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Abstract

The Expected Shortfall (ES) is a risk measure that averages out all losses more severe than
the Value at Risk (VaR). As the ES shares the properties of coherent risk measures, its use
as risk constraint in asset allocation has became relevant. First of all, we propose estimators
for ES, considering the important case when additional information as some set of regressors
is available. The estimators are based on the equivalent representation of ES in terms of the
conditional distribution function and the conditional quantile function. Within the estimation
framework, departing from a generalized weighted representation of ES, we work on improving
the statistical and forecasting properties of the weighted estimators. In the first case, we
derive the weighting that minimizes the asymptotic variance of the estimators, while, in the
second case, the weighting minimizes some suitably defined forecast error. Nevertheless we
are concerned with the use of these estimators in financial applications and construct a simple
asset allocation model that maximizes expected return with a loss constraint on ES.
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Chapter 1

Introduction

1.1 The Expected Shortfall (ES)

Next to the Value at Risk (VaR), the expected value of the returns on the left tail of the
distribution has been proposed as an alternative measure of risk in financial applications.
This quantity, known as the expected shortfall (ES) or the tail conditional expectation or the
tail conditional mean, measures the loss that one may expect to make in the worst α percent
of the cases.

Formally, let Yt be a real-valued random variable (rv) that represents the returns on a
given asset during some period. Assume that it has a continuous and strictly increasing
distribution function (df) F (y) = Pr{Yt ≤ y}. Its quantile function (qf) is defined as Q(p) =
inf{y : F (y) ≥ p}, with p ∈ (0, 1). Since F is continuous and strictly increasing, Q is also
continuous and strictly increasing. Further, F (Q(p)) = p and Q(F (y)) = y, and so Q(p) =
F−1(p) and F (y) = Q−1(y). Then the VaR at level α is equal to the αth quantile of Yt, Q(α),
and the α-level expected shortfall is τ(α) = E(Yt |Yt ≤ Q(α)), where E(Yt |At) denotes the
conditional expectation of Yt given the event At. In financial applications, Yt is the return
on a given asset and τ(α) gives the expected value of a loss (negative return) that exceeds
Q(α), the VaR at level α.

If Yt has a finite mean, then the mean of Yt conditional on Yt ≤ c, where c is any real
number, is defined as

E(Yt |Yt ≤ c) =
1

F (c)

∫ c

−∞
y dF (y). (1.1)

The α-level expected shortfall of Yt, with 0 < α < 1, is therefore

τ(α) = E(Yt |Yt ≤ Q(α)) =
1

α

∫ Q(α)

−∞
y dF (y), (1.2)

where Q(α) is the αth quantile of Yt.
Unlike the VaR, the expected shortfall takes into account all possible losses that exceed

the severity level corresponding to the VaR. As shown by Acerbi and Tasche (1), this enables
ES to satisfy the properties of a coherent risk measure: sub-additivity, monotonicity, positive
homogeneity, and translation invariance (see Artzner et al. (7) and Delbaen (16)). Formally,
if τX(α) denotes the α-level expected shortfall of a real valued rv X with continuous and
strictly increasing df, they show that: (i) τX(α) ≤ 0, if X ≤ 0 (monotonicity), (ii) τX+Y (α) ≥
τX(α) + τY (α) (sub-additivity), (iii) τbX = b τX(α), for b ≥ 0 (positive homogeneity), and
(iv) τX+c(α) = τX(α) + c, for c ∈ R (translation invariance). Besides being a coherent risk
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measure, the expected shortfall is continuous with respect to α regardless of the underlying
distribution of Yt, and therefore it is not too sensitive to small changes in α.

Acerbi and Tasche (1) also show that sub-additivity may be violated by the Value at
Risk (VaR), therefore VaR is not a coherent risk measure. However, it is still widely used in
financial applications, because it gives a lower bound on the loss made in the worst α percent
of the cases during some period. The practical usefulness of the VaR is however limited by
the fact that it does not account for the magnitude of the worst-case scenario, giving the
same importance to all losses that are more severe than itself.

Alternative representations of ES

Since F is continuous and strictly increasing, a change of variable from F (y) to p gives

E(Yt |Yt ≤ c) =
1

F (c)

∫ F (c)

F (−∞)
F−1(p) dp =

1

F (c)

∫ F (c)

0
Q(p) dp.

Thus we have the equivalent representation

τ(α) =
1

α

∫ α

0
Q(p) dp. (1.3)

This representation is particularly convenient when the quantiles of a rv Yt have a closed form
expression. For example, suppose that Yt may be represented as Yt = µ+σUt for some µ ∈ R

and σ > 0, where Ut is a rv with continuous and strictly increasing df G. Because in this case
F (y) = G((y − µ)/σ), it follows immediately that Q(p) = µ+ σζ(p), where ζ(p) = G−1(p) is
the pth quantile of Ut. Therefore

τ(α) =
1

α

∫ α

0
[µ+ σζ(p)] dp = µ+ σ τ∗(α),

where τ∗(α) = α−1
∫ α
0 ζ(p) dp is the α-level expected shortfall of Ut.

When the equation F (y) = p does not have a closed-form solution, the existence and
uniqueness theorem for first-order ordinary differential equations (see e.g. Hirsch and Smale
(22)) guarantees that the solution exists and is unique provided that F is continuous and
strictly increasing. In these cases, computation of τ(α) must typically be carried out by
numerical methods.

Another equivalent representation of τ(α) is in terms of the df of Yt. Under regularity
conditions, integrating (1.1) by parts, we get

E(Yt |Yt ≤ c) = c−
∫ c

−∞

F (y)

F (c)
dy.

Therefore

τ(α) = Q(α) − 1

α

∫ Q(α)

−∞
F (y) dy. (1.4)

This shows that the expected shortfall τ(α) is larger, in absolute value, than the VaR Q(α).
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Examples

We illustrate computation of the expected shortfall for the normal distribution and a finite
mixture of normals.

If Yt ∼ N (µ, σ2), then we can write Yt = µ + σUt, where Ut ∼ N (0, 1). By standard
results

E(Yt |Yt ≤ c) = µ+ σ E(Ut |Ut ≤ c∗) = µ− σ
φ(c∗)

Φ(c∗)
,

where c∗ = (c − µ)/σ and φ and Φ respectively denote the density and the df of a standard
normal. If we set c equal to Q(α) = µ+ σΦ−1(α), then c∗ = (Q(α)− µ)/σ = Φ−1(α) and we
obtain

τ(α) = µ− σ

α
φ(Φ−1(α)). (1.5)

Since Q(p) = µ+ σΦ−1(p), we equivalently have

τ(α) = µ+
σ

α

∫ α

0
Φ−1(p) dp.

Further, from (1.4), we also have

τ(α) = µ+ σΦ−1(α) − 1

α

∫ µ+σΦ−1(α)

−∞
Φ

(
y − µ

σ

)
dy.

Our second example is a finite mixture of normals. Any continuous distribution may be
approximated arbitrarily well by a mixture of J normal distributions (see e.g. McLachlan
and Peel (29)). Thus, a finite mixture of normals provides a flexible and tractable way of
allowing for asymmetry, skewness and heavy tails. For simplicity, we consider the case when
J = 2, that is, the rv Yt has a distribution that is a mixture of a N (µ1, σ

2
1) and a N (µ2, σ

2
2)

distribution, with mixing probabilities π1 = π and π2 = 1 − π respectively 1. In this case,
the df of Yt is equal to

F (y) = πΦ

(
y − µ1

σ1

)
+ (1 − π)Φ

(
y − µ2

σ2

)
.

Although we do not have a closed-form expression for the quantiles of a normal mixture, they
can easily be evaluated numerically.

Let c∗j = (c−µj)/σj and Fj(c) = Φ(c∗j), for j = 1, 2, and define F (c) = πF1(c)+(1−π)F2(c)
and θ(c) = πF1(c)/F (c). After some algebra, equation (1.1) becomes

E(Yt |Yt ≤ c) = θ(c)µ1(c) + [1 − θ(c)]µ2(c),

where µj(c) = µj − σjφ(c∗j )/Φ(c∗j ), j = 1, 2. It follows that

τ(α) = θ(α) τ1(α) + [1 − θ(α)]τ2(α),

where τj(α) = µj − σjφ(c∗j )/Φ(c∗j ), c
∗
j = [Q(α) − µj]/σj , with j = 1, 2, and θ(α) = πΦ(c∗1)/α.

Thus, the α-level expected shortfall of Yt is a convex combination of the expected shortfalls
of the two normal components of the mixture.

1The result presented here is easily generalized to the case when Yt is a mixture of J ≥ 2 normals with
mixing probabilities π1, . . . , πJ that are positive and add up to one.
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Relationship between ES and other concepts

The expected shortfall is closely related to other concepts, such as the mean excess function
and the Lorenz curve.

The mean excess function (or mean residual life function) is the mean excess over a
threshold c, that is

e(c) = E(Yt − c |Yt ≤ c) = E(Yt |Yt ≤ c) − c.

This quantity is an important tool in financial risk management and in various other fields,
such as medicine (see Embrechts et al (18), pp. 294–303). Evaluating the mean excess function
at c = Q(α) gives

e(Q(α)) = τ(α) −Q(α),

which is just the difference between the expected shortfall and the VaR.

The Lorenz curve is commonly used in economics to describe the distribution of income
and is associated with measures of inequality such as the Gini coefficient. In this case, Yt
is typically taken to be a non-negative rv with finite, nonzero mean µ. The Lorenz curve is
defined as

L(α) =
1

µ

∫ α

0
Q(p) dp, 0 < α < 1,

and so, from (1.3),

L(α) =
α

µ
τ(α).

The generalized Lorenz curve (Shorrocks (38)) is the Lorenz curve scaled up by the mean
and is equal to

GL(α) =

∫ α

0
Q(p) dp = α τ(α), 0 < α < 1.

If the non-negative rv Yt represents individual income, then GL(α) simply cumulates indi-
vidual incomes up to the αth quantile.

1.2 Economic motivation

We address the important problem of estimation of the expected shortfall when auxiliary
information about asset returns Yt is provided by a set of predictors Xt that represents the
information available at time t− 1. Lags of Yt might also be included in Xt.

Assume that the distribution of Yt conditional on the set of predictors Xt is continu-
ous and strictly increasing. Moreover, let F (y |x) = Pr{Yt ≤ y |Xt = x} and Q(p |x) =
inf{y : F (y |x) ≥ p} be, respectively, the conditional distribution function (cdf) and the con-
ditional quantile function (cqf) of Yt given Xt = x. Assuming that F (· |x) is continuous and
strictly increasing for all x, we have that F (Q(p |x) |x) = p and so Q(p |x) = F−1(p |x) for
all x. The α-level conditional expected shortfall of Yt given Xt = x is

τ(α |x) =
1

α

∫ Q(α |x)

−∞
y dF (y |x)

=
1

α

∫ α

0
Q(p |x) dp

= Q(α |x) − 1

α

∫ Q(α |x)

−∞
F (y |x) dy.

(1.6)
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In some cases, if the cdf is known, one may compute the expected shortfall analytically.
For example, if the conditional distribution of Yt given Xt = x is normal, with mean µ(x)

and variance σ(x)2 then, from (1.5), τ(α |x) = µ(x) − σ(x)
α φ(Φ−1(α)). Still, we can incur

situations when either the integral that defines the expected shortfall is hard to compute or
we do not even know the shape of the conditional distribution function of Yt.

In Chapter 2, that is mainly based on the work of Peracchi and Tanase (2008), we in-
troduce two classes of analog estimators based on two alternative representations of the
conditional ES, either as an integral of the cqf of Yt given Xt or as an integral of the cdf of
Yt given Xt.

Then, departing from a generalized weighted representation of the ES, we propose weighted
versions of estimators for ES and aim to improve their statistical and forecasting properties.
Following Leorato et al (2009), we work out the asymptotic distribution of two of the con-
ditional estimators and analytically derive the weighting that minimizes their asymptotic
variance. As for the second objective, the weighting is numerically derived such as to mini-
mize a suitably defined forecast error of the weighted estimators for ES. The methodologies
are detailed in Chapter 3 and Chapter 4 respectively. Our results are supported by sets of
Monte Carlo experiments and illustrated in empirical applications on real data.

Moreover, in Chapter 4, we construct an asset allocation model that maximizes expected
return with a constraint on either of the risk measures that we have discussed: ES, weighted
ES and VaR. The model does not fully exploit the convexity of the optimization problem,
but it is solved by a numerical algorithm. Using real daily data, we develop an empirical
application and compare various performance indicators and weights stability measures of
the optimal portfolios.
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Chapter 2

Estimation of the expected shortfall

This chapter is based on the work of Peracchi and Tanase (36) that consider alternative ap-
proaches to estimation of the α-level ES τ(α) and the α-level conditional expected shortfall
τ(α |x). We basically exploit the equivalence between (1.2), (1.3) and (1.4) in the uncondi-
tional case, and the equivalence (1.6) in the conditional case. The equivalent representations
open the way to estimation of the expected shortfall by replacing the population conditional
quantile function (cqf) and the population conditional distribution function (cdf) by suit-
able estimates. Estimators based on the first representation are easily interpretable, as the
passage from the unconditional to the conditional case is very intuitive, and are particularly
simple to obtain when the conditional quantile function is assumed to be linear in parameters.
Here we may face the problem of quantile crossing, i.e. estimated linear conditional quantiles
may cross each other, especially when evaluated in the tails of the distribution of Xt. As
for the second representation, we have an approach that naturally impose monotonicity of
the estimated cdf and avoid the quantile crossing problem that might arise with the first
representation.

2.1 Unconditional estimators

Given a random sample Y1, . . . , YT from a distribution with df F and qf Q, the ES τ(α) may
simply be estimated by replacing F and Q in (1.2) and (1.4) by their empirical counterparts,
namely the empirical distribution function (edf) F̂ , defined on the real line by

F̂ (y) =





0, ify < Y(1),

t/T, ifY(t) ≤ y < Y(t+1), t = 1, . . . , T − 1,

1, ify ≥ Y(T )

where Y(1) ≤ · · · ≤ Y(T ) are the sample order statistics, and the empirical quantile function

(eqf) Q̂, defined on the unit interval (0, 1) by

Q̂(p) = Y(t), if
t− 1

T
< p ≤ t

T
, t = 1, . . . , T.

Because Q̂(p) = inf{y : F̂ (y) ≥ p}, p ∈ (0, 1), it follows that

τ̂
(Q)
I (α) =

1

α

∫ α

0
Q̂(p) dp = Q̂(α) − 1

α

∫ Q̂(α)

−∞
F̂ (y) dy =

1

αT

[αT ]∑

t=1

Y(t) +

(
1 − [αT ]

αT

)
Y([αT ]+1),

(2.1)
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where [αT ] denotes the integer part of αT . Thus, τ̂
(Q)
I (α) is a linear combination of extreme

order statistics. Unlike standard L-estimators, however, both the number and the nature of
the terms in the linear combination change with the sample size. If αT is an integer, then

τ(α) = (αT )−1
∑[αT ]

t=1 Y(t). Notice that this estimator coincides with the maximum likelihood
estimator under the assumption that the distribution of Yt conditional on Yt ≤ Q(α) is
exponential on the negative half-line.

The study of the asymptotic distribution of estimators of the form (2.1) has been carried
out by Csörgö et al. (14). In particular, they provide necessary and sufficient conditions for

τ̂
(Q)
I (α) to be asymptotically normal. More precisely, they show that if and only if certain

conditions on the limiting behavior of the smallest and largest order statistics in the sum on
the right-hand side of (2.1) are satisfied (see their Corollary 1), then

√
T (τ̂

(Q)
I (α) − τ(α))

d→N (0,AV(α))

as T → ∞, where

AV(α) =

∫ α

0

∫ α

0
[min(s, t) − st] dQ(s)dQ(t). (2.2)

In fact, Csörgö et al. (14) establish, more generally, the asymptotic properties of weighted
sums of extreme order statistics of the form

τ̂
(D)
I (α) =

I∑

i=1

wiY(i), (2.3)

where w1, . . . , wI is a set of weights and the number of terms I in the weighted sum depends
on the sample size and satisfies I → ∞ and I/T → α.

2.2 Conditional estimators

In this section we consider the case when we also have available data on a vector Xt of
predictors of Yt, which may include a finite number of lags of Yt. After briefly discussing
non-parametric estimation, we propose two classes of analog estimators based, respectively,
on estimates of the cqf Q(p |x) and the cdf F (y |x).

2.2.1 Non-parametric estimators

A simple class of fully non-parametric estimators of τ(α |x) are local versions of (2.1), that
is, averages of the smallest order statistics over a neighborhood of x defined by a suitably
defined kernel function K(·). This corresponds to the class of estimators of the form

τ̄(α |x) =

∑T
t=1 YtKt(x) 11{Yt ≤ Q̂(α |x)}
∑T

t=1Kt(x) 11{Yt ≤ Q̂(α |x)}
,

where Kt(x) = K((Xt − x)/h) is the kernel weight, h is a fixed bandwidth, and Q̂(α |x)
is some estimator of the conditional quantile Q(α |x). Consistency of τ̄(α |x) requires the
bandwidth h to go to zero as T → ∞, but at a slower rate than T . Automatic choice of the
bandwidth h is a topic for future research. Because of the curse-of-dimensionality problem,
this fully non-parametric estimator is unlikely to perform well when the Xt is a vector of
predictors, unless the sample size T is extremely large.
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For the empirically more relevant case when Xt is a vector with several components, result
(1.6) suggests two classes of analog estimators of τ(α |x), namely

τ̂
(Q)
I (α |x) =

1

α

∫ α

0
Q̂(p |x) dp (2.4)

and

τ̂
(D)
I (α |x) = Q̂(α |x) − 1

α

∫ Q̂(α | x)

−∞
F̂ (y |x) dy, (2.5)

where Q̂(p |x) is some estimator of Q(p |x) and F̂ (y |x) is some estimator of F (y |x). We
refer to estimators based on (2.4) as integrated cqf (ICQF) estimators and to estimators
based on (2.5) as integrated cdf (ICDF) estimators. Unlike the unconditional case, one
cannot generally guarantee that Q̂(p |x) = inf{y : F̂ (y |x) ≥ p}, p ∈ (0, 1). Hence, the two
classes of estimators need not coincide.

In the remainder of this chapter, we propose specific versions of these two classes of
estimators, corresponding to specific choices of Q̂(p |x) and F̂ (y |x).

2.2.2 ICQF estimators

Conditional quantiles are often assumed to be linear in parameters, that is, of the form

Q(p |x) = β(p)⊤x.

This is in fact the case originally considered by Koenker and Bassett (24), who proposed
estimating β(p) by solving

min
β

n∑

t=1

ℓp(Yt − β⊤Xt),

where
ℓp(u) = u(p− 11{u < 0}), 0 < p < 1,

is the asymmetric absolute loss function. Given a linear regression quantile estimator β̂(p),
an estimator of Q(p |x) is easily obtained as Q̂(p |x) = β̂(p)⊤x. Under general conditions,
β̂(p) and Q̂(p |x) can be shown to be consistent provided that Q(p |x) is linear in parameters.
These estimators can also be shown to be asymptotically normal irrespective of whether the
linear conditional quantile model is correctly specified (see Angrist et al. (6)). These results
generalize to any fixed collection β̂(p1), . . . , β̂(pI) of linear regression quantile estimators.

Based on these results, a simple class of ICQF estimators of τ(α |x) consists of weighted
sums of linear regression quantile estimators, namely

τ̂
(Q)
I (α |x) =

I∑

i=1

wi Q̂(pi |x) = β̂∗(α)⊤x,

where w1, . . . , wI is a set of weights, the number I of terms in the weighted sum may depend
on the sample size, and

β̂∗(α) =

I∑

i=1

wi β̂(pi),

with 0 < p1 < · · · < pI ≤ α. To guarantee consistency of this estimator, I should be required
to increase with the sample size T .
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As for the asymptotic behavior of estimators of this type, as we show in Chapter 3,
being linear combinations of asymptotically normal estimators, they are also asymptotically
normal. The Monte Carlo evidence in Section 2.3 provides support for our results.

A drawback of the class of ICQF estimators is that linear regression quantile estimators
may cross each other, that is, we may have Q̂(p |x) < Q̂(p′ |x) for p > p′ at some x value.
This problem does not occur at x = X̄, where X̄ is the sample average of the Xt (Dodge
and Jurečková (17), pp. 127–128), but may occur at x values in the tails of the distribution
of Xt, especially when Yt is conditionally heteroskedastic, that is, its conditional variance
is not constant but depends on Xt. How to impose monotonicity on estimating a family of
conditional quantiles is an important but still largely unresolved issue.

2.2.3 ICDF estimators

In order to estimate F (y |x), we follow the approach in Peracchi (35). We select J distinct
values y1, . . . , yJ such that Y(1) < y1 < · · · < yJ < Y(T ), and define the log-odds

ηj(x) = ln
Fj(x)

1 − Fj(x)
, j = 1, . . . , J,

where Fj(x) = F (yj |x) = Pr{Yt ≤ yj |x}. Because each rv 11{Yt ≤ yj} has a Bernoulli dis-
tribution with parameter Fj(x), we can estimate each ηj(x) by a separate logistic regression.
Given an estimator η̃j(x) of ηj(x), we can then estimate Fj(x) by

F̃j(x) =
exp η̃j(x)

1 + exp η̃j(x)
.

After putting y0 = Y(1) and yJ+1 = Y(T ), linear interpolation between thresholds gives the
following estimate of the cdf

F̃ (y |x) =





F̃0(x) = 0, ify ≤ y0,

(1 − ǫj)F̃j(x) + ǫjF̃j+1(x), ifyj ≤ y < yj+1andj = 1, . . . , J,

F̃J+1(x) = 1, ify ≥ yJ+1,

where ǫj = (y − yj)/(yj+1 − yj).

Given F̃ (y |x) and an estimator Q̂(α |x) of Q(α |x), we obtain the following analog esti-
mator of τ(α)

τ̂
(D)
I (α |x) = Q̂(α |x) − 1

α

∫ Q̂(α | x)

−∞
F̃ (y |x) dy = Q̂(α |x) − 1

α

I∑

i=1

ωi F̃i(x),

where ω1, . . . , ωI is a set of weights, the number of terms I in the weighted sum is required
to increase with the sample size T , and F̃I(x) = max{α, F̃I−1(x)}. Automatic choice of I is
again a topic for future research. Linear interpolation of the cdf corresponds to

ωi =

(
(yi+1 − yi−1)/2, ifi = 1, . . . , I − 1,
(yI − yI−1)/2, ifi = I,

)
.

with yI = Q̂(α |x), but other choices of weights are possible.
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One drawback of this class of ICDF estimators is that the estimated cdf F̂ need not satisfy
the condition that F̂j(x) ≥ F̂j−1(x) for all x. A simple way of imposing monotonicity is to
exploit the fact that

Fj(x) = 1 − [1 − F1(x)]

j∏

h=2

[1 − λh(x)], h = 2, . . . , J,

where

λh(x) =
Fh(x) − Fh−1(x)

1 − Fh−1(x)
= Pr{yh−1 ≤ Yt < yh |Yt ≥ yh−1, x}.

Estimators for the λh(x) may be obtained by fitting J − 1 separate logistic regressions, one
for each binary rv 11{Yt < yh} conditional on Yt ≥ yh−1, h = 2, . . . , J . Given F̃1(x) of F1(x)
and estimators λ̃h(x) of the λh(x), we can then estimate Fj(x) by the monotone estimator

F̃ ∗
j (x) = 1 − [1 − F̃1(x)]

j∏

h=2

[1 − λ̃h(x)], j = 2, . . . , J,

and obtain a monotone estimate F̃ ∗(y |x) of the cdf by linear interpolation. Replacing the
non-monotone estimate F̃ by the monotone estimate F̃ ∗ gives another class of ICDF estima-
tors of τ(α), namely

τ̂
(D∗)
I (α |x) = Q̂(α |x) − 1

α

∫ Q̂(α |x)

−∞
F̃ ∗(y |x) dy = Q̂(α |x) − 1

α

I∑

i=1

ω∗
i F̃

∗
i (x).

As for the sampling properties of these two classes of ICDF estimators, in this Chapter
we again confine ourselves to the evidence presented in the next section. Later on, in Chapter
3, we work out the asymptotic distribution of the non-monotonic class of ICDF estimators.

2.3 Monte Carlo evidence

We present some Monte Carlo evidence on the sampling properties of the unconditional

estimator τ̂
(Q)
I (α), the fully non-parametric estimator τ̄(α |x), the ICQF estimator τ̂

(Q)
I (α |x),

and the two ICDF estimators τ̂
(D)
I (α |x) and τ̂

(D∗)
I (α |x). We consider sample sizes of 250,

500 and 1000 observations. For each sample size, the number of Monte Carlo replications is
set equal to 1000. As for the level α, we consider three typical values, namely 1, 5 and 10%.
The Monte Carlo experiments were carried out using the statistical package Stata, version
9.1.

