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Abstract

This dissertation aims to introduce a nonlinear model to forecast macroeconomic time series
using a large number of predictors, namely the Feedforward Neural Network - Dynamic Factor
Model (FNN-DF). The technique used to summarize the predictors in a small number of factors
is Generalized Dynamic Factor Model, while the method used to capture nonlinearity is artifi-
cial neural networks, specifically Feedforward Neural Network. Commonly in GDFM literature,
forecasts are made using linear models. However linear techniques are often misspecified and
the resulting forecasts provide only a poor approximation to the best possible forecast. In an
effort to address this issue, the technique we propose is FNN-DF. To determine the practical
usefulness of the model, we conducted several pseudo forecasting exercises on 8 series of the
United States economy. The series we were interested in forecasting were grouped in real and
nominal categories. This method was used to construct the forecasts at 1-, 3-, 6-, and 12-month
horizons for monthly U.S. economic variables using 131 predictors. The empirical study shows
that FNN-DF has good ability to predict the variables under study in the period before the
start of the "Great Moderation", namely 1984. After 1984, FNN-DF has the same accuracy in

forecasting with respect to the benchmark.

Keywords: Factor model; Principal components analysis; Artificial neural networks; Non-

linear modeling; Bayesian Regularization; Forecasting.
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Introduction

The main objective of this dissertation is to provide a new forecasting technique for macroeco-
nomics and financial variables obtained from the combination of two different methods of data
modeling already well-established in economic forecasting literature. The proposed technique
is related to factor analysis and artificial neural networks. In the contest of forecasting, we
restrict our discussion to point forecast constructed as an approximations of the conditional
expectation of a target variable, say y;, given a set of informative predictors, say x;, namely
w(zy) = E (y¢|x). In general p(xy) provides the best possible prediction of y; given x; in terms

of the mean squared forecast error, where the function u solves the

argmin E | (y; — f(act))2
feF

where F is the collection of function f of x;. As pointed out by Lee et al. (1993), u is not
known and the forecaster typically choses a model for p; if x4 belongs to F we can affirm that
the model is correctly specified instead, if p does not belong to F we can affirm that the model
is not correctly specified. Since we rarely have enough information to correctly specify p, our
discussion will be concentrated on the construction of forecast as the best possible approximation
for . Then one of the main objectives in this dissertation is to construct a model that best

approximates p.

The increasing availability of macroeconomic variables provides the opportunity to explore a
much richer base of information which can be used to improve accuracy in forecasting key
macroeconomic variables such as inflation or industrial production. However, many of the sta-
tistical tools available in literature are not able to efficiently use the information available. One
of the main problems encountered is the "curse of dimensionality", where the number of param-
eters to be estimated increases dramatically when the number of economic variables is increased.
The result is that the estimates are not efficient and the forecast error grows proportionally to
the number of variables used.

The aim of factor analysis is to provide a tool that summarizes the information contained in
a large dataset in a small number of factors. This type of information extraction has been

successfully applied to many fields of economic research, ranging from asset pricing theory to



business cycle. The basic idea that stands behind the factor model is that the movement of a
time series can be characterized as the sum of two mutually orthogonal components, the common
component is a linear combination of the common factors and should explain the main part of
the variance of the time series; the second, the idiosyncratic component, contains the remaining
variable-specific information and is only weakly correlated across the dataset. However, neither

the common nor the idiosyncratic component can be observed directly and have to be estimated.

In this dissertation we open with a discussion on a recent identification and estimation scheme
proposed by Forni and Lippi (2001). The common components in their so-called generalized
dynamic factor model (GDFM) are derived by assuming a dataset with an infinite number of
series and an infinite number of observations. It thereby combines the so-called approximate
static factor model proposed by Chamberlain and Rothschild (1983) and recently by Stock and
Watson (2002a,b), and the dynamic factor model proposed by Geweke (1977) and Sargent and
Sims (1977) for which cross-sectional and serial correlation was allowed. The model is called dy-
namic since the common shocks may not impact a series simultaneously, as in the static model,
but they can propagate with leads or lags. In the GDFM the common components are inher-
ently unobservable and are estimated by using the technique of dynamic principal components.
While the familiar static principal components are based on an eigenvalue decomposition of the
contemporaneous covariance matrix, dynamic principal components are based on the spectral
density matrix (i.e. dynamic covariations) of the data and consequently are averages of the data,

weighted and shifted through time.

In this type of literature one of the possible limitations is the usual assumption that the common
shocks have a linear relationship with each series contained in the panel. We could have, for
the discussion made at the beginning of this introduction, the situation where the assumption
of linearity is not adequate to capture some economic behavior, since as previously stated we do
not have sufficient information for it. Indeed, it may happen that in some periods a particular
economy is characterized by the presence of two or more regimes, for instance phases of expansion
or recession; the same reasoning is valid for financial variables for which it is very common to have
periods of high and low volatility. For the reason described above, the common components could
have an impact that is transferred on each series in the panel in a nonlinear way. Then, in these

periods it is possible to improve accuracy in forecasting, using nonlinear techniques. The number



of possible models that can be applied is enormous and is constantly expanding; although many of
these have been successfully applied in the literature; the use of neural networks is motivated by
their important mathematical properties, in particular the approximation capabilities, since our
goal is to build a model that best approximates p. The use of such a technique involves theoretical
complications that often inhibit practical use. The main issues that are often encountered are
the computational burden and the danger of overfit. In this framework we introduce a new

model, feedforward neural network-dynamic factor model (FNN-DF).

The dissertation continues by presenting artificial neural network which is a parallel distributed
statistical model made up of simple units that process information in currently available data
and makes generalizations for future observations. In the context of artificial neural network
literature, the input and the output can be interpreted respectively as regressors and regres-
sands as in a regression model. Estimation of the parameters in a neural network is often called
training, which is equivalent to the parameter estimation in a regression model. In this disserta-
tion a particular network structure called Feedforward Neural Network (FNN) is used, to have
more informations on FNN see Fine (1999). In the FNN the processing units or neurons are
organized in the form of layers. We have at least three layers: an input layer, an output layer,
and hidden layers, which are the layers between the input and the output. The processing units
which correspond to the hidden layers are called hidden units. The source nodes in the input

layer constitute the input signals to the neurons in the second layer.

Among neural networks, FNN is one of the most recent techniques used and its use is motivated
by the results from the Universal Approximation Theorem. This theorem is very important since
it has been shown by Hornik et al. (1989) and Cybenko (1989) that every continuous functions
defined on a compact set can be arbitrarly well approximated with a FNN even if it is formed
by a single layer.

A FNN derives approximation capabilities from its parallel structure. The hidden units are used
to process information and include an activation function which describes the nature between
input and hidden units. The universal approximation capabilities emerge when a number of
activation functions are connected through a set of parameters. This parallel structure has the
advantage of decomposing a large problem into a number of simpler problems. The universal

approximation property is an important result theoretically and has immediate implications for



financial and economic modeling. Finally the new theory is applied to demonstrate the practical
usefulness of the FNN-DF model. In particular we conducted several forecasting exercises on

different series of the U.S. economy.



CHAPTER 1
The Generalized Dynamic Factor

Models

In the macroeconomic literature, traditional factor analysis is based on theoretical support where
the number of variables (n) and the number of observations (7') are small. When we have a
dataset where n and T tend to be very large, this exhibits a computational problems due to the
increasing number of parameters to estimate. In this chapter a new concept of factor analysis
particularly suited to situations where the available dataset is very large is presented. From a
theoretical point of view large factor analysis is particularly interesting, since it is possible to
assume, under certain conditions, that the panel of available variables can be decomposed into
the sum of two components said the common and idiosyncratic components respectively. From
a practical perspective it can be observed that an economy composed of many sectors, regions or
individuals is characterized by a small number of variations common to all the variables under

study.

1.1 Notations and Basic Assumptions

Let P = (2,Z, P) be a probability space and let Lo (P,C) be the linear space of all complex-

valued, zero mean, square-integrable random variables defined on €.

In this chapter we deal with a double sequence x = {x, i € N,t € Z}, where x;; € Ly (P,C)
and with x,,; = (x14 x2¢ - - xnt)/ we denote the n-dimensional column vector for the observation
made at time ¢. Given a complex matrix D, we denote D' as the transpose of D and D* as
the complex conjugate of D'. With  we denote the real interval [—m, 7. Given the subset
G C Lo (P, C) we denote the closed span of G as span (G) which is the minimum closed subspace
of Ls (P,C) containing G. If S is a closed linear subspace of Ly (P,C) and x C Ly (P,C), we



denote proj (x|S) as the orthogonal projection of x on S.

Moreover we assume that for any n € N the process x,; is covariance stationary, that is
E [xntx;t_ k] =TIy, and x,,; has spectral density 37 with its entries 0;; (§) bounded in modulus

and it is absolutely continuous with respect to the Lebesgue measure on 6
™ .
A AL
—T

Given a double sequence x = {z;, i € Nt € Z}, where z;; € Ly (P,C) the model proposed
by Forni and Lippi (2001) defined by the following.

Definition 1 (Generalized Dynamic Factor Model) Let g be a nonnegative integer. The
double sequence x is a g-dynamic factor sequence if Ly (P, C) contains an orthonormal g-dimensional
white-noise vector process u = {(Ult Uge -+ uqt)', te Z} ={w, t € Z}, and a double sequence

& ={&, i €N, teZ} such that

1. For any i € N,
Xt =X+ & (1.1)

Xit = by (L) u1r +by (L) uge + - - + b, (L) ug = B (L) uy,
where b; € L (6,C).

2. ForanyieN, j=1,2, ..., qand k € Z, we have & L &1, then & L xs—x for any
1€N,seNand k € Z.

3. & is idiosyncratic.
4. Putting x = {xit, 1 € N, t € Z}, \y (§) = 00 a.e. in 0.

The double sequences x and & are referred to as the common and the idiosyncratic component

of representation (1.1).

The corresponding statistical model for the vector of observable x,; is

Xnt = Xnt T Ent (12)

- Bn (L) u; + Ent



where B,, (L) = (b,,;(L) -+ -b,,(L)) is an n X ¢ matrix.

1.2 Identification of the Model

The problem of identification of model (1.1) refers to conditions on the variance-covariance of the
data for which the common and idiosyncratic components are identified. In Forni et al. (2000)
conditions on the spectral density matrix of x have been defined under which the components
are identified as n goes to infinity. The asymptotic identification is the precondition to develop
an estimator for the components which are consistent for n and 7" going to infinity. The essential

assumptions for identification are the following.

Assumption 1 (Identification) Given a double sequence x = {x;, i € N,t € Z}, where x;; €
Ly (P,C) and
xt=x; +&=B(L)w+§

we suppose that

(i) the g-dimensional vector process {(uu Ugt ---ug) , tE Z} s an orthonormal white noise.
That is, E (uj) = 0; var (uj¢) = 1 for any j and t; wjy L uj—y, for any j, t, and k # 0;
iy L ugy—p for any s # j, t and k.

ii) € = {&, i €N, t € Z} is a double sequence such that, &, = {(&1¢ € &) , t€Z) is a
(i) n

zero-mean stationary vector process for any n, and §; L wji_y for any i, j, t, k;
(iii) the filters B (L) are one-sided in L and their coefficients are square summable.

The hypothesis assumed implies that the vector x = {x;, ¢ € N,t € Z}, where 2 € Lo (P,C)
is stationary with mean equally zero for all n. Another consequence of Assumption (1) is the
possibility to write the spectral density of X7 (0) as the sum of the spectral density matrix of
common component XX (), and the spectral density matrix of idiosyncratic component, X (6).
Moreover, in order to identify the latent variables above defined, the model needs an additional

assumption.

Assumption 2 For anyi € N, there exist a real ¢; > 0 such that o;; (0) < ¢; for any 0 € [—m, 7).

The first idiosyncratic dynamic eigenvalues )\fﬂ 1s uniformly bounded. That is, there exist a real



A such that )\gl (0) for any 0 € [—m,xw] and n € N. The first ¢ common dynamic eigenvalues

diverge almost everywhere in [—m,7|. That is lim, )\zj (0) =00 forj<gq, ae in|—m, .

As exposed by the authors, there is some intuition behind Assumption (2). Specifically, the two
statements implies the following: First, the bound to the dynamic eigenvalues of the spectral
density of idiosyncratic components indicates that the dynamic eigenvalues have effects con-
centrated on a limited number of variables. These tend to zero when the number of variables
tends to infinite. Second, the divergence in the spectral density matrix of common components
implies that the dynamic eigenvalues are present in a large number of observational units with

non-decreasing importance among them.

If the Assumptions (1) and (2) are satisfied, Forni and Lippi (2001) show that the double

sequence x = {x;4, 1 € N,t € Z} is a ¢-generalized dynamic factor model.

Forni et al. (2000) propose the following method for consistently recovering the common com-
ponents x;. Given the spectral density X7 of x,, there exist n vectors of complex-valued

functions

Pnj (0) = (Pnj,l (0) Pnj,2 @) - Pnjn (‘9))

for j =1, ..., n such that
(a) pn;(0) is a row eigenvector of X7 i.e.

Prj (0) 35 = A%; (0) pnj (0)  for any 0 € [—m,];

(b) |Pnj (0)|*=1 for any j and 0 € [—m,7];
(c) Pnj (0) P}, (8) =0 for any j # s and any 0 € [—7,7[;
(d) pnj (9) is -measurable on [—m, 7).

Through the properties (a)-(d), each eigenvector py; (¢#) can be expanded in Fourier series

1 & a A .
Pnj (9) = [/ Pnj (9) ezkede] e_lke,
k_



thus allowing for the construction of a square-summable, n-dimensional, bilateral filter
1 " %6 k
(1 =g; 2 |[ o))

Moreover, for j = 1, ..., n the scalar process mj; = {Enj (L)xpe, t € Z} is called the j-th
dynamic principal component of x,;. Now consider the minimal closed subspace of Ly (2,Z, P)

containing the first ¢ principal components

L{n:span(Enj(L)xm7 i=1,...,q, tEZ)

and the orthogonal projections

Xit,n = Proj (fBz‘th)

= K, (L) xut (1.3)

with K, (L) = prai ()P, (L) + Pra, (L), (L) + -+ + Py (L) P, (L). Then, under the
Assumptions (1) and (2) for all ¢ and ¢ the lim, . Xit,, = Xi¢t in mean square. This result
indicates that the common component y;; can be recovered asymptotically from the sequence

Kni (L) Xnt-

1.3 The Static Representation

An alternative model for the large n case was developed by Stock and Watson (2002b). Their

model, in time invariant formulation, can be written in the following form

Xnt = Bp(L)us + &,

where F; is an r x 1 vector of common factors. Contrary to the specification by Forni and
Lippi (2001), the common factors are not required to be uncorrelated in time, and they can
also be correlated with the idiosyncratic components. In this case only var [F;] = I is required

for identification. Suppose that the filter has finite order m > 0, i.e. B,(L) = By + BYL +



...+ B L™, then the model in (1.1) can be written as in (1.4), where F; = (uj,u;_4,...,u;_,,)
and the i-th row of A,, has elements (Bg,BY,...,B} ). The dimension of F; is always equal to
r = q(m+1), where ¢ is the dimension of u;. Although the relation between x,; and F; is static,
F; itself can be a dynamic process, depending on the dynamics of u;. Then, the static method
makes use of representation (1.4)without taking into account the dynamic structure of F;. This

implies that the common factors are dynamically singular and the spectral density matrix of F;

has rank ¢, which is smaller than r if m > 0.

