEP limit to the Higgs mass is shown (mh = 114 GeV). From Ref. [43].

The region of mSUGRA parameter space with a bino-like neutralino
where χχ→ ff̄ yields the right relic density is the region shown in Fig. 4.3
with (m0, M1/2) ∼ (100 GeV, 200 GeV ). This region is called the “bulk
region”. In the past, due to uncertainty in the measurement, there was a
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wide range of parameters with (m0,M1/2) . 300 GeV that predicted dark
matter within the observed range. After WMAP data, the “bulk region”
has been reduced to a thin ribbon of acceptable parameter space.

Moving from the bulk region by increasing m0 and keeping all other pa-
rameters fixed, one finds too much dark matter. This behavior is shown in
Fig. 4.3. In the bulk region, a large sfermion mass suppresses the annihi-
lation cross section (〈σAv〉 ∼ m−2

f ), which implies a large ΩDM . In fact,
sfermion masses not far above current bounds are required to offset the P -
wave suppression of the annihilation cross section. In a sense, it seems that
an over-closed universe can provide upper bounds on superpartner masses.

In the above we assumed that χχ → ff̄ is the only annihilation chan-
nel. However, for neutralinos which are not bino-like, there are many other
contributions. In the next, we will shortly describe this possibility studying
the so called focus point region.

We want to stress that the bulk region, is also severely constrained by
other data. The existence of a light superpartner spectrum in the bulk
region implies a light Higgs boson mass, and typically significant deviations
in low energy observables such as b → sγ. Current bounds on the Higgs
boson mass, as well as concordance between experiments and standard model
predictions for b → sγ, therefore disfavor this region. This is shown in
Fig. 4.3. For this reason, we will consider also other possibilities.

4.4.1 Focus point region

As can be seen in Fig. 4.2, in mSUGRA the neutralino can be gaugino-like or
higgsino-like; thus a bino-like LSP is not the ultimate answer. When m0 is
very large, to ensure electroweak symmetry breaking the Higgsino mass pa-
rameter |µ|must be small. In this case, the LSP becomes a gaugino-Higgsino
mixture. The allowed region for this kind of LSP is called the focus point
region, a name which resembles peculiar properties of the renormalization
group equations [44, 45, 46].

In the focus point region sfermions are very heavy and thus the related
diagram are suppressed. However, the existence of Higgsino components in
the LSP implies that diagrams with exchange of charged higgsino/gaugino,
like in χχ→W+W−, are no longer suppressed.

Neutralinos may annihilate efficiently enough as to produce the desired
thermal relic density. Cosmological constraints limit the regions with the
right relic densities (see Fig. 4.4). However, since the right relic density
can be achieved with arbitrarily heavy sfermions, cosmology doesn’t supply
upper bound on superpartner masses.
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Figure 4.4: Focus point region of minimal supergravity for A0 = 0, µ > 0,
and tanβ as indicated. The excluded regions and contours are as in Fig. 4.2.
In the light yellow region, the thermal relic density satisfies the pre-WMAP
constraint 0.1 < ΩDMh

2 < 0.3. In the medium red region, the neutralino
density is in the post-WMAP range 0.094 < ΩDMh

2 < 0.129. The focus
point region is the cosmologically favored region with m0 & 1 TeV . From
Ref. [36].

4.4.2 The A funnel region

The coupling with the A Higgs boson opens the possibility that the dark
matter annihilates to fermion pairs through an s-channel pole. This process
is efficient when 2mχ ≈ mA. The A resonance region occurs in mSUGRA
for tanβ & 40 [47, 48] and is shown in Fig. 4.5. This resonance is so efficient
that the relic density may be reduced too much. Therefore, to obtained a
suitable relic density the process must be near the resonance, but not exactly
on it.

4.4.3 Co-annihilation region

In the previous cases we neglect the possibility that there are other particles
present in significant numbers when the LSP freezes out. In this case the

95



4.5 LSP: limits and constraints

Figure 4.5: The A funnel region of minimal supergravity with A0 = 0,
tanβ = 45, and µ < 0. The red region is excluded. The other shaded
regions have ΩDMh

2 < 0.1 (yellow), 0.1 < ΩDMh
2 < 0.3 (green), and 0.3 <

ΩDMh
2 < 1 (blue). From Ref. [48].

χχ annihilation is no more efficient.
The neutralino density may drop due to co-annihilation with the other

species [49, 50]. These particles must be mass degenerate with the neu-
tralino at the freeze out temperature, T ≈ mχ/30. Co-annihilation can
dominate over P -wave-suppressed χχ annihilation cross section and thus
may be important even with mass splittings much larger than T .

As can be seen in Fig. 4.3, the co-annihilation possibility is realized in
mSUGRA along the τ̃ LSP (χ LSP border). In the acceptable region, we
can thus find a narrow finger extending up to masses mχ ∼ 600 GeV .

4.5 LSP: limits and constraints

We saw that the most well motivated WIMP candidate is the lightest super-
symmetric particle (LSP). In most of the parameter space of the MSSM the
LSP is the neutralino, a linear combination of the supersymmetric partners
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of the photon, the Higgs bosons and the neutral Z0 boson.
Extensive calculations have shown that the cosmological abundance of

the LSP is close to unity and suitable for solving the dark matter problem,
independent of the specific composition of the LSP. In particular, we must
outline that models with neutralino as LSP are favourite for cosmological
reasons, giving rise to acceptable galaxy formation (cold dark matter).

Lower limits to the age of the universe are often used to provide con-
straints to Ωχh

2. It is often misstated that if Ωχ > 1, then neutralino will
over close the universe. However, adding matter to the universe doesn’t
change its geometry, but causes the universe to expand more rapidly. In
this case the universe will reach the actual size in a shorter period of time.
Thus, lower limits to the age of the universe provide upper bounds to Ωh2,
and therefore to Ωχh

2. The limits to Ωh2 for a given age of the universe are
obtained assuming the universe is matter dominated 6.

Obviously, the mass density of neutralinos must be less than the total
mass density, so for a universe older than 10 billion years, we must have

Ωχh
2 ' 1 . (4.13)

Experimentally, there is evidence that the universe is closed. Data collected
until now suggest that the universe is actually flat. Even the inflation model
suggests that the density of the universe is the critical one. If the universe is
open or flat constraints are even stronger: for a universe 10 billion years old
we must have Ωχh

2 . 0.5, while for a value of 13 billions years the constraint
is Ωχh

2 . 0.25.
Now we can give a limit on the WIMP mass. On dimensional arguments

annihilation cross section is generally expected to decrease as the neutralino
mass is increased, so the relic abundance should increase. Therefore, heavier
neutralino should be more likely to dominate the mass of the universe and
partial-wave unitarity provides an upper limit ∝ m−2

χ to the coefficient a
and b in the non-relativistic expansion of the cross section. This can be
used to put a model independent lower bound

Ωχh
2 &

(
mχ(TeV )

300

)2

, (4.14)

to the cosmological density of any stable thermal relic. The age of the
universe constraint then leads to the limit of the mass of a stable dark
matter particle mχ . 300TeV . This conclusion will not change if the relic

6We must point out that these limits cannot be relaxed by introducing a cosmological
constant.
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density is determined by annihilation near a threshold or co-annihilation
(see section 4.4.3). We must outline that this limit is in general two orders
of magnitude greater than the masses usually considered, but it is referred
to a model with a coupling of order one. Instead, in the MSSM, the cross
section are proportional to a coupling of the order α2 ∼ 10−4. So the largest
cosmological acceptable masses are

mχ . 3TeV (4.15)

For a flat universe, neutralino with an abundance Ωχh
2 ' 0.25 is the most

attractive. Summarizing the results we have that

0.025 . Ωχh
2 . 1 , (4.16)

is a conservative range for the relic density of neutralino which could take
into account dark matter in the galactic halo.