2.3.1 Estimation of the unconditional expected shortfall

We consider the case when the data are a random sample from four alternative distributions,
all with a finite variance and symmetric about a mean of zero. The first distribution is
the standard normal, the second is the mixture of a N (0, 1) with probability 80% and a
N (0, 2) with probability 20%, the third and the fourth are Student’s t distributions, with 2

and 4 degrees of freedom respectively. Details on the Monte Carlo distribution of τ̂
(Q)
I (α)

are given in Table 2.1. In addition to the number I = [αT ] of extreme order statistics
that enter the estimation, the tables report the values of τ(α) for each parent distribution



12 Estimation of the expected shortfall

and summaries of the Monte Carlo distribution of the estimator τ̂
(Q)
I (α), namely the mean

bias (Bias), the median bias (MBias), the standard deviation (SD), the root mean squared
error (RMSE), and the coefficients of skewness (Skew) and kurtosis (Kurt). We assume the
following distributions: Yt ∼ N (0, 1), Yt ∼ 0.8∗N (0, 1)+0.2∗N (0, 2), Yt ∼ t[2] and Yt ∼ t[4]
respectively, for α =1%, 5%, 10%. The Monte Carlo distributions are based on 1000 samples
of size T = 250, 500, 1000.

Figures 2.1 and 2.2 plot, for each set of parameters, kernel estimates of the Monte Carlo
densities, respectively for the case when the parent distribution is normal Yt ∼ N (0, 1) and
a normal mixture Yt ∼ 0.8 ∗ N (0, 1) + 0.2 ∗ N (0, 2). The panels in each figure correspond to
different values of α and present Monte Carlo densities corresponding to the various sample
sizes (α = 1%, 5%, 10%, and T = 250, 500, 1000). The densities are based on 1000 samples.
A vertical line in each panel marks the value of τ(α).

The bias of the unconditional estimator tends to be small, except for small values of α
in the case of the t distributions (especially the t distribution with 2 degrees of freedom).
In small samples and for a small values of α the estimator is not very precise. However, its
precision increases with the sample size T and the level α.
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Table 2.1: Summary statistics of the Monte Carlo distribution of τ̂
(Q)
I (α)

N (0, 1) 0.8 ∗ N (0, 1) + 0.2 ∗ N (0, 4)
α T I τ(α) Bias MBias SD RMSE Skew Kurt τ(α) Bias MBias SD RMSE Skew Kurt

0.01 250 2 -2.665 -0.016 0.003 0.304 0.304 -0.386 3.040 -4.135 -0.014 0.074 0.723 0.723 -0.580 3.676
0.01 500 5 -2.665 0.043 0.057 0.198 0.202 -0.317 3.130 -4.135 0.093 0.120 0.483 0.491 -0.223 2.935
0.01 1000 10 -2.665 0.025 0.029 0.142 0.145 -0.217 3.173 -4.135 0.044 0.050 0.339 0.342 -0.120 3.083
0.05 250 12 -2.063 0.005 0.012 0.158 0.158 -0.156 3.013 -2.802 -0.002 0.019 0.336 0.336 -0.454 3.391
0.05 500 25 -2.063 0.004 0.003 0.111 0.111 -0.105 3.125 -2.802 0.022 0.040 0.224 0.225 -0.305 2.976
0.05 1000 50 -2.063 0.004 0.010 0.080 0.080 -0.204 3.164 -2.802 0.008 0.011 0.165 0.165 -0.204 3.107
0.1 250 25 -1.755 0.007 0.007 0.117 0.117 0.045 2.910 -2.259 0.011 0.018 0.210 0.210 -0.235 3.019
0.1 500 50 -1.755 0.004 0.005 0.084 0.085 -0.116 3.115 -2.259 0.011 0.018 0.158 0.158 -0.225 2.994
0.1 1000 100 -1.755 0.002 0.000 0.061 0.061 0.023 3.129 -2.259 0.001 0.003 0.110 0.110 -0.237 3.330

t[2] t[4]
α T I τ(α) Bias MBias SD RMSE Skew Kurt τ(α) Bias MBias SD RMSE Skew Kurt

0.01 250 2 -13.968 -1.153 2.137 11.996 12.045 -4.346 33.615 -5.217 -0.170 0.178 1.699 1.707 -1.697 7.450
0.01 500 5 -13.968 0.550 2.543 11.218 11.226 -14.401 308.183 -5.217 0.158 0.356 1.077 1.088 -2.193 14.894
0.01 1000 10 -13.968 0.228 1.658 6.319 6.320 -4.679 39.411 -5.217 0.083 0.197 0.771 0.775 -1.200 5.919
0.05 250 12 -6.118 0.043 0.552 2.130 2.129 -2.204 10.489 -3.201 0.008 0.072 0.488 0.488 -0.781 4.021
0.05 500 25 -6.118 -0.058 0.366 2.151 2.150 -6.300 69.543 -3.201 0.001 0.039 0.353 0.353 -0.794 4.627
0.05 1000 50 -6.118 -0.046 0.292 1.409 1.409 -2.715 16.501 -3.201 0.004 0.039 0.261 0.261 -0.722 3.937
0.1 250 25 -4.210 -0.064 0.241 2.108 2.108 -13.848 289.912 -2.498 0.006 0.035 0.307 0.307 -1.068 8.244
0.1 500 50 -4.210 -0.034 0.133 1.097 1.097 -6.692 90.494 -2.498 0.002 0.014 0.217 0.217 -0.543 3.797
0.1 1000 100 -4.210 -0.040 0.076 0.918 0.919 -10.293 171.314 -2.498 -0.001 0.001 0.149 0.149 -0.174 3.017
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Figure 2.1: Monte Carlo densities of the unconditional estimator τ̂
(Q)
I (α) for the standard

normal distribution
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Figure 2.2: Monte Carlo densities of the unconditional estimator τ̂
(Q)
I (α) for the mixture of

normals distributions
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2.3.2 Estimation of the conditional expected shortfall

For the comparison of alternative estimators of the conditional ES, we consider cases when
the conditional mean of the outcome Yt depends linearly on a constant and a single regressor
Xt. Both homoskedastic and heteroskedastic versions of the model are considered. In the
homoskedastic version, the conditional distribution of Yt given Xt = x is N (−1 + x, 1). In
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the heteroskedastic version it is N (−1 + x, (1 + 0.25x)2). In either case, Xt is distributed as
N (0, 1), and the population regression R2 is about 50%.

We compare the Monte Carlo behavior of four estimators: (i) the fully non-parametric

τ̄(α |x), denoted by NP, (ii) the ICQF τ̂
(Q)
I (α |x), (iii) the ICDF τ̂

(D)
I (α |x) based on the non-

monotonic cdf estimate F̂ (y |x), denoted by ICDF1, and (iv) the ICDF τ̂
(D∗)
I (α |x) based on

the monotonic cdf estimate F̃ (y |x), denoted by ICDF2.
For the non-parametric estimator NP, we use a Gaussian kernel with bandwidth h =

σX T
−1/5, where σX is the standard deviation of Xt and T is the sample size.

After some experimentation, the number of estimated regression quantiles for the ICQF
estimator and the number of thresholds for the two ICDF estimators is set equal to I = 1, 2, 4
respectively for T = 250, 500, 1000 and α = .01. For α equal to 5% and 10%, the value of I is
scaled up proportionally (thus, I = 5, 10, 20 respectively for T = 250, 500, 1000 and α = 5%).
For the ICQF estimator, we also choose pi = α(2i − 1)/2I, with i = 1, . . . , I, and uniform
weights wi = 1/I. This corresponds to choosing the pi equally spaced between p1 = α/(2I)
and pI = α − α/(2I), that is, pi = pi−1 + δ, with δ = α/I. For the ICDF estimators, the
thresholds correspond to equally spaced order statistics between y1 = Y(1+δ) and yI = Y(1+δI),
where δ = [S/(I + 1)] is the integer part of the ratio between the number S of data points
to the left of Q̂(α |x) and the number I of thresholds. In practice, construction of the ICDF
estimator requires the estimated conditional quantile to be greater than the first sample
order statistic Y(1). This condition is not guaranteed, especially when α = 1% and T = 250.
In this case, we drop the “failed” experiments (those where the condition is not met) and
draw Monte Carlo samples until a predetermined number of 1000 “successful” experiments
is reached. For α = 1%, the ratio of “failed” to “successful” experiments is between 20 and
25% for T = 250, is between 5 and 7% for T = 500, drops to less than 1% for T = 1000, and
is zero or negligible in all other cases.

Details on the Monte Carlo distribution of the four alternative estimators for different
α-levels (α = 1%, 5% and 10%), sample sizes (T = 250, 500, 1000) and x-values (the 10th
and 50th percentiles of Xt) are given in Tables 2.2 and 2.3, separately for the homoskedastic
and the heteroskedastic case. Each table reports the value of I for the ICDF and the ICQF
estimators, and the mean bias (Bias), the standard deviation (SD) and the root mean squared
error (RMSE) of all four estimators. In Figures 2.3 and 2.5 (for the homoskedastic case)
and Figures 2.4 and 2.6 (for the heteroskedastic case), we plot kernel estimates of the Monte
Carlo densities of the various estimators for α = 5%. In each graph, we keep the x-value
fixed and increase the size T of the Monte Carlo sample.

The Monte Carlo results follow the same pattern as for the unconditional estimator, with
the bias and the RMSE of all estimators falling with the sample size. In most cases, the
coefficients of skewness and kurtosis (not reported to save space) range in the intervals (-0.5,
0.5) and (2.5, 3.5) respectively. For moderate and large sample sizes (500 or 1000 observa-
tions) and values of α equal to 5 and 10%, the Monte Carlo distribution of all estimators
looks approximately normal. Overall, the fully nonparametric estimator NP has a smaller
bias, a larger SD and a larger RMSE than the other three estimators. In general, the ICQF
estimator performs better than the ICDF estimators in terms of RMSE except when either
the level α or the sample size T are small. This is mostly due to its smaller bias which, for
small α or small T , is offset by a larger variability. Of the two ICDF estimators, ICDF1 tends
to have a smaller bias but a larger variability than ICDF2. In terms of RMSE, ICDF1 tends
to do better in the homoskedastic case irrespective of α, x and T , whereas ICDF2 tends to
do better in the heteroskedastic case.
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Table 2.2: Summary statistics of the Monte Carlo distribution of alternative estimators of τ(α|x), x = −1.282 (the 10th percentile of Xt)

Homoskedastic model, x = −1.282
NP ICQF ICDF1 ICDF2

α T τ(α|x) Bias SD RMSE I Bias SD RMSE I Bias SD RMSE I Bias SD RMSE

0.01 250 -4.947 0.027 0.546 0.547 1 0.163 0.483 0.510 1 0.149 0.443 0.467 1 0.149 0.443 0.467
0.01 500 -4.947 -0.018 0.448 0.448 2 0.095 0.333 0.346 2 0.042 0.336 0.338 2 0.040 0.334 0.336
0.01 1000 -4.947 0.010 0.339 0.339 4 0.043 0.249 0.253 4 0.018 0.250 0.251 4 0.022 0.248 0.249
0.05 250 -4.344 -0.028 0.362 0.363 5 0.024 0.255 0.256 5 0.045 0.274 0.277 5 0.061 0.271 0.278
0.05 500 -4.344 0.000 0.247 0.247 10 0.021 0.179 0.180 10 0.051 0.186 0.193 10 0.093 0.179 0.202
0.05 1000 -4.344 0.005 0.179 0.179 20 0.012 0.127 0.128 20 0.053 0.135 0.145 20 0.104 0.130 0.166
0.1 250 -4.037 0.003 0.250 0.250 10 0.020 0.197 0.198 10 0.062 0.206 0.215 10 0.118 0.197 0.229
0.1 500 -4.037 -0.007 0.195 0.195 20 0.011 0.146 0.147 20 0.062 0.148 0.161 20 0.135 0.142 0.195
0.1 1000 -4.037 -0.001 0.132 0.132 40 0.004 0.095 0.095 40 0.057 0.100 0.115 40 0.138 0.095 0.167

Heteroskedastic model, x = −1.282
NP ICQF ICDF1 ICDF2

α T τ(α|x) Bias SD RMSE I Bias SD RMSE I Bias SD RMSE I Bias SD RMSE

0.01 250 -4.093 0.047 0.305 0.309 1 0.038 0.367 0.369 1 0.100 0.263 0.281 1 0.100 0.263 0.281
0.01 500 -4.093 0.013 0.257 0.257 2 -0.001 0.251 0.251 2 -0.004 0.225 0.225 2 0.016 0.214 0.215
0.01 1000 -4.093 -0.002 0.212 0.211 4 -0.019 0.164 0.165 4 -0.060 0.177 0.187 4 -0.019 0.158 0.159
0.05 250 -3.683 -0.013 0.220 0.220 5 -0.019 0.182 0.183 5 -0.053 0.191 0.198 5 0.001 0.175 0.175
0.05 500 -3.683 -0.005 0.161 0.161 10 -0.021 0.135 0.136 10 -0.091 0.144 0.170 10 0.000 0.126 0.126
0.05 1000 -3.683 0.002 0.118 0.118 20 -0.010 0.087 0.087 20 -0.106 0.106 0.150 20 0.007 0.088 0.089
0.1 250 -3.474 0.000 0.161 0.161 10 -0.008 0.137 0.137 10 -0.076 0.154 0.171 10 0.024 0.136 0.138
0.1 500 -3.474 0.005 0.124 0.124 20 -0.004 0.092 0.092 20 -0.095 0.104 0.140 20 0.033 0.091 0.097
0.1 1000 -3.474 0.002 0.087 0.087 40 -0.002 0.063 0.063 40 -0.101 0.079 0.128 40 0.036 0.068 0.077
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Table 2.3: Summary statistics of the Monte Carlo distribution of alternative estimators of τ(α|x), x = 0 (the median of Xt)

Homoskedastic model, x = 0
NP ICQF ICDF1 ICDF2

α T τ(α|x) Bias SD RMSE I Bias SD RMSE I Bias SD RMSE I Bias SD RMSE

0.01 250 -3.665 -0.030 0.372 0.373 1 0.124 0.298 0.322 1 0.015 0.251 0.251 1 0.015 0.251 0.251
0.01 500 -3.665 -0.018 0.273 0.274 2 0.073 0.209 0.221 2 -0.079 0.182 0.199 2 -0.109 0.181 0.212
0.01 1000 -3.665 -0.004 0.201 0.201 4 0.042 0.148 0.154 4 -0.131 0.145 0.195 4 -0.197 0.143 0.243
0.05 250 -3.063 -0.034 0.207 0.209 5 0.030 0.160 0.162 5 -0.050 0.169 0.176 5 -0.099 0.164 0.192
0.05 500 -3.063 -0.028 0.151 0.154 10 0.014 0.112 0.113 10 -0.062 0.128 0.142 10 -0.133 0.125 0.183
0.05 1000 -3.063 -0.017 0.109 0.110 20 0.010 0.077 0.078 20 -0.055 0.089 0.105 20 -0.145 0.089 0.170
0.1 250 -2.755 -0.026 0.165 0.167 10 0.019 0.125 0.127 10 -0.010 0.146 0.147 10 -0.060 0.143 0.155
0.1 500 -2.755 -0.020 0.112 0.114 20 0.015 0.086 0.088 20 -0.017 0.101 0.103 20 -0.082 0.098 0.128
0.1 1000 -2.755 -0.021 0.085 0.088 40 0.007 0.061 0.061 40 -0.022 0.072 0.075 40 -0.099 0.071 0.122

Heteroskedastic model, x = 0
NP ICQF ICDF1 ICDF2

α T τ(α|x) Bias SD RMSE I Bias SD RMSE I Bias SD RMSE I Bias SD RMSE

0.01 250 -3.665 0.040 0.342 0.344 1 0.114 0.308 0.328 1 0.167 0.242 0.294 1 0.167 0.242 0.294
0.01 500 -3.665 0.034 0.266 0.268 2 0.070 0.217 0.228 2 0.137 0.181 0.227 2 0.129 0.178 0.220
0.01 1000 -3.665 0.021 0.208 0.209 4 0.039 0.152 0.157 4 0.131 0.136 0.189 4 0.116 0.133 0.176
0.05 250 -3.063 0.005 0.198 0.198 5 0.029 0.166 0.168 5 0.064 0.164 0.176 5 0.052 0.152 0.161
0.05 500 -3.063 0.002 0.150 0.149 10 0.014 0.115 0.116 10 0.056 0.122 0.134 10 0.040 0.111 0.118
0.05 1000 -3.063 0.003 0.110 0.110 20 0.009 0.080 0.080 20 0.063 0.088 0.109 20 0.044 0.079 0.091
0.1 250 -2.755 0.006 0.163 0.163 10 0.018 0.129 0.130 10 0.040 0.146 0.151 10 0.038 0.132 0.137
0.1 500 -2.755 0.003 0.112 0.112 20 0.014 0.090 0.091 20 0.035 0.105 0.111 20 0.032 0.093 0.098
0.1 1000 -2.755 -0.002 0.084 0.084 40 0.006 0.063 0.063 40 0.027 0.074 0.079 40 0.023 0.065 0.069
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Figure 2.3: Monte Carlo densities of alternative estimators of τ(α |x), homoskedastic model,
x = −1.282 (the 10th percentile of Xt)

0
1

2
3

4
.

−5 −4.5 −4 −3.5
.

NP

0
1

2
3

4
.

−5 −4.5 −4 −3.5
.

ICQF

0
1

2
3

4
.

−5 −4.5 −4 −3.5
.

ICDF1

0
1

2
3

4
.

−5 −4.5 −4 −3.5
.

ICDF2

T=250 T=500 T=1000

Figure 2.4: Monte Carlo densities of alternative estimators of τ(α |x), heteroskedastic model,
x = −1.282 (the 10th percentile of Xt)
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Figure 2.5: Monte Carlo densities of alternative estimators of τ(α |x), homoskedastic model,
x = 0 (the median of Xt).
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Figure 2.6: Monte Carlo densities of alternative estimators of τ(α |x), heteroskedastic model,
x = 0 (the median of Xt).
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2.4 Empirical application

In this section we present an application on real data. The dependent variable is the daily
excess return on the S&P 500 index, while the regressors are real and financial variables. We

consider the unconditional estimator τ̂
(Q)
I (α), the ICQF estimator τ̂

(Q)
I (α |x) and the ICDF

estimators τ̂
(D)
I (α |x) and τ̂

(D∗)
I (α |x), excluding the fully non-parametric estimator τ̄(α |x)

because of the curse-of-dimensionality problems due to the high number of predictors.
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2.4.1 The data

Our raw data are daily from December 30, 1994, to December 31, 2004. The dependent
variable is the daily excess return on the US stock market, defined as the difference between
the return on the S&P 500 (the logarithmic difference in the index plus dividend payments)
and the return on a 3-month US money market instrument issued by JPMorgan (the log-
arithmic difference in its price), and computed excluding weekends and holidays. The set
of predictors includes both real and financial variables. The real variables include the price
of oil futures and a price index of non-energy commodities. The financial variables include
the risk spread (the yield difference between a Lehman U.S. aggregate Baa bond and a U.S.
Government 10-year bond), the term spread (the yield difference between a U.S. Government
10-year bond and a U.S. Treasury 90-day bill), and the dividend yield (the weighted average
of the dividend per share on the stocks entering the S&P 500). This set of predictors has been
chosen to include a broad mix of macro and micro indicators. The prices of basic materials
carry information on the cost of industrial inputs, the risk spread and the dividend yield
carry information on the risk premium and companies’ profitability, whereas the term spread
embodies expectations on short and long term inflation. All predictors are measured as of the
end of the day. For the 3-month US money market instrument issued by JPMorgan and the
Lehman U.S. aggregate Baa bond, we use the Thomson Datastream series which have been
concatenated backwards starting with December 31, 1996, and June 30, 1998, respectively.
All other data are from Bloomberg.

Data sources, variable transformations, and summary statistics of the transformed data,
namely the mean, the standard deviation (SD), the 1st percentile (Q.01) and the 99th per-
centiles (Q.99), are presented in Tables 2.4 and 2.5.

Figure 2.7 presents the transformed data. The upper left panel plots the dependent
variable, the daily excess return on the US stock market. Note that the sample period is long
enough to include the bull market of the second half of the 1990s, the bear market between
2000 and 2003, and the post-2003 period.

Table 2.4: Data sources.

Code Description Source

MKU S&P500 total return index Bloomberg
RUS 3m US cash total return Thomson Datastream, Bloomberg
OIL Oil Nymex future price (1st contract) Bloomberg
COM Goldman Sachs non-energy index Bloomberg
DYUS S&P500 equity dividend yield Bloomberg
RYUS Lehman US aggregate Baa yield Thomson Datastream, Bloomberg
TB10Y US generic govt 10 year yield Bloomberg
TB3M US treasury bill 90 days yield Bloomberg

2.4.2 Empirical results

We estimate the model repeatedly using rolling windows of T = 499 observations. The first
of these windows goes from January 4, 1995, when all transformed variables are available, to
July 10, 1997. In total, we have 1460 windows. All predictors are lagged one period. For each
rolling window, we use the estimated model and the last available value of the predictors to
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Table 2.5: Transformations and summary statistics of the data.

Variable Description Transformation Mean SD Q.01 Q.99

USR S&P500 excess return ln (MKUt/MKUt−1)−

ln (RUSt/RUSt−1) 2.3 · 10−4 0.011 -0.029 0.033
UOIL Oil price log diff ln (OILt/OILt−1) 5.6 · 10−4 0.023 -0.059 0.053
UCOMM Commodity price log diff ln (COMt/COMt−1) 0.8 · 10−4 0.006 -0.014 0.013
URS Risk spread RY USt − TB10Yt 1.556 0.667 0.707 3.054
UDY Dividend yield ln (DY USt) 0.427 0.259 0.044 1.008
USP Term Spread TB10Yt − TB3Mt 1.544 1.120 -0.572 3.612

Figure 2.7: Transformed daily data between January 4, 1995, and December 31, 2004.
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estimate the expected shortfall over the next day. We call this estimate the one-step ahead
predicted shortfall.

Table 2.6 summarizes the results obtained using the unconditional estimator UC, and
our three conditional estimators, namely ICQF, ICDF1 and ICDF2. It presents the mean,
the standard deviation, and the 1st and 99th percentiles of the empirical distribution over
our 1460 rolling windows of the one-step ahead predicted shortfall (expressed in percentage
points) for α = 5%. The standard deviation is significantly lower for the unconditional esti-
mator than for the conditional estimators. This reflects the smoothness of the unconditional
estimator, whose value is affected only marginally by the accrual of new information as the
rolling window changes. On the other hand, by construction, the conditional estimators are
much more sensitive to short-run variations in the predictors.

Figure 2.8 presents the time-series plot of the one-step ahead predicted shortfall based
on the unconditional estimator UC and the three conditional estimators ICQF, ICDF1 and
ICDF2. In a few cases (29 for the ICDF1 estimator and 23 for the ICDF2 estimator out
of a total of 1460), the one-step ahead predicted shortfall is negative and larger than 5% in
absolute value. To avoid scale problems, in Figure 2.8, we censor these values at -5%. A
pattern that is common to all conditional estimators is that they follow the observed volatility
clustering of the financial returns, and tend to exhibit persistence in sub-intervals. Periods
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when the one-step ahead predicted shortfall is particularly high are the second semester of
1998 and 2001 respectively, the last quarter of 2002 and the first quarter of 2003. Among the
conditional estimators, the ICDF2 is particularly sensitive to the market index swings of the
second semester of 1997.

Table 2.6: Summary statistics of the empirical distribution of the one-step ahead predicted
shortfall.

Estimator Mean SD Q.01 Q.99

UC -2.560 0.360 -2.979 -1.603
ICQF -2.481 0.844 -4.387 -0.978
ICDF1 -2.448 1.764 -6.540 -1.202
ICDF2 -2.302 1.284 -5.984 -1.199

Figure 2.8: One-step ahead predicted shortfall based on the unconditional and the conditional
estimators
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To assess the predictive accuracy of our estimators, we follow McNeil and Frey (30) who
propose a formal test of the hypothesis that a particular method provides an unbiased predic-
tor of the expected shortfall. Their test is based on the idea that, under the null hypothesis,
the one-step ahead prediction error (defined as the difference between the observed excess
return between T and T + 1 and the one-step ahead predicted shortfall) should have mean
zero under quantile violation, that is, in cases when the observed excess return is lower than
the VaR at level α. The test rejects the null hypothesis whenever the average one-step ahead
prediction error is large, the average being taken over all quantile violation cases.