Following Stock and Watson (2002b), let T}, and Fflo be the covariance matrices of x,,; and &,
respectively. Let MZJ' and uij be the largest eigenvalues, in descending orders, of I'X, and Fio

respectively.
Assumption 3 We assume that the following hold:
A) limy, 00 ,uzj =00 for1 <j<r;
B) there ezists a real M, such that /J,flj < M for any n.

Assumption (3)A establishes that, as n increases, the variance of x,; explained by the first r
eigenvalues of the common component increases to infinity. This means that as n goes to infinity
the weight of the idiosyncratic component in explaining I'Y; becomes smaller and smaller. As-
sumption (3)B sets out that the idiosyncratic components can be correlated, but the assumption
puts a limit to the amount of correlation. As n increases, the variance of the vector x,; captured
by the largest eigenvalue of the idiosyncratic component, y,, remains bounded. Then, under
the Assumptions (3)A and (3)B, the static projection on the first r static principal components

of x,,; converge in mean square to the common component in equation (1.4) for n — oo.

To derive the form of the static principal components (SPC), we consider the finite realization

of the form x! = {x;i=1...n,t=1...T} with the estimated contemporaneous variance-

T

T'xT'. Now consider first the quantity é;x,; where the 1 x n vector

. L - —1 T
covariance I'y =773, | x
< . . . > « Lo . . . .
&) maximizes the variance var [d1x,:] = a1T'y@). Since the maximum will not be achieved

for finite &7 a normalization constraint must be imposed. The constraint used in derivation is

Q«

a1 = 1, namely the sum of squared elements of & equals one. To maximize &1 I'§j&) subject

to & &) = 1, the standard approach is to use the technique of Lagrange multipliers. Maximize

a1F0a1 — U1 (dldll — 1)



where 7 is a Lagrange multiplier. Differentiation with respect to & results in ¢ (I“é" — ,ull) =
0. Thus, fi; is an eigenvalue of f‘g and & is the corresponding eigenvector. To decide which

eigenvector results in ¢ X, with maximum variance, the quantity to be maximized is
~ I-‘fvv/_v MY A A
apl g0y = Q10 = j1on oy = .

So ji1 must be as large as possible. Thus, & is the eigenvector corresponding to the largest
eigenvalue of f‘g, and var [&1X,¢| = fi1 the largest eigenvalue.

In general, the r-th PC is &,x,; and var [&,X,:] = i, where [i, is the largest eigenvalue of f‘g
and & is the corresponding eigenvector. Then for j =1, 2, ..., r ordering the eigenvalues fi; in
descending order and taking the eigenvectors corresponding to the largest eigenvalue we define

S, = (A1Xpt GoXpy -+ GpXpy) the j-th static principal component of X,;.

1.4 One Sided Estimation and Forecasting

Let us consider a finite realizations of the form x! = {xyi=1...n,t=1...T}; the filters
K, ; (L) obtained as functions of the spectral density matrices X, (f) are unknown and have to

be estimated. Let us assume x,; admits a linear representation of the form
Xnt = Z Crly i (1.5)

where {Z;; t € Z} is second-order white noise with nonsingular covariance matrix and finite

1/2< 50. Under equation (1.5) any periodogram

fourth-order moments, and Y 2 |cijxl|k|
smoothing or lag-window estimator X (6) is a consistent estimator of X% () for T going to
oo. Now, in the following we provide a description of the spectral estimate " (0) considered
throughout the section. The estimation of the spectral density is constructed using a Bartlett

lag-window estimator of size M = M (T'). The sample covariance matrix is

T
5 _1 )
Fi = (T'—k) Z thXZt
t=k+1



Then we compute the (2M +1) points discrete Fourier transformation of the truncated two-sided

sequence lv":iM, ceey f‘g, ey f‘fw, where ngk = f‘i, that is
M .
37 (6,) = Z [wye *on
k=—M
where 0, = 27h/(2M + 1), for h =10, 1, ..., 2M and wy = 1 — kL are the weights corre-

(M+1)
sponding to the Bartlett lag-window of size M = M(T'). The choice of M represents the trade

off between small bias (large M) and small variance (small M). Now, we can observe that the
filters K,,; (L) are infinite two-sided, that is
1 & T :
K, (L) [ K (0) e~ *do| L*,
k=—

:g o

while x,,;; is not available, neither for ¢ < 0 nor for ¢ > T, then the projection Km (L) xp¢ onto
the space spanned by the ¢ dynamic principal components cannot be computed. Therefore a

truncated version of the estimated filter

M
Kni (L) = Z Kni,kLkv
k=—M

where the conditions M(T) — oo and M (T)/T — oo must be fulfilled, is considered.

The method discussed above produces an estimator to the common component which is a two-
sided filter of the observations. As seen before, this method has the advantage of exploring
the dynamic structure of the data and needs few dynamic aggregates to approximate the space
spanned by the common factors, but the performance of the estimator yx; deteriorates as ¢
approaches T or 1. Indeed to compute the estimator for the last observation, one needs M
future observations which are not available. For this reason, this makes the estimation procedure
inappropriate for prediction.

Forni et al. (2005) propose a refinement of the original procedure which retains the advantages
of the dynamic approach while obtaining a consistent estimate of the optimal forecast as a
one-sided filter of the observations. The method consists of two steps. In the first step,
they follow Forni et al. (2000) and obtain the cross-covariances for common and idiosyncratic

components at all leads and lags from the inverse Fourier transformation of the estimated spectral



density matrices. In the second step, they use these estimates to obtain the r contemporaneous
linear combinations of the observations with the smallest idiosyncratic common variance ratio.
The resulting aggregates can be obtained as the solution of a generalized principal component

problem.

First Step. To estimate the common and idiosyncratic cross-covariance I'Y, and 'Y, respec-
tively, we start with the matrix X" (0), defined as a periodogram smoothing or lag window es-
timator of the spectral density 3% (). Now, using Assumption (1), the spectral density 3" (6)

can be decomposed in a spectral density matrix of the common component and idiosyncratic

component .
OEDI S OPH() i
j=1
and .
=50)= Y B (O) X (0) B
I=q+1

Therefore, applying an inverse discrete Fourier transformation to these density matrices, the
covariance matrices of x; and &, can be estimated as

Iy (0) = / sy (0) e+ ag

—T

and

5 () = / "S5 () M

—T

Second Step. The estimated covariance matrix of the common components is used to solve
the generalized principal component (GPC) problem. More precisely the objective is to find r

independent linear combinations I/Vjt = Zant, where the weights Zj are defined as

Zj = arg max gf‘gg/
geR”
Z £ .

st. glig =1

and gf‘gzg =0 for 1<1<y.



The solutions to the problem are
71X — 5.7.T¢ P
Lo = 04T J=1...r

where Zj are the generalized eigenvectors associated with the generalized eigenvalues v;, with

the normalization conditions

= 0 for 1#j.

Ordering the eigenvalues v; in descending order and taking the eigenvectors to the largest r eigen-
values, we define G, = (lent ZoXnt - - - ernt)/ as the first r generalized principal component

of Xnt-

Forecasting with GDFM. Since we are interested in forecasting a single variable, we call y;
the variable of interest contained in x. The two types of estimated factors, static and dynamic,
will be used for prediction. For forecasting purposes a single equation is estimated with the
one-step approach. The forecasting equation is estimated as a linear projection of h-step aheads

of y;, i.e. y4p, on t-dated predictors. In general a factor based forecast is specified as follows
Yirn = o+ BF, + 6(L)ye + €14 (1.6)

where F} are the factors estimated using GPC as in Sec. (1.4) or SPC as in Sec. (1.3); a is the
constant term and ( the coefficient vector for the factors. They are estimated by ordinary least
squares for each forecast horizon h. The autoregressive term is introduced by the coefficients
d(L), which is a polynomial with non-negative power of lag operator L. The variable y;1j is

defined as the growth rate of the chosen time series between period ¢ and period ¢ + h.

1.5 Determining the Number of Factors

As mentioned in the introduction, the most important feature of factor models is to summarize
the information contained in a large panel of variables using a small number of factors. However,

the exact number of factors to use is not known "a priori". Indeed, a controversial issue in the



analysis of approximate factor models is the preliminary identification of the optimal numbers r
and ¢ of static and dynamic factors. In this dissertation the optimal number r of static factors
is determined by the criterion proposed by Bai and Ng (2002), whereas the optimal number ¢
of dynamic factors is determined by the criterion proposed by Hallin and Liska (2007).

Since, in empirical applications, we observe only a finite sequence of length 7' of a finite number

T

n of variables, these two criteria are described using a finite realization of the form x, =

{zgi=1...nt=1...T}

Determining the Number of Static Factors. Bai and Ng (2002) propose using an in-
formation criteria to determine the optimal number of static factors r as a trade-off between
goodness-of-fit and overfitting.

Formally, let V(k) = (nT)~' Y0, Zthl (:El't - Agk)ng))Q be the variance of the idiosyncratic

k > . . .
Z( ) and the common factors ng) are estimated using £ static

term when the factor loadings A
factors by the method of static principal components described in Section (1.3). They define

the information criterion

IC(k) =log (V(k)) + kg(n,T)

7ic = argmin IC(k)
0<k<rmax

The term V' (k) represents the goodness-of-fit which depends on the estimate of common factors
and the number of factors. When the number k of factors is increased, the variance explained
by the factors increases too, then V (k) decreases. However in order to avoid overfitting they
introduce the penalty term g(n,T") which is an increasing function of n and 7'. The information
criterion IC(k) has to be minimised in order to determine the optimal number of static factors.
In empirical application we have to fix a maximum number of static factors, say rmax, and
estimate the model for all numbers of factors k = 1, ..., rmax. As a penalty function Bai and

Ng (2002) propose to use g(n,T) = (ZH) log (min{n, T'}).

Determining the Number of Dynamic Factors. Hallin and Liska (2007) proposed a
method for determining the number of factors in GDFM. In the generalized dynamic factor
models the criterion proposed by Hallin and Liska exploits the relation between the number of

dynamic factors and the number of diverging eigenvalues of the spectral density matrix of xZ.



The information criterion proposed, associated with the estimated spectral density > and its

T s

eigenvalues A\, .,

n

Mr
1 1
IC(k) = log | = S A9 kg(n, T
1= =—Mr

gic = argmin IC(k)
0<k<gmax
The authors suggest using My = [0.5v/T] or [0.7v/T] and as penalty function g(n,T) = (M +
M%/QT_l/QJrn_l) log Ar with A7 = (min{n, M2, M;1/2T1/2}). Therefore, the penalty function
should be large enough to avoid overestimation of ¢ic, but at the same time it should not over
penalize. Multiplying the penalty function by a constant c is a way to tune the penalizing power
of g(n,T). Hallin and Liska propose an automatic procedure for selecting gic which basically
explores the behavior of the variance of the selected ¢ic for the whole region of values of the

constant c.



CHAPTER 2

The Feedforward Neural Network

Dynamic Factor

The aim of this chapter is to introduce a new technique, called Feedforward Neural Network
Dynamic Factor model, FNN-DF, which forecasts macroeconomic time series using a large num-
ber of predictors. The model proposed to summarize information contained in the whole set of
predictors is GDFM. Commonly, in the GDFM literature, the forecasts are made using linear
model, namely the relationship between the variables to be predicted and the common factors
is supposed to be linear. However, linear forecasting models are often misspecified and the re-
sulting forecast provides only a poor approximation to the best possible forecast. It is possible
to obtain superior approximations to the optimal forecast using nonlinear methods. The nonlin-
earity needs to be described through an adequate model. Unfortunately, for many applications,
theory does not guide the model building process by suggesting the relevant functional form.
This particular difficulty makes it attractive to consider an "atheoretical" but flexible class of
statistical models. Artificial Neural Networks of the FNN type are essentially semi-parametric
regression estimators and are well suited for this purpose, as they can approximate any function

up to an arbitrary degree of accuracy.

2.1 Motivations

In general, as pointed by McNelis (2004) in the Preface, we assume that the economy under
study comes from a linear data generating process and shocks are from an underlying normal
distribution and represent small deviations around a steady state. In this case standard tools
such as classical linear regression are perfectly appropriate. However, making use of the linear
model with normally generated disturbances may lead to poor results if the real world deviates

significantly from these assumptions of linearity and normality. For this reason it is important



to verify if, also in GDFM literature, the use of linear techniques are justified not only for their
simplicity but also by empirical evidence. We propose the FNN-DF model as an alternative to

linear models.

Here we report some important dates in the history of artificial neural networks. Historically,
neural network theory was motivated by the idea that certain key properties of the human
brain can be extracted and applied in order to create, in simplified form, an artificial brain.
The neural network era began with the pioneering work of McCulloch and Pitts proposed in
1943, in particular see Arbib (1998). It is a multiple input summing device that consists of
different weighting for each input and a threshold before the output. The significance at that
time was its ability to compute any arithmetic or logical function. During the 1950s numerous
neural networks results were reported. Nevertheless during the mid 1960s research into neural
networks was abandoned for about two decades.

In 1982, J. Hopfield published two important articles regarded as the beginning of the current
neural network era. J. Hopfield presented a novel idea in which he stated that the approach to
artificial intelligence should not be purely to imitate the human brain but, instead, to use its
concepts to build machines that could solve dynamic problems.

Cybenko (1989) published a very important piece proving the universal functional approximation
ability of neural networks. In the same period, Hornik et al. (1989) also reported their findings
on proving multilayered perceptron networks as universal approximators. Rumelhart et al.
(1988) reported on the developments of the backpropagation algorithm. The paper discussed
how backpropagation learning had emerged as the most popular learning set for the training
of multilayered perceptrons. Subsequently, neural networks have been widely applied in many
different scientific areas. Currently, neural networks have extended from speech recognition to

time series forecasting.

