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Abstract

This dissertation aims to introduce a nonlinear model to forecast macroeconomic time series

using a large number of predictors, namely the Feedforward Neural Network - Dynamic Factor

Model (FNN-DF). The technique used to summarize the predictors in a small number of factors

is Generalized Dynamic Factor Model, while the method used to capture nonlinearity is artifi-

cial neural networks, specifically Feedforward Neural Network. Commonly in GDFM literature,

forecasts are made using linear models. However linear techniques are often misspecified and

the resulting forecasts provide only a poor approximation to the best possible forecast. In an

effort to address this issue, the technique we propose is FNN-DF. To determine the practical

usefulness of the model, we conducted several pseudo forecasting exercises on 8 series of the

United States economy. The series we were interested in forecasting were grouped in real and

nominal categories. This method was used to construct the forecasts at 1-, 3-, 6-, and 12-month

horizons for monthly U.S. economic variables using 131 predictors. The empirical study shows

that FNN-DF has good ability to predict the variables under study in the period before the

start of the "Great Moderation", namely 1984. After 1984, FNN-DF has the same accuracy in

forecasting with respect to the benchmark.

Keywords: Factor model; Principal components analysis; Artificial neural networks; Non-

linear modeling; Bayesian Regularization; Forecasting.
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Introduction

The main objective of this dissertation is to provide a new forecasting technique for macroeco-

nomics and financial variables obtained from the combination of two different methods of data

modeling already well-established in economic forecasting literature. The proposed technique

is related to factor analysis and artificial neural networks. In the contest of forecasting, we

restrict our discussion to point forecast constructed as an approximations of the conditional

expectation of a target variable, say yt, given a set of informative predictors, say xt, namely

µ(xt) = E (yt|xt). In general µ(xt) provides the best possible prediction of yt given xt in terms

of the mean squared forecast error, where the function µ solves the

argmin
f∈F

E
[
(yt − f(xt))

2
]

where F is the collection of function f of xt. As pointed out by Lee et al. (1993), µ is not

known and the forecaster typically choses a model for µ; if µ belongs to F we can affirm that

the model is correctly specified instead, if µ does not belong to F we can affirm that the model

is not correctly specified. Since we rarely have enough information to correctly specify µ, our

discussion will be concentrated on the construction of forecast as the best possible approximation

for µ. Then one of the main objectives in this dissertation is to construct a model that best

approximates µ.

The increasing availability of macroeconomic variables provides the opportunity to explore a

much richer base of information which can be used to improve accuracy in forecasting key

macroeconomic variables such as inflation or industrial production. However, many of the sta-

tistical tools available in literature are not able to efficiently use the information available. One

of the main problems encountered is the "curse of dimensionality", where the number of param-

eters to be estimated increases dramatically when the number of economic variables is increased.

The result is that the estimates are not efficient and the forecast error grows proportionally to

the number of variables used.

The aim of factor analysis is to provide a tool that summarizes the information contained in

a large dataset in a small number of factors. This type of information extraction has been

successfully applied to many fields of economic research, ranging from asset pricing theory to



business cycle. The basic idea that stands behind the factor model is that the movement of a

time series can be characterized as the sum of two mutually orthogonal components, the common

component is a linear combination of the common factors and should explain the main part of

the variance of the time series; the second, the idiosyncratic component, contains the remaining

variable-specific information and is only weakly correlated across the dataset. However, neither

the common nor the idiosyncratic component can be observed directly and have to be estimated.

In this dissertation we open with a discussion on a recent identification and estimation scheme

proposed by Forni and Lippi (2001). The common components in their so-called generalized

dynamic factor model (GDFM) are derived by assuming a dataset with an infinite number of

series and an infinite number of observations. It thereby combines the so-called approximate

static factor model proposed by Chamberlain and Rothschild (1983) and recently by Stock and

Watson (2002a,b), and the dynamic factor model proposed by Geweke (1977) and Sargent and

Sims (1977) for which cross-sectional and serial correlation was allowed. The model is called dy-

namic since the common shocks may not impact a series simultaneously, as in the static model,

but they can propagate with leads or lags. In the GDFM the common components are inher-

ently unobservable and are estimated by using the technique of dynamic principal components.

While the familiar static principal components are based on an eigenvalue decomposition of the

contemporaneous covariance matrix, dynamic principal components are based on the spectral

density matrix (i.e. dynamic covariations) of the data and consequently are averages of the data,

weighted and shifted through time.

In this type of literature one of the possible limitations is the usual assumption that the common

shocks have a linear relationship with each series contained in the panel. We could have, for

the discussion made at the beginning of this introduction, the situation where the assumption

of linearity is not adequate to capture some economic behavior, since as previously stated we do

not have sufficient information for it. Indeed, it may happen that in some periods a particular

economy is characterized by the presence of two or more regimes, for instance phases of expansion

or recession; the same reasoning is valid for financial variables for which it is very common to have

periods of high and low volatility. For the reason described above, the common components could

have an impact that is transferred on each series in the panel in a nonlinear way. Then, in these

periods it is possible to improve accuracy in forecasting, using nonlinear techniques. The number



of possible models that can be applied is enormous and is constantly expanding; although many of

these have been successfully applied in the literature; the use of neural networks is motivated by

their important mathematical properties, in particular the approximation capabilities, since our

goal is to build a model that best approximates µ. The use of such a technique involves theoretical

complications that often inhibit practical use. The main issues that are often encountered are

the computational burden and the danger of overfit. In this framework we introduce a new

model, feedforward neural network-dynamic factor model (FNN-DF).

The dissertation continues by presenting artificial neural network which is a parallel distributed

statistical model made up of simple units that process information in currently available data

and makes generalizations for future observations. In the context of artificial neural network

literature, the input and the output can be interpreted respectively as regressors and regres-

sands as in a regression model. Estimation of the parameters in a neural network is often called

training, which is equivalent to the parameter estimation in a regression model. In this disserta-

tion a particular network structure called Feedforward Neural Network (FNN) is used, to have

more informations on FNN see Fine (1999). In the FNN the processing units or neurons are

organized in the form of layers. We have at least three layers: an input layer, an output layer,

and hidden layers, which are the layers between the input and the output. The processing units

which correspond to the hidden layers are called hidden units. The source nodes in the input

layer constitute the input signals to the neurons in the second layer.

Among neural networks, FNN is one of the most recent techniques used and its use is motivated

by the results from the Universal Approximation Theorem. This theorem is very important since

it has been shown by Hornik et al. (1989) and Cybenko (1989) that every continuous functions

defined on a compact set can be arbitrarly well approximated with a FNN even if it is formed

by a single layer.

A FNN derives approximation capabilities from its parallel structure. The hidden units are used

to process information and include an activation function which describes the nature between

input and hidden units. The universal approximation capabilities emerge when a number of

activation functions are connected through a set of parameters. This parallel structure has the

advantage of decomposing a large problem into a number of simpler problems. The universal

approximation property is an important result theoretically and has immediate implications for



financial and economic modeling. Finally the new theory is applied to demonstrate the practical

usefulness of the FNN-DF model. In particular we conducted several forecasting exercises on

different series of the U.S. economy.



Chapter 1

The Generalized Dynamic Factor

Models

In the macroeconomic literature, traditional factor analysis is based on theoretical support where

the number of variables (n) and the number of observations (T ) are small. When we have a

dataset where n and T tend to be very large, this exhibits a computational problems due to the

increasing number of parameters to estimate. In this chapter a new concept of factor analysis

particularly suited to situations where the available dataset is very large is presented. From a

theoretical point of view large factor analysis is particularly interesting, since it is possible to

assume, under certain conditions, that the panel of available variables can be decomposed into

the sum of two components said the common and idiosyncratic components respectively. From

a practical perspective it can be observed that an economy composed of many sectors, regions or

individuals is characterized by a small number of variations common to all the variables under

study.

1.1 Notations and Basic Assumptions

Let P = (Ω, I, P ) be a probability space and let L2 (P,C) be the linear space of all complex-

valued, zero mean, square-integrable random variables defined on Ω.

In this chapter we deal with a double sequence x = {xit, i ∈ N, t ∈ Z}, where xit ∈ L2 (P,C)

and with xnt = (x1t x2t · · · xnt)′ we denote the n-dimensional column vector for the observation

made at time t. Given a complex matrix D, we denote D
′
as the transpose of D and D∗ as

the complex conjugate of D
′
. With θ we denote the real interval [−π, π]. Given the subset

G ⊆ L2 (P,C) we denote the closed span of G as span (G) which is the minimum closed subspace

of L2 (P,C) containing G. If S is a closed linear subspace of L2 (P,C) and x ⊆ L2 (P,C), we



denote proj (x|S) as the orthogonal projection of x on S.

Moreover we assume that for any n ∈ N the process xnt is covariance stationary, that is

E
[
xntx′nt−k

]
= Γxnk and xnt has spectral density Σx

n with its entries σij (θ) bounded in modulus

and it is absolutely continuous with respect to the Lebesgue measure on θ

Γxnk =
∫ π

−π
eikθΣx

n (θ) dθ

Given a double sequence x = {xit, i ∈ N, t ∈ Z}, where xit ∈ L2 (P,C) the model proposed

by Forni and Lippi (2001) defined by the following.

Definition 1 (Generalized Dynamic Factor Model) Let q be a nonnegative integer. The

double sequence x is a q-dynamic factor sequence if L2 (P,C) contains an orthonormal q-dimensional

white-noise vector process u =
{

(u1t u2t · · · uqt)′ , t ∈ Z
}

= {ut, t ∈ Z}, and a double sequence

ξ = {ξit, i ∈ N, t ∈ Z} such that

1. For any i ∈ N,

xt = χt + ξt (1.1)

χit = b1 (L)u1t + b2 (L)u2t + · · ·+ bq (L)uqt = B (L) ut,

where bi ∈ L
q
2 (θ,C).

2. For any i ∈ N, j = 1, 2, . . . , q and k ∈ Z, we have ξit ⊥ ξit−k, then ξit ⊥ χst−k for any

i ∈ N, s ∈ N and k ∈ Z.

3. ξ is idiosyncratic.

4. Putting χ = {χit, i ∈ N, t ∈ Z}, λχq (θ) =∞ a.e. in θ.

The double sequences χ and ξ are referred to as the common and the idiosyncratic component

of representation (1.1).

The corresponding statistical model for the vector of observable xnt is

xnt = χnt + ξnt (1.2)

= Bn (L) ut + ξnt



where Bn (L) =
(
bn1(L) · · ·bnq(L)

)
is an n× q matrix.

1.2 Identification of the Model

The problem of identification of model (1.1) refers to conditions on the variance-covariance of the

data for which the common and idiosyncratic components are identified. In Forni et al. (2000)

conditions on the spectral density matrix of x have been defined under which the components

are identified as n goes to infinity. The asymptotic identification is the precondition to develop

an estimator for the components which are consistent for n and T going to infinity. The essential

assumptions for identification are the following.

Assumption 1 (Identification) Given a double sequence x = {xit, i ∈ N, t ∈ Z}, where xit ∈

L2 (P,C) and

xt = χt + ξt = B (L) ut + ξt

we suppose that

(i) the q-dimensional vector process
{

(u1t u2t · · ·uqt)′ , t ∈ Z
}
is an orthonormal white noise.

That is, E (ujt) = 0; var (ujt) = 1 for any j and t; ujt ⊥ ujt−k for any j, t, and k 6= 0;

ujt ⊥ us,t−k for any s 6= j, t and k.

(ii) ξ = {ξit, i ∈ N, t ∈ Z} is a double sequence such that, ξn =
{

(ξ1t ξ2t · · · ξnt)′ , t ∈ Z
}
is a

zero-mean stationary vector process for any n, and ξit ⊥ uj,t−k for any i, j, t, k;

(iii) the filters B (L) are one-sided in L and their coefficients are square summable.

The hypothesis assumed implies that the vector x = {xit, i ∈ N, t ∈ Z}, where xit ∈ L2 (P,C)

is stationary with mean equally zero for all n. Another consequence of Assumption (1) is the

possibility to write the spectral density of Σx
n (θ) as the sum of the spectral density matrix of

common component Σχ
n (θ), and the spectral density matrix of idiosyncratic component, Σξ

n (θ).

Moreover, in order to identify the latent variables above defined, the model needs an additional

assumption.

Assumption 2 For any i ∈ N, there exist a real ci > 0 such that σii (θ) ≤ ci for any θ ∈ [−π, π].

The first idiosyncratic dynamic eigenvalues λξn1 is uniformly bounded. That is, there exist a real



Λ such that λξn1 (θ) for any θ ∈ [−π, π] and n ∈ N. The first q common dynamic eigenvalues

diverge almost everywhere in [−π, π]. That is limn→∞ λ
χ
nj (θ) =∞ for j ≤ q, a.e. in [−π, π].