We depart from McNeil and Frey (30) because we do not formally test the null hypothesis,
but simply compare summaries of the empirical distribution of the one-step ahead prediction
error for the various estimators under quantile violation. We estimate the VaR uncondi-
tionally by the order statistic Y[αT ], where T = 499 is the number of observations in each
rolling window, and conditionally using the linear quantile regression estimator of Koenker
and Bassett (24). Table 2.7 shows, for each estimator considered, the number and percent-
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age of quantile violations (out of 1460 cases) and summaries of the empirical distribution of
the one-step ahead prediction error–the mean, the standard deviation, and the 1st and 99th
percentiles–under quantile violation. The standard deviation and the difference between the
99th and the 1st percentile (another measure of variability) are smallest for the unconditional
estimator. However, the mean prediction error for this estimator (under quantile violation) is
larger in absolute value than for the conditional estimators, except possibly ICDF2. Among
the conditional estimators, the mean prediction error is smallest in absolute value for the
ICDF1 estimator, whereas the variability of the prediction error is smallest for the ICQF
estimator. Notice that the mean prediction error is negative (under-prediction of the loss)
for the ICQF and the ICDF2 estimators, and positive (over-prediction of the loss) for the
ICDF1 estimator. Also notice that, for the two ICDF estimators, the difference between the
99th and the 1st percentile tends to be large due to some extreme negative estimates.

Table 2.7: Summary statistics of the empirical distribution of the one-step ahead prediction
error

Estimator Np. obs. Mean SD Q.01 Q.99

UC 77 (5.3%) -0.052 0.670 -3.346 0.698
ICQF 89 (6.1%) -0.033 0.718 -3.366 1.699
ICDF1 89 (6.1%) 0.022 0.776 -3.565 2.076
ICDF2 89 (6.1%) -0.059 1.410 -3.805 8.601

2.5 Conclusions

We have extended the concept of ES to the important case when auxiliary information about
the outcome of interest is available. Our starting points are two equivalent representations of
the α-level expected shortfall. In the unconditional case, the two representations lead to the
same estimator, namely an average of the smallest sample order statistics. In the conditional
case, instead, they may lead to two alternative classes of estimators, labelled ICQF and ICDF
estimators. One advantage of the class of ICDF estimators is that we can more easily impose
monotonicity of the estimated cdf and therefore avoid the quantile crossing problem that one
may encounter with the class of ICQF estimators. We also consider a simple class of fully
non-parametric estimators that consists of local versions of the unconditional estimator.

The properties of the proposed estimators are studied through a set of Monte Carlo
experiments and through an empirical application using financial data. The Monte Carlo
experiments show that accuracy of the estimators increases rapidly with the level α and the
sample size. The behavior of the conditional (ICQF and ICDF) estimators is very similar for
central values of the predictors, but tends to differ for extreme values, in a way that depends
on the underlying model.

In our empirical application, the predictive performance of the various estimators is as-
sessed by analyzing the distribution of the one-step ahead prediction errors. Overall, the
conditional estimators, and especially the ICQF estimator, tend to have a better performance
than the unconditional estimator.
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Chapter 3

Efficient expected shortfall
estimators

3.1 Introduction

In the first chapter we have introduced the Expected Shortfall (ES) that, differently from
the Value at Risk (VaR), is a coherent risk measure, meaning that it simultaneously satisfies
sub-additivity, monotonicity, positive homogeneity and translation invariance (see Artzer et
al (7)). Moreover, the ES is continuous with respect to α irrespective of the distribution of
returns. References can be found in Acerbi and Tasche (2), Delbaen (16) and Bertsimas et
al. (11), among the others.

Following Peracchi and Tanase (36), in Chapter 2, we proposed estimators of ES, both
unconditional and conditional on some available set of regressors Xt. The unconditional
estimator is a linear combination of extreme order statistics. For the conditional case, a
nonparametric and two linear versions that are plug in estimators based on the representation
of ES in terms of the conditional distribution function and the conditional quantile function.

In this Chapter, that is mainly based on Leorato et al (26), we focus on generalized analog
estimators for ES and improve on their efficiency in terms of asymptotic variance (AV).
Our approach consists in generalizing the ES to the Weighted Expected Shortfall (WES) by
using a weighting function W : [0, α] 7→ [0, 1] that maps the original distribution function
F (y) = Pr{Yt ≤ y} onto W (F (y)) = W (Pr{Yt ≤ y}), derive the asymptotic properties of the
weighted estimators and optimize over W such as to minimize the AV of the estimators.

The weighted ES estimators are defined in Section 3.3 as analog consistent estimators of
the corresponding Weighted ES (WES). This is obtained as the expectation of the returns,
up to a given quantile, according to a distribution modified by some weights. The introduc-
tion of weighted quantile risk measures is not new in the literature, they are considered for
instance by Acerbi (1), who studies spectral measures of risk and conditions on W (·) that
guarantee coherence of WES, and Cherny (13) and Mansini et al. (28) that propose portfolio
allocation problems with constraints on such measures. Rather than focusing on a new co-
herent risk measure, alternative to the ES, the purpose of this chapter consists in improving
on the asymptotic efficiency of the conditional ES estimators proposed in (36). Moreover, the
analysis of the asymptotic properties of the ICDF and ICQF estimators, that is not pursued
in the previous chapter is obtained here.

The chapter is structured as follows. In the next Section, we define the so called Weighed
Expected Shortfall and also the main conditions on the weighting functions are defined. In
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Section 3.3, we propose the class of weighted ES estimators, as a generalization of those
introduced in the previous chapter, and we study their asymptotic properties in Section
3.4. Since the WES coincides with the ES for W (u) = u/α, and so do the corresponding
estimators, then the asymptotic properties of the ICDF and ICQF estimators proposed in the
previous chapter are embedded into the results of this section. Section 3.5 and 3.6 present the
efficient WES estimators and a study of the gain of asymptotic efficiency that can be attained
for different distributions of the returns (heavy tailed or low tailed). Finally, a Monte Carlo
study and an application to real data are performed. Some of the proofs are postponed to
the Appendix. The full set of proofs can be found in Leorato et al (26).

3.2 The Weighted ES: definition

The Weighted ES can be defined departing from the definition of ES, by modifying the
distribution of the returns of an asset/portfolio Yt according to a given weighting function
W . As we shall see in the next section, the definition of the WES allows to construct the
weighted ES estimators, as a weighted version of the ES estimators.

Let Yt be the random variable representing the returns of a given asset or portfolio at
time t and let the k−dimensional random vector Xt represent a given set of covariates for the
rv Yt. We shall assume that all Yt’s are conditionally independent and identically distributed
with d.f. Fx(y) = Ft(y |x). This is a rather limiting assumptions and an extension to the
case where dependence across time is allowed is a priority for further work.

We start by defining the WES, for a given weighting function W : [0, α] 7→ [0, 1]. We
consider the following assumptions on the weights:

(A1) W : [0, α] 7→ [0, 1] is a function in C1[0, α] (the class of all functions with continuous
first derivative) and satisfies: W (0) = 0 and W (α) = 1

(A2) W ′ = w is non-negative everywhere in [0, α].

Definition 1 Let Fx(y) be the distribution function of the returns Yt conditional on a set of
k covariates Xt = x. Then, for every W satisfying (A1) and (A2), the α−level weighted ES
is defined as

τw(α |x) =

∫ Qx(α)

0
ydW (Fx(y)) (3.1)

where Qx(α) is the conditional αth quantile.

As for the expected shortfall (see (36)), by simply integrating by parts or performing a
change of variable, one can write the following chain of equivalent representations for the
weighted ES:

τw(α |x) =

∫ Qx(α)

−∞
ydW (Fx(y) =

∫ α

0
Qx(p)w(p)dp = Qx(α) −

∫ Qx(α)

−∞
W (Fx(y))dy (3.2)

Clearly, the unconditional weighted ES as well as the ES, that we denote by τ(α |x), are
embedded in Definition 1, corresponding to the cases Xt = x with probability 1 and w(p) = 1

α
respectively.

Remark 1 Assumptions (A1) and (A2) are sufficient for (3.1) to be a risk measure satisfying
monotonicity, positive homogeneity and translation invariance. The following third condition
(see Theorem 4.1 in Acerbi (1)) would moreover guarantee coherency:
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(A3’) W is concave on [0, α] (w is a decreasing density function if also (A2) holds).

Since under (A1) and (A2) the cdf Fx(y) is mapped into a new cdf W (Fx(y)) the weighted
ES can be interpreted as the expected loss one would suffer in the worst α−percent cases,
if the distribution of the returns changed from Fx into W (Fx). This interpretation of the
weighted ES is related to the theory of non-expected utility of Yaari (40), where modifying the
distribution of returns accommodates risk aversion of the investor. However, this subjective
interpretation of weights goes beyond the scope of the present work and, in fact, assumption
(A3’) is neglected.

As stated above, every continuous cumulative df W (·) with support [0, α] is suitable
to define a (non necessarily coherent) risk measure WES. We conclude this section by the
specification of the class W of admissible weighting functions, among which we choose the
optimal one, according to the minimum AV criterion.

We can follow two different approaches in order to identify the class W: a parametric or
a nonparametric specification.

Because of the form of the objective functions that, as will be shown below, is convex in
w, the nonparametric representation for W corresponds to a convex optimization problem,
and therefore in principle outdoes the parametric approach. Nonetheless, the solutions found
when the optimization problems are restricted to a parametric class WP are almost as good
as in the nonparametric case. At the same time the parametric approach has the advantage
of incorporating the inequality constraint w ≥ 0 in the functional form.

For this reasons, although focusing in the nonparametric specification we will also present
the parametric approach and make comparisons within the two.

3.2.1 Nonparametric specification

We here allow for W to contain all weighting functions, without restrictions to a given para-
metric form.

Besides restrictions (A1) and (A2), since the aim is to estimate ES by means of weighted
expected shortfall estimators, then we must account for another constraint, also linear in w:

∫ α

0
Qx(p)

(
w(p) − 1

α

)
dp = 0 (3.3)

The restriction (3.3), that corresponds to imposing τw(α |x) = τ(α |x), is due to the fact that

each weighted ES estimator τ̂
(·)
w (α |x), introduced in Section 3.3, is be consistent for τw(α |x)

rather than for τ(α |x).
Then, the set of weighting functions considered in the nonparametric case is:

W =

{
w(p) ≥ 0, p ∈ [0, α],

∫ α

0
w(p)dp = 1,

∫ α

0
Qx(p)

(
w(p) − 1

α

)
dp = 0

}
(3.4)

In the following, we will also consider the family

WU =

{
w = w(p) :

∫ α

0
w(p)dp = 1,

∫ α

0
Qx(p)

(
w(p) − 1

α

)
dp = 0

}

where the inequality constraints deriving from (A2) are ignored. This will be used to define
the nonparametric unconstrained version of the efficient estimator. This simplification allows
for the explicit derivation of the global optimum of the minimization problem (see Theorems
3 and 4). Anyway, in this case W is no longer a distribution function and therefore the WES
associated to W can not be interpreted as a proper average of the quantiles up to level α.
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3.2.2 Parametric specification

Alternatively to the nonparametric specification, we can choose to restrict the class W of
admissible weighting functions to an appropriately chosen parametric class, depending on a
finite number of parameters. The parametric class is embedded into W and the minimum
asymptotic variance one obtains in this case can not be smaller than the minimum in the
nonparametric specification.

Nonetheless, as already mentioned earlier, the parametric specification has some advan-
tages. First, defining a parametric class of distribution functions allows us to get rid of the
nonnegativity constraints, that are satisfied by construction. Second, although restricting to
a subset of W, if the parametric family is large enough we can easily find values of AV that
almost achieve those obtained in the nonparametric specification. One important drawback
of this approach is given by the fact that, in restricting to the parametric class WP , we loose
the simple structure of the optimization problem, that, although depending on a limited
number of parameters, can be solved only computationally.

As far as to the parametric class to choose, we remark that the families of weighting
functions corresponding to an S-shaped W , that are usually modelled in the framework of
non-expected utility or when accounting for subjective risk attitude, such as, for example,
the classes of functions W (p) = exp{−{− ln p}β}, 0 < β < 1 (Prelec (37)) or W (p) =
1 − (1 − p/α)b (Bassett et al. (10)) are not wide enough for our purposes. In fact, all these
classes involve a monotone density w either increasing (risk aversion) or decreasing (risk
propension), while, in order to attain a significant gain in efficiency the densities w must be
allowed to be multimodal. For example, the asymptotic variance of WICQF is a weighted
average of the inverse of the density of the returns evaluated at different quantiles (up to level
α). Whenever the density is increasing in the left tail, the larger the weights assigned to the
highest quantiles, the lower is the AV. On the other hand, the condition τw(α |x) = τ(α |x)
requires the distribution of W to be centered around the value Fx(τ(α |x)) ≤ α/2. For all
the above reasons, we specify the class WP by a mixture of beta distributions, restricted to
[0, α], namely

w(p) = π
1
α

( p
α

)a1−1 (
1 − p

α

)b1−1

b(a1, b1)
+ (1 − π)

1
α

( p
α

)a2−1 (
1 − p

α

)b2−1

b(a2, b2)
, (3.5)

(ai, bi) ∈ Θ, π ∈ [0, 1/2], for all 0 ≤ p ≤ α, where b(a, b) = Γ(a)Γ(b)
Γ(a+b) and where Θ is a compact

subset of R
4 satisfying (1, 1) ∈ int{Θ}.

For all 5−tuple of parameters (π, a1, b1, a2, b2) the non-negativity constraints are satisfied
by construction.

It now remains to consider the restriction (3.3), that implies that estimators consistent
for the conditional weighted ES are consistent for τ(α |x) as well.

Let w1 and w2 denote the two components of w(p) = πw1(p) + (1 − π)w2(p), and define
τw1(α |x) =

∫ α
0 Qx(p)dw1(p) and τw2(α |x) =

∫ α
0 Qx(p)dw2(p). Once we set the parametriza-

tion (3.5), equation (3.3), solved with respect to π, gives the set of solutions:

π∗ = π(a1, b1, a2, b2) =
τw2(α |x) − τ(α |x)
τw2(α |x) − τw1(α |x) . (3.6)

Therefore, in the parametric specification, we will minimize the AV over the subset:

WP = {w = w(π, a1, b1, a2, b2), (ai, bi) ∈ Θ, π = π∗} . (3.7)
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3.3 The Weighted ES: estimation

In this section, we present different WES estimators constructed on representation (3.2), with
w(·) belonging to W, WU , WP . These are generalized weighted versions of those presented
in Section 2.2 for the ES. Since our interest is on the ES conditional on a set of regressors,
we here focus only on the analog parametric estimators.

The two analog estimators proposed here rely on two different representations of τw(α |x).
The first estimator is a plug in version of

τw(α |x) =

∫ α

0
Qx(p)dW (p) =

∫ α

0
Qx(p)w(p)dp (3.8)

and for this reason, we call it the weighted integrated conditional quantile function (WICQF)

estimator and denote it by τ̂
(Q)
w .

The second estimator departs from

τw(α |x) = Qx(α) −
∫ Qx(α)

−∞
W (Fx(y))dy (3.9)

and we call it as the weighted integrated conditional distribution function (WICDF) estima-
tor.

3.3.1 The WICQF estimator

For a given weighting function W , the WICQF is obtained from (3.8) by replacing Qx(p)
with an estimate and by approximating the integral with an analog sum. Assuming that
conditional quantiles are linear in parameters as in Koenker and Bassett (24), that is Qx(p) =
β(p)⊤x, the parameter β(p) is estimated by solving

min
β

n∑

t=1

ℓp(Yt − β⊤Xt) (3.10)

where ℓp(u) = u(p− 11{u < 0}), 0 < p < 1, is the asymmetric absolute loss function (see also
Koenker (25)).

Then, given I linear regression quantile coefficients estimates β̂(p1), . . . , β̂(pI), with 0 <
p1 < p2 < . . . pI ≤ α each of them solving (3.10), we define the WICQF estimator as

τ̂
(Q)
w,I (α |x) =

I∑

i=1

wiQ̂x(p) (3.11)

where wi = W (pi) −W (pi−1). Because of the linearity of Q̂x(pi), τ̂
(Q)
w,I (α |x) also writes

τ̂
(Q)
w,I (α |x) = β̃T (α)⊤x (3.12)

where β̃T (α) =
∑I

i=1wiβ̂T (pi).
The WICQF presents the inconvenience that it does not guarantee monotonicity of the

estimated quantiles. When for some 0 < p1 < p2 < 1, the estimated quantile cross each

other, that is Q̂x(p1) > Q̂x(p2), then monotonicity of τ̂
(Q)
w,I (α |x) is violated.
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3.3.2 The WICDF estimators

The estimator based on (3.9) combines estimation of the α-level quantile with estimation of
the cumulative distribution function at different grid points. Replacing the integral with the
analog sum, the estimator WICDF takes the form

τ̂
(D)
w,I (α |x) = Q̂x(α) −

I∑

i=1

(yi − yi−1)W (F̂i(x)) (3.13)

where points y0, y1, . . . , yI are arbitrarily chosen such that −∞ < y0 < y1 < · · · < yI−1 <
yI ≤ Qx(α). Here Q̂x(α) is the quantile regression estimator described in Subsection 3.3.1,
while F̂i(x) is the estimator for Fi(x) = Fx(yi) described below.

According to different choices for the estimator F̂i(x), one obtains different definitions
for the WICDF estimator. We here follow Peracchi (35) and propose an estimator for F̂i(x)
based on logistic regression. Having defined the log-odds

ηi(x) = ln [Fi(x)/(1 − Fi(x))], i = 1, . . . , I

we fit I separate logistic regressions and, given estimators η̂i(x), we estimate Fi(x) by

F̂i(x) =
exp η̂i(x)

1 + exp η̂i(x)
. (3.14)

The estimator (3.14) is not guaranteed to be monotonic, that is we might have Fi(x) <
Fi−1(x) for some i ∈ [2, I] and, as in the case of the WICQF estimator, we loose monotonicity

of τ̂
(D)
w,I (α |x). A monotone estimator F̃i(x) of the cdf Fi(x) can also be obtained by fitting

logistic regressions as presented in Section 2.2.3. Inserting F̃i(x) into (4.8) results in the

monotone WICDF estimator, which we denote by τ̃
(D)
w,I (α |x) in order to differentiate it from

τ̂
(D)
w,I that is based on (3.14). Here, we limit ourselves to mentioning τ̃

(D)
w,I (α |x) as one of the

possible ways to overcome the crossing problem. The study of the asymptotic properties is

here limited to τ̂
(Q)
w,I and τ̂

(D)
w,I only.

3.4 Asymptotic properties

We make some initial remarks concerning the behavior of the estimators.
The WICQF estimator is a linear functional of the regression quantile estimator and

this suggests that continuous mapping theorem, if applicable, will yield consistency and
asymptotic normality. This property is preserved even if the linear conditional quantile
model is misspecified (see Angrist et al. (6)).

Similar arguments can be used for the WICDF estimators that are transformations of
both the regression quantile and the logit estimator F̂ (x) = (F̂1(x), . . . , F̂I(x)). In this case,
in order to be able to write down the asymptotic distribution one has to take into account
not only convergence of the regression quantile and (integrated) logit term separately, but
also their interaction.

We first focus, in Subsections 3.4.1 and 3.4.2, on the asymptotic behavior of WICQF
and WICDF estimators, when the dimensions of the grids (p0, . . . , pI) or (y0, . . . , yI) are

fixed and constant with T . Theorems 1 and 2 in particular prove that τ̂
(Q)
w,I and τ̂

(D)
w,I are

both asymptotically normal estimators (under certain conditions) and are consistent for the
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approximations of τw(α |x) resulting from the substitution of the integrals with analog sums
in (3.8) and (3.9) respectively. Leorato et al (26) deals also with the case of sequences of grids
whose dimension grows with T . Throughout all the Section, w (or its primitive W ) is some
fixed weighting function satisfying (A1) only, unless explicitly stated otherwise. Assumption
(A2) is, in fact, not invoked in Theorems 1 and 2.

3.4.1 The WICQF estimator τ̂
(Q)
w,I (α | x)

Let (X1, Y1),. . ., (XT , YT ) be a random sample of T pairs from the joint distribution of
(X,Y ), where X is a k-dimensional vector, and let the conditional distribution of Yt given
Xt = x have strictly positive density fx(y) for every y and for all t. Consider a suitable
weighting function W : [0, α] 7→ [0, 1] and define the vector of I weights w = {w1, . . . wI}⊤,
wi = W (pi) −W (pi−1) where 0 = p0 < p1 < · · · < pI ≤ α.

Let τ
(Q)
w,I (α |x) denote the approximation of τw(α |x) =

∫ α
0 Qx(p)w(p)dp by the analog

sum:

τ
(Q)
w,I (α |x) =

I∑

i=1

wiQx(pi).

Theorem 1 Under the set of conditions (see Theorem 4.1 in Koenker (25)):

(i) The cdf Fx is absolutely continuous, with continuous density fx(·), uniformly bounded
away from zero at the points y ∈ [ε, 1 − ε], for every ε > 0

(ii) There exist positive definite matrices D and J1(p) such that

lim
T→∞

T−1
∑

XtX
′
t = D

and

lim
T→∞

T−1
∑

f(Qx(p)XtX
′
t = J1(p) and max

t=1...T
||Xt||/

√
T → 0,

where ‖ · ‖ is the Euclidean norm of a vector in R
k,

the limiting distribution of the normalized difference
√
T [τ̂

(Q)
w,I (α |x)−τ (Q)

w,I (α |x)] is Gaussian
with zero mean and variance

AV (τ̂
(Q)
w,I (α |x)) = x⊤ (w⊤ ⊗ Ik)Ω1 (w ⊗ Ik)x (3.15)

where Ik is the k-dimensional identity matrix and Ω is an Ik × Ik block matrix with each
k × k block

Ω1;i,j = J1
−1(pi)Σ1;i,j J1

−1(pj) (3.16)

where J1(p) := E
[
f(β(p)⊤X |X)XX⊤

]
and

Σ1;i,j := E[(pi − 11{Y < β(pi)
⊤X})(pj − 11{Y < β(pj)

⊤X})XX⊤] (3.17)

are positive definite k×k matrices. If the model is correctly specified, that is QX(p) = β(p)⊤X,
then Σ1;i,j := [min(pi, pj) − pipj ] E[XX⊤].

In the following corollary, for inference purposes, we give a consistent estimator of the

asymptotic variance AV(τ̂
(Q)
w,I (α |x)).
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Corollary 1 If the model is correctly specified, a consistent estimator of the asymptotic

variance AV(τ̂
(Q)
w,I (α |x)) is

ÂV(τ̂
(Q)
w,I (α |x)) = x⊤





I∑

i=1

I∑

j=1

wiwj [min(pi, pj) − pipj ] Ĵ−1
1 (pi) D̂ Ĵ−1

1 (pj)



 x (3.18)

where D̂ = T−1
∑T

t=1XtX
⊤
t and Ĵ1(pi) = T−1

∑T
t=1 f̂(β̂T (pi)

⊤Xt |Xt)XtX
⊤
t , with f̂ a con-

sistent estimator of the conditional density f .

This is immediate from consistency of D̂ and Ĵ1(p) for E[XX⊤] and J1(p) respectively.

3.4.2 The WICDF estimator τ̂
(D)
w,I (α | x)

The WICDF estimator has the form

τ̂
(D)
w,I (α |x) = Q̂x(α) −

I∑

i=1

(yi − yi−1)W (F̂i(x)) (3.19)

where Q̂x(p) is the quantile regression estimator of Qx(p) as proposed by Koenker and Bassett
(24) and F̂i(x) is the estimator of Fi(x) defined by (3.14).

Under standard regularity conditions (see Theorem 3 in Angrist et al. (6))
√
T [Q̂x(α) −

Qx(α)] is asymptotically normal. The same is true for
√
T [F̂i(x)−Fi(x)]. Conditionally on the

grid points and provided that some conditions on the weighting function W are encountered,
the sum

∑I
i=1(yi − yi−1)W (F̂i(x)), suitably normalized, is approximately normal, too.

The aim of this section is to prove asymptotic Gaussianity of the estimator (3.19), which
also writes as

τ̂
(D)
w,I (α |x) = Q̂x(α) − δ̂w(α |x,y)

where δ̂w(α |x,y) =
∑I

i=1(yi − yi−1)W (F̂i(x)) and y = (y0, . . . , yI).

Consistency of τ̂
(D)
w,I , for I fixed, is proved with respect to the approximate WICDF:

τ
(D)
w,I = Qx(α) − δw(α |x,y)

= Qx(α) −
I∑

i=1

(yi − yi−1)W (Fi(x)). (3.20)

To achieve this, we use standard arguments based on approximating both Q̂x(α) and
δ̂w(α |x,y) via functional empirical processes indexed by two different Donsker classes of

functions. We are then able to write τ̂
(D)
w,I (α |x) as an empirical process indexed by sums

f + g of functions belonging to the two Donsker classes, that is also Donsker, thanks to the
permanence property.

For (X,Y ) and h a measurable function h : X ,Y → R, define the empirical expectations

ET [h(X,Y )] := T−1
T∑

t=1

h(Xt, Yt)

GT [h(X,Y ))] := T−1/2
T∑

t=1

(h(Xt, Yt) − E[h(Xt, Yt)])
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Moreover, for any square matrix Σ, with λmin(Σ) we denote the minimum eigenvalue of Σ.
As far as to the term Q̂x(α), we already know, from Theorem 3 in Angrist et al. (6) that

the estimated quantile coefficient β̂(α) can be approximated as

J1(α)
√
T [β̂(α) − β(α)] = GT [(1{Y ≤ β(α)⊤X} − α)X] + oP (1) (3.21)

where matrix J1(α) is defined as in Theorem 1, that is

J1(α) = E[f(β(α)⊤X |X)XX⊤]

and GT [(1{Y ≤ β(α)⊤X} − α)X]
d→ ZQ, where ZQ is a zero mean Gaussian random vector

with covariance matrix Σ1;i,j specified in (3.17).