Regarding the estimation of the FNN-DF model, we have to distinguish two stages. The first
is the estimation of the factors and the second refers to the architectural selection and the
estimation of the FNN, which reveals the relationship between the estimated factors and the
variables to predict. Regarding the estimation of the factors, we assume that each series can
be divided into a common part, which depends on some dynamic factors, and an idiosyncratic

part, which is variable specific. Using the technique proposed by Forni et al. (2005), described



in Section (1.4), and that proposed by Stock and Watson (2002a), described in Section (1.3),
we obtain an estimate of dynamic and static factors, respectively. Once the estimation of the

factors is obtained, we use those as regressors in FNN.

We proceed to the second stage of the proposed model, namely the architectural selection and
estimation of FNN. However, at this stage it is important to clarify some concepts. Indeed, as has
been pointed out, the FNN has the important property of being very flexible in approximating
an arbitrary function. This ability of approximation requires a specification of the architecture
(or model selection) of the FNN, which often is very complicated to obtain. Architectural
selection requires choosing both the appropriate number of hidden units and the connections
therein. Indeed, as reported in Anders and Korn (1999), one of the main problems in the
literature on neural networks is which architecture should be used for a given problem. In
general, a desirable architecture considers the trade-off between estimation bias and variability
due to estimation errors and contains as few hidden units and connections as necessary for a
good approximation of the true function. Consequently it is necessary to have a methodology
to select the appropriate architecture. The usual approaches pursued in the network literature
are regularization, pruning, and stopped training. The strategy we adopt in this dissertation,
which turned out to be quite successful in a number of applications in time series forecasting,
is Bayesian regularization proposed by Mackay (1992a,b). The fundamental idea is finding a
balance between the number of parameters and goodness-of-fit by penalizing large models. The
objective function is modified in such a way that the estimation algorithm effectively prunes the

network by driving irrelevant parameter estimates to zero during the estimation process.

There are many types of estimating algorithms in the literature on neural networks and in general
it is very difficult to know which estimating algorithm will be most efficient for a given problem.
In literature, one of the most widely accepted techniques is the backpropagation algorithm. This
algorithm employs only the first-order partial derivatives of the object function and has proved it
usefulness in dealing with a large number of classification and function approximation problems.
However, in practical applications, the large number of iterations needed to converge to the
optimal parameters of the FNN becomes prohibitive for several applications. An alternative
way to speed up the estimation phase is by using higher-order optimization methods that utilize

second-order partial derivatives. The algorithm used to estimate FNN in this dissertation is



Marquardt-Levenberg. This algorithm is widely accepted as the most efficient in realization
accuracy. It was designed to approach second order training speed without having to compute
the Hessian matrix. Under the assumption that the object function is the squared sum of
residuals, the Hessian matrix can be approximated using the Jacobian matrix that contains only

first derivatives of the FNN errors with respect to parameters.

2.2 Nonlinear Dynamic Model

Before introducing the model it is important to define the problem that we discuss in this
chapter. As presented by (Terasvirta, 2006, pag. 417), a general nonlinear dynamic model with

an additive noise component can be defined as follows:

yr = f(sy;9) +er (2.1)
We define as s; = (w},z,)" the I-dimensional vector of explanatory variables, where w}, =
(1, Yt—1,Yt—2, - -, Yt—p) is a (p + 1)-dimensional vector of the lags of the variable of interest,
zy = (214, 29t - - - ,zkt)/ is a k-dimensional vector of exogenous variables, and [ = (p + 1) + k.

Furthermore, the random term &; ~ iid (0, 02) and ¥ is a @Q-dimensional vector of real parame-
ters. It is assumed that y; is a stationary process. In general, few "a priori" assumptions can be
made about the functional form of f (-), for this reason it is necessary to construct an estimator

for f (-) from a large class of functions F known to have good approximation properties.

In literature, there are different methods to obtain approximators for f (-). However, we have
chosen FNN because, as we shall see following this chapter it is very flexible and has a good

ability to approximate any arbitrary function.

2.2.1 The FNN Model

In the FNN model, as stated in the introduction, the hidden units (or activation functions) are
organized in layers. The layer that contains the regressors (or input) is called Input Layer. The
layer where the regressand (or output) of the network is located is called the Output Layer.
The layers between the input and the output are called Hidden Layers. In general there can
be more than one layer in the FNN model, due to the complexity of the network or the nature

of the problem. In this dissertation we deal only with one hidden layer.



The mathematical structure of a representation of an arbitrary function as proposed in equa-
tions (2.1) with a single hidden layer network having one or more hidden units is characterized
as follows: The class N of real valued functions using a single hidden layer feedforward neural

network has the following form

S
N (s;;9) = {f:Rl—>]R | f(st) :wo—l—ij\I/ (’y}st)} (2.2)
j=1
where wy is the constant term in the output layer, the parameter w; corresponds to the param-
eters from the hidden to the output layer, the [ X 1 vector «; corresponds to the parameters
from the input to the hidden layer; the @ x 1 vector ¥ = (wp, w1, ..., ws, ¥}, .. ,'y;)/ collects all

network parameters, where Q@ = s(I + 2) + 1 is the total number of parameters to estimate.

The function ¥ is called the activation function. The activation function plays an important role
in a neural network framework, because it introduces nonlinearity. Since a composition of linear
functions is again a linear function, FNN in equation (2.2), without introducing nonlinearity
would not be able to perform nonlinear separation. The choice of nonlinear activation function
has a key influence on the complexity and performance of FNN. In this dissertation we deal with
a nonlinear activation function that belongs to the class of sigmoid functions. In general they

are defined as follows.

Definition 2 (Sigmoid Function) Let x € R, a function ¥ : R — R belongs to the class of

Sigmoid function if

lim ¥(x)=a and lim Y(zr)=0b with (a#0b)

r—+00 T——00
and having the following properties

(a) ¥(x) is a continuously differentiable function;

_ d¥(zx)

(b) W) = =

> 0;
(c¢) ¥'(z) — 0 as © — *oo;
(d) W'(z) takes a global mazimal value at unique point x = 0;

(e) A sigmoidal function has only one inflection point, preferably at x = 0;



(f) From (c), function ¥ is monotonically nondecreasing, i.e. if xr1 < xa for each x1, o €

R= \If(l‘l) < \If(l‘g),'

Examples of sigmoid functions are the following:

Logistic Function

1
U(z) = T (2.3)
Hyperbolic Tangent Function
B _ ,—P=
e e
U(2) = -5 p—r (2.4)
Sign Function
2
U (z) = 1i$2 sign(z) (2.5)

A graphical representation of these functions are reported in Figure (2.1). In this dissertation we
use the activation function reported in equation (2.4). Although sigmoid activation functions are
the most common choice in FNN literature, there is no strong "a priori" justification as models
based on this class of functions should be preferred over others. However thanks to universal
approximation properties, based on the Stone-Weierstrass theorem, as we shall see in the next

section, any sigmoid function is a suitable candidate for an activation function.

We will briefly discuss some necessary requirements for the sigmoid activation function, as
reported in (Mandic and Chambers, 2001, pag. 51). First, as listed in the Definition (2),
the property (a) is important for the estimation algorithm, which requires the existence of the
Hessian matrix. The properties (b) and (c) require that the sigmoid function have a positive first
derivative, which in turn means that the optimization algorithm have gradient vectors pointing
towards the bottom of the bowl shaped error surface of the object function. Property (d) means
that the point around which the first derivative is centered is the origin. This is connected with
property (e) which means that the second derivative of the activation function should change its
sign at the origin. Monotonicity, required by (f), is useful for uniform convergence of estimation

algorithms.



(a) Logistic Function. (b) Hyperbolic Tangent Function. (c) Sign Function.

Figure 2.1: Different Representations of Activation Functions.

2.2.2 The Universal Approximation

The functional approximation capability of an FNN architecture is one of the most important
properties and has potentials for application in different disciplines. This issue has been inves-
tigated by many authors. Here, the universal approximation capabilities of FNN are studied
mainly using the well-known Stone-Weierstrass theorem, using the results obtained by Hornik

et al. (1989).

To present the ability of FNN to approximate functions, it is important to choose a function
space in which we operate and a metric space which is associated with the function space
and used to measure the distance between two functions. In this dissertation, we consider the
density property in the spaces of continuous functions C (K) endowed with the supremum norm
and L, (K), where K is a compact set of R!. When the normed linear space is the space
of continuous functions with the supremum norm, in neural network terminology the density
property is also called the Universal Approximation Property. More formally, a set of functions
F can arbitrarily closely approximate a set of functions G, in the sense of the metric £, (K), if

for any g € G and to any positive € there is an f € F that is close to g.

Now we can introduce the Stone-Weierstrass theorem, which is the basis of our discussion.

Theorem 1 (Stone-Weierstrass) Let domain K be a compact set with | dimensions, and let

F be a set of continuous real-valued functions on K satisfying the following conditions:

1. Identity function: the constant function f(x) =1 belongs to F;



2. Separability: for any two points x1 # xo € K there exist a function f € F such that
f(x1) # f(x2);

3. Algebraic Closure: for any f, g € F the function fg and (af + Bg) are in F for any

two real numbers o and 3.

Then F is dense in C (K), the set of continuous real-valued functions on K. In others words,

for any € > 0 and any function g € C (K), there is a function f € F such that

sup !f(x) - g(x)’ < e.
xeK

Applying Theorem (1) to neural networks is not immediate but requires some explanation which
will be discussed below. In order to establish the function approximation capabilities of FNN
that are described by nonlinear mapping from input to output space directly using the Stone-

Weierstrass theorem, one has to verify that it satisfies the following three conditions:

1. The ability of the approximating network to generate f(x) = I. This is always satisfied in

feedforward neural networks that use the constant parameters.

2. The second condition which requires the separability of the function is satisfied since the
activation functions of the neural networks are strictly monotonic. In fact, the neural

networks generate different outputs for different inputs.

3. The algebraic closure condition requires that the nonlinear mappings of the neural networks
are able to generate sums and products of functions. This condition is more difficult to

satisfy and is further discussed below.

If an FNN spans a function space that satisfies the conditions of the Stone-Weierstrass theorem,
it can be simply concluded that this network structure has the capability, on a compact set,
to approximate arbitrary continuous real-valued functions to any desired degree of accuracy.
However not all networks verify the universal approximation property. This depends on the
activation function used. A typical example of this group are the sigmoid activation functions
introduced in Definition (2), where the multiplication condition is not satisfied. However the

universal approximation capabilities of this network structure can be ensured®.

!The purpose of this section is not to give a rigorous proof of the ability of FNN as universal approximators,
but simply give an intuition of how it is obtained.



Hornik et al. (1989), proposed an intuitive approach to indirectly prove the denseness of the
space spanned by FNN with sigmoidal activation functions in continuous function space. The
first step shows that a single-variable cosine activation function can be uniformly approximated
by a single input, FNN with a sigmoidal function. In the second step, they prove that the
arbitrary cosine network can be uniformly approximated by an FNN with a sigmoidal activation
function. Finally, the denseness of the space spanned by the cosine network implies the denseness
of the space of the FNN with sigmoidal functions. More formally the result that they obtained

can be expressed by the following theorem

Theorem 2 (Universal Approximation) Let N be the class of feedforward neural network
functions N' = {f RIS R | flx) = w0—|—2§:1 w; ¥ (’y}x) }, where W is any sigmoid activation
function. Then N is uniformly dense on C(K), that is for every g € C(K) and every e > 0,
there exist f € N such that

sup |£(x) - g(x)] < e.
xeK

These results establish FNN with sigmoid activation function as a class of universal approxima-
tors. Moreover, any lack of success in the application of an FNN that is a universal approximator
must arise from inadequate estimation phase, an insufficient number of hidden units, or the lack

of a deterministic relationship between the regressors and the regressand.

However, the proof given by Hornik et al. (1989) is merely "existential": they neither provide an
algorithm to construct a model nor estimate the number of hidden units necessary to guarantee

the desired approximation accuracy.

2.3 The FNN-DF Model

The use of a nonlinear forecasting factor model is new in the macroeconometric literature. How-
ever because of the complexity of implementation of both factor models and nonlinear models,
this appears to be, from a practical point of view, difficult. One objective of this dissertation is
to make construction the forecasting model FNN-DF as coherent as possible. In this section we
introduce the FNN-DF model. We denote by x; = (x1¢ z2¢ - :L‘m)' the n-dimensional vector

processes of observed data. Following the GDFM representation, x; is represented as the sum



of two components: the common component and the idiosyncratic component, namely we have
xt =X +& =B(L)u + & (2.6)

Where uy = (ugq ugy - uqt)/ is a g-dimensional orthonormal white noise process, where u;; has
unit variance and is orthogonal to ug for any j # s; B (L) is a n x g polynomial of order m in
the lag operator L. Regarding to the idiosyncratic components we assume that &, is orthogonal
to all components of u;. Note that for a given finite lag order m, the model in equation (2.6)

can be written in the following form
Xt = AFt + €t (27)

where Fy = (ugp ug -+ uqt)/ is a 7 = g(m + 1) dimensional vector of stacked dynamic factors
and A is an n X r dimensional parameter matrix which contains the coefficients of B (L).
Let y; € x; be the variable of interest we want to predict, then making use of the factors F; as

regressors in equation (2.2), we have the FNN-DF
S
Y = wo + Z%“If (73'St) + &t (2.8)
j=1

where now s; = (w}, F})" is composed by w} a (p + 1)-dimensional vector of the lags of the
variable of interest as in equation (2.2), and F} a r-dimensional vector of factor; the number
of variables used in the FNN-DF model becomes | = (p 4+ 1) + r. Furthermore, the random
term &; ~ iid (0,0%). The @ x 1 vector & = (wo, w1, ..., ws, ¥}, .- ,~%)" collects all network

parameters, where @) = s(I + 1) + 1 is the total number of parameters to estimate.

2.4 Building Procedure for FNN-DF

The construction of the FNN-DF requires two stages. The first concerns the estimation phase
of dynamic factors (DF), while the second the construction of the FNN. Lets first consider
the estimation phase of the DF': since the factors are unobservable components, it is necessary
for these to be estimated in order to be used during the forecasting phase. As described in

Chapter 1, in this dissertation we focus on the techniques proposed by Stock and Watson and



Forni et al. Moreover, from a practical point of view, it is important to know the optimum
number of factors necessary to summarize the information contained in the dataset. To do
this, we use the techniques proposed by Bai and Ng (2002) to choose the optimum number of r
static factors in the model (2.7) and the one proposed by Hallin and Liska (2007) to choose the

optimum number of dynamic factors ¢ in the model (2.6).