4.6 Dark matter detection

We saw that one of the successes of supersymmetry with exact R-parity
conservation is the prediction of an electrically neutral LSP, which represents
a good candidate for the dark matter. The most attractive prospects for
direct detection of susy dark matter comes from the idea that the lightest
neutralino is the LSP, as is the case of mSUGRA models.

We saw in section 4.1 that once the universe cooled and expanded, the
very massive sparticles can no longer be produced and they all annihilate
or decay into neutralino. The remaining neutralinos can annihilate through
processes χχ → ff with the exchange of squarks and sleptons or the ex-
change of Higgs scalars or a Z boson. For a high massive neutralino new
channels open like χχ →W+W−, ZZ, Zh0, h0h0 or even W±H∓, ZA0,
h0A0, h0H0, H0A0, H0H0, A0A0, or H+H−. When the density of LSPs
decreased, the annihilation rate became very small, and the χ relic density
is determined by the Boltzmann equation, i.e. the annihilation rate and the
dilution caused by the expansion of the universe.

The predicted density of a bino-like (or perhaps higgsino-like 7) neu-
tralino LSP obtained by doing these calculations can have the right range
to constitute a fraction of the critical density of the universe, and perhaps
to explain the rotation curves of galaxies [34, 51, 52].

7In presence of extra dimensions we will see that both the situations can happen.
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It is also necessary to require that the density of surviving LSPs not be
too large. Otherwise, the universe could have not reached its present size
and age of at least 1010 years. This puts an upper limit on the LSP mass,
but this limit is not parameter independent, because if the masses are varied
in the right way, the LSP may happen to annihilate very efficiently through
a resonance.

If neutralino LSPs were really the cold dark matter, then their mass
density in our neighborhood must be at least about 0.1 GeV/cm3 in order
to explain the rotation curves of galaxies. In this case, they should be
detectable by means of weak interactions with ordinary matter, or through
annihilations.

The direct detection of χ depends on their elastic scattering of heavy
nuclei in a detector. The elementary process is the scatter of a quark by
virtual exchange of squarks, a Z boson, or Higgs scalars; another possibility
is the scatter of gluons through one-loop diagrams 8. The energy transferred
to the nucleus in these collisions is typically of order tens of keV. However,
there are important backgrounds from radioactivity and cosmic rays. It
turns out that the optimal detector material (e.g. germanium, silicon, or
niobium) depends on the details of the χ-nucleus interaction.

Another, more indirect, way to detect neutralino LSPs is through their
annihilations. This can occur in regions of space where the density is very
high in order to increase the possibility of the interaction. This can occur if
the LSPs lose energy by repeated scattering off of nuclei, eventually becom-
ing concentrated inside massive astronomical bodies like the earth or the
sun. In this case the annihilation of neutralino pairs into neutrinos is the
most important process, since all the other known particles cannot escape
from the center of the massive object where the annihilation takes place. In
particular, muon neutrinos and antineutrinos from χχ → νµνµ will travel
large distances, finally undergoing a charged-current interaction leading to
energetic muons. There are also interesting possible signatures from neu-
tralino LSP annihilation in the galactic halo which might produce detectable
quantities of high-energy photons, positrons, and antiprotons [34, 51, 52].

4.7 Neutralino dark matter in higher dimensions

Cosmological observations, in particular the Wilkinson Microwave Anisotropy
Probe (WMAP) satellite [53, 54], have established the CDM cosmological

8We will see this process in detail in a following section.
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model 9 with great accuracy. The relic abundance of the cold dark matter
is estimated to be

ΩCDMh
2 = 0.1126+0.00161

−0.0181 (4.17)

These observations, which have enhanced the precision in relic density mea-
surements, have greatly reduced the parameter space of the MSSM. We saw
in section 4.2 that the thermal relic density of a dark matter particle can be
obtained by solving the Boltzmann equation

dnχ

dt
+ 3Hnχ = −〈σAv〉

[
(nχ)2 − (neq)2

]
(4.18)

As we can see, the thermal relic density depends on the underlying cosmo-
logical model as well as its annihilation cross section. If a non standard
cosmological model is taken into account, the resultant relic density of the
dark matter can be altered from the one in standard cosmology. For what
concerns the cross section, this will be modified by the appearance of other
particles (KK modes and other exotic ones).

To evaluate the situation in presence of extra dimensions we must analyze
the differences with respect to the standard framework. In section 3 we
found that the behavior of the Hubble constant changes as a result of a
modified Friedmann equation. This will change the left hand side of (4.18),
which takes care of the expansion of the universe. In the standard setup,
this term is responsible for the density nχ ∝ a−3, in absence of interactions.
The brane world model is instead a well known example of a non standard
cosmological model. The Friedmann equation for spatially flat spacetime is
now [55, 56, 57, 58]

H2 =
8πG

3
ρ

(
1 +

ρ

ρ0

)
(4.19)

where
ρ0 = 96πGM6

5 (4.20)

We recall here that H is the Hubble parameter, ρ is the energy density of
matter, while M5 is the five dimensional Planck mass and we have neglected
the four dimensional cosmological constant. Moreover, we have omitted the
so called “dark radiation” term, which is constrained by nucleosynthesis
analysis. The second term proportional to ρ2 leads to a non standard be-
havior. At a high energy regime (ρ � ρ0), this term dominates and the
universe obeys a non standard expansion law.

9CDM stands for cold dark matter. Cold dark matter is composed of objects sufficiently
massive that they move at sub-relativistic velocities. The low velocities of cold dark matter
allow the formation of structures on small scales.
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As we did in section 4.2, we rewrite equation (4.18) into the form

dY

dx
= − s

xH
〈σv〉(Y 2 − Y 2

EQ)

= −λ x−2√
1 +

(
xt
x

)4 〈σv〉(Y 2 − Y 2
EQ), (4.21)

in terms of the number density to entropy ratio Y = n/s. We also defined
the variable x = m/T , where m is a dark matter particle mass and λ =
0.24g1/2

∗ MPlm, as can be inferred from the estimates in section 4.2. The
quantity xt is defined as

x4
t ≡

ρ

ρ0

∣∣∣∣
T=m

. (4.22)

When x � xt, the ρ2 term dominates in equation (4.19), while the ρ2

term becomes negligible after x � xt and we recover the expansion law in
the standard cosmology. The temperature defined as Tt = mx−1

t is often
called “transition temperature” since the expansion law of the early universe
changes from the non-standard one to the standard one. We focus on the
effect of the ρ2 term for the dark matter relic density. Then we consider the
case that the decoupling temperature of the dark matter (let us call it Td) is
higher than the transition temperature, namely xt ≥ xd = m/Td. Using the
definition of ρ0 and xt in equations (4.20) and (4.22), this condition gives

M5 ≤
(
π2g∗
30

m4 1
96πG

x−4
d

)1/6

' 4.6× 103 TeV
( m

100 GeV

)2/3
(

20
xd

)2/3

. (4.23)

Here we have normalized the decoupling temperature by its typical value:
in our case the estimate is xd ≡ m/Td ' 20. For M5 . 103 TeV, we can
expect significant brane world cosmological effects.