We now focus on the term δ̂(α |x,y), following closely the proof of Theorem 3 in Angrist
et al. (6). The following theorem concerns the asymptotic behavior of the logit parameter
θ̂ = θ̂(y), the k-dimension row-vector maximizing the log-likelihood

θ̂(y) = arg sup
θ

1

T

[
T∑

t=1

11{Yt ≤ y}θ⊤Xt − ln
(
1 + eθ

⊤Xt

)]
+ arg sup LT (y, θ) (3.22)

The idea is to establish the uniform consistency and the asymptotic Gaussianity of
the logistic regression process through an empirical process approximation for the function√
T [θ̂(y) − θ(y)], where θ(y) is the value that maximizes

L∞(y, θ) := E
[
11{Y ≤ y}θ⊤X − ln

(
1 + eθ

⊤X
)]

over Θ ⊆ R
k.

For simplicity, we consider an arbitrarily set non-stochastic grid of points y = {y0, . . . , yI}.
Data-dependent choices of the grid {y0, . . . , yI} are discussed in Leorato et al (26).

Theorem 2 Suppose that the following conditions are met:

(i) (X1, Y1), . . . , (XT , YT ) is a sample of T iid pairs from the joint distribution of (X,Y )
defined on the probability space (Ω,F ,P)

(ii) The function θ̂ = θ̂(y) maximizes LT (y, θ) over a compact set Θ ⊆ R
k

(iii) The function L∞(y, θ) has a unique maximum at θ(y) ∈ Θ for all values of y such that
fY (y), the marginal density of Y , is strictly positive

(iv) E ‖X‖2+ǫ <∞ for some ǫ > 0, where ‖ · ‖ is the Euclidean norm of a vector in R
k

(v) J2(y) := E[Fx(y)(1 − Fx(y))XX
⊤] is positive definite for all y ∈ R.

Then, the logit regression process is uniformly consistent, supy∈R ‖θ̂(y) − θ(y)‖ = oP (1) and

J2(·)
√
T [θ̂(·) − θ(·)] converges in distribution to a zero mean Gaussian process Zθ(·) defined

by the covariance function

Σ2;j,k = Cov[Zθ(yj), Zθ(yk)] = E
[
ϕ(yj , θ(yj))ϕ(yk, θ(yk))XX

⊤
]

(3.23)

with

ϕ(y, θ(y)) :=

[
11{Y ≤ y} − eθ(y)

⊤X

1 + eθ(y)
⊤X

]

If the log-odds ratio ln[Fx(y)(1 − Fx(y))] is linear in x for any y ∈ R, then Σ2;j,k simplifies
to Σ2;j,k = [min(Fj , Fk) − FjFk)] E[XX⊤].
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Let

τ
(D)
w,I (α |x) = Qx(α) −

I∑

i=1

(yi − yi−1)W (Fi(x)).

Corollary 2
√
T [τ̂

(D)
w,I (α |x) − τ

(D)
w,I (α |x)] d→N(0,AV(τ̂

(D)
w,I (α |x))), where

AV(τ̂
(D)
w,I (α |x)) = x⊤α(1 − α)J1(α)−1 E[XX⊤]J1(α)−1x+

+ x⊤ (∆⊤
2 ⊗ Ik)Ω2 (∆2 ⊗ Ik)x+

− 2x⊤ (∆⊤
1 ⊗ Ik)Ω3 (∆1 ⊗ Ik)x

(3.24)

where ∆1 = (
√

d
w
1 , · · ·

√
d
w
I )⊤, ∆2 = diag(∆1∆

⊤
1 ) = (dw1 , · · · dwI )⊤ are I-dimensional column

vectors and where

d
w
i = [(yi − yi−1)w(F (yi))F (yi)(1 − F (yi))]

and Ω2 is an block matrix with each k × k block Ω2;j,k = J−1
2 (yj)Σ2;j,k J−1

2 (yk) with J2(yj)
and Σ2;j,k defined as in Theorem 2. Moreover, Ω3 is an Ik × Ik diagonal block matrix with
each k × k block Ω3,j = J−1

2 (yj)Σ3,j J
−1
1 (α) where

Σ3,j = E[(1{Y ≤ β(α)⊤X} − α)ϕ(yj , θ)XX
⊤].

If both the conditional quantile Qx(α) and the log odds ratio ln [Fx(y)(1 − Fx(y))] are
linear in x for any y ∈ R, then Σ3,j = [min(Fj , α) − Fjα)] E[XX⊤]

For inference purposes, we also give an estimator of AV(τ̂
(D)
w,I (α |x)) under hypothesis of

well specified quantile function only.

Corollary 3 Let ŵi = [W (F̂i(x)) −W (F̂i−1(x))]. Moreover, define

Ĵ1(p) = T−1
T∑

t=1

f̂(β̂T (p)⊤Xt |Xt)XtX
⊤
t ,

Ĵ2(yi) = T−1
T∑

t=1

F̂i(x)(1 − F̂i(x))XtX
⊤
t

Σ̂2;j,k = T−1
T∑

t=1

ϕt(yj, θ(yj))ϕt(yk, θ(yk))XtX
⊤
t

Σ̂3,j = T−1
T∑

t=1

(11{Yt ≤ β̂(α)⊤Xt} − α)ϕt(yj, θ(yj))XtX
⊤
t

where f̂ consistently estimates density f , F̂ is the logistic regression estimator for the cdf F

(3.14) and ϕt(y, θ(y)) =

[
11{Yt ≤ y} − eθ̂(y)

⊤
Xt

1+eθ̂(y)
⊤

Xt

]
.
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Under the hypothesis of well specified quantile function, the estimator ÂV(τ̂
(D)
w,I (α |x))

ÂV(τ̂
(D)
w,I (α |x)) = x⊤α(1 − α)Ĵ−1

1 (α) D̂ Ĵ−1
1 (α)x+

+ x⊤

{
I∑

i=1

ŵi[F̂i(x)(1 − F̂i(x))](yi − yi−1)

F̂i(x) − F̂i−1(x))

I∑

j=1

ŵj[F̂j(x)(1 − F̂j(x))](yj − yj−1)

F̂j(x) − F̂j−1(x))
·

·
[
Σ̂2;i,j

]
Ĵ−1

2 (yi)Ĵ
−1
2 (yj)

}
x+

2 · x⊤
{

I∑

i=1

ŵi[F̂i(x)(1 − F̂i(x))](yi − yi−1)

F̂i(x) − F̂i−1(x))
· [Σ̂3,i] Ĵ

−1
2 (yi)Ĵ

−1
1 (α)

}
x

(3.25)

is consistent for AV(τ̂
(D)
w,I (α |x)).

This follows from consistency of Ĵ1(p), Ĵ2(y), Σ̂2;j,k and Σ̂3;j for J1(p), J2(y), Σ2;j,k and
Σ3;j respectively.

Remark 2 (Linearity of log odds ratio) If moreover the log odds ratio is linear in Xt,
then, in the above corollary Σ̂2;j,k and Σ̂3;j boil down to

Σ̂2;j,k =
[
min(F̂i(x), F̂j(x)) − F̂i(x)F̂j(x)

]
D̂

and

Σ̂3;j = [min(F̂i(x), α) − F̂i(x)α]D̂

where D̂ = T−1
∑T

t=1XtX
⊤
t ..

3.5 Efficient weighted ES estimators

In this section we present our proposal for efficient estimation of ES via the minimization of
the asymptotic variance with respect to the weights w.

We will consider separately the cases where the specification of the weights is fully non-
parametric or parametric (following (3.5)). In either cases, the objective functions are the
asymptotic variances of the WICQF and of the WICDF that are given in formulas (3.15) and
(3.24).

In the whole section, as well as in Section 3.6, since the focus is now in the WES as a
function of the weights, we refer to τw,I(α |x) as τ(w) as well as τ̂(w) = τ̂w,I(α |x), where
w = (w1, . . . , wI) is a vector of weights (corresponding to function w). For the sake of
simplicity, we also omit the explicit reference to the level α and to the covariate value x in
τ := τ(α |x) and τ̂ := τ̂(α |x).

3.5.1 Nonparametric specification

In order to write down the definition of the minimum asymptotic variance of the weighted
ES estimators, we rewrite the classes W,WU in discrete form. So, corresponding to a grid
of I < ∞ points p0 < . . . < pI = α, we denote p̄i = pi − pi−1 and w = (w1, . . . , wI) =
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(W (p1) −W (p0), . . . ,W (pI) −W (pI−1)). Then, for example W writes:

WI =



w = (w1, . . . , wI) : wi ≥ 0,

∑

i≤I

wi = 1,
∑

i≤I

Qx(pi)wi − τ(α |x) = 0



 .

The efficient WICQF and WICDF estimators are then defined as the weighted ES esti-
mators corresponding to w∗ ∈ WI , where w∗ is such that

AV (τ̂w∗(α |x)) ≤ AV (τ̂w(α |x)) , for all w ∈ WI .

Definition 2 The minimum AV WICQF estimator of the α−level ES, τ̂ (Q)(w∗
Q), is given

by the solution of:

min
w∈WI

AV (τ̂ (Q)(w))

wi ≥ 0, i = 1, . . . , I
I∑

i=1

wi = 1 (3.26)

The minimum AV WICDF estimator τ̂ (D)(w∗
D) is defined accordingly.

Definition 3 The unconstrained minimum AV WICQF estimator (unconstrained minimum
AV WICDF estimator) τ̂ (Q)(w∗

u,Q) (resp. τ̂ (D)(w∗
u,D)) of the α−level ES is given by the

solution of:

min
w∈WU,I

AV (τ̂ (·) (w))

I∑

i=1

wi = 1 (3.27)

We underline that, the objective functions ÂV (τ̂ (·) (w)) are convex in the vector w, while
the inequality and equality constraints are linear. In other words, the efficient estimators
τ̂ (·)(w∗) and τ̂ (·)(w∗

u) are obtained as solutions to standard convex optimization problems.
As such, they take advantage of the following convenient properties:

(i) Any local optimum is necessarily a global optimum;

(ii) Duality theory can be used to infeasibility detection, hence algorithms are easy to
initialize;

(iii) Efficient numerical solution methods are available.

The global optimum w∗ of (3.26) may not be unique. We can define by convention the
vector w∗ to be any vector in the set W∗ of the solutions to (3.26) satisfying

∑

i

(w∗
i − p̄i)

2p̄i ≤
∑

i

(wi − p̄i)
2p̄i, w = (w1, . . . , wI) ∈ W∗.

The global optimum of (3.27) is instead unique because of strict convexity of the asymptotic
variances. Moreover, w∗

u,· can be easily found explicitly. As already noted, the price to be
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paid in this case is the loss of the interpretation of W (F ) as a biased probability distribution
since w∗

u,· is allowed to be a signed density.

On the other hand, allowing w to take negative entries yields a larger efficiency gain
because of the inclusion W ⊆ Wu. This will be pointed out in the next Section.

Regarding the unconstrained minimization problem, we have the following result

Theorem 3 Let Yt |Xt = x ∼ Fx, independent and identically distributed for all fixed x.
The unconstrained minimum AV WICQF estimator of the α−level ES is given by τ̂ (Q)(w∗

u,Q),
with: (

w∗
u,Q

λ

)
= C

−1
τ (3.28)

where λ
⊤ = (λ1, λ2) is the vector of Lagrange multipliers, τ

⊤ = (0, . . . , 0,−1,−τ) and C is
the (I + 2)−dimensional square matrix:

C =




2x⊤Ω1;1,1x 2x⊤Ω1;1,2x · · · 2x⊤Ω1;1,Ix −1 −Qx(p1)
...

. . .
...

...
2x⊤Ω1;I,1x 2x⊤Ω1;I,2x · · · 2x⊤Ω1;I,Ix −1 −Qx(pI)

−1 −1 · · · −1 0 0
−Qx(p1) −Qx(p2) · · · −Qx(pI) 0 0



. (3.29)

Proof. The Lagrangian function

LQu = x⊤(w⊤ ⊗ Ik)Ω1(w ⊗ Ik)x+ λ1(1 − w⊤
ıI) + λ2(τ − w⊤Q) (3.30)

where ıT is the I−dimensional vector of ones and Q⊤ = (Qx(p1), . . . , Qx(pI)).

By solving the system of linear equations:

{
∂LQ

u
∂w = 0
∂LQ

u
∂λi

i = 1, 2

one obtains the result (3.28). The fact that Ω1 is positive semidefinite ensures that τ̂ (Q)(w∗
u,Q)

is the minimum over WI . �

A similar result (and structure of the proof) holds for the unconstrained minimum AV
WICDF estimator. This minimizes the Lagrange function

LDu = x⊤ (∆⊤
2 ⊗ Ik)Ω2 (∆2 ⊗ Ik)x+

− 2x⊤ (∆⊤
1 ⊗ Ik)Ω3 (∆1 ⊗ Ik)x

+ λ1(1 − w⊤
ıI) + λ2(τ̂ −Qx(α) + w⊤

dY )

(3.31)

where λ1 and λ2 are the Lagrange multipliers, dY and ıI are the I−dimensional column
vectors with elements yI − yi−1 and 1 respectively. The other vectors and matrices are
defined as in (3.24), while

τ = τ
(D)
w,I = Qx(α) − 1

α

I∑

i=1

(yI − yi−1)(Fx(yi) − Fx(yi−1)).
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Theorem 4 Let Yt |Xt = x ∼ Fx, iid for all fixed x. The unconstrained minimum AV
WICDF estimator of the α−level ES is τ̂ (D)(w∗

u,D), with:

(
w∗
u,D

λ

)
= D

−1
υ (3.32)

where λ
⊤ = (λ1, λ2) is the vector of Lagrange multipliers,

υ
⊤ =

(
2(y1 − y0)x

⊤Ω3;1x, . . . , 2(yI − yI−1)x
⊤Ω3;Ix,−1,−τ −Qx(α)

)

and D is the (I + 2)−dimensional square matrix:

D =




2x⊤Ω2;1,1x
(y1−y0)−2 . . .

2x⊤Ω2;1,Ix
[(y1−y0)(yI−yI−1)]−1 −1 (yI − y0)

...
...

...
...

...
2x⊤Ω2;I,1x

[(y1−y0)(yI−yI−1)]−1 . . .
2x⊤Ω2;I,Ix

(yI−yI−1)−2 −1 (yI − yI−1)

−1 . . . −1 0 0
(yI − y0) . . . (yI − yI−1) 0 0



, (3.33)

where Ω2;j,k and Ω3;j are k × k matrices defined as in (3.24).

One of the issues with the constrained nonparametric specification, is related with the
dimension of the grid I. It is in fact clear that the finer the grid the larger the set of
admissible values for w. On the other hand, the objective function depends on I also through
the vector p̄. Moreover, since I coincides with the dimension of the convex problem (3.26),
the computational burden gets heavier as I increases.

Since both AV (τ̂(w)) (either for WICQF and WICDF) and the linear constraints in
(3.4) depend on the distribution of the returns, we must replace it with consistent estimates.
Formulas (3.18) and (3.25) are then used, while the condition (3.3) is replaced by

∣∣∣τ̂ (Q)(w) − τ̂ (Q)
∣∣∣ ≤ rT or

∣∣∣τ̂ (D)(w) − τ̂ (D)
∣∣∣ ≤ rT

respectively, where rT is a sequence of positive numbers converging to zero at a proper rate,
discussed in Theorem 5. The estimator we obtain will be based on feasible versions of w∗

Q,w
∗
D

that we denote by ŵ∗
Q, ŵ

∗
D.

The feasible optimal weights vector is defined by ŵ∗ that satisfies the following condition:

ÂV
(
τ̂ (·)(ŵ∗)

)
≤ ÂV

(
τ̂ (·)(w)

)
, for all w ∈ ŴI .

where ŴI is:

ŴI =

{
w = (w1, . . . , wI) :

∑

i

wi = 1, wi ≥ 0,
∣∣∣τ̂ (·)(w) − τ̂ (·)

∣∣∣ ≤ rT

}
.

The feasible minimum AV (or minimum unconstrained AV) WICQF and WICDF esti-
mators are then denoted by τ̃ (·). For the minimum unconstrained AV WICQF, for example

τ̃
(Q)
u := τ̂(ŵ∗

u,Q). The following result guarantees that the vectors ŵ∗
Q and ŵ∗

u,Q (resp. ŵ∗
D

and ŵ∗
u,D) are consistent for the optimal vectors w∗

Q and w∗
u,Q (resp. w∗

D and w∗
u,D) that

identify the efficient nonparametric estimators.
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Theorem 5

(a) Under the conditions of Theorem 1 and Corollary 1 and if moreover

lim
T→∞

rT = 0 lim
T→∞

rTT
1/2 = ∞, (3.34)

then

(a.i) If the vector w∗
Q = arg minw∈WI

AV (τ̂ (Q)(w)) is the unique minimum point in
WI ,

‖w∗
Q − ŵ∗

Q‖ = sup
1≤i≤I

|w∗
i − ŵ∗

i | = oP (1) (3.35)

as T → ∞.

(a.ii) Moreover,

‖w∗
u,Q − ŵ∗

u,Q‖ → 0 (3.36)

(b) Under the conditions of Theorem 2 and Corollary 3 and if moreover (3.34) holds

(b.i) If the vector w∗
D = arg minw∈WI

AV (τ̂ (D)(w)) is the unique minimum point in
WI ,

‖w∗
D − ŵ∗

D‖ = oP (1).

(b.ii) Moreover, for the unconstrained optimal weights, it holds,

‖w∗
u,D − ŵ∗

u,D‖ = oP (1)

Form Theorem 5, the following result is easily derived.

Corollary 4 Under the conditions of Theorem 5,

|τ̂(ŵ∗) − τ̃ | = oP (1) (3.37)

where τ̂(w∗) indicates either the minimum (minimum unconstrained) AV WICQF or WICDF
estimators and τ̃ is the corresponding feasible version.

Proofs of Theorem 5 and Corollary 3.37 can be found in Leorato et al (26).

3.5.2 Parametric specification

For the parametric specification, we have to find the optimal value of w as a function of at
most 5 parameters.

Definition 4 The minimum parametric AV WICQF estimator (minimum parametric AV
WICDF estimator) of the α−level ES, τ (Q)(w∗

P,Q) (τ (D)(w∗
P,D)), is given by the solution of:

min
{a1,b1,a2,b2,π=π∗}

AV (τ̂ (·)(w)) (3.38)

where w = w(a1, b1, a2, b2, π) is given by (3.5) and π∗ is defined by (4.14)
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Unfortunately, in this case the objective functions are not convex in the parameters.
Moreover, differentiation of AV (τ̂ (·)(w)) with respect to (ai, bi) is not an easy task, especially
for WICDF. This means that we can only proceed by numerical methods for deriving the
optimal solution. Indeed, despite these limitations, the loss with respect to the nonparametric
specification is rather limited. In order to show what is the efficiency gain that one can attain
by our estimation method, we have considered some particular distributions, some of which
satisfying the invariance property (3.40) described below.

Remark 3 (Invariance with respect to location and scale parameters) Let us assume
that the class of distribution functions Fx for the conditional returns is a parametric class
such that

Qx(p) = µ+ σζ(p), (3.39)

for some µ ∈ R, σ > 0 and ζ(p) a continuous and strictly increasing quantile function. In
this case, it is easy to see that the asymptotic bias is equal to

τ(w) − τ = σ

∫ α

0
ζ(p)

[
w(p) − 1

α

]
dp (3.40)

Moreover, under (3.39), the formula of the asymptotic variance of τ̂ (Q) satisfies, for all
w,

AVµ,σ

(
τ̂ (Q)(w)

)
= σ2AV0,1

(
τ̂ (Q)(w)

)
(3.41)

where the subscript µ, σ in AVµ,σ clearly refers to the location and scale parameters of Fx. In
Section 3.6, we study the performances of the efficient estimators, for different distributions
of the returns, in terms of the ratio:

eAV (τ̂ (·)(w)) = 1 − AV
(
τ̂ (·)(w)

)

AV
(
τ̂ (·)
) (3.42)

Following (3.41), for τ̂ (Q), whenever the distribution of returns satisfies (3.39), we can limit
ourselves, without loss of generality, to standardized values for the parameters of the distri-
bution (µ = 0, σ = 1), in view of

eAVµ,σ

(
τ̂ (Q)(w)

)
= eAV0,1

(
τ̂ (Q)(w)

)
.

It is clear that, although the above identity holds, the optimal weights w∗ as well as the
asymptotic variance of τ̂ (Q)(w∗) will in general depend on the location and scale parameters.

There are several examples of distributions for Y |X = x ∼ F that satisfy equation (3.39):
first of all, if F ∼ N(µ, σ2), and Φ is the cumulative distribution function of a N(0, 1) rv, then
equation (3.39) holds with ζ(p) = Φ−1(p). Other examples are given by the logistic(µ, σ) or

the Gumbel(µ, β) distributions, where Q(p) = µ−σ log
(

1
p − 1

)
and Q(p) = µ−β log

(
log 1

p

)

respectively.
The Exponential(λ) distribution (f.i. with support in (−∞, 0)) f(y) = λeλy also satisfies

Q(p) = log(p)/λ and equation (3.40) writes:

1
λ

[∫ α
0 log pw(p)dp − log α+ 1

]
= 0

More generally, if ζk(p) is the quantile function of a Gamma(k, 1) rv, and F ∼ Gamma(k, λ),

then Q(p) = ζk(p)
λ , where λ is the scale parameter (whereas k is the shape parameter).
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For the generalized Pareto distribution,

Y |X ∼ F (y) =

(
1 − ξ

(y − µ)

σ

)−1/ξ

with µ ∈ R, the location parameter, σ > 0, ξ ∈ R the scale and shape parameters respectively,

we have Q(p) = µ + σ 1−p−ξ

ξ and the ratio eAV in this case depends on variations on the
shape parameter ξ only.

3.6 Gain in asymptotic efficiency of WES estimators

In this section, we present a study on the asymptotic efficiency gain of the WICQF and
WICDF estimators. The efficiency gain is defined in terms of asymptotic variance AV as

eAV = 1 − AV(τ̂ (·)(w))

AV(τ̂ (·))
(3.43)

where τ̂ (·) = τ̂(α |x) and τ̂ (·)(w) = τ̂w(α |x) denote the ordinary and the weighted versions
of any of the WICQF or WICDF estimators. Formulas of AV are derived in (3.15) and (3.24)
for the WICQF and the WICDF estimators respectively for w belonging to WI ,WI,U ,WP .

As we have already pointed out in Section 2, we are not able to give general results
for arbitrary distributions of the conditional returns of the asset. Anyway, the analysis we
present here, although limited to some specifications of the distribution of Yt |Xt, permits us
to give an idea of the potentiality of the weighted version of the ES estimators, showing that
the gain in terms of AV is relevant, especially for distributions with heavy tails.

Specifications of w(·)
We consider both a nonparametric and a parametric specifications of the weighting function
w(·). The nonparametric specification is proposed in the unconstrained and constrained
version (with non-negative weights), as described in Section 3.5.

In order to impose non-negativity of weights, we use a penalty method and change the
loss functions into

LQc = LQu + γp

{∑

i

(w̃⊤
u − w⊤

u )ıI

}λp

(3.44)

and

LDc = LDu + γp

{∑

i

(w̃⊤
u − w⊤

u )ıI

}λp

(3.45)

Here w̃u = (|w1|, |w2|, . . . |wI |)⊤ is the vector of weights with absolute value operator. Param-
eters γp and λp have to be chosen such as to ensure derivability of the penalty function and
smoothness of the optimization algorithm at boundaries of the feasible region (see Mulvey et
al. (32) and Lillo et al. (27)). In particular, we set γp = 1020 and λp = 1.1 in most of the
cases. A further refining, that we do not apply here, is to set a small value of γp for the first
iterations of the optimization algorithm and increase it successively.

As for the parametric specification, the weights are non-negative by definition, while the
unconstrained minimum AV WICQF and minimum AV WICDF estimators are given by
formulas (3.28) and (3.32).
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Choice of distributions and computational aspects

Our examples follow distributional characteristics of returns of financial assets (see e.g McNeil
and Frey (30)). More precisely, we consider a mixture of normal distributions, the t distri-
bution (with a low number of degrees of freedom), the exponential distribution, the logistic
distribution, the Gumbel distribution and the generalized Pareto distribution (GPD).

The first choice is motivated by the fact that any continuous distribution can be approxi-
mated arbitrarily well by a mixture of normals, allowing for asymmetry, skewness and heavy
tails (see e.g. McLachlan and Peel (29)). The mixture parameters are such that the left tail
of the dominating distribution is contaminated. The nested case is Yt|Xt ∼ N (0, 1).

