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Introduzione

During the last decades physics has not been so exciting since we have not seen any

fundamental turning point. The main reason is that, if we exclude astrophysical ob-

servation of dark matter and dark energy, we do not have any new key phenomenon

that needs an explanation (here we are not considering the experiment supported neu-

trino oscillation since it has a widely accepted explanation given by endowing neutrinos

with masses and mixing). From one side this generated an enormous growth of the

number of theories (that is a sign of the crisis that we are living in), with the hope

that mathematical consistency could suggest the right way to follow. From another

side, it is believed that increasing the energy of particle scattering, could shed light on

fundamental interaction, giving eventually rise to new particles.

In this framework a special role is played by cosmic ray physics whose beginning is

commonly traced back to the discovery of the increasing of the radiation with altitude

observed by the austrian scientist Victor Hess onboard his balloon flight, in 1912. This

demonstrated the outer-space origin of the radiation exceeding the prediction based on

the know sources of natural background radioactivity. Since then cosmic rays provided

a unique tool to understand the most energetic processes in the universe. The main

component of cosmic rays comes from outside the solar system but they are mostly

(especially for the energy range considered in this work) of galactic origin. We have

to think about cosmic rays as probes for astronomical observation since they travel for

millions of years, trapped by the galactic magnetic field, passing many times through

the galactic disk. While the light rays are weakly influenced by the galactic medium

so that they map regions from which they bring information, cosmic rays yield clues

on the dynamics and matter content of the galaxy.

The interest in cosmic ray physics is threefold because it embraces particle physics,

astrophysics and theoretical physics. In fact upcoming balloon borne and satellite
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experiments are equipped with detectors whose energy range acceptance is compara-

ble with the energies reached by new generation accelerators. Moreover earth based

experiments on cosmic rays are able to detect energies far beyond future accelerator

experiment1. Obviously we have a great gain of information on particle physics coming

from such experiments. Concerning astrophysics, we are directly connected with new

physics coming from dark matter and dark energy that still do not have a compelling

explanation. To explain this puzzle the efforts are mainly focused on the existence of

new types of particle that are able to explain this ”dark-problem”. In order to chose

which particle has to be taken into account, the scientific community has to draw on

theoretical physics. With this general picture in mind, one can argue that the main

target is to exploit the high energy component of cosmic ray spectra to identify even-

tual new physics contribution. Furthermore the recent launch of the satellite borne

experiment PAMELA2, endowed of a variety of specialized detectors that will measure

cosmic ray particles over a large range of energy from 50 MeV to hundreds GeV, lead

us to commit this work to the study of cosmic rays inside this interval of energy in

search of possible new physics. To this end it is necessary to disentangle the standard

observations from the non-standard ones that requires a certain degree of knowledge

about the standard component of cosmic rays. This thesis is dedicated to this last

aspect, namely we try to predict the cosmic ray observations using the standard model

of cosmic ray origin and propagation. Even if no new physics will arise from this line

of research, we confide in a refinement of our models of galactic cosmic rays. Anyhow

this task is rather hard to achieve since it includes several fields of physics and large

uncertainties. First of all we need to know where the galactic cosmic ray came into

life and which is the medium where they propagate. Thus the key information comes

from the branch of astrophysics that gives us the galactic profile, with clear contacts

with astronomy. Secondly concerning propagation we have to include in our treatment

the main effects that occur during the cosmic ray wandering inside the Milky Way. To

study these processes we need to include magnetohydrodynamics and standard nuclear

physics. Each area brings with it a certain amount of uncertainty as for instance the

cross sections that are not completely known or, the galactic magnetic field which do

not show a coherent behavior and so on.

1http://www.auger.org/index.html
2http://pamela.roma2.infn.it/index.php
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There are many ways to treat cosmic ray propagation. The most simple is the

so-called Leaky Box (see appendix B), in which the galaxy is described as a finite

propagation volume with homogeneous density of sources, interstellar gas and cosmic

rays. All the physics is enclosed into only two parameters: the escape length λesc(E)

and the gas density. This model find its limits in the failure to predict unstable cosmic

rays [1]. To understand why the Leaky Box works so well in reproducing stable nuclei,

it is needed to embed it in a more general approach as the Weighted Slab model [2].

The Slab Model is based on the mean density of matter traversed by a particle, the

grammage x, that is assumed to be the same for all nuclei. Since the secondary over

primary ratio are directly related to the grammage by equation involving production

and destruction cross sections, one can easily predict these ratios. The simple slab

approach leads to contradictions since Li-Be-B/C-N-O data give x ∼ 4.8 g cm−2 while

SubFe/Fe data predict x ∼ 0.8 g cm−2. The discrepancy is solved in the context of

the Weighted Slab model where it is introduced a path length distribution G(x) that

weights the probability that a nucleus has crossed the grammage x. The weighted

slab technique infers the path length distribution directly from the data and gives the

chance to link Leaky Box model to more general diffusion models that is the ultimate

and more physical approach to cosmic ray propagation. More precisely it has been

shown that the path length distribution associated to diffusion model can be written

as a sum of path length distributions of the Leaky Box models with different escape

length [3]. Since in the most simple frameworks only the first terms contribute to the

propagation, the wide success of the Leaky Box is explained. Nowadays it is clear that

the most general approach is based on diffusion processes that is equivalent to say that

cosmic rays experience a random walk during their wandering through the galaxy [4].

It is a pity that equations coming from an all-inclusive model are too complex to be

solved analytically in general. Only for particular problems one can solve the equations

in an analytical or semi-analytical way but to predict the flux of all the nuclei taking

into account all the processes in the same frame, one cannot abstract from a numerical

approach. For this reason our approach is based on the public GALPROP model3 (50p

version) that has the advantage to include all the current knowledge about cosmic ray

physics. Anyway many free parameters are present in the GALPROP model that need

to be fixed according to observation. So far no systematic statistical approach has been

3GALPROP model is available at http://galprop.stanford.edu/na home.html
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carried out using the code of the GALPROP model to fix these parameters. The reason

is that this approach is very time consuming. Luckily the progress in computer science

have made a systematic scan of the parameter space affordable, so that we decided to

proceed along this way. Thanks to the hardware enhancement reached nowadays we

were able to perform our analysis with a common desktop, earning many results and

prospects for future refinement.

Among the original contribution we mention that in order to carry out this work

we wrote the following programs and routines:

• GRIDGALPROP: that is a program that automatically scan a user defined pa-

rameter space, activating a GALPROP run for each set of parameters. The key

feature of this program is that it is able to archive the output fitsfiles produced by

GALPROP code and to recognize them for following wider scan of the parameter

space;

• STATVIEW: designed to analyze the models scanned by GRIDGALPROP, cal-

culating statistical quantities by matching with sets of experimental data chosen

by the user;

• BestFitFinder and BestIntervalFinder: that are two routines used to find the

best model and models with a χ2 below a user defined value. In particular the

second routine gives the maximum and minimum value of each parameter among

the models that do not exceed the imposed χ2 value.

The main guideline of this thesis is to obtain results that are completely reproducible.

That is why we spend many pages describing in detail all the approximation and data

that we used. Following this line, the code of the GALPROP model has not been

changed.

The thesis is organized as follows: the first chapter is dedicated to the description

of the journey of a galactic cosmic ray, from its origin to our instruments, with a

survey of each process that occurs during propagation; the second chapter deals with

detailed derivation and analysis of the all-in-one propagation equation that include all

the physics regarding cosmic rays; the third chapter describes the GALPROP model

and finally the fourth chapter collect all the original results that we obtained together

with consequences for future developments.



Chapter 1

Propagation Processes

In this chapter we want to give an answer to the main two questions concerning cosmic

rays that are:

• what are the production sites

• what are the most relevant acceleration processes.

To this end we follow the complete journey of a cosmic ray, starting from its origin until

the detection at earth. Along the way, diffusion, acceleration, spallation and energy

losses are among the most important processes that are interesting for the range of

energy and typology of cosmic rays that we consider in this work. Less important but

still relevant for our purpose are reacceleration, galactic convection, solar modulation

etc. Processes involving gamma rays (like inverse compton etc.) are not considered

since in the present work we focused completely on massive cosmic rays.

1.1 Origin of Cosmic Rays

If we assume that the energy density is the same as the local one (namely ρE ∼
1 eV/cm3) all over the galactic disk, then the power required to supply all the galactic

cosmic rays turns out to be

Pcr =
ρE VD
τR

∼ 5 × 1040 erg

sec
, (1.1)
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where VD is the volume of the galactic disk

VD = π R2 d ∼ π(15 kpc)2(200 pc) ∼ 4 × 1066 cm3 (1.2)

and τR is the residence time of cosmic rays in the disk

τR ∼ 6 × 106 years . (1.3)

The above value of the residence time can be estimated in the context of the leaky box

model (see appendix B) to be

τR =
λesc
ρv

, (1.4)

where the value of λesc which is the mean amount of matter traversed by a particle of

velocity v, is approximately λesc ∼ 10 g/cm2 for a nominal disk density of one hydrogen

atom per cubic centimeter. Even if the age of cosmic rays is longer than the resident

time, a percentage of the lifetime can be spent in the halo, so that what is important

for the above estimation of the source power requirement is the equilibrium state in the

volume VD that is determined by the observed energy density, independently from the

halo size. It has been observed along the centuries that there are about 3 supernovas

per century, that means a mean occurrence of one every 30 years. For 10 M� ejected

from a type II supernova with a velocity v ∼ 5×108cm/s, we figure out the total power

PSN ∼ 3 × 1042 erg/s , (1.5)

that, even if affected by great uncertainties, make supernovas the most plausible source

of galactic cosmic rays. Other possible minor sources that contribute to the observed

spectrum can be identified in pulsars, compact objects in close binary systems and

stellar wind.

The above observation suggests that the main component of primary cosmic ray is

represented by the material ejected during supernova explosion (supernova remnants)

so that the composition of cosmic rays should reflects the products of nuclear reactions

that occur inside the stars. However this is not completely true because the primaries

interact with interstellar medium giving rise to a plenty of other elements. As a conse-

quence, if we compare the elemental abundance of the solar system with the cosmic ray

elemental abundance measured at Earth, then we observe a discrepancy regarding the

elements that are not final products of stellar nucleosynthesis (see fig. 1.1). This means
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Figure 1.1: Elemental abundance in the solar system (points connected by dashed

lines) compared with cosmic rays composition (points connected by solid lines).

that the elements whose abundance exceeds the one measured in the solar system are

produced by spallation and deemed as secondary cosmic rays. In this way it is rather

easy to single out the purely secondary components of cosmic ray with the following

two main groups :

• (2H, 3He) produced by protons and helium;

• (Li, Be, B) produced by carbon and oxygen;

• (Sc, Ti, V, Cr, Mn) produced by iron ,
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where the first group has been added even if not reported in figure 1.1. The importance

of distinguishing between primary and secondary cosmic rays, resides in the possibility

of connecting different type of cosmic ray to different aspects of propagation as we

will deepen in the upcoming sections. The protons are by far the most important
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energy [5] .



1.2 Acceleration and Reacceleration 13

component of cosmic ray flux. They amount to about the 90% of the total, followed

by a 9% of Helium nuclei. Since this main components are primaries, they carry

informations about the source spectrum. In figure 1.2 we can see that for energies that

are enough high to make the solar modulation not effective, the proton differential flux

exhibits a power law behavior that is the same for almost all the cosmic ray

dN

dE
∝ E−(γ+1) , (1.6)

with γ ∼ 1.7 until E ∼ 106GeV and a steepening to γ ∼ 2 above. Such a dependence of

the differential fluxes on the energy is highly constraining for propagation models and

will be used in the forthcoming chapters for the interpretation of a plenty of important

results.

1.2 Acceleration and Reacceleration

The understanding of cosmic ray acceleration is still a subject of intensive studies. At

present the scientific community is mostly focused on ultra high energy cosmic ray

with energies around 1019 eV , where the theory is not completely established. The

range of energies that we encounter in this work will never exceed the TeV (so we are

far from considering ultra high energy cosmic ray). In this interval of energy, there is

a good agreement on the processes of acceleration that occur during the propagation

and it is well known that everything happens inside our galaxy. It is important to

have in mind that only charged particles can be accelerated since all the acceleration

processes are magnetic in nature. In order to give a easy understanding explanation of

the cosmic ray acceleration, we will present in this section both first and second order

Fermi acceleration but while the previous is responsible for the initial acceleration of a

cosmic ray, the last occurs during the cosmic ray propagation (that is why it is called

reacceleration) and is less effective than the other one. However both mechanisms have

some features in common so we believe it is better to put them together in order to

highlite differences and similarities.
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1.2.1 Second Order Fermi Acceleration

One of the milestone of cosmic ray studies is the explanation of an effective mechanism

of particle acceleration suggested by Enrico Fermi in 1949 [6]. The original idea was that

slowly moving magnetic clouds, about 10-100 times more dense than the interstellar

medium and endowed with enhanced ”frozen-in” magnetic field, are responsible for the

reacceleration of cosmic rays. These many light years wide clouds are now believed to

occupy several percent of the interstellar medium. Whenever a fast moving particle

enter such clouds, it experiences random irregularities of the magnetic field that change

its momentum with a resulting gain or loss of energy according to a collision that sees

the particle momentum opposite or in the same direction of the velocity of the cloud,

respectively. Since the frontal collision is more probable, the global effect is a gain of

energy of the whole galactic particles. There are two types of elastic scattering that

end with a reflection of the particle :

• the ”magnetic mirror” where the particle get inside a field flux tube whose field

lines get closer and closer (increasing of the magnetic field gradient) until the

reflection;

• the particle follows a field line that is bent.

Since the magnetic irregularities of the field are random, the multiple scattering inside

the cloud can be considered as a random walk.

Let us explain in detail how the second order Fermi acceleration work. Denoting

E1 the energy in the laboratory frame of a relativistic particle that is entering a slowly

moving magnetic cloud, Lorentz transformations give

E ′
1 = γE1(1 − β cos θ1) , (1.7)

where here and in the following, prime stands for the rest frame of the cloud. The

angle θ1 is between the moving directions of the particle and the cloud. β and γ are

referred to the velocity of the cloud. If we call E ′
2 and θ′2 the exiting energy and angle

in the cloud rest frame, we can go back to the laboratory frame with

E2 = γE ′
2(1 + β cos θ′2) . (1.8)
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Notice that the β sign has been changed. Since we are assuming that we have elastic

scattering, the energy of the particle in the rest frame is conserved

E ′
2 = E ′

1 , (1.9)

so that from (1.7) and (1.8) we get

E2 = γ2E1(1 − β cos θ1)(1 + β cos θ′2) , (1.10)

and
ΔE

E
:=

E2 − E1

E1
=

1 − β cos θ1 + β cos θ′2 − β2 cos θ1 cos θ′2
1 − β2

− 1 . (1.11)

To exploit the random nature of the process, we average equation (1.11) to end with

ΔE

E
=

1 + β2/3

1 − β2
− 1 ≈ 4

3
β2 , (1.12)

where we used the all θ′2 equal probability

dn

d cos θ′2
= const, −1 ≤ cos θ′2 ≤ 1 , (1.13)

that leads to < θ′2 >= 0, and the fact that the angular probability of a particle to enter

the cloud with an angle θ1 is proportional to the relative velocity between particle and

cloud
dn

d cos θ1
=

1

2
(1 − β cos θ1), −1 ≤ cos θ1 ≤ 1 , (1.14)

so that

< cos θ1 >= −β/3 . (1.15)

In conclusion we are left with the net energy gain per collision

dE ∝ β2 · E , (1.16)

which labels this effect as the “second order” one because of the β2 dependence. Equa-

tion (1.16) can be integrated to give us the energy reached by the particle after n

collision that is

E = Ei · eβ2n , (1.17)

where Ei stands for the injection energy, namely the energy with which the particle

enter the cloud. To manifest the time dependence in (1.17) we introduce the average
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time between two collision τc so that we count the number of collision occurring in the

interval of time t that is n = t/τc. Substituting this last expression in (1.17), we are

left with

E(t) = Ei · eβ2t/τc = Ei · et/tc , (1.18)

where tc = τc/β
2. To take into account the surviving or leaking of the particles, we

define tl as a mean time of existence of the particle inside the system. Obviously the

probability that a particle survive until time t is

P (t) = e−t/tl = E
tc/tl
i (Ei · e−t/tc)−tc/tl = k ·E−α , (1.19)

where we used equation (1.18) and we introduced α = tc/tl. Therefore the total number

of particles with energy greater than E, namely the integral form of the differential

energy spectrum, reads

J(E) ∝ E−α , (1.20)

that shows the typical power law behavior. Accordingly, the differential energy spec-

trum is proportional to
dJ

dE
∝ E−(α+1) =: E−γ , (1.21)

where γ is the already mentioned spectral index. The possibility to explain the ob-

served power law followed by the differential flux of cosmic rays is one of the reason

why this kind of acceleration was immediately accepted as a further step toward the

understanding of cosmic ray physics.

However, since the particles experience energy loss by ionization during the path

inside the dense cloud, there exist a threshold energy beyond which this second order

Fermi mechanism do work. More precisely if the energy losses exceed the energy gain

due to the cloud, then the net effect on the particle is not an acceleration. The point

where the gain overtake the loss is such a threshold energy which depends on the

considered particle as the ionization effects do. For instance we have 200 MeV for

protons, 20 GeV for oxygen, and 300 GeV for iron. In other words the ionization is

more effective for heavier ions because of the increasing charge.

1.2.2 First Order Fermi Acceleration

Another similar acceleration mechanism was proposed by Bell [9] and independently

by Blandford and Ostriker [10] in 1978. In this case the propulsion engine is the
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supernova remnant shock which generate a non random boost of the particles. Here

the framework is the same as the first order Fermi acceleration : the cloud is represented

by accelerated gas following a shock front (downstream). This shocked gas moves with

a velocity v = u2−u1 where −u1 is the velocity if the shock front and u2 is the relative

velocity between the shock and the particles in the downstream region. We can apply

again equation (1.11) but this time the angular distribution (1.13) is replaced by the

projection of an isotropic distribution on the shock plane, namely

dn

d cos θ′2
= 2 cos θ′2, −1 ≤ cos θ′2 ≤ 0 , (1.22)

that gives

< cos θ′2 >= −2

3
, . (1.23)

Accordingly even the interval of cos θ1 in (1.14) is changed by the presence of the plane

into −1 ≤ cos θ1 ≤ 0, so that

< cos θ1 >= −2

3
. (1.24)

Averaging equation (1.11), we get

ΔE

E
=

1 + 4
3
β + 4

9
β2

1 − β2
− 1 ≈ 4

3
β , (1.25)

where the approximation is for non relativistic motion of the cloud, namely β << 1.

This time we have a first order dependence on the velocity of the cloud (this gives the

name to the effect) so that this last kind of Fermi acceleration is more effective than

the second order one simply because β is always less than one. Moreover the second

order case can result in loss of energy of the particle for a single encounter (even if

after many encounters there is a net gain) while in the first order case, there is always

an increase of the particle energy for each encounter.

To end this section let us spend a few word on the source spectral distribution that

is generated mostly by the first order mechanism as to say by shock waves. In general

the source spectral distribution can be parameterized as follows

qj(E) = qj0 Q
j(E) (1.26)
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where the j index specifies the nucleus, qj0 take into account the composition and Qj(E)

encloses the energy dependence. Concerning this last term, different forms, namely

Qj(E)

dE
∝ p−γj ,

Qj(E)

dE
∝ E

−γj

tot ,

Qj(p)

dp
∝ p−γj , (1.27)

(where γ is the spectral index), has been considered in [7] where the authors realized

that the best parametrization for the HEAO data in the leaky box framework with the

proper modulation strength, is the first one. This is in agreement with the law directly

derived from the shock acceleration theory [8]. Moreover all the heavy elements appear

to have very nearly the same spectral index γ with a values ranging in the interval

2.39 − 2.44 while for protons γ has to be lowered to values around 2.1.

1.3 Diffusion

The most important effect that characterize all the life of a cosmic ray is the diffusion.