As exposed by the authors, there is some intuition behind Assumption (2). Specifically, the two

statements implies the following: First, the bound to the dynamic eigenvalues of the spectral

density of idiosyncratic components indicates that the dynamic eigenvalues have effects con-

centrated on a limited number of variables. These tend to zero when the number of variables

tends to infinite. Second, the divergence in the spectral density matrix of common components

implies that the dynamic eigenvalues are present in a large number of observational units with

non-decreasing importance among them.

If the Assumptions (1) and (2) are satisfied, Forni and Lippi (2001) show that the double

sequence x = {xit, i ∈ N, t ∈ Z} is a q-generalized dynamic factor model.

Forni et al. (2000) propose the following method for consistently recovering the common com-

ponents χit. Given the spectral density Σx
n of xnt, there exist n vectors of complex-valued

functions

pnj (θ) =
(
pnj,1 (θ) pnj,2 (θ) · · · pnj,n (θ)

)
for j = 1, . . . , n such that

(a) pnj (θ) is a row eigenvector of Σx
n, i.e.

pnj (θ) Σx
n = λxnj (θ) pnj (θ) for any θ ∈ [−π, π] ;

(b) |pnj (θ) |2= 1 for any j and θ ∈ [−π, π];

(c) pnj (θ) p∗ns (θ) = 0 for any j 6= s and any θ ∈ [−π, π];

(d) pnj (θ) is θ-measurable on [−π, π].

Through the properties (a)-(d), each eigenvector pnj (θ) can be expanded in Fourier series

pnj (θ) =
1

2π

∞∑
k=−∞

[∫ π

−π
pnj (θ) eikθdθ

]
e−ikθ,



thus allowing for the construction of a square-summable, n-dimensional, bilateral filter

p
nj

(L) =
1

2π

∞∑
k=−∞

[∫ π

−π
pnj (θ) eikθdθ

]
Lk.

Moreover, for j = 1, . . . , n the scalar process πjt =
{

p
nj

(L) xnt, t ∈ Z
}

is called the j-th

dynamic principal component of xnt. Now consider the minimal closed subspace of L2 (Ω, I, P )

containing the first q principal components

Un = span
(
p
nj

(L) xnt, j = 1, . . . , q, t ∈ Z
)

and the orthogonal projections

χit,n = proj (xit|Un)

= Kni (L) xnt (1.3)

with Kni (L) = p∗n1,i (L) p
n1

(L) + p∗n2,i (L) p
n2

(L) + · · · + p∗nq,i (L) p
nq

(L). Then, under the

Assumptions (1) and (2) for all i and t the limn→∞ χit,n = χit in mean square. This result

indicates that the common component χit can be recovered asymptotically from the sequence

Kni (L) xnt.

1.3 The Static Representation

An alternative model for the large n case was developed by Stock and Watson (2002b). Their

model, in time invariant formulation, can be written in the following form

xnt = Bn(L)ut + ξnt

= ΛnFt + ξnt (1.4)

where Ft is an r × 1 vector of common factors. Contrary to the specification by Forni and

Lippi (2001), the common factors are not required to be uncorrelated in time, and they can

also be correlated with the idiosyncratic components. In this case only var [Ft] = I is required

for identification. Suppose that the filter has finite order m ≥ 0, i.e. Bn(L) = Bn
0 + Bn

1L +



. . .+Bn
mL

m, then the model in (1.1) can be written as in (1.4), where Ft = (u′
t,u

′
t−1, . . . ,u

′
t−m)

and the i-th row of Λn has elements (Bn
0 ,B

n
1 , . . . ,B

n
m). The dimension of Ft is always equal to

r = q(m+1), where q is the dimension of ut. Although the relation between xnt and Ft is static,

Ft itself can be a dynamic process, depending on the dynamics of ut. Then, the static method

makes use of representation (1.4)without taking into account the dynamic structure of Ft. This

implies that the common factors are dynamically singular and the spectral density matrix of Ft

has rank q, which is smaller than r if m > 0.

Following Stock and Watson (2002b), let Γχn0 and Γξn0 be the covariance matrices of χnt and ξnt

respectively. Let µχnj and µξnj be the largest eigenvalues, in descending orders, of Γχn0 and Γξn0

respectively.

Assumption 3 We assume that the following hold:

A) limn→∞ µ
χ
nj =∞ for 1 ≤ j ≤ r;

B) there exists a real M, such that µξnj ≤M for any n.

Assumption (3)A establishes that, as n increases, the variance of xnt explained by the first r

eigenvalues of the common component increases to infinity. This means that as n goes to infinity

the weight of the idiosyncratic component in explaining Γxn0 becomes smaller and smaller. As-

sumption (3)B sets out that the idiosyncratic components can be correlated, but the assumption

puts a limit to the amount of correlation. As n increases, the variance of the vector xnt captured

by the largest eigenvalue of the idiosyncratic component, µχnr, remains bounded. Then, under

the Assumptions (3)A and (3)B, the static projection on the first r static principal components

of xnt converge in mean square to the common component in equation (1.4) for n→∞.

To derive the form of the static principal components (SPC), we consider the finite realization

of the form xTn = {xit i = 1 . . . n, t = 1 . . . T} with the estimated contemporaneous variance-

covariance Γ̌x0 = T−1
∑T

t=1 xTntx
T ′
nt . Now consider first the quantity α̌1xnt where the 1×n vector

α̌1 maximizes the variance var [α̌1xnt] = α̌1Γ̌
x
0α̌
′
1. Since the maximum will not be achieved

for finite α̌1 a normalization constraint must be imposed. The constraint used in derivation is

α̌1α̌
′
1 = 1, namely the sum of squared elements of α̌1 equals one. To maximize α̌1Γx0α̌

′
1 subject

to α̌1α̌
′
1 = 1, the standard approach is to use the technique of Lagrange multipliers. Maximize

α̌1Γ̌
x
0α̌
′
1 − µ1

(
α̌1α̌

′
1 − 1

)



where µ1 is a Lagrange multiplier. Differentiation with respect to α̌1 results in α̌1

(
Γ̌x0 − µ1I

)
=

0. Thus, µ̌1 is an eigenvalue of Γ̌x0 and α̌1 is the corresponding eigenvector. To decide which

eigenvector results in α̌1xnt with maximum variance, the quantity to be maximized is

α̌1Γ̌
x
0α̌
′
1 = α̌1µ̌1α̌

′
1 = µ̌1α̌1α̌

′
1 = µ̌1.

So µ̌1 must be as large as possible. Thus, α̌1 is the eigenvector corresponding to the largest

eigenvalue of Γ̌x0 , and var [α̌1xnt] = µ̌1 the largest eigenvalue.

In general, the r-th PC is α̌rxnt and var [α̌rxnt] = µ̌r, where µ̌r is the largest eigenvalue of Γ̌x0

and α̌r is the corresponding eigenvector. Then for j = 1, 2, . . . , r ordering the eigenvalues µ̌j in

descending order and taking the eigenvectors corresponding to the largest eigenvalue we define

Št = (α̌1xnt α̌2xnt · · · α̌rxnt)′ the j-th static principal component of xnt.

1.4 One Sided Estimation and Forecasting

Let us consider a finite realizations of the form xTn = {xit i = 1 . . . n, t = 1 . . . T}; the filters

Knj (L) obtained as functions of the spectral density matrices Σx
n (θ) are unknown and have to

be estimated. Let us assume xnt admits a linear representation of the form

xnt =
∞∑

k=−∞
ckZt−k (1.5)

where {Zt; t ∈ Z} is second-order white noise with nonsingular covariance matrix and finite

fourth-order moments, and
∑∞

k=−∞|cij,k||k|1/2< ∞. Under equation (1.5) any periodogram

smoothing or lag-window estimator Σ̌x (θ) is a consistent estimator of Σx
n (θ) for T going to

∞. Now, in the following we provide a description of the spectral estimate Σ̌x (θ) considered

throughout the section. The estimation of the spectral density is constructed using a Bartlett

lag-window estimator of size M = M(T ). The sample covariance matrix is

Γ̌xk = (T − k)−1
T∑

t=k+1

xTntx
T ′
nt



Then we compute the (2M+1) points discrete Fourier transformation of the truncated two-sided

sequence Γ̌x−M , . . . , Γ̌x0 , . . . , Γ̌xM , where Γ̌x−k = Γ̌xk, that is

Σ̌x (θh) =
M∑

k=−M
Γ̌xkωke

−ikθh

where θh = 2πh/(2M + 1), for h = 0, 1, . . . , 2M and ωk = 1 − |k|
(M+1) are the weights corre-

sponding to the Bartlett lag-window of size M = M(T ). The choice of M represents the trade

off between small bias (large M) and small variance (small M). Now, we can observe that the

filters Ǩni (L) are infinite two-sided, that is

Ǩni (L) =
1

2π

∞∑
k=−∞

[∫ π

−π
Ǩni (θ) e−ikθdθ

]
Lk,

while xnt is not available, neither for t ≤ 0 nor for t > T , then the projection Ǩni (L) xnt onto

the space spanned by the q dynamic principal components cannot be computed. Therefore a

truncated version of the estimated filter

Ǩni (L) =
M∑

k=−M
Ǩni,kL

k,

where the conditions M(T )→∞ and M(T )/T →∞ must be fulfilled, is considered.

The method discussed above produces an estimator to the common component which is a two-

sided filter of the observations. As seen before, this method has the advantage of exploring

the dynamic structure of the data and needs few dynamic aggregates to approximate the space

spanned by the common factors, but the performance of the estimator χ̌t deteriorates as t

approaches T or 1. Indeed to compute the estimator for the last observation, one needs M

future observations which are not available. For this reason, this makes the estimation procedure

inappropriate for prediction.

Forni et al. (2005) propose a refinement of the original procedure which retains the advantages

of the dynamic approach while obtaining a consistent estimate of the optimal forecast as a

one-sided filter of the observations. The method consists of two steps. In the first step,

they follow Forni et al. (2000) and obtain the cross-covariances for common and idiosyncratic

components at all leads and lags from the inverse Fourier transformation of the estimated spectral



density matrices. In the second step, they use these estimates to obtain the r contemporaneous

linear combinations of the observations with the smallest idiosyncratic common variance ratio.

The resulting aggregates can be obtained as the solution of a generalized principal component

problem.

First Step. To estimate the common and idiosyncratic cross-covariance Γχnk and Γχnk respec-

tively, we start with the matrix Σ̌x (θ), defined as a periodogram smoothing or lag window es-

timator of the spectral density Σx
n (θ). Now, using Assumption (1), the spectral density Σ̌x (θ)

can be decomposed in a spectral density matrix of the common component and idiosyncratic

component

Σ̌χ (θ) =
q∑
j=1

p̌x∗j (θ) λ̌xj (θ) p̌xj

and

Σ̌ξ (θ) =
n∑

l=q+1

p̌x∗l (θ) λ̌xl (θ) p̌xl .

Therefore, applying an inverse discrete Fourier transformation to these density matrices, the

covariance matrices of χt and ξt can be estimated as

Γ̌χk (θ) =
∫ π

−π
Σ̌χ (θ) eikθdθ

and

Γ̌ξk (θ) =
∫ π

−π
Σ̌ξ (θ) eikθdθ

Second Step. The estimated covariance matrix of the common components is used to solve

the generalized principal component (GPC) problem. More precisely the objective is to find r

independent linear combinations W̌jt = Žjxnt, where the weights Žj are defined as

Žj = argmax
g∈Rn

gΓ̌χ0 g
′

s.t. gΓ̌ξ0g
′

= 1

and gΓ̌ξ0Ž
′
l = 0 for 1 ≤ l < j.



The solutions to the problem are

ŽjΓ̌
χ
0 = v̌jŽjΓ̌

ξ
0 j = 1, . . . , r

where Žj are the generalized eigenvectors associated with the generalized eigenvalues v̌j , with

the normalization conditions

ŽlΓ̌
χ
0 Ž

′
j = 1 for l = j

= 0 for l 6= j.

Ordering the eigenvalues v̌j in descending order and taking the eigenvectors to the largest r eigen-

values, we define Ǧt =
(
Ž1xnt Ž2xnt · · · Žrxnt

)′ as the first r generalized principal component

of xnt.

Forecasting with GDFM. Since we are interested in forecasting a single variable, we call yt

the variable of interest contained in xTn . The two types of estimated factors, static and dynamic,

will be used for prediction. For forecasting purposes a single equation is estimated with the

one-step approach. The forecasting equation is estimated as a linear projection of h-step aheads

of yt, i.e. yt+h, on t-dated predictors. In general a factor based forecast is specified as follows

yt+h = α+ βF̌t + δ(L)yt + εt+h (1.6)

where F̌t are the factors estimated using GPC as in Sec. (1.4) or SPC as in Sec. (1.3); α is the

constant term and β the coefficient vector for the factors. They are estimated by ordinary least

squares for each forecast horizon h. The autoregressive term is introduced by the coefficients

δ(L), which is a polynomial with non-negative power of lag operator L. The variable yt+h is

defined as the growth rate of the chosen time series between period t and period t+ h.