We consider the simple case when the rv Yt |Xt has a df that is a mixture of two com-
ponents, the standard normal distribution N (0, 1) and another N (µ, σ2) distribution, with
mixing coefficient πn. This setting can be further generalized to more than two components
with any of the moments conditional on some set of k covariates. Here we only condition the
mean of the second component on the value of the covariate Xt and specify it as µ = µ(x) = x.
The df of Yt |Xt is therefore

F (y |x) = πn Φ(y) + (1 − πn)Φ

(
y − x

σ

)

where Φ(·) is the df of the standard normal distribution N (0, 1). Although the quantiles of
the mixture do not have a closed-form expression, we evaluate them numerically1. As values
for the x, we choose extreme left percentiles (the 1st, the 2nd and the 3rd) of Xt. The standard
deviation σ and the mixing parameter πn take values (0.2, 0.3) and 95% respectively.

Besides the mixture of normals, we also study the following distributions: the t− student
with 2, 3 or 4 degrees of freedom, the exponential, the logistic, the Gumbel and the generalized
Pareto with shape parameter ξ taking values 0.1, 0.2 and 0.3.

Except for the mixture of normals and the t distribution, in all other cases we exploit
Remark 3 on invariance of the optimal weights w∗ with respect to the location and scale
parameters of the distribution of Y |X. For these examples, we only look at µ = 0, σ = 1 or
λ = 1. For WICDF, the above simplification is not possible as in formula (3.24) for the AV,
the third term is linear in the standard deviation parameter σ of the density function, rather
than the squared value σ2, while for the second term we cannot factorize σ2.

All other parameters of the study are set as follows. The level that we consider is α = 0.1.
For WICQF, I is equal to 25, with the sequence {0 = p0 < p1 . . . < pI} given by pi = (αi)/I .
For WICDF, we set the grid points {ỹ1 ≤, . . . , ỹI0} as follows: we set I = 100 and the initial
grid is defined as yi = −10+i ·0.1, then retain I0 points that meet condition Qx(0.5%) < yi <
Qx(α). Moreover, we fix ỹ0 = Qx(0.1%). Remark that I0 varies according to the distribution
of Y |X.

For some distributional assumptions for the Yt |Xt, we also make a sensitivity analysis of
the eAV at parameter I varying from 2 to 200. In particular, we look at the standard normal,
the exponential (with parameter λ = 1), the t− student with 2, 3 and 4 degrees of freedom
and the Generalized Pareto with shape parameter ξ set equal to 0.1, 0.2 and 0.3 respectively.

In the parametric specification, W (·) is a mixture of two beta distributions (see (3.5)).
We work on subsets of parameters (ai, bi), i = 1, 2 that take 12 equally distant values in the
subset [0.25, 2.5] × [0.25, 2.5], while the mixing coefficient π is computed on basis of (4.14).

1Assuming that F is differentiable with strictly positive density f = F ′, then we employ a Newton-
Raphson algorithm, based on iterations of the form Q(i+1) = Q(i) +[p−F (Q(i))]/f(Q(i)), i = 0, 1, 2, . . . , where
p = Pr{Yt ≤ y|Xt = x}. As starting value, we consider Q(0) = πnΦ−1(p) + (1 − πn)[x + σΦ−1(p)]
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In both the nonparametric and the parametric specifications, we approximate τw(α |x)
by the sums

τ
(Q)
w,I =

I∑

i=1

wiQ(pi) =

I∑

i=1

[W (pi) −W (pi−1)]Q(pi)

τ
(D)
w,I = Q(α) −

I0∑

i=1

(ỹI0 − ỹi−1)[W (F (ỹi)) −W (F (ỹi−1))]

General considerations on the study

Tables 3.1 and 3.2 show results on efficiency gain eAV for minimum AV WICQF and WICDF
estimators, with different specifications of the weighting function w(·): (i) nonparametric
unconstrained, (ii) nonparametric with non-negativity constraint and (iii) parameterized as
a mixture of beta. For each distributional assumption in turn, results are grouped following
this order.

The embedding relation between weights specifications is that eAV for the nonparametric
unconstrained one is greater or equal to that of the nonparametric constrained which is itself
grater or equal to eAV corresponding to the parametric case.

Table 3.1, corresponding to the WICQF estimator, is composed by two panels. The first
panel is dedicated to distributions where w(·) and eAV varied with the location and scale
parameters. Here enters the mixture of normals and the t distribution. In the second panel,
invariance of the efficiency gain to location and scale applies; for WICQF, we look at the
normal, the logistic, the Gumbel, the generalized Pareto and the exponential distributions,
all with standard values µ = 0, σ = 1 or λ = 1 accordingly. For each distribution, we increase
the heaviness of the tail from left side to right side columns. This is verified on decreasing
the mean of the contamination distribution in the mixture, decreasing the number of degrees
of freedom for the t and increasing ξ, the shape parameter for the GPD.

For the WICDF estimator, the invariance to location and scale parameters does not work.
Therefore, Table 3.2 is not divided in panels as the previous one. Moreover we show results
for two values of the scale parameter for the Normal, the Logistic, the Gumbel and the
exponential distributions.

In Figures 3.1 and 3.2, for both the WICQF and the WICDF estimators and for w having
the unconstrained nonparametric specification, we analyze sensitivity of the eAV to parameter
I. As range of interest, we look at 100 distinct values in the interval [2 and 200].

Results for the WICQF estimator

Table 3.1 shows results for the WICQF estimator. For the mixture of normals, in general,
the higher is the contamination of the original distribution (lower σn and x), the higher is
eAV. This ranges from 4% for σn = 0.3 and x = −1.881 to values around 30% for the
parametric specification and more than 50% for the two nonparametric specifications, values
that correspond to parameters σn = 0.3 and x = −2.326. The values of eAV are high as
the constructed example is ”ideal” in the sense that we have a local contamination at the
quantiles of interest.
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For the t-student, eAV ranges from around 2% for the t[4] and approach 20%, for t[2].
When Yt|Xt has a normal distribution N (µ, σ2), eAV is very low, around 1%, for all specifi-
cations. The gain is also small if Yt |Xt has any of the logistic, the exponential distribution
or the Gumbel distributions, with values less than 3%. For the GPD, the gain increases as ξ
increases, arriving to 6% for ξ equal to 0.3.

We also make a remark on the effective values of the AV. Comparing across distributions,
we see no connection between these values and eAV. We conjecture that what influences
eAV is the local heaviness of the tail in the proximity of the quantiles of interest. That is
the reason why for the mixture of normals, we have a combination of low AV and high eAV,
whilst for the logistic and the exponential it is the other way round. Instead, for the t-student
distribution, the high AV is matched with high eAV.

In Figure 3.1, we plot the efficiency gain for different values of parameter I and for different
distributions. We remark that eAV in the case of the standard Normal and the Exponential
distribution is a concave function of I, with maximum around I = 10. For the heavy tailed
distribution, the curves also appear concave but in this case they look like logaritmic and
bounded above for high values of I. This behavioral distinction among exponential and heavy
tailed distributions is to be remarked for the WICDF estimators, too.

Results for the WICDF estimator

Passing to the WICDF estimator, in Table 3.2, for the mixture of normals we note sensitivity
of eAV to variation in the conditional mean µ(x) = x and the standard deviation of the
contaminating distribution. The gain has values that range from approximately 5% to 15%.
For the t-student distribution, eAV is almost double if compared to the WICQF estimator,
with values that are close to 5% for the t[4] and 35% in the case of t[2]. When Yt|Xt has a
normal distribution N (µ, σ2), eAV is again quite low, around 3% for all specifications. The
gain is also small, within the (0, 10%] interval, if Yt |Xt has any of the logistic, the exponential
distribution or the Gumbel distributions, with scale parameter σ = 1. If, on the other hand,
we increase the scale parameter, we notice the increase of eAV, which is to be underlined for
the logistic distribution.

As for the value of AV across estimators, we remark much similarity. Exceptions are for
the distributions with very heavy tails, the t[2] and the GPD[0,1,0.3] where the AV of the
WICDF estimator is higher.

In Figure 3.2, we show the sensitivity of the efficiency gain at different values of I. As
in the case of the WICQF estimator, we also remark that for the standard Normal and the
Exponential distribution the curves are concave with the maximum around I = 100, whilst
for the t-student and the Generalized Pareto, the curves appear also concave with an increase
in the efficiency gain that dies out as I increases.



3.6 Gain in asymptotic efficiency of WES estimators 45

Table 3.1: The estimated asymptotic variance of the ordinary WICQF estimator τ̂ (Q)(α |x)
and the correspondent efficiency gain eAV of the weighted version

w(·) AV eAV AV eAV AV eAV

Yt |Xt ∼ πnN (0, 1) + (1 − πn)N (x, σ2
n)

πn σn x = −1.881 x = −2.054 x = −2.326
.95 .2 (i) 2.147 25.7% 2.570 30.1% 3.995 57.3%

(ii) 20.7% 20.1% 28.7%
(iii) 16.7% 15.7% 16.7%

.95 .3 (i) 2.583 4.3% 2.979 5.9% 4.313 25.8%
(ii) 4.2% 4.9% 12.6%

(iii) 3.6% 3.2% 10.0%

Yt |Xt ∼ t[r]
r = 4 r = 3 r = 2

(i) 17.319 2.7% 31.497 6.6% 113.249 17.5%
(ii) 2.5% 5.7% 13.3%

(iii) 2.4% 5.3% 11.9%

Yt |Xt ∼ GPD(µ, σ, ξ)
µ σ ξ = .1 ξ = .2 ξ = .3
0 1 (i) 35.943 .3% 75.817 2.2% 164.282 5.8%

(ii) .3% 1.9% 4.9%
(iii) .3% 1.8% 4.5%

Yt |Xt ∼ Yt |Xt ∼ Yt |Xt ∼
µ σ N (µ, σ) Logistic(µ, σ) Gumbel(µ, σ)
0 1 (i) 3.601 1.4% 18.997 .1% 1.608 2.9%

(ii) 1.4% .1% 2.9%
(iiii) 1.4% .1% 2.9%

λ Yt |Xt ∼ Exponential(λ)
1 (i) 17.474 .2%

(ii) .2%
(iii) .2%
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Table 3.2: The estimated asymptotic variance of the ordinary WICDF estimator τ̂ (D)(α |x)
and the correspondent efficiency gain eAV of the weighted version

w(·) AV eAV AV eAV AV eAV

Yt |Xt ∼ πnN (0, 1) + (1 − πn)N (x, σ2
n)

πn σn x = −1.881 x = −2.054 x = −2.326
.95 .2 (i) 1.795 11.4% 2.557 12.3% 2.365 17.6%

(ii) 8.5 % 11.2% 13.4%
(iii) 2.4 % 5.6 10.6%

.95 .3 (i) 1.675 10.2% 1.937 9.9% 2.477 9.2%
(ii) 8.7 % 8.5% 9.2%

(iii) 3.7 % 4.3% 7.5%

Yt |Xt ∼ t[r]
r = 4 r = 3 r = 2

(i) 16.958 15.1% 38.629 21.7% 211.218 36.9%
(ii) 13.2% 19.2% 27.7%

(iii) 11.7% 15.1% 18.8%

Yt |Xt ∼ GPD(µ, σ, ξ)
µ σ ξ = .1 ξ = .2 ξ = .3
0 1 (i) 29.212 7.9% 75.532 15.6% 341.084 41.9%

(ii) 6.4% 12.9% 22.5%
(iii) 5.8% 11.6% 12.6%

Yt |Xt ∼ Yt |Xt ∼ Yt |Xt ∼
µ σ N (µ, σ) Logistic(µ, σ) Gumbel(µ, σ)
0 1 (i) 2.079 3.3% 12.541 3.8% .803 7.5%

(ii) 3.3% 3.5% 7.0%
(iii) 1.5% 1.9% 4.8%

0 2 (i) 7.797 4.9% 55.645 12.7% 3.202 8.6%
(ii) 4.3% 6.8% 8.1%

(iii) 2.3% 4.1% 6.9%

Yt |Xt ∼ Exponential(λ)
λ = 1 λ = 2

(i) 12.064 3.8% 3.062 3.7%
(ii) 3.6% 1.5%

(iii) 2.0% 1.5%
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Figure 3.1: The efficiency gain eAV of the WICQF estimator
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Figure 3.2: The efficiency gain eAV of the WICDF estimator
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3.7 Monte Carlo evidence

In this section we present some Monte Carlo evidence on the sampling properties of the

WICQF τ̂
(Q)
w,I (α |x) and the WICDF τ̂

(D)
w,I (α |x) estimators. We are interested wether the

weighting function w that minimizes the AV has a positive impact on the precision of the
estimator in finite samples and look at the standard deviation of the Monte Carlo distribution
for both the uniformly and non-uniformly weighted estimators.

Firstly, we briefly recall the results of the Monte Carlo study performed by Peracchi and
Tanase (36), although these are limited to the uniform weighted versions of the estimators.
Compared by the RMSE of the Monte Carlo distributions, the conditional estimators are
tested on both homoskedastic and heteroskedastic models and results support the asymptotic
normality theory. Across the semiparametric estimators, the ICQF estimator (corresponding
to (4.10) with uniform weights) tends to perform better.

In our Monte Carlo experiments, we simulate samples of size 250, 500 and 1000 and the
number of Monte Carlo replications is set equal to 1000. The software that we use is the
statistical package Stata, version 10.

We compare alternative estimators of the ES assuming that the conditional distribution
of the rv Yt |Xt is either Normal or generalized Pareto, with the location and scale parameters
depending on some vector of regressors Xt, with dimension k. We take the simple case k = 1.
The mean of the cdf depends linearly on a constant and regressor Xt. Both a homoskedastic
and heteroskedastic versions of the model are considered, in the latter case non only the mean
but also the scale depending linearly on the regressor. For simplicity, the rv Xt is assumed
to have a standard normal distribution.

Parameters of the conditional distribution functions are chosen such as to impose different
degrees of heaviness of the distribution tails. In our first example, we assume that the rv
Yt |Xt is distributed as

Yt |Xt ∼ N (−2 + a ·X, (1 + b ·X)2),Xt ∼ N (0, 1)

while in the second

Yt |Xt ∼ GPD(a ·X, 1 + b ·X, ξ),Xt ∼ N (0, 1)

We set a = 0.5, while b takes values 0 and 0.25 for the homoskedastic and the heteroskedastic
models respectively. In the GPD example, the shape parameter ξ is set equal to 0.1, 0.2 and
0.3. This facilitates comparison with the study on the asymptotic efficiency gain that we
presented in the previous section.

The other parameters of the estimating exercise are: level α is 10% and the number of
points I is arbitrarily set equal to 10, 20 and 40 corresponding to sample sizes of 250, 500
and 1000 in the case of the WICQF estimator, while for the WICDF estimator, analogously
to the previous section, we consider I points yi = −10 + i · 0.1 and then retain I0 points
that meet condition Y(1) < ỹi < Q̂x(α), that is between the first order statistic of Yt and the

estimated α level quantile of the rv Yt |Xt = x. Moreover, we fix ỹ0 = Y(1) and ỹI = Q̂x(α).
Parameter I is set equal to 25, 50 and 100 corresponding to sample sizes of 250, 500 and 1000
and, within each simulation exercise, we double the value if necessary until I0 ≥ 5.

The weighting function is specified as nonparametric with unbounded domain for the
weights, with a constraint on the bias of the estimator. They are derived maximizing the
Lagrangean (3.44) and (3.45) for the WICQF and WICDF estimators respectively. As our
interest is purely on the effect of the non-uniform weighting scheme avoiding to mingle results
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with estimation precision of the cdf parameters, we assume that for each simulated sample,
a, b (and ξ) are known. Therefore, for the WICQF estimator, in (3.44) we use the true
values of Qx(pi), i = 1 . . . I, while in Ω1;i,j, we estimate Ĵ1(pi) as specified in Corollary 1. For
the WICDF estimator, in (3.44), we also use the true values of Fx(yj), yj = 1 . . . J , while in

Ω2;j,k and Ω3;j, we estimate Ĵ2(yi), Σ2;j,k and Σ3,j with the sample counterparts specified in

Corollary 3. Estimator ÂV(τ̂
(D)
w (α |x)) is therefore robust to non-linearity of log odds in the

regressor.
Details on the sampling efficiency gain for different sample sizes, parameters of the cdf

and covariate values are given in Tables 3.3 and 3.4. Each table reports a, b and ξ and the
efficiency gain eAV (τ̂ (·)(w))MC , that is the sampling analog of the asymptotic efficiency gain
eAV (τ̂ (·)(w)) defined in (3.43). The sampling efficiency gain is measured in terms of the
variances σ2

MC(τ̂(w)) and σ2
MC(τ̂) of the Monte Carlo distributions of the non-uniformly and

uniformly weighted estimators:

eAV(τ̂ (·)(w))MC = 1 − σ2
MC(τ̂ (w))

σ2
MC(τ̂)

(3.46)

An overall look show discrepancies between behavior of the two estimators in terms of sam-
pling efficiency gain for different distributional assumptions and covariate values. Results
on the WICQF estimator follow those on the asymptotic efficiency gain study, with positive
eAV(τ̂ (Q)(w))MC for almost all sets of parameters, while for WICDF, we encounter cases,
even corresponding to heavy tailed distributions, where eAV(τ̂ (D)(w))MC is negative.

As mentioned before, for the WICQF estimator, eAV(τ̂ (Q)(w))MC is positive except
for the heteroskedastic version of the normal distribution example. In absolute values,
eAV(τ̂ (Q)(w))MC is close to eAV (τ̂ (Q)(w)), for I = 20. In general, the higher the heav-
iness of the tail, the higher is eAVMC . In the heteroskedastic model, if compared to the
homoskedastic one, the weighting function has a larger positive impact in terms of efficiency
gain. Comparing across different values of x, for the GPD distribution, the heteroskedastic
example point an efficiency gain that is decreasing in x, while for the homoskedastic case,
this is not verified.

For the WICDF, results do not show a clear pattern on the sensitivity of eAV(τ̂ (D)(w))MC

at different degrees of tail heaviness of the cdf. If the cdf is normal, eAV(τ̂ (D)(w))MC is high
for all values of covariate x and sample sizes T . Moreover, eAV(τ̂ (D)(w))MC appears to
be convex in the covariate value. Also, for the GPD example, we note negative sampling
efficiency gains when x take as values the first quartile or the median of the distribution
of Xt and the shape parameter ξ is low. Depending on the value of the covariate, the
sampling efficiency gain can be monotone with respect to the sample size T and the shape
parameter ξ. For example, when x = −.674, for all distributional assumptions, we see that
eAV(τ̂ (D)(w))MC increases with T and ξ. This is paired with high standard deviation of the
Monte Carlo distribution.
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Table 3.3: Efficiency gain in terms of standard deviation σMC(τ̂ ) of Monte Carlo distributions

for the WICQF estimator τ̂
(Q)
w,I (α |Xt = x)

b ξ T I σMC(τ̂ ) eAVMC σMC(τ̂ ) eAVMC σMC(τ̂ ) eAVMC

x = −.674 x = 0 x = .674

Yt |Xt ∼ N (−2 + .5 ·X, (1 + b ·X)2), Xt ∼ N (0, 1)

0 250 10 .138 .7% .114 1.7% .142 1.2%
0 500 20 .101 1.3% .083 1.0% .101 1.3%
0 1000 40 .074 .7% .060 .6% .070 .5%

.25 250 10 .106 -3.4% .136 -.2% .191 - .4%

.25 500 20 .080 -5.8% .097 -2.9% .134 - .4%

.25 1000 40 .058 -6.3% .068 -3.4% .092 - .9%

Yt |Xt ∼ GPD(.5 ·X, 1 + b ·X, ξ), Xt ∼ N (0, 1)

0 .1 250 10 .421 .1% .352 - .1% .426 - .1%
0 .1 500 20 .313 .4% .264 .5% .316 .2%
0 .1 1000 40 .238 .7% .194 1.1% .227 1.2%

0 .2 250 10 .604 1.6% .509 1.1% .606 .5%
0 .2 500 20 .454 2.3% .387 3.2% .460 2.1%
0 .2 1000 40 .351 3.6% .289 5.2% .335 5.1%

0 .3 250 10 .879 4.8% .746 4.3% .871 2.4%
0 .3 500 20 .670 6.4% .578 8.4% .680 6.0%
0 .3 1000 40 .527 8.9% .439 12.1% .504 11.5%

.25 .1 250 10 .326 .3% .364 - .1% .496 - .2%

.25 .1 500 20 .235 .8% .271 .4% .367 .1%

.25 .1 1000 40 .178 1.2% .196 1.1% .260 .7%

.25 .2 250 10 .473 2.5% .524 1.0% .702 0.0%

.25 .2 500 20 .347 4.2% .397 3.1% .530 1.7%

.25 .2 1000 40 .266 5.6% .290 5.1% .381 3.6%

.25 .3 250 10 .701 7.0% .767 4.4% 1.007 2.0%

.25 .3 500 20 .522 10.6% .594 8.5% .780 5.5%

.25 .3 1000 40 .406 13.1% .441 12.2% .570 9.2%
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Table 3.4: Efficiency gain in terms of standard deviation σMC(τ̂ ) of Monte Carlo distributions

for the WICDF estimator τ̂
(D)
w,I (α |Xt = x)

b ξ T I σMC(τ̂) eAVMC σMC(τ̂) eAVMC σMC(τ̂) eAVMC

x = −.674 x = 0 x = .674

Yt |Xt ∼ N (−2 + .5 ·X, (1 + b ·X)2), Xt ∼ N (0, 1)

0 250 25 .387 19.1% .063 18.7% .028 20.3%
0 500 50 .322 17.7% .048 18.3% .021 19.9%
0 1000 100 .257 16.9% .034 18.2% .014 19.4%

.25 250 25 .394 24.9% .062 19.7% .018 21.1%

.25 500 50 .350 26.5% .045 19.3% .013 20.9%

.25 1000 100 .304 28.9% .032 19.1% .009 20.8%

Yt |Xt ∼ GPD(a ·X, 1 + b ·X, ξ), Xt ∼ N (0, 1)

0 .1 250 25 2.269 -2.1% .247 -12.7% .056 29.1%
0 .1 500 50 2.212 -5.8% .187 -31.7% .039 28.9%
0 .1 1000 100 1.953 -9.7% .133 -19.2% .027 29.7%

0 .2 250 25 3.600 10.3% .375 0.9% .073 29.2%
0 .2 500 50 3.215 13.5% .282 -2.2% .051 28.7%
0 .2 1000 100 2.600 20.9% .202 2.9% .035 29.0%

0 .3 250 25 3.651 16.7% .541 9.4% .100 26.8%
0 .3 500 50 2.630 22.6% .403 6.8% .070 26.1%
0 .3 1000 100 1.579 30.6% .289 5.7% .049 26.2%

.25 .1 250 25 2.402 -3.9% .243 -18.4% .036 30.0%

.25 .1 500 50 2.298 -2.7% .178 -51.9% .024 29.7%

.25 .1 1000 100 2.075 2.0% .129 -37.4% .017 30.6%

.25 .2 250 25 3.638 12.3% .368 -1.2% .052 28.2%

.25 .2 500 50 3.182 19.2% .274 -5.2% .036 27.9%

.25 .2 1000 100 2.530 27.4% .199 -2.6% .026 28.6%

.25 .3 250 25 3.606 18.7% .531 9.2% .078 25.6%

.25 .3 500 50 2.531 26.8% .391 6.3% .053 25.0%

.25 .3 1000 100 1.519 33.4% .285 6.6% .039 25.4%
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3.8 Empirical application

The empirical application we develop is based on daily data on excess returns of 6 European
stock indexes and a set of financial and macro variables. For each of the stock indexes, we
estimate the conditional WES, both with uniformly distributed weights (ordinary ES) and
with non-uniform weights, for a level α equal to 10%.

We conditionally estimate WES with the semiparametric estimators WICQF τ̂
(Q)
w (α |x)

and WICDF τ̂
(D)
w (α |x). We follow McNeil and Frey (30) and compare the predictive capacity

of the weighted and the ordinary ES estimators, not formally constructing a test but only
looking at the distributions of the forecast error (FE) of the ES estimators for all quantile
violation events. We define the FE as the absolute difference between the excess return and
the estimated ES, using information up to period T , and the quantile violation as the event
when the excess return from T to T + 1 is lower than the predicted VaR of level (1-α) for
period T + 1.

Our raw data are daily from December 30, 1994, to December 31, 2007. As dependent
variables we have the excess returns on the national composite indexes Xetra Dax 30 Frank-
furt, CAC 40 Paris, S&P MIB 30 Milan, IBEX 35 Madrid and AEX Amsterdam. The set
of predictors are real and financial variables that include micro and macroeconomic informa-
tion. We estimate the ES of the composite stock indexes across companies by conditioning
on prices of inputs (raw materials, credit conditions through short-term interest rate), on a
balance sheets indicator (the dividend yield) and on general conditions regarding the financial
markets and the economic cycle (exchange rate, government bond yields and credit risk). All
data is measured as closing price.