It takes place whenever a spatial gradient in the density of particles N(r, t) occurs to

be different from zero. In order to flatten the density, a current is generated that brings

particles from high density zones to lower density ones

∇N �= 0 → J(r, t) = −D∇N , (1.28)

where D is the diffusion coefficient. Since in general we can write the continuity

equation with a source term Q(r, t)

∂N

∂t
= −∇ · J +Q(r, t) , (1.29)

we immediately get the diffusion equation

∂N

∂t
= ∇ · (D∇N) +Q . (1.30)

The Green’s function associated to (1.30)

G(r, t) =
1

8(πD t)3/2
e−r

2/(4D t) , (1.31)
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gives us the probability for finding a particle that is injected at the origin, at position r

after time t. Using (1.31) one can calculate the mean distance from the galactic plane

< |z| >=
1

8(πD t)3/2

∫
z e−r

2/(4D t) dV = 2
√
Dt/π , (1.32)

and then define the characteristic time to reach an height H as

t ≡ π

4D
H2 ∼ H2

D
. (1.33)

Finally we are able to define the characteristic averaged velocity to escape from a galaxy

whose halo height is H

vD ∼ H/tH ∼ D/H . (1.34)

Let us underline that to obtain the mean distance from the galactic plane, we assumed

the diffusion coefficient to be spatially constant all over the halo and the disk that is

not strictly true.

1.4 Energy Losses

For nucleon propagation in the ISM neutral matter (90% H and 10% He) the relevant

energy losses are due to electromagnetic and nuclear effects according to the type of

interaction. The most relevant processes of the first group are ionization and Coulomb

scattering while for the second we have spallation, fragmentation and radioactive de-

cay. For electromagnetic processes that involve electrons, even bremsstrahlung in the

neutral and ionized medium, as well as Compton and synchrotron losses became im-

portant. Although all these processes are well-known and are often explained during

academic courses, the formulae for the different cases are rather scattered throughout

the literature. A complete derivation of the equations that describe these effects is

beyond the purpose of this work but we think that for the sake of completeness it is

important to explain what are the equations that are used in the following.
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1.4.1 Ionization Losses

The general equation that describes ionization losses for nucleons can be written as

([11], their eq. [4.24])

(
dE

dt

)
I

(β ≥ β0) = −2πr2
ecmec

2Z2 1

β

∑
s=H,He

ns [Bs +B′(αfZ/β)] , (1.35)

where αf is the fine structure constant, ns is the number density of the corresponding

species in the ISM, β0 = 1.4e2/�c = 0.01 is the characteristic velocity determined by

the orbital velocity of the electrons in hydrogen, and

Bs =

[
ln

(
2mec

2β2γ2Qmax

Ĩ2
s

)
− 2β2 − 2Cs

zs
− δs

]
, (1.36)

where γ is the Lorentz factor of the ion. The largest possible energy transfer from the

incident particle to the atomic electron is defined by kinematics

Qmax ≈ 2mec
2β2γ2

1 + [2γme/M ]
, (1.37)

where M � me is the nucleon mass, and Ĩs denotes the geometric mean of all ionization

and excitation potentials of the atom. The values ĨH = 19 eV and ĨHe = 44 eV are

given in [11]. The shell-correction term Cs/zs, the density correction term δs, and

the B′ correction term (for large Z or small β) in equations (1.35) and (1.36), can be

neglected for our purposes.

Concerning electrons, ionization losses has to be treated in a different way. In a

medium made of neutral hydrogen and helium the Bethe-Bloch formula ([13], p.360)

has to be applied

(
dE

dt

)
I

= −2πr2
ecmec

2 1

β

∑
s=H,He

Zsns

[
ln

{
(γ − 1)β2E2

2I2
s

}
+

1

8

]
, (1.38)

where Zs is the nucleus charge, ns is the gas number density, Is is the ionization

potential (we use IH = 13.6 eV, IHe = 24.6 eV, though the exact numbers are not very

important), E is the total electron energy, γ and β = v/c are the electron Lorentz

factor and speed, correspondingly.
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1.4.2 Coulomb Scattering

The Coulomb collisions in a completely ionized plasma are dominated by scattering

off the thermal electrons. The corresponding energy losses are given by ([11], their

eqs. [4.16],[4.22])

(
dE

dt

)
Coul

≈ −4πr2
ecmec

2Z2ne ln Λ
β2

x3
m + β3

, (1.39)

where re is the classical electron radius, me is the electron rest mass, c is the velocity

of light, Z is the projectile nucleon charge, β = v/c is the nucleon speed, ne is the

electron number density in plasma, xm ≡ (3
√
π/4)1/3 × √

2kTe/mec2, and Te is the

electron temperature. The Coulomb logarithm ln Λ in the cold plasma limit is given

by (e.g., [12])

ln Λ ≈ 1

2
ln

(
m2
ec

4

πre�2c2ne
· Mγ2β4

M + 2γme

)
, (1.40)

where � is the Planck constant, M is the nucleon mass, and γ is the nucleon Lorentz

factor. For the appropriate number density, ne ∼ 10−1 − 10−3 cm−3, and total energy

E ∼ 103−104 MeV, the typical value of the Coulomb logarithm ln Λ lies within interval

∼ 40 − 50, instead of usually adopted value 20.

For the electrons, the Coulomb energy losses in the fully ionized medium, in the

cold plasma limit, are described by ([13], p.361)

(
dE

dt

)
Coul

= −2πr2
ecmec

2Zn
1

β

[
ln

(
Emec

2

4πre�2c2nZ

)
− 3

4

]
, (1.41)

where Zn ≡ ne is the electron number density. For an accurate treatment of the

electron energy losses in the plasma of an arbitrary temperature see, e.g., [14] and [15].
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1.4.3 Bremsstrahlung, Compton Effect and Synchrotron Ra-

diation for Electrons

The energy losses due to the bremsstrahlung became relevant for electrons. Considering

electron-proton bremsstrahlung in cold plasma, the effect is ruled by the equation [16](
dE

dt

)
ep

= −2

3
αfr

2
ecmec

2Z2n ·

·
{

8γβ [1 − 0.25(γ − 1) + 0.44935(γ − 1)2 − 0.16577(γ − 1)3] , γ ≤ 2;

β−1 [6γ ln(2γ) − 2γ − 0.2900] , γ ≥ 2.

(1.42)

For the electron-electron bremsstrahlung one can obtain [17; 15](
dE

dt

)
ee

= −1

2
αfr

2
ecmec

2Znβγ∗Qcm(γ∗), (1.43)

where

Qcm(γ∗) = 8
p∗2

γ∗

[
1 − 4p∗

3γ∗
+

2

3

(
2 +

p∗2

γ∗2

)
ln(p∗ + γ∗)

]
,

γ∗ =
√

(γ + 1)/2, p∗ =
√

(γ − 1)/2, (1.44)

and the asterisk denotes center-of-mass variables. The total bremsstrahlung losses in

the ionized gas is the sum (dE/dt)BI = (dE/dt)ep + (dE/dt)ee. A good approximation

gives the expression ([13], p.408)(
dE

dt

)
BI

= −4αfr
2
ecmec

2Z(Z + 1)nE

[
ln(2γ) − 1

3

]
. (1.45)

Bremsstrahlung energy losses in neutral gas can be obtained by integration over

the bremsstrahlung luminosity ([18](
dE

dt

)
B0

= −cβ
∑

s=H,He

ns

∫
dk k

dσs
dk

. (1.46)

A suitable approximation (max 10% error near E ∼ 70 MeV) for eq. (C.11) gives the

combination (cf. equation (1.45))

(
dE

dt

)
B0

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4αfr
2
ecmec

2E

[
ln(2γ) − 1

3

] ∑
s=H,He

nsZs(Zs + 1), γ ≤ 100;

−cE
∑

s=H,He

nsMs

Ts
, γ ≥ 800,

(1.47)



1.4 Energy Losses 23

(see [13], p.386, 409), with a linear connection in between. Here Ms is the atomic mass,

and Ts is the radiation length (TH 
 62.8 g/cm2, THe 
 93.1 g/cm2).

The Compton energy losses are calculated using the Klein-Nishina cross section

([19; 15])
dE

dt
=
πr2

emec
2c

2γ2β

∫ ∞

0

dω fγ(ω)[S(γ, ω, k+) − S(γ, ω, k−)], (1.48)

where the background photon distribution, fγ(ω), is normalized on the photon number

density as nγ =
∫
dω ω2fγ(ω), ω is the energy of the background photon taken in the

electron-rest-mass units, k± = ωγ(1 ± β),

S(γ, ω, k) = ω

{(
k +

31

6
+

5

k
+

3

2k2

)
ln(2k + 1) − 11

6
k − 3

k
+

1

12(2k + 1)
+

+
1

12(2k + 1)2
+ Li2(−2k)

}
− γ

{(
k + 6 +

3

k

)
ln(2k + 1) − 11

6
k+

+
1

4(2k + 1)
− 1

12(2k + 1)2
+ 2Li2(−2k)

}
, (1.49)

and Li2 is the dilogarithm

Li2(−2k) = −
∫ −2k

0

dx
1

x
ln(1 − x) (1.50)

=

⎧⎪⎨
⎪⎩

∑∞
i=1(−2k)i/i2, k ≤ 0.2;

−1.6449341 + 1
2
ln2(2k + 1)−

− ln(2k + 1) ln(2k) +
∑∞

i=1 i
−2(2k + 1)−i, k ≥ 0.2.

The synchrotron energy losses are given by(
dE

dt

)
S

= −32

9
πr2

ec UBγ
2β2, (1.51)

where UB = H2

8π
is the energy density of the random magnetic field.

1.4.4 Inelasting Scattering

Whenever a cosmic ray crosses the thin galactic disk it may undergoes a nuclear inter-

action with an interstellar hydrogen or helium nucleus. This encounter can result in a

inelasting scattering that, from one side, destroys the parent nuclei and, from another

side, creates new cosmic rays (secondaries). The importance of this effect is ruled by



24 Propagation Processes

the corresponding cross sections. In particular the total cross section governs the disap-

pearing of a nucleus while to have informations about the daughter nuclei, we need to

know the branching ratio of each channel. In the first case we talk about fragmentation

while in the second we deal with the so called spallation. Concerning fragmentation we

can insert this effect in the same way we treat decay (see next section) by associating

to cross sections a fragmentation rate λf .

The most important aspect of the spallation is that a nucleus can produce a con-

siderable number of lighter nuclei that are not generated by sources. A way to identify

such secondary cosmic ray nuclei has been already explained in section 1.1 where we

pointed that the most important groups are (2H, 3He) from protons and helium, (Li,

Be, B) from carbon and oxygen; (Sc, Ti, V, Cr, Mn) from iron. To have an idea of

the importance of the spallation just think that we observe the secondary over pri-

mary proportions B/C ∼ SubFe/Fe ∼ 0.1. Notice that, roughly speaking, if the proton

abundance is normalized to one, than in proportion we have 0.1 for helium, 0,01 for

CNO and 0.001 for iron. These proportions hold both for the interstellar medium as

for the cosmic rays. Since the interstellar medium is mainly composed of H and He, it

is clear that the most relevant contribution to secondaries comes from reaction such as

n1 + (p, He) → n2 +X , (1.52)

where n1 stands for some kind of primary nucleus while n2 is referred to secondary

one. However even heavier species may contribute significantly to secondary cosmic

rays through, for instance, the following reaction

n1 + (C, N, O) → n2 +X , (1.53)

but the cross sections involved are not well known and sometimes these processes are

negligible. From (1.52) and (1.53) it follows that the source term for secondary nucleons

can be written as

qj(�r, p) = βc
∑
i

f primi (�r, p) ·
[
σ

(H)
ij (p)nH(�r) + σ

(He)
ij (p)nHe(�r)+

+σ
(CNO)
ij (p)nCNO(�r) + σ

(Fe)
ij (p)nFe(�r)

]
, (1.54)

where f primi is the primaries density of the parent nucleus i, σ
(H)
ij is the cross section

for the production of nucleus j from nucleus i that scatters on a proton (n1 + p →
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n2 +X), σ
(He)
ij is for the production of nucleus j from nucleus i that scatters on helium

(ni+He → nj+X) and so on for the other most abundant elements in the interstellar

medium that are grouped in the last terms (here CNO stands for carbon, nitrogen and

oxygen). One can disregard the i index by introducing the weighted production cross

sections σ
(X)
j =

∑
i f

prim
i σ

(X)
ij for the daughter j-nucleus produced on the X-nucleus

target, so that we are left with

qj(�r, p) = βc ·
[
σ

(H)
j (p)nH(�r) + σ

(He)
j (p)nHe(�r)+

+σ
(CNO)
j (p)nCNO(�r) + σ

(Fe)
j (p)nFe(�r)

]
. (1.55)

For each inelastic scattering channel in (1.55) we have to evaluate the importance

comparing the mean time of each reaction on the target X τ = β cσ
(X)
ij n(X) with

the typical propagation time of a cosmic ray ∼ 20 Myr. So the knowledge of a cross

section immediately gives a estimate of the relevance of a scattering process. To further

emphasize the key role of cross sections let us notice that in nuclear reactions in the

interstellar medium, the kinetic energy per nucleon is approximately conserved so that

all the information are contained in cross sections. The above arguments force to

proceed to a deeper analysis of the methods used to construct high energy cross section

for energy range of interest for cosmic ray physics. Since for a experimental point of

view the determination of total cross sections is a completely different problem with

respect to identification of all the nuclei produced (in the previous case it is enough to

know that the reaction has occurred), we discuss the two cases separately.

Fragmentation Cross Sections

In principle the ideal approach to the determination of cross sections should be based

on fundamental considerations (empirical approach). Anyway none of this models is

able to provide quick and precise evaluation of the required cross sections and this

makes these methods useless for our purpose. More promising is the semi-empirical

approach which is based on simpler considerations but still successful in reproducing

all existing data on nuclear reactions.

The most simple evaluation of the cross section uses an effective radius of the

nucleus σ ∼ πR2
eff ∼ A2/3 that has been slightly modified in [20] to take into account
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the overlap of the two nuclei wavefunction

σinel = π r0

(
A

1/3
target + A

1/3
proj − b0

)2

, (1.56)

where r0 is the nucleon radius and b0 is the overlap parameter. To come to a mod-

ern characterization that is still widely used we have to reach the eighties, when the

asymptotic energy independent form

σinel(mb) = 45A0.7 [1 + 0.016 sin (5.3 − 2.63 lnA)] , (1.57)

has been proposed in [67] for high energy reaction with a proton colliding on any kind

of target. At low energies the high energy cross section (1.57) needs a refinement by

adding a factor as follows

σinel(Ekin) = σinel(mb) ·
[
1 − 0.62 exp(−Ekin/200) sin(10.9Ekin

−0.28)
]
, (1.58)

where the kinetic energy per nucleon Ekin is expressed in MeV/nuc. For light nuclei,

a energy dependent rescaling [σLN/σp](Ekin) has to be introduced. A further enhance-

ment [22] consider the A+A reactions but final formulae that are able to reproduce the

whole data with a 2% accuracy from 6.8 MeV/nuc to 9 GeV/nuc, has been presented

in [23].

In order to construct a general formalism for all reactions, it has been demonstrated

in [24] that the parameterization

σinel = π r2
0

(
A

1/3
proj + A

1/3
targ + δE

)2
(

1 − Rc
B

Erf

)
, (1.59)

is the best fit to most measurements. Here we have several effects introduced by the

term

δE = 1.85S + 0.16
S

E
1/3
rf

+ 0.91
Zp(At − 2Zt)

AtAp
− CE , (1.60)

with:

• S = A
1/3
p A

1/3
t /(A

1/3
p +A

1/3
t ) which is the asymmetrical mass term that is related

to the overlapping volume of the colliding system;

• CE = D[1 − exp(−E/T1)] − 0.292 exp(−E/792) cos(0.229E0.453) stands for the

energy dependence at intermediate and large energies with E as the colliding

kinetic energy and D (related to the system density) as T1, are parameters fixed

once for all reactions;
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• 0.91Zp(At − 2Zt)/(AtAp) for the isotopic dependence.

Moreover we have the Coulomb barrier

B = 1.44
Zp Zt
R

, (1.61)

the radius to evaluate the barrier height

R = rp + rt + 1.2
(A

1/3
p + A

1/3
t )

E
1/3
rf

, (1.62)

Erf is the rest frame kinetic energy per nucleus and r0 = 1. Finally, the parameter Rc

is inserted to describe all the reactions with the same formalism. Let us underline that

the above parameterization has free parameters that need to be fitted on known data.

In some cases we can exploit some data points but in many cases, especially for helium

on light nuclei, there are no available data. So predictions are sometimes based on

purely theoretical ground that exploit the above parameterization, with uncertainties

that run from a 2-5% for protons induced reactions, to 10-20% for reactions involving

helium.

Spallation Cross Sections

For a nuclear physicist, the energies that are relevant for cosmic rays are not of great

interest. This explain why fast procedures to evaluate cross sections for single channels

has been developed by cosmic ray physicists. There are basically two approaches:

• the first one stem from a theoretical motivated work of Silberberg and Tsao [25]

and is based on regularities coming from the mass difference between target and

parent nuclei and the ratios between the number of neutrons and protons in the

daughter nuclei. Even if this approach gives a 35% accuracy with data it is still

preferred to propagate heavy nuclei with Z > 30 whose cross sections are still

unknown;

• the origin of the second approach can be traced back to the work of Webber et al.

[26] whose target has been to develop a parameterization fully based on experi-

mental regularities. Without entering into details, we can say that exploiting the



28 Propagation Processes

fact that the production of different isotopes has similar dependence on energy,

we end with three terms parameterization

σp+Ni(Zi, Ai; Zf , Af ; E) = σ0(Zf , Zi)f1(Zi, Ai, Zf , Af)f2(E, Zf , Zi) , (1.63)

where σ0(Zf , Zi) describes the dependence on the fragment charge, f1(Zi, Ai, Zf , Af )

gives the isotopic distribution of fragments for a given species and the last term

takes into account the energy dependence with a dependence only on the charges.

Notice that this approach holds for nuclei with Z > 3 since light systems require

specific models [27].

1.4.5 Radioactive Decay

Whenever an unstable nucleus loses energy by emitting particles or electromagnetic

waves, we have a radioactive decay that changes the parent nucleus into a daughter

one. For a large population of nuclei we can use a statistical approximation so that

by simple considerations one can argue that the variation of the population dN of

the parent nuclei is proportional to the population itself and to the interval of time

considered

dN = −λN dt , (1.64)

where the minus sign reflect the population decreasing with time passing and λ is called

the decay constant. The solution of (1.64) is easily found to be

N(t) = N0 expt/τ0 , (1.65)

where N0 is the initial population while τ0 = 1/λ is the mean lifetime in the rest frame.

The time needed to half the initial population is given by the half-life t1/2 = ln 2 τ . If

we consider a relativistic moving frame, time intervals are contracted by a γ factor so

that the lifetime becames τ0 → τ = γτ0.

So far the problem seems to be well defined and easy to solve once the half-lifes

associated to each nucleus are give as in [28]. Unfortunately different decay modes

are affected in a different way by the propagation [29] while the half lifetime is often

a combination of all the decay modes. In the context of cosmic ray propagation, the

most relevant decay processes are β-decay and electronic capture where the nucleus

captures a K-shell electron. The β-decay is independent from the environment while
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electronic capture needs an attached electron to occur. At the energy of cosmic rays,

the electrons around the nucleus are completely removed and the interstellar medium

is very poor in e− so that the nucleus lifetime may be much longer than the one we

measure in ordinary laboratory. The importance of unstable elements resides in the

possibility of measuring the propagation time of cosmic rays. Pioneering works on this

subject focused on 10Be ([30],[31],[32]) followed by other nuclei as 26Al [33], 36Cl [34],
54Mn [35]. It turns out that the typical propagation time of a cosmic ray is about

10-20 Myr. This value can be used to select the interesting unstable nuclei for cosmic

ray physics once the γ factor that enhances the lifetime of the nuclei (τ0 → τ = γτ0) is

taken into account. In [36] a complete list of such a nuclei is given. Only three purely

Z Nucleus Daughter tunit1/2 (error)

4 10
4 Be 10

5 B 1.51Myr (0.06)

6 14
6 C 14

7 N 5.73kyr (0.04)

26 60
26Fe (60

27Co
β−→)60

28Ni 1.5Myr (0.3)

Table 1.1: Pure β unstable isotopes (1 kyr < t1/2 < 100Myr) from [36].