1.5 Determining the Number of Factors

As mentioned in the introduction, the most important feature of factor models is to summarize

the information contained in a large panel of variables using a small number of factors. However,

the exact number of factors to use is not known "a priori". Indeed, a controversial issue in the



analysis of approximate factor models is the preliminary identification of the optimal numbers r

and q of static and dynamic factors. In this dissertation the optimal number r of static factors

is determined by the criterion proposed by Bai and Ng (2002), whereas the optimal number q

of dynamic factors is determined by the criterion proposed by Hallin and Liska (2007).

Since, in empirical applications, we observe only a finite sequence of length T of a finite number

n of variables, these two criteria are described using a finite realization of the form xTn =

{xit i = 1 . . . n, t = 1 . . . T}.

Determining the Number of Static Factors. Bai and Ng (2002) propose using an in-

formation criteria to determine the optimal number of static factors r as a trade-off between

goodness-of-fit and overfitting.

Formally, let V (k) = (nT )−1
∑n

i=1

∑T
t=1

(
xit − Λ̌(k)

i F̌(k)
t

)2
be the variance of the idiosyncratic

term when the factor loadings Λ̌(k)
i and the common factors F̌(k)

t are estimated using k static

factors by the method of static principal components described in Section (1.3). They define

the information criterion

IC(k) = log (V (k)) + k g(n, T )

řIC = argmin
0≤k≤rmax

IC(k)

The term V (k) represents the goodness-of-fit which depends on the estimate of common factors

and the number of factors. When the number k of factors is increased, the variance explained

by the factors increases too, then V (k) decreases. However in order to avoid overfitting they

introduce the penalty term g(n, T ) which is an increasing function of n and T . The information

criterion IC(k) has to be minimised in order to determine the optimal number of static factors.

In empirical application we have to fix a maximum number of static factors, say rmax, and

estimate the model for all numbers of factors k = 1, . . . , rmax. As a penalty function Bai and

Ng (2002) propose to use g(n, T ) =
(
n+T
nT

)
log (min{n, T}).

Determining the Number of Dynamic Factors. Hallin and Liska (2007) proposed a

method for determining the number of factors in GDFM. In the generalized dynamic factor

models the criterion proposed by Hallin and Liska exploits the relation between the number of

dynamic factors and the number of diverging eigenvalues of the spectral density matrix of xTn .



The information criterion proposed, associated with the estimated spectral density Σ̌x and its

eigenvalues λTni, is

IC(k) = log

 1
n

n∑
i=k+1

1
2MT + 1

MT∑
h=−MT

λTni(θh)

+ c k ḡ(n, T )

q̌IC = argmin
0≤k≤qmax

IC(k)

The authors suggest using MT = [0.5
√
T ] or [0.7

√
T ] and as penalty function ḡ(n, T ) = (M−2

T +

M
1/2
T T−1/2+n−1) log AT with AT = (min{n,M2

T ,M
−1/2
T T 1/2}). Therefore, the penalty function

should be large enough to avoid overestimation of q̌IC, but at the same time it should not over

penalize. Multiplying the penalty function by a constant c is a way to tune the penalizing power

of ḡ(n, T ). Hallin and Liska propose an automatic procedure for selecting q̌IC which basically

explores the behavior of the variance of the selected q̌IC for the whole region of values of the

constant c.



Chapter 2

The Feedforward Neural Network

Dynamic Factor

The aim of this chapter is to introduce a new technique, called Feedforward Neural Network

Dynamic Factor model, FNN-DF, which forecasts macroeconomic time series using a large num-

ber of predictors. The model proposed to summarize information contained in the whole set of

predictors is GDFM. Commonly, in the GDFM literature, the forecasts are made using linear

model, namely the relationship between the variables to be predicted and the common factors

is supposed to be linear. However, linear forecasting models are often misspecified and the re-

sulting forecast provides only a poor approximation to the best possible forecast. It is possible

to obtain superior approximations to the optimal forecast using nonlinear methods. The nonlin-

earity needs to be described through an adequate model. Unfortunately, for many applications,

theory does not guide the model building process by suggesting the relevant functional form.

This particular difficulty makes it attractive to consider an "atheoretical" but flexible class of

statistical models. Artificial Neural Networks of the FNN type are essentially semi-parametric

regression estimators and are well suited for this purpose, as they can approximate any function

up to an arbitrary degree of accuracy.

2.1 Motivations

In general, as pointed by McNelis (2004) in the Preface, we assume that the economy under

study comes from a linear data generating process and shocks are from an underlying normal

distribution and represent small deviations around a steady state. In this case standard tools

such as classical linear regression are perfectly appropriate. However, making use of the linear

model with normally generated disturbances may lead to poor results if the real world deviates

significantly from these assumptions of linearity and normality. For this reason it is important



to verify if, also in GDFM literature, the use of linear techniques are justified not only for their

simplicity but also by empirical evidence. We propose the FNN-DF model as an alternative to

linear models.

Here we report some important dates in the history of artificial neural networks. Historically,

neural network theory was motivated by the idea that certain key properties of the human

brain can be extracted and applied in order to create, in simplified form, an artificial brain.

The neural network era began with the pioneering work of McCulloch and Pitts proposed in

1943, in particular see Arbib (1998). It is a multiple input summing device that consists of

different weighting for each input and a threshold before the output. The significance at that

time was its ability to compute any arithmetic or logical function. During the 1950s numerous

neural networks results were reported. Nevertheless during the mid 1960s research into neural

networks was abandoned for about two decades.

In 1982, J. Hopfield published two important articles regarded as the beginning of the current

neural network era. J. Hopfield presented a novel idea in which he stated that the approach to

artificial intelligence should not be purely to imitate the human brain but, instead, to use its

concepts to build machines that could solve dynamic problems.

Cybenko (1989) published a very important piece proving the universal functional approximation

ability of neural networks. In the same period, Hornik et al. (1989) also reported their findings

on proving multilayered perceptron networks as universal approximators. Rumelhart et al.

(1988) reported on the developments of the backpropagation algorithm. The paper discussed

how backpropagation learning had emerged as the most popular learning set for the training

of multilayered perceptrons. Subsequently, neural networks have been widely applied in many

different scientific areas. Currently, neural networks have extended from speech recognition to

time series forecasting.

Regarding the estimation of the FNN-DF model, we have to distinguish two stages. The first

is the estimation of the factors and the second refers to the architectural selection and the

estimation of the FNN, which reveals the relationship between the estimated factors and the

variables to predict. Regarding the estimation of the factors, we assume that each series can

be divided into a common part, which depends on some dynamic factors, and an idiosyncratic

part, which is variable specific. Using the technique proposed by Forni et al. (2005), described



in Section (1.4), and that proposed by Stock and Watson (2002a), described in Section (1.3),

we obtain an estimate of dynamic and static factors, respectively. Once the estimation of the

factors is obtained, we use those as regressors in FNN.

We proceed to the second stage of the proposed model, namely the architectural selection and

estimation of FNN. However, at this stage it is important to clarify some concepts. Indeed, as has

been pointed out, the FNN has the important property of being very flexible in approximating

an arbitrary function. This ability of approximation requires a specification of the architecture

(or model selection) of the FNN, which often is very complicated to obtain. Architectural

selection requires choosing both the appropriate number of hidden units and the connections

therein. Indeed, as reported in Anders and Korn (1999), one of the main problems in the

literature on neural networks is which architecture should be used for a given problem. In

general, a desirable architecture considers the trade-off between estimation bias and variability

due to estimation errors and contains as few hidden units and connections as necessary for a

good approximation of the true function. Consequently it is necessary to have a methodology

to select the appropriate architecture. The usual approaches pursued in the network literature

are regularization, pruning, and stopped training. The strategy we adopt in this dissertation,

which turned out to be quite successful in a number of applications in time series forecasting,

is Bayesian regularization proposed by Mackay (1992a,b). The fundamental idea is finding a

balance between the number of parameters and goodness-of-fit by penalizing large models. The

objective function is modified in such a way that the estimation algorithm effectively prunes the

network by driving irrelevant parameter estimates to zero during the estimation process.

There are many types of estimating algorithms in the literature on neural networks and in general

it is very difficult to know which estimating algorithm will be most efficient for a given problem.

In literature, one of the most widely accepted techniques is the backpropagation algorithm. This

algorithm employs only the first-order partial derivatives of the object function and has proved it

usefulness in dealing with a large number of classification and function approximation problems.

However, in practical applications, the large number of iterations needed to converge to the

optimal parameters of the FNN becomes prohibitive for several applications. An alternative

way to speed up the estimation phase is by using higher-order optimization methods that utilize

second-order partial derivatives. The algorithm used to estimate FNN in this dissertation is



Marquardt-Levenberg. This algorithm is widely accepted as the most efficient in realization

accuracy. It was designed to approach second order training speed without having to compute

the Hessian matrix. Under the assumption that the object function is the squared sum of

residuals, the Hessian matrix can be approximated using the Jacobian matrix that contains only

first derivatives of the FNN errors with respect to parameters.

2.2 Nonlinear Dynamic Model

Before introducing the model it is important to define the problem that we discuss in this

chapter. As presented by (Terasvirta, 2006, pag. 417), a general nonlinear dynamic model with

an additive noise component can be defined as follows:

yt = f (st;ϑ) + εt (2.1)

We define as st = (w′t, z
′
t)
′ the l-dimensional vector of explanatory variables, where w′t =

(1, yt−1, yt−2, . . . , yt−p)
′ is a (p + 1)-dimensional vector of the lags of the variable of interest,

z′t = (z1t, z2t, . . . , zkt)
′
is a k-dimensional vector of exogenous variables, and l = (p + 1) + k.

Furthermore, the random term εt ∼ iid
(
0, σ2

)
and ϑ is a Q-dimensional vector of real parame-

ters. It is assumed that yt is a stationary process. In general, few "a priori" assumptions can be

made about the functional form of f (·), for this reason it is necessary to construct an estimator

for f (·) from a large class of functions F known to have good approximation properties.

In literature, there are different methods to obtain approximators for f (·). However, we have

chosen FNN because, as we shall see following this chapter it is very flexible and has a good

ability to approximate any arbitrary function.

2.2.1 The FNN Model

In the FNN model, as stated in the introduction, the hidden units (or activation functions) are

organized in layers. The layer that contains the regressors (or input) is called Input Layer. The

layer where the regressand (or output) of the network is located is called the Output Layer.

The layers between the input and the output are called Hidden Layers. In general there can

be more than one layer in the FNN model, due to the complexity of the network or the nature

of the problem. In this dissertation we deal only with one hidden layer.



The mathematical structure of a representation of an arbitrary function as proposed in equa-

tions (2.1) with a single hidden layer network having one or more hidden units is characterized

as follows: The class N of real valued functions using a single hidden layer feedforward neural

network has the following form

N (st;ϑ) ≡
{
f : Rl → R

∣∣ f(st) = ω0 +
s∑
j=1

ωjΨ
(
γ ′jst

)}
(2.2)

where ω0 is the constant term in the output layer, the parameter ωj corresponds to the param-

eters from the hidden to the output layer, the l × 1 vector γj corresponds to the parameters

from the input to the hidden layer; the Q× 1 vector ϑ = (ω0, ω1, . . . , ωs,γ
′
1, . . . ,γ

′
s)
′ collects all

network parameters, where Q = s(l + 2) + 1 is the total number of parameters to estimate.

The function Ψ is called the activation function. The activation function plays an important role

in a neural network framework, because it introduces nonlinearity. Since a composition of linear

functions is again a linear function, FNN in equation (2.2), without introducing nonlinearity

would not be able to perform nonlinear separation. The choice of nonlinear activation function

has a key influence on the complexity and performance of FNN. In this dissertation we deal with

a nonlinear activation function that belongs to the class of sigmoid functions. In general they

are defined as follows.

Definition 2 (Sigmoid Function) Let x ∈ R, a function Ψ : R → R belongs to the class of

Sigmoid function if

lim
x→+∞

Ψ(x) = a and lim
x→−∞

Ψ(x) = b with (a 6= b)

and having the following properties

(a) Ψ(x) is a continuously differentiable function;

(b) Ψ′(x) =
dΨ(x)
d x

> 0;

(c) Ψ′(x)→ 0 as x→ ±∞;

(d) Ψ′(x) takes a global maximal value at unique point x = 0;

(e) A sigmoidal function has only one inflection point, preferably at x = 0;



(f) From (c), function Ψ is monotonically nondecreasing, i.e. if x1 < x2 for each x1, x2 ∈

R⇒ Ψ(x1) ≤ Ψ(x2);

Examples of sigmoid functions are the following:

Logistic Function

Ψ (x) =
1

1 + e−βx
(2.3)

Hyperbolic Tangent Function

Ψ (x) =
eβx − e−βx

eβx + e−βx
(2.4)

Sign Function

Ψ (x) =
x2

1 + x2
sign(x) (2.5)

A graphical representation of these functions are reported in Figure (2.1). In this dissertation we

use the activation function reported in equation (2.4). Although sigmoid activation functions are

the most common choice in FNN literature, there is no strong "a priori" justification as models

based on this class of functions should be preferred over others. However thanks to universal

approximation properties, based on the Stone-Weierstrass theorem, as we shall see in the next

section, any sigmoid function is a suitable candidate for an activation function.