Table 3.5: Description and sources of the composite indexes and covariates

Code Description Source Provider

dax Xetra Dax 30 Frankfurt Price Index Frankfurt exchange Bloomberg
cac40 CAC 40 Paris Price Index Paris exchange Bloomberg
mib30 S&P MIB 30 Milan Price Index Milan exchange Bloomberg
ibex35 IBEX 35 Madrid Price Index Madrid exchange Bloomberg
aex AEX Amsterdam Price Index Amsterdam exchange Bloomberg
stoxx50 DJ Euro Stoxx 50 Price Index DJ Eurostoxx Bloomberg

comm Goldman Sachs non-energy index Goldman Sachs Bloomberg
dyeu DJ Euro Stoxx equity dividend yield DJ Eurostoxx Datastream, Bloomberg
gb5y German Govt Bond Yield Bloomberg Bloomberg
fx EUR/USD exchange rate ECB Bloomberg
oil Oil Nymex future price (in US $) Nymex Bloomberg
re3m Euribor 3M European Banking Fdr. Datastream, Bloomberg
ryeu Lehman Euro Corp BBB Yield Lehman Brothers Datastream, Bloomberg
yd10e 10y Treasury Bond Yield Germany Bloomberg Bloomberg

The weighting function w(·) associated to any WES estimator is such that it minimizes the
AV of the estimator the assumption that Yt |Xt ∼ GPD(0, 1, ξ). We make this assumption
as the GPD is often used as characterizing financial assets with fat tails and moreover, in
the study, we obtained good results in terms of asymptotic efficiency gain. We assume the
simple model with zero mean and the shape parameter not depending on the covariates.
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Table 3.6: Transformations and summary statistics of the composite indexes and covariates

Variable Description Transformation Mean SD Q99 −Q01

DAX Xetra Dax 30 return ln (daxt/daxt−1) 2.6 · 10−4 1.4 · 10−2 7.8 · 10−2

CAC40 CAC 40 return ln (cac40t/cac40t−1) 3.5 · 10−4 1.3 · 10−2 7.4 · 10−2

MIB30 S&P MIB 30 return ln (mib30t/mib30t−1) 3.5 · 10−4 1.3 · 10−2 6.8 · 10−2

IBEX35 IBEX 35return ln (ibex35t/ibex35t−1) 5.8 · 10−4 1.3 · 10−2 6.9 · 10−2

AEX AEX return ln (aext/aext−1) 1.9 · 10−4 1.3 · 10−2 7.6 · 10−2

STOXX50 DJ Euro Stoxx 50 return ln (stoxx50t/stoxx50t−1) 3.0 · 10−4 1.3 · 10−2 7.4 · 10−2

ECOMM Commodity price log diff ln (commt/commt−1) 2.3 · 10−4 0.7 · 10−2 3.4 · 10−2

EDY Dividend yield ln (dyeut) 0.79 0.27 1.01
EFX EUR/USD log diff ln (fxt/fxt−1) −0.5 · 10−4 0.6 · 10−2 3.1 · 10−2

EOIL Oil price log diff ln (oilt/oilt−1) 7.5 · 10−4 2.2 · 10−2 11.0 · 10−2

ERSP Risk spread ryeut − gb5yt 1.15 0.45 1.91
ESP Term Spread yd10et − re3mt 1.46 0.90 3.75

This facilitates maximum likelihood estimation of ξ, fitted only on the negative values of Yt,
previously standardized by dividing them to the sample standard deviation. More precisely,
let y⋆t denote the negative observations of Yt. Then

ξ̂ = max
R+

T∑

t=1

[ln (1 + ξ · (−y⋆t )(ξ
−1−1)) · 11{yt < 0}]

The optimal weighting function w is derived in a similar manner as in the Monte Carlo study.
For each rolling window sample, we solve (3.28) for the WICQF and (3.32) for the WICDF
respectively. For the WICQF estimator (4.10), we set pi = α · i/I, with i = 1, . . . , I = 20,
therefore the pi’s are equally spaced between p1 = α/I and pI = α. For the WICDF estimator
(4.8), we set I = 50 points yi = −10+ i ·0.1 and successively retain I0 of them that fall in the
interval (Y(1), Q̂x(α)), where Y(1) is the first order statistic of Yt and Q̂x(α) is the estimated

α level quantile of the rv Yt |Xt = x. We also define ỹ0 = Y(1) and set ỹI0 = Q̂x(α).

All predictors are lagged one period. After deriving w, the model is fitted repeatedly
for each of the 2147 rolling windows. The estimated model and the last available value of
the covariates are then used to predict the one-step ahead WES over the next day. The
first rolling window goes from January 3, 1995, to June 7, 1996 and the first estimate is the
predicted WES between June 10, 1996 and June 11, 1997. The k−dimensional vector x is on
day June 10, 1997.

In Tables 3.7 and 3.8, for all indexes, we report summary statistics of the empirical
distribution of the WICQF and the WICDF estimators over the rolling windows and also of
the empirical distribution of the FE corresponding to each estimator. We show the mean, the
standard deviation and the range between the 1st and the 99th percentiles, all expressed in
percentage points. The percentage of quantile violation cases, for each index and estimator
is approximatively 12%.

The summary statistics between the uniformly weighted and the non-uniformly weighted
estimators are very similar as the ”estimated” weighting functions are close to the uniform
scheme. Across indexes, the standard deviation of the empirical distribution of both the
WICQF and WICDF estimators varies within approximatively 0.9% and 1.1%. The quantile
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range has values above 4% and it is smaller for the weighted estimator if compared to the
ordinary estimator. Regarding the FE, we notice that the mean value is negative for the
WICQF estimators while it is positive (and much larger, in absolute value) for the WICDF
estimators. Moreover, the mean corresponding to the weighted estimator is lower in absolute
value with around 0.1% for the WICQF, whilst it is lower with around 0.3% for the WICDF. In
other words, even if the weighted estimator is not characterized by a lower standard deviation
of the empirical distribution, it appears to have a better forecast precision translated into
less severe underprediction for the WICQF and less severe overprediction for the WICDF
estimator.

Table 3.7: Summary statistics for the one-step ahead predicted shortfall

Estimator Mean SD Q.99-Q.01 Mean SD Q.99-Q.01

XetraDax30 CAC40

τ̂ (Q)(α | x) -2.359 1.072 4.833 -2.164 0.899 4.189

τ̂
(Q)
w (α | x) -2.365 1.079 4.864 -2.157 0.896 4.178

τ̂ (D)(α |x) -2.578 1.066 4.891 -2.349 0.858 3.987

τ̂
(D)
w (α |x) -2.553 1.098 5.028 -2.321 0.870 4.019

S&PMIB30 IBEX35

τ̂ (Q)(α | x) -2.090 1.082 4.666 -2.082 1.021 4.596

τ̂
(Q)
w (α | x) -2.090 1.081 4.653 -2.078 1.019 4.613

τ̂ (D)(α |x) -2.282 1.070 4.854 -2.275 0.998 4.963

τ̂
(D)
w (α |x) -2.270 1.106 4.980 -2.248 1.029 5.176

AEX DJEuroStoxx

τ̂ (Q)(α | x) -2.136 1.000 5.043 -2.128 0.936 4.474

τ̂
(Q)
w (α | x) -2.135 1.001 5.057 -2.125 0.934 4.468

τ̂ (D)(α |x) -2.370 0.983 4.807 -2.337 0.923 4.268

τ̂
(D)
w (α |x) -2.346 1.005 4.746 -2.312 0.948 4.313

Table 3.8: Summary statistics for the one-step ahead forecast error

Estimator Mean SD Q.99-Q.01 Mean SD Q.99-Q.01

XetraDax30 CAC40

τ̂ (Q)(α | x) -0.072 0.754 3.479 -0.045 0.722 3.444

τ̂
(Q)
w (α | x) -0.067 0.753 3.460 -0.052 0.721 3.409

τ̂ (D)(α |x) 0.229 0.788 4.354 0.173 0.700 3.421

τ̂
(D)
w (α |x) 0.207 0.832 4.828 0.140 0.697 3.418

S&PMIB30 IBEX35

τ̂ (Q)(α | x) -0.071 0.706 4.219 -0.052 0.783 4.323

τ̂
(Q)
w (α | x) -0.072 0.706 4.147 -0.058 0.783 4.330

τ̂ (D)(α |x) 0.196 0.734 3.982 0.180 0.786 4.930

τ̂
(D)
w (α |x) 0.173 0.741 4.020 0.152 0.785 4.825

AEX DJEuroStoxx

τ̂ (Q)(α | x) -0.163 0.769 3.956 -0.093 0.695 3.416

τ̂
(Q)
w (α | x) -0.166 0.769 3.898 -0.099 0.692 3.387

τ̂ (D)(α |x) 0.123 0.819 4.826 0.178 0.697 3.539

τ̂
(D)
w (α |x) 0.093 0.820 4.911 0.154 0.695 3.783
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3.9 Conclusions

We obtain an asymptotic efficiency gain of ES conditional estimators proposed in the previous
Chapter. Our approach counts on introducing a weighting function that maps the cdf or
equivalently the cqf. The efficiency appears to be significant for heavy tailed distributions
and this opens way to applications on risk estimation for asset returns characterized by such
distributions. The Monte Carlo exercise shows that the weighting function has an overall
positive effect on estimation precision mostly in the case of the WICQF estimator. We also
develop an application on daily financial data. As the weighting function is close to the
uniform, we obtain quite similar estimates for both the ordinary and the weighted versions
of the ES estimator, with marginally better forecast precision for the latter class.
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Chapter 4

Asset allocation with expected
shortfall risk constraint

4.1 Introduction

The α−level expected shortfall (ES) of an asset Y is the expected loss that can be incurred
on holding the asset, conditional on the loss being more severe than the α level quantile Q(α),
a measure known as the (1-α)- percent Value at Risk (VaR)

τ(α) =
1

α

∫ Q(α)

−∞
y dF (y) =

1

α

∫ α

0
Q(p) dp (4.1)

where F (y) and Q(p) are respectively the distribution function (df) and the quantile function
(qf) of the random variable (rv) Y . The expected value of a random variable can be written
in terms of the ES by setting α = 100%, that is µ =

∫ 1
0 Q(p) dp = τ(1). This last observation

allows us to adapt the estimators for ES and use them as estimators for the mean.
Unlike VaR, the ES is a coherent risk measure (see Artzer et al (7) and Acerbi and Tasche

(2)). However, both ES and VaR are used as risk constraints in asset allocation models. We
recall here Basak and Shapiro (9), Alexander and Baptista (3), Cherny (13), Mansini et al
(28), Bassett et al (10), Cuoco et al (15) and Gundel and Weber (21) that solve portfolio
optimization problems minimizing a well defined loss function written in terms of the mean
return and a constraint on either ES or VaR.

In Chapter 2, we discuss basic form of estimators for ES proposed by Peracchi and Tanase
(36). Then, in Chapter 3, following Leorato et al (26), we write a generalized weighted rep-
resentation of ES and analytically derive the weighting function such as to obtain estimators
of ES with minimum asymptotic variance.

In this Chapter we accomplish a broad study of conditional estimation of ES by focusing
on the forecasting properties of the estimators. We achieve this by means of a generalization
of the ES estimators. The weighting function that modifies the cdf of returns is numerically
derived such as to minimize the forecast error of weighted estimators. This is defined, fol-
lowing McNeil and Frey (30), as a measure of deviation from the ES in the case of quantile
violation events, that is, when the observed return is less than the estimated VaR.

The second objective of this Chapter is to compare results of a simple asset allocation
model that maximizes expected return with a loss constraint on either ES or VaR. For
example, we are interested in stability of the portfolio weights over time, or equivalently the
degree of variability. This is of concern from the point of view of transaction and forecasting
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applications. We give a stylized example proving that the allocation that uses ES rather
that VaR as risk constraint is characterized by higher stability. The asset allocation model is
solved by means of a numerical algorithm. This does not fully exploit the convexity property
of the optimization problem of the underlying model, but it is a simple iterative algorithm
that generates random sets of portfolio weights and chooses the optimal one according to a
well defined loss function. The loss function that is minimized within the asset allocation
model is written in terms of the mean and the risk measure. In solving the model, the risk
measures are estimated by analog estimators constructed assuming linearity in the covariates,
either of the conditional quantiles or of the log-odds.

In the empirical section of the paper, we use real financial data and construct optimal
portfolios that solve the asset allocation problem where the mean return and the risk con-
straint are estimated with the estimators introduced in Chapter 2 and generalized here. We
compare the return-to-risk profile and the stability of the portfolio weights with either ES,
WES or VaR risk constraints.

The rest of the chapter is organized as follows. After defining the ES and mean return,
we present their estimators. Then we generalize the ES to the weighted expected shortfall
(WES) and their correspondent estimators. The fourth section is dedicated to the definition
of the forecast error of the weighted estimator of ES and derivation of the weighting function
that minimizes the forecast error. Then we formulate the asset allocation problem, present
the numerical algorithm of the constrained optimization problem and define our measures of
allocation stability. The last section is dedicated to the empirical application.

4.2 The weighted mean and the weighted ES: definition and
estimation

In this section we recall the definition of the conditional expected shortfall and the inte-
grated cdf and integrated cqf estimators proposed by Peracchi and Tanase (36). We also
show how these estimators can be used to estimate the mean. Moreover we generalize the
expected shortfall and present a weighted version of the estimators for ES. The generalization
is achieved by means of a well defined weighting function w(·) that modifies the distribution
of the random variable without affecting consistency of the weighted estimators for ES. The
estimators of WES and of the weighted mean are simply weighted versions of the integrated
cdf and cqf estimators.

Assume that the rv Yt has continuous and strictly increasing distribution function F (y) =
Pr{Yt ≤ y} and quantile function Q(p) = inf{y : F (y) ≥ p}, with p ∈ (0, 1). Moreover, let

F (y |x) = Pr{Yt ≤ y |Xt = x} and Q(p |x) = inf{y : F (y |x) ≥ p}
be the conditional distribution function (cdf) and the conditional quantile function (cqf) of
Yt given a k−value random vector of regressors Xt

The α-level conditional ES of Yt given Xt = x is

τ(α |x) =
1

α

∫ α

0
Q(p |x) dp = Q(α |x) − 1

α

∫ Q(α | x)

−∞
F (y |x) dy. (4.2)

where Q(α |x) is the α-th quantile of Yt conditional on Xt = x.
The conditional mean of Yt given Xt = x is

µ(x) = τ(1 |x) =

∫ 1

0
Q(p |x)dp (4.3)
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Definition 1 For any w : [0, 1] 7→ [0, 1] continuous, non-decreasing and differentiable func-
tion satisfying w(0) = 0, w(α) = α and w(1) = 1, the α-level WES of Yt conditional on
Xt = x is

τw(α |x) =
1

α

∫ α

0
Q(p |x)dw(p) = Q(α |x) − 1

α

∫ Q(α |x)

−∞
w(Fx(y))dy (4.4)

and the weighted mean of Yt conditional on Xt = x is

µw(x) =

∫ 1

0
Q(p |x)dw(p) (4.5)

Remark 4 In Chapter 3, we define the weighting function as w : [0, α] 7→ [0, 1] as we focus
only on the left tail of the distribution. Here, w enters both the definition of the WES and
the expected value of Yt conditional on Xt, therefore we define it on the whole domain [0, 1].

Remark 5 The α−level WES is itself a coherent risk measure if and only if w is concave
on [0, α] (see Th. 4.1 in Acerbi (1)1).

Remark 6 In the definition of the weighting function, it is crucial to impose the constraint
∫ α

0
Q(p |x)[w(p) − 1]dp = 0 (4.6)

which corresponds to imposing τw(α |x) = τ(α |x). This ensures consistency of the weighted

estimators τ̂
(Q)
w (α |x) for τ(α |x). This is also true for the estimator τ̂

(D)
w (α |x).

In (4.4), the original cdf Fx(y) = F (y |x) is mapped into a new cdf w(Fx(y)). The WES
is the expected loss one would suffer in the worst α−percent cases and µw(x) is the expected
return if the distribution of returns were w(Fx) instead of Fx.

In the rest of the section, the pairs {(Y1,X1) . . . , (YT ,XT )} are assumed to be a random
sample drawn from the bivariate distribution of (Y,X), with Xt a k−valued random vector
of regressors.

Integrated cdf estimators

Without loss of generality, we consider the set of J points Ỹ = {y1 < y2 < . . . < yJ}.
Alternative estimators for Fj(x) = Fj(yj |x), yj ∈ R, either monotonic or not, were pro-
posed in Section 2.2 following Peracchi (35). Given estimates of the cdf at the grid points
{y1, y2, . . . , yJ}, we approximate the second integral in (4.2) by a sum. Hence, the integrated
cdf estimator takes the form

τ̂ (D)(α |x) = Q̂(α |x) − 1

α

J ′∑

j=1

(yj − yj−1) F̂j(x) (4.7)

Here Q̂(α |x) is an estimator of the conditional quantile Q(α |x), for example a linear quantile
regression estimate as in Koenker (25) (this will present in the next subsection), while J ′ is
the index of the grid point yJ ′ = sup{y ∈ Ỹ | y ≤ Q(α |x)}, that is the largest grid point less
or equal than the α−level conditional quantile.

An analog estimator µ̂(D)(x)) of the conditional mean can be constructed using estimates
of the cdf at grid points {y1, y2, . . . , yJ} and setting α = 1 − ε, with ε > 0.

1the spectral function φ(p) is the first derivative w′(p) of the weighting function
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Remark 7 Leorato et al (26) work out the asymptotic variance of the τ̂ (D)(α |x) estimator.
Here we do not make a rigorous analysis of monotonicity of the variance with respect to
α. However, as τ̂ (D)(α |x) is the difference of two increasing quantities in α, we expect the
variance of τ̂ (D)(α |x) to increase in α, too, rendering the µ̂(D)(x) estimator unstable as
α approaches 1 and therefore problematic. In fact, in Theorem 3 in Angrist et al (6), the
quantile regression process is defined over [ε, 1− ε], for ε > 0. In the empirical exercise, after
some trials, we estimate the mean with τ̂ (D)(α∗ |x), where α∗ = 1 − 10−3.

According to different choices for F̂j(x), one obtains different estimators for the mean
and the ES. However, in the empirical application we use only the first estimator, the one
obtained by inserting (3.14) into (4.2) and denoted with τ̂ (D)(α |x).

Passing to the weighted versions, we approximate the integrals in (4.4) and (4.5) with
averages and have the following estimators for WES

τ̂ (D)
w (α |x) = Q̂(α |x) − 1

α

J ′∑

j=1

(yj − yj−1)w(F̂j(x)) (4.8)

We refer to the weighted estimators as the weighted integrated cdf estimator (WICDF) of ES,

obtained by inserting (3.14) into (4.8) and denoted with τ̂
(D)
w (α |x). The weighted integrated

cdf estimator of the mean (MICDF) is denoted with µ̂
(D)
w (x) and is obtained by setting α

very close to 100% (see Remark 7).

Integrated cqf estimators

As in Section 2.2, let 0 = p0 < p1 < · · · < pJ ≤ 1 be a set of J positive real numbers and
define the set of weights ωj = α−1(pj − pj−1). Assuming, as in Koenker and Bassett (24)
and Koenker (25), that for p ∈ [0, 1] we have linearity of the conditional quantile, that is
Q(p |x) = β(p)⊤x, then parameter β(p) is estimated by solving minβ

∑T
t=1 ℓp(Yt − β⊤Xt),

where ℓp(u) = u(p − 11{u < 0}), 0 < p < 1, is the asymmetric absolute loss function.
Let J = [αT ], then the integrated cqf estimator of the ES is obtained by replacing Q(α |x)

in (4.2) with an estimate and approximating the second integral by a sum

τ̂ (Q)(α |x) =

J∑

j=1

ωjQ̂(pj |x) = β̃T (α)⊤x (4.9)

where β̃T (α) =
∑J

j=1 ωjβ̂T (pj). As for the integrated cqf estimator of the mean, µ̂(Q)(α |x),
it is analog to the ES estimator with α = 1.

Turning to the weighted versions of the integrated cqf estimators, define the set of weights
ωj = α−1[w(pj) − w(pj−1)]. The integrated cqf weighted estimator(WICQF) of ES

τ̂ (Q)
w (α |x) =

J=[αT ]∑

j=1

ωjQ̂(pj |x) = β̃T (α)⊤x, (4.10)

where β̃T (α) =
∑J

j=1 ωjβ̂T (pj) is a weighted average of coefficient estimates β̂(p1), . . . , β̂(pJ).

The weighted integrated cqf estimator of the mean (MICQF) µ̂
(Q)
w (x) is obtained by setting

α equal to 1, which is a plug in approximation of the second integral in (4.5).
For details on the asymptotic properties of estimators of τw(α |x) with a nonparametric

specification of w(·), see Chapter 3.
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4.3 Minimizing the forecast error of weighted estimators of

ES

In Chapter 3, we depart from the generalized weighted representation of ES (3.2) and de-
rive the optimal weighting function that minimizes the asymptotic variance of WICDF and
WICQF estimators of ES. Here, departing from the same representation, we derive the op-
timal weighting function that minimizes the forecast error of the WICDF and WICQF es-
timators of ES. The forecast error is defined using a test for the prediction accuracy of ES
introduced by McNeil and Frey (30). As explained in Section 2.4.2, McNeil and Frey (30)
propose a formal test of the hypothesis that the bias of some ES estimator is zero. Define
the quantile violation event as the case case when the observed excess return is lower than
the VaR at level α. Under the null hypothesis, the forecast error, computed as the difference
between the observed excess return and the corresponding one-step ahead predicted shortfall
under quantile violation event should have mean zero. The test rejects the null hypothesis if
the average forecast error is large. Here we do not test the null hypothesis but, for different
weighted estimators, compute the average of the empirical distribution of the forecast error
and select the optimal weighting function as the one corresponding to the estimator with
minimum average forecast error.

Now we define the forecast error fe for any weighted estimator τ̂w(α) for the ES of level α
of the rv Y . As mentioned before, the fe is computed only for the quantile violation events,
that is when the observed return is less than the (1-α) VaR

feY,τ̂w(α) =

{
g(Y − τ̂w(α)) , if Y ≤ Q̂(α |x)
not defined , otherwise

(4.11)

where g : R 7→ R
+ is an arbitrary loss function defined, for example quadratic g(u) = u2 or

absolute value g(u) = |u | . Note that the forecast error fe depends on the estimates τ̂w(α)
and Q̂(α |x).

We search for the weighting function that minimizes the mean forecast error over a well
specified set W of admissible weighting functions

w⋆τ̂w(α) = arg min
W

{E
(
g(Y − τ̂w(α) | Y ≤ Q̂(α |x)

)
} (4.12)

where
W = {w = w(π, b1, b2), b1 ∈ (0, 1], b2 ∈ [1,+∞], π = π∗}

As in Chapter 3, we give the function w(·) a parametric specification as a mixture of beta
distributions

w(p) =





α

(
π

(1− p
α)

b1−1

b(1,b1) + (1 − π)
(1− p

α)
b2−1

b(1,b2)

)
, p ∈ [0, α]

p, p ∈ (α, 1]
(4.13)

where b(a, b) = Γ(a)Γ(b)
Γ(a+b) , b1 ∈ (0, 1], b2 ∈ [1,+∞] and π ∈ [0, 1] and

π∗ = π(b1b2) =
τw2(α |x) − τ(α |x)
τw2(α |x) − τw1(α |x) . (4.14)

that solves equation (4.6). Here, w1(p) and w2(p) are the components of w(p), that is

w(p) = πw1(p) + (1 − π)w2(p), p ≤ α
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while τw1(α |x) =
∫ α
0 Q(p |x)dw1(p) and τw2(α |x) =

∫ α
0 Q(p |x)dw2(p). Note that the

weighting is non-uniform exclusively on the left tail of the distribution, changing only prob-
abilities assigned to losses more severe than the estimated quantiles Q̂(α |x).

We do not give an analytical solution for the optimal weighting function w⋆, but only
an numerical one. We replace the expected value operator E() in the minimization problem
(4.12) with its empirical counterpart. Given the set of observations (Y1,X1) . . . (YT ,XT )
from the bivariate distribution of (Y,X), with X a k−valued random vector of regressors,
the optimal estimated ŵ⋆ solves the following minimization problem

ŵ⋆τ̂w(α) := arg min
w∈W

{
1

R

T∑

t=T−tw

11{Yt < Q̂t(α |x)} · g(Yt − τ̂w(α |x))
}

(4.15)

where tw > 1. Here Q̂t(α |x) and τ̂w(α |x) are the estimates of the α−VaR and the α− level
weighted ES at time t using information up to time (t− 1) and R =

∑T
t=t0

11{Yt < Q̂t(α |x)}.

4.4 The asset allocation model

4.4.1 The general setting

The Markovitz asset allocation model maximizes expected return with a risk constraint on the
standard deviation. Alternative formulations propose as risk constraints the VaR (see Alexan-
der and Baptista (3)) and, more recently, the expected shortfall (see Basak and Shapiro(9)).