We can now analyze our model, checking where this contribution dom-
inates, i.e. where ρ >> ρ0. In this case we have a simple relation between
the five dimensional Planck mass and the compactification radius, given by

(M5)3R = M2
P (4.24)

where µ0 ≡ 1/R is the compactification scale.
We then easily obtain the table 4.1. As one can see, the ρ2 term will

never dominate, so we can use the usual Friedmann equation. Unfortunately
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µ0 ≡ 1/R M5 = (µ0M
2
Pl)

1/3 ρ0 = 96πGM6
5

Gev GeV GeV 4

105 2.15 · 1014 1.2 · 1049

106 4.64 · 1014 1.2 · 1051

108 2.15 · 1015 1.2 · 1055

1010 1 · 1016 1.2 · 1059

1012 4.64 · 1016 1.2 · 1063

Table 4.1: Values of the D = 5 Planck mass M5 and of ρ0 for different values
of the compactification scale µ0.

in the literature there is not a general expression of the Hubble expansion
rate H for an arbitrary number 10 of extra dimensions δ. There are some
interesting issues concerning the D = 6 dimensional case in [62, 63] and also
in [64, 65]. We considered explicitly only the case D = 5 and we argued
that the conclusion still holds in the higher dimensional case [66].

At this point we can analyze the changes in the cross section. This
involves only tree level processes. A typical one will be of the form

χ+ χ→ X +X (4.25)

where X are KK modes. Since the neutralino is the lightest particle of the
MSSM, its mass will never exceed some TeV. However, KK modes will have
at least a mass of 100 TeV for the minimal scenario. So energy conservation
will forbid any annihilation. However, we will see in the following that KK
modes can play a role in a loop process, since in the loop the energy must
be not conserved.

4.8 Phenomenology

In this section we present the results for the low energy phenomenology of
our scenario. To compute the weak scale parameters we used the publicly
available codes ISASUGRA [20] and DarkSUSY [40, 67]. We modified the
ISAJET routines in order to take into account the power-law running of the
gauge couplings, of the Yukawa couplings and of all the soft terms following

10See [59, 60, 61] for general reviews on the subject.
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the procedure outlined in section 3. We solved the differential equations 11

given by the running of the couplings and masses imposing boundary condi-
tions as in the usual mSUGRA scenario [68, 69]. In this way we have, at the
new unification scale M ′

GUT , a universal scalar mass m0, a universal gaugino
mass m1/2 and a common trilinear coupling A0. The only other parameters
which need to be specified are tanβ and sign(µ).

For a fixed choice of the extra-dimensional parameters µ0, δ and η we
performed a detailed scan of the (m0,m1/2) parameter space keeping fixed
tanβ, A0 and sign(µ). We computed for every model the thermal relic
density

Ωχh
2 =

mχnχ

ρc
(4.26)

solving the Boltzmann equation (4.3) for the neutralino number density.
We considered only tree-level annihilation processes in the computation of
〈σAv〉. This implies that we do not have to worry about the presence of the
KK states. In fact KK modes are too heavy to be produced in the interme-
diate tree-level annihilation channels. This is guaranteed by the fact that
the neutralino mass (i.e. the mass of the lightest supersymmetric particle)
is at most of order of 1 TeV for every model we considered. For the relic
density computation we have taken into account all the possible coannihila-
tions with other sparticles. Because the mass of the first KK excited level
is of order µ0 there is no possible coannihilation between the neutralino (a
0-mode particle) and the KK particles. In this way the standard treatment
of the coannihilations is still valid. As discussed in the previous paragraph,
the possible difference with the standard scenario may arise only from the
Hubble expansion rate H.

Let us fix the notation defining the lightest neutralino as the linear com-
bination

χ̃ = N11B̃ +N12W̃ +N13H̃u +N14H̃d (4.27)

where B̃ and W̃ are the bino and wino fields, while H̃u and H̃d are the two
higgsinos. The gaugino fraction, as usual is defined as

Zg = |N11|2 + |N12|2 (4.28)

We say that a neutralino is gaugino-like (in particular in our case bino-like)
if Zg > 0.9 while it is higgsino-like when Zg < 0.1. In all the intermediate
cases we denote the neutralino as mixed-like.

11These differential equations can be solved numerically by mean of the so called Runge-
Kutta method, which is described in appendix C.
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As explained in section 3 we considered two different scenarios: one in
which the two zero-mode Higgs fields are chiral N = 1 superfields as in the
MSSM and the other in which they form an N = 2 matter hypermultiplet.

We first analyze the N = 1 Higgs case in the minimal scenario η = 0 in
which the matter fermions do not have KK towers. We performed a detailed
scan in the parameter space (m0, m1/2) fixing all the other parameters. In
Fig. 4.6 we show the regions already excluded due to either theoretical or
experimental reasons for a given model (µ0 = 105 GeV, δ = 1 and η = 0).
The dark gray region is excluded because the τ̃ is the LSP rather than the
neutralino, the red region is excluded because the models do not achieve
electroweak symmetry breaking (EWSB) while the blue region is excluded
because the models do not satisfy the current accelerator bounds (limits
on the chargino masses, b → sγ, etc.). In almost all the parameter space
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Figure 4.6: Excluded regions in the plane (m0, m1/2)

the neutralino is still the LSP. One of the main result is that, unlike the
standard mSUGRA case, the neutralino is no longer bino-like (as we saw
in section. 4.4) but it tends to be a very pure higgsino (see Fig. 4.7). This
conclusion strongly depends from the value of the compactification scale µ0.
In fact the regions in which the neutralino is higgsino-like get smaller for
higher values of µ0 (see the left panel of Fig. 4.7 for the case µ0 = 105 GeV
and Fig. 4.9 for the two cases µ0 = 108 GeV and µ0 = 1010 GeV). For
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Figure 4.7: Contour plots of the gaugino fraction in the plane (m0, m1/2)
for different values of δ.

higher values of µ0 the higgsino-like region approaches the region excluded
due to an incorrect EWSB. The previous result is only slightly dependent
from the number of extra-dimensions δ as can be seen by comparing the
two panels of Fig. 4.7. The only difference is a change in the shape of the
excluded regions. In other words the crucial property of the β-functions is
the power-law behavior rather than the effective power-law index, i.e. δ.

In every contour plot for the gaugino fraction we have shown the cos-
mologically allowed regions. The red regions are those for which the relic
density Ωh2 satisfies the WMAP constraints [54, 70]

0.09 ≤ Ωh2 ≤ 0.13 (4.29)

while the green regions denote the pre-WMAP constraints

0.13 < Ωh2 ≤ 0.30 (4.30)

The cosmologically allowed regions have a huge overlap with the pure higgsino-
like region, especially for low values of µ0, i.e. µ0 . 108 GeV. For higher
values of µ0 the cosmologically allowed regions tend in general to overlap
with a mixed-like neutralino region.

We also present in Fig. 4.8 the isomass contour plots for the neutralino
for increasing µ0 and for fixed δ. As in the case of the gaugino fraction
we show the cosmologically allowed regions. For higher values of µ0 high
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neutralino mass contours (around 1 TeV) are shifted upwards so that models
that possess the right relic density have mχ . 500 GeV. Increasing the value
of A0, for example A0 = 2500, implies a shift of the cosmologically allowed
regions towards higher values of the neutralino mass of about mχ & 800
GeV and a wider region excluded by the accelerator bounds. Moreover, in
this case, the neutralino is a very pure higghsino Zg < 0.1 in all the allowed
parameter space.
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Figure 4.8: Contour plots of the neutralino mass (in GeV) in the plane (m0,
m1/2) for increasing values of µ0.