β-decay unstable elements have a half-life τ1/2 which lies within the interval 1 kyr-100

Myr as reported in table 1.1. The third one, which is the transition from Fe to Ni,

include the transition from Fe to Co as intermediate step, with a half-life of 1.5 Myr

while transition from Co to Ni is immediate from a cosmic ray point of view (t1/2 ∼ 5

yr). Whenever we deal with a situation like this we can refer to the Co as a ”ghost

nucleus” because it does not need to be propagated having an half life smaller than a

kyr. As pointed before, the propagation affect the density N j(r, z) of β-unstable nuclei

as is derived in [39] where a slight modified expression with respect to [40], is presented

N j(r, z) = exp

(
Vcz

2D

) ∞∑
i=0

Q̄j

Aji

sinh
[
Sj

i (L−z)
2

]
sinh

[
Sj

iL

2

] J0(ζi
r

R
) , (1.66)

that needs a relatively long explanation since we have

Q̄j ≡ qj0Q(E)q̂i +
∑mk>mj

k Γ̃kjNk
i (0) (1.67)

Sji ≡ (V
2
c

D2 + 4
ζ2i
R2 + 4

ΓNj

rad

D
)1/2 Aji ≡ 2hΓ̃totNj + Vc +DSji coth(

Sj
iL

2
) (1.68)
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where Q̄j is the source function resulting from the sum of the first term for the primary

contribution with qj0 being a normalization factor, q̂i defined by

q̂i =
1

πR2J2
1 (ζi)

∫ 1

0
ρq(ρ)J0(ζiρ)dρ∫ 1

0
ρq(ρ)dρ

, ρ ≡ r/R , (1.69)

(Jk(ζiρ) is a order k Bessel function), and a second term for the parent nuclei contribu-

tion; the various Γs are decay rates, Vc is the convection velocity and D the diffusion

coefficient. Equation (1.66) can be used to properly select β-decay nuclei reported in

table 1.2 where 54Mn and 56Ni have been excluded because electronic capture for these

Table 1.2: Pure β unstable isotopes (1 kyr < t1/2 < 100Myr) from a propagation point

of view as presented in [36].

Z Nucleus Daughter tunit1/2 (error)

4 10
4 Be 10

5 B 1.51Myr (0.06)

6 14
6 C 14

7 N 5.73kyr (0.04)

13 26
13Al 26

12Mg 0.91Myr (0.04)

17 36
17Cl 36

18Ar 0.307Myr (0.002)

26 60
26Fe 60

28Ni 1.5Myr (0.3)

nuclei cannot be neglected.

The interesting elements that undergoes purely electronic capture are summed in

table 1.3. Another set of nuclei that are worth to be considered, show a mixed electronic

capture and β decay that means that the half-lives associated to the two channels

are comparable. The complete list of this nuclei is presented in table 1.4. Unstable

nuclei are interesting not only from a propagation time point of view but even to

provide information on whether the cosmic ray acceleration process occurs only over

a short initial time or whether significant acceleration occurs throughout the lifetime

of a cosmic ray. For instance, this approach has been adopted in [38], where the

authors concentrated on the three vanadium isotopes 51V , 50V and 49V that are almost

secondaries . From table 1.3 we see that 51V is enhanced by the decay of 51Cr while
49V is depleted as it decays into 49T i. 50V can be considered as stable. It turned out

that about 25% of 51Cr and 49V produced as secondaries, decayed at interstellar energy
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Table 1.3: Pure electronic capture unstable isotopes from [36].

Z unstable (ec) Daughter tunit.1/2 (error)

4 7
4Be 7

3Li 53.29d (0.07)

18 37
18Ar 37

17Cl 35.04d (0.04)

20 41
20Ca 41

19K 103kyr (4)

22 44
22Ti (44

21Sc
β+→)44

20Ca 49yr (3)

23 49
23V

49
22Ti 330d (15)

24 48
24Cr† (48

23V
β+→)48

22Ti 21.56h (0.03)‡

24 51
24Cr 51

23V 27.702d (0.004)

25 53
25Mn 53

24Cr 3.74Myr (0.04)

26 55
26Fe 55

25Mn 2.73yr (0.03)

27 57
27Co 57

26Fe 271.79d (0.09)

28 59
28Ni§ 59

27Co 80kyr (11)

† This nucleus has an allowed β transition, but contrary to 54Mn and 56Ni, it has not been studied

recently so that we can set it as a pure electronic capture.
‡ In this two-step reaction, the second transition 48V

β+

→48Ti has a half-life greater than the first

one – 15.9735d(0.0025). Nevertheless, this second reaction can be taken as immediate because of

its β nature. We thus can consider this second element as a ghost. Finally, only the first reaction

(48Cr→48V) enters the decay rate.
§ This nucleus has a β decay, but with t1/2 > 100 Gyr thus it is sufficient to take into account the

electronic capture channel.

of ∼400 MeV/nuc with a possible energy gain due to reacceleration of ∼100 MeV/nuc.

Another obvious application of unstable nuclei in the context of cosmic ray physics, is

the evaluation of the halo height. On this line we cite the work [55] of the authors of

the GALPROP program that used the ratio 10Be/9Be to gain informations about the

halo in connection with the Ulysses data [93]. Further improvement was presented in

[73] where the ACE data were added to obtain the more robust estimate zh = 3 − 7

Kpc. Even if one can find many works that exploit isotopic ratio to have clues about

the halo height, in [36] it was noticed that the most probable distance L =
√
Dγτ0
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Table 1.4: Mixed electronic capture-β isotopes from [36] and reference therein.

Z Nucleus Daughter (EC) tunit1/2 (error) Daughter (β) tunit1/2 (error)

13 26
13Al∗ 26

12Mg 4.08Myr (0.15) 26
12Mg 0.91Myr (0.04)

17 36
17Cl 36

16S 15.84Myr (0.11) 36
18Ar 0.307Myr (0.002)

25 54
25Mn† 54

24Cr 312.3d (0.4) 54
26Fe 0.494Myr (0.006)

28 56
28Ni‡ §(56

27Co
β+→)56

26Fe 6.075d (0.020) §(56
27Co

β+→)56
26Fe 0.051Myr (0.022)

§ 56
27Co decays via electronic capture (80%) and β+ (20%), but as the half-life is of the order of two

months, one can consider that the only effective channel is β-decay so that this nucleus vanishes

immediately. Notice that these values are taken from [37]. More recent references [28] or nuclear

charts on the web are ignored because they give either pure β channel or pure electronic capture

channel.

Table 1.5: Propagation distance for unstable nuclei as a function of the energy.

τ0 (Myr) 1 GeV/nuc 10 GeV/nuc
10Be 2.17 220 pc 950 pc
26Al 1.31 110 pc 470 pc
36Cl 0.443 56 pc 250 pc

covered by unstable elements is not enough to make them sensitive to the boundaries

of the propagation volume. This can be seen clearly in table 1.5 where we find the

rest frame lifetimes and corresponding values of L for some β radioactive nuclei at two

different energies as presented in [36].



Chapter 2

Propagation Equation

2.1 A Simplified Diffusion Model

Naively, we can think to the propagation of galactic cosmic rays as the result of the sum

of different processes. Following this idea we can construct the propagation equation

by choosing the physics that we want to include in our model. The relevant processes

are

• Diffusion, as derived in section (1.3)

∂Ni

∂t
= ∇ · (Di∇Ni) , (2.1)

where Ni dε = Ni(t, r, ε) dε is the density number of i-particles at time t and

position r with ε being the energy per nucleon;

• In presence of systematic large-scale motion of the medium such as galactic con-

vection, we have to consider the term

∂Ni

∂t
= −Ni∇ · u , (2.2)

but in the following we assume this effect to be absent;

• Continuous energy losses, introduced collectively by defining, for each particle,

the energy loss per unit time bi = dεk/dt, εk being the energy per nucleon, so that
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by mean of the chain rule and considering that we lose energy by time passing,

we have
∂Ni

∂t
= − ∂

∂εk
(biNi) ; (2.3)

• inelastic scattering with interstellar medium, given by

∂Ni

∂t
= −nvσiNi , (2.4)

where n is the interstellar medium gas density, v is the velocity of the particle

and σi is the inelastic scattering cross section of the nucleus of type i with nuclei

of the interstellar gas;

• production from inelastic scattering of heavier nuclei is included considering

∂Ni

∂t
=
∑
j<i

nvσijNj , (2.5)

where σij is the production cross section of nucleus i from the heavier nucleus j;

• radioactive decays, which is simply

∂Ni

∂t
= −Ni

τi
, (2.6)

where τi is the lifetime of the i-nucleus;

• production from heavier nuclei by radioactive decays, that can be written as

∂Ni

∂t
=
∑
j<i

Nj

τij
, (2.7)

with τij standing for the probability that a nucleus of type j decay into a nucleus

of type i.

All the above processes lead to the simplest propagation equation describing a truly

diffusion model, namely

∂Ni

∂t
= qi + ∇ · (Di∇Ni) − ∂

∂εk
(biNi) − (nvσi +

1

τi
)Ni +

∑
j<i

(nvσij +
1

τij
)Nj , (2.8)

where qi = qi(t, r, εk) is the source function that describes the power and space-time

distribution of point-like sources producing the type i nucleus. In order to decouple
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the diffusion of particles from the fragmentation we introduce an integral form for the

solution

Ni(t, r) =

∫ ∞

0

Ni(x)G(t, r, x)dx , (2.9)

where G(t, r, x) is the path-length distribution function describing the fraction of par-

ticles at time t and point r, which have traversed a layer of matter of thickness x. In

addition we assume that :

• ionization losses are absent;

• the sources are the same for all kind of nuclei but the production of each nucleus

is weighted by the constant coefficient gi

qi(t, r) = giχ(t, r) ; (2.10)

• the diffusion tensor does not depend on the kind of nuclei.

By plugging (2.9) into equation (2.8) we get the system of equations

∂G

∂x
+
∂G

∂t
−∇ · (D∇G) = χδ(x) ,

∂Ni

∂x
= −(nvσi +

1

τi
)Ni +

∑
j<i

(nvσij +
1

τij
)Nk + giδ(x) , (2.11)

provided that the following initial conditions are satisfied

[G(t, r, 0) + χ(t, r, 0)][Ni(0) + gi] = 0 , G(t, r,∞)Ni(∞) = 0 . (2.12)

The first equation of (2.11) describes the diffusion while the second one encodes the

fragmentation and decay and is sometimes considered alone in the so called slab model.

Since this last equation is a first order differential equation, we write the solution as a

sum of exponential

Ni(x) =

i∑
j=1

aije
−(nv σi+

1
τ
)x , (2.13)

where the coefficient aij can be determined by solving recurrence relations obtained by

substituting (2.13) into the starting equation (2.11). After that, one will get recurrence
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relations involving the aij coefficient. Now we substitute back (2.13) inside (2.9) to get

the final solution which is nothing but

Ni(t, r) =

i∑
j=1

aijFj(t, r) , (2.14)

where we introduced the Laplace transformation in the variable (nv σi +
1
τ
), namely

Fj(t, r) =

∫ ∞

0

G(t, r, x)e−(nv σi+
1
τ
)xdx . (2.15)

Thus the particle density is determined by Fi(t, r) that is a solution of the equation

obtained by integrating (2.11) after multiplying each term by e−(nv σi+1/τi), namely

∂Fi
∂t

−∇ · (D∇Fi) + (nv σi +
1

τi
)Fi = 0 , (2.16)

where we used∫ ∞

0

∂G

∂x
e
−(nvσi+

1
τi

)x
= −G(t, r, 0) + nv σi +

1

τi
Fi , G(t, r, 0) = −χ(t, r, 0) . (2.17)

The importance of the function F (t, r) relies in the fact that it plays the role of mo-

mentum generating function for the mean path-length traversed by the particles

< x >=

∫∞
0
xGdx∫∞

0
Gdx

= −
(

d

d(nv σi + 1/τi)
lnFi

)∣∣∣∣
σi=0

. (2.18)

Moreover, it is important to us to note that without using any explicit expression for

the coefficients aij , we can always say that

aij =

l=j∑
l=1

aijlgl , (2.19)

to find from (2.13) an expression for the constants gi defining the nuclear composition

of the sources, in terms of the cosmic rays density

gi =

i∑
j=1

1

Fj

j∑
l=1

aijlNl . (2.20)

Even in this case the introduction of the Laplace transform Fi is crucial. Equation

(2.20) open the way to determine the nuclear composition of cosmic rays at the pro-

duction sites. In particular, if we focus on secondary nuclei (gi = 0) then we can
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determine many propagation parameters once the fluxes of secondary cosmic rays are

known by experiments. In fact we can solve the set of linear equations coming from

(2.20), namely
i∑

j=1

1

Fj

j∑
l=1

aijlNl = 0 , (2.21)

to get information on any propagation parameter that enters in the function Fj .

Even if equation (2.8) offers the possibility to find analytic solutions under a num-

ber of assumption, it is nevertheless not completely physical since it does not include

reacceleration processes occurring in the interstellar medium such like Fermi-type ac-

celeration. In the following paragraphs we face the problem of finding a propagation

equation that include all the known processes occurring in the interstellar medium. To

this end we work in the context of the kinetic theory following the derivation of the

propagation equation given in [41] to which we remind the reader for further explana-

tions.

2.2 The Boltzmann Kinetic Equation

Let us define f(t,x,p) as the density distribution of particles at the time t in the phase

space. Integrating this quantity we have

N(t) =

∫
Γ

dx dp f(t,x,p) =

∫
Γ

dn , (2.22)

which is the probable number of particles at the time t contained in the phase space

volume Γ. Increasing the time by δt, position and momentum of the particles change

according to

δx = ẋ δt =
p

m
δt ,

δp = ṗ δt =
F

m
δt , (2.23)

where F is the external force. The total change of the number of particles in the phase

space infinitesimal volume turns out to be

δdn = dx dp δf(t,x,p) = dx dp

(
∂f

∂t
+ ẋ∇f + ṗ

∂f

∂p

)
δt . (2.24)
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If no collision is supposed to occur, then each particle can be considered as a closed

system. Consequently the Liouville theorem holds, asserting that

δf(t,x,p) = 0 . (2.25)

If we want to take into account the collisions, we are forced to introduce the variation

velocity R of the distribution function due to collisions

dn′ − dn = Rδt , (2.26)

where the rate R has to be specified case by case, following the properties of each

interaction.

The full kinetic equation coming from (2.23) and (2.26) reads

∂f

∂t
+ ẋ∇f + ṗ

∂f

∂p
= R . (2.27)

Since the collisions between particles are always mediated by an interaction, we need

proper arguments to distinguish between forces whose contribution can be included into

the collision term, and forces that are inserted through the ṗ term in (2.27). The two

relevant quantities to be compared in order to solve this distinction, comes out to be

the interaction range and the mean free path of the particles.

For instance, if we consider a gas of neutral atoms or molecules, then we have

interactions whose range extends for distances of the order of atomic dimensions which

are very short if compared to the mean free path. In this case we have a genuine

collision framework and the ṗ term in (2.27) can be neglected if not external field is

applied to the system.

Collisions of this kind are necessarily caotic in nature, being responsible of the

relaxation mechanism that end up with an equilibrium state through the increasing of

entropy.

For the plasma, the situation is completely different. Each particle, being ionized,

carries a charge which is responsible of a long range interaction so that, taken together,

the plasma particles generate a collective macroscopic field whose effect is to reduce the

free mean path to zero. This justify the choice of neglecting collisions whenever we deal

with a sufficiently not rarefied plasma. What happens when we work with a rarefied

plasma? The answer involve the Debye length (see appendix B) which characterizes the
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interaction range of the macroscopic field. Anytime the Debye length is much greater

than the mean distance between particles, we can disregard collisions and write down

the kinetic equation as

∂f

∂t
+ ẋ∇f + e

(
−→E +

ẋ ×−→H
c

)
∂f

∂p
= 0 , (2.28)

where the Lorentz force has been introduced.

2.3 Quasi-Linear Approximation

The standard quasi-linear approximation is based on the assumption that the distri-

bution f(t,x,p) can be expressed as the sum of two terms

f(t,x,p) = f0(p) + f1(t,x,p) , (2.29)

where f0(p) describes a slowly evolving background (it can be considered spatially

uniform if the wavelength of the perturbation is of the order of a few Debye length)

while f1(t,x,p) stands for the fluctuating part which is required to be small with respect

to f0. We also assume to consider an instability such that a continuous spectrum of

waves is excited. Averaging (2.29) over this spectrum the fluctuating part goes to zero

< f1 > = 0 , (2.30)

to leave us with

< f > = f0 , (2.31)

specifying the meaning of f0. The magnetic field undergoes the same treatment so that

−→H =
−→H0 +

−→H1 , (2.32)

where
−→H1 represents the random fluctuating part of

−→H

<
−→H > =

−→H0 , <
−→H1 > = 0 . (2.33)

Moreover, since we are interested in interstellar space which is supposed to be a highly

conducting medium, it is reasonable to assume that the mean value of the electric field−→E over the ensemble of waves, vanishes

<
−→E > = 0 . (2.34)
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The perturbations
−→H1 and

−→E can be thought as a superposition of waves with random

continuous phases so that we can use the Fourier expansion

−→H1 =
∑
α

∫
d3ke−i[w

α(k)t−k·r]−→Hα
1 (k) ,

−→E =
∑
α

∫
d3ke−i[w

α(k)t−k·r]−→E α(k) , (2.35)

where the summation over α is referred to different types of waves propagating into

the plasma. As a consequence of the conditions (2.33) and (2.34) applied to the homo-

geneous maxwell equation

−→∇ ×−→E = −1

c

∂
−→H
∂t

, (2.36)

that, once averaged, leave us with

∂
−→H0

∂t
= 0 , (2.37)

we have
−→∇ ×−→E = −1

c

∂
−→H1

∂t
. (2.38)

This equation, in turn, offers the possibility to express magnetic Fourier coefficients in

terms of electric Fourier coefficients through

−→Hα
1 (k) =

c

wα(k)
[k ×−→E α(k)] , (2.39)

giving us the chance to eliminate one type of coefficient.

2.4 Approximated Solution for the Slowly Varying

Distribution

In order to solve equation (2.28) we want to use a slightly relaxed quasi-linear ap-

proximation where f0 dependence on space and time is not disregarded. The needed

requirements are restricted to the smallness of the fluctuating parts f1 ,
−→E and

−→H1,

if compared with equilibrium values. Our aim is to find a closed differential equation

for f0 where the effects on the slowly varying distribution f0 due to the perturbations−→E and
−→H0 are taken into account. To this end we look for a solution for f1 which
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satisfies a differential equation that is approximated up to linear terms in f1 ,
−→E and−→H1. Then we will use this first order expression for the fluctuating distribution part,

to close a second order averaged differential equation for f0. We begin by inserting

equations (2.29)(2.32) into (2.28)

∂(f0+f1)
∂t

+
(
ẋ · −→∇

)
(f0 + f1) + Ze

[−→E + ẋ
c
×
(−→H0 +

−→H1

)]
∂f0
∂p

+

+Ze
[

ẋ
c
×
(−→H0 +

−→H1

)]
∂f1
∂p

= 0 , (2.40)

then we go on averaging equation (2.40)

∂f0

∂t
+
(
ẋ · −→∇

)
f0 + Ze

(
ẋ

c
×−→H0

)
∂f0

∂p
= −〈Ze

(−→E +
ẋ

c
×−→H1

)
∂f1

∂p
〉 , (2.41)

where (2.30), (2.33) and (2.34) have been used.