The construction of the FNN requires two basic steps. First, we need a technique to estimate
the parameters. In our case, we use the method of nonlinear least squares proposed by Hagan
and Menhaj (1994). Second, we need a procedure to select the number of hidden units (the
architecture) of FNN. The critical issue in developing an FNN is to select the optimum number
of hidden units. Since the number of hidden units measures the complexity of FNN we may have
an FNN not sufficiently complex, which may fail to detect the underlying process in a dataset,
leading to underfitting. An FNN that is too complex may look not just at the underlying
process, but also at the noise, leading to overfitting. The method we adopt to solve this issue is

the Bayesian Regularization proposed by Mackay (1992a) and Foresee and Hagan (1997).

Finally, since in the FNN-DF model the lags of the variable to predict are also included, the

optimum number, p, of lags will be selected using techniques such as AIC or BIC.

2.4.1 Estimation of the Alternative Factor Models

The technique used to estimate the factors affects the precision of the estimates. As pointed
in Chapter 1, basically two different methods are employed in the literature to estimate factors

with large dataset, namely those proposed by Stock and Watson (2002a) and Forni et al. (2005).

Estimating the Factors according to Stock and Watson (2002a). Stock and Watson
propose estimating F; with static principal component analysis applied to x;. The factor esti-
mates are simply the first » principal components of x;, as showed in Section (1.3). They are
defined as ]?‘?W = a/x; where « is the n x r matrix of the eigenvectors corresponding to the r

largest eigenvalues of the estimate sample covariance matrix fg of x;.

Estimating the Factors according to Forni et al. (2005). The estimator proposed
by Stock and Watson (2002a), being based on contemporaneous covariances only, fails to exploit

the dynamic relations between the variables of the panel. Forni et al. propose a weighted ver-



sion of the principal component estimator proposed by Stock and Watson, where time series are
weighted according to their signal-to-noise ratio, which is estimated in the frequency domain.
As shown in Section (1.4) the authors proceed in two steps. In the first step, the covariance
matrices of common and idiosyncratic components of x; are estimated. This involves estimating
the spectral density matrix 37 (6) of x;. Since 3" () = 2% () >y (0), we obtain the estimates
of the spectral density matrix of the common and the idiosyncratic component respectively. In-
verse Fourier transformation provides the time domain autocovariances of the common and the
idiosyncratic components f‘z and l:‘i respectively. In the second step, the authors search for
the 7 linear combinations of x; that maximize the contemporaneous covariance explained by the
common factors which can be formulated as the generalized eigenvalue problem, ijﬁf = U ij‘g,
where Zj are the generalized eigenvectors associated with the generalized eigenvalues ©; and the

factor estimates are obtained as F} HMR = Z/x,.

2.4.2 Parameter Estimation

Several optimization methods have been developed for the estimation of parameters in FNN.
In particular, two classes of algorithms are widely used in literature. On the one side we have
the backpropagation technique proposed by Rumelhart et al. (1988) and its variants such as
backpropagation with momentum term and learning rate. On the other side numerical op-
timization techniques such as conjugate gradient methods or quasi-Newton have been used.
Backpropagation is a recursive estimation technique in which the parameters are updated in the
opposite direction of the gradient of the objective function to minimize. In each step the gradi-
ent contributes to the reduction of the error until the minimum is reached. The computational
complexity of backpropagation is mainly due to the calculation of first-order partial derivatives
and is of the order of O(Q). However, using the first-order partial derivatives, the backpropa-
gation algorithm appears to only be linearly convergent and therefore slow in its convergence.
Some improvements are obtained by introducing the momentum term and the learning rate. In
general the use of these two techniques reduces the possibility of the FNN getting stuck in a
local minimum of the objective function, effectively reducing the convergence time. However,
the momentum term and the learning rate are free parameters and should be carefully selected,
which is not always an easy task. An alternative way to speed up the estimation phase is by

using higher order optimization methods that utilize the second-order partial derivatives such



as Gauss-Newton methods or conjugate gradient.

In this dissertation we make use of the Marquardt-Levenberg algorithm. This algorithm is an
iterative technique that locates the minimum of an objective function, expressed as the sum of
squares of non-linear real-valued functions. It has become a standard technique for nonlinear
least-square problems. The Marquardt-Levenberg can be thought of as a combination of gradient
descent and the Gauss-Newton method. When the current solution is far from the correct one,
the algorithm behaves as a gradient descent method, which converges everywhere, albeit slowly.
When the current solution is close to the correct one, it becomes a Gauss-Newton method,
which converges very quickly. A comparison study is reported in Hagan and Menhaj (1994)
where the Marquardt-Levenberg method significantly outperforms the conjugate gradient and
the backpropagation methods with momentum term and learning rate, in terms of convergence
time and accuracy. Whereas the other algorithms are designed to work with a wide range of
objective functions, the Marquardt-Levenberg is designed specifically to minimize a particular
objective function said sum of squares error.

In order to describe the Marquardt-Levenberg algorithm we define the objective function as

~

T
2
9 = argmin Er (¥) = argmin Z(yt — N (s¢; 19)) (2.9)
i) v

where equation (2.9) represents the sum of squares error. Given a vector ¥, called nominal point,
where the error function has a local minimum, a second-order Taylor series approximation of

the error function described in equation (2.9) around this vector is expressed as
1
Er (9) = Er (9) +g (¥ — ) + 3 (9 —99) H (9 — 9y) (2.10)

where g and H are the gradient vector and the Hessian matrix, respectively. The minimums of

the function Ep are located where the gradient of E7 expressed by equation (2.10) is zero:

OE
59 =8 tH®—9)=0. (2.11)

Therefore, the optimal value of ¥ is given by

9=9,-H g (2.12)



equation (2.12) is a basic formulation for second-order optimization methods. The key issue
related to the second-order methods is computing the inversion of the Hessian matrix H. In
fact the rank of H is equal to O(Q?). As the number of parameters of the network increases,
the demand for memory to work with such large matrix increases exponentially. The method
proposed by Marquardt-Levenberg is to approximate the Hessian that can be written in this
form H = J'J + nI, where I is the identity matrix. The matrix J is also called Jacobian, whose
elements can be calculated directly using the first order partial derivatives. Then the updating

rule for the parameters vector 4 is
-1
I+ — g(k) | ( 33+ n(’“)I) g®). (2.13)

The matrix J'J is symmetric and defined nonnegative; hence, any positive n will ensure that
(J'T + 171)_1 is defined positive, as required by gradient algorithm. In practice a value must be
chosen for 7 and this value should vary appropriately during the minimization process. One
common approach for setting 7 is to use the method proposed by Hagan and Menhaj (1994).
They propose to beginning with n = 0.1, and at each step if Erfpkﬂ) > Egrk), 7 is increased by
a factor of 10, the old parameters vector is restored, and a new parameters update computed.
This is repeated until a decrease in Ep is obtained. If, however, Ej(qkﬂ) < E(Tk) after taking

the step described by equation (2.13) the new parameter vector is retained, the value of 7 is

decreased by a factor of 10, and the process repeated.

2.4.3 Determining the Number of Hidden Units

One of the most serious problems that arises in estimation of FNN is overfitting. This means that
the estimated function fits the presented data very closely however it does not generalize well,
that is, it does not yield the most accurate forecast possible. This problem is also known as Bias-
Variance dilemma. In the context of neural network bias measures how well a model estimates
the process underlaying the data. This accounts only for the accuracy of the estimation process,
but not for the level of generalization. Variance measures the deviation of the accuracy of an
estimation process from one sample to another sample generated by the same process, without
regard to the specifics of the provided data. To avoid overfitting, we have to use some criteria
that, during the estimation process, enable us to balance the statistical bias and variance in order

to achieve the smallest possible generalization error. In literature, there are several criteria to



avoid the problem of overfitting. The usual approaches pursued in the network literature are

pruning, early stopping, and regularization.

The aim of the pruning methods is to identify those parameters which do not contribute to the
overall network performance. However, identifying these parameters is not usually judged on
the basis of statistical test. Instead, pruning methods use so-called saliency as a measure of a
parameter’s importance. The saliency of a parameter is defined as the increase in network model
error incurred by setting this parameter to zero. The idea is to remove the parameters with low

saliency; however, the method does not provide any guidance on how to judge saliency as low.

In the application of early stopping the dataset is split into an estimation set and a validation set.
If the errors in the validation set grow too much during the estimation process, the procedure is
stopped. In statistical terms, the method tries to make up for the model being over parameterized
by stopping the estimation algorithm before the minimum of the network error function is
reached. In general this does not lead to reasonable estimates of the network parameters.
Instead, the growing errors in the validation set should be seen as an indication to reduce the

network’s complexity.

The method we use in this dissertation is the Bayesian Regularization, see Mackay (1992a)
and Foresee and Hagan (1997). The Bayesian Regularization tries to find a balance between the
number of parameters and goodness-of-fit by penalizing large models. The objective function is
modified in such a way that the estimation algorithm effectively prunes the network by driving
irrelevant parameters to zero during the estimation process.

The parameter vector ¥ is estimated as

Y = argmin F (¢9) = argmin (E7 (¥) + kEy () (2.14)
9 9

where

T S s l
Er(9) :Z(yt—N(St;ﬂ))Q and FEy (ﬁ)zzw]?+zz%2h7
j=0

t=1 j=1h=0
whereas ¢ and k are scalar objective function parameters. These parameters are very important
because their relative size dictates the result of forecast. Indeed, if k < (, then the optimization
algorithm will make the errors small, this means we may have a large variance. If Kk > (,

the optimization algorithm will emphasize parameter size reduction producing a large errors



network, this means we may have large bias. In both cases the resulting forecast will be very
inaccurate. The approach we use to optimally determine the regularization parameters ¢ and
k is the Bayesian framework reported in Mackay (1992a). The steps required for Bayesian
optimization of the regularization parameters in conjunction with the Marquardt-Levenberg

algorithm as in Foresee and Hagan (1997) are as follows.

In the Bayesian framework, the parameters of the FNN are considered random variables. Let
D; = (yt,st) represent the dataset and N a particular FNN model. After the data are collected,
the distribution function for the parameters is updated according to Bayes’ rule

Dt|197<a’£7-/\/’) P(ﬂ|"{7-/\/‘)
P(Dt|<7’{aN) ’

P (9D, ¢, 1, ) = L (2.15)

where P (¥|x, ') is the prior distribution, which represent our knowledge of the parameters
before any data is collected, and P (D], ¢, k, ) is the likelihood function, which is the prob-
ability of the data occurring given the parameters. P (Dy|¢,x,N) is a normalization factor,
which guarantees that the total probability is equal to one. If we assume that the noise and

prior distribution for the parameters are both Gaussian then we have

N\ ~1/2
P (9k,N) = (C) exp (—CET) (2.16)

and

m\ —Q/2
P(Dif9, ¢,k N) = (5) 1 exp (—kEy) (2.17)
Once a prior distribution is chosen for the parameters and for the likelihood, using equation (2.15)
we obtain the posterior distribution for the parameters in the form

P (9[Dy, ¢, ki, N) = ZlF exp (—CEr — kEy) (2.18)

where Zp = [ exp (—CEr — kEy) d¥. In the Bayesian framework, the optimal parameters max-
imize the posterior probability. Since the normalization factor is independent of the parameters,
maximizing the posterior probability is equivalent to minimizing the objective function in equa-

tion (2.14).



The regularization parameters are optimized by applying the Bayes’ rule

P (D¢|9,(,N) P (¢, kN
P (¢ #IDy ) = A fmi/) (G RIN)

(2.19)

Assuming an uniform prior distribution P (¢, x|N) for the regularization parameters, then max-
imizing the posterior is achieved by maximizing the likelihood function P (D¢|¢, {, ). Since all

probabilities have a Gaussian form, the normalization factor can be expressed as

TR\
rop.cnd) = (F) (T) 0z (2:20)

Assuming that the objective function has a quadratic shape in a small area surrounding a
minimum point, we can expand F' () in a Taylor series around the minimum point of the
posterior density, where the gradient is zero. Solving equation (2.20) for the normalization
factor yields

Zp = (2m)9/? [det (H™1)]"* exp (— By (9)) , (2.21)

where H is the Hessian matrix of the objective function F' (). Substituting equation (2.21) into
equation (2.20), we can solve for the optimal value of ¢ and k at the minimum point. This is
done by taking the derivative with respect to the log of equation (2.20) and setting it equal to
zero. This yields

T'—o

and A= _-———

2E, (9) 2Er (9)

where 0 = Q) — 2(tr (H)_l is called the effective number of parameters.

The Bayesian optimization of the regularization parameters requires the computation of the Hes-
sian matrix of F' (). Foresee and Hagan (1997) proposed using the Gauss-Newton approximation
to the Hessian matrix, which is available if the Marquardt-Levenberg optimization algorithm is
used to locate the minimum point, as showed in Section (2.4.2). Here are reported the steps
required for Bayesian optimization of the regularization parameters in conjunction with the

Marquardt-Levenberg optimization algorithm:

Bayesian Regularization Procedure

1. Initialize ¢ and x and the parameters. We set ( = 1 and x = 0 and use the Nguyen and

Widrow (1990) method to initialize the parameters;



2. Use the Marquardt-Levenberg optimization algorithm to minimize the objective function

F (9¥) in (2.14) and the parameters vector ¥;

3. Compute the effective number of parameters o = ) — 2(tr (H)fl, where H is the Hessian

computed by the Marquardt-Levenberg optimization algorithm;
4. Compute new estimates for the regularization parameters é and &;

5. Iterate steps 2 through 4 until convergence.

2.4.4 Forecasting with FNN-DF

Forecasting with nonlinear models such as FNN-DF for more than one period ahead can be
achieved by using the iterated or the direct approach. Regarding the iterated approach, analyt-

ically obtaining the forecasts is not always possible and often are required numerical techniques.