For increasing values of tanβ we obtain the same shift of the cosmologi-
cally allowed regions as in the case of high A0. Moreover the excluded region

106



Susy and dark matter

in which the neutralino is not the LSP grows towards higher values of m0.
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Figure 4.9: Contour plots of the gaugino fraction in the plane (m0, m1/2)
for increasing values of µ0.

Let us now analyze the non minimal models with η > 0. As explained
in paragraph 3.2 we considered three different cases: η = 1 in which only
the third family have a KK tower, η = 2 in which only the first two families
have a KK tower and η = 3 in which all the families have KK tower.

For η = 2 we must have µ0 ≥ 108 GeV in order to avoid non perturbative
gauge couplings at the unification scale (see for example Fig. 4 of [1]). In
this case, regions with m0 & 3000 GeV are excluded due to an incorrect
EWSB while for tanβ . 30 there is no region in which the neutralino is
not the LSP. For higher tanβ the parameter space develops a region, for
small m0, excluded by EWSB constraints and by the stau being the LSP.
In almost all the allowed region the neutralino turns out to be a very pure
bino (as in mSUGRA) though there is still a significant overlap between
the cosmologically favoured region and the region in which the neutralino is
higgsino or mixed-like. The possible values of the neutralino mass are lower
than in the minimal scenario, with typically mχ . 500 GeV.

In the case η = 1 in which only the third family has KK tower almost
all the parameter space is allowed for low tanβ. There are only two small
regions excluded by the accelerator bounds and by the EWSB constraints.
The neutralino turns out to be always a bino. The cosmologically allowed
region is very small and in correspondence with a low neutralino mass region,
i.e. mχ . 50 GeV. For higher tanβ we have the same behaviour except for

107



4.8 Phenomenology

the presence of the two excluded regions (EWSB constraints and the stau
being the LSP) for small m0.
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Figure 4.10: Gaugino fraction in the plane (m0, m1/2). Left panel: non
minimal scenario η = 1. Right panel: non minimal scenario η = 2.

Finally we consider the η = 3 case in which all the families possess KK
tower. In these models the region for which m1/2 . 750 GeV is always
excluded for any value of tanβ. For tanβ . 30 there is only a very small
region in which the neutralino is not the LSP, namely for m0 and m1/2

quite null. For higher values of tanβ there is another region in which the
neutralino is not the LSP together with a region excluded by the EWSB on
the left of the parameter space. The neutralino mass for this kind of models
is lower, mχ . 200 GeV , with respect to the minimal case (left panel of
Fig. 4.11). The neutralino composition is essentially that of a pure bino
except for a region close to the excluded regions in which Zg ≤ 0.1 (right
panel of Fig. 4.11). Once again the relic density is in the right range in the
regions where the neutralino is higgsino or mixed-like.

In general non minimal models are disfavoured from the point of view of
the cosmological relic density because the allowed regions are very small.

In the scenario in which the Higgs form an N = 2 matter hypermultiplet
the results about the neutralino composition and the corresponding relic
density remain essentially unchanged. However there are some differences
in the shape of the allowed and excluded regions in the parameter space.
For example in the minimal scenario η = 0 (see Fig. 4.12(a)) the regions
excluded due to EWSB and to the accelerator bounds are smaller than in
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Figure 4.11: Left panel: neutralino isomass contours (m0, m1/2) for the non
minimal scenario η = 3. Right panel: gaugino fraction in the plane (m0,
m1/2) for the non minimal scenario η = 3.

N = 1 case. This holds for all tanβ and A0. Keeping fixed all the other
parameters, there are in general allowed regions in the right part of the
parameter space with m0 > 2500 GeV. The cosmologically allowed regions
get shifted in order to “follow” the regions in which Zg . 0.1. In the non
minimal cases η > 0 the behaviour is the opposite and the parameter space
is in general more constrained, although there are cases in which the region
excluded by the neutralino not being the LSP is absent (see Fig. 4.12(c),(d)).
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(a) Excluded regions in the plane (m0,
m1/2) for the minimal scenario η = 0.
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(b) Gaugino fraction in the plane (m0,
m1/2) for the minimal scenario η = 0.
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(c) Neutralino isomass contour in the
plane (m0, m1/2) for the non minimal
scenario η = 1.
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Figure 4.12: Contour plots for N = 2 Higgs models.
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4.9 Cosmic gamma rays

Neutralino annihilation in the halo may produce a gamma-ray flux, with
both the continuum and the line contributions. We must outline however,
that since the gamma-ray background in the universe is not well understood,
it is difficult to obtain precise measurements, any inference of dark matter
in the halo from gamma-ray observations must come from distinct gamma
ray signatures.

Even if neutralinos, as neutral particles, have no direct coupling to pho-
tons, they can couple to ordinary matter (otherwise annihilations cannot
provide Ωχh

2 . 1). In this way we can have coupling to photons through
loop diagrams. Therefore, there will be a small cross section for direct anni-
hilation of two neutralinos into gamma rays. The typical velocity of neutrali-
nos in the halo (∼ 300km/s) is very small compared with the speed of light.
So, photons produced by annihilation of neutralinos will be monochromatic,
with an energy equal to the neutralino mass. Since, there is no known
astrophysical source capable of producing monochromatic gamma rays in
the range 10÷ 1000 GeV, observation of such gamma rays would provide a
“smoking gun” signal for the existence of neutralinos in the halo.

When neutralinos annihilate to quarks and leptons in the galactic halo,
the hadronic shower will produce gamma rays with a broad energy distri-
bution centered around one tenth of the neutralino mass. However, this
signal cannot be easily distinguished from the background. The gamma-ray
flux produced in neutralino annihilations through π0 decays can be large
but in general lacks distinctive features: it is quite impossible to isolate it
from the background signal. When a pion decays into two γs, the spec-
trum is independent of the pion energy. It is peaked at half of the π0

mass(∼70 MeV) and it is symmetric with respect to this peak (if plotted
in logarithmic variables). The trouble is that this is true both for pions
produced in neutralino annihilations and for those generated by cosmic ray
protons interacting with the interstellar medium (or other possible sources).
When we consider the gamma-ray background induced by cosmic ray, the
neutralino induced gamma-ray flux looks like a secondary flux due to nu-
cleon nucleon interactions; however it can be dominant for energies above 1
GeV or so.

Let us now consider the characteristic angular dependence of the gamma-
ray intensity from neutralino annihilation in the galactic halo. Annihilation
of neutralinos in an isothermal halo with core radius a leads to a gamma
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ray flux of
dΦγ

dΩ
=

σγγv

4πm2
χ

∫ ∞

0
ρ2(r)dr(ψ) (4.31)

where ψ is the angle between the line of sight and the galactic center, r(ψ)
is the distance along that line of sight. The quantity σγγv is the cross
section times the relative velocity v of neutralinos. The total cross section
of neutralinos into gamma rays gives rise to the continuum signal.

We can also make an order of magnitude estimate of the expected gamma
ray flux. For example, for the two photon annihilation cross section arising
from diagrams with slepton loops, we have

σγγv '
α4m2

χ

m4
f̃

(4.32)

where α is a typical coupling constant and mf̃ is the mass of the slepton. In
general the slepton is the heaviest particle in the loop, so its propagator leads
to a suppression m−4

f̃
in the cross section. The factor of α4 in equation (4.32)

comes from the four couplings in a loop diagram (which must be squared
to obtain the cross section) and the factor of m2

χ in the numerator can be
understood on dimensional ground.