Here we construct an asset allocation model that maximizes the expected return imposing
an upper bound on the risk that the portfolio might suffer, writing the model in terms of a
Lagrange function with some general risk measure. Either the ES, the WES or the VaR can
play the role of the risk measure.

We recall the literature that supports convexity of optimization problems similar to ours.
However, we do not take advantage of the full potentiality of the convexity of the asset
allocation problem and derive the solution by means of a numerical algorithm that searches
for the optimal allocation out of a set of alternative portfolio weights.

Let

Q = {q ∈ RM :

M∑

m=1

qm = 1, 0 ≤ qm < 1} (4.16)

denote the set of available alternative components weights vectors q, each of them defining
unique portfolios Pq with returns Yq. The optimization problem that we solve is

q⋆ = arg max
q∈Q

L (4.17)

where

L = µ(Yq |x) − λ1 · (ψ(Yq |x) − δ̄ψ) − λ2 ·
(

M∑

m=1

qm − 1

)
(4.18)

Here ψ(Yq |x) is some risk measure of portfolio Pq, conditional on available regressors X = x.
Moreover, quantity δ̄ψ is the risk threshold and λ1 and λ2 are the Lagrange multipliers. The
threshold δ̄ψ is equivalent to the portion of wealth that the investor is ready to lose.

In general, such portfolio optimization problems cannot be solved analytically and, pro-
vided that some conditions are met, they are dealt with numerical solutions via convex
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programming techniques. For example, if in (4.17), we replace ψ(Yq |x) with the standard
deviation, then the problem can be solved analytically (see Meucci (31), chapter 6). If, on
the other hand, we consider the VaR of level α as risk constraint, that is ψ(Yq |x) = Q(α |x),
then problem (4.17) enter the class of convex programming problems and admits a numerical
solution (see Ghaoui (19)).

Remark 8 As τ(α |x) is an average of the up to the α-level, the convexity conditions hold
if we replace ψ with τ(α |x), too. Therefore, the optimization problem admits a numerical
solution (see Cuoco et al (28) and Alexander and Baptista (3)).

In our case, the optimality conditions that guarantee the existence of a unique solution (see
Barbu and Precupanu (8), chapter 3), can be written as:

(i) Function L is convex

(ii) The set {ψ(Yq |x) ≤ δ̄ψ} is convex

(iii) Q ∩ {ψ(Yq |x) ≤ δ̄ψ} 6= ∅

We propose a similar setting of the model (4.17) and (4.18), in which we replace the mean
with its weighted version µw(x) and the risk measures with weighted ES τw(α |x). Therefore,
the problem is

q⋆ = arg max
q∈Q

L s.t. τw(Yq |x) ≤ δ̄τw , (4.19)

where

L = µw(Yq |x) − λ1 · (τw(Yq |x) − δ̄τw) − λ2 ·
(

M∑

m=1

qm − 1

)
(4.20)

Moreover, each portfolio Pq is associated to a unique weighting function w⋆(q) obtained by
the solution of (4.15), the minimization of the forecast error of weighted estimators of ES.
The weighted estimators (WES) are consistent for the ES (see Remark 4.6 on the definition
of the weighting function). Although not proved here, we assume, in base of Remark 8 that
optimization problem that controls for the weighted mean and the weighted ES is convex
and has a unique solution when the true quantities are replaced by their weighted consistent
estimates. This allows us to jointly derive the vector of optimal portfolio weights q⋆ and the
weighting function w⋆ using the numerical algorithm that we present in the next subsection.

4.4.2 The numerical algorithm

The algorithm is constructed following the basic sequence of iterative algorithms (see for
example Brooks (12)): random generation of a finite number of subsets of weights and op-
timization over some well defined function up to a threshold level for the tolerance level.
However, it is rather limited as it does not take into account the convexity property of the
optimization problem. We generate a finite number N of random subsets QN of portfolio
weights from the Dirichlet distribution and choose the optimal vector that by solving (4.19).
Moreover, for each set of portfolio weights q, we derive the optimal weighting function w⋆ as
a function of q solving (4.15). As we use QN instead of the set Q, we only end up with an
approximation q̃⋆ to the optimal solution q⋆.

We assume that, under some smoothness properties of the objective function L, in par-
ticular convexity and continuity, the approximation q̃⋆ converges to q⋆

∀ ǫ ∈ (0, 1) and ν > 0, ∃N̄ s.t. ∀N > N̄,Pr { | q̃⋆ − q⋆ | < ν} > 1 − ǫ. (4.21)
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The sequential algorithm is implemented on time rolling windows indexed by period t.
Let us denote by q⋆(i)(t) the vector found after the i−th iteration, i ≥ 1, at period t and with

L(q⋆(i)(t)) the value of the Lagrangian (4.20) computed on the cdf F (y |x) of returns of the

portfolio with weights q⋆(i)(t). The steps are

(i) Select a random sample of N0 independent M− dimensional vectors (q1, . . . , qN0) from
the Dirichlet distribution with parameters (α0 + M)q⋆(i)(t) + 1, with α0 > 0. Each
portfolio Pqn with returns Yqn has an associated w⋆ derived by solving the optimization
problem 4.15.

(ii) Define q̃⋆(i+1) as the vector that maximizes equation (4.20) among the set of vectors

(q1, . . . , qN0). Then if L̂(q̃⋆(i+1)) < L̂(q⋆(i)) set q⋆(i+1) = q̃⋆(i+1), otherwise q⋆(i+1) = q⋆(i)

where L̂(q) is computed on the estimated cdf F̂ (y |x) and approximates the true value L(q).
As components weights vector for the initial time t = t0, we set q⋆0(t0) = (1/M, . . . , 1/M),

which corresponds to the equally weighted portfolio. In order to smoothen the portfolio
weights, we impose some dependency in the parameters of the Dirichlet distribution. There-
fore, for the successive time periods, in the first iteration, the mode of the Dirichlet distribu-
tion is set equal to q⋆0(t) = q̃⋆(t− 1), where q̃⋆ is the approximated value of the true optimum
q⋆(t). This mitigates the problem of significant variations in the components weights across
small time intervals. The scale parameter α0 is used to allow for higher or lower dispersion
of the sampled observations and can also be allowed to vary across iterations. As a stopping
rule for the algorithm, the following conditions must be satisfied, for each time t:

| L(q⋆(i)(t)) − L(q⋆(i−1)(t)) |
L(q⋆(i−1)(t))

≤ s, (4.22)

for some tolerance level s positive and close to 0. The scale of s is dependent on the degree
of convexity of function L(·). In practice, choosing s equal to a sufficiently low number (in
our case, we set s = 0.05) ensures convergence and stability of the optimization exercise.

4.5 Allocation stability

When we derive optimal portfolio weights by replacing the unknown quantities with estimates,
the estimation errors are passed as errors in the optimal allocation (see Meucci (31)). The
notion of stable allocation is associated to sensitivity of the optimal allocation to the estimated
market parameters. Some authors analyze stable optimal allocations in models that use
quantile risk constraints (VaR, in particular). We recall here Ghaoui et al (19) and Natarajan
et al (33).

We define stability of the portfolio weights in terms of the mean ”distance” between com-
ponents weights distribution over some period of time. In other words, we look at variability
of portfolio components weights. Large variations of portfolio weights are of concern if one
considers issues like transaction costs and forecasting of portfolio performance indicators.
Transaction costs associated to re-balancing of portfolio weights are significant if such oper-
ations are performed with relatively high frequency and for a large number of components.
Moreover, stable portfolio weights are easier to monitor and forecasting applications involves
less uncertainty regarding future composition of portfolios.

Following the above mentioned works, we are interested in how the use of different risk
constraints plugged in the asset allocation model affect stability of the optimal portfolio from
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the point of view of sensitivity of the allocation to the estimated market parameters. We
refer to the optimal allocation as the vector of weights obtained by solving the portfolio
optimization problem as specified in (4.19). Two alternative measures of portfolio weights
stability over some time interval are proposed and a stylized example is constructed where
we use VaR or the ES risk measures. In order to simplify the example, we only consider the
simple case of normal returns and a time interval made up of two periods. In the empirical
application, the two proposed stability measures are computed for the optimal portfolios.

4.5.1 Measures of allocation stability

Let Yq denote the return of a portfolio constructed of M assets with weights q ∈ Q, with Q
specified in (4.16). Consider the following time interval made up of S > 0 periods prior to t

(t, S) = {(t− S), (t− S + 1), . . . , (t− 1)}

Definition 2 Stability ρq,δ(t, S) of the portfolio weights over the time interval (t, S) is defined
as the reciprocal of the mean distance δ for all pairs (t, t0)

ρq,δ(t, S) =





1

S

∑

(t−S)≤t0<t

δ(q(t), q(t0))





−1

, with q(·) ∈ Q (4.23)

where δ(q(t), q(t0)) is the distance between the distributions of portfolio weights q(t) and q(t0),
with t0 ∈ (t, S).

We interpret ρq,δ(t, S) as an absolute measure of stability of portfolio weights. The smaller
is the variation in portfolio weights, the higher is ρq,δ(t, S). In Definition 2, if S = 1, we only
consider two consecutive periods, t and (t − 1). Otherwise, if we opt for monitoring the
performance indicators of portfolios and re-balancing operations on a weekly or monthly
basis (as usually encountered in practice), then S would take values 5 and 20, respectively.
This is our choice in the empirical section that we develop further on.

As measures of distance δ between distributions, we have alternative proposals. Our
first choice is the Kullback-Leibler ”distance” (also called information divergence or relative
entropy)

δKL(q(t), q(t0)) =

M∑

m=1

qm(t) log
qm(t)

qm(t0)
(4.24)

where qm(t) denotes the weight corresponding to the mth portfolio component at time t. The
alternative measure that we propose is the L2−distance, that does not penalize large weights,
as the KL distance does

δL
2
(q(t), q(t0)) = 2

√√√√
M∑

m=1

| qm(t) − qm(t0) | 2 (4.25)

Plugging (4.24) and (4.25) into (4.23) results in the two alternative measures of portfolio
weights stability, which we denote with ρKL(t, S) and ρL

2
(t, S) respectively.
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4.5.2 A stylized example

We construct one stylized example using normal returns and prove that the allocation that
uses ES rather that VaR as risk constraint is characterized by higher stability according to the
measures proposed in the previous sub-section. This analysis should be furtherly extended by
considering other classes of distributions, like mixtures of normals or fat tailed distributions
for which we have analytical results regarding computation and estimation of the expected
shortfall (see, for example, Peracchi and Tanase (36)).

Suppose that we observe two assets with the following bivariate normal distribution at t0
(
Y1

Y2

)
= N

((
µ
µ

)
,

[
σ2 0
0 σ2

])
. (4.26)

We are interested in how the optimal allocation changes at t = t0 + 1, assuming that the
mean of the two assets change by some amount ǫ > 0 but the variance remains constant, i.e.
under the alternative distribution

(
Y1

Y2

)
= N

((
µ+ ǫ
µ− ǫ

)
,

[
σ2 0
0 σ2

])
(4.27)

We then prove that stability measures ρKL and ρL
2

are indeed lower for the optimal port-
folio that solves the ES constrained allocation model as compared to the VaR constrained
allocation model, considering that the weights vector change from q(t0) to q(t).

Let q = (q1, q2)
′ denote the vector of portfolio weights. Then the return on portfolio

Y = q1 ∗ Y1 + q2 ∗ Y2 is normally distributed

Y ∼ N(µ+ ǫ(q1 − q2), (q
2
1 + q22) · σ2).

Weights (q1, q2) are derived by solving the optimization problem (4.19), or equivalently by
finding a stationary point of the Lagrange function, with generic risk constraint ψ bounded
by δ̄ψ

Lψ = µ+ ǫ(q1 − q2) − λψ1 · (ψ − δ̄ψ) − λψ2 · (q1 + q2 − 1) (4.28)

The risk constraint are either V aR(α) or the expected shortfall τ(α). Both the VaR and
the ES have close form expressions for a normal random variable with mean µ and variance
σ2. More precisely, V aRN(µ,σ)(α) = µ+ σ · Φ−1(α) and τN(µ,σ)(α) = µ− σα−1 · φ(Φ−1(α)),
where φ(y), y ∈ R and Φ−1(p) = Q(p), p ∈ (0, 1) are the density function and the quantile
function respectively of the standard normal distribution N (0, 1). These two quantities enter
the condition under which the allocation that uses ES rather that VaR as risk constraint is
characterized by higher stability.

Replacing the risk constraint ψ with either V aRY (α) or τY (α) in (4.28), it comes out that
the equally weighted portfolio q1 = q2 = 1/2 is the optimal allocation when the means of the
distributions of the two assets are equal (model (4.26)). This result can be easily generalized
to M assets. In this case the optimal allocation is qm = 1/M,m = 1 . . .M .

Now consider the case of returns with normal distributions but different means (model
(4.27)) and denote with (qV aR1 , qV aR2 ) and (qτ1 , q

τ
2 ) the optimal allocations with V aRY (α) and

τY (α) as risk constraints.
Let V aRσ = V aRN(0,σ)(α) and τσ = τN(0,σ)(α). Writing the first order conditions

Lψ dqi = 0, i = 1, 2 and Lψ dλψ2 = 0, with ψ = V aRY (α) we get that

qV aR1 =
1

2
+

(
1 − λV aR1

λV aR1

)
ǫ

2V aRσ
, qV aR2 =

1

2
−
(

1 − λV aR1

λV aR1

)
ǫ

2V aRσ
(4.29)
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Analogously, writing the first order conditions for ψ = τY (α) we get

qτ1 =
1

2
+

(
1 − λτ1
λτ1

)
ǫ

2τσ
, qτ2 =

1

2
−
(

1 − λτ1
λτ1

)
ǫ

2τσ
(4.30)

Let ρKLV aR and ρKLτ denote the stability measures for the optimal portfolios with τ(α)
and V aR(α) as risk measures, with qV aR(t) = (qV aR1 , qV aR2 ), qτ (t) = (qτ1 , q

τ
2 ) and q(t0) =

(1/2, 1/2). We prove that the optimal portfolio weights with ψ = τ(α) as risk constraint

are more stable that the optimal weights with ψ = V aR, which is equivalent to (ρKLV aR)
−1 −

(ρKLτ )
−1

> 0. Writing down the KL distance, we get that

(ρKLτ )
−1−(ρKLV aR)

−1
= log 2·(qτ1 log(2qτ1 )+qτ2 log(2qτ2 ))−log 2·(qV aR1 log(2qV aR1 )+qV aR2 log(2qV aR2 ))

The above quantity is positive if and only if

1/2 < qτ1 < qV aR1 and qV aR2 < qτ2 < 1/2 (4.31)

This condition is also necessary and sufficient for the alternative stability measures ρL
2

V aR and

ρL
2

τ and for inequality (ρL
2

V aR)
−1 − (ρL

2

τ )
−1

> 0 to hold. Using expressions of qV aR1 and qτ1
from (4.29) and (4.30), inequality (4.31) is equivalent to

(
1 − λV aR1

λV aR1

)
1

V aRσ
>

(
1 − λτ1
λτ1

)
1

τσ
(4.32)

Note that, in the above expression, both V aRσ and τσ enter in absolute value as measures of
losses that the portfolio incurs. The multipliers λV aR1 and λτ1 represent the fraction of initial
wealth that the investor is ready to loose (see, for example Alexander (4)). As τ(α) > V aR(α)
by definition, it comes out that λτ1 > λV aR1 , therefore inequality (4.32) is satisfied.

4.6 Empirical application

We develop an empirical application using daily data on European financial and non-financial
stocks. The portfolio weights are chosen solving the asset allocation model (4.18) by maxi-
mizing expected return while controlling for either VaR, ES or the weighted ES (according
to model (4.20)). The optimal portfolios are compared in terms of a set of performance
indicators and measures of stability of components weights. Besides the stability measures
presented in the previous section, we also show the standard deviation of portfolio weights.

The expected return and the expected shortfall are estimated either with the WICDF

τ̂
(D)
w (α |x) and the MICDF µ̂

(D)
w (α |x) estimators, or with the WICQF τ̂

(Q)
w (α |x) and MICQF

τ̂
(Q)
w (α |x) estimators. The VaR is estimated via linear quantile regression.

The regressors are a set of financial and macro variables and they are chosen such as to
make up a broad enough spectrum of conditioning information. Regarding composition of the
portfolios, we consider portfolios made of either financial or non-financial stocks. This allows
us to compare the asset allocation model applied across the two main sectors of activity. All
experiments are carried out using the statistical package Stata, version 10.
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4.6.1 The data

Our raw data are daily from December 30, 1994, to December 31, 2007, and the sources are
Bloomberg and Thomson Datastream. The dependent variable, in each estimation exercise
in turn, is the daily return of alternative portfolios. The daily return is computed as the
logarithmic difference in the price level and excluding weekends and holidays.

The set of predictors includes both real and financial variables, making up a balanced
mix of macro and micro data. The real variables are the price of oil as the value of the
1st month future contract, and a price index of non-energy commodities, both expressed in
US dollars. The financial variables include the risk spread (the yield difference between an
aggregate BBB bond and a German Government 5-year bond), the term spread (the yield
difference between a German Government 10-year bond and the Euribor 3M), the dividend
yield (on the DJ Eurostoxx 50 Index) and the EUR/USD exchange rate.

In order to reconstruct the series for the money market instruments as well as for the
common currency and the benchmark for the computation of the spreads, we had to choose
a representative national market before 1998. Macro convergence within the Euro area and
trading volumes pointed Germany as the benchmark economy. Thus, the Euribor 3M and the
Lehman Euro aggregate BBB bond yield were concatenated backwards using the dividend
yield of the Datastream Totmarket Euro index before 31 January 1998, the German interbank
3 month interest rate before December 31, 1998 and the Lehman US aggregate BBB bond
Yield before June 30, 1998 respectively.

In Tables 4.1 and 4.2, for the broad Eurostoxx index and the set of regressors, we give the
data sources, variable transformations and summary statistics of the transformed data: the
mean, the standard deviation (SD) and also the difference between the 99th percentile (Q99)
and the 1st percentiles (Q01). The sample includes changes in market regimes, departing from
the bull market of the second half of the 1990s, followed by the bear market between 2000
and 2003, and the post-2003 period. The number of observations is equal to 2646, starting
from January 3, 1995, until December 28, 2007. All predictors are measured as of the end of
the day.

Table 4.1: Description and sources of the Eurostoxx index and the covariates.

Code Description Source Provider

stoxx50 DJ Euro Stoxx 50 Price Index DJ Eurostoxx Blommberg

comm Goldman Sachs non-energy index Goldman Sachs Bloomberg
dyeu DJ Euro Stoxx equity dividend yield DJ Eurostoxx Datastream, Bloomberg
gb5y German Govt Bond Yield Bloomberg Bloomberg
fx EUR/USD exchange rate ECB Bloomberg
oil Oil Nymex future price (in US $) Nymex Bloomberg
re3m Euribor 3M European Banking Fdr. Datastream, Bloomberg
ryeu Lehman Euro Corp BBB Yield Lehman Brothers Datastream, Bloomberg
yd10e 10y Treasury Bond Yield Germany Blommberg Bloomberg

In Table 4.3, we give details on the raw and transformed variables. The series, provided
by Thomson Datastream, were chosen among the components of the Eurostoxx50 index as
of 24th of June, 2008. We selected the stocks according to their availability but we also
aimed at covering all Industry Classification Benchmark (ICB, according to primary revenue
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Table 4.2: Transformations and summary statistics of the variables.

Variable Description Transformation Mean SD Q99 −Q01

STOXX50 DJ Euro Stoxx 50 return ln (stoxx50t/stoxx50t−1) 3.0 · 10−4 1.3 · 10−2 7.4 · 10−2

ECOMM Commodity price log diff ln (commt/commt−1) 2.3 · 10−4 0.7 · 10−2 3.4 · 10−2

EDY Dividend yield ln (dyeut) 0.79 0.27 1.01

EFX EUR/USD log diff ln (fxt/fxt−1) −0.5 · 10−4 0.6 · 10−2 3.1 · 10−2

EOIL Oil price log diff ln (oilt/oilt−1) 7.5 · 10−4 2.2 · 10−2 11.0 · 10−2

ERSP Risk spread ryeut − gb5yt 1.15 0.45 1.91

ESP Term Spread yd10et − re3mt 1.46 0.90 3.75

Table 4.3: Description and summary statistics of the stock indexes

Variable Description Mean SD Q99 −Q01

ALL ALLIANZ ( Fin.,Germany ) 0.020 1.6 8.6

BCO BCO SANTANDER (Fin., Spain) 0.065 2.0 11.2

BNP BNP PARIBAS (Fin., France) 0.063 2.1 11.4

GEN ASSIC. GENERALI (Fin., Italy) 0.024 1.8 9.8

INTS INTESA SANPAOLO (Fin., Italy) 0.041 4.4 21.0

UNIC UNICREDIT (Fin., Italy) 0.014 4.0 25.2

AEG AEGON (Fin., Netherlands) 0.003 3.1 18.7

ING ING GRP (Fin., Netherlands) 0.036 2.1 12.3

BASF BASF ( Basic Materials, Germany ) 0.027 1.9 10.2

VOL VOLKSWAGEN ( Consumer Goods, Germany ) 0.036 2.2 11.7

SAN SANOFI-AVENTIS ( Health Care, France ) 0.083 2.1 11.6

SIE SIEMENS ( Industrials, Germany ) 0.048 2.1 11.6

TOT TOTAL ( Oil&Gas, France ) 0.031 1.8 9.5

SAP SAP ( Technology, Germany ) 0.056 3.1 17.2

TELEF TELEFONICA ( Telecomm., Spain ) 0.081 1.9 10.4

IBE IBERDROLA ( Utilities, Spain ) 0.080 1.4 7.6

source) sectors. Half of them (9 companies) are classified as financial and the other half are
non-financial stocks. The summary statistics of the indexes show a large range for the mean
daily return, from 0.3 ·10−4 for Aegon to 8.3 ·10−4 for Sanofi Aventis. Looking at dispersion,
we note that, compared to the Eurostoxx index, the stock indexes are much more volatile,
with standard deviations from 1.4 · 10−2 for Iberdrola to 4.4 · 10−2 for Intesa Sanpaolo and
interquantile (Q99 −Q01) ranges almost all above 10.0 · 10−2.

4.6.2 The estimation exercise

We estimate the mean, the ES and the WES using the analog estimators presented in the
previous sections. The VaR is estimated via linear quantile regression. For simplicity, the
WICDF and MICDF estimators are jointly referred to ICDF estimators and the same is for
the ICQF estimators. We consider α equal to 10% (the largest of the three typical values,
together with 1% and 5%) allowing us to capture regressors effect on the left tail of the
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distribution up to a sufficiently large threshold. For the estimation of the mean with µ̂(D)(x),
we set α⋆ = 0.999 (see Remark 7). The weighting function is specified as in model (4.13)
with b1, b2 taking as values all possible pairs from the sets {0.25, 0.50, 0.75, 1} and {1, 2, 3, 4}
while the mixing parameter is derived according to (4.14). The length of the time interval
for the weighing function derivation in (4.15) is set tw = 20.

The model is fitted repeatedly using rolling windows of size T = 199. All predictors are
used with a lag equal to one. For each rolling window sample, we estimate the model and
use the last available value of the predictors to forecast the one-step ahead WES over the
next day. The first rolling window includes observations from January 3, 1995, to June 7,
1996 and the first estimate is the predicted WES between June 10, 1996 and June 11, 1997.
The first k−dimensional vector x is equal therefore to the covariates on day June 10, 1997.
In total, we have 2346 windows and the estimating exercise is repeated for each window.

For the ICDF estimators (4.8), we set the thresholds ỹj, j = 1 . . . J as equally spaced
order statistics ỹ1 = Y(1+δ) and ỹJ = Y(1+δJ), where δ = [S/(J + 1)] is the integer part of

the ratio between the number S of data points to the left of Q̂(α |x) and J is the number of
thresholds. If S is very small, in particular if S ≤ 2J , then the grid points are not optimally
chosen as the largest one is equal to YJ+1. However, in practice, J is chosen to be small
enough both to avoid such situations and also considering computational burdening. For the
ICQF estimators (4.10), we set pj = α · j/J , with j = 1, . . . , J , that is pj = pj−1 + δ, with
δ = α/J . The pj’s are therefore equally spaced between p1 = α/(2J) and pJ = α. In the
study, given the large number of rolling windows, we set a small value for J , equal to 5.

4.6.3 Asset allocation

We implement the algorithm presented in Section 4.4.2 on the data presented above. At each
estimation exercise and for each iteration we generate N0 = 5 alternative portfolio weights.
Then, for each set of portfolio weights, we derive the weighting function that minimizes the
forecast error of the weighted estimator of ES. Eventually, we choose among the alternative
sets the one that minimizes the Lagrangean (4.20). The cdf F̂ (y |x) that enters L(q) is
estimated on a rolling window sample of 20 observations. The multiplier λ1 is set equal to
0.1 assuming that the investor accepts losses no higher than 10% of the initial wealth. For
simplicity, the same value of the multiplier is used for all allocation problems, irrespective of
the risk constraint that we consider. The scale parameter α0 of the Dirichlet distribution is
103. As for the loss function g(·) in the definition of the forecast error (see equation 4.11),
we specify it as quadratic loss.