In this regard, suppose the FNN-DF is correctly specified and s; = As;—; + n, follows a
first order vector autoregressive representation, where A is a [ X [ vector of parameters and
1y ~ iid (0,%,) the I x 1 vector of error terms. The one step ahead forecast for y;1 is equal
to Y1 = E (yer1lse) = n(sy;9¥), where the vector parameters 9 are estimated up to time
t. Forecasting two or more periods ahead is much more complicated. Indeed since we do
not know the value for s;11 we need to compute a forecast of this. Suppose we can forecast
St+1 = As;+1;,4, then the two steps ahead is given by 19y = E (y42[st) = n(Asi+1n44; 19) =
Sy S n(Asp+my s 9)dF (1, ...,m;), where F(n1, ..., ;) is the joint cumulative distribution
function of n,. This means that for periods grater than one, we have to solve a multidimensional
integral. In Terasvirta (2006) paper two numerical techniques have been proposed in order to
avoid analytical integration: the simulation and the bootstrap technique; these techniques could
be computationally demanding, especially when using nonlinear models. Moreover, in empirical
applications, very often the model assumed for the observations is not the true data generating
process. This misspecification can lead to less than optimal predictions.

This situation is also reported in (Bhansali, 2002, pages 206-221), which has shown the direct
approach is preferable to the iterated approach either computationally or as forecast perfor-
mance, when the model for the observations is misspecified.

Therefore, in this dissertation we adopt the direct approach. The forecasting equation is given

by the projection of h steps ahead of y; on the t-dated predictors. Then assuming as the data



generating process the FNN-DF in equation (2.8)
S
Yi+h = Wo + ZWJ\I’ ("}’;St) + Etth- (222)
j=1

Here, as already mentioned, we prefer the direct method as it has the advantage that no numerical
generation of forecasts is necessary. A disadvantage is that a separate model has to be specified

and estimated for each forecast horizon.

2.4.5 Forecasting Evaluation

There are many ways to compare the forecasting performance of a model, ranging from magni-
tude measures to directional measures. Regarding the magnitude measures, we use two statistics
commonly adopted in literature. They are the mean squared error and mean absolute error. For

an h-steps ahead forecast, they are defined as follows
(C1) Mean Squared Error (MSE)

T1—h

1 2
MSE = i —
S T —h—Ty—1 ZT (yT-i-h y'r-i-h)
7=Tp
(C2) Mean Absolute Error (MAE)
1 T1—h
MAE = (AT —y (
Tl—h—To—lz;erh Yr+h
7=To

where h =1, 3, 6, 9, 12, and Ty is the first point in time for out of sample evaluation and T} is
the last point in time. In addition to MSE and MAE, we use also the Directional Accuracy test
(DA) proposed by Pesaran and Timmermann (1992). The DA test considers the future direction
(up or down) implied by the model.

(C3) We compute the indicator for the correct sign of the model used in forecasting, i.e. Iy =1
if gr4n - yr4n > 0 otherwise I = 0. Once computed the indicator for the correct sign, we

calculate the success ratio (SR)

1 T1—h
DA = I
T —h—Ty—1 > I

T=To




SR indicates the percentage in predicting the correct sign for the proposed model. Finally, we
use the test proposed by Pesaran and Timmermann (1992) to verify if the model outperforms

the chance of random choice.

2.5 Montecarlo Experiments

In this section we apply the FNN-DF model presented in Section (2.3) to data generated ar-
tificially. The motivation is to show the potential of the FNN-DF approach, relative to linear

dynamic factor models, in predicting relatively complex stochastic processes.

Unlike the literature regarding GDFM, we are not interested in verifying the properties of the
FNN-DF model when the panel of simulated data differs in the cross and time dimensions, in the
number of dynamic and static factors, or in the amount of variance explained by the common
part with respect to the total. The goal here is to determine whether the proposed model is
able to identify the function that exists between the static and dynamic factors as well as the
variable of interest. In this regard two processes are simulated: the Markov regime switching
factor model and the stochastic chaos factor model. The panel of data from which the factors

are extracted is common to both.

Data Generating Process. DGP. We consider the following data-generating process, com-

mon to both models

2
Tt = Z bik w1 t—k + Eit (2.23)
k=0

where wuy; is an univariate first-order AR process with AR(1) parameter a = 0.6, namely uy; =
auy -1 +vp and & = €. The parameters by, with @ =1, ..., n and k = 0, 1, 2, the shocks

u1r and €; with t =1, ..., T are standard normal variables. The constant ¢ is chosen

L f—
s\ 2N, var(eq)

1—¢ (Zi\il Var(biult)>

where ¢ = 0.5, so that on average, 50% of the variation in x; is explained by the common
component. Following Forni et al. (2005), since € ~ N(0,07), we use 07 ~ U(0.1,1.1). This
means that even though ¢ = 0.5 on average, there is a good deal of variation in the size of the

common component. Moreover as seen in Section (1.3), the simulated GDFM in (2.23) can be



written in its static form as a r-factor model where r = g(m + 1), namely

3
Tt = ZAiijt + &it,
=1

where Flt = U1t, th = Uit—1 and th = U1,t—2, whereas Ail = bio, Aig = bil and Aig = big.

M1. Markov regime switching model. The variable of interest to be forecast is generated

according to the Markov Switching model (MRS)

€+ 27'121 o1jFj + ey, ifSp=1
o= ’ (M1)

co+ D5y ol + ez, if Sy =2
where Sy assumes values in {1, 2} and is a first-order Markov chain with transition probabilities

(ST = l‘St_l = 1) (ST = 1’515_1 = 2) (1 — ’U}Q) w2

(ST = 2|St71 = 1) (ST = 2’5}71 = 2) w1 (1 — wl)

The error terms e1; and eg; are sequences of iid random variables with mean zero, finite variance,
and are independent of each other. A small w; means that the model tends to stay longer in
state 7. In fact, 1/w; is the expected duration of the process in State i. In simulation of the

model, we use the following parameters:
Cc1 = 1, ¢11 = 1.5, ¢12 = 0.7, ¢13 = 0.05, w1 = 0.3 if St =1
Cy = —0.5, ¢21 = 2, ¢22 = 0.9, ¢23 = —0.15, w9 = 0.5 if St = 1.

and the transition probability matrix P is generated from a uniform distribution.

M2. Nonlinear Factor Model. The variable of interest to be forecast is generated according

to Nonlinear Factor model (NF)

.
ytzavtFlt(1+F1t)+Zﬁijt (M2)
=2

where the error term vy is generated according to a uniform distribution, namely v; ~ U(0, 1).

When the time series y; is characterized by periods of high volatility followed by flat stable



intervals, the presence of nonlinear events could be considered.

2.5.1 Montecarlo Experiment Results

We simulate 350 observations of the variables and discard the first 50, leaving 7" = 300 observa-
tions for evaluation, while for the cross section we use n = 150. The first estimation uses data
from t = 1, ..., 120 to perform a one-step ahead forecast, namely, T'+ h = 121. Then T is
incremented by 1, the estimation is repeated using data from ¢t =2, ..., 121, and a forecast for
T+ h = 122 is performed. The last forecast of T'+ h = 300 is based on estimation using data up
tot =179, ..., 299. The same procedure is applied for h = 3, 6, 9, 12 and the whole experiment
repeated 500 times. Each forecast §r ., is then compared to yrip. Regarding the criterion
(C1), in Table (2.1) we refer to the ratio of the MSE for a given method to the MSE of GDFM;
a relative MSE bigger than one means that the GDFM outperforms the method considered.
For evaluation criterion (C2), Table (2.1) report the ratio of the MAE for each given method.
A relative MAE greater than one means that the GDFM outperforms the method considered.
The final criterion used (C3) is the Directional Accuracy (DA) test where the ratio of correct
prediction is reported. GDFM estimated using the generalized principal component technique is
noted GDFM® in Table (2.1), whereas GDFM estimated using the standard principal component
technique is reported GDFMS

The results for the model (M1) are shown in Table (2.1)-Panel A. The rows marked GDFM are
the benchmarks and refer to linear prediction as in equation (1.6) using the static and dynamic
factors as regressors described in Section (1.3). The rows marked FNN-DF refer to the nonlinear
forecasting technique described in Section (2.3) using as regressors the static factors described
in Section (2.3). For the FNN-DF models, the number of hidden units is fixed to s = 10, which

is equivalent to a number of initial parameters @) = 51.

In Table (2.1)-Panel A there is no method that outperforms the benchmarks, whatever the
criterion for evaluating forecasts used. This result is not surprising, since the nonlinearity is
not driven by the factors themselves but by a latent process. Regarding the relationship that
exists in its two states, namely between the variable of interest and the factors, is completely
linear. What is interesting to observe is how the model FNN-DF is able to adjust its complexity

depending on the problem under study. Indeed we observe that, for both nonlinear models as



compared with () = 51 initial parameters to estimate, the same number of parameters are used

as in the linear model. This peculiarity is constant for the five forecasting horizons proposed.

Regarding the model (M2), it can be seen in the Table (2.1)-Panel B, nonlinear models appear to
have the best performance compared to the linear benchmarks, whatever the criterion adopted.
This indicates that the FNN-DF models respond according to changes in the functional form
between the predictors and the variable of interest, however this is evident only if the variation is
determined by variables that can be directly observed. Another observation concerns the length
of forecasting horizon. In particular, as the horizon is more distant in time, more the FNN-DF

loses strength to capture the nonlinearity, predicting only the unconditional mean of the process.
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CHAPTER 3

Forecasting U.S. Economic Time Series

In this chapter we present the use of the FNN-DF model proposed in Chapter 2 on real data using
the benchmark datasets proposed by Stock and Watson (2002a) and reported in Appendix (A).
The study is done on real and nominal macroeconomic variables. Forecasts obtained with the
FNN-DF model are extended to another two methods, which have often exhibited more accurate

prediction.

As described in the introduction, in empirical applications of both linear and nonlinear models,
one of the main issues is that the model used is not correctly specified. For this as noted
by Granger (1989) each model used may have specific information that other models do not
possess. The use of techniques that allow the combination of information may provide better
results than each individual model. In this regard the forecast combination of the linear and

nonlinear models used in prediction are presented.

3.1 Motivations and Related Literature

Forecasting is very important in obtaining useful information to produce correct economic
choices. However, the specification of the model is not always correct for the problem we are
studying. This is quite evident when we make a choice between linear and nonlinear models. In
fact, linear models tend to be used because they are easier to implement, may have an economic
interpretation and are less time consuming than nonlinear models. Moreover, from an empirical
point of view in recent years, the results of forecasts obtained with nonlinear models, especially
using neural networks, are quite controversial. As we discuss below, in some cases the use of
nonlinear techniques did not provide significant benefits, while in other cases provided encourag-
ing results. In general, a question that often arises in forecasting field is as follows: if nonlinear
models do not provide more accurate forecasts than those provided by linear models, why are

they used? Since there is no reason to suppose that the economy is linear, a partial answer to



this problem may come from the use of highly flexible forecasting techniques, such as techniques
that are able to adapt quickly to functional changes. When the functional form between the
variable to predict and the predictors is linear, the prediction obtained by nonlinear models are
certainly not better than linear techniques, nor are they worse. Instead, if the functional form

differs significantly from the linear one, then the results should be more accurate.

Remaining in the research field proposed by Stock and Watson (1998) and later re-examined
by Terasvirta et al. (2005), we try to answer the same questions as in the case of GDFM. First,
do nonlinear models produce forecasts that improve upon linear models in simulated real time?
Second, if there are benefits to using nonlinear models, are the benefits great enough to justify

their use? Finally, do combination forecasts outperform forecasts based on a single method?

In literature, the study of flexible forecasting techniques in conjunction with GDFM is not very
large. Shintani (2005) addresses the problem of nonlinearity for the Japanese economy, using
feedforward neural networks. The result he obtains is that in most series considered the feedfor-
ward neural networks have forecasting performance comparable to linear methods. Other studies
however address the problem in the univariate case. Since the literature is readily available for
this type of analysis, here we mention the most important results. Swanson and White (1997a,b)
compared various methodologies for forecasting nine U.S. macroeconomic variables. The meth-
ods included linear autoregressive models, feedforward neural networks, professional consensus
forecast and others techniques. The results that they obtain is the feedforward neural networks
gives performance similar to linear models. In another forecasting comparison proposed by Stock
and Watson (1998) a total of 49 univariate forecasting methods, including 15 feedforward neu-
ral networks, and various forecast pooling procedures, were used to forecast 215 U.S. monthly
macroeconomic time series at three forecasting horizons. The various pooling procedures pro-
vided the most accurate forecasts, suggesting that neural networks may help improve forecasting
accuracy when combined with other forecasts. However, when comparing the forecasting accu-
racy of individual models, the neural networks performed poorly relative to a "naive" AR(BIC)
forecast and relative to most other methods in the comparison. Terasvirta et al. (2005) exam-
ine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR) and
neural network time series models for 47 monthly macroeconomic variables of the G7 economies.

The forecast results indicate the STAR model generally outperforms linear autoregressive mod-



els, but does not dominate the feedforward neural networks forecast obtained using the Bayesian
regularization approach. Heravi et al. (2004) considers 24 series measuring the annual change
in monthly seasonally unadjusted industrial production for important sectors of the German,
French and the U.K. economies. They found that linear models generally produce more accurate
forecasts than neural network at horizons up to one year. This applies overall and also to the
sub-group of series with substantial sample period with evidence of nonlinearity. However, they
found that the neural networks give better results when the forecast results are measured in
terms of direction accuracy. Dhal and Hylleberg (2004) used four alternative flexible nonlinear
regression model approaches. The class of flexible regression model considered includes feedfor-
ward neural networks, two methods of projection pursuit and the random field approach. They
found that linear models for the U.S. unemployment rate and the growth rate in U.S. industrial
production cannot outperform the best flexible nonlinear regression models. Finally, Marcellino
(2004) fits a variety of nonlinear and time varying models to aggregate European Monetary
Union (E.M.U.) macroeconomic variables, and compares them with linear models. He found

that several variables, linear models are beaten by nonlinear specifications.

3.2 The Data and Forecasting Procedure

In this section, to determine the practical usefulness of the model presented in Section (2.3),
we conducted several forecasting exercises on different series of the U.S. economy. In partic-
ular, the series we are interested in forecasting are grouped in real and nominal categories:
Personal Income, Real Consumption, Industrial Production and Unemployment Rate for real
variables; Producer Price Index, Consumer Price Index, Money Supply and Interest Rate for
nominal variables. These variables are modeled as follows, for real variables we assume that
the log(RV) ~ I(1), for nominal variables we assume that the log(NV) ~ I(2), except for
Interest Rate which is modeled as log(IR) ~ I(1) and Money Supply which is modeled as
log(MS) ~ 1(0). For xI' = {xi=1...n,t=1...T}, the panel that includes the predictors,
following the standard procedure in Stock and Watson (2002a), we consider 131 monthly U.S.
economic time series observed from January, 1959 to December, 2003. The predictors are divided
into 14 categories: real output and income; employment and hours; real retail, manufacturing
and trade sales; consumption; housing starts and sales; real inventories; orders; stock prices;

exchange rates; interest rates and spreads; money and credit quantity aggregates; price indexes;



average hourly earnings and miscellaneous. The series are all transformed to be stationary by
taking first or second differences, logarithms, first or second differences of logarithms, then the

factors are estimated.