For purposes of illustration, let us focus on the case that the neutralino
is a pure bino, which turns out to be the lightest susy particle in much of the
parameter space as we saw in section 4.4. In this case, the relic abundance
turns out to be [71]

ΩB̃h
2 ' 7 · 10−3

(
mq̃

mχ

)2 ( mq̃

100 GeV

)2
(4.33)

Assuming that the universe is flat and that the binos constitute dark matter,
then ΩB̃h

2 ' 0.25 and σγγ ' 3 · 10−31cm3/s. If we insert this estimate into
equation (4.31) we find that these kind of signals lie at the limit of the
observations of current detectors. The standard isothermal halo is broad
and flat, and so we need local density enhancements to raise the gamma ray
signal level.

4.9.1 Sources and fluxes

Following the discussion in [72], the monochromatic gamma-ray flux (in
units of cm−2s−1sr−1) measured in a detector with angular acceptance ∆Ω
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is

Φγ(ψ,∆Ω) = 0.94 · 10−11

(
Nγ vσX0γ

10−29 cm3s−1

)(
10 GeV
Mχ

)2

〈 J (ψ)〉∆Ω ×∆Ω

(4.34)
where ψ is the angle of observation and where Nγ is the number of outgoing
photons: 2 for χχ → γ γ and 1 for χχ → Z γ. Here the dimensionless
function J(ψ) is defined as

J (ψ) =
1

8.5 kpc
·
(

1
0.3 GeV/cm3

)2 ∫
line of sight

ρ2
χ(l) d l(ψ) (4.35)

and its angular average over the resolution solid angle ∆Ω is

〈 J (ψ)〉∆Ω =
1

∆Ω

∫
∆Ω

dΩ′J
(
ψ′
)
, (4.36)

Analogously, the gamma-ray flux with continuum energy spectrum is
obtained by replacing the term in parentheses Nγ vσX0γ with a sum over all
tree level final states. This formalism can be used also to estimate the flux
in the simple case of a single source which can be considered as point-like. If
such a source is in the direction ψ at a distance d, equation (4.36) becomes

〈 J (ψ)〉∆Ω =
1

8.5 kpc
·
(

1
0.3 GeV/cm3

)2

· 1
d2
· 1
∆Ω

∫
d3r ρ2

χ(~r) (4.37)

where the integral is over the extension of the source (which is supposed to
be much smaller than d).

There are many sources of gamma-rays coming from the annihilation of
dark matter particles. An obvious source is the dark halo of our galaxy
and in particular the galactic center. The reason is that it is believed that
the dark matter density profile is peaked towards it, possibly with huge
enhancements close to the central black hole. In particular, the galactic
center is ideal both for ground and space-based gamma-ray telescopes. As
satellite experiments provide a full sky coverage, they will test the hypothesis
of gamma-rays emitted in clumps of dark matter which may be present in
the halo 12. Also fluxes coming from external nearby galaxies can be take
into account.

The DarkSUSY package is suitable to compute the gamma-ray flux from
all these sources. The continuum gamma flux from all annihilation channels
can be computed and may be easily obtained for a given energy or energy
threshold. Two cases are included in the package:

12See for example [73].
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a) assuming that neutralinos are smoothly distributed in the galactic halo
with ρχ equal to the dark matter density profile, in DarkSUSY equa-
tion (4.36) is computed for a specified halo profile and any given ψ
and ∆Ω [72].

b) a portion of dark matter can be in the form of clumps, each of which
is treated as a non-resolvable source in the detector. These clumps are
distributed in the galaxy according to a probability distribution which
can be specified by the user. In DarkSUSY the default choice is that
they follow the dark matter density profile. It is then straightforward
to extend this to all other astrophysical sources. In all the calculation
one must take care of redshift effects and absorption on starlight and
infrared background.

In the previous section we count the possibility of an enhancement, a “spike”
in the vicinity of the galactic center. However, there is no consensus in the
literature, and thus DarkSUSY does not include routines for these effects.

4.9.2 A “smoking gun”: χχ → γγ

A relevant gamma-ray contribution may arise directly (at one-loop level) in
two body final states. Although such photons are much fewer than those
from π0 decays,we saw that they have a much better signature. Neutralinos
annihilating in the galactic halos have a velocity of the order v/c ∼ 10−3;
hence the outgoing photons will then be nearly monochromatic, with energy
of the order of the neutralino mass. Since there is no other known astro-
physical source with such a signature, this detection would be a spectacular
confirmation of the existence of dark matter in form of exotic massive par-
ticles. Unfortunately, the processes are loop-suppressed and to enhance the
flux we probably need a halo with a large central concentration, or clumps
of dark matter to detect such a signal. The branching ratio for neutralino
annihilations into 2γ is typically not larger than 1%, and the largest val-
ues of vσ2γ lies in the range 10−29 ÷ 10−28 cm3s−1. Such values allow the
discovery of this signal in upcoming measurements.

In the DarkSUSY package the full expression for the annihilation cross
section of the process

χ+ χ→ γ + γ (4.38)

is computed at the one loop level, in the limit of vanishing relative velocity
of the neutralino pair, i.e. the case of interest for neutralinos in galactic
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halos. The outgoing photons have an energy equal to the mass of χ:

Eγ = mχ. (4.39)

The total amplitude is implemented as the sum of the contributions obtained
from four different classes of diagrams:

Ã = Ãff̃ + ÃH+ + ÃW + ÃG (4.40)

where the indices label the particles in the internal loops: fermions and
sfermions, charged Higgs and charginos, W-bosons and charginos, and in
the gauge we chose, charginos and Goldstone bosons. For every Ã term, the
real and imaginary parts are computed separately; the full set of analytic
formulas are given in [74, 75, 76], following the notation of [77], where some of
the contributions were first computed. They are rather lengthy expressions
with non trivial dependences on various combinations of parameters in the
MSSM. We didn’t complete the calculation: we reserve it for the next future.
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Appendix A

Approximate solution to the
Boltzmann equation

In this appendix, following [78], we will obtain an approximate solution to
the Boltzmann equation

dn

dt
= −3Hn− 〈σv〉

(
n2 − n2

0

)
(A.1)

To this end, we change variable from the time to the temperature scaled by
the mass of the lepton produced in the annihilation χχ→ l l̄

x = T/M (A.2)

It turns out to be convenient also to scale the equilibrium density by the
photon number density

nγ =
2ζ(3)
π2

T 3 (A.3)

and define the following quantities

G(x) =
n

nγ
G0(x) =

n0

nγ
(A.4)

The equilibrium density can be easy calculated from the formula

n0 = 2
∫
d3p

1
eE/T + 1

(A.5)

valid for any fermion. The factor two is the number of degrees of freedom.
It is then easy to obtain the expressions for G0(x) in two limiting cases. For
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temperatures high in comparison with the heavy lepton mass we can assume
E ' p. From the useful formula

∞∑
n=1

(−)n+1

n3
=

3
4
ζ(3) (A.6)

we conclude that
G0(x) = 3/4 x� 1 (A.7)

In the opposite limit, i.e. for temperatures low in comparison with the mass
we can apply the thermodynamic limit and put E ' M + p2/2M into the
equation (A.5) obtaining

G0(x) '
1

2ζ(3)

√
π

2
1
x3/2

e−1/x x� 1 (A.8)

The lepton freezes out while the universe is radiation dominated: in this
case the dynamics is governed by

H ≡ Ṙ

R
= − Ṫ

T
(A.9)

Using x as independent variable and making use of equations (A.3), (A.4)
and (A.9) we find that the Boltzmann equation (A.1) can be expressed as

dG(x)
dx

= λ[G(x)2 −G0(x)2] (A.10)

where the constant λ is given by

λ =
3ζ(3)
π3

[
5

2πNF

]1/2

MMPl〈σv〉 (A.11)

Here MPl is the Planck mass and NF is the number of massless degrees of
freedom, with each spin state of a boson contributing 1/2 to NF and each
spin state of a fermion contributing 7/16 to NF . When weak interactions
dominate we have a simple estimate for the cross section (' G2

FM
2) and

thus for λ
λ ' 2× 108 M3/GeV 3 (A.12)

Since we expect that M > 1 GeV , we see that λ is larger than 108. The
size of λ allows us to obtain an approximate analytic solution with good
accuracy.