So far we included second order term in the r.h.s. of the last equation. If we neglect

all the quadratic terms in f1 ,
−→E and

−→H1, equations (2.40) and (2.41) reduce to

∂(f0+f1)
∂t

+
(
ẋ · −→∇

)
(f0 + f1) + Ze

[−→E + ẋ
c
×
(−→H0 +

−→H1

)]
∂f0
∂p

+

+Ze
(

ẋ
c
×−→H0

)
∂f1
∂p

= 0 ,

∂f0
∂t

+
(
ẋ · −→∇

)
f0 + Ze

(
ẋ
c
×−→H0

)
∂f0
∂p

= 0 . (2.42)

Subtracting the last equation from the previous one, we obtain

∂f1

∂t
+
(
ẋ · −→∇

)
f1 + Ze

(
ẋ

c
×−→H0

)
∂f1

∂p
= −Ze

(−→E +
ẋ

c
×−→H1

)
∂f0

∂p
, (2.43)

that is a closed equation for f1. Notice that the same result can be achieved directly,

without the subtraction procedure, if we assume that f0 = f0(p).

We propose as first order solution of (2.43) the following expression

f1 = −
∫ t

−∞
dt′ Ze

(−→E +
ẋ

c
×−→H1

)
∂f0

∂p
, (2.44)

that can be inserted into the the second order differential equation (2.41) that becomes

∂f0

∂t
+
(
ẋ · −→∇

)
f0 + Ze

(
ẋ

c
×−→H0

)
∂f0

∂p
=

= 〈Ze
(−→E +

ẋ

c
×−→H1

)
∂

∂p

∫ t

−∞
dt′ Ze

(−→E +
ẋ

c
×−→H1

)
∂f0

∂p
〉 , (2.45)
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which is the searched closed differential equation for f0.

Now let us introduce cylindrical coordinates (p‖, p⊥, ϕ) in the momentum space

with

p · −→H0 = p‖H0 . (2.46)

The time scale

Δt ∼ ω−1
H , (2.47)

of the particle motion in a magnetic field is given by the gyrofrequency ωH associated

to the circular motion of a particle of charge Ze induced by the surrounding magnetic

field, namely

ωH =
ZeHc

E
, (2.48)

where E stands for the particle energy

E2 = p2c2 +m2c4 . (2.49)

The “weak turbulence approximation” corresponds to the assumption that the time

scale (2.47) is much smaller than the time scale associated to the frequency of the

random fluctuations of �E and �H1. As a consequence the field fluctuations have no

effect on the circular motion of fast moving particles, allowing a reasonable average

over the angle ϕ so that f0(t, �r, �p) is replaced by

f̄0(t, �r, p‖, p⊥) =
1

2

∫ 2π

0

dϕ < f0(t, �r, p‖, p⊥) > . (2.50)

It can be demonstrated (for more details see [42] and [43] that exploiting the above

approximation, equation (2.45) can be reduced to

∂f̄0

∂t
+ v‖

∂f̄0

∂z
=

= πZ2e2
∑
α

∫
d3k

∞∑
s=−∞

〈[
Eα‖ JsP̂α

‖ + Eα⊥P̂α
⊥ +

Eα⊥
p⊥

(
1 − k‖v‖

ωα(k)

)
− Eα‖
p⊥

v‖
v⊥

s ωH
ωα(k)

Js

]

·

·
[
Eα‖ JsP̂α

‖ + Eα‖ P̂α
⊥
]
· δ (ωα(k) − k‖v‖ − s ωH

)〉
f̄0 , (2.51)
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where

P̂α
‖ =

∂

∂p‖
− s ωH
ωα(k)

1

v⊥

(
v⊥

∂

∂p‖
− v‖

∂

∂p⊥

)
, (2.52)

P̂α
⊥ =

∂

∂p⊥
+

k‖
wα(k)

(
v⊥

∂

∂p‖
− v‖

∂

∂p⊥

)
, (2.53)

Eα⊥ =
1

2

(EαR(k)eiψJs+1 + EαL(k)e−iψJs−1

)
, (2.54)

EαL,R(k) = Eαx (k) ± Eαy (k) , (2.55)

Eα‖ (k) = Eαz (k) , (2.56)

with the last being the component of �Eα projected along H0, ψ the azimutal angle of

the wave vector and Js(k⊥v⊥/ωH) the Bessel function of order s. The appearance of the

δ-function in (2.51) introduce the resonance character of the particle-wave interaction

that is realized by the condition

ωα(k) = k‖v‖ + s ωH , s ∈ Z (2.57)

where the k‖v‖ term takes into account the Doppler effect while s ωH stands for the

cyclotron rotation in the magnetic field H0.

In order to simplify the propagation equation (2.51) we focus our attention on the

effective scattering frequency and wave typology that mostly interact with particles in

the interstellar medium. To this end let us introduce the Larmor radius rH = v/|ωH|
that is the curvature induced by the magnetic field H0. The comparison between the

Larmor radius and the wavelenght tells us if the wave is seen by the particle. If this is

the case then the particle is said to be magnetized. More precisely we have two limiting

cases

• magnetized particle: k⊥v⊥/ωH � 1 ⇒ the armonics involved are

1. s = 0 for �Eα‖ �= 0 ⇒ ωα = k‖v‖;

2. s = ±1 for Eα⊥ �= 0 ⇒ ωα(�k) = k‖v‖ ± ωH ;

• unmagnetized particle: k⊥v⊥/ωH � 1 ⇒ the armonics involved are

s ∼ k⊥v⊥/ωH ⇒ ωα(�k) − k‖v‖ − sωH ∼ ωα(�k) − �k · �v = 0.
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In this last case, where we consider short magnetized waves since λ � 2πrH , the

effective scattering rate of ultrarelatistic particles has an energy dependence E−2 that

is ruled out by the weak energy dependence observed for the escape time

T ∝ E−μ, μ = 0.3 − 0.7 . (2.58)

In the case when λ ∼ 2πrH , each kind of spectrum determines a different energy

dependence of the effective scattering rate so that we are forced to consider separately

different kind of waves.

We restrict ourselves to the case when

vs � vA , (2.59)

where

vs =

√
K Te
m

, (2.60)

is the velocity of sound in the medium with Te being the temperature of thermal

electrons and

vA =
H0√
4πρ

, (2.61)

is the Alfvén velocity, with ρ indicating the density of the medium. With this assump-

tion there are only two type of oscillation that are left in the magnetohydrodynamic

region (ω � ωH):

• Alfvén waves identified by the dispersion relation

ωα(�k) = ±|k‖|vA , (2.62)

and by the following properties

v⊥(�k, �H0)

�E ∈ (�k,H0) , (2.63)

where (�k, �H0) is the plane identified by �k and �H0;

• magnetosonic waves with dispersion relation

ωα(�k) = ±k vA , (2.64)
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and

v ∈ (�k, �H0)

�E⊥(�k,H0) , (2.65)

that is transverse to the previous and with opposite circular polarization while

propagating along the magnetic field.

Since for kbot �= 0 the magnetohydrodynamic waves are strongly damped, we restrict

ourselves to the case where the waves propagate along the regular magnetic field H0,

so that k = k‖, E⊥ �= 0 and the resonance condition 2.57 reduces to

k‖ = ± ωH
ωα(k)/k‖ − v cos θ

≈ ± ZeH0

p c (ωα(k)/kv − μ)
, (2.66)

where in the last step we exploited the relativistic approximation E ∼ p c and v ∼ c;

here μ = cos θ, θ is the angle between �p and �H0 (so that v‖ = v cos θ = vμ), and we

solved with respect to k‖ thinking that ωα(k‖)/k = vA is independent of k. With all

the above approximation taken into account, equation (2.51) becomes

∂f̄0

∂t
+ μ v

∂f̄0

∂z
= π2Z2e2

∑
α

(
ωα(k)

k c

)2
1

p2

(
∂

∂p
+

∂

∂μ

(
kresv

ωα(kres)
− μ

))
×

× p(1 − μ2)W α(kres)

|vμ− ωα(kres)/k|
(
∂

∂p
+

(
kresv

ωα(kres)
− μ

)
1

p

∂

∂μ

)
f̄0 , (2.67)

where the following variable replacement has been performed

(p‖, p⊥) → (p = |�p|, μ) ⇒ f̄0(t, �r, p‖, p⊥) → f̄0(t, �r, p, μ) , (2.68)

and we used

kres =

∣∣∣∣Z eH0

p c μ

∣∣∣∣ =
1

rH |μ| , (2.69)

together with the energy density of waves of type α, namely W α(k), assumed to be

not dependent on phase and polarization. Let us notice that the energy of the waves

that we considered is equally parted between the kinetic energy of the particles of the

medium and magnetic field energy∫ ∞

0

dk‖W α(k‖) =
1

4π

∫ ∞

−∞
dk‖

∣∣∣ �Hα
1 (k‖)

∣∣∣2 , (2.70)

in virtue of the approximation vA � v.



46 Propagation Equation

2.5 Diffusion Approximation

As suggested by the term that mostly contribute to (2.67), the effective scattering rate

can be defined by

ναμ := 2π2|ωH |kresW
α(kres)

H2
0

(
1 − ωα(kres)

kresv
μ

)2

≈ 2π2|ωH |kresW
α(kres)

H2
0

, (2.71)

from which we can get the relaxation time needed to estabilish isotropy for the α-type

wave

τrel := (ναμ )−1 ≈ 1

2π2|ωH|
H2

0

kresW α(kres)
. (2.72)

Accordingly the relaxation length is defined as λrel := v (ναμ )−1. The approximation of

weak turbulence ναμ � |ωH| that we assumed, now acquire the explicit form

W α(kres) � H2
0

2π2kres
. (2.73)

In order to further simplify the propagation equation (2.67), we divide the contribution

of the waves propagating along and opposite to the field �H0 by defining the scattering

rates

ν±μ :≈ 2π2|ωH|kresW
±(kres)

H2
0

, (2.74)

where W±(k) are the spectral energies associated to the two propagation directions;

by introducing these rates we are left with

∂f̄0

∂t
+ μ v

∂f̄0

∂z
=

v2
A

p2

(
∂

∂p
p+

v

vA

∂

∂μ

)
1 − μ2

2
ν+
μ

p3

v2

(
∂

∂p
+

v

vA

1

p

∂

∂μ

)
f̄0 +

+
v2
A

p2

(
∂

∂p
p− v

vA

∂

∂μ

)
1 − μ2

2
ν−μ
p3

v2

(
∂

∂p
− v

vA

1

p

∂

∂μ

)
f̄0 , (2.75)

where we exploited again the approximation |ωα(k)/k v| = vA/v � 1. Let us notice

that equation (2.67) tells us that the scattering changes rapidly the angle but slowly

the energy of the particles. This is a consequence of the large value of the factor∣∣∣∣ kresv

ωα(kres)
− μ

∣∣∣∣ ≈ v

vA
� 1 , (2.76)
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that weights the ∂/∂μ term. Therefore, if the anisotropic part of the distribution is

large enough to satisfy the condition

f̄0 − f̂0 � f̂0
vA
v
, (2.77)

where f̂0 is the mean value of f̄0 over the angles

f̂0 =
1

2

∫ 1

−1

dμ f̄0 , (2.78)

then it is reasonable to neglect the energy change of the particle in favor of the an-

gular diffusion. In other words if the time intervals considered are large enough, then

the distribution can be assumed almost isotropic. Since in the following we want to

move to the diffusion approximation framework, namely we consider time intervals and

distances such that

Δt� τrel , Δx � λrel , (2.79)

respectively, the expansion

f̄0 = f̂0 + δf(μ) , δf(μ) � f̂0 , (2.80)

is justified. At this point we proceed by substituting (2.80) in (2.75), keeping only the

leading terms (remember that δf � f̂0)

μ v
∂f̂0

∂z
=

1

p2

∂

∂μ

vA
v

1 − μ2

2

(
ν+
μ − ν−μ

)
p3 ∂f̂0

∂p
+

∂

∂μ

1 − μ2

2

(
ν+
μ + ν−μ

) ∂

∂μ
δf , (2.81)

and we go on averaging over μ to get

∂

∂μ
δf = − v

ν+
μ + ν−μ

∂f̂0

∂z
− vA

v

ν+
μ − ν−μ
ν+
μ + ν−μ

p
∂f̂0

∂p
, (2.82)

which allows to express δf in terms of f̂0. Turning back to (2.75), we insert (2.80) and

perform an average over μ to obtain

∂f̄0

∂t
+
v

2

∫ 1

−1

dμ μ
∂δf

∂z
=

v2
A

p2

∂

∂p

∫ 1

−1

dμ
1 − μ2

2

(
ν+
μ + ν−μ

) p4

v2

∂f̂0

∂p

+
vA
p2

∂

∂p
p

∫ 1

−1

dμ
1 − μ2

4

(
ν+
μ − ν−μ

) p2

v

∂δf

∂μ
; (2.83)
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by recasting the second term of the left-hand side as follows

v

2

∫ 1

−1

dμ μ
∂δf

∂z
=
v

2

∂

∂z

∫ 1

−1

dμ
1 − μ2

2

∂δf

∂μ
, (2.84)

and using the δf expression that can be derived from (2.82), we end with

∂f̂0

∂t
− ∂

∂z
Dzz

∂f̂0

∂z
+

1

3p2

∂(p3uw)

∂p

∂f̂0

∂z
− ∂uw

∂z

p

3

∂f̂0

∂p
=

1

p2

∂

∂p
p2Dpp

∂f̂0

∂p
, (2.85)

where we defined the effective velocity of the convective particle transport by the waves

uw := vA

∫ 1

0

dμ
3(1 − μ2)

2

ν+
μ − ν−μ
ν+
μ + ν−μ

, (2.86)

the spatial diffusion coefficient along the regular field �H0

Dzz =
v2

2

∫ 1

0

dμ
1 − μ2

ν+
μ + ν−μ

, (2.87)

and the momentum diffusion coefficient that enters in the stochastic acceleration term

Dpp = p2(vA/v)
2

∫ 1

0

dμ2(1 − μ2)
ν+
μ ν

−
μ

ν+
μ + ν−μ

. (2.88)

The particle flux can be written as

Jz =
v

2

∫ 1

−1

dμ μ δf = −Dzz
∂f̂0

∂z
− uw

3
p
∂f̂0

∂p
, (2.89)

with the contribution of a diffusion and a convective term. To finish this paragraph,

let us underline two particular but still relevant cases that greatly simplify equation

(2.85)

• if the energy density propagating in opposite directions is the same, then ν+
μ = ν−μ

so that the convection velocity (2.86) vanishes;

• if the energy density propagates only in one direction, then the diffusion in mo-

mentum space disappears since the coefficient in (2.88) vanishes.
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2.6 Large-Scale Motion of the Medium

So far we restricted ourselves to the case where the medium in which waves propagate

is at rest. Now we want to include a medium that is moving with a velocity �u(�r) � v

whose variation scale is much larger than the mean path length of the particles. It turns

out that the large-scale motion of the medium can be easily introduced in equation

(2.85) provided that the replacements

uw → uz + uw , ωα(k) → ωα(k) + k uz , (2.90)

are performed, where the velocity of the medium along the regular field is assumed to

be

�u =
�H0

| �H0|
uz . (2.91)

This can be seen by transforming the fields associated with the waves propagating in

the medium, from the reference system, moving with velocity uz, to the system at rest.

If this transformation is applied to the starting kinetic equation (2.28), then we realize

that, up to terms of order vA/c and u/c, the magnetic field does not change while the

electric field becomes

�Eα = −1

c

(
ωα(k)

k
+ uz

)(
�H0

| �H0|
× �Hα

1

)
, (2.92)

from which we deduce (2.90). The steps that we followed until equation (2.85), are

still working and in conclusion we have

∂f̂0

∂t
− ∂

∂z
Dzz

∂f̂0

∂z
+

1

3p2

∂[p3(uz + uw)]

∂p

∂f̂0

∂z
− ∂(uz + uw)

∂z

p

3

∂f̂0

∂p
=

1

p2

∂

∂p
p2Dpp

∂f̂0

∂p
.

(2.93)

Accordingly the particle flux is replaced by

Jz = −Dzz
∂f̂0

∂z
− uz + uw

3
p
∂f̂0

∂p
. (2.94)

In addition to the motion of the medium along the field, there could be a component

of the velocity which is ortogonal to the field, usually called drift component. This is

generated by spatial inhomogeneities of the system, by gravitational forces or by the

action of the electric field �E0⊥ �H0. We consider the case of drift

�u⊥ = c
�E0 × �H0

| �H0|2
, (2.95)
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that is generated only by the slowly changing electric field (u⊥ � v)

�E0 =
1

c

(
�H0 × �u⊥

)
, (2.96)

which does not contribute to the particles scattering. The electric field due to drift

(2.96) has to be added to (2.92). In order to introduce the renewed �E0 field, we recall

equation (2.45) that has to be modified as follows

∂f̃0

∂t
+

(
�v · �∇

)
f̃0 +

Ze

c

[
(�v − �u⊥) × �H0

] ∂f̃0

∂p
−

− 〈Ze
(−→E +

�v

c
× �H1

)
∂

∂p

∫ t

−∞
dt′ Ze

(
�E +

�v

c
× �H1

)
∂f̃0

∂p
〉 . (2.97)

The newly added term is proportional to u⊥ that is assumed to be much smaller than

v. This suggests the expansion

f̃0 = f0 + �f , (2.98)

where f0 is the solution of equation (2.45) while �f has to be understood as a small

variation induced by the presence of the drifting. Substituting (2.98) in (2.97) and

keeping only leading terms, we get

Ze

c

(
�v × �H0

) ∂�f
∂p

− Ze

c

(
�u⊥ × �H0

) ∂f0

∂p
, (2.99)

solved by

�f = −u⊥ · p
v

∂f0

∂p
. (2.100)

The diffusion approximation can be applied through

f̃0 = f0 + δf + �f , (2.101)

whose net effect on the propagation equation (2.97) is to introduce tensorial quantities

∂f0

∂t
−∇iDij∇jf0 +

1

3p2

∂[p3(�u+ �uw)]

∂p
· (∇f0) − p

3
∇ · (�u+ �uw)

∂f0

∂p
=

1

p2

∂

∂p
p2Dpp

∂f0

∂p
,

(2.102)

where

Dij = D‖hihj �uw = uw�h , �h =
�H0

| �H0|
, (2.103)
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with D‖ = Dzz. Finally if the magnetohydrodinamic waves equally propagate in both

directions, we have (�uw = 0 and ∂�u/∂p = 0)

∂f0

∂t
−∇iDij∇jf0 + (�u · ∇)f0 − p

3
∇ · �u∂f0

∂p
=

1

p2

∂

∂p
p2Dpp

∂f0

∂p
, (2.104)

which is the propagation equation we are searching for.

2.7 Solar Modulation

When a cosmic ray approach the solar system it undergoes the effect of the solar wind

which lower the cosmic ray flux below 10− 20 GeV. The propagation equation (2.104)

can be applied as well to the solar system interplanetary space provided that some

specific approximations are taken into account. First of all spherical symmetry can

be assumed so that after the introduction of spherical coordinates in (2.104), only the

radial component of the diffusion tensor is left. Moreover reacceleration is absent and

the solar wind is radially directed to the outer space. At the end we are left with

∂f

∂t
− 1

r2

∂

∂r

(
r2Drr

∂

∂r
f

)
+ ur

∂f

∂r
− 1

r2

∂

∂r

(
r2ur

) p
3

∂f

∂p
= 0 . (2.105)

Gleeson and Axford ([44]) showed that it is possible to solve analytically the differential

equation (2.105) under a number of reasonable assumption. We start by saying that the

diffusion coefficient and convective velocity can be assumed to be spatially constants.