The exercise is based on simulated real time forecasting. This exercise begins with data from
t =1960:1 ... 1971:1—h for the estimation, then the values of the estimated parameters at
T =1971:1 are used to forecast ¥1971.14n. When a new observation is available, the sample is
updated by one month and moves from 1960:2 to 1971:2, the factors and parameters are both
re-estimated and we obtain the second forecast ¥i971.20+5. The process continues until the end
of the sample is reached. The idea of this procedure is that as data become more distant in the
past, we assume that they have little or no predictive relevance, so they can be removed from

the sample. The last observation used in estimation is 2002:12, when h = 12.

Finally it is important that the variables to be predicted and the estimated factors are scaled
within the range of the activation function used. Without scaling, a great deal of information
from the data is likely to be lost, since the hidden units are not able to recognize the data outside
the limits of its activation function. Since in the FNN-DF model we use the activation function
describe in equation (2.4), which has limits between [—1, 1] we scale the variable of interest and
the estimated factor into this range. Moreover in order to have comparable results in out of
sample with other methods, once the forecast is obtained we rescale this to the original range,

applying the inverse procedure.

3.3 Determining the Number of Factors

To determine the number of dynamic and static factors, we use the criteria described in Sec-
tion (1.5). Regarding the criterion proposed by Bai and Ng (2002), as noted in Alessi et al.
(2007), it is highly dependent on the variance of the residuals associated with principal compo-
nent estimates, having as a practical consequence that it is very sensible to the choice of rpyax.
To avoid this problem, Alessi et al. (2007) proposed, as similarrly did Hallin and Liska (2007)
for the dynamic factor, to multiply the penalty function by a positive constant ¢. Then the pro-
cedure for selecting the number of static factors is similar to the procedure proposed by Hallin

and Liska (2007).



(a) Number of Dynamic Factors. (b) Number of Static Factors.

Figure 3.1: Plot of the Criteria proposed to determine the number of factors.

Following the empirical procedure proposed by Hallin and Liska (2007), we use the Figure (3.1)
to determine the number of factors to use in the forecast exercise. In Figure (3.1) we look for
the first zero variance interval for ¢ (green line), corresponding to a stable value of 7o < gmax
(red line); this represents the number of dynamic factors. In the Figure (3.1(a)) the criterion
sets the number of dynamic factors equal to 2. The same reasoning is valid for determining the
number of static factors, as recommended in the modified version by Alessi et al. (2007). In
this case looking at the Figure (3.1(b)), the first zero variance interval for ¢ corresponding to a

stable value of 770 < rmax is located at 7 static factors.

3.4 Pooling Forecast

In forecast accuracy the main objective is to find which model has better performance with
respect to a particular loss of function, such as MSE or MAE. In general the "best" model,
as described in Chong and Hendry (1986), should be able to take into account the findings of
alternative models. Moreover, as noted by Timmermann (2006), testing whether one forecast
dominates another is neither sufficient nor adequate to establish if it is useful to combine them.
Since the encompassing test to asses which models better represent the data are not appropriate
in deciding whether combining the forecasts is useful to improve forecast accuracy, Chong and
Hendry (1986) formalized a test which allows for the determination of whether a certain forecast

incorporates (or encompasses) all the relevant futures in alternative forecast models. In order to



explain pooling forecast, consider, as usual, the future value of the target variable is indicated
by yi+n. Suppose now that for a time ¢ we have a set of information, denoted by Z;, which
is an F-vector of the forecasts for y;1, denoted by yi1n = (Yt+h1, Ut+h2s - - -5 Ye+h,r). The
forecast combination problem tries to find an aggregator that reduces the information in a
potentially high dimension vector of forecasts, yiy, € RY, to a lower dimensional summary
measure, C (Y4 n; Te) € RC C R, where 7. are the parameters associated with the combination.
Since we are interested in a point forecast, we let g7, = C(¥¢4n; ™) be the combined point
forecast as a function of the underlying forecasts y,y5 and the parameters of the combination,
7 € II, where II is often assumed a compact subset of R¥". In this dissertation we make use of

two methods

1. Equal weight combination, reported as (EW), meaning that the proposed methods have

equal informative power. The weights are determined using the simple average;

2. Predictive Least Squares, reported as (PLS), proposed by Granger (1989), the weight of
each forecast used in the pooling model is obtained using ordinary least squares, namely

regressing the true value of target variable y., on the F-vector of forecasts, y,45, that is
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The pooling forecast is obtained as

~GDFMS T 73 ~FNN-DF&

~c _ ~ ~GDFMS® | ~FNN-DF&
Yirh = T1 Yiph + T2 Yih (3.1)

Yith + T4 Ygip

The weights are re-estimated in each period, in order to simulate real time forecasting, using a
rolling window of 36 months of the out of sample forecast computed between 1971:1 and 1973:12,
as described in Section 3.2. We report the results for the pooling methods in Table (3.1), (3.3)
and (3.5).

3.5 Forecast Comparison

There are many ways to evaluate the forecasting performance of a model. We use the same

criteria as described in Section (2.4.5), results are reported in Table (3.1) to Table (3.6). We use



as the benchmark an autoregressive model v,y = ¢o + ¢1lys + - - - + Gpys—p+1 + €140, Where p is
selected using the Bayesian Information Criterion (BIC) with 0 < p < 6. The GDFM proposed
in (1.6), where the factors used in prediction are estimated using static and dynamic principal
components and are labeled as GDFM® and GDFM® respectively; for the comparison model we
report results for the FNN-DF model described in (2.8) with factors estimated using both static
and generalized principal components, and are labeled as FNN-DF® and FNN-DF© respectively.
We report results for the choice of r = 7 static and ¢ = 2 generalized principal components,
whereas for the number of hidden units we fix s = 5. In the Tabless we will refer to the ratio of
the MSE for a given method to the MSE of AR(BIC). An entry less than one indicates that the
specified method is superior to the AR(BIC) forecast. For each series we compare all models at

h=1,3,6,9, 12 month forecasting horizons.

It is useful in addition to the full sample analysis also consider two subsamples 1971:1-1984:12
and 1985:1-2002:12. The results of those subsamples help us to understand whether the methods
proposed are helpful in improving forecast performance of the variable where its predictability

is low; this phenomenon is known as "great moderation".

3.5.1 Test of Predictive Ability

To investigate the forecasting accuracy of the proposed models, we adopt the recent conditional
predictive ability test of Giacomini and White (2006). Their test is based on an out-of-sample
evaluation using a rolling window scheme. As described before, the in-sample size T" used for
estimation remains constant, while the sample itself and the points at which the forecast is
evaluated, move with time. It is assumed that the number of out-of-sample forecasts tends to

infinity while the in-sample size 1" remains constant.

One of the main motivations for using a conditional test versus an unconditional methodology
of West (1996) is that it can be applied in a more general setting. The test evaluates not only
the model itself, but the whole forecasting method, which includes the choice of the in-sample
size T'. While traditional tests of forecast equivalence answer the question of which forecast
was more accurate on average, the Giacomini and White (2006) test answers the question of
whether one can predict which forecast will be more accurate at a future date. The conditional

methodology can be applied to the comparison of a wide range of models, such as parametric,



semi-parametric, nonparametric and Bayesian models.

Suppose for simplicity that two alternative models are used to forecast the variable of interest
h steps ahead, y;rp. As described before, the forecasts formulated at time ¢ are based on
information set Z; and are denoted as M; : Gwyn; = f(s¢;9) with ¢ = 1, 2. We evaluate the
sequence of out of sample using a loss function Lyt p, (yi+h, Ye4n,i) with i =1, 2. The loss function
for out-of-sample evaluation used in this dissertation are the squared error loss and the absolute
error loss, as described in Section (2.4.5). For a given loss function and the o-field Z;, we write
the null hypothesis of equal conditioned predictive ability of forecasts §;45,1 and g;yp o for the
horizon ¢t + h as

HO : E [ALtJrh’It] =0

where ALiyy, = Lith (Yeth, Yt+h1) — Livn (Yetn, Yt+n,2). Nevertheless, before describing the
test, it is important to clarify some concepts. In particular, if we are interested in testing which
forecast is better on average, then we let 7, = ((),2). If, on the other hand, we are interested
in producing a forecast for specific data h periods in the future, then conditioning on Z; could
be more appropriate, as it allows us to ask whether there is additional information that can
helps identify which forecast is more appropriate for that date. This situation is particularly
suited for real time forecasting exercise. When Z; is the o-field Z, = (0,Q) and A > 1 the null
hypothesis can be viewed as in Diebold and Mariano (1995) and West (1996); the test is based
on the statistics B
AL,
lrh =7+~
G /T

where AL, =77} Ezlz}g AL,y and 62 is a consistent estimator of the asymptotic variance o2

T

For the level « test rejects the null hypothesis of equal unconditional predictive ability whenever

[trn] > za/2, Where z,/9 is the (1 — a/2) quantile of a standard normal distribution.

3.6 Empirical Results

The forecasting results for the variables are reported in Table 3.1. Three sets of statistics are
reported. The first is the MSE of the proposed forecasting model, computed relative to the
MSE of the AR(BIC) forecast, so the autoregressive forecast has a relative mean square error

(hereafter rMSE) of 1.000. The second is the relative mean absolute error (hereafter rMAE).



An entry of less than one indicates that the specified model is superior to the simple AR(BIC)
forecast. The third is the directional accuracy (DA), which indicates the percentage of forecasts
that correctly predict the direction of the change. We assess the significance of the observed
differences in MSE between models by applying the pairwise Giacomini and White test (hereafter
GW) of equal forecast accuracy, the test results are reported in Table 3.2. The entries in the
table are the p-values of pairwise tests of equal forecast accuracy; the plus or minus sign indicates
that the method in the row outperforms or underperforms, the method in the column at the 5%
significance level. Therefore, in addition to the full sample analysis we report the results also
for the subsamples 1974:1-1984:12 and 1985:1-2002:12. The results in these subsamples help us
to understand whether the method proposed is useful for improving forecast performance of the

variable where its predictability is decreased.

3.6.1 Forecasting Results

The results reported in Table 3.1 for Personal Income show that the forecasts obtained using
both GDFM and FNN-DF, in terms of MSE, have equal performance with respect to the bench-
mark. Comparing the forecasts obtained from GDFM to those of FNN-DF, the nonlinear models
outperform the linear. However, an improvement in terms of MSE or MAE does not reflect an
improvement in correctly predicting the direction of the change of the series. The pooling fore-
casts obtained by using equal weights or by using the technique PLS do not provide significant
improvement with respect to each single model, except for H=12. These results are confirmed in
Table 3.2, where the test demonstrates that the three models: AR, GDFM, and FNN-DF, have
equal prediction accuracy. However, when FNN-DF is compared to GDFM, the hypothesis of
equal forecast accuracy is rejected in favor of nonlinear models. For Personal Income, complex

models do not seem to provide an improvement in prediction accuracy.

For Real Consumption, in Table 3.1 when H=1, the GDFM and FNN-DF models have equal
ability to forecast with respect to the benchmark. However, for H = 3, 6, 9, and 12, forecasts
obtained using these models provide a small improvement. Comparing the forecasts obtained
by linear and nonlinear techniques, FNN-DF models are more accurate in terms of MSE and
MAE. Looking at the DA, the percentage of correctly predicting the sign of the series is in favor
of the FNN-DF® model, especially for H = 6, 9 and 12. The pooling forecasts do not provide

a significant advantage with respect to each single model for H = 1, 3, 6, whereas for H=9 and



12, the use of PLS provides an improvement of about 10%. From Table 3.2, the GW test does
not reject the hypothesis of equal forecast accuracy with respect to the benchmark. Comparing
linear and nonlinear techniques, the results show that there is an improvement in MSE, which
appears to be relevant only for H = 3 and 6. When predicting Real Consumption, there appears
to be an advantage in using the nonlinear models, in comparison to linear models. However,
using more complex models does not necessarily offer a significant improvement with respect to

simple models such as the benchmark.

For Industrial Production Index, the results indicate that forecasts obtained with factor models
using linear or nonlinear techniques are better compared to the benchmark. The improvement
over the benchmark is approximately 25% for H = 1, while for H = 3, 6, 9, 12 the improvement
increased as much as 40%. Comparing the forecast obtained by linear and nonlinear techniques,
the forecasting performance of FNNDF models are worse than those of GDFM, especially for
the horizon H = 3 and 9. However, observing the DA, there is no model which dominates the
others. The equal weights pooling forecast seems to provide an advantage only when H = 12,
however the PLS method does not seem to provide any advantage in forecast accuracy. Looking
at the tests results reported in Table 3.2, the difference in terms of MSE for both linear and
nonlinear models is statistically significant for all forecast horizons compared to the benchmark.
The test does not indicate which model provides more accurate forecasts, instead indicating that
the GDFMG model at H = 1 and 3 there is improved accuracy. For this variable, both linear
and nonlinear models seem to have equally superior ability in prediction accuracy compared to

the benchmark.

For Unemployment Rate, the results are very similar to Industrial Production Index. Here the
improvements are in the order of 17% for H = 1, while for H = 3, 6, 9, and 12, the accuracy
increased up to 46%. Comparing the forecasts obtained by linear and nonlinear techniques, the
performance is very similar. The pooling forecasts do not provide significant improvement when
compared to each single model. The directional accuracy, there is no particular model which
dominates the others. Looking that the results reported in Table 3.2, the GW test results are
statistically significant for all forecasting horizons for both linear and nonlinear models with
respect to the benchmark. As for Industrial Production Index, the test does not indicate which

model provides more accurate forecasts. Nonlinear models do not seem to provide more accurate



forecasts for Unemployment Rate.

Also in the case of Money Supply (M2 series), the forecast obtained with the models using linear
and nonlinear techniques have better performance with respect to the benchmark (Table 3.1).
The models have very similar ability to correctly predict the direction of the series. Some
evidence in favor of GDFM? is found for H = 12. Comparing the forecasts obtained by linear
and nonlinear techniques, the performance of FNN-DF models are worse than the GDFM models,
especially for H = 6 and 9. The pooling forecast using PLS provides marginal improvement
over the single models for H = 1 and 3, whereas for H = 6, 9, and 12 the improvement is more
evident. Table 3.2, the poor performance of nonlinear models is confirmed by the GW test,
particularly, for the horizon H = 6 and 9. For Money Supply (M2 Series), the pooling forecasts

seem to mitigate the errors found in the nonlinear models when H is greater than 6.