117



A. Approximate solution to the Boltzmann equation

We will be more general as possible, solving a equation in which the
parameter λ is not constant. This corresponds to a cross section which
depends on the temperature, as is the case. The equation then looks like

dG(x)
dx

= λ(x)
[
G(x)2 −G0(x)2

]
(A.13)

The equation (A.13) is a non linear first order Riccati differential equation.
However, it may be converted into a second order linear equation. At this
end we define a new variable

ξ(x) =
1
λ0

∫ x

x0

dx′λ(x′) (A.14)

where λ0 and x0 are constants. When λ is constant, we can set λ = λ0 and
x0 = 0. Then the variable ξ will be simply equal to x.

We now introduce the function f(ξ)

G(x) = − 1
λ0f(ξ)

df(ξ)
dξ

(A.15)

which, in contrast to G(x), satisfies a linear equation. Indeed, substituting
the expression (A.15) into equation (A.13) we obtain[

d2

dξ2
− λ0G0(x(ξ))2

]
f(ξ) = 0 (A.16)

Since λ is very large, we can apply a WKB solution over most of the range
of x. The boundary condition is that G → G0 when x → ∞. The solution
is then given by

f(ξ(x)) ' G0(x)−1/2 exp
[
−
∫ x

dx′λ(x′)G0(x′)
]

(A.17)

The function G(x) has the approximate form

G(x) ' G0(x) +
G′0(x)

2λ(x)G0(x)
(A.18)

where the prime denotes a derivative with respect to x. Since λ is very
large, the number density G(x) will follow the equilibrium density G0(x)
up to the point at which the second term in (A.18) becomes comparable to
the first term. This happens when the temperature T is much less than the

118



A. Approximate solution to the Boltzmann equation

lepton mass (x� 1). So we can use the approximation (A.8), obtaining the
condition

λ(x)
ζ(3)

√
π

2
x1/2e−1/x > 1 (A.19)

for G(x) to be close to G0(x). This is satisfied if x & 1/ lnλ(x). When x
decreases below this value, G(x) moves away from G0(x). Then the WKB
approximation fails at a point

πλ(x0)2

2ζ(3)2
x0e

−2/x0 = 1 (A.20)

The equation (A.20) determines the value of x0, fixing also the constant

λ0 = λ(x0) (A.21)

We note that in this way ξ ' x− x0 for x near x0. Since λ(x0) is very large
1/x0 will be too. In the region near x = 0 we have the following equation[

d2

dξ2
− 1

4x4
0

exp (2ξ/x2
0)
]
f(ξ) = 0 (A.22)

This has a solution in terms of the modified Bessel function

f(ξ) = K0

(
eξ/x2

0

)
(A.23)

which matches the WKB approximation around the transition region. The
argument of the modified Bessel function becomes very small as x→ 0 and
we can apply the approximation

f(ξ) = −ξ/x2
0 + ln 2− γ (A.24)

where γ ' 0, 577 is Euler’s constant. The scaled number density (A.15) is
then given by

G(0)−1 =
∫ x0

0
dxλ(x) + λ0x

2
0(ln 2− γ) (A.25)

Since x0 is very small, we can write this result as

G(0)−1 =
∫ x1

0
dxλ(x) (A.26)

where
1
x1

=
1
x0
− ln 2 + γ (A.27)
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A. Approximate solution to the Boltzmann equation

When λ is constant, the approximation (A.25) is a leading logarithmic ap-
proximation valid to order 1/ ln2 λ. From (A.4), the number density of
leptons is given by

n(t) = nγ(t)G(0) (A.28)

This result is valid down to 1 MeV. Below this temperature, photons are
reheated by electron-positron annihilation, increasing their number density
by a factor of 11/4. Thus, at present we have(

n

nγ

)
0

=
4
11
G(0) ' 6.9

λ
(A.29)

Limit on the mass density implies that particles with mass µ and the density
of 400 per cm3 (just like the photons of the microwave background), have
a mass bounded by µ . 20 eV. This translates into a limit on the mass of
leptons and antileptons

8
11
G(0)M ' 14M

λ
. 20eV (A.30)

Recalling equation (A.12), we obtain the bound

M & 2 GeV (A.31)
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Appendix B

Thermal averaged cross
section

In this appendix we shall deal with the thermal averaging, showing that
equation (4.11) is the most general one. Let |M|2 be the absolute square of
the reduced matrix element for the annihilation of two χ particles, summed
over final spins and averaged over initial spins and particle-antiparticle
states. For particles with incoming momenta p1 and p2 we define

σAv =
1

4E1E2

∫
dΩ|M|2 (B.1)

where dΩ is the Lorentz invariant phase space

dΩ = (2π)4δ4(p1 + p2 −
∑

j

pj)
∏

i

d3pi

(2π)32p0
i

(B.2)

The sum and product are over the outgoing particles. The quantity
∫
dΩ|M|2

is manifestly Lorentz invariant and thus must depend only on the Mandel-
stam variable s = (p1 + p2)2. It turns out to be convenient to introduce

w(s) ≡ 1
4

∫
dΩ|M|2 = E1E2σAv (B.3)

We now suppose that the initial χ particles have an energy distribution
f(E), where E2 = ~p2 +m2

χ. We define the thermal average as

〈σAv〉 ≡
1
n2

0

∫
d3p1d

3p2f(E1)f(E2)
1

E1E2
w(s) (B.4)
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B. Thermal averaged cross section

where n0 =
∫
d3pf(E). The distribution function in the Boltzmann limit is

given by

f(E) =
k

(2π)3
e−E/T (B.5)

Here T is the temperature and k is the number of spin states. Note that (B.4)
does not depend on the overall normalization of f(E). We saw in section 4.2
that the density of the χ particles will trail its equilibrium value until the
freeze out temperature Tf ' mχ/30. We therefore need to know 〈σAv〉 only
at temperatures where we can apply the Boltzmann approximation (B.5)
regardless of the statistics of the particles involved. The integrals in (B.4)
cannot be done analytically. So we expand 〈σAv〉 in powers of x = T/mχ.
Since we are interested in regimes where x . 1/30, we need only take few
terms to obtain a good approximation. We will limit to order x2. We start
by writing

s = (p1 + p2)2 = 2
(
m2

χ + E1E2 − p1p2 cos θ
)

(B.6)

where θ is the angle between ~p1 and ~p2. All the dependence on the angle is
given by this factor. Using the thermodynamic limit (B.5) we can write