We will briefly discuss some necessary requirements for the sigmoid activation function, as

reported in (Mandic and Chambers, 2001, pag. 51). First, as listed in the Definition (2),

the property (a) is important for the estimation algorithm, which requires the existence of the

Hessian matrix. The properties (b) and (c) require that the sigmoid function have a positive first

derivative, which in turn means that the optimization algorithm have gradient vectors pointing

towards the bottom of the bowl shaped error surface of the object function. Property (d) means

that the point around which the first derivative is centered is the origin. This is connected with

property (e) which means that the second derivative of the activation function should change its

sign at the origin. Monotonicity, required by (f), is useful for uniform convergence of estimation

algorithms.
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(a) Logistic Function.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Hyperbolic Tangent Function.
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(c) Sign Function.

Figure 2.1: Different Representations of Activation Functions.

2.2.2 The Universal Approximation

The functional approximation capability of an FNN architecture is one of the most important

properties and has potentials for application in different disciplines. This issue has been inves-

tigated by many authors. Here, the universal approximation capabilities of FNN are studied

mainly using the well-known Stone-Weierstrass theorem, using the results obtained by Hornik

et al. (1989).

To present the ability of FNN to approximate functions, it is important to choose a function

space in which we operate and a metric space which is associated with the function space

and used to measure the distance between two functions. In this dissertation, we consider the

density property in the spaces of continuous functions C (K) endowed with the supremum norm

and Lp (K), where K is a compact set of Rl. When the normed linear space is the space

of continuous functions with the supremum norm, in neural network terminology the density

property is also called the Universal Approximation Property. More formally, a set of functions

F can arbitrarily closely approximate a set of functions G, in the sense of the metric Lp (K), if

for any g ∈ G and to any positive ε there is an f ∈ F that is close to g.

Now we can introduce the Stone-Weierstrass theorem, which is the basis of our discussion.

Theorem 1 (Stone-Weierstrass) Let domain K be a compact set with l dimensions, and let

F be a set of continuous real-valued functions on K satisfying the following conditions:

1. Identity function: the constant function f(x) = I belongs to F ;



2. Separability: for any two points x1 6= x2 ∈ K there exist a function f ∈ F such that

f(x1) 6= f(x2);

3. Algebraic Closure: for any f , g ∈ F the function fg and (αf + βg) are in F for any

two real numbers α and β.

Then F is dense in C (K), the set of continuous real-valued functions on K. In others words,

for any ε > 0 and any function g ∈ C (K), there is a function f ∈ F such that

sup
x∈K

∣∣f(x)− g(x)
∣∣ < ε.

Applying Theorem (1) to neural networks is not immediate but requires some explanation which

will be discussed below. In order to establish the function approximation capabilities of FNN

that are described by nonlinear mapping from input to output space directly using the Stone-

Weierstrass theorem, one has to verify that it satisfies the following three conditions:

1. The ability of the approximating network to generate f(x) = I. This is always satisfied in

feedforward neural networks that use the constant parameters.

2. The second condition which requires the separability of the function is satisfied since the

activation functions of the neural networks are strictly monotonic. In fact, the neural

networks generate different outputs for different inputs.

3. The algebraic closure condition requires that the nonlinear mappings of the neural networks

are able to generate sums and products of functions. This condition is more difficult to

satisfy and is further discussed below.

If an FNN spans a function space that satisfies the conditions of the Stone-Weierstrass theorem,

it can be simply concluded that this network structure has the capability, on a compact set,

to approximate arbitrary continuous real-valued functions to any desired degree of accuracy.

However not all networks verify the universal approximation property. This depends on the

activation function used. A typical example of this group are the sigmoid activation functions

introduced in Definition (2), where the multiplication condition is not satisfied. However the

universal approximation capabilities of this network structure can be ensured1.
1The purpose of this section is not to give a rigorous proof of the ability of FNN as universal approximators,

but simply give an intuition of how it is obtained.



Hornik et al. (1989), proposed an intuitive approach to indirectly prove the denseness of the

space spanned by FNN with sigmoidal activation functions in continuous function space. The

first step shows that a single-variable cosine activation function can be uniformly approximated

by a single input, FNN with a sigmoidal function. In the second step, they prove that the

arbitrary cosine network can be uniformly approximated by an FNN with a sigmoidal activation

function. Finally, the denseness of the space spanned by the cosine network implies the denseness

of the space of the FNN with sigmoidal functions. More formally the result that they obtained

can be expressed by the following theorem

Theorem 2 (Universal Approximation) Let N be the class of feedforward neural network

functions N ≡
{
f : Rl → R

∣∣ f(x) = ω0 +
∑s

j=1 ωjΨ
(
γ ′jx

)}
, where Ψ is any sigmoid activation

function. Then N is uniformly dense on C (K), that is for every g ∈ C (K) and every ε > 0,

there exist f ∈ N such that

sup
x∈K

∣∣f(x)− g(x)
∣∣ < ε.

These results establish FNN with sigmoid activation function as a class of universal approxima-

tors. Moreover, any lack of success in the application of an FNN that is a universal approximator

must arise from inadequate estimation phase, an insufficient number of hidden units, or the lack

of a deterministic relationship between the regressors and the regressand.

However, the proof given by Hornik et al. (1989) is merely "existential": they neither provide an

algorithm to construct a model nor estimate the number of hidden units necessary to guarantee

the desired approximation accuracy.

2.3 The FNN-DF Model

The use of a nonlinear forecasting factor model is new in the macroeconometric literature. How-

ever because of the complexity of implementation of both factor models and nonlinear models,

this appears to be, from a practical point of view, difficult. One objective of this dissertation is

to make construction the forecasting model FNN-DF as coherent as possible. In this section we

introduce the FNN-DF model. We denote by xt = (x1t x2t · · · xnt)′ the n-dimensional vector

processes of observed data. Following the GDFM representation, xt is represented as the sum



of two components: the common component and the idiosyncratic component, namely we have

xt = χt + ξt = B(L)ut + ξt (2.6)

Where ut = (u1t u2t · · · uqt)′ is a q-dimensional orthonormal white noise process, where ujt has

unit variance and is orthogonal to ust for any j 6= s; B (L) is a n× q polynomial of order m in

the lag operator L. Regarding to the idiosyncratic components we assume that ξt is orthogonal

to all components of ut. Note that for a given finite lag order m, the model in equation (2.6)

can be written in the following form

xt = ΛFt + ξt (2.7)

where Ft = (u1t u2t · · · uqt)′ is a r = q(m + 1) dimensional vector of stacked dynamic factors

and Λ is an n× r dimensional parameter matrix which contains the coefficients of B (L).

Let yt ∈ xt be the variable of interest we want to predict, then making use of the factors Ft as

regressors in equation (2.2), we have the FNN-DF

yt = ω0 +
s∑
j=1

ωjΨ
(
γ ′jst

)
+ εt (2.8)

where now st = (w′t,F
′
t)
′ is composed by w′t a (p + 1)-dimensional vector of the lags of the

variable of interest as in equation (2.2), and F′t a r-dimensional vector of factor; the number

of variables used in the FNN-DF model becomes l = (p + 1) + r. Furthermore, the random

term εt ∼ iid
(
0, σ2

)
. The Q × 1 vector ϑ = (ω0, ω1, . . . , ωs,γ

′
1, . . . ,γ

′
s)
′ collects all network

parameters, where Q = s(l + 1) + 1 is the total number of parameters to estimate.

2.4 Building Procedure for FNN-DF

The construction of the FNN-DF requires two stages. The first concerns the estimation phase

of dynamic factors (DF), while the second the construction of the FNN. Lets first consider

the estimation phase of the DF: since the factors are unobservable components, it is necessary

for these to be estimated in order to be used during the forecasting phase. As described in

Chapter 1, in this dissertation we focus on the techniques proposed by Stock and Watson and



Forni et al. Moreover, from a practical point of view, it is important to know the optimum

number of factors necessary to summarize the information contained in the dataset. To do

this, we use the techniques proposed by Bai and Ng (2002) to choose the optimum number of r

static factors in the model (2.7) and the one proposed by Hallin and Liska (2007) to choose the

optimum number of dynamic factors q in the model (2.6).

The construction of the FNN requires two basic steps. First, we need a technique to estimate

the parameters. In our case, we use the method of nonlinear least squares proposed by Hagan

and Menhaj (1994). Second, we need a procedure to select the number of hidden units (the

architecture) of FNN. The critical issue in developing an FNN is to select the optimum number

of hidden units. Since the number of hidden units measures the complexity of FNN we may have

an FNN not sufficiently complex, which may fail to detect the underlying process in a dataset,

leading to underfitting. An FNN that is too complex may look not just at the underlying

process, but also at the noise, leading to overfitting. The method we adopt to solve this issue is

the Bayesian Regularization proposed by Mackay (1992a) and Foresee and Hagan (1997).

Finally, since in the FNN-DF model the lags of the variable to predict are also included, the

optimum number, p, of lags will be selected using techniques such as AIC or BIC.

2.4.1 Estimation of the Alternative Factor Models

The technique used to estimate the factors affects the precision of the estimates. As pointed

in Chapter 1, basically two different methods are employed in the literature to estimate factors

with large dataset, namely those proposed by Stock and Watson (2002a) and Forni et al. (2005).

Estimating the Factors according to Stock and Watson (2002a). Stock and Watson

propose estimating Ft with static principal component analysis applied to xt. The factor esti-

mates are simply the first r principal components of xt, as showed in Section (1.3). They are

defined as F̂SW
t = α′xt where α is the n × r matrix of the eigenvectors corresponding to the r

largest eigenvalues of the estimate sample covariance matrix Γ̌x0 of xt.

Estimating the Factors according to Forni et al. (2005). The estimator proposed

by Stock and Watson (2002a), being based on contemporaneous covariances only, fails to exploit

the dynamic relations between the variables of the panel. Forni et al. propose a weighted ver-



sion of the principal component estimator proposed by Stock and Watson, where time series are

weighted according to their signal-to-noise ratio, which is estimated in the frequency domain.

As shown in Section (1.4) the authors proceed in two steps. In the first step, the covariance

matrices of common and idiosyncratic components of xt are estimated. This involves estimating

the spectral density matrix Σx (θ) of xt. Since Σ̌x (θ) = Σ̌χ (θ)+Σ̌ξ (θ), we obtain the estimates

of the spectral density matrix of the common and the idiosyncratic component respectively. In-

verse Fourier transformation provides the time domain autocovariances of the common and the

idiosyncratic components Γ̌χk and Γ̌ξk respectively. In the second step, the authors search for

the r linear combinations of xt that maximize the contemporaneous covariance explained by the

common factors which can be formulated as the generalized eigenvalue problem, ŽjΓ̌
χ
0 = v̌jŽjΓ̌

ξ
0,

where Žj are the generalized eigenvectors associated with the generalized eigenvalues v̌j and the

factor estimates are obtained as F̂FHLR
t = Ž′xt.

2.4.2 Parameter Estimation

Several optimization methods have been developed for the estimation of parameters in FNN.

In particular, two classes of algorithms are widely used in literature. On the one side we have

the backpropagation technique proposed by Rumelhart et al. (1988) and its variants such as

backpropagation with momentum term and learning rate. On the other side numerical op-

timization techniques such as conjugate gradient methods or quasi-Newton have been used.

Backpropagation is a recursive estimation technique in which the parameters are updated in the

opposite direction of the gradient of the objective function to minimize. In each step the gradi-

ent contributes to the reduction of the error until the minimum is reached. The computational

complexity of backpropagation is mainly due to the calculation of first-order partial derivatives

and is of the order of O(Q). However, using the first-order partial derivatives, the backpropa-

gation algorithm appears to only be linearly convergent and therefore slow in its convergence.

Some improvements are obtained by introducing the momentum term and the learning rate. In

general the use of these two techniques reduces the possibility of the FNN getting stuck in a

local minimum of the objective function, effectively reducing the convergence time. However,

the momentum term and the learning rate are free parameters and should be carefully selected,

which is not always an easy task. An alternative way to speed up the estimation phase is by

using higher order optimization methods that utilize the second-order partial derivatives such



as Gauss-Newton methods or conjugate gradient.

In this dissertation we make use of the Marquardt-Levenberg algorithm. This algorithm is an

iterative technique that locates the minimum of an objective function, expressed as the sum of

squares of non-linear real-valued functions. It has become a standard technique for nonlinear

least-square problems. The Marquardt-Levenberg can be thought of as a combination of gradient

descent and the Gauss-Newton method. When the current solution is far from the correct one,

the algorithm behaves as a gradient descent method, which converges everywhere, albeit slowly.