In Tables 4.4, 4.5 and 4.6 we show the performance indicators of the benchmark and the
optimal portfolios, for both financial and non-financial stocks. As risk constraints, we use
either the VaR or the expected shortfall. The WES is estimated either with ICDF or ICQF
estimators. The number of iterations of the algorithm is set equal to 3.

In table 4.4 we list the performance indicators for different benchmark portfolios. We
also show summary statistics characterizing the returns distribution, namely the mean, the
median and the standard deviation. Then we present some loss measures (the Value at
Risk and the ES, both at 95% level), computed both on empirical distribution and under
normal assumption. Lastly, we compute indicators that characterize the Return to Risk
profile (on daily return basis), namely the Sharpe ratio and the Return to ES at 95% level
(both empirically and under normality assumption). The benchmarks that we consider are
100% investment in the Eurostoxx 50 index and the equally weighted portfolios.

Tables 4.5 and 4.6 show the performance indicators and the stability measures of portfolios
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Table 4.4: Performance indicators for the benchmark index EuroStoxx50 and equally weighted
portfolios

Indicator* Description Equally weighted

EuroStoxx50 Fin. Non-fin.

(1 ) Mean daily return 0.025 0.025 0.044

(2 ) StDev daily return 1.3 1.5 1.3

(3 ) Median daily return 0.074 0.052 0.097

(4 ) Empirical VaR at 95% level 2.2 2.3 2.2

(5 ) Empirical ES at 95% level 3.2 3.7 3.0

(6 ) Var at 95% level under normality
( = -(1)+1.645*(2) ) 3.1 3.5 3.0

(7 ) ES at 95% level under normality
( = −[(1) − 1/0.05 ∗ (2) ∗ φ(Φ−1(0.05))]) 2.7 3.1 2.7

(8 ) Sharpe ratio ( =(1)/(2) ) 29 26 53

Empirical Return to ES at 95% level
(9 ) ( =(1)/(5) ) 0.8 0.7 1.4

Return to ES at 95% level
(10) under normality ( =(1)/( 7)) 0.9 0.8 1.6

* The indicators are expressed in percentage points

that use either VaR, ES or WES risk constraints. The tables correspond to each type of
components, financial or non-financial. As compared to the EuroStoxx50 benchmark, the
strategies show a better return-to-risk profile in terms of Sharpe ratio. The other return-to-
risk indicators also bring out an improvement in the profile of the strategies. On changing the
benchmark and considering the equally weighted portfolios, the improvement is significant
for portfolios that use both ICDF and ICQF estimators. As for the losses measures, in most
cases, the optimal portfolios show less severe empirical VaR or ES at 95% level.

The non-financial portfolios distinguish themselves by very high mean returns, with the
highest value registered with ES risk constraint for the ICQF estimator (0.070%). Across
estimators, the results are similar for both ICDF and ICQF estimators, and the non-financial
vs. financial ranking is preserved in all cases. As for the other statistics, we note that the
median daily returns are generally lower than the benchmark Eurostoxx50, mainly for the
non-financial portfolios. Moreover, most of the weighted portfolios are not characterized by
severe estimated risk, irrespective of wether we assume normality of the returns distribution.
Again, we do not observe high discrepancies across estimators used in the algorithms, all of
them showing a better loss protection than the benchmark.

As for differences between VaR and either the ES or WES risk measures, the return-to-risk
profile (in terms of Sharpe ratio and also of the empirical return to ES at 95% level) improves
in most cases, both across type of components and estimators. The standard deviation of
returns is similar, with values that are higher only for the ICQF estimator and non-uniform
weighting, in the non-financial components case. Regarding the loss measures (empirical
ES and VaR at 95% level), they are less severe when using the ES rather than VaR risk
constraint, while if we use the WES, the loss measures are more severe.

For each type of components, we report the stability measures ρKL(t, S) and ρL
2
(t, S) for

S = 5 and S = 20, which roughly correspond to the number of working days within one week
and one month respectively. The stability of portfolio weights is similar across different risk
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Table 4.5: Performance indicators and alternative stability indicators for the optimal portfo-
lios with financial stocks

Indicator ICDF ICQF
VaR ES WES ES WES

(1 ) 0.033 0.033 0.030 0.035 0.029

(2 ) 1.4 1.2 1.4 1.3 1.5

(3 ) 0.049 0.052 0.066 0.042 0.061

(4 ) 2.1 1.9 2.1 1.9 2.4

(5 ) 3.4 2.9 3.5 3.1 3.6

(6 ) 3.2 2.9 3.3 3.0 3.5

(7 ) 2.8 2.5 2.9 2.7 3.16

(8 ) 38 43 34 42 31

(9 ) 1.0 1.2 0.9 1.1 0.8

(10) 1.2 1.3 1.0 1.3 0.9

ρKL(t, 5) 80.7 81.1 78.2 89.0 78.2

ρL
2

(t, 5) 20.3 21.0 19.8 21.8 19.5

ρKL(t, 20) 24.5 20.4 23.5 22.3 22.3

ρL
2

(t, 20) 11.2 10.7 11.0 10.8 10.5

Table 4.6: Performance indicators and alternative stability indicators for the optimal portfo-
lios with non-financial stocks

Indicator ICDF ICQF
VaR ES WES ES WES

(1 ) 0.051 0.056 0.059 0.070 0.055

(2 ) 1.2 1.1 1.3 1.2 1.4

(3 ) 0.075 0.062 0.075 0.065 0.075

(4 ) 2.0 1.7 2.2 1.8 2.1

(5 ) 2.8 2.5 3.1 2.6 3.2

(6 ) 2.8 2.6 3.1 2.7 3.2

(7) 2.5 2.3 2.7 2.4 2.8

(8) 65 78 70 94 63

(9) 1.8 2.2 1.9 2.7 1.7

(10) 2.0 2.4 2.2 3.0 2.0

ρKL(t, 5) 82.2 77.7 79.6 90.0 78.7

ρL
2

(t, 5) 20.0 20.9 19.7 22.2 19.8

ρKL(t, 20) 23.7 20.4 24.0 21.3 21.5

ρL
2

(t, 20) 10.9 10.7 11.1 11.0 10.5

constraints and measures that we propose. However, if we consider the weekly evaluation,
portfolios that control for ES have a higher stability. For the monthly evaluation, portfolios
that control for VaR have a higher ρKL(t, 20) measure in most cases. As for ρL

2
(t, 20), it is

also higher, except for the non-financial stocks case.

In Figure 4.1, we plot the standard deviation of the optimal portfolio weights. Lower
standard deviation of the portfolio weights means higher diversification. This can also be
regarded as an indicator of stability of the portfolio weights. Except for the case with non-
financial components and ICQF estimator, the portfolios with WES risk constraint show a
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standard deviation of weights that is more stable with respect to portfolios that use either
VaR or ES risk constraints.

Figure 4.1: Standard deviation of the optimal weights with different risk constraints
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4.7 Conclusions

In this Chapter, we focus on the forecasting properties of the weighted estimators of ES and
minimize some suitably defined forecast error. The we construct an asset allocation model
that maximizes expected return with a constraint on some risk measure and solve it via a
numerical algorithm. Using European daily data on financial and non-financial stocks, we
develop an empirical application and compare the optimal portfolios that have either VaR,
ES or WES risk constraints in terms of performance indicators. Moreover, we look at two
measures of portfolio weights stability. Results show that, in general, the return-to-risk profile
and the incurred losses of the optimal portfolios that use ES or WES as risk constraints are
better, whilst the stability of components weights are lower mostly for shorter periods of
time. This is in accordance with our stylized example.



Chapter 5

Summary and conclusions

Recently, financial applications have considered alternative risk measures of the α− VaR.
One of them is the α−level expected shortfall that represent the average of losses that are
more severe than the VaR. The advantages of ES come from the coherence properties that
VaR does not satisfy entirely (failing subadditivity).

We have considered the case when auxiliary information about the outcome of interest is
available and extended the concept of ES accordingly. Our conditional estimators depart from
two equivalent representations of the α-level expected shortfall in terms of the conditional
distribution function and the conditional quantile function. The Monte Carlo experiments
show that accuracy of the estimators increases rapidly with the level α and the sample size.
Then, in the first empirical application, the predictive performance of the various estimators
is assessed and the integrated conditional quantile function estimators spur as having a better
performance than the unconditional estimator.

Then we generalize the estimators by means of a suitably defined weighting function.
We do this as we aim to work on the statistical and forecasting properties of the weighted
versions of the estimators of ES. Firstly, we analytically derive the weighting function such
as to minimize their asymptotic variance. The efficiency gain that measures the difference
in asymptotic variance appears to be significant for heavy tailed distributions. In order to
achieve the second objective, the weighting is derived numerically such as to minimize some
suitably defined forecast error of the estimators.

Lastly, the estimators are used within a simple asset allocation model that maximizes
expected return with a constraint on either VaR, ES or weighted ES. The weighting is such
that we minimize the forecast error of the estimator. The optimal portfolios are assessed in
terms of performance indicators and also two measures of weights stability. The first set of
indicators tend to improve when using ES or weighted ES rather than VaR, while stability
of portfolio components weights is higher mostly when considering shorter periods of time.
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Chapter 6

Appendix: Proofs for Chapter 3

Proofs of Theorems and Corollaries for Chapter 3 can be found in Leorato et al (26). Here
we report proofs of Theorems 1 and 2 and Corollary 2.

Proof of Theorem 1

Under regularity conditions and assuming linearity in parameters, we have uniform consis-
tency of the quantile regression process (see Koenker (25) and Angrist et al. (6)). More
precisely,

J1(·)
√
T [β̂(·) − β(·)] d→ ZQ(·), (6.1)

where J1(p) = E
[
f(β(p)⊤X|X)XX⊤

]
is positive definite for all p ∈ (0, 1) and zQ(·) is a zero

mean Gaussian process defined by the covariance function Σ(pi,pj).

Now let β̃T (α) =
∑I

i=1 wiβ̂T (pi) be a linear combination of the I estimates β̂(p1) . . . β̂(pI)
of the true population quantile coefficients β(p1) . . . β(pI). The weights vector w = (w1, . . . wI)

⊤

is deterministic. Therefore, as matrix J1(p) is positive definite for any p ∈ (0, 1), from (6.1)
we have

√
T

(
β̃T (α) −

I∑

i=1

wiβ(pi)

)
∼ N (0, AV (β̃T (α))) (6.2)

with

AV (β̃T (α)) = (w⊤ ⊗ Ik)Ω (w ⊗ Ik)

and W , Ω and Ik defined as in (3.15).

It follows that

√
T
(
τ̂

(Q)
w,I (α |x) − τ

(Q)
w,I (α |x)

)
∼ N (0,AV(τ̂

(Q)
w,I (α |x))) (6.3)

Proof of Theorem 2

The scheme of the proof is the following. We first establish uniform consistency of the logit
regression process y 7→ θ̂(y) to θ(y). Finally, we prove asymptotic Gaussianity of the process√
T [θ̂ − θ] by an empirical process based approximation of θ̂.

Uniform consistency of θ̂(·)
E ‖X‖ < ∞ implies that E∞

∣∣∣
(
11{Y ≤ y}θ⊤X − ln(1 + eθ

⊤X)
)∣∣∣ is finite and uniquely

minimized at θ(y), ∀y ∈ R.
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We first show uniform convergence. This is equivalent to: for any compact set Θ,

LT (y, θ) = L∞(y, θ) + op∗(1)

uniformly in (y, θ) ∈ (R,Rk), which follows from the Khinchine law of large numbers and also
from stochastically equicontinuity of the empirical process (y, θ) 7→ LT (y, θ) as for any pairs
(y′, θ′), (y′′, θ′′) we have

| LT (y′, θ′) − LT (y′′, θ′′) | ≤ C⊤
1T | θ′ − θ′′ | + C2T | | (FY (y′′) − FY (y′) | |

where C1T = 2ET ‖X‖ = Op(1) and C2T = ET‖X‖ supθ∈Θ‖θ‖(1 +Op(T
−1/2)) = Op(1).

Now consider a collection of closed balls BM (θ(y)) of radius M and center θ(y) and let
θM (y) = θ(y) + δM (y)ν(y), where ν(y) is a direction vector with unity norm ‖ν(y)‖ = 1 and
δM (y) is a positive scalar such that δM (y) ≥ M . Let θ⋆M be the point of the boundary of
BM (θ(y)) on the line connecting θM (y) and θ(y). From concavity of LT (y, ·)

LT (y, θ⋆M ) ≥ M

δM
LT (y, θM ) +

(
1 − M

δM

)
LT (y, θ)

we get
M

δM
(LT (y, θ) − LT (y, θM )) ≥ LT (y, θ) − LT (y, θ⋆M )

and thus, because of the uniform convergence proved above.

M

δM
(LT (y, θ) −LT (y, θM )) ≥ L∞(y, θ) − L∞(y, θ⋆M ) + op⋆(1) > ǫM + op⋆(1).

The last inequality follows from the fact that θ(y) is the unique maximizer of L∞(y, ·).
Since this holds for every M > 0, the estimate θ̂(y) must lie in a radius−M ball centered
at θ(y) uniformly for all y and with probability approaching 1. Otherwise we would find
LT (y, θ) − LT (y, θ̂) ≥ δM

M ǫM + o⋆p (δM/M) for an arbitrarily large value of δM/M and ∀T
which contradicts the fact that θ̂ minimizes LT (y, ·).
Asymptotic Gaussianity of

√
T (θ̂ − θ)

We remark that the class

F =
{
f(x) = θ⊤x, θ ∈ Θ

}
(6.4)

is a VC-class of functions. In fact, the subgraphs are given by the class

{x ∈ R
k : θ⊤x ≤ t}

for θT ∈ R
k and t ∈ R. In particular, if Θ = R

k, then the class is the class of halfspaces and
has V C−index equal to k + 2 (see Van der Vaart and Wellner (39), Ch. 2.6 Problems and
Complements No.14).

Then, by Theorem 2.6.7 in Van der Vaart and Wellner (39), if F (x) is a square integrable
(with respect to a probability measure Q) envelope function for F , we find the following
bound for the covering numbers of the class F :

N (ε‖F‖Q,2,F , L2(Q)) ≤ K
1

ε2(k+1)
(6.5)

where K is a constant depending on the dimension k.
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This implies that ∫ δ

0

√
logN (ε‖F‖Q,2,F , L2(Q))dε <∞ (6.6)

because of
∫ 1
0 log(1/ε)dε <∞ and this yelds that F is a Donsker class of functions.

Now, we can use Theorem 2.10.20 in Van der Vaart and Wellner (39), to conclude that
the class of functions {

eθ
⊤x

1 + eθ⊤x
, θ⊤ ∈ Θ

}

is also Donsker. We state a simplified version of the theorem for convenience reasons.

Let F be a class of measurable real functions with a measurable envelope function F . Let
φ : R 7→ R be a map satisfying

|φ ◦ f(x) − φ ◦ g(x)|2 ≤ L2
α(x)|f − g|2α(x)

for a constant Lα, α ∈ (0, 1] for every f, g ∈ F and for all x ∈ R.

Then, for every δ > 0,

∫ δ

0
sup
Q

√
logN (ε‖LαFα‖Q,2, φ(F), L2(Q))dε

≤
∫ δ1/α

0
sup
Q

√
logN (ε‖F‖Q,2α,F , L2α(Q))

dε

ε1−α
(6.7)

where the supremum is taken over all finitely discrete probability measures Q. Then, if the
right hand side is finite and P ∗(Lαfα) <∞, φ(F) is a Donsker class, provided of course that
its members are square integrable and that the class is measurable.

We can apply the above theorem to our context by defining φ(u) = eu

1+eu and by observing
that

‖φ ◦ f − φ ◦ g‖2(x) =

∣∣∣∣
ef

1 + ef
− eg

1 + eg

∣∣∣∣
2

(x) ≤ |f − g|2(x)

Thus, in our case the condition of Theorem 2.10.20 is satisfyed with α = 1, L1 = 1. Then,
for every δ > 0,

∫ δ

0
sup
Q

√
logN (ε‖F‖Q,2, φ(F), L2(Q))dε

≤
∫ δ

0
sup
Q

√
logN (ε‖F‖Q,2,F , L2(Q))dε (6.8)

where F is the class defined by (6.4). We have discussed and proved above that the integral
in the right hand side of (6.8) is finite, and thus the class of logit functions

φ(F) =

{
eθ

⊤x

1 + eθ⊤x
, θ⊤ ∈ Θ

}

is a Donsker class.

The functional class I={11{Y ≤ y}, y ∈ R} is a VC subgraph class and therefore a bounded
Donsker class. Consequently, the functional classes ϕ = I − φ(F) and ϕX are bounded
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Donsker, the latter with square integrable envelope 2maxj=1...k |Xj | (Theorem 2.10.6 Van
der Vaart and Wellner (39)).

We are now able to find an approximation for GT [ϕ(y, θ̂)X] that is a functional of ϕ(y, θ̂).
First, we remark that the mapping (y, θ) 7→ GT [ϕ(y, θ)X] is stochastically equicontinuous
over R × R

k with respect to the L2(P ) pseudometric

ρ
(
(y

′

, θ
′

), (y
′′

, θ
′′

)
)2

= max
j=1...k

E

[(
ϕ(y′, θ

′

)Xj − ϕ(y′′, θ
′′

)Xj

)2
]

where Xj are the components of X. Moreover, as supy∈R ‖θ̂(y)− θ(y)‖ = op⋆(1), that follows
from convergence w.r.t. pseudometric

sup
y∈R

ρ
(
(y, θ̂(y)), (y, θ(y))

)2
= op(1)

(here, the boundness condition E ‖X‖2+ǫ <∞ is used), we conclude that

GT [ϕ(y, θ̂)X] = GT [ϕ(y, θ)X] + op⋆(1) in l∞(R) (6.9)

With a Taylor expansion of E[ϕ(y, θ)X] | θ=θ̂(y) around θ and using uniform consistency of

θ̂(y) and the assumed uniform continuity and boundness of the mapping y 7→ (F (y)(1−F (y))),
we have that uniformly in y ∈ R,

E[ϕ(y, θ)X] | θ=θ̂(y) = [J2(·) + op(1)] [θ̂(y) − θ(y)] (6.10)

From first order condition of (3.22) and from E ‖X‖2+ǫ <∞ we obtain that
√
T ET [ϕ(y, θ̂)X] =

op(1) and, as

√
T ET [ϕ(y, θ̂)X] =

√
T E[ϕ(y, θ)X] | θ=θ̂(y) + GT [ϕ(y, θ̂)X]

it follows (using (6.9) and (6.10)) that, uniformly in y ∈ R,

[J2(y) + op(1)]
√
T [θ̂(y) − θ(y)] + GT [ϕ(y, θ)X] = op(1) (6.11)

Moreover, as J2(y) is positive definite, then mineig[J2(y)] ≥ λ > 0 and

(
√
λ+ op(1))

√
T sup
y∈R

‖θ̂(y) − θ(y)‖ ≤ sup
y∈R

‖GT [ϕ(y, θ)X] + op(1)‖ (6.12)

The mapping y 7→ θ(y) is continuous and y 7→ GT [ϕ(y, θ)X] is stochastically equicontinu-

ous over R. A multivariate central limit theorem imply that, in l∞(R), GT [ϕ(y, θ)X]
d→Zθ(·),

a zero mean Gaussian process defined by the covariance matrix Σ2;j,k. Hence, (6.12) yields

supy∈R

√
T‖θ̂(y)− θ(y)‖ = Op⋆(1) and taking into account (6.11) we conclude that, in l∞(R)

J2(y)
√
T [θ̂(y) − θ(y)] = −GT [ϕ(y, θ)X] + op⋆(1)

d→ Zθ(·) (6.13)

�
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Proof of Corollary 2

As J2(y) is positive definite, (6.13) writes as

√
T [θ̂(y) − θ(y)] = GT

[
−J−1

2 (y)ϕ(y, θ)X
]
+ op(1)

Hence, for any x ∈ R
k,

√
T [x⊤θ̂(y) − x⊤θ(y)] = GT

[
−x⊤J−1

2 (y)ϕ(y, θ)X
]

+ op(1) (6.14)

By a Taylor expansion of F (y) around (x⊤θ(y)), we obtain

F̂ (y) − F (y) = [x⊤θ̂(y) − x⊤θ(y)][F (y)(1 − F (y))] + op(1)

and, from (6.14) we get an empirical process approximation for the function
√
T [F̂ (y)−F (y)]

as √
T [F̂ (y) − F (y)] = GT

[
−[F (y)(1 − F (y))]x⊤J−1

2 (y)ϕ(y, θ)X
]

+ op(1) (6.15)

Consider now a continuous and differentiable function w(·) with first derivative w′ strictly
positive. Then, under the condition that for all values of y we have that fY (y), the marginal
density of Y , is strictly positive, we can expand w(F (y)) around F (y) and, from (6.15), we
get

√
T [w(F̂ (y)) − w(F (y))] = GT

[
−w′(F (y))[F (y)(1 − F (y))]x⊤J−1

2 (y)ϕ(y, θ)X
]

+ op(1)

(6.16)
In order to derive the empirical process that approximates the estimator

δ̂w(x, y) =

I∑

i=1

(yi − yi−1)w(F̂i(x))

of δw(x, y) =
∑I

i=1(yi − yi−1)w(F̂i(x)), we first simplify notation and define

γθ(x, y) = w′(F (y))[F (y)(1 − F (y))]x⊤J−1
2 (y)ϕ(y, θ)X

Moreover, departing from the grid of points {y0, . . . , yI}, we define the I-dimensional column
vector of differences D = (dy1, . . . , dyI)

⊤, with dyi = yi − yi−1 for i = 1 . . . I, and also the
scalar

γδw(y1, . . . , yI , x) = D⊤ (γθ(x, y1), . . . , γθ(x, yI))
⊤ .

Then (6.16) yields

√
T [δ̂w(x, y) − δw(x, y)] = GT [−γδw(y2, . . . , yI , x)] + op(1) (6.17)

Now we can write down the empirical process approximation for the WICDF estimator

τ̂
(D)
w,I (α |x) = Q̂(α |x) −

I∑

i=1

(yi − yi−1)w(F̂i(x))

and for this purpose we rewrite result (3.21) as

√
T [Q̂(α |x) −Q(α |x)] = GT [γQ(α |x)] + op(1) (6.18)
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where γQ(α |x) is a scalar defined as

γQ(α |x) = x⊤J−1
1 (α)(1{Y ≤ β(α)⊤X} − α)X

The functional classes {γQ(α |x)} and {γδw(y2, . . . , yI , x)} are bounded Donsker classes
with square integrable envelopes equal to (2maxy∈R f(y)) and

(32maxy∈R,j=1...k w
′(F (y))|Xj |)

respectively. Consequently, the functional class {γQ(α |x)+γδw(y2, . . . , yI , x)} is also bounded
Donsker, with square integrable (maxy∈R,j=1...k 2 · f(y) + 32 ·w′(F (y))|Xj |) (Theorem 2.10.6
Van der Vaart and Wellener). We can therefore write

√
T [τ̂

(D)
w,I (α |x) − τ

(D)
w,I (α |x)] = GT [γQ(α |x) + γδw(y2, . . . , yI , x)] + op(1) (6.19)

and then
√
T [τ̂

(D)
w,I (α |x)− τ

(D)
w,I (α |x)] d→ZD(·), where ZD(·) is a zero mean Gaussian process

defined by the covariance function

AV(τ̂
(D)
w,I (α |x)) = E[(γQ(α |x) + γδw(y2, . . . , yI , x))

2] − E2[γQ(α |x) + γδw(y2, . . . , yI , x)]

= T AV(Q̂(α |x)) + T AV(δw(y2, . . . , yI , x)) − 2T Acov(Q(α |x), δw(y2, . . . , yI , x))
(6.20)

AV(Q(α |x)) and AV(δw(y2, . . . , yI , x)) are straightforward, while for the last term we need
E[Q(α |x)δw(y1, . . . , yI , x)] that is equal to

I∑

i=1

x⊤dyiW
′(Fi(x))Fi(x)(1 − Fi(x))·

E

[
JQ(α)−1J2(yi)

−1

(
11{Y ≤ Xβ(α)} · 11{Y ≤ yi} − 11{Y ≤ Xβ(α)} · eθ

⊤

i X

1 + θ⊤i X

−α · 11{Y ≤ yi} + α · eθ
⊤

i X

1 + θ⊤i X

)
XX⊤

]
x

=

I∑

i=1

x⊤dyiW
′(Fi(x))Fi(x)(1 − Fi(x)) · E

[
J1(α)−1J2(yi)

−1 (min(α,Fi(x)) − αFi(x))XX
⊤
]
x
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