〈σAv〉 =
k2

(2π)6n2
0

∫
d3p1d

3p2e
−E1/T e−E2/T 1

E1E2
w(s)

=
k2

8π4n2
0

∫ ∞

0
dp1dp2

p2
1p

2
2

E1E2
e−E1/T e−E2/T

∫ +1

−1
d cos θw(s)

=
k2

8π4n2
0

∫ ∞

mχ

dE1dE2p1p2e
−E1/T e−E2/T

∫ +1

−1
d cos θw(s)(B.7)

where we used pdp = EdE. In this case we chose one of the momenta as
the reference axis. To manage equation (B.7) we change variables in the
following way

Ea = mχ (1 + xya) (B.8)

pa = mχ(2x)1/2

(
ya +

1
2
xy2

a

)1/2

(B.9)

where a = 1, 2 stands for the two incoming particles. We then have

〈σAv〉 = C

∫ ∞

0
dy1dy2

∏
i=1,2

(
yi +

1
2
xy2

i

)1/2

e−yi

∫ +1

−1
d cos θw(s) (B.10)
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B. Thermal averaged cross section

where we introduced the constant

C =
k2m4

χx
3e−2/x

4π4n2
0

(B.11)

to avoid a more cumbersome expression. We can also rewrite the Mandel-
stam variable (B.6) as

s

4m2
χ

= 1+
1
2
x(y1 +y2)+

1
2
x2y1y2−x cos θ

(
y1 +

1
2
xy2

1

)1/2(
y2 +

1
2
xy2

2

)1/2

(B.12)
to expand the integrand of (B.10) in powers of x. We need also to expand
w(s) about s/4m2

χ = 1. The result at order x2 is∫
d cos θw(s) = 2w + xw′(y1 + y2)

+x2

[
w′y1y2 + w′′

(
1
4
y2
1 +

1
4
y2
2 +

5
6
y1y2

)]
(B.13)

where primes denote derivatives with respect to s/4m2
χ and w and its deriva-

tives are all to be evaluated at s/4m2
χ = 1. We must also compute n0, which

appears in the definition of 〈σAv〉. We get

n0 =
∫
d3pf(E)

=
[
k(2πx)−3/2e−1/xT 3

] 2√
π

∫ ∞

0
dy(1 + xy)

(
y +

1
2
xy2

)1/2

e−y

=
[
k(2πx)−3/2e−1/xT 3

](
1 +

15
8
x+

105
128

x2 + . . .

)
(B.14)

and thus
1
n2

0

=
8π3e2/x

k2x3m6
χ

(
1− 15

4
x+

285
32

x2 + . . .

)
(B.15)

The general formula for the averaged cross section is then

〈σAv〉 =
1
m2

χ

[
w − 3

2
(2w − w′)x+

3
8
(16w − 8w′ + 5w′′)x2 + . . .

]
(B.16)

Remembering that mχv
2 = 3T we have v2 = 3x. We then recognize equa-

tion (B.16) as the general expression (4.11) in section 4.3, after the identifi-
cation

a = w/m2
χ (B.17)

b =
(

1
2
w′ − w

)
/m2

χ (B.18)
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Appendix C

Runge-Kutta method

C.1 Generalities

Integrating RG equations by hand is a practically impossible task. So we
must force to use numerical methods. Isasugra package contains a subrou-
tine, called RKSTP, which makes this possible. This subroutine is accessible
form the CERN program library 1. It can solve a system of n ≥ 1 first-order
differential equations

dyi

dx
= fi (x, y1, ..., yn) , (i = 1, 2, ..., n) (C.1)

This system can be integrated by means of Runge-Kutta method, a powerful
numerical method. Before discussing this method, we want to revisit the
general strategy of finding numerical solution. In this appendix we shall
concentrate on the methods of solving a single first-order ordinary (no partial
derivative) differential equation with one initial condition

y′ = f(x, y) (C.2)

y(x0) = y0 (C.3)

The method can be easily generalized to handle systems of simultaneous
first-order equations. Then there is broader application than the simplicity
of the fundamental equation might suggest.

What we really mean by a solution to (C.2) and to (C.3)? Equation (C.2)
is a relation that define a curve in the x− y plane, giving the derivative at

1Visit the link http://wwwasd.web.cern.ch/wwwasd/cernlib/.
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C. Runge-Kutta method

each point on the curve. There is a family of such curves and the condition
(C.3) will specifies which curve is.

A solution is an expression for y in terms of x. To find numerical values
of the function, we simply substitute any particular values of x into the
expression and compute the corresponding values of y.

This method is a so called one-step method. We use information about
the curve at one point and do not iterate the solution. This is a direct
method, which seems to imply less effort, but in practical cases require
more evaluations of the function. A method that theoretically provides a
solution to any differential equation, but is nevertheless of little practical
computational value, is the Taylor expansion. We write the expansion of
the solution y(x), about some point x = xm. In other words, we assume
that the process of solution has proceeded to some specified point, and we
ask what happens in going to the next point

y(x) = ym + y′m(x− xm)

+
y′′m
2

(x− xm)2 +
y′′′m

3!
(x− xm)3 + · · · (C.4)

The difficulty of this method is that it may be hard -in fact, in some cases
impossible- to find derivatives. It is therefore generally impractical from a
computational point of view. Its importance lies in the fact that it provides
a basis for evaluating and comparing methods of practical worth: we have
a yardstick for judging them.

There exists a broad class of techniques known as Runge-Kutta methods.
These methods have three peculiar properties:

1. they are one-step methods: to find ym+1, we need only the information
available at the preceding point (xm, ym);

2. they agree with Taylor expansion up to hp, where p is different for
different methods and is called the order of the method2;

3. they do not require the evaluation of any derivatives of f(x, y), but
only the function itself.

The third property makes Runge-Kutta method more practical than a simple
Taylor expansion. The price we have to pay is to evaluate the function
f(x, y) for more than one value of x and y. It is a price well worth paying
for avoiding derivatives.

2In Isasugra it is employed the fourth order method.
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C.2 Generalized second order Runge-Kutta

Before passing to see the second order Runge-Kutta method, let us first
analyze the Taylor expansion. We will limit to second order. Given two
points xm and xm+1 at a distance h, we have the solution

ym+1 = ym + hf +
h2

2
(fx + ffy) +O(h3) (C.5)

where the notation fx stands for the partial derivative with respect to x
and so on. The formula (C.5) is equivalent to approximate the curve which
represents the solution with a parabola. This is certainly better than the
simple approximation with a straight line, but it can be improved. In the
next section we will see a more powerful method, i.e. the fourth order Runge-
Kutta. Let us now evaluate the function f at x = xm +h and y = ym +hy′m,
which are the first order corrections to the initial values. We obtain

f
(
xm + h, ym + hy′m

)
= f + hfx + hffy +O(h2) (C.6)

where all the derivatives are evaluated at xm, ym. At this point, following
geometrical insights, we can generalize this procedure defining

ym+1 = ym + hΦ (xm, ym, h) (C.7)

where h is the step, defined as the difference xm+1 − xm. The function Φ is
of the form

Φ (xm, ym, h) = a1f (xm, ym) + a2f
(
xm + b1h, ym + b2hy

′
m

)
(C.8)