Next we consider the steady-state case where ∂f/∂t = 0. Now equation (2.105) can be

written as

Drr
∂2f

∂r2
+

2Drr

r

∂f

∂r
− ur

∂f

∂r
+

2 ur p

3r

∂f

∂p
= 0 . (2.106)

To further simplify the propagation equation (2.106), we estimate the importance of

the first three terms by considering a simple diffusion case where the inward diffusion

flux is balanced by the outward convection flux

Drr
∂f

∂r
= urf , (2.107)

so that in this zero approximation case the cosmic rays density is given by

f = F0 · exp
ur

Drr
r . (2.108)
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Substituting (2.108) in (2.106) we realize that the first three terms are of order u2
r

Drr
f ,

2ur

r
f and u2

r

Drr
f , respectively. We conclude that we have to compare ur/Drr with 2/r

associated respectively to first-third terms and second term. Roughly speaking, for

diffusion we have Drr = 1
3
λ v, with v velocity of the particle; therefore the comparison

is between ur/v and λ/r but remember that we assumed ur/v � 1 during the derivation

of the propagation equation. From a quantitative point of view we can say that for 1

GeV protons we have λ ≈ 1AU and v ≈ c, so

ur
c

≈ 1.3 · 10−3 � λ

r
≈ 0.1 − 10 . (2.109)

The considerations above lead to the force-field approximation that neglect the first

and third term in (2.106) to end with

∂f

∂r
+

ur p

3Drr

∂f

∂p
= 0 . (2.110)

Notice that this approximation holds for energies above few hundreds MeV but the

effect became negligible at 10-20 GeV, as will be cleared in the following. At this point

we focus on a particular aspect which is the variation of energy of the flux of cosmic

rays travelling from the heliosphere boundary to the earth. Since we excluded all the

effect that modify the particle density, we can consider curves identified by constant

f , namely curves defined by df/dr = 0. In other words we have to solve the system{
df
dr

= ∂f
∂r

+ dp
dr
∂f
∂p

= 0
∂f
∂r

+ ur p
3Drr

∂f
∂p

= 0
, (2.111)

which gives us
dp

dr
=

ur p

3Drr

. (2.112)

In order to make manifest the dependence of the diffusion coefficient we can decide to

work in the quasi-linear theory, so that Drr becames coordinate independent

Dzz = D0 · βp , (2.113)

that can be inserted in (2.112) to give

β dp =
ur

3D0

dr . (2.114)
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The last step is the introduction of the relativistic energy dE = β · dp in (2.114)

dE =
ur

3D0

dr , (2.115)

that brings us to the final very simple solution

EISM − E(r) = TISM − T (r) = Φ
RISM − r

RISM − 1
, (2.116)

where T (r) is the kinetic energy, the subscript ISM stands for the distance between

the earth and the interstellar medium and the factor (R − 1) has been introduced to

give to the modulation strength

Φ =
ur(RISM − 1)

3D0
, (2.117)

the meaning of the loss of energy from the outer limit to 1 AU as can be seen by setting

r = 1 AU

Φ = TISM − T (1AU) . (2.118)

Let us point that the units that we are using are MeV for the energy, AU for the

distance and consequently MV for the modulation strength. The equation (2.117) is

widely used because of its simplicity in calculating the spectrum of particles at the

earth orbit. On the other hand, one can argue that it is rather simplistic to enclose

the solar modulation problem in one single parameter Φ.
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Chapter 3

The GALPROP Model

Concerning the software used to produce cosmic rays fluxes, our choice fell on the

GALPROP 1 model. Among the reason for this choice we have

• the code that comes with the GALPROP model (hereafter GALPROP) is public

so that without asking or paying anything, everyone is able to check or reproduce

our results

• it is the most physical approach since a real propagation environment and all the

known effects (up to human knowledge) are included

• it has been demonstrated that this code is able to reproduce simultaneously

almost all the data from space missions.

3.1 The Galaxy

The fundamentals of any cosmic ray model reside in the assumptions that we make

on the properties of our galaxy. To have a complete description we take advantage

of different fields of astronomy and astrophysics. In this section we will try to give

an exhaustive description of the galactic frame in GALPROP model focusing on the

parameters that in our work are fixed but in the literature are sometimes different from

ours.

1GALPROP model is available at http://galprop.stanford.edu/na home.html
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3.1.1 Geometry of the Galaxy

GALPROP is designed to treat both two and three spatial dimensional models. We

chose the first option where a cylindrical symmetry is assumed as, for instance, in [40]).

In this framework the galaxy is considered as a denser central disk of thickness 2h where

h is assumed to be 100 pc, surrounded by a cylindrical halo where cosmic rays are still

trapped by the galactic magnetic field. In the central disk are located the sources and

it is the only place where interactions with matter take place. The half height of the

halo is one of the most important parameter defined by the user, usually running in

an interval from few Kpc to ∼ 20Kpc as suggested by previous studies on radioactive

nuclei [45] and distribution of synchrotron radiation [46]. The radial extension of the

halo is fixed to 30Kpc (other models use 20Kpc). Beyond the halo cylindrical box, free

escape of cosmic rays is assumed while inside diffusion and reacceleration are supposed

to work. The solar system is located at 8.5Kpc from the center of the galaxy even if

a distance of 8Kpc comes from [47] and [48].

3.1.2 Supernovae Distribution in the Galaxy

In section 1.1 we argued that supernovae may be a reasonable source of cosmic rays.

Therefore in GALPROP particular attention is dedicated to the supernovae distribu-

tion inside the thin disk that is tuned to agree with EGRET gamma-ray data [49]. The

best distribution parameterization turns out to be

q(r, z) = q0

(
r

R�

)η

e
−ξ r−R�

R� − |z|
0.2 kpc δ(r −Rmax) , (3.1)

where q0 is a normalization constant and η, ξ and Rmax are parameters. We see that

there is a exponential decrease along the galaxy height modulated by 0.2 kpc factor to

take into account the confinement of sources to the disk. A cutoff at Rmax is inserted

via a delta function. Such an r dependence has been already considered for supernovae

remnants in [50] but we fix different parameter values, namely η = 0.5, ξ = 1 and

Rmax = 20 kpc. The galactocentric position of the sun R� is fixed at 8.5 kpc as stated

above. In GALPROP is offered the possibility of introducing point-like supernovae but

we did not consider this option. In addition to the position, the supernovae occurrence

has to be specified. Following what we said in section 1.1, we assumed to have a

supernova event every 104 yr inside a volume of a cubic kpc. Moreover the supernovae
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remnants cosmic ray acceleration is assumed to work for 104 yr. This means that

we have at least one cosmic ray acceleration site every cubic kpc at any time. Let

us mention that in [51] has been suggested that considerable amount of C and O is

accelerated in C- and O- enriched pre-supernovae Wolf-Rayet wind material but this

do not affect our source model since the origine sites still coincide with supernovae

remnants.

3.1.3 Gas Distribution in the Galaxy

The most important component of the interstellar medium gas is hydrogen followed

by helium. The hydrogen is present in the medium in three possible forms: atomic

hydrogen HI, molecular hydrogen H2 and ionized hydrogen HII. A good fit to the

Figure 3.1: A schematic profile of the radial dependence of the three components of

hydrogen as a function of the radius at z = 0 from [55].

atomic hydrogen distribution is parameterized as an exponentially decreasing function

of the halo height and can be represented by

nHI(r, z) = nHI(r)e
−(ln 2)(z/z0(r)) , (3.2)
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where nHI(r) is taken from [52] and represented in figure 3.1 while z0(r) has the form

proposed in [53], namely

z0(r) =

{
0.25 kpc, r ≤ 10 kpc

0.083 e0.11 r kpc, r > 10 kpc.
(3.3)

with a breaking at the galactocentric radius approximately equal to the one of the solar

system. Concerning the molecular hydrogen, the distribution can be found using CO

surveys as in [54]

nH2(r, z) = nH2(r) e
− ln 2·(z/70 pc)2 , (3.4)

where the radial dependence nH2(r) is again reported in figure 3.1. For the last compo-

nent we consider a first term which represents extensive warm ionized gas (similar to

the distribution given by [56]) added to a second component that take into account the

concentration around r = 4 kpc. Thus we have the following parameterization taken

from [57]

nHII(r, z) = 0.025 e−
|z|

1 kpc
−( r

20 kpc)
2

+ 0.2 e−
|z|

0.15 kpc
−( r

2 kpc
−2)

2

cm−3 . (3.5)

Going back to equation (1.39) that describes Coulomb energy losses we have to say

that in order to compute such losses we fixed the temperature of the electrons (that

enters in (1.39) through xm) at Te = 104. Finally the helium distribution in interstellar

medium has been determined exploiting photospheric methods in [58]. It turns out

that the helium follows the hydrogen distribution with a factor He/H = 0.10 ± 0.08.

Our choice fell on the value He/H = 0.11, compatible with the previous estimation.

Another approach [59] predict the local value He/H = 0.08 using helioseismological

methods but there are uncertainties due to the models details and to the extension

to interstellar medium. However, even if the true value is 0.08, the influence of the

discrepancy on the secondary production will not exceed 10%.

3.1.4 Galactic Magnetic Field

The direction and strength of the uniform magnetic field is a key information for

cosmic ray physics because not only it influences the cosmic ray propagation (in par-

ticular synchrotron radiation) but even the trapping of particles around the galaxy
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(consequently the halo height) is directly connected to the magnetic profile. Investiga-

tions on the uniform component of the galactic magnetic field are complicated by the

random component of the field, whose strength exceeds that of the uniform component

(for instance in [60] the non random component is estimated to be ∼ 5μG with a

scale length for fluctuations ∼ 100 pc). Various techniques has been applied to the

determination of the magnetic field. We cite the detailed analysis based on the pulsar

rotation and dispersion measures carried out in [61], where a local field strength of

1.4±0.2 μG and direction θ0 = 88o±5o are found. Some problems arise if one consider

a magnetic model of concentric circular field lines as in [61]. In fact in other galaxies

has been observed that the galactic magnetic field closely follows the spiral configura-

tion. The work presented in [62] develops this spiral-frame line of research which is

based on the large-scale data set on starlight polarization [63] with nearly 7000 stars.

The advantage of this kind of data is that they are free of systematic errors and the

polarization is accompanied by the source location and estimate of extinction. In the

GALPROP model the uniform magnetic field is consistent with the conclusions in [62]

and is parameterized as

B⊥ = 6 e−|z|/5kpc−r/20kpc μG . (3.6)

Random fluctuation are not included in the model.

3.2 Propagation Equation

The propagation of cosmic rays in the GALPROP model is completely based on the

kinetic theory that we explained in chapter 2. However to have contact with the

code, it is important to notice that a change of variable that concerns the cosmic ray

phase space density f(�r, p, t) in propagation equation (2.104) has to be performed.

More precisely we introduce the density per unit of total particle momentum ψ(�r, p, t)

defined by

ψ(�r, p, t)dp =

∫ 1

−1

d cos θ

∫ 2π

0

dϕf(�r, p, t)dp , (3.7)

and we notice that the fourth term in (2.104) can be rewritten as follows

−1

3
p (∇�u) ∂

∂p

(
ψ

p2

)
= −1

3
p (∇�u) ∂

∂p

(
1

p3
· pψ

)
= −1

p
(∇�u)ψ − 1

3p2
(∇�u) ∂

∂p
(pψ) ,

(3.8)
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so that using (3.8), (3.7) and multiplying the whole equation by p2 we end with

∂ψ

∂t
= �∇ · (Dzz

�∇ψ − �uψ) +
∂

∂p
p2Dpp

∂

∂p

1

p2
ψ +

1

3

∂

∂p

[
(�∇ · �u)pψ

]
, (3.9)

where it is assumed that the drift velocity (2.95) is absent so that the diffusion coeffi-

cient only has the diagonal component which is parallel to the regular magnetic field

directed toward the z direction. The z-component of the convection velocity is assumed

to follow a linear increasing with distance from the galactic plane, as suggested by self-

consistent models of cosmic ray-driven magnetohydrodynamic winds as derived in [64]

and [65]. The wind velocity at z=0 is a model parameter but we fixed u(z = 0) = 0.

In general we have u > 0 for z > 0, u < 0 for z < 0, and dV/dz > 0 for all z that

imply a constant adiabatic energy loss. To take into account decay and fragmentation

we use (1.64) that add the two terms −1/τd and −1/τf to the right hand side of (3.9).

Energy losses enter the propagation through a momentum loss rate ṗ. Finally we need

to add a source term s(�r, p) that includes both primary and secondary contribution as

explained in the next section. The complete propagation equation used in GALPROP

is given by

∂ψ

∂t
= s(�r, p)+�∇·(Dxx

�∇ψ−�uψ)+
∂

∂p
p2Dpp

∂

∂p

1

p2
ψ− ∂

∂p

[
ṗψ − p

3
(�∇ · �u)ψ

]
− 1

τf
ψ− 1

τd
ψ .

(3.10)

3.3 Injection Spectrum

The source function distribution for primary cosmic rays has been discussed at the

end of section 1.2.2, where it was explained that the best choice fall on a power law in

momentum

q(E) = q0Q(Ekin) ,
dQ(Ekin)

dEkin
∝ p−γ . (3.11)

Here the flux Q(E) is introduced because it is useful for comparisons with observations

that are usually quoted as a flux. For our purposes we need to find a connection between

(3.11) and the cosmic ray density per unit of total particle momentum ψ(�r, p, t). To

this end we notice that dEkin/dp = β/A where A is the mass number and Ekin is the

kinetic energy per nucleon, so that we can write (3.11) in terms of the momentum

dQ(p)

dp
∝ β

A
p−γ . (3.12)
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Now we go on using the relation between the cosmic ray density and the flux dQ(p) ∝
(c/4π)β s(�r, p)dp with s(�r, p) indicating the proper source term that appears in the

kinetic equation (2.27) to take into account the variation velocity of the distribution

function ψ(�r, p, t) (see the definition in eq. (2.26)). In conclusion we can say that the

injection spectrum enters the propagation equation in the following way

∂ψ

∂t
= s(�r, p) ,

∂s

∂p
∝ p−γ . (3.13)

Since the rigidity ρ = p/Z is the most likely parameter governing the propagation and

escape of particles moving in the galactic magnetic field, it is preferable to replace

equation (3.13) with
∂ψ

∂t
= s(�r, ρ) ,

∂s

∂ρ
∝ ρ−γ , (3.14)

that, in turn, is implemented in GALPROP as ∂s
∂ρ

∝
(
ρ
ρ0

)−γ
to take into account

possible breaking in the injection spectrum at a reference rigidity ρ0.

The secondaries are generated by a source term that enters the propagation equation

as

ssec(�r, p) = β cψprim(�r, p)
[
σ(H)(p)nH(�r) + σ(He)(p)nHe(�r)

]
, (3.15)

where the production cross sections that are relevant for spallation (see section 1.4.4)

are introduced. Here we consider only the production on hydrogen and helium targets,

with the ψprim being the progenitors density and nH , nHe the distribution of hydrogen

and helium in the interstellar medium as given in section 3.1.3.

3.4 Diffusion Coefficients

The spatial diffusion coefficient (2.87) and momentum diffusion coefficient (2.88) have

been deduced for cosmic ray particles that are scattered by random weak hydromagnetic

waves propagating along the regular magnetic field H0. Now we restrict our attention

to a power law energy spectrum in wavenumber k so that wave energy density is

W (k) =
wH2

0L

4π(1 − a)
(kL)(−2+a) , kL ≥ 1 , a = const. , (3.16)

where

w =
4π

H2
0

∫
1/L

W (k)dk , (3.17)
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characterizes the turbulence level being equal to the ratio of magnetohydrodynamic

wave energy density to magnetic field energy density; L is the principal scale of the

turbulence. Moreover we assume that the energy density is the same for both the

waves propagating in opposite directions along the regular magnetic field. This imply,

as we said at the end of section 2.5, that the effective velocity of the convective particle

transport by the wave (2.86) vanishes so that the only contribution to convection comes

from the large movements of the medium that in our case is only along z. Substituting

(3.16) in (2.87) and (2.88) we have

Dzz =
2

3π

(1 − a)

a(2 + a)

vL

w

(rg
L

)a
(3.18)

and

Dpp = p2 v
2
A

vL

2π

(1 − a)(2 − a)(4 − a)

(rg
L

)−a
, (3.19)

where we introduced the particle gyroradius rg = v/|ωH|. Notice that the spatial

diffusion coefficient (3.18) has been reduced of a factor 3 with respect to the local

diffusion coefficient as a consequence of the large-scale wandering of magnetic field lines.

From equations (3.18) and (??) we deduce that there exists the following correlation

between the two coefficient

DppDzz =
4p2v2

A

3a(4 − a2)(4 − a)w
, (3.20)

so that once the expression of the spatial diffusion coefficient is given and the Alfvén

velocity vA is fixed, the momentum diffusion coefficient is determined according to

(3.20). After analyzing all the quantities in (3.18) one can argue that a convenient

form for the spatial diffusion coefficient is

Dzz = βD0(ρ/ρ0)
δ , (3.21)

where ρ is the rigidity, ρ0 is a reference rigidity introduced for an eventual break, D0

is a normalization factor and δ is a free parameter of the model. In conclusion we

reduced the problem of diffusion to two fundamental parameter D0 and δ (plus ρ0 in

case of a breaking) while the reacceleration is connected to diffusion by specifying the

Alfvén velocity vA that is a third fundamental parameter.
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3.5 Specific Models in the GALPROP Frame

Among the working effects in the GALPROP model we can chose to turn off convection

or reacceleration. We consider the cases of diffusion+reacceleration (DR model) and

diffusion+convection (DC model), since these are the minimum combinations which can

reproduce the key observations. Attempts to consider both effects has been strongly

excluded in [66].

Reacceleration provides a natural mechanism for reproducing the energy depen-

dence of the B/C ratio [67; 68; 69]. In particular in [70] it is shown that the Kolmogorov

spectrum that fixes δ = 1/3 for all rigidities, is the best choice to fit the B/C data.

Thus the value δ = 1/3 is often assumed as a reference for fitting secondaries over

primaries. In the DC model a reacceleration has to be simulated through a breaking in

the spatial diffusion coefficient at reference rigidity. We assume that the breaking takes

place at ρ0 = 4GV as suggested in [69]. Other models use a breaking at ρ0 = 1GV but

this is not important because this parameter can be absorbed into the other diffusion

coefficient parameters D0 and δ in (3.21).

The idea of the breaking stems from the results obtained in the past for the leaky-

box model. The connection between the leaky box model and diffusion model is ex-

plicitly shown in [68], for instance. If we consider a diffusion model where sources, gas

and reacceleration are confined in a galactic disk that is much thinner than the halo

and we restrict to stable particles, then the diffusion propagation equation can be re-

duced to the leaky-box propagation equation and there is a direct connection between

the spatial diffusion coefficient and the escape length that characterizes the leaky-box

model, namely

λesc =
ρ0 v hgH

D(p)
, (3.22)

where H is the halo height, hg and ρ0 enter the gas distribution confined to the thin

disk as ρ(z) = 2ρ0hgδ(z). The available data require a path length for the leaky-box

model that presents a break at the reference rigidity

λesc =

{
λ0β g cm−2 at ρ < ρ0 GV

λ0β(ρ/ρ0)
−δ g cm−2 at ρ ≥ ρ0 GV.

(3.23)

Such a breaking has no physical meaning but it makes sense if one notice that one of

the condition to link the leaky-box model to a diffusion model is the confinement of
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the reacceleration to the thin disk. Since this is not strictly true since reacceleration

occurs wherever we have diffusion, the breaking simulates the reacceleration in the halo.

Following this last observation one can argue that the path length (3.23) suggests a way

to reproduce B/C for the DC model where the reacceleration is completely absent. A

possible physical explanation is given in [2] by saying that below a particular rigidity

kinetic diffusion becomes slower than the convective transport in removing particle

from the galaxy and the particle residence time becomes independent of rigidity or

energy. Another attempt to explain such a breaking could be that at low energy the

particles propagate following the magnetic field lines rather than scatter on magnetic

turbulence. Since the magnetic field lines are essentially tangled, such a process can

still behave like diffusion [41]. In conclusion we set a constant value of the diffusion

coefficient Dxx = D0 for the DC model below reference rigidity ρ0 = 4 GV (that means

)and a rigidity dependence as in (3.21), which depends on the parameter δ, above the

reference rigidity. For the DR model we do not include any breaking in the diffusion

coefficient.

Another breaking is often introduced in the injection spectrum to obtain compati-

bility with data on primary spectra of protons and helium. This is our choice for the

DC model but not for the DR one. The existence of an upturn below few GeV/nucleon

is predicted from supernova remnants shock acceleration theory [71]. The explanation

is based on a transition between thermal and non-thermal particle population in the

shock. We set the injection breaking for protons at 9 GV.