For Interest Rate, as shown in Table 3.1, the forecasts obtained with linear and nonlinear models
have better performance only for H = 1 and 3. For the horizon H = 6, 9, and 12, the performance
is similar to the benchmark. Comparing rMSE to rMAE, the rMSE is larger for H = 6, 9, and
12; this result indicates that the forecast obtained by GDFM and FNN-DF are more sensitive
to the outliers in the series than AR(BIC). Looking at DA, both GDFM and FNN-DF have
better performance than the benchmark. Comparing linear and nonlinear models, FNN-DF®
outperforms linear models. The pooling forecast using PLS provide marginal improvement with
respect to each single model with H = 1 and 3, whereas for H = 6, 9, and 12, it provides
an improvement of about 10%. In Table 3.2, the GW test yields results which are statistically
significant for the benchmark for H = 6, 9, and 12. Comparing the GDFM and the FNN-DF,
the results FNN-DFY are statistically significant. As for Money Supply, the pooling forecast

seems to provide more accurate results.

For Producer Price Index, the linear and nonlinear models have the same ability as the bench-
mark to forecast for H = 1 and 3. For H = 6, 9, and 12, the forecasts obtained using these
models provide some improvement over the benchmark. The directional accuracy for both linear
and nonlinear models is superior to the benchmark, as is evident for H = 9 and 12. Comparing
the forecasts obtained using linear and nonlinear techniques, the performance of both GDFM
and FNN-DF is very similar, except for H = 6, 9, and 12, where the linear models are superior.

The pooling forecasts do not provide significant improvement with respect to each individual



model. The GW test results (3.2) confirm the results described above and contained in Table 3.1.
The more complex models have better performance in short horizons for Producer Price Index

forecasting.

For Consumer Price Index, the improvement of both linear and nonlinear techniques are in the
order of 10% for H = 1, while for H = 3, 6, 9, and 12 it increased up to 60% compared to
the benchmark. The directional accuracy both GDFM and FNN-DF dominate the benchmark,
especially for H = 9 and 12 where the prediction of correct sign reaches 90%. Comparing
the forecasts obtained by linear and nonlinear techniques, the GDFM models lead in accuracy
compared to the FNN-DF models. The pooling forecasts do not provide significant improvement
over the individual models. Looking at the GW test results both linear and nonlinear models
perform better than the benchmark. Also comparing the GDFM and FNN-DF models, the
results are statistically significant for GDFM. The linear models seem to perform better than

the alternatives for Consumer Price Index.

Forecasting Results for 1974 - 1984. The results obtained for the period between 1974
and 1984 are very similar to those described above. However, for Personal Income the nonlinear
model appears to be even better than AR(BIC); this result is evident for H = 1, 3, 6 as shown

in Tables 3.3 and 3.4. For all other series, the results do not change.

Forecasting Results for 1985 - 2002. In the period between 1985 and 2002 we observe
a substantial decrease in the forecasting ability of GDFM and FNN-DF compared to simpler
models such as AR (BIC). Looking at Tables 3.5 and 3.6, this result is evident using either
linear and nonlinear models. For Unemployment Rate and Money Supply is it possible obtain

improvements.



Table 3.1: Forecasting Results for the period between 1974 - 2002

PERSONAL INCOME

H=1 H=3 H=2¢6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.509 1.000 1.000 0.560 1.000 1.000 0.497 1.000 1.000 0.431 1.000 1.000 0.440
GDFM® 1.045 1.026 0.537 0.975 0.989 0.606 1.005 0.998 0.546 1.008 1.019 0.552 0.995 0.993 0.598
GDFMS 1.072 1.045 0.555 0.993 1.006 0.581 1.037 1.043 0.549 1.081 1.054 0.552 1.075 1.042 0.624
Nonlinear
FNN-DF® 1.013 1.007 0.517 0.927 0.967 0.601 0.945 0.977 0.540 0.944 0.990 0.535 0.911 0.974 0.572
FNN-DFS 1.015 1.000 0.575 0.929 0.959 0.572 0.947 0.990 0.546 0.942 0.988 0.560 0.971 1.013 0.581
Pooling
PLS 1.026 1.002 0.537 0.939 0.971 0.592 0.947 0.976 0.537 0.938 0.982 0.526 0.888 0.968 0.586
EW 1.018 1.003 0.543 0.934 0.963 0.598 0.953 0.981 0.546 0.932 0.992 0.552 0.906 0.971 0.601
REAL CONSUMPTION
H = H=3 H=2¢6 H = H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.448 1.000 1.000 0.437 1.000 1.000 0.592 1.000 1.000 0.480 1.000 1.000 0.388
GDFM® 1.035 1.032 0.535 0.897 0.964 0.618 0.895 0.974 0.569 0.917 1.027 0.546 0.929 1.037 0.500
GDFMS 1.050 1.049 0.535 0.946 1.013 0.575 0.854 0.958 0.569 0.891 0.971 0.589 0.862 0.973 0.552
Nonlinear
FNN-DF® 0.989 1.007 0.549 0.848 0.934 0.629 0.866 0.957 0.603 0.885 0.998 0.603 0.904 1.015 0.580
FNN-DFS 1.012 1.022 0.512 0.867 0.959 0.578 0.817 0.933 0.589 0.928 0.965 0.572 0.964 1.021 0.526
Pooling
PLS 1.001 1.014 0.535 0.848 0.944 0.612 0.825 0.935 0.583 0.807 0.918 0.572 0.795 0.927 0.532
EW 1.004 1.017 0.549 0.868 0.956 0.615 0.820 0.938 0.581 0.850 0.965 0.572 0.850 0.973 0.523
INDUSTRIAL PRODUCTION INDEX
H=1 H=3 H=2¢6 H=9 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.575 1.000 1.000 0.606 1.000 1.000 0.552 1.000 1.000 0.500 1.000 1.000 0.477
GDFM® 0.741 0.887 0.658 0.623 0.835 0.713 0.561 0.811 0.681 0.572 0.811 0.704 0.603 0.773 0.675
GDFMS 0.784 0.923 0.652 0.674 0.880 0.681 0.577 0.843 0.626 0.619 0.835 0.658 0.629 0.776 0.687
Nonlinear
FNN-DF® 0.736 0.873 0.658 0.619 0.827 0.713 0.551 0.810 0.672 0.637 0.853 0.670 0.630 0.783 0.664
FNN-DFS 0.772 0.910 0.644 0.652 0.859 0.684 0.547 0.826 0.621 0.668 0.866 0.649 0.638 0.789 0.652
Pooling
PLS 0.740 0.883 0.670 0.657 0.849 0.693 0.571 0.810 0.667 0.658 0.823 0.690 0.611 0.767 0.678
EW 0.738 0.884 0.672 0.625 0.843 0.687 0.541 0.811 0.641 0.594 0.825 0.684 0.588 0.756 0.675
UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER
H=1 H=3 H =6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.644 1.000 1.000 0.661 1.000 1.000 0.598 1.000 1.000 0.549 1.000 1.000 0.466
GDFMC 0.830 0.944 0.672 0.748 0.891 0.718 0.573 0.799 0.727 0.555 0.759 0.753 0.544 0.725 0.739
GDFMS 0.850 0.955 0.606 0.735 0.897 0.713 0.521 0.793 0.733 0.510 0.739 0.741 0.551 0.704 0.733
Nonlinear
FNN-DFS 0.816 0.937 0.670 0.742 0.888 0.718 0.617 0.815 0.724 0.591 0.786 0.730 0.592 0.749 0.730
FNN-DFS 0.821 0.941 0.647 0.726 0.891 0.716 0.526 0.789 0.730 0.540 0.763 0.767 0.536 0.703 0.744
Pooling
PLS 0.811 0.933 0.664 0.721 0.876 0.721 0.574 0.813 0.667 0.529 0.735 0.704 0.548 0.723 0.652
EW 0.815 0.936 0.655 0.722 0.876 0.730 0.537 0.786 0.747 0.516 0.738 0.744 0.514 0.694 0.739

— Continued on next page —



MONEY SUPPLY - M2

H=1 H =3 H=6 H=9 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.678 1.000 1.000 0.690 1.000 1.000 0.695 1.000 1.000 0.701 1.000 1.000 0.595
GDFM© 0.785 0.888 0.721 0.765 0.898 0.707 0.762 0.852 0.672 0.675 0.797 0.733 0.709 0.851 0.736
GDFMS 0.749 0.854 0.733 0.749 0.873 0.741 0.788 0.861 0.733 0.716 0.802 0.753 0.758 0.865 0.747
Nonlinear
FNN-DF® 0.776 0.884 0.730 0.767 0.898 0.713 0.790 0.863 0.678 0.728 0.821 0.721 0.756 0.866 0.701
FNN-DFS 0.742 0.851 0.736 0.749 0.874 0.739 0.913 0.918 0.716 0.771 0.824 0.741 0.740 0.861 0.721
Pooling
PLS 0.726 0.847 0.741 0.703 0.879 0.741 0.634 0.794 0.739 0.602 0.785 0.773 0.660 0.854 0.741
EW 0.738 0.851 0.733 0.718 0.865 0.721 0.753 0.851 0.724 0.679 0.794 0.750 0.687 0.840 0.736
INTEREST RATE: FEDERAL FUNDS (EFFECTIVE)
H=1 H=3 H=2¢6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.626 1.000 1.000 0.612 1.000 1.000 0.560 1.000 1.000 0.494 1.000 1.000 0.376
GDFM® 0.828 0.963 0.695 0.948 0.933 0.690 0.992 0.926 0.667 1.022 0.921 0.658 0.961 0.881 0.598
GDFMS 0.854 0.988 0.684 0.976 0.957 0.687 1.068 0.978 0.690 1.137 0.992 0.661 1.049 0.944 0.626
Nonlinear
FNN-DF® 0.785 0.933 0.698 0.875 0.902 0.684 0.963 0.922 0.661 0.973 0.918 0.638 0.956 0.877 0.612
FNN-DFS 0.805 0.950 0.684 0.924 0.937 0.693 0.999 0.947 0.684 1.055 0.965 0.661 1.088 0.946 0.632
Pooling
PLS 0.797 0.933 0.672 0.875 0.910 0.698 0.911 0.916 0.667 0.909 0.915 0.672 0.851 0.906 0.618
EW 0.796 0.935 0.693 0.908 0.923 0.687 0.975 0.931 0.684 1.012 0.933 0.655 0.972 0.897 0.606
PRODUCER PRICE INDEX
H=1 H =3 H=¢6 H=9 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.535 1.000 1.000 0.506 1.000 1.000 0.526 1.000 1.000 0.497 1.000 1.000 0.486
GDFMC 0.996 1.026 0.529 0.991 1.015 0.549 0.877 0.953 0.615 0.859 0.947 0.552 0.740 0.893 0.586
GDFMS 0.982 0.999 0.563 0.968 1.017 0.558 0.864 0.948 0.609 0.844 0.945 0.598 0.785 0.926 0.566
Nonlinear
FNN-DF® 0.975 1.011 0.540 0.975 1.002 0.543 0.889 0.962 0.595 0.859 0.937 0.558 0.828 0.912 0.558
FNN-DFS 0.953 0.988 0.552 0.933 0.987 0.558 0.843 0.934 0.578 0.911 0.960 0.575 0.844 0.932 0.543
Pooling
PLS 0.958 0.999 0.535 0.933 0.984 0.543 0.848 0.941 0.601 0.787 0.902 0.606 0.740 0.869 0.578
EW 0.959 1.002 0.540 0.949 0.993 0.558 0.831 0.930 0.618 0.844 0.941 0.569 0.773 0.906 0.572
CPI-U: ALL ITEMS
H=1 H=3 H=2¢6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.558 1.000 1.000 0.583 1.000 1.000 0.552 1.000 1.000 0.506 1.000 1.000 0.500
GDFM® 0.876 0.960 0.618 0.691 0.866 0.641 0.636 0.824 0.664 0.506 0.739 0.618 0.474 0.718 0.621
GDFMS 0.841 0.917 0.638 0.711 0.856 0.652 0.678 0.836 0.664 0.531 0.754 0.624 0.517 0.760 0.644
Nonlinear
FNN-DF® 0.874 0.956 0.592 0.683 0.859 0.641 0.716 0.861 0.655 0.595 0.785 0.586 0.597 0.799 0.586
FNN-DFS 0.845 0.932 0.644 0.694 0.851 0.675 0.744 0.861 0.647 0.725 0.825 0.592 0.733 0.860 0.575
Pooling
PLS 0.840 0.930 0.624 0.687 0.852 0.649 0.653 0.832 0.658 0.491 0.723 0.632 0.477 0.727 0.632
EW 0.839 0.931 0.638 0.685 0.849 0.664 0.649 0.817 0.667 0.534 0.743 0.618 0.532 0.768 0.612

Notes: Entries are relative MSE and relative MAE, relative to the benchmark AR. DA is the directional accuracy
criterion. All the criteria were computed over the period 1974:1 - 2002:12-h. The pooling forecast is obtained applying
the simulated forecasting exercise described in Section (3.2). The various columns correspond to forecasts of 1, 3, 6, 9

and 12-month growth, where all the multiperiod forecasts were computed using direct methods.
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Table 3.3: Forecasting Results for the Period 1974 - 1984