When the current solution is close to the correct one, it becomes a Gauss-Newton method,

which converges very quickly. A comparison study is reported in Hagan and Menhaj (1994)

where the Marquardt-Levenberg method significantly outperforms the conjugate gradient and

the backpropagation methods with momentum term and learning rate, in terms of convergence

time and accuracy. Whereas the other algorithms are designed to work with a wide range of

objective functions, the Marquardt-Levenberg is designed specifically to minimize a particular

objective function said sum of squares error.

In order to describe the Marquardt-Levenberg algorithm we define the objective function as

ϑ̂ = argmin
ϑ

ET (ϑ) = argmin
ϑ

T∑
t=1

(
yt −N (st;ϑ)

)2
(2.9)

where equation (2.9) represents the sum of squares error. Given a vector ϑ0, called nominal point,

where the error function has a local minimum, a second-order Taylor series approximation of

the error function described in equation (2.9) around this vector is expressed as

ET (ϑ) = ET (ϑ0) + g′ (ϑ− ϑ0) +
1
2

(ϑ− ϑ0)′H (ϑ− ϑ0) (2.10)

where g and H are the gradient vector and the Hessian matrix, respectively. The minimums of

the function ET are located where the gradient of ET expressed by equation (2.10) is zero:

∂E

∂ϑ
= g + H (ϑ− ϑ0) = 0. (2.11)

Therefore, the optimal value of ϑ is given by

ϑ = ϑ0 −H−1 g (2.12)



equation (2.12) is a basic formulation for second-order optimization methods. The key issue

related to the second-order methods is computing the inversion of the Hessian matrix H. In

fact the rank of H is equal to O(Q2). As the number of parameters of the network increases,

the demand for memory to work with such large matrix increases exponentially. The method

proposed by Marquardt-Levenberg is to approximate the Hessian that can be written in this

form H = J′J + ηI, where I is the identity matrix. The matrix J is also called Jacobian, whose

elements can be calculated directly using the first order partial derivatives. Then the updating

rule for the parameters vector ϑ is

ϑ(k+1) = ϑ(k) +
(
J′J + η(k)I

)−1
g(k). (2.13)

The matrix J′J is symmetric and defined nonnegative; hence, any positive η will ensure that

(J′J + ηI)−1 is defined positive, as required by gradient algorithm. In practice a value must be

chosen for η and this value should vary appropriately during the minimization process. One

common approach for setting η is to use the method proposed by Hagan and Menhaj (1994).

They propose to beginning with η = 0.1, and at each step if E(k+1)
T > E

(k)
T , η is increased by

a factor of 10, the old parameters vector is restored, and a new parameters update computed.

This is repeated until a decrease in ET is obtained. If, however, E(k+1)
T < E

(k)
T after taking

the step described by equation (2.13) the new parameter vector is retained, the value of η is

decreased by a factor of 10, and the process repeated.

2.4.3 Determining the Number of Hidden Units

One of the most serious problems that arises in estimation of FNN is overfitting. This means that

the estimated function fits the presented data very closely however it does not generalize well,

that is, it does not yield the most accurate forecast possible. This problem is also known as Bias-

Variance dilemma. In the context of neural network bias measures how well a model estimates

the process underlaying the data. This accounts only for the accuracy of the estimation process,

but not for the level of generalization. Variance measures the deviation of the accuracy of an

estimation process from one sample to another sample generated by the same process, without

regard to the specifics of the provided data. To avoid overfitting, we have to use some criteria

that, during the estimation process, enable us to balance the statistical bias and variance in order

to achieve the smallest possible generalization error. In literature, there are several criteria to



avoid the problem of overfitting. The usual approaches pursued in the network literature are

pruning, early stopping, and regularization.

The aim of the pruning methods is to identify those parameters which do not contribute to the

overall network performance. However, identifying these parameters is not usually judged on

the basis of statistical test. Instead, pruning methods use so-called saliency as a measure of a

parameter’s importance. The saliency of a parameter is defined as the increase in network model

error incurred by setting this parameter to zero. The idea is to remove the parameters with low

saliency; however, the method does not provide any guidance on how to judge saliency as low.

In the application of early stopping the dataset is split into an estimation set and a validation set.

If the errors in the validation set grow too much during the estimation process, the procedure is

stopped. In statistical terms, the method tries to make up for the model being over parameterized

by stopping the estimation algorithm before the minimum of the network error function is

reached. In general this does not lead to reasonable estimates of the network parameters.

Instead, the growing errors in the validation set should be seen as an indication to reduce the

network’s complexity.

The method we use in this dissertation is the Bayesian Regularization, see Mackay (1992a)

and Foresee and Hagan (1997). The Bayesian Regularization tries to find a balance between the

number of parameters and goodness-of-fit by penalizing large models. The objective function is

modified in such a way that the estimation algorithm effectively prunes the network by driving

irrelevant parameters to zero during the estimation process.

The parameter vector ϑ is estimated as

ϑ̂ = argmin
ϑ

F (ϑ) = argmin
ϑ

ζET (ϑ) + κEϑ (ϑ) (2.14)

where

ET (ϑ) =
T∑
t=1

(
yt −N (st;ϑ)

)2 and Eϑ (ϑ) =
s∑
j=0

ω2
j +

s∑
j=1

l∑
h=0

γ2
jh,

whereas ζ and κ are scalar objective function parameters. These parameters are very important

because their relative size dictates the result of forecast. Indeed, if κ� ζ, then the optimization

algorithm will make the errors small, this means we may have a large variance. If κ � ζ,

the optimization algorithm will emphasize parameter size reduction producing a large errors



network, this means we may have large bias. In both cases the resulting forecast will be very

inaccurate. The approach we use to optimally determine the regularization parameters ζ and

κ is the Bayesian framework reported in Mackay (1992a). The steps required for Bayesian

optimization of the regularization parameters in conjunction with the Marquardt-Levenberg

algorithm as in Foresee and Hagan (1997) are as follows.

In the Bayesian framework, the parameters of the FNN are considered random variables. Let

Dt = (yt, st) represent the dataset and N a particular FNN model. After the data are collected,

the distribution function for the parameters is updated according to Bayes’ rule

P (ϑ|Dt, ζ, κ,N ) =
P (Dt|ϑ, ζ, κ,N ) P (ϑ|κ,N )

P (Dt|ζ, κ,N )
, (2.15)

where P (ϑ|κ,N ) is the prior distribution, which represent our knowledge of the parameters

before any data is collected, and P (Dt|ϑ, ζ, κ,N ) is the likelihood function, which is the prob-

ability of the data occurring given the parameters. P (Dt|ζ, κ,N ) is a normalization factor,

which guarantees that the total probability is equal to one. If we assume that the noise and

prior distribution for the parameters are both Gaussian then we have

P (ϑ|κ,N ) =
(
π

ζ

)−T/2
exp (−ζET ) (2.16)

and

P (Dt|ϑ, ζ, κ,N ) =
(π
κ

)−Q/2
exp (−κEϑ) (2.17)

Once a prior distribution is chosen for the parameters and for the likelihood, using equation (2.15)

we obtain the posterior distribution for the parameters in the form

P (ϑ|Dt, ζ, κ,N ) =
1
ZF

exp (−ζET − κEϑ) (2.18)

where ZF =
∫

exp (−ζET − κEϑ) dϑ. In the Bayesian framework, the optimal parameters max-

imize the posterior probability. Since the normalization factor is independent of the parameters,

maximizing the posterior probability is equivalent to minimizing the objective function in equa-

tion (2.14).



The regularization parameters are optimized by applying the Bayes’ rule

P (ζ, κ|Dt,N ) =
P (Dt|ϑ, ζ,N ) P (ζ, κ|N )

(Dt|N )
. (2.19)

Assuming an uniform prior distribution P (ζ, κ|N ) for the regularization parameters, then max-

imizing the posterior is achieved by maximizing the likelihood function P (Dt|ϑ, ζ,N ). Since all

probabilities have a Gaussian form, the normalization factor can be expressed as

P (Dt|ϑ, ζ, κ,N ) =
(
π

ζ

)−T/2(π
κ

)−Q/2
Z−1
F . (2.20)

Assuming that the objective function has a quadratic shape in a small area surrounding a

minimum point, we can expand F (ϑ) in a Taylor series around the minimum point of the

posterior density, where the gradient is zero. Solving equation (2.20) for the normalization

factor yields

ZF = (2π)Q/2
[
det
(
H−1

)]1/2 exp (−Eϑ (ϑ)) , (2.21)

where H is the Hessian matrix of the objective function F (ϑ). Substituting equation (2.21) into

equation (2.20), we can solve for the optimal value of ζ and κ at the minimum point. This is

done by taking the derivative with respect to the log of equation (2.20) and setting it equal to

zero. This yields

ζ̂ =
%

2Eϑ (ϑ)
and κ̂ =

T − %
2ET (ϑ)

where % = Q− 2ζtr (H)−1 is called the effective number of parameters.

The Bayesian optimization of the regularization parameters requires the computation of the Hes-

sian matrix of F (ϑ). Foresee and Hagan (1997) proposed using the Gauss-Newton approximation

to the Hessian matrix, which is available if the Marquardt-Levenberg optimization algorithm is

used to locate the minimum point, as showed in Section (2.4.2). Here are reported the steps

required for Bayesian optimization of the regularization parameters in conjunction with the

Marquardt-Levenberg optimization algorithm:

Bayesian Regularization Procedure

1. Initialize ζ and κ and the parameters. We set ζ = 1 and κ = 0 and use the Nguyen and

Widrow (1990) method to initialize the parameters;



2. Use the Marquardt-Levenberg optimization algorithm to minimize the objective function

F (ϑ) in (2.14) and the parameters vector ϑ;

3. Compute the effective number of parameters % = Q− 2ζtr (H)−1, where H is the Hessian

computed by the Marquardt-Levenberg optimization algorithm;

4. Compute new estimates for the regularization parameters ζ̂ and κ̂;

5. Iterate steps 2 through 4 until convergence.

2.4.4 Forecasting with FNN-DF

Forecasting with nonlinear models such as FNN-DF for more than one period ahead can be

achieved by using the iterated or the direct approach. Regarding the iterated approach, analyt-

ically obtaining the forecasts is not always possible and often are required numerical techniques.

In this regard, suppose the FNN-DF is correctly specified and st = Ast−1 + ηt follows a

first order vector autoregressive representation, where A is a l × l vector of parameters and

ηt ∼ iid (0,Ση) the l × 1 vector of error terms. The one step ahead forecast for yt+1 is equal

to ŷt+1|t = E (yt+1|st) = n(st; ϑ̂), where the vector parameters ϑ̂ are estimated up to time

t. Forecasting two or more periods ahead is much more complicated. Indeed since we do

not know the value for st+1 we need to compute a forecast of this. Suppose we can forecast

st+1 = Ast+ηt+1, then the two steps ahead is given by ŷt+2|t = E (yt+2|st) = n(Ast+ηt+1; ϑ̂) =∫
η1
· · ·
∫
ηl
n(Ast+ηt+1; ϑ̂)dF (η1, . . . , ηl), where F (η1, . . . , ηl) is the joint cumulative distribution

function of ηt. This means that for periods grater than one, we have to solve a multidimensional

integral. In Terasvirta (2006) paper two numerical techniques have been proposed in order to

avoid analytical integration: the simulation and the bootstrap technique; these techniques could

be computationally demanding, especially when using nonlinear models. Moreover, in empirical

applications, very often the model assumed for the observations is not the true data generating

process. This misspecification can lead to less than optimal predictions.

This situation is also reported in (Bhansali, 2002, pages 206-221), which has shown the direct

approach is preferable to the iterated approach either computationally or as forecast perfor-

mance, when the model for the observations is misspecified.

Therefore, in this dissertation we adopt the direct approach. The forecasting equation is given

by the projection of h steps ahead of yt on the t-dated predictors. Then assuming as the data



generating process the FNN-DF in equation (2.8)

yt+h = ω0 +
s∑
j=1

ωjΨ
(
γ ′jst

)
+ εt+h. (2.22)

Here, as already mentioned, we prefer the direct method as it has the advantage that no numerical

generation of forecasts is necessary. A disadvantage is that a separate model has to be specified

and estimated for each forecast horizon.

2.4.5 Forecasting Evaluation

There are many ways to compare the forecasting performance of a model, ranging from magni-

tude measures to directional measures. Regarding the magnitude measures, we use two statistics

commonly adopted in literature. They are the mean squared error and mean absolute error. For

an h-steps ahead forecast, they are defined as follows

(C1) Mean Squared Error (MSE)

MSE =
1

T1 − h− T0 − 1

T1−h∑
τ=T0

(
ŷτ+h − yτ+h

)2

(C2) Mean Absolute Error (MAE)

MAE =
1

T1 − h− T0 − 1

T1−h∑
τ=T0

∣∣∣ŷτ+h − yτ+h

∣∣∣
where h = 1, 3, 6, 9, 12, and T0 is the first point in time for out of sample evaluation and T1 is

the last point in time. In addition to MSE and MAE, we use also the Directional Accuracy test

(DA) proposed by Pesaran and Timmermann (1992). The DA test considers the future direction

(up or down) implied by the model.