The normalization is such that at kinetic energy Ekin = 100GeV the proton flux is

always equal to Φ = 4.90 × 10−9 cm−2sr−1s−1MeV −1. For electron normalization the

flux is set to Φ = 4 × 10−10 cm−2sr−1s−1MeV −1 at Ekin = 34.5GeV .



Chapter 4

A Comprehensive Model of Cosmic

Ray Propagation

This chapter is completely devoted to original results. The main task that we achieved

in the following paragraphs, is to find the set of parameters that better describe the

cosmic rays observation coming from balloon and satellite experiments. As already

pointed out in the introduction, we describe in detail the method that we used, under-

lying all the adopted approximation in order to present a work that can be reproduced

at any time. The range of energy from hundreds of MeV to hundreds GeV, that we

chosen is the more interesting from a propagation point of view. Moreover these ener-

gies contain the interval covered by PAMELA, making this work particularly relevant

in view of a future comparison between theory prediction and observation coming from

this satellite born experiment.

4.1 Strategy of Analysis

The most simple statistical approach to the selection of the best model parameters is a

scan of a parameter grid. At first sight, one can argue that this procedure is very time

consuming since a single GALPROP run takes about twenty five minutes, using our

hardware resources (to produce the right amount of secondaries we set the iteration

number to two, so that each set of parameters takes two GALPROP run). Thus we

were forced to find a way to reduce the time needed to complete the scan. Obviously
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the number of parameters N dramatically influences the time of the scan which follows

a power law in N

Δt = O (
eN
)
, (4.1)

so that it is our priority to reduce the number of parameters. To this end, we first

notice that one of the most important constraint on model propagation is represented

by unstable nuclei because their fluxes are directly connected to the halo height [55].

In fact unstable nuclei with life comparable to τesc, such as isotopes 10Be and 26Al,

can be used as “cosmic ray clocks”. For instance, let us consider the mostly studied
10Be case which is unstable to β-decay with τ ∼ 2.2×106 yrs. In the framework of the

leaky box model, one can argue that if the 10Be will escape before decaying (i.e. decay

will not affect the expected flux), that means τesc ≤ τ10Be, then the observed ratio of

unstable to stable beryllium is comparable with the ratio expected at production from

the ratio of the fragmentation cross sections of the parent nuclei, according to

Nsec

Nprim

=
σP→S

σP

λesc
λP [1 + λesc/λS + τesc/(γτS)]

. (4.2)

On the contrary, if τesc > τ10Be then the measured ratio is much less than its value

at production. These considerations has been applied to show that the containment

volume in the leaky box model extents over the galactic disk embracing the halo. In

particular the ratio 10Be/9Be has been already used in the GALPROP framework [55]

to gain informations about the halo in connection with the Ulysses data [93]. The

resulting halo height interval compatible with measurements was zh = 4 − 12 kpc.

Further developments of this kind of approach were presented in [73] where the ACE

data where exploited to obtain the more robust estimate zh = 3 − 7 kpc. In [74] is

introduced a new evaluation of the production cross sections by the improved Cascade-

Extinction Model code CEM2k together with Los Alamos compilation of all available

data. This last investigation lead to the range zh = 4 − 6 kpc. Other important

estimations come from [75] that predicts zh = 2 − 4 kpc from HEAO-3 and from [76]

that gives zh = 4.9+
−24 kpc.

Using the above argument we can split the halo height parameter from the other,

performing a first stage analysis involving primaries and secondary over primaries ratios

to fix propagation parameters, followed by a second stage where unstable nuclei are

used to understand the halo height for which there is an agreement in the literature
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around a value of 4 kpc. Thus for the first stage we considered this value. Concerning

the parameter range, we were mainly influenced by the theoretical uncertainties claimed

in [66] where precise limits for a reduced chi-squared less than two were obtained (see

table 4.1). All the above consideration finally lead us to chose the values given in table

Model
z

(Kpc)

D0

(cm2/s)
δ γ1 γ2

dVC/dz

(Kms−1

Kpc−1)

dVA

(Km/s)

DC 3-5 (2.3 − 2.7)

×1028

0.48-0.62 2.42-2.50 2.14-2.22 5-7 //

DR 3-5 (5.2 − 6.7)

×1028

0.25-0.36 2.35-2.52 // // 22-35

DRB 3.5-4.5 (5.9 − 6.3)

×1028

0.28-0.36 1.88-2.02 2.36-2.50 // 25-33

Table 4.1: Range of parameters that correspond to DC, DR and DRB models with a

chi-squared less than two for a fit with about 50 B/C data [66].

4.2 for the DC model and in table 4.3 for the DR model. The steps were chosen in

order to match the time required for the simulation with the time at our disposal. It

is worth noting that the analysis can be refined at any time in the future thanks to

the structure of the ad hoc programs (GRIDGALPROP and STATVIEW) without any

loss of the models already analyzed. The amount of sets of parameters scanned for the

DC model turns out to be 7200 for an approximate simulation time of 10 months. On

the other side, for the DR model, we have 2352 sets for a total time of approximately

3.3 months.
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Parameters
D0

(cm2/s)
δ γ1 γ2

dVC/dz

(Kms−1Kpc−1)

Range (2.2 − 2.7)

×1028

0.48-0.62 2.42-2.50 2.14-2.22 5-10

Step 0.1 × 1028 0.02 0.02 0.02 1

Table 4.2: Range of parameters of the DC model analysis.

Parameters
D0

(cm2/s)
δ γ1

dVA

(Kms−1)

Range (5.2 − 6.7)

×1028

0.25-0.37 2.35-2.53 22-36

Step 0.3 × 1028 0.02 0.03 2

Table 4.3: Range of parameters the DR model analysis.

4.2 Chi-Squared Approximations

By definition, the chi-squared with ν degrees of freedom is nothing but a random

variable resulting from the sum of ν Z-variable

χ2
ν =

ν∑
i=1

Z2
i , (4.3)
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where a Z-variable is a gaussian random variable such that

< Z >= 0 , σ2
Z =

1

N − 1

N∑
k=1

(Zk− < Z >)2 = 1 . (4.4)

It is well know that the distribution associated to the χ2
ν turns out to be

D(χ2, ν) dχ2 =
1

2
ν
2 Γ(ν/2)

exp

{
−χ

2

2

}
(χ2)

ν
2
−1dχ2 , (4.5)

and it can be easily proven that the following properties hold

< χ2
ν >= ν ; σ2

χ2
ν

= 2ν ; χ2
ν1+ν2 = χ2

ν1 + χ2
ν2 . (4.6)

It is important to us to define the reduced chi-squared

χ̃2
ν =

χ2
ν

ν
(4.7)

so that the first two of (4.6) reduce to

< χ̃2
ν >= 1 ; σ2

χ2
ν

= 2 . (4.8)

It can be proven that to count the number of degree of freedom associated to the

chi-squared one should pay attention to the dependence between normal variables: if

mathematical relations such as

f1(Z1, Z2, . . . , Zν) = 0

f2(Z1, Z2, . . . , Zν) = 0
...

fk(Z1, Z2, . . . , Zν) = 0 (4.9)

hold, then

χ2 =

ν∑
i=1

Z2
i (4.10)

will be a chi-squared variable with ν −K degrees of freedom.

The chi-squared variable is used to test hypothesis and to determine confidence

intervals. To describe the observed data coming from an experiment, we usually assume
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the hypothesis that a mathematical model is the right one to explain what we see. Since

the measurements are always affected by random and eventually systematic errors,

observation and prediction will never coincide. Thus we are forced to construct a

proper random variable based on the model and observed data. Let us suppose that

such a variable, assuming the hypothesis to be true, is distributed according to a chi-

squared variable with ν degrees of freedom. If we obtain from an experiment the

particular value χ2
obs then we need a test to verify if this value is in agreement with the

distribution D(χ2, ν) in (4.5). If it is so, then it is reasonable that the hypothesis is

true. To quantify the agreement, a confidential level α is chosen (typically 0.5 percent).

If the a priori probability to have a value of the χ2 greater than the observed one χ2
obs,

which is given by

P
(
χ2 > χ2

obs

)
=

1

2
ν
2 Γ(ν/2)

∫ ∞

χ2
obs

exp

{
−χ

2

2

}
(χ2)

ν
2
−1dχ2 , (4.11)

do not exceed the confidence level, than the chosen theory is not expected to describe

what is observed to the α confidence level. In fact P (χ2 > χ2
obs) < α means that

we observed something which has a little probability to be seen under the theoretical

model considered. Otherwise if P (χ2 > χ2
obs) > α, then the data are well described by

the theory. The same test can be performed by matching values of χ2. In fact we can

define χ2
α through the equation

P
(
χ2 > χ2

α

)
=

1

2
ν
2 Γ(ν/2)

∫ ∞

χ2
α

exp

{
−χ

2

2

}
(χ2)

ν
2
−1dχ2 = α . (4.12)

Since P (χ2 > χ2
α) decrease by increasing χ2

α, we can say that

χ2
obs > χ2

α ⇒ P (χ2 > χ2
obs) < α ⇒ theory rejected

χ2
obs < χ2

α ⇒ P (χ2 > χ2
obs) > α⇒ theory accepted . (4.13)

It is worth nothing that sometimes the confidence level is given in terms of number

of σ’s. To avoid misunderstanding let us clarify this misleading approach. When we

perform a single measure of a quantity that experience random fluctuation, we can ask

ourselves if it is compatible with an expected one. The easiest way to answer to this

question is to consider how many σ’s is the distance between the true value xt and the

measured one xm ± σ. The approach is the same as for the χ2 test but this time the
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distribution to consider is the gaussian one. The probability that x falls inside a range

of n-σ’s is given by

P (|x− xt| < nσ) =

∫ nσ

−nσ
g(x)dx =

1√
2πσ2

∫ nσ

−nσ
exp

{
−(x− xt)

2σ2

}
dx . (4.14)

To make contact with what we said before about the χ2 test, we have to consider the

probability that x falls outside the above interval which is

P (|x− xt| > nσ) =
2√

2πσ2

∫ ∞

nσ

exp

{
−(x− xt)

2σ2

}
dx = 1 − P (|x− xt| < nσ) . (4.15)

Again we can fix a confidence level α and associate to it a corresponding nα, solution

of the equation

P (|x− xt| > nασ) = α . (4.16)

If we observe xobs such that |xobs − xt| > nασ it means that

P (|x− xt| > |xobs − xt|) < P (|x− xt| > nασ) = α , (4.17)

so that what we observe does not match what we expect. For instance if α = 0.05

then the corresponding value in terms of σ’s is n0.05 = 1.96. Encoding the confidential

level into nα makes sense only in the case of a single variable but, we can say that for

a given nα we can derive a value of α which, in turn, can be used for the χ2-test. To

this end it is useful to have in mind the table 4.4.

Turning back to the χ2-test, it is left to figure out the explicit expression of the

Z-variables. Following the gaussian single variable case just described, we can define

Zi =
yi − ft(xi)

σyi

(4.18)

where yi is the i-th observed value with associated variance σyi
and ft(xi) is the theoretic

curve. It is clear that if yi is a random variable then (4.18) is a genuine Z-variable that

satisfies the properties (4.4). Finally we are left with the following χ2 expression

χ2 =

ν∑
i=1

(yi − ft(xi))
2

σ2
yi

. (4.19)

Concerning the analysis of cosmic ray spectra, our problem is to compare cosmic ray

flux data coming from balloon and satellite borne experiments (yi in (4.19)) with the
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nα 1 2 3 4 5

α 0.317311 0.045500 0.002700 0.000063 < 10−6

1 − α 0.682689 0.954500 0.997300 0.999937 0.999999

Table 4.4: Confidence levels α in terms of number of σ’s.

GALPROP output fluxes associated to each set of parameters (f(xi) in (4.19)). The

fluxes are obviously function of the energy (xi in (4.19)). The first problem we faced

approaching the χ2 calculation has been that the GALPROP code produces a discrete

flux with a kinetic energy step that can be fixed by the user through the GALDEF

file. Actually, since the fluxes are always given in logaritmic scale, the next step is

calculated by multiplying the previous one by a chosen factor. For our analysis this

Kinetic energy factor is equal to 1.3. In order to figure out the χ2 value, for each given

experimental value of the flux at a certain energy, we interpolated the expected flux

between the two points given by the GALPROP fitsfile. This linear interpolation is

an approximation that could be refined by searching a fitting curve that include all

the data points but this is much harder to implement in the STATVIEW code so we

decided to postpone to future upgrading.

Let us suppose that an experimental point in the (kinetic-energy,flux) plane is

(xexp, yexp) and that this point falls in the kinetic energy range between the fitsfile

points (x1, y1) and (x2, y2). The line passing through the last two points is

y = f(x) =
x1y2 − x2y1

x1 − x2

x+
y1 − y1

x1 − x2

, (4.20)

so that we are left with the Z variable expression that reads

Z =
(yexp − f(xexp))

σexp
=

1

σexp

(
yexp − x1y2 − x2y1

x1 − x2

xexp +
y1 − y1

x1 − x2

)
. (4.21)
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We want to stress that the error bars of the flux data points are always asymmetric.

This is mainly due to systematic errors of the instruments that are used onboard the

spacecrafts, satellites or balloons. This means that we are not dealing with a proper

gaussian distribution but we assume the fluxes to be a measure affected only by random

fluctuation. To this end we consider as the variance the greatest value between the

upper and lower errors, in order to have symmetric error bars even if overestimated.

Concerning the energy bin error, all the graphs that are found in the literature report

the energy bin (as we will), not the proper error bars. In principle inside the energy bin

can be assumed that we have a uniform distribution so that the best value is simply

the mean one, while the error is equal to the measure of the bin divided by the square

root of twelve

δEKin
= ΔEbin/

√
12 . (4.22)

To include the energy error in the analysis one should know the mathematical relation

between the kinetic energy and the flux that is so complex to make this approach not

viable. Another way is to use the curve obtained by the above mentioned fitting pro-

cedure, as the functional relation that links kinetic energy and flux but this introduce

some biasing that should be taken into account. For the sake of simplicity we simply

omit the energy errors from the analysis. The net effect of considering the energy

errors is to weight in a different way the data with the increasing of the energy; more

precisely the low energy measurements (sometimes affected by solar modulation uncer-

tainties) will weight much more than the high energy ones. Disregarding the energy

uncertainties amounts to exclude this effect.

Another approximation that is worth to be mentioned concerns with a possible

biasing between different sets of data. In principle, a supernova remnant produces

cosmic rays of all kind so that a common imprinting could be responsible for a biasing

between different type of cosmic rays. In our opinion this effect is canceled enough

during propagation to consider the measures as independent. This imply that the χ2

can be calculated as a sum of squared Z variable as in (4.18) without including biasing

terms.
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4.3 Experimental Data Selection

One of our main task is to reconcile all the available knowledge about cosmic rays into

a model that is able to reproduce what we observe by the experiments. Following this

Name/Type Φ (MV) Period

ACE/Satellite [77] 325 Aug. ’97 - Apr. ’98

Balloon [78] 350 ?

Balloon[79] 600 3 flights in’76,’77 and ’78

Balloon [80] 600 ?

Balloon [82] 640 Sept. ’73 and May ’74

IMP 8/Satellite [83] 490 ’74-’78

HEAO-3-C2/Satellite [84] 750 from [77] Oct. 17th ’79 - July 12th ’80

HEN/Balloon [85] 800 ’71 and ’72

UNH74 and UNH76/Balloon [86] 625 summer and fall ’74; fall ’76

Balloon [87] 580 Aug. ’73

Balloon [88] 580 Sept. 30th ’72

Balloon [89] 540 Oct. ’76

VOYAGER/Satellite [90] 450 ’76-’94

Table 4.5: Solar modulation strength for B/C data-sets.

line we included all the public data that we found on B/C, Sub-Fe/Fe, protons, helium,
10Be/9Be, 26Al/27Al, 36Cl/Cl and 54Mn/Mn. However behind our data selection there

are precise motivation. For instance the main reason that lead to an extension of the

fitting procedure over the B/C data that is often encountered in the literature, is that

the secondary over primary ratio does not fix the injection of primaries. This is clear if

one consider the flux of primaries that is, roughly speaking, proportional to the injection

spectrum Φi(E) ∼ E−γ modulated by the diffusion that is Φprim(E) ∝ D−1
0 E−(γ+δ).

Therefore the flux of secondaries is proportional to the primary flux which undergoes

diffusion so that Φsec(E) ∝ D−2
0 E−(γ+2δ). We conclude that secondary over primary
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ratios have the following dependence on the model parameters

Φsec(E)/Φprim(E) ∝ D−1
0 E−δ , (4.23)

so that the injection index γ is not influenced by a fitting based on such ratios.

Once the data are chosen, the main problem that is left to solve is the determination

of the solar modulation. Mostly the modulation strength parameter Φ is reported inside

the paper were the data-points coming from an experiment are presented. Since the

Name/Type Φ (MV) Period

ACE/Satellite [77] 325 Aug. ’97 - Apr. ’98

SANRIKU/Balloon [91] 660 May 25th ’89 and ’91

HEAO-3/Satellite [84] 600 Oct. 17th ’79 - July 12th ’80

Table 4.6: Solar modulation strength for SubFe/Fe data-sets.

determination of the proper solar modulation goes beyond the purpose of this work,

we trust the value of Φ whenever it is given in the literature. Sometimes, especially

Name/Type Φ (MV) Period

ACE/Satellite [94] 325 Aug. ’97 - Apr. ’99

VOYAGER/Satellite [95] 500 ’77-’91

ULYSSES/Satellite (26Al/27Al) [81][92] 800 Oct. ’90-’95

ULYSSES/Satellite [93] (36Cl/Cl) 780 Oct. ’90-fall ’97

ULYSSES/Satellite [81] (54Mn/Mn) 840 Oct. ’90- ’95

Table 4.7: Solar modulation strength for isotopic data-sets.

for old publications, the modulation is completely unknown. In these cases we made
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a rough estimation of the modulation using the neutron monitor. More precisely we

used the correlation between the neutron flux and the known values of Φ for precise

period of time to extrapolate a mean value of the modulation relative to the period of

each considered mission. To this end we exploited the “CLIMAX Neutron Monitor”.

The values of the solar modulation strength that we used together with the references,

are listed in tables 4.5, 4.6, 4.8 and 4.7.

Now let us focus our attention on a subtle aspect of the fitting procedure that

we performed. The point is that in the following we will try to treat primaries and

secondary over primary ratios on the same footing even if they affect different aspects

of propagation and accordingly different parameters.

Payload Φ (MV) Period

BESS/Balloon [96] 660 from [98] ’93

BESS/Balloon [97] 600 from [98] July 29th-30th 1998

CAPRICE/Balloon [99] 600 Aug. 8-9 1994

CAPRICE/Balloon [100] 600 May 28-29 1998

Table 4.8: Solar modulation strength for protons and helium data-sets.

To account for this aspect we include more or less the same amount of information

for each set of data. In particular we decided to exclude protons and helium coming

from the AMS experiment because their inclusion tends to favor primaries. Anyway,

since protons and helium fluxes are determined with great precision with respect to

secondary over primaries ratios, our results are mostly influenced by primaries. The

total amount of data-points for the B/C, SubFe/Fe, Protons, helium and isotopic ratios

are respectively 103, 45, 83, 83 and 9. The last comment that is worth to be addressed

here, is that so far we are not sure about the compatibility between data-sets coming

from different experiments. In the literature the authors are used to show a qualitative

check by plotting results coming from different references but it should be pointed out

that it is correct only for kinetic energies above 10 GeV where the solar modulation

does not shift the interstellar flux. To understand the degree of matching below 10
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GeV one should know the right solar modulation associated to each experiment in

order to relate the observation to the interstellar medium where it is possible to carry

out a proper comparison. Obviously this kind of analysis is full of uncertainties and

require a certain degree of bravery to state that an experiment is not aligned with the

other. Anyway no one handled this problem even above 10 GeV, where a comparison

is relatively easy to do since no modulation is working. As a consequence, considering

different experiments without a proper selection leads to somewhat high values of the

χ2 when we try to fit theoretical predictions. This gives rise to an ambiguity because

the incompatibility may be due to a problem pertaining the theoretical assumptions

as well as to experiment results that are not in line with the other ones.
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4.4 Cosmic Ray Fluxes Based on the B/C Data

Fitting the measured B/C ratio is a standard procedure to derive the propagation

parameters. Its importance reside in the entirely secondary origin of boron and in the

measurements that are better than for other ratios (available up to 100 GeV). Moreover

the production cross sections from the main progenitors C-N-O, are better known for

boron than for the Be and Li (the other almost completely secondaries that share the

same parent nuclei).
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Figure 4.1: Best fits of the DC and DR model and data for the secondary over primary

ratio B/C. The fitting has been done considering only B/C ratio.