PERSONAL INCOME

H = H = H =26 H = H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.511 1.000 1.000 0.474 1.000 1.000 0.511 1.000 1.000 0.436 1.000 1.000 0.361
GDFMC 1.015 1.004 0.564 0.816 0.876 0.684 0.834 0.893 0.639 0.797 0.922 0.752 0.776 0.864 0.805
GDFMS 0.998 0.971 0.624 0.778 0.854 0.692 0.840 0.943 0.677 0.879 0.961 0.767 0.912 0.945 0.827
Nonlinear
FNN-DF® 0.967 0.989 0.564 0.777 0.852 0.677 0.801 0.894 0.624 0.791 0.921 0.707 0.785 0.885 0.782
FNN-DFS 0.912 0.944 0.594 0.746 0.809 0.669 0.806 0.910 0.662 0.711  0.880 0.752 0.939 0.977 0.767
Pooling
PLS 0.976 0.966 0.579 0.766 0.829 0.707 0.782 0.879 0.662 0.758 0.905 0.699 0.574 0.755 0.790
EW 0.954 0.968 0.587 0.760 0.828 0.692 0.786 0.881 0.647 0.737 0.902 0.767 0.770 0.872 0.812
REAL CONSUMPTION
H=1 H=3 H=2¢6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.466 1.000 1.000 0.421 1.000 1.000 0.571 1.000 1.000 0.414 1.000 1.000 0.278
GDFMC 1.060 1.040 0.549 0.781 0.891 0.692 0.670 0.780 0.654 0.675 0.803 0.707 0.678 0.809 0.609
GDFMS 1.071 1.055 0.541 0.836 0.938 0.647 0.678 0.799 0.692 0.712 0.791 0.714 0.694 0.799 0.677
Nonlinear
FNN-DF® 1.000 1.013 0.541 0.742 0.872 0.699 0.664 0.781 0.662 0.676 0.799 0.722 0.682 0.810 0.587
FNN-DFS 1.047 1.044 0.504 0.755 0.883 0.662 0.661 0.788 0.707 0.801 0.816 0.692 0.860 0.910 0.602
Pooling
PLS 1.021 1.028 0.541 0.747 0.887 0.654 0.638 0.766 0.677 0.608 0.739 0.707 0.608 0.753 0.684
EW 1.025 1.032 0.534 0.764 0.889 0.654 0.635 0.773 0.692 0.665 0.781 0.714 0.665 0.785 0.639
INDUSTRIAL PRODUCTION INDEX
H = H=3 H =26 H = H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.556 1.000 1.000 0.647 1.000 1.000 0.481 1.000 1.000 0.308 1.000 1.000 0.293
GDFM® 0.630 0.814 0.707 0.550 0.743 0.790 0.398 0.626 0.790 0.360 0.593 0.805 0.346 0.534 0.850
GDFMS 0.647 0.840 0.714 0.567 0.760 0.782 0.375 0.624 0.797 0.396 0.612 0.797 0.381 0.568 0.842
Nonlinear
FNN-DF® 0.646 0.813 0.707 0.548 0.737 0.805 0.392 0.630 0.790 0.444 0.656 0.744 0.383 0.547 0.835
FNN-DFS 0.663 0.840 0.692 0.553 0.738 0.782 0.348 0.606 0.805 0.457 0.655 0.790 0.400 0.576 0.790
Pooling
PLS 0.635 0.812 0.714 0.576 0.737 0.812 0.420 0.635 0.805 0.506 0.663 0.820 0.422 0.601 0.827
EW 0.634 0.816 0.737 0.544 0.740 0.797 0.363 0.608 0.797 0.386 0.610 0.797 0.338 0.528 0.842
UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER
H=1 H =3 H=2¢6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.632 1.000 1.000 0.639 1.000 1.000 0.466 1.000 1.000 0.391 1.000 1.000 0.384
GDFM® 0.752 0.920 0.684 0.701 0.840 0.677 0.497 0.712 0.699 0.463 0.651 0.767 0.433 0.596 0.835
GDFMS 0.747 0.923 0.669 0.661 0.812 0.714 0.429 0.682 0.729 0.421 0.624 0.759 0.470 0.604 0.850
Nonlinear
FNN-DFS 0.743 0.913 0.692 0.695 0.839 0.684 0.551 0.728 0.699 0.496 0.679 0.737 0.491 0.625 0.842
FNN-DFS 0.740 0.910 0.662 0.663 0.815 0.699 0.433 0.684 0.722 0.441 0.650 0.782 0.433 0.579 0.880
Pooling
PLS 0.732 0.908 0.669 0.678 0.827 0.684 0.513 0.734 0.699 0.468 0.651 0.722 0.488 0.650 0.752
EW 0.735 0.910 0.669 0.669 0.816 0.699 0.460 0.696 0.744 0.431 0.637 0.744 0.428 0.581 0.857

— Continued on next page —



MONEY SUPPLY - M2

H=1 H =3 H=6 H=9 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.677 1.000 1.000 0.669 1.000 1.000 0.729 1.000 1.000 0.609 1.000 1.000 0.278
GDFM© 0.683 0.835 0.744 0.650 0.840 0.774 0.615 0.782 0.744 0.575 0.714 0.790 0.560 0.744 0.812
GDFMS 0.668 0.802 0.774 0.705 0.841 0.774 0.773 0.862 0.782 0.713 0.772 0.797 0.677 0.814 0.774
Nonlinear
FNN-DF® 0.674 0.825 0.767 0.656 0.837 0.767 0.650 0.789 0.744 0.631 0.743 0.774 0.638 0.800 0.737
FNN-DFS 0.655 0.792 0.774 0.701  0.830 0.759 0.993 0.967 0.744 0.812 0.820 0.752 0.669 0.813 0.744
Pooling
PLS 0.649 0.796 0.767 0.550 0.762 0.812 0.562 0.679 0.752 0.501 0.712 0.790 0.510 0.678 0.774
EW 0.650 0.794 0.752 0.635 0.808 0.752 0.677 0.822 0.767 0.630 0.743 0.797 0.579 0.770 0.782
INTEREST RATE: FEDERAL FUNDS (EFFECTIVE)
H=1 H=3 H=2¢6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.624 1.000 1.000 0.541 1.000 1.000 0.451 1.000 1.000 0.459 1.000 1.000 0.263
GDFM® 0.791 0.897 0.752 0.951 0.943 0.647 0.992 0.910 0.699 1.086 0.964 0.632 0.951 0.853 0.594
GDFMS 0.836 0.965 0.707 0.976 0.977 0.624 1.030 0.939 0.722 1.117 0.990 0.669 0.951 0.869 0.662
Nonlinear
FNN-DF® 0.763 0.891 0.752 0.882 0.920 0.662 0.962 0.905 0.692 1.028 0.955 0.602 0.953 0.849 0.609
FNN-DFS 0.793 0.931 0.714 0.927 0.961 0.632 0.973 0.911 0.722 1.049 0.962 0.662 1.021 0.881 0.677
Pooling
PLS 0.784 0.906 0.722 0.881 0.927 0.647 0.886 0.875 0.684 0.892 0.888 0.692 0.701 0.771 0.654
EW 0.782 0.910 0.722 0.915 0.946 0.639 0.970 0.908 0.692 1.048 0.951 0.654 0.941 0.847 0.624
PRODUCER PRICE INDEX
H=1 H =3 H=¢6 H=9 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.617 1.000 1.000 0.602 1.000 1.000 0.677 1.000 1.000 0.564 1.000 1.000 0.444
GDFMC 1.094 1.079 0.504 0.925 1.021 0.662 0.859 1.008 0.714 0.763 0.898 0.752 0.564 0.744 0.812
GDFMS 1.108 1.066 0.526 0.843 0.983 0.677 0.804 0.949 0.714 0.683 0.863 0.782 0.587 0.771 0.797
Nonlinear
FNN-DF® 1.064 1.061 0.496 0.917 1.002 0.639 0.889 1.026 0.692 0.809 0.909 0.737 0.736 0.803 0.774
FNN-DFS 1.064 1.038 0.534 0.834 0.963 0.684 0.808 0.948 0.692 0.888 0.932 0.782 0.735 0.824 0.759
Pooling
PLS 1.069 1.047 0.504 0.867 0.977 0.662 0.796 0.967 0.707 0.666 0.824 0.827 0.603 0.737 0.790
EW 1.068 1.055 0.519 0.859 0.981 0.677 0.781 0.951 0.722 0.756 0.895 0.759 0.626 0.780 0.797
CPI-U: ALL ITEMS
H=1 H=3 H=2¢6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.677 1.000 1.000 0.669 1.000 1.000 0.639 1.000 1.000 0.564 1.000 1.000 0.466
GDFM® 0.871 0.976 0.654 0.547 0.756 0.759 0.516 0.755 0.774 0.361 0.587 0.790 0.322 0.539 0.865
GDFMS 0.898 0.954 0.684 0.569 0.752 0.767 0.576 0.764 0.759 0.395 0.608 0.759 0.388 0.599 0.842
Nonlinear
FNN-DF® 0.883 0.987 0.624 0.554 0.769 0.759 0.643 0.826 0.722 0.461 0.656 0.729 0.491 0.679 0.805
FNN-DFS 0.887 0.966 0.684 0.567 0.759 0.782 0.687 0.829 0.729 0.624 0.722 0.714 0.656 0.765 0.737
Pooling
PLS 0.869 0.963 0.654 0.562 0.765 0.774 0.554 0.781 0.752 0.377 0.611 0.790 0.372 0.604 0.827
EW 0.868 0.961 0.662 0.553 0.756 0.782 0.553 0.758 0.759 0.397 0.610 0.752 0.412 0.631 0.812

Notes: Entries are relative MSE and relative MAE, relative to the benchmark AR. DA is the directional accuracy
criterion. All the criteria were computed over the period 1974:1 - 1985:12-h. The pooling forecast is obtained applying
the simulated forecasting exercise described in Section (3.2). The various columns correspond to forecasts of 1, 3, 6, 9

and 12-month growth, where all the multiperiod forecasts were computed using direct methods.
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Table 3.5: Forecasting Results for the Period 1984 - 2002

PERSONAL INCOME

H = H = H =26 H=9 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.507 1.000 1.000 0.614 1.000 1.000 0.488 1.000 1.000 0.428 1.000 1.000 0.488
GDFMG 1.060 1.042 0.521 1.142 1.089 0.558 1.185 1.085 0.488 1.212 1.094 0.428 1.247 1.104 0.470
GDFMS 1.109 1.098 0.512 1.220 1.139 0.512 1.245 1.124 0.470 1.276 1.124 0.419 1.264 1.127 0.498
Nonlinear
FNN-DF® 1.036 1.019 0.488 1.085 1.067 0.554 1.097 1.045 0.488 1.092 1.042 0.428 1.057 1.051 0.442
FNN-DFS 1.065 1.041 0.563 1.120 1.090 0.512 1.095 1.055 0.474 1.047 1.035 0.442 1.009 1.045 0.465
Pooling
PLS 1.051 1.027 0.512 1.121 1.095 0.521 1.121 1.056 0.461 1.112 1.041 0.419 1.034 1.022 0.461
EW 1.049 1.028 0.516 1.116 1.082 0.540 1.129 1.063 0.484 1.120 1.061 0.419 1.107 1.058 0.470
REAL CONSUMPTION
H=1 H=3 H=2¢6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.437 1.000 1.000 0.447 1.000 1.000 0.605 1.000 1.000 0.521 1.000 1.000 0.456
GDFMC 1.018 1.026 0.526 1.078 1.038 0.572 1.400 1.217 0.516 1.520 1.319 0.447 1.518 1.328 0.433
GDFM®S 1.036 1.045 0.530 1.117 1.088 0.530 1.250 1.158 0.493 1.339 1.206 0.512 1.257 1.195 0.474
Nonlinear
FNN-DF® 0.982 1.002 0.554 1.012  0.997 0.586 1.318 1.178 0.502 1.406 1.257 0.465 1.422 1.276 0.414
FNN-DFS 0.986 1.007 0.516 1.043 1.035 0.526 1.168 1.115 0.516 1.246 1.159 0.498 1.206 1.163 0.479
Pooling
PLS 0.986 1.003 0.530 1.004 1.002 0.586 1.243 1.147 0.526 1.236 1.152 0.488 1.166 1.149 0.437
EW 0.989 1.006 0.558 1.029 1.024 0.591 1.235 1.145 0.512 1.311 1.206 0.484 1.285 1.214 0.451
INDUSTRIAL PRODUCTION INDEX
H = H=3 H =26 H = H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.586 1.000 1.000 0.581 1.000 1.000 0.595 1.000 1.000 0.619 1.000 1.000 0.591
GDFM® 0.974 0.960 0.628 0.955 0.957 0.665 1.110 1.081 0.614 1.208 1.135 0.642 1.221 1.094 0.567
GDFMS 1.068 1.006 0.614 1.012 1.039 0.619 1.257 1.164 0.521 1.290 1.167 0.572 1.226 1.054 0.591
Nonlinear
FNN-DF® 0.973 0.933 0.628 0.944 0.947 0.656 1.091 1.074 0.600 1.218 1.145 0.623 1.223 1.098 0.558
FNN-DFS 0.998 0.979 0.614 0.966 1.020 0.623 1.220 1.148 0.507 1.304 1.180 0.563 1.210 1.074 0.567
Pooling
PLS 0.960 0.953 0.642 0.911 0.997 0.619 1.081 1.066 0.581 1.114 1.061 0.609 1.066 0.989 0.586
EW 0.954 0.952 0.633 0.885 0.980 0.619 1.142 1.107 0.544 1.219 1.144 0.614 1.188 1.061 0.572
UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER
H=1 H =3 H=2¢6 H=09 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.651 1.000 1.000 0.674 1.000 1.000 0.679 1.000 1.000 0.647 1.000 1.000 0.516
GDFM® 0.945 0.967 0.665 0.880 0.956 0.744 0.887 0.943 0.744 0.892 0.936 0.744 0.839 0.909 0.679
GDFM®S 1.001 0.986 0.567 0.942 1.006 0.712 0.901 0.975 0.735 0.834 0.926 0.730 0.764 0.848 0.661
Nonlinear
FNN-DF® 0.924 0.960 0.656 0.872 0.950 0.740 0.890 0.958 0.740 0.936 0.961 0.726 0.863 0.926 0.661
FNN-DFS 0.941 0.969 0.637 0.905 0.989 0.726 0.910 0.962 0.735 0.902 0.947 0.758 0.811 0.881 0.661
Pooling
PLS 0.927 0.957 0.661 0.844 0.940 0.744 0.827 0.944 0.647 0.752 0.871 0.693 0.704 0.828 0.591
EW 0.932 0.960 0.647 0.870 0.954 0.749 0.854 0.933 0.749 0.824 0.903 0.744 0.745 0.855 0.665

— Continued on next page —



MONEY SUPPLY - M2

H=1 H =3 H=6 H=9 H =12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA
Benchmark
AR 1.000 1.000 0.679 1.000 1.000 0.702 1.000 1.000 0.674 1.000 1.000 0.758 1.000 1.000 0.791
GDFM© 0.875 0.926 0.707 0.905 0.945 0.665 0.916 0.902 0.628 0.789 0.865 0.698 0.938 0.952 0.688
GDFMS 0.821 0.892 0.707 0.803 0.899 0.721 0.804 0.861 0.702 0.719 0.827 0.726 0.881 0.913 0.730
Nonlinear
FNN-DF® 0.866 0.926 0.707 0.903 0.947 0.679 0.939 0.917 0.637 0.839 0.885 0.688 0.935 0.928 0.679
FNN-DFS 0.820 0.894 0.712 0.808 0.908 0.726 0.828 0.882 0.698 0.723 0.827 0.735 0.849 0.906 0.707
Poo