(C3) We compute the indicator for the correct sign of the model used in forecasting, i.e. IT = 1

if ŷT+h · yT+h > 0 otherwise IT = 0. Once computed the indicator for the correct sign, we

calculate the success ratio (SR)

DA =
1

T1 − h− T0 − 1

T1−h∑
τ=T0

IT



SR indicates the percentage in predicting the correct sign for the proposed model. Finally, we

use the test proposed by Pesaran and Timmermann (1992) to verify if the model outperforms

the chance of random choice.

2.5 Montecarlo Experiments

In this section we apply the FNN-DF model presented in Section (2.3) to data generated ar-

tificially. The motivation is to show the potential of the FNN-DF approach, relative to linear

dynamic factor models, in predicting relatively complex stochastic processes.

Unlike the literature regarding GDFM, we are not interested in verifying the properties of the

FNN-DF model when the panel of simulated data differs in the cross and time dimensions, in the

number of dynamic and static factors, or in the amount of variance explained by the common

part with respect to the total. The goal here is to determine whether the proposed model is

able to identify the function that exists between the static and dynamic factors as well as the

variable of interest. In this regard two processes are simulated: the Markov regime switching

factor model and the stochastic chaos factor model. The panel of data from which the factors

are extracted is common to both.

Data Generating Process. DGP. We consider the following data-generating process, com-

mon to both models

xit =
2∑

k=0

bik u1,t−k + ξit (2.23)

where u1t is an univariate first-order AR process with AR(1) parameter α = 0.6, namely u1t =

αu1,t−1 + vt and ξit = ι εit. The parameters bik, with i = 1, . . . , n and k = 0, 1, 2, the shocks

u1t and εit with t = 1, . . . , T are standard normal variables. The constant ι is chosen

ι =
1− ς
ς

(∑N
i=1 var(biu1t)∑N
i=1 var(εit)

)

where ς = 0.5, so that on average, 50% of the variation in xit is explained by the common

component. Following Forni et al. (2005), since ε ∼ N(0, σ2
i ), we use σ2

i ∼ U(0.1, 1.1). This

means that even though ς = 0.5 on average, there is a good deal of variation in the size of the

common component. Moreover as seen in Section (1.3), the simulated GDFM in (2.23) can be



written in its static form as a r-factor model where r = q(m+ 1), namely

xit =
3∑
j=1

ΛijFjt + ξit,

where F1t = u1t, F2t = u1,t−1 and F3t = u1,t−2, whereas Λi1 = bi0, Λi2 = bi1 and Λi3 = bi2.

M1. Markov regime switching model. The variable of interest to be forecast is generated

according to the Markov Switching model (MRS)

yt =


c1 +

∑r
j=1 φ1jFjt + e1t, if St = 1

c2 +
∑r

j=1 φ2jFjt + e2t, if St = 2
(M1)

where St assumes values in {1, 2} and is a first-order Markov chain with transition probabilities

P =

(ST = 1|St−1 = 1) (ST = 1|St−1 = 2)

(ST = 2|St−1 = 1) (ST = 2|St−1 = 2)

 =

(1− w2) w2

w1 (1− w1)


The error terms e1t and e2t are sequences of iid random variables with mean zero, finite variance,

and are independent of each other. A small wi means that the model tends to stay longer in

state i. In fact, 1/wi is the expected duration of the process in State i. In simulation of the

model, we use the following parameters:


c1 = 1, φ11 = 1.5, φ12 = 0.7, φ13 = 0.05, w1 = 0.3 if St = 1

c2 = −0.5, φ21 = 2, φ22 = 0.9, φ23 = −0.15, w2 = 0.5 if St = 1.

and the transition probability matrix P is generated from a uniform distribution.

M2. Nonlinear Factor Model. The variable of interest to be forecast is generated according

to Nonlinear Factor model (NF)

yt = αυt F1t (1 + F1t) +
r∑
j=2

βjFjt (M2)

where the error term υt is generated according to a uniform distribution, namely υt ∼ U(0, 1).

When the time series yt is characterized by periods of high volatility followed by flat stable



intervals, the presence of nonlinear events could be considered.

2.5.1 Montecarlo Experiment Results

We simulate 350 observations of the variables and discard the first 50, leaving T = 300 observa-

tions for evaluation, while for the cross section we use n = 150. The first estimation uses data

from t = 1, . . . , 120 to perform a one-step ahead forecast, namely, T + h = 121. Then T is

incremented by 1, the estimation is repeated using data from t = 2, . . . , 121, and a forecast for

T +h = 122 is performed. The last forecast of T +h = 300 is based on estimation using data up

to t = 179, . . . , 299. The same procedure is applied for h = 3, 6, 9, 12 and the whole experiment

repeated 500 times. Each forecast ŷT+h is then compared to yT+h. Regarding the criterion

(C1), in Table (2.1) we refer to the ratio of the MSE for a given method to the MSE of GDFM;

a relative MSE bigger than one means that the GDFM outperforms the method considered.

For evaluation criterion (C2), Table (2.1) report the ratio of the MAE for each given method.

A relative MAE greater than one means that the GDFM outperforms the method considered.

The final criterion used (C3) is the Directional Accuracy (DA) test where the ratio of correct

prediction is reported. GDFM estimated using the generalized principal component technique is

noted GDFMG in Table (2.1), whereas GDFM estimated using the standard principal component

technique is reported GDFMS

The results for the model (M1) are shown in Table (2.1)-Panel A. The rows marked GDFM are

the benchmarks and refer to linear prediction as in equation (1.6) using the static and dynamic

factors as regressors described in Section (1.3). The rows marked FNN-DF refer to the nonlinear

forecasting technique described in Section (2.3) using as regressors the static factors described

in Section (2.3). For the FNN-DF models, the number of hidden units is fixed to s = 10, which

is equivalent to a number of initial parameters Q = 51.

In Table (2.1)-Panel A there is no method that outperforms the benchmarks, whatever the

criterion for evaluating forecasts used. This result is not surprising, since the nonlinearity is

not driven by the factors themselves but by a latent process. Regarding the relationship that

exists in its two states, namely between the variable of interest and the factors, is completely

linear. What is interesting to observe is how the model FNN-DF is able to adjust its complexity

depending on the problem under study. Indeed we observe that, for both nonlinear models as



compared with Q = 51 initial parameters to estimate, the same number of parameters are used

as in the linear model. This peculiarity is constant for the five forecasting horizons proposed.

Regarding the model (M2), it can be seen in the Table (2.1)-Panel B, nonlinear models appear to

have the best performance compared to the linear benchmarks, whatever the criterion adopted.

This indicates that the FNN-DF models respond according to changes in the functional form

between the predictors and the variable of interest, however this is evident only if the variation is

determined by variables that can be directly observed. Another observation concerns the length

of forecasting horizon. In particular, as the horizon is more distant in time, more the FNN-DF

loses strength to capture the nonlinearity, predicting only the unconditional mean of the process.
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Chapter 3

Forecasting U.S. Economic Time Series

In this chapter we present the use of the FNN-DF model proposed in Chapter 2 on real data using

the benchmark datasets proposed by Stock and Watson (2002a) and reported in Appendix (A).

The study is done on real and nominal macroeconomic variables. Forecasts obtained with the

FNN-DF model are extended to another two methods, which have often exhibited more accurate

prediction.

As described in the introduction, in empirical applications of both linear and nonlinear models,

one of the main issues is that the model used is not correctly specified. For this as noted

by Granger (1989) each model used may have specific information that other models do not

possess. The use of techniques that allow the combination of information may provide better

results than each individual model. In this regard the forecast combination of the linear and

nonlinear models used in prediction are presented.

3.1 Motivations and Related Literature

Forecasting is very important in obtaining useful information to produce correct economic

choices. However, the specification of the model is not always correct for the problem we are

studying. This is quite evident when we make a choice between linear and nonlinear models. In

fact, linear models tend to be used because they are easier to implement, may have an economic

interpretation and are less time consuming than nonlinear models. Moreover, from an empirical

point of view in recent years, the results of forecasts obtained with nonlinear models, especially

using neural networks, are quite controversial. As we discuss below, in some cases the use of

nonlinear techniques did not provide significant benefits, while in other cases provided encourag-

ing results. In general, a question that often arises in forecasting field is as follows: if nonlinear

models do not provide more accurate forecasts than those provided by linear models, why are

they used? Since there is no reason to suppose that the economy is linear, a partial answer to



this problem may come from the use of highly flexible forecasting techniques, such as techniques

that are able to adapt quickly to functional changes. When the functional form between the

variable to predict and the predictors is linear, the prediction obtained by nonlinear models are

certainly not better than linear techniques, nor are they worse. Instead, if the functional form

differs significantly from the linear one, then the results should be more accurate.

Remaining in the research field proposed by Stock and Watson (1998) and later re-examined

by Terasvirta et al. (2005), we try to answer the same questions as in the case of GDFM. First,

do nonlinear models produce forecasts that improve upon linear models in simulated real time?

Second, if there are benefits to using nonlinear models, are the benefits great enough to justify

their use? Finally, do combination forecasts outperform forecasts based on a single method?

In literature, the study of flexible forecasting techniques in conjunction with GDFM is not very

large. Shintani (2005) addresses the problem of nonlinearity for the Japanese economy, using

feedforward neural networks. The result he obtains is that in most series considered the feedfor-

ward neural networks have forecasting performance comparable to linear methods. Other studies

however address the problem in the univariate case. Since the literature is readily available for

this type of analysis, here we mention the most important results. Swanson and White (1997a,b)

compared various methodologies for forecasting nine U.S. macroeconomic variables. The meth-

ods included linear autoregressive models, feedforward neural networks, professional consensus

forecast and others techniques. The results that they obtain is the feedforward neural networks

gives performance similar to linear models. In another forecasting comparison proposed by Stock

and Watson (1998) a total of 49 univariate forecasting methods, including 15 feedforward neu-

ral networks, and various forecast pooling procedures, were used to forecast 215 U.S. monthly

macroeconomic time series at three forecasting horizons. The various pooling procedures pro-

vided the most accurate forecasts, suggesting that neural networks may help improve forecasting

accuracy when combined with other forecasts. However, when comparing the forecasting accu-

racy of individual models, the neural networks performed poorly relative to a "naive" AR(BIC)

forecast and relative to most other methods in the comparison. Terasvirta et al. (2005) exam-

ine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR) and

neural network time series models for 47 monthly macroeconomic variables of the G7 economies.

The forecast results indicate the STAR model generally outperforms linear autoregressive mod-



els, but does not dominate the feedforward neural networks forecast obtained using the Bayesian

regularization approach. Heravi et al. (2004) considers 24 series measuring the annual change

in monthly seasonally unadjusted industrial production for important sectors of the German,

French and the U.K. economies. They found that linear models generally produce more accurate

forecasts than neural network at horizons up to one year. This applies overall and also to the

sub-group of series with substantial sample period with evidence of nonlinearity. However, they

found that the neural networks give better results when the forecast results are measured in

terms of direction accuracy. Dhal and Hylleberg (2004) used four alternative flexible nonlinear

regression model approaches. The class of flexible regression model considered includes feedfor-

ward neural networks, two methods of projection pursuit and the random field approach. They

found that linear models for the U.S. unemployment rate and the growth rate in U.S. industrial

production cannot outperform the best flexible nonlinear regression models. Finally, Marcellino

(2004) fits a variety of nonlinear and time varying models to aggregate European Monetary

Union (E.M.U.) macroeconomic variables, and compares them with linear models. He found

that several variables, linear models are beaten by nonlinear specifications.

3.2 The Data and Forecasting Procedure

In this section, to determine the practical usefulness of the model presented in Section (2.3),

we conducted several forecasting exercises on different series of the U.S. economy. In partic-

ular, the series we are interested in forecasting are grouped in real and nominal categories:

Personal Income, Real Consumption, Industrial Production and Unemployment Rate for real

variables; Producer Price Index, Consumer Price Index, Money Supply and Interest Rate for

nominal variables. These variables are modeled as follows, for real variables we assume that

the log(RV ) ∼ I(1), for nominal variables we assume that the log(NV ) ∼ I(2), except for

Interest Rate which is modeled as log(IR) ∼ I(1) and Money Supply which is modeled as

log(MS) ∼ I(0). For xTn = {xit i = 1 . . . n, t = 1 . . . T}, the panel that includes the predictors,

following the standard procedure in Stock and Watson (2002a), we consider 131 monthly U.S.

economic time series observed from January, 1959 to December, 2003. The predictors are divided

into 14 categories: real output and income; employment and hours; real retail, manufacturing

and trade sales; consumption; housing starts and sales; real inventories; orders; stock prices;

exchange rates; interest rates and spreads; money and credit quantity aggregates; price indexes;



average hourly earnings and miscellaneous. The series are all transformed to be stationary by

taking first or second differences, logarithms, first or second differences of logarithms, then the

factors are estimated.