The coefficients can be deduced by comparing the Taylor expansion up to
second order. Repeating the expansion in (C.6), we obtain

f (xm + b1h, ym + b2hf) = f + b1hfx + b2hffy +O(h2) (C.9)

where, as usual, the functions on the right hand side are evaluated at xm, ym.
Then we can express equation (C.7) as

ym+1 = ym + h (a1f + a2f + h(a2b1fx + a2b2ffy)) +O(h3) (C.10)

We can compare this with the Taylor series (C.5). If terms in hf are to
agree, then we must require

a1 + a2 = 1 (C.11)
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From comparing terms in h2fx, we must have

a2b1 = 1/2 (C.12)

And finally, from comparing terms in h2ffy, we require that

a2b2 = 1/2 (C.13)

Since we have three equations in four parameters, we may choose one of the
parameter arbitrarily, excluding zero perhaps, depending on which parame-
ter is taken as the free one. For instance, let

a2 = ω 6= 0 (C.14)

Then we have

a1 = 1− ω

b1 = b2 =
1
2ω

(C.15)

Collecting together the various pieces we then have

ym+1 = ym + h

[
(1− ω)f (xm, ym)

+ ωf

(
xm +

h

2ω
, ym +

h

2ω
f(xm, ym)

)]
+O(h3) (C.16)

This is the most general second-order Runge-Kutta method. For ω = 1/2
we recover the famous improved Euler method (Heun’s method)

ym+1 = ym +
h

2
f (xm, ym) +

h

2
f (xm + h, ym + hf(xm, ym)) (C.17)

while for ω = 1 we get the so called modified Euler method. The truncation
error for any nonzero choice of ω is proportional to h3. We will enter in
detail on this in another section.

Before concluding this section and going on to higher order Runge-Kutta
method, we may consider a simple example:

y′ = y (C.18)

with the initial condition
y(0) = 1 (C.19)
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The exact solution is y = exp(x). The second-order Runge-Kutta, following
(C.16), is

ym+1 = ym + h

[
(1− ω)ym + ω

(
ym +

h

2ω
ym

)]
(C.20)

which, for any nonzero ω, reduces to

ym+1 = ym

(
1 + h+

h2

2

)
(C.21)

It follows that

ym+1 =
(

1 + h+
h2

2

)m+1

(C.22)

The term in parentheses is the same as the first three terms of the Taylor
expansion for eh. So, as we should expect, we have

ym+1 w eh(m+1) = exm+1 (C.23)

C.3 Fourth order Runge-Kutta

We shall not show the derivation, but content ourselves with stating the
fourth-order formula, which is one of the most commonly used methods of
integrating differential equations. It is so widely used, in fact, that in the
literature of numerical computation it is often referred to simply as “the
Runge-Kutta method”, without any qualification of the order or type.

Let’s view this method in the simple case in which we have only a single
differential equation. Introducing a small parameter h, we set

k1 = hf(x, y) (C.24)

This expression, contrary to the others, is exact to all orders in h. From
this we can construct the second step k2, which is

k2 = hf (x+ h/2, y + hk1/2) (C.25)

The third and fourth step are built in the following way

k3 = hf (x+ h/2, y + hk2/2) (C.26)
k4 = hf (x+ h, y + hk3) (C.27)
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As you can see, these quantities are defined iteratively. Once you know k1

you can construct k2, and so on. The solution is then given by

y(x+ h) = y(x) +
1
6

(k1 + 2k2 + 2k3 + k4) (C.28)

The error per step is proportional to h5. We will discuss this item in detail
in the following section.

Now we want to prove that this method is actually a fourth order method.
We start by reviewing the Taylor expansion. Assuming that the step-length
is h, we have

y(x+ h) = y(x) + hy′(x) +
1
2!
h2y′′(x)

+
1
3!
y′′′(x) +

1
4!
y′′′′(x) +O(h5) (C.29)

Then we calculate all the derivatives, taking into account that f(x, y) is a
two-variables function. The first derivative of y is simply the function f ; if
we differentiate twice we obtain

d2y

dx2
= fx + ffy (C.30)

where we have introduced the common notation fx ≡ ∂f/∂x. With some
algebra we can obtain the expressions for the third derivative

d3y

dx3
= fxx + 2ffxy + f2fyy + fxfy + ff2

y (C.31)

and the fourth one

d4y

dx4
= fxxx + 3fxfxy + 5ffyfxy + 3ffxxy + 3f2fxyy

+ f3fyyy + 3ffxfyy + 4f2fyfyy + fxxfy + fxf
2
y + ff3

y (C.32)

Now that we have the general expression up to fourth order, we can pass
to analyze the Runge-Kutta method. With some efforts, it is possible to
calculate all the functions ki up to fourth order in h. As explained earlier,
the function k1 is exact to all orders. So, let’s start with the function k2:

k2 = hf +
h2

2
(fx + ffy) +

h3

8
(
fxx + 2ffxy + f2fyy

)
+

h4

48
(
fxxx + 3ffxxy + 3f2fxyy + f3fyyy

)
+ · · · (C.33)
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where dots stand for higher order terms. The expressions for the other
functions are more lengthy; for k3 we obtain

k3 = hf +
h2

2
(fx + ffy) +

h3

8
(
fxx + 2ffxy + f2fyy + 2fxfy + 2ff2

y

)
+

h4

48

[
fxxx + 3ffxxy + 3f2fxyy + f3fyyy + 6fxfxy

+ 3fyfxx + 12ffyfxy + 3f2fyfyy + 6ffxfyy + 6f2fyfyy

]
+ · · · (C.34)

while for k4 we have

k4 = hf +
h2

2
(fx + ffy) +

h3

2
(
fxfy + ff2

y + fxx + f2fyy + ffxy

)
+

h4

24

[
3fxxfy + 15f2fyfyy + 18ffyfxy + 6fxf

2
y + 6ff3

y + 12ffxfxx

+ 12fxfxy + 4fxxx + 12ffxxy + 12f2fxyy + 4f3fyyy

]
+ · · · (C.35)

Now we can compare this result with the expression (C.29) obtained by
Taylor expansion. We can see that, putting all these things together, the
Runge-Kutta method is exact up to fourth order in h, as we anticipated at
the beginning.

C.4 Error analysis

In general, the truncation error in a p-th order Runge-Kutta method is
Khp+1, where K is some constant. The derivation of this constant is not
a simple matter. One of the serious drawbacks of Runge-Kutta methods
is indeed the lack of simple means for estimating the error. Without some
measure of the truncation error, it is difficult to choose the proper step size
h. Here we give only a rough rule. If

|k2 − k3|
|k1 − k2|

(C.36)

becomes large (more than a few hundredths), then h should be decreased.
We want to stress that, even if the truncation error is small, a Runge-
Kutta method may produce extremely inaccurate results under unfavorable
conditions. Such erroneous results can arise because small errors (roundoff
or truncation) may become magnified as the solution is carried out for larger
and larger x. For example let us consider the simple equation

y′ = −10y (C.37)
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with the initial condition y(0) = 1. The exact solution is

y(x) = e−10x (C.38)

From an analysis completely analogous to that unfolded for the example
(C.18), we find that a second order method leads to

ym+1 =
(
1− 10h+ 50h2

)m (C.39)

But now notice that the term in parentheses is greater than 1 if h > 0.2.
For large m, therefore, y becomes indefinitely large. The exact solution, on
the other hand, becomes small!

This phenomenon is called partial instability. It is distinguished from
other instabilities by the fact that it depends on h. We conclude stressing
that this partial instability exists for the Runge-Kutta method even when the
exact solution does not decay exponentially, as in the example just discussed.
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