To have preliminary indications about our parameter space we show the results

that we obtain by a fitting procedure applied to the B/C data. Recent remarkable

B/C based analysis can be found in [66; 101]. Let us remember once again that the

secondary over primary nuclei ratio are sensitive to the value of the diffusion coefficient

and its energy density. A larger diffusion coefficient leads to a lower ratio since the

primary nuclei escape faster from the galaxy producing less secondary and viceversa.
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The best fits are summarized in table 4.9.
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Figure 4.2: Best fits of the DC and DR model and data for the secondary over primary

ratio B/C as in figure 4.1, magnified in the energy range 0.1-35 GeV.

Model −Number
D0

(cm2/s)
δ1 δ2 γ1 γ2

dVC/dz

(Kms−1

Kpc−1)

VA(km/s) χ̃2

DC − 3749 2.5 × 1028 0 0.48 2.5 2.22 10 0 3.79

DR− 1965 6.7 × 1028 0.25 0.25 2.35 2.35 0 32 1.93

Table 4.9: Best models reproducing the B/C data.
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Figure 4.3: Best fit of the DC and DR model and data for the secondary over primary

ratio SubFe/Fe. The fitting has been done considering only B/C ratio.

The comparison with previous results from [66] shed light on the unsuitable deter-

mination of the theoretical uncertainties on which we based our parameter grid. In

fact almost all the parameter touch the limits of the assigned intervals. The reason

for this can be attribute to the enlarged set of data or to the different version of the

GALPROP code but it is more likely that in [66] no grid scan has been performed (in

fact it is not declared the parameter space that they have analyzed and it is reasonable

that they searched for the best fit by a reasonable exploration of the parameters). The

fitting quality is manifest in figure 4.1 and 4.2. For the DR we get a nice fit but we can

not say that we see the same satisfactory agreement for the DC model. This reflects

the quantitative results since the χ̃2 of the DC model is a factor two more than the

DR one. The attitude of the stochastic reacceleration to fit the B/C data is not new

as it has been widely emphasized that this is a natural mechanism for reproducing

secondary over primary energy dependence without and ad hoc form for the diffusion

coefficient [67; 68; 69; 70] as it happens in the DC model. Even the difficulties of the
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Figure 4.4: Best fits of the DC and DR models together with data for the proton flux.

The fitting has been done considering B/C ratio.
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Figure 4.7: Best fits of the DC and DR models from the figure 4.6, magnified in the

kinetic energy range 0.1-8 GeV.

DC model to fit the B/C data have been noticed by other authors [55; 105]. The com-

parison with other results obtained by the authors of the GALPROP model is made
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antiproton flux. The fitting has been done considering B/C ratio.

difficult by the variation of the parameters involved in the analysis. For instance a

change in the reference rigidity at which we set the breaking in the injection spectrum

influences the normalization of the primary flux. In addition a fitting that consider

the B/C ratio alone has never been explored with the GALPROP model except in [66]

to which we are directly linked. The work which is closer to what is presented in this

section is [101] where the authors claimed a diffusion coefficient spectral index that

is δ >∼ 0.6 − 0.7 and a source spectral index γ ∼ 2.0. However we get distance from

such esteems from the beginning because our parameter space touch them marginally.

Moreover in [101] reacceleration and convection are both turned on in the same model

while we consider them separately. Turning back to our best models, we can notice

that they present strictly different behavior at energies above one hundred GeV. This

reflect the fact that we chosen to let the models unconstrained at high energies even if,

in principle, we can say that for sufficiently energetic particles the effects other than

diffusion and acceleration, are irrelevant [102; 103]. As a consequence the spectrum

is proportional to ρ−α where α ∼ δ + γ ∼ 2.8. Some less relevant discrepancy can
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Figure 4.9: Best fits of the DC model and DR model together with data for the

positrons flux. The fitting has been done considering B/C ratio.

be found even at lower energies but what is important to stress here is that higher

energies data are welcome in order to discriminate between the two models. Another

strong result comes from [70] where it has been shown that the Kolmogorov spectrum

of weak magnetohydrodynamic turbulence, which corresponds to a diffusion coefficient

spectral index δ = 1/3, is the best choice to fit the B/C data. Since then the 1/3-value

has been considered as a reference whenever reacceleration is turned on but from the

DR model we get a value that is far less than the Kolmogorov one. Since all the sec-

ondary over primary ratios are influenced by the same parameters, we expect to obtain

a good agreement between the SubFe/Fe data and predictions coming from the best

fits obtained by B/C. In fact this is the case as it can be seen from figure 4.3. Moreover

we underline that the same high energy behavior that we have seen for the B/C case,

is reproduced here.

As we pointed out in the previous paragraph, the injection spectrum of primaries

is not controlled by a fitting on B/C [103]. Anyway we want to show the fluxes for

protons and helium that comes out from the best fits, in order to compare with the
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Figure 4.10: Best fits of the DC model and DR model together with data for the

electron flux. The fitting has been done considering B/C ratio.

results of the next section, where the fit will be extended to primaries. In the graph

4.4 are reported the energy dependence of the proton flux for DC and DR models.

The low energy data come from experiments that were performed during a period

of about 600 MV solar modulation so we chosen this value for the plot. We observe

that a fine tuning of the proton flux in the solar modulated region is needed. In fact it

turns out that the DC model underestimate the data while the DR model overestimate

them. This is a problem that has been already stressed in other works [105]. Notice

that even if the flux seem to be graphically close to data, the narrow error bars enhance

dramatically the χ2 value, moving away from compatibility. Quantitatively for protons

we have obtained the values χ̃2
DC = 38.40 and χ̃2

DR = 114 that are hopelessly large.

This means that a fitting based only on B/C ratio is not able to reproduce properly

the flux of primaries, as we expected [103]. Concerning the helium flux (figure 4.6), the

problems that arise are very similar to the ones faced for the protons. However we do

not observe a clear overestimation of the DR model like in the proton case. In fact the

reduced chi-squared give χ̃2
DC = 28.97 and χ̃2

DR = 4.23. We conclude that the primaries
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Figure 4.11: Best fits of the DC model and DR model together with data for the

Deuterium flux. The fitting has been done considering B/C ratio.

are completely unconstrained by the secondary over primary ratio in contrast to what

is claimed in [66]. A more careful approach have to include primaries in the fitting

procedure as is done in the next section. For the sake of completeness we show in the

following the fluxes of antiprotons (fig. 4.8), positrons (fig. 4.9), electrons (fig.4.10)

and deuterium (fig. 4.11).

The antiproton flux is in good agreement with data for the DC model while the

DR case exhibits a recurrent well known underestimated flux [104; 105]. We remind

the reader that to reach the right amount of antiprotons we added to the primary flux

even the secondary and tertiary contribution. Anyway the antiprotons flux that we

obtain here have not physical meaning because antiprotons are completely secondaries

(a primary source can only be justified with a dark matter contribution) so that their

production is strongly correlated to the protons and helium flux that are not properly

fixed by B/C (the same argument holds for positrons). Positrons are difficult to be

interpreted qualitatively because they are strongly modified by solar modulation, but

we notice that the DR flux is clearly higher than the DC flux in the solar modulated
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region (see fig. 4.9). Surprisingly the electron flux, that are the most problematic

to reproduce because highly modified by the local bubble environment [72], are well

described by our models.
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4.5 Cosmic Ray Fluxes Based on the Proton, he-

lium, B/C and SubFe/Fe

As demonstrated in the previous section, a fit based only on B/C data is not enough

to fix properly all the parameters of a diffusion model. Thus we are forced to introduce

some primaries. The most precise measurement are found to be the one relative to

protons and helium. Moreover, since in the literature accurate data about the ratio

SubFe/Fe can be found easily, we decided to include them too.

Model −Number
D0

(cm2/s)
δ1 δ2 γ1 γ2

dVC/dz

(Kms−1

Kpc−1)

VA(km/s) χ̃2

DC − 6897 2.7 × 1028 0 0.58 2.5 2.22 8 0 5.12

DR− 1576 6.4 × 1028 0.25 0.25 2.38 2.38 0 22 9.78

Table 4.10: Best models reproducing the protons, helium, B/C and SubFe/Fe data.

As pointed out in the previous section, considering B/C ratio is enough to fix

parameters describing diffusion (the injection parameter are not sensible to sec/prim

ratio) so that the net effect of introducing the SubFe/Fe ratio is to enlarge the statistic.

In principle we could include even other primaries and ratios but the high energy cross

sections are well known only for the cases that we considered. The best parameter

set for the DC and DR models can be found in table 4.10. One can notice that with

respect to the B/C fit, the parameters of the DC model undergoes a changing of the

diffusion coefficient normalization and spectral index from the value of 2.5 × 1028 and

0.48 to 2.7 × 1028 and 0.58, respectively. In addiction, the convection velocity turns

from 10 to 8. On the other side the injection indices γ1 and γ2 are left fixed to the



4.5 Cosmic Ray Fluxes Based on the Proton, helium, B/C and SubFe/Fe89

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1  1  10  100

P
ro

to
n 

F
lu

x 
(p

ar
tic

le
/(

m
^2

 s
 s

r 
G

eV
))

Kinetic energy, GeV/nucleon

Protons data point and fluxes for the best fit of the DR 1576 and DC 6897 models

Phi = 600 MV

ISM DR model
ISM DC model

Modulated DR model
Modulated DC model

CAPRICE 94
CAPRICE 98

BESS 93
BESS 98
AMS 01

 10

 100

 1000

 10000

 1  10

P
ro

to
n 

F
lu

x 
(p

ar
tic

le
/(

m
^2

 s
 s

r 
G

eV
))

Kinetic energy, GeV/nucleon

Protons data point and fluxes for the best fit of the DR 1576 and DC 6897 models

Phi = 600 MV

Modulated DR model
Modulated DC model

CAPRICE 94
CAPRICE 98

BESS 93
BESS 98
AMS 01

Figure 4.12: Best fits of the DC and DR models with data for the proton flux. The

fitting has been done considering protons and helium as primaries together with B/C

and SubFe/Fe ratios. In the lower panel the kinetic energy region GeV is magnified.
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Figure 4.13: Best fit of the DC and DR model with data for the helium flux, fitting

protons and helium as primaries together with B/C and SubFe/Fe ratios. In the lower

panel the kinetic energy interval 0.1-8 GeV is magnified.
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Model-Number
D0

(cm2/s)
δ1 δ2 γ1 γ2

dVC/dz

(Kms−1

Kpc−1)

VA(km/s) χ̃2

DR− 2024 6.7 × 1028 0.27 0.27 2.38 2.38 0 22 13.27

Table 4.11: Best model for the fit based on protons and helium.
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Figure 4.14: Best fits of the DR model together with data for the proton flux. The

fitting has been done considering protons and helium.

maximum and minimum value respectively. This suggests that the interval of these two

parameters should be enlarged accordingly. Concerning the DR model the situation is

completely different since all the parameters are changed and the χ2 raises dramatically

to the value of 9.78. This a consequence of the fact that the DR model is not able to
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Dataset χ2 χ̃2 number of data

BESS 98 - protons [97] 149.91 5.00 31

BESS 93 - protons [96] 10.25 1.28 9

CAPRICE 94 - protons [99] 1079.67 63.51 18

CAPRICE 98 - protons [100] 189.30 7.89 25

BESS 98 - helium [97] 67.04 2.68 26

BESS 93 - helium [96] 21.43 3.57 7

CAPRICE 94 - helium [99] 321.07 13.38 25

CAPRICE 98 - helium [100] 225.85 9.41 25

Table 4.12: χ2 for the fit between model DR 2024, protons and helium for the considered

datasets.
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Dataset χ2 χ̃2 number of data

BESS 98 - protons [97] 166.22 5.54 31

BESS 93 - protons [96] 55.68 0.92 9

CAPRICE 94 - protons [99] 946.60 55.68 18

CAPRICE 98 - protons [100] 220.37 9.18 25

BESS 98 - helium [97] 77.35 3.09 26

BESS 93 - helium [96] 14.24 2.37 7

CAPRICE 94 - helium [99] 368.71 15.36 25

CAPRICE 98 - helium [100] 271.52 11.31 25

Table 4.13: χ2 for the fit between model DR 1576 and protons for the considered

datasets.
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Figure 4.15: Best fit of the DR model and data for helium flux, fitting protons and

helium.

agree with primaries data, at least for the parameter space that we are considering.

To underline this aspect we try to fit on protons and helium. The best model turns

out to be the DR 2024 reported in table 4.11 with a χ̃2 equals to 13.17 not so far from

the model DR 1576 where χ̃2 = 13.24. This demonstrate that the narrow error bars

of the primaries data are highly constraining, more than the secondary over primary

ratios thus the fitting is almost completely determined by protons and helium. Even

the high values of the χ2 can be addressed to the great accuracy that characterize

the experimantal determination of primaries. Just a glance at tables 4.12 and 4.13 is

enough to understand that the experiments CAPRICE 94 and CAPRICE 98, where

the fluxes are determined with great precision, are responsible for the high value of

the χ̃2. Anyway the displacement between the DR and DC best fits is reduced with

respect to the B/C based fits, in behalf of a better matching with low energy data as

manifest by having a look to the protons and helium fluxes reported in figures 4.12

and 4.13. Any improvement of the fit on protons and helium in the DR 2024 model is

not appreciated by only looking at 4.14 and 4.15 but a quantitative analysis of the χ2
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Figure 4.16: Best fits of the DC model and DR model together with data for the B/C

ratio. The fitting has been done considering protons and helium as primaries together

with B/C and SubFe/Fe ratios. In the lower panel the kinetic energy interval 0.1-35

GeV is magnified.
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Figure 4.17: Best fit of the DC model, DR model and data for SubFe/Fe ratio, fitting

protons and helium as primaries together with B/C and SubFe/Fe ratios.

values reveals the refinement (just compare tables 4.13 and 4.12).

The above considerations lead us to the conclusion that DR models are not able to

produce fluxes that fit properly primaries as the DC models do. Honestly, if we take

into account the χ2 values associated to the best models (table 4.10), we are far from

a truly compatibility between predictions and observations as for instance is obtained

in a weighted slab framework [2] where χ̃2 ∼ 1 − 2. Anyway we can always search

for the set of parameters that better approach the collected data without asking a

full matching. In this sense the χ2 becomes only a index of reference that lead to

qualitative conclusions. With this in mind let us pass to the B/C and SubFe/Fe ratios

where we observe (see figures 4.16 and 4.17) the same feature of the previous section

: strictly different behavior at energies above 20 GeV/nucleon. Again we stress that

new high energy measurements are decisive to disentangle the models. This time we

want to understand what happens if we introduce the high energy constraint discussed

in the previous section. To this end we found the best fits (table 4.14) among the

models whose parameters satisfy α = δ + γ ∈ [2.68, 2.72]. The constraint reduce the
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Figure 4.18: Best fits of the DC model and DR model together with data for the

electron flux. The fitting has been done considering protons and helium as primaries

together with B/C and SubFe/Fe ratios.

number of allowed models to 576 and 240 for the DC and DR cases, respectively. For

the DC model the diffusion parameters are not changed but the high energy injection

spectral index and the convection velocity are reduced. The final spectrum coefficient

turns out to be α = 2.72. The DR model allow a nice surprise since the constraint

force to select a Kolmogorov spectrum. By reversing this argumentation we can say

that the Kolmogorov spectrum selects a high energy behavior described by α = 2.68.

By matching with the unconstrained result of the DR case we see that the diffusion

is enhanced, the injection spectrum weakened and connection between diffusion and

reacceleration is left unchanged (this means that the reacceleration is damped since

the spatial diffusion coefficient is augmented).
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Figure 4.19: Best fits of the DC model and DR model together with data for the

electron flux. The fitting has been done considering protons and helium as primaries

together with B/C and SubFe/Fe ratios.

Model
D0

(cm2/s)
δ1 δ2 γ1 γ2

dVC/dz

(Kms−1

Kpc−1)

VA(km/s) χ̃2 N. of

Models

DC 2.7 × 1028 0 0.58 2.5 2.14 5 0 7.11 576

DR 6.7 × 1028 0.33 0.33 2.35 2.35 0 22 13.02 240

Table 4.14: Best models reproducing the protons, helium, B/C and SubFe/Fe data

with the constraint on the high energy spectral index α = δ + γ ∈ [2.68, 2.72].
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Figure 4.20: Best fit of the DC model, DR model and data for antiprotons, fitting

protons and helium as primaries together with B/C and SubFe/Fe ratios.

As expected the χ̃2 values restricted to the B/C data are increased with respect to

the previous section. Respectively we have χ̃2
DC = 4.97 and χ̃2

DR = 4.38 for the DC

6897 and DR 1576 models. This is the price that we have to pay in order to enlarge

our analysis.

The positron flux (fig 4.18) is very similar for both models at energies below 20

GeV. In this low energy region the positrons experience a decisive solar modulation

so that the gap between our best fits and data can be filled by a proper study of

solar modulation. At high energies, where the solar modulation has no more effect,

the DR model flux becomes higher and higher than the DC model one but no data

are available to select the right model. Concerning electrons (fig. 4.19) we see that

the high energy behavior beyond 4 GeV is the same for both models while at low

energy the DR model better matches data. The DC model in this case overestimate

the expected flux. The electrons are strongly correlated to positrons since in the past

a reliable positron spectrum in connection with measurements of positron fraction,

has been used to have clues on electron spectra [72]. This happened because the
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Figure 4.21: Best fit of the DC model, DR model and data for Deuterium, fitting

protons and helium as primaries together with B/C and SubFe/Fe ratios.

positron fraction is more easily measured by experiments. Nowadays we have data

that are good enough to disentangle positrons and electrons. It is important to notice

that our analysis provides a fairly good electron flux without invoking a nucleon flux

stronger than the measured one as claimed in [72]. A deeper investigation on electrons

and positrons may be carried out by including a fit on positron fraction, synchrotron

radiation and gamma rays but this is out of the task of this work where we only give

an idea of the fluxes that came out from a nucleon based fitting. The antiprotons (fig.

4.20) are clearly underestimated by the DR model while the DC one seems to be in

agreement with experiments. Clearly antiprotons favour the DC model as discussed

in the previous section. As is seen in figure 4.21, even the flux of the Deuterium is

well estimated by our models, at least below 1 GeV. This is a good result since the

disagreement above 1 GeV is due to the absence of proper high energy cross sections

for the main channels p,He + C,N,O → He2 [106]. Similar results can be found in

[107].

Another aspect that we want to examine is the determination of a proper range of
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Figure 4.22: Best fits of the DC 6897 model and DR 1576 model together with data for

the isotopic 10Be/9Be ratio. The fitting has been done considering protons and helium

as primaries together with B/C and SubFe/Fe ratios.

parameters as it is suggested by our scanned models. To this end we choose a value

of the χ̃2 and we look for the models that do not exceed this value. Then we derive

interval for each parameter which include all the models satisfying this requirement

obtaining what is summed in tables 4.15 and 4.16.

First of all we notice that there are not disconnected island in the parameter space.

This tells us that the steps are sufficiently small but it is manifest that the DR models

are less thick than the DC case. In fact the steps chosen for the χ̃2 of the DR models

are ten times more wider than the one adopted for the DC models while for each step

we enlarge the sample of more or less the same amount of parameter sets. Concerning

the intervals we notice that for almost all parameters there is a edge value that is

always touched. This means that to refine the analysis we should enlarge the interval

in that direction. We conclude that the suggested guidelines for future developments

turn out to be as follows :

• for DC models, D0, γ1, γ2 and dVC/dz should be pushed beyond the values
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Figure 4.23: Best fits of the DC 6897 model and DR 1576 model together with data

for the isotopic 54Mn/Mn ratio. The fitting has been done considering protons and

helium as primaries together with B/C and SubFe/Fe ratios.