The exercise is based on simulated real time forecasting. This exercise begins with data from

t =1960:1 . . . 1971:1−h for the estimation, then the values of the estimated parameters at

T =1971:1 are used to forecast ŷ1971:1+h. When a new observation is available, the sample is

updated by one month and moves from 1960:2 to 1971:2, the factors and parameters are both

re-estimated and we obtain the second forecast ŷ1971:2+h. The process continues until the end

of the sample is reached. The idea of this procedure is that as data become more distant in the

past, we assume that they have little or no predictive relevance, so they can be removed from

the sample. The last observation used in estimation is 2002:12, when h = 12.

Finally it is important that the variables to be predicted and the estimated factors are scaled

within the range of the activation function used. Without scaling, a great deal of information

from the data is likely to be lost, since the hidden units are not able to recognize the data outside

the limits of its activation function. Since in the FNN-DF model we use the activation function

describe in equation (2.4), which has limits between [−1, 1] we scale the variable of interest and

the estimated factor into this range. Moreover in order to have comparable results in out of

sample with other methods, once the forecast is obtained we rescale this to the original range,

applying the inverse procedure.

3.3 Determining the Number of Factors

To determine the number of dynamic and static factors, we use the criteria described in Sec-

tion (1.5). Regarding the criterion proposed by Bai and Ng (2002), as noted in Alessi et al.

(2007), it is highly dependent on the variance of the residuals associated with principal compo-

nent estimates, having as a practical consequence that it is very sensible to the choice of rmax.

To avoid this problem, Alessi et al. (2007) proposed, as similarrly did Hallin and Liska (2007)

for the dynamic factor, to multiply the penalty function by a positive constant c. Then the pro-

cedure for selecting the number of static factors is similar to the procedure proposed by Hallin

and Liska (2007).
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Figure 3.1: Plot of the Criteria proposed to determine the number of factors.

Following the empirical procedure proposed by Hallin and Liska (2007), we use the Figure (3.1)

to determine the number of factors to use in the forecast exercise. In Figure (3.1) we look for

the first zero variance interval for c (green line), corresponding to a stable value of q̂IC < qmax

(red line); this represents the number of dynamic factors. In the Figure (3.1(a)) the criterion

sets the number of dynamic factors equal to 2. The same reasoning is valid for determining the

number of static factors, as recommended in the modified version by Alessi et al. (2007). In

this case looking at the Figure (3.1(b)), the first zero variance interval for c corresponding to a

stable value of r̂IC < rmax is located at 7 static factors.

3.4 Pooling Forecast

In forecast accuracy the main objective is to find which model has better performance with

respect to a particular loss of function, such as MSE or MAE. In general the "best" model,

as described in Chong and Hendry (1986), should be able to take into account the findings of

alternative models. Moreover, as noted by Timmermann (2006), testing whether one forecast

dominates another is neither sufficient nor adequate to establish if it is useful to combine them.

Since the encompassing test to asses which models better represent the data are not appropriate

in deciding whether combining the forecasts is useful to improve forecast accuracy, Chong and

Hendry (1986) formalized a test which allows for the determination of whether a certain forecast

incorporates (or encompasses) all the relevant futures in alternative forecast models. In order to



explain pooling forecast, consider, as usual, the future value of the target variable is indicated

by yt+h. Suppose now that for a time t we have a set of information, denoted by It, which

is an F-vector of the forecasts for yt+h, denoted by ŷt+h = (ŷt+h,1, ŷt+h,2, . . . , ŷt+h,F ). The

forecast combination problem tries to find an aggregator that reduces the information in a

potentially high dimension vector of forecasts, ŷt+h ∈ RF , to a lower dimensional summary

measure, C (ŷt+h; πc) ∈ Rc ⊂ RF , where πc are the parameters associated with the combination.

Since we are interested in a point forecast, we let ŷct+h = C (ŷt+h; π) be the combined point

forecast as a function of the underlying forecasts ŷt+h and the parameters of the combination,

π ∈ Π, where Π is often assumed a compact subset of RF . In this dissertation we make use of

two methods

1. Equal weight combination, reported as (EW), meaning that the proposed methods have

equal informative power. The weights are determined using the simple average;

2. Predictive Least Squares, reported as (PLS), proposed by Granger (1989), the weight of

each forecast used in the pooling model is obtained using ordinary least squares, namely

regressing the true value of target variable yτ , on the F-vector of forecasts, ŷτ+h, that is

π̂ =

T1−h∑
τ=T0

ŷτ+h ŷ′τ+h

−1
T1−h∑
τ=T0

ŷτ+h yτ+h

The pooling forecast is obtained as

ŷct+h = π̂1 ŷ
GDFMG

t+h + π̂2 ŷ
GDFMS

t+h + π̂3 ŷ
FNN-DFG

t+h + π̂4 ŷ
FNN-DFG

t+h (3.1)

The weights are re-estimated in each period, in order to simulate real time forecasting, using a

rolling window of 36 months of the out of sample forecast computed between 1971:1 and 1973:12,

as described in Section 3.2. We report the results for the pooling methods in Table (3.1), (3.3)

and (3.5).

3.5 Forecast Comparison

There are many ways to evaluate the forecasting performance of a model. We use the same

criteria as described in Section (2.4.5), results are reported in Table (3.1) to Table (3.6). We use



as the benchmark an autoregressive model yt+h = φ0 + φ1yt + · · ·+ φpyt−p+1 + εt+h, where p is

selected using the Bayesian Information Criterion (BIC) with 0 ≤ p ≤ 6. The GDFM proposed

in (1.6), where the factors used in prediction are estimated using static and dynamic principal

components and are labeled as GDFMS and GDFMG respectively; for the comparison model we

report results for the FNN-DF model described in (2.8) with factors estimated using both static

and generalized principal components, and are labeled as FNN-DFS and FNN-DFG respectively.

We report results for the choice of r = 7 static and q = 2 generalized principal components,

whereas for the number of hidden units we fix s = 5. In the Tabless we will refer to the ratio of

the MSE for a given method to the MSE of AR(BIC). An entry less than one indicates that the

specified method is superior to the AR(BIC) forecast. For each series we compare all models at

h = 1, 3, 6, 9, 12 month forecasting horizons.

It is useful in addition to the full sample analysis also consider two subsamples 1971:1-1984:12

and 1985:1-2002:12. The results of those subsamples help us to understand whether the methods

proposed are helpful in improving forecast performance of the variable where its predictability

is low; this phenomenon is known as "great moderation".

3.5.1 Test of Predictive Ability

To investigate the forecasting accuracy of the proposed models, we adopt the recent conditional

predictive ability test of Giacomini and White (2006). Their test is based on an out-of-sample

evaluation using a rolling window scheme. As described before, the in-sample size T used for

estimation remains constant, while the sample itself and the points at which the forecast is

evaluated, move with time. It is assumed that the number of out-of-sample forecasts tends to

infinity while the in-sample size T remains constant.

One of the main motivations for using a conditional test versus an unconditional methodology

of West (1996) is that it can be applied in a more general setting. The test evaluates not only

the model itself, but the whole forecasting method, which includes the choice of the in-sample

size T . While traditional tests of forecast equivalence answer the question of which forecast

was more accurate on average, the Giacomini and White (2006) test answers the question of

whether one can predict which forecast will be more accurate at a future date. The conditional

methodology can be applied to the comparison of a wide range of models, such as parametric,



semi-parametric, nonparametric and Bayesian models.

Suppose for simplicity that two alternative models are used to forecast the variable of interest

h steps ahead, yt+h. As described before, the forecasts formulated at time t are based on

information set It and are denoted as Mi : ŷt+h,i = f (st;ϑ) with i = 1, 2. We evaluate the

sequence of out of sample using a loss function Lt+h (yt+h, ŷt+h,i) with i = 1, 2. The loss function

for out-of-sample evaluation used in this dissertation are the squared error loss and the absolute

error loss, as described in Section (2.4.5). For a given loss function and the σ-field It, we write

the null hypothesis of equal conditioned predictive ability of forecasts ŷt+h,1 and ŷt+h,2 for the

horizon t+ h as

H0 : E [∆Lt+h|It] = 0

where ∆Lt+h = Lt+h (yt+h, ŷt+h,1) − Lt+h (yt+h, ŷt+h,2). Nevertheless, before describing the

test, it is important to clarify some concepts. In particular, if we are interested in testing which

forecast is better on average, then we let It = (∅,Ω). If, on the other hand, we are interested

in producing a forecast for specific data h periods in the future, then conditioning on It could

be more appropriate, as it allows us to ask whether there is additional information that can

helps identify which forecast is more appropriate for that date. This situation is particularly

suited for real time forecasting exercise. When It is the σ-field It = (∅,Ω) and h ≥ 1 the null

hypothesis can be viewed as in Diebold and Mariano (1995) and West (1996); the test is based

on the statistics

tτ,h =
∆L̄τ
σ̂τ/
√
τ

where ∆L̄τ = τ−1
∑T1−h

τ=T0
∆Lτ+h and σ̂2

τ is a consistent estimator of the asymptotic variance σ2
τ .

For the level α test rejects the null hypothesis of equal unconditional predictive ability whenever

|tτ,h| > zα/2, where zα/2 is the (1− α/2) quantile of a standard normal distribution.

3.6 Empirical Results

The forecasting results for the variables are reported in Table 3.1. Three sets of statistics are

reported. The first is the MSE of the proposed forecasting model, computed relative to the

MSE of the AR(BIC) forecast, so the autoregressive forecast has a relative mean square error

(hereafter rMSE) of 1.000. The second is the relative mean absolute error (hereafter rMAE).



An entry of less than one indicates that the specified model is superior to the simple AR(BIC)

forecast. The third is the directional accuracy (DA), which indicates the percentage of forecasts

that correctly predict the direction of the change. We assess the significance of the observed

differences in MSE between models by applying the pairwise Giacomini and White test (hereafter

GW) of equal forecast accuracy, the test results are reported in Table 3.2. The entries in the

table are the p-values of pairwise tests of equal forecast accuracy; the plus or minus sign indicates

that the method in the row outperforms or underperforms, the method in the column at the 5%

significance level. Therefore, in addition to the full sample analysis we report the results also

for the subsamples 1974:1-1984:12 and 1985:1-2002:12. The results in these subsamples help us

to understand whether the method proposed is useful for improving forecast performance of the

variable where its predictability is decreased.

3.6.1 Forecasting Results

The results reported in Table 3.1 for Personal Income show that the forecasts obtained using

both GDFM and FNN-DF, in terms of MSE, have equal performance with respect to the bench-

mark. Comparing the forecasts obtained from GDFM to those of FNN-DF, the nonlinear models

outperform the linear. However, an improvement in terms of MSE or MAE does not reflect an

improvement in correctly predicting the direction of the change of the series. The pooling fore-

casts obtained by using equal weights or by using the technique PLS do not provide significant

improvement with respect to each single model, except for H=12. These results are confirmed in

Table 3.2, where the test demonstrates that the three models: AR, GDFM, and FNN-DF, have

equal prediction accuracy. However, when FNN-DF is compared to GDFM, the hypothesis of

equal forecast accuracy is rejected in favor of nonlinear models. For Personal Income, complex

models do not seem to provide an improvement in prediction accuracy.

For Real Consumption, in Table 3.1 when H=1, the GDFM and FNN-DF models have equal

ability to forecast with respect to the benchmark. However, for H = 3, 6, 9, and 12, forecasts

obtained using these models provide a small improvement. Comparing the forecasts obtained

by linear and nonlinear techniques, FNN-DF models are more accurate in terms of MSE and

MAE. Looking at the DA, the percentage of correctly predicting the sign of the series is in favor

of the FNN-DFG model, especially for H = 6, 9 and 12. The pooling forecasts do not provide

a significant advantage with respect to each single model for H = 1, 3, 6, whereas for H=9 and



12, the use of PLS provides an improvement of about 10%. From Table 3.2, the GW test does

not reject the hypothesis of equal forecast accuracy with respect to the benchmark. Comparing

linear and nonlinear techniques, the results show that there is an improvement in MSE, which

appears to be relevant only for H = 3 and 6. When predicting Real Consumption, there appears

to be an advantage in using the nonlinear models, in comparison to linear models. However,

using more complex models does not necessarily offer a significant improvement with respect to

simple models such as the benchmark.

For Industrial Production Index, the results indicate that forecasts obtained with factor models

using linear or nonlinear techniques are better compared to the benchmark. The improvement

over the benchmark is approximately 25% for H = 1, while for H = 3, 6, 9, 12 the improvement

increased as much as 40%. Comparing the forecast obtained by linear and nonlinear techniques,

the forecasting performance of FNNDF models are worse than those of GDFM, especially for

the horizon H = 3 and 9. However, observing the DA, there is no model which dominates the

others. The equal weights pooling forecast seems to provide an advantage only when H = 12,

however the PLS method does not seem to provide any advantage in forecast accuracy. Looking

at the tests results reported in Table 3.2, the difference in terms of MSE for both linear and

nonlinear models is statistically significant for all forecast horizons compared to the benchmark.