χ̃2
0

D0

(cm2/s)
δ2 γ1 γ2

dVC/dz

(Kms−1

Kpc−1)

Number

of Models

5.2 (2.5 − 2.7) × 1028 0.58-0.60 2.5 2.22 8-10 4

5.3 (2.4 − 2.7) × 1028 0.58-0.6 2.48-2.5 2.22 7-10 9

5.4 (2.3 − 2.7) × 1028 0.58-0.62 2.48-2.5 2.2-2.22 7-10 21

5.5 (2.2 − 2.7) × 1028 0.56-0.62 2.48-2.5 2.2-2.22 6-10 35

Table 4.15: Intervals spanned by DC models whose χ̃2 does not exceed the χ̃2
0 limit.

2.7 × 1028, 2.5, 2.22 and 10 respectively while δ2 seems to be well centered even

if an increasing beyond the 0.62 value is recommended;
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Figure 4.24: Best fits of the DC 6897 model and DR 1576 model together with data for

the isotopic 26Al/27Al ratio. The fitting has been done considering protons and helium

as primaries together with B/C and SubFe/Fe ratios. A solar modulation of Φ = 325

MV which is associated to the ACE experiment, is considered in the upper panel while

Φ = 800 MV for the ULYSSES experiment is considered in the lower one.
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Figure 4.25: Best fits of the DC 6897 model and DR 1576 model together with data for

the isotopic 36Cl/Cl ratio. The fitting has been done considering protons and helium

as primaries together with B/C and SubFe/Fe ratios. A solar modulation of Φ = 325

MV which is associated to the ACE experiment, is considered in the upper panel while

Φ = 780 MV for the ULYSSES experiment is considered in the lower one.
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χ̃2
0

D0

(cm2/s)
δ γ

VA

(Km/s)

Number

of Models

10.0 6.7 × 1028 0.25 2.35-2.38 22 2

10.5 (5.8 − 6.7) × 1028 0.25-0.29 2.35-2.38 22-26 11

11.0 (5.8 − 6.7) × 1028 0.25-0.29 2.35-2.41 22-26 20

11.5 (5.5 − 6.7) × 1028 0.25-0.31 2.35-2.41 22-26 26

Table 4.16: Intervals spanned by DR models whose χ̃2 does not exceed the χ̃2
0 limit.

• for DR models, a decreasing of the parameters δ, γ and Valf over 0.25, 2.35 and

22 respectively together with an increasing of D0 beyond 2.7× 1028, seems to be

the right way.

The fact that the intervals that we considered for our analysis are not exactly the

proper ones is not surprising since they are suggested by past works based on B/C

data alone. Here we are proving that the primaries necessarily shift the parameters

values and consequently the intervals to be considered for the scan.

In order to carry out our analysis plan, we need to include unstable elements to

select the right halo height. Before proceeding it is wise to check if it is possible to

go further by having a look to what our best fits say about unstable elements. The

comparison between models DC 6897, DR 1576 and data is shown in figures 4.22, 4.24,

4.25 and 4.23 respectively for the isotopic ratios 10Be/9Be, 26Al/27Al at Φ = 325 MV,
26Al/27Al at Φ = 500 MV, 36Cl/Cl at Φ = 325 MV, 36Cl/Cl at Φ = 500 MV and
54Mn/Mn. The point here is that we are analyzing a sector which is highly influenced

by solar modulation. All we can do is to trust the modulation values associated to each

experiment as are given in the literature (see section 4.3), wondering if we have any

chance of agreement. For all the isotopic ratios we observe that the ratio grows with

the increasing of the modulation strength. For the Beryllium case the value observed

by ACE at Φ = 325 MV is touched by both models but the VOYAGER prediction at
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Φ = 500 MV is completely out of scale.

In fact in this last case we have a lower value of the ratio but a higher modulation

that lead to an incompatibility with the ACE result. This can be justified by the too

large time period considered for the VOYAGER missions which leads to averaged solar

modulation strength that is probably not the proper one. Anyway we will include

both missions in this work. Concerning the 26Al/27Al we have the data points that

do not show contradictions as in the 10Be/9Be case. In fact the increasing of the

ratio data join a growing of the solar modulation strength. However the DC 6897

model clearly overestimate experiments results while the DR 1576 model seems to be

promising especially for the ULYSSES case. Turning to the 36Cl/Cl, we encounter the

same problem discussed for the 10Be/9Be case which is the value of the ratio estimated

by ULYSSES with solar modulation stronger than the ACE one, is smaller than the

ratio value deduced by the ACE mission. However the two data are compatible thanks

to the relatively wide errors associated to the ULYSSES point. Anyway both models

overestimate the 36Cl/Cl ratio.

Finally we spend a few words on the 54Mn/Mn ratio where the fluxes from our

simulation rest inside the error bars even if the data follow the same trend that we

observed for the 36Cl/Cl and 10Be/9Be cases. In conclusion it seems reasonable to

proceed further with our analysis including the isotopic ratios commented above.

4.6 The halo height and Local Parameters from iso-

topic ratios

So far we centered our search for the best fits at a fixed value (4 Kpc) of the halo

height. Now we want to perform a variation of this parameter in order to find the

value that better fit the isotopic ratio available data. We enlarged the results summed

in table 4.1 in favor of a range of the halo height that runs from 2 Kpc to 6 Kpc with a

step of 200 pc. For this choice we were influenced by the work [55] of the authors of the

GALPROP program that used the ratio 10Be/9Be to gain informations about the halo

in connection with the Ulysses data [93]. The resulting halo height interval compatible

with measurements was zh = 4 − 12 Kpc. Further improvement was presented in [73]

where the ACE data were added to obtain the more robust estimate zh = 3 − 7 Kpc.
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Halo Height (Kpc) χ̃2
u/s χ̃2

p,He,B/C,SubFe/Fe χ̃2
p,He,B/C,SubFe/Fe,u/s

2 65.87 48.16 48.46

2.2 50.31 41.23 41.33

2.4 39.23 34.99 34.99

2.6 31.18 29.41 29.36

2.8 25.23 24.48 24.42

3.0 20.77 20.22 20.17

3.2 17.38 16.66 16.63

3.4 14.77 13.82 13.80

3.6 12.74 11.73 11.71

3.8 11.15 10.38 10.36

4.0 9.89 9.78 9.75

4.2 8.90 9.91 9.85

4.4 8.10 10.75 10.65

4.6 7.45 12.28 12.11

4.8 6.93 14.45 14.21

5.0 6.51 17.22 16.89

5.2 6.17 20.56 20.13

5.4 5.88 24.42 23.87

5.6 5.65 28.76 28.08

5.8 5.46 33.53 32.71

6.0 5.30 38.69 37.71

Table 4.17: χ2 obtained by different kind of fitting : unstable over stable ratios (second

column); protons, helium, B/C and SubFe/Fe (third column); protons, helium, isotopic,

B/C and SubFe/Fe ratios. The halo height is varied and the other parameters are taken

from the DR 1576 model.

Other important estimations come from [75] that predicts zh = 2−4 Kpc from HEAO-3

and from [76] that gives zh = 4.9+4
−2 Kpc. The other parameters are left fixed to the

values that we found for the best fits based on protons, helium, boron over carbon and

sub-iron over iron. The total number of set of parameters analyzed amount to 40, 20
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Halo Height (Kpc) χ̃2
u/s χ̃2

p,He,B/C,SubFe/Fe χ̃2
p,He,B/C,SubFe/Fe,u/s

2 80.58 23.54 24.92

2.2 70.80 18.92 20.19

2.4 63.55 15.24 16.42

2.6 58.05 12.32 13.45

2.8 53.79 10.03 11.12

3.0 50.46 8.29 9.34

3.2 47.80 7.00 8.02

3.4 45.68 6.09 7.08

3.6 43.95 5.51 6.47

3.8 42.55 5.20 6.14

4.0 41.39 5.12 6.03

4.2 40.44 5.23 6.11

4.4 39.65 5.50 6.35

4.6 39.00 5.89 6.72

4.8 38.45 6.40 7.20

5.0 38.00 6.98 7.75

5.2 37.62 7.64 8.38

5.4 37.30 8.34 9.06

5.6 37.04 9.08 9.77

5.8 36.81 9.85 10.51

6.0 36.63 10.63 11.26

Table 4.18: χ2 obtained by different kind of fitting : unstable over stable ratios (second

column); protons, helium, B/C and SubFe/Fe (third column); protons, helium, B/C,

SubFe/Fe and isotopic. The halo height is varied and the other parameters are taken

from the DC 6897 model.

for the DC model and 20 for the DR one. The values of the χ2 are summed in tables

4.17 and 4.18 where we see in the second columns a sharp decreasing of the χ̃2 with the

increasing of the halo height. Thus it is clear that unstable over stable ratios suggest a

value of the halo height that exceeds our maximum value. Since we assumed from the
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beginning that the fit based on primaries and secondary over primary ratios is weakly

influenced by the halo dimensions, it is reasonable to check if it is true. To this end we

reported the χ̃2 obtained from primaries and secondary over primary ratios, in the third

columns of tables 4.17 and 4.18. It is obvious that we have a correlation that suggest

4 Kpc as the best halo height. This justifies the predictions already presented in the

literature [73; 75; 76]. In fact the value of 4 Kpc is often used as a reference to study

other parameters [105]. Moreover we have to admit that our choice of fixing the halo

height is not completely correct but a simultaneous scan of all the parameters should

be carried out. In the last columns of tables 4.17 and 4.18 we show that isotopic data

do not influence the fits based on stable nuclei because of the small statistic coming

from just 9 data-points. It turns out that the best DC and DR models are always the

same and only the χ̃2 values are increased to 6.03 and decreased to 9.75 respectively.

This lead to the conclusion that it is too early to include unstable over stable data in

this kind of global analysis even if we can always say that we determined the best fits

based on the wider knowledge that we can draw from the literature. More interesting

is to single out the unstable nuclei to gain some specific information as we have done

for the halo height estimation. Let us ask ourselves how the isotopic data affect the

propagation parameters. The answer to this question is found in [36]. As explained in

section 1.4.5, a deep understanding of the travel-distance of an unstable nucleus reveals

that the kinetic energies of our experimental data are not sufficient to reach the halo

boundary (see table 1.5). Anyway it is almost sure that there is some kind of linking

between propagation parameters and isotopic ratios. The point is that table 1.5 tells

us that unstable nuclei are a unique tool to have clues about our local environment,

more than a probe for galactic halo. In [36] this idea has been developed introducing a

cylindrical hole centered at the sun position. Inside this hole the density is lower than

in the galactic disk leading to a lowering of the spallation source term, fragmentation

and energy losses. The effect of this local bubble surrounding the sun is a reduction

of the unstable secondaries because they are not produced in the gas depleted region.

Accordingly the influence on the halo height is a overestimation since this forces the

nuclei to decay before reaching us. This explain why the fitting on the isotopic ratios

predicts a large value of the halo height and shed light on the misleading nature of the

connection between halo and unstable nuclei. A proper analysis can be focused, for

instance, on the estimate of the hole dimensions by exploiting the unstable nuclei. This
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approach can be applied to realistic modelling of the local bubble as found in [76; 108].

The grid scan of the present work do not include a local bubble but it is interesting

to realize how the propagation parameters are changed by a fitting on the isotopic

ratios that leaves fixed the halo height at 4 Kpc. The best fits for this last case are

found in table 4.19.

Model-Number
D0

(cm2/s)
δ1 δ2 γ1 γ2

dVC/dz

(Kms−1

Kpc−1)

VA(km/s) χ̃2

DC − 6024 2.7 × 1028 0 0.48 2.42 2.22 5 0 33.98

DR− 2344 6.7 × 1028 0.37 0.37 2.53 2.53 0 22 9.05

Table 4.19: Best DC and DR models reproducing the isotopic ratio data.

Concerning the DC model we do not have a clear trend but this reflects the high

disagreement with data. The DR model, that is more effective in reproducing secondary

over primary ratio even in the unstable case, clearly confirms the above comments

about the lowering effects of a local bubble. In fact the diffusion parameters reach

their maximum value and reacceleration is strongly damped by lowering the Alfvén

velocity. In conclusion there is a tendency to reduce the isotopic ratio as expected by

the presence of a local low density zone around the solar system.



Conclusions

In this work we explored the possibility of a statistical approach to the GALPROP

model. The idea has been to include all the knowledge about cosmic ray physics

in order to fix the free parameters in the GALPROP model. Among the data that

we considered we remember the B/C and SubFe/Fe secondary over primary ratios,

protons, helium and isotopic ratios (10Be/9Be, 26Al/27Al, 36Cl/Cl, 54Mn/Mn) taken

from a plenty of satellite and balloon borne experiments for a total of 313 points.

Since we chosen to analyze a grid in the parameter space, the analysis has been very

time consuming, so that in order to reduce the required time (that strongly depend

on the number of parameters), we applied a two step method where on a first stage

the relevant propagation parameter are tuned to reproduce the B/C and SubFe/Fe

secondary over primary ratios, protons, helium and the halo height has been left fixed

to the value of 4 kpc. On a second stage we considered the best fits obtained from

the first step to gain information about the halo height from isotopic ratios. The main

result is that we obtained the best fits based on almost all the public data on cosmic ray

fluxes taking into account all the known physics about cosmic ray. Among the universe

of choices presented by the GALPROP model we focused on two particular models,

namely diffusion+reacceleration (DR model) and diffusion+convection (DC model),

since these are the minimum combinations which can reproduce the key observations.

It turns out that the DR model is not able to produce a primary flux that leads to a

satisfactory agreement with observations that furnish very precise data. The reason

may be due to the parameter space that we considered but it is more likely that it is

intrinsic in the GALPROP model as suggested by observing that the authors of the

model usually introduce a break in the injection spectrum to fit observations. This

conclusion is supported by the fact that after introducing this breaking in the DC

model a more accurate prediction of the primary flux is achieved. The isotopic ratio
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data strongly suggests that the halo height may be greater than previous predictions

but, despite the usual approach found in the literature, it has to be underlined that

for the available data on isotopic ratios, the distance covered is not enough to give

information about the halo height (if not indirectly). A more proper approach can

use unstable nuclei to shed light on local propagation environment, suggesting the

existence of a gas-depleted region around the sun (local bubble). We showed that the

overestimation of the halo size can be interpreted as a clue of the local bubble presence.

All our best fits show a somewhat large value of the χ̃2. Among the reasons, a key

role is played by a possible incompatibility of the various set of data that sometimes

becomes manifest (as for the isotopic ratios). The advent of Pamela mission will offer

a solution to this problem providing a never reached precision in the determination of

cosmic ray fluxes over a very large range of kinetic energy.

Particular attention has been focused on the guidelines for future developments.

To this end we derived the interval spanned by each parameter when we consider

all the model whose χ̃2 do not exceed a fixed value. From one side such intervals

showed that our grid do not leave space to local minimum (at least for our step-size)

other than the one that gives us our best fits. From another side we deduced the

right direction to enlarge the considered parameter space. In conclusion this work has

demonstrated that, despite the usual approach to the GALPROP model that is far from

being systematic, a statistical analysis can be performed exploiting the GALPROP

code. A further improvement of the parameter grid scan by mean of our statistical

approach will prepare the way to find the best model and parameter values exploiting

the upcoming data from PAMELA.



Appendix A

Debye Lenght

If we consider a neutral plasma (i.e. null total charge), then the energy from coulombic

interaction is generated by the anisotropy in the charge distribution so that we have

a correlation between energy and positions of the charged particles. Following the

Boltzmann law, the distribution density of the type a particles, reads

na = n0ae
− zaeφ

T , (A.1)

where n0a is the mean distribution density. We assume that the plasma has small

deviations from the perfect gas behaviour which is equivalent to say that the kinetic

contribution to the energy, which is proportional to the temperature T , is still much

larger than the contribution due to electric interaction. This condition can be written

as

T >> ezaφ , (A.2)

allowing the expansion of (A.1)

na 
 n0a − zaeφ

T
. (A.3)

The field φ is linked to the charge distribution through the Poisson equation

Δφ = −4πe
∑
a

zana . (A.4)

Substituting the expansion (A.3) into the Poisson equation we are left with

Δφ− λ−2φ = 0 (A.5)
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where we introduced the Debye length

λ = (
4πe2

T

∑
a

n0az
2
a)

−2

. (A.6)

The equation (A.5) can be easily solved by imposing that the field φ vanish at infinity

and it reduces to the coulombic field φ = ezb

r
of a particle of charge ezb in the neighbour

of r = 0. The solution turns out to be

φ = ezb
e−

r
λ

r
, (A.7)

from which it is clear that the field intensity rapidly decrease if r exceeds the Debye

length. In this sense λ characterizes the extension of the ionized cloud.



Appendix B

Leaky Box Model

An extremely simplified version of the diffusion model is the so called ”leaky-box”

model. It can be understood as a limit of a diffusion model providing that there is a

strong reflection at the galaxy boundary and little leakage. The first property forces

the particles to traverse the galactic plane many times before escaping to intergalactic

medium. The second one allow us to consider spatially averaged quantities all over the

galaxy thus leading to a density of cosmic rays that is constant. Physically, it can be

justified by saying that the diffusion take place rapidly so that, concerning the diffusion

term, we can perform the replacement

∇ · (Di∇Ni) → − Ni

τesc
, (B.1)

where τesc characterizes the escaping time of cosmic rays from the galaxy. After this

substitution we have to think to the motion of particles inside the propagation region

as a free motion, taking a distance from a true diffusion model. After the above

considerations we are left with the following propagation equation

∂Ni

∂t
= q̄i − Ni

τesc
− ∂

∂εk
(b̄iNi) − (n̄vσi +

1

τi
)Ni +

∑
j<i

(n̄vσij +
1

τij
)Nj , (B.2)

which can be solved straightforwardly, having only the time as differential variable.

We can even think that an equilibrium situation has been reached so that the cosmic

rays density evolution is stationary in order to have ∂Ni/∂t = 0 leading a further

simplification of the propagation equation

q̄i − Ni

τesc
− ∂

∂εk
(b̄iNi) − (n̄vσi +

1

τi
)Ni +

∑
j<i

(n̄vσij +
1

τij
)Nj = 0 , (B.3)
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Introducing the path length function G(x) as in paragraph (2.1) and disregarding

ionization, we get

∂G
∂x

+ G
τesc

= χδ(x)

⇓
G(x) = χe−x/τesc , (B.4)

that clarifies the meaning of τesc governing the exponential decay of cosmic rays density

with the increasing of the length of the distance of traversed medium. In fact we can

easily find the average amount of matter traversed by a particle of velocity v

λesc ≡< x >=

∫
dx xG(x)∫
dxG(x)

= n̄vτesc , (B.5)

which leads to the conclusion that the leaky box model is actually characterized only

by the parameter λesc as a consequence that all the nuclei have the same propagation

history. Finally, following the steps of the analysis made in paragraph (2.1), we can

use the function Fi(t, r) to get a very simple equation for the densities Ni which is

Ni

(
1
τesc

+ n̄v σi

)
= q̄i (B.6)

⇓

Ni =
q̄i
n̄v

λesc
1 + σiλesc

=
q̄i τesc

1 + σiλesc
. (B.7)

Concerning the secondary nuclei, we can directly exploit (B.3) with qi = 0, neglecting

ionization losses, to get the equation

λesc =

[(∑
j<i

(σij +
1

n̄vτij
)

)
Nj

Ni
− (σi +

1

n̄vτi
)

]−1

. (B.8)

The general strategy to embed a set of cosmic ray data coming from an experiment

into a leaky box model, is to consider the secondary to primary ratios, that determine

the factor Nj/Ni in (B.8) and consequently λesc (nuclear cross sections and decay time

are assumed to be known a priori). Once that λesc is known, the primary spectrum

can be used to determine the source q̄i as in (B.6).
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