The test does not indicate which model provides more accurate forecasts, instead indicating that

the GDFMG model at H = 1 and 3 there is improved accuracy. For this variable, both linear

and nonlinear models seem to have equally superior ability in prediction accuracy compared to

the benchmark.

For Unemployment Rate, the results are very similar to Industrial Production Index. Here the

improvements are in the order of 17% for H = 1, while for H = 3, 6, 9, and 12, the accuracy

increased up to 46%. Comparing the forecasts obtained by linear and nonlinear techniques, the

performance is very similar. The pooling forecasts do not provide significant improvement when

compared to each single model. The directional accuracy, there is no particular model which

dominates the others. Looking that the results reported in Table 3.2, the GW test results are

statistically significant for all forecasting horizons for both linear and nonlinear models with

respect to the benchmark. As for Industrial Production Index, the test does not indicate which

model provides more accurate forecasts. Nonlinear models do not seem to provide more accurate



forecasts for Unemployment Rate.

Also in the case of Money Supply (M2 series), the forecast obtained with the models using linear

and nonlinear techniques have better performance with respect to the benchmark (Table 3.1).

The models have very similar ability to correctly predict the direction of the series. Some

evidence in favor of GDFMS is found for H = 12. Comparing the forecasts obtained by linear

and nonlinear techniques, the performance of FNN-DF models are worse than the GDFMmodels,

especially for H = 6 and 9. The pooling forecast using PLS provides marginal improvement

over the single models for H = 1 and 3, whereas for H = 6, 9, and 12 the improvement is more

evident. Table 3.2, the poor performance of nonlinear models is confirmed by the GW test,

particularly, for the horizon H = 6 and 9. For Money Supply (M2 Series), the pooling forecasts

seem to mitigate the errors found in the nonlinear models when H is greater than 6.

For Interest Rate, as shown in Table 3.1, the forecasts obtained with linear and nonlinear models

have better performance only forH = 1 and 3. For the horizonH = 6, 9, and 12, the performance

is similar to the benchmark. Comparing rMSE to rMAE, the rMSE is larger for H = 6, 9, and

12; this result indicates that the forecast obtained by GDFM and FNN-DF are more sensitive

to the outliers in the series than AR(BIC). Looking at DA, both GDFM and FNN-DF have

better performance than the benchmark. Comparing linear and nonlinear models, FNN-DFG

outperforms linear models. The pooling forecast using PLS provide marginal improvement with

respect to each single model with H = 1 and 3, whereas for H = 6, 9, and 12, it provides

an improvement of about 10%. In Table 3.2, the GW test yields results which are statistically

significant for the benchmark for H = 6, 9, and 12. Comparing the GDFM and the FNN-DF,

the results FNN-DFG are statistically significant. As for Money Supply, the pooling forecast

seems to provide more accurate results.

For Producer Price Index, the linear and nonlinear models have the same ability as the bench-

mark to forecast for H = 1 and 3. For H = 6, 9, and 12, the forecasts obtained using these

models provide some improvement over the benchmark. The directional accuracy for both linear

and nonlinear models is superior to the benchmark, as is evident for H = 9 and 12. Comparing

the forecasts obtained using linear and nonlinear techniques, the performance of both GDFM

and FNN-DF is very similar, except for H = 6, 9, and 12, where the linear models are superior.

The pooling forecasts do not provide significant improvement with respect to each individual



model. The GW test results (3.2) confirm the results described above and contained in Table 3.1.

The more complex models have better performance in short horizons for Producer Price Index

forecasting.

For Consumer Price Index, the improvement of both linear and nonlinear techniques are in the

order of 10% for H = 1, while for H = 3, 6, 9, and 12 it increased up to 60% compared to

the benchmark. The directional accuracy both GDFM and FNN-DF dominate the benchmark,

especially for H = 9 and 12 where the prediction of correct sign reaches 90%. Comparing

the forecasts obtained by linear and nonlinear techniques, the GDFM models lead in accuracy

compared to the FNN-DF models. The pooling forecasts do not provide significant improvement

over the individual models. Looking at the GW test results both linear and nonlinear models

perform better than the benchmark. Also comparing the GDFM and FNN-DF models, the

results are statistically significant for GDFM. The linear models seem to perform better than

the alternatives for Consumer Price Index.

Forecasting Results for 1974 - 1984. The results obtained for the period between 1974

and 1984 are very similar to those described above. However, for Personal Income the nonlinear

model appears to be even better than AR(BIC); this result is evident for H = 1, 3, 6 as shown

in Tables 3.3 and 3.4. For all other series, the results do not change.

Forecasting Results for 1985 - 2002. In the period between 1985 and 2002 we observe

a substantial decrease in the forecasting ability of GDFM and FNN-DF compared to simpler

models such as AR (BIC). Looking at Tables 3.5 and 3.6, this result is evident using either

linear and nonlinear models. For Unemployment Rate and Money Supply is it possible obtain

improvements.



Table 3.1: Forecasting Results for the period between 1974 - 2002

PERSONAL INCOME

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.509 1.000 1.000 0.560 1.000 1.000 0.497 1.000 1.000 0.431 1.000 1.000 0.440
GDFMG 1.045 1.026 0.537 0.975 0.989 0.606 1.005 0.998 0.546 1.008 1.019 0.552 0.995 0.993 0.598
GDFMS 1.072 1.045 0.555 0.993 1.006 0.581 1.037 1.043 0.549 1.081 1.054 0.552 1.075 1.042 0.624

Nonlinear
FNN-DFG 1.013 1.007 0.517 0.927 0.967 0.601 0.945 0.977 0.540 0.944 0.990 0.535 0.911 0.974 0.572
FNN-DFS 1.015 1.000 0.575 0.929 0.959 0.572 0.947 0.990 0.546 0.942 0.988 0.560 0.971 1.013 0.581

Pooling
PLS 1.026 1.002 0.537 0.939 0.971 0.592 0.947 0.976 0.537 0.938 0.982 0.526 0.888 0.968 0.586
EW 1.018 1.003 0.543 0.934 0.963 0.598 0.953 0.981 0.546 0.932 0.992 0.552 0.906 0.971 0.601

REAL CONSUMPTION

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.448 1.000 1.000 0.437 1.000 1.000 0.592 1.000 1.000 0.480 1.000 1.000 0.388
GDFMG 1.035 1.032 0.535 0.897 0.964 0.618 0.895 0.974 0.569 0.917 1.027 0.546 0.929 1.037 0.500
GDFMS 1.050 1.049 0.535 0.946 1.013 0.575 0.854 0.958 0.569 0.891 0.971 0.589 0.862 0.973 0.552

Nonlinear
FNN-DFG 0.989 1.007 0.549 0.848 0.934 0.629 0.866 0.957 0.603 0.885 0.998 0.603 0.904 1.015 0.580
FNN-DFS 1.012 1.022 0.512 0.867 0.959 0.578 0.817 0.933 0.589 0.928 0.965 0.572 0.964 1.021 0.526

Pooling
PLS 1.001 1.014 0.535 0.848 0.944 0.612 0.825 0.935 0.583 0.807 0.918 0.572 0.795 0.927 0.532
EW 1.004 1.017 0.549 0.868 0.956 0.615 0.820 0.938 0.581 0.850 0.965 0.572 0.850 0.973 0.523

INDUSTRIAL PRODUCTION INDEX

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.575 1.000 1.000 0.606 1.000 1.000 0.552 1.000 1.000 0.500 1.000 1.000 0.477
GDFMG 0.741 0.887 0.658 0.623 0.835 0.713 0.561 0.811 0.681 0.572 0.811 0.704 0.603 0.773 0.675
GDFMS 0.784 0.923 0.652 0.674 0.880 0.681 0.577 0.843 0.626 0.619 0.835 0.658 0.629 0.776 0.687

Nonlinear
FNN-DFG 0.736 0.873 0.658 0.619 0.827 0.713 0.551 0.810 0.672 0.637 0.853 0.670 0.630 0.783 0.664
FNN-DFS 0.772 0.910 0.644 0.652 0.859 0.684 0.547 0.826 0.621 0.668 0.866 0.649 0.638 0.789 0.652

Pooling
PLS 0.740 0.883 0.670 0.657 0.849 0.693 0.571 0.810 0.667 0.658 0.823 0.690 0.611 0.767 0.678
EW 0.738 0.884 0.672 0.625 0.843 0.687 0.541 0.811 0.641 0.594 0.825 0.684 0.588 0.756 0.675

UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.644 1.000 1.000 0.661 1.000 1.000 0.598 1.000 1.000 0.549 1.000 1.000 0.466
GDFMG 0.830 0.944 0.672 0.748 0.891 0.718 0.573 0.799 0.727 0.555 0.759 0.753 0.544 0.725 0.739
GDFMS 0.850 0.955 0.606 0.735 0.897 0.713 0.521 0.793 0.733 0.510 0.739 0.741 0.551 0.704 0.733

Nonlinear
FNN-DFG 0.816 0.937 0.670 0.742 0.888 0.718 0.617 0.815 0.724 0.591 0.786 0.730 0.592 0.749 0.730
FNN-DFS 0.821 0.941 0.647 0.726 0.891 0.716 0.526 0.789 0.730 0.540 0.763 0.767 0.536 0.703 0.744

Pooling
PLS 0.811 0.933 0.664 0.721 0.876 0.721 0.574 0.813 0.667 0.529 0.735 0.704 0.548 0.723 0.652
EW 0.815 0.936 0.655 0.722 0.876 0.730 0.537 0.786 0.747 0.516 0.738 0.744 0.514 0.694 0.739

– Continued on next page –



MONEY SUPPLY - M2

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.678 1.000 1.000 0.690 1.000 1.000 0.695 1.000 1.000 0.701 1.000 1.000 0.595
GDFMG 0.785 0.888 0.721 0.765 0.898 0.707 0.762 0.852 0.672 0.675 0.797 0.733 0.709 0.851 0.736
GDFMS 0.749 0.854 0.733 0.749 0.873 0.741 0.788 0.861 0.733 0.716 0.802 0.753 0.758 0.865 0.747

Nonlinear
FNN-DFG 0.776 0.884 0.730 0.767 0.898 0.713 0.790 0.863 0.678 0.728 0.821 0.721 0.756 0.866 0.701
FNN-DFS 0.742 0.851 0.736 0.749 0.874 0.739 0.913 0.918 0.716 0.771 0.824 0.741 0.740 0.861 0.721

Pooling
PLS 0.726 0.847 0.741 0.703 0.879 0.741 0.634 0.794 0.739 0.602 0.785 0.773 0.660 0.854 0.741
EW 0.738 0.851 0.733 0.718 0.865 0.721 0.753 0.851 0.724 0.679 0.794 0.750 0.687 0.840 0.736

INTEREST RATE: FEDERAL FUNDS (EFFECTIVE)

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.626 1.000 1.000 0.612 1.000 1.000 0.560 1.000 1.000 0.494 1.000 1.000 0.376
GDFMG 0.828 0.963 0.695 0.948 0.933 0.690 0.992 0.926 0.667 1.022 0.921 0.658 0.961 0.881 0.598
GDFMS 0.854 0.988 0.684 0.976 0.957 0.687 1.068 0.978 0.690 1.137 0.992 0.661 1.049 0.944 0.626

Nonlinear
FNN-DFG 0.785 0.933 0.698 0.875 0.902 0.684 0.963 0.922 0.661 0.973 0.918 0.638 0.956 0.877 0.612
FNN-DFS 0.805 0.950 0.684 0.924 0.937 0.693 0.999 0.947 0.684 1.055 0.965 0.661 1.088 0.946 0.632

Pooling
PLS 0.797 0.933 0.672 0.875 0.910 0.698 0.911 0.916 0.667 0.909 0.915 0.672 0.851 0.906 0.618
EW 0.796 0.935 0.693 0.908 0.923 0.687 0.975 0.931 0.684 1.012 0.933 0.655 0.972 0.897 0.606

PRODUCER PRICE INDEX

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.535 1.000 1.000 0.506 1.000 1.000 0.526 1.000 1.000 0.497 1.000 1.000 0.486
GDFMG 0.996 1.026 0.529 0.991 1.015 0.549 0.877 0.953 0.615 0.859 0.947 0.552 0.740 0.893 0.586
GDFMS 0.982 0.999 0.563 0.968 1.017 0.558 0.864 0.948 0.609 0.844 0.945 0.598 0.785 0.926 0.566

Nonlinear
FNN-DFG 0.975 1.011 0.540 0.975 1.002 0.543 0.889 0.962 0.595 0.859 0.937 0.558 0.828 0.912 0.558
FNN-DFS 0.953 0.988 0.552 0.933 0.987 0.558 0.843 0.934 0.578 0.911 0.960 0.575 0.844 0.932 0.543

Pooling
PLS 0.958 0.999 0.535 0.933 0.984 0.543 0.848 0.941 0.601 0.787 0.902 0.606 0.740 0.869 0.578
EW 0.959 1.002 0.540 0.949 0.993 0.558 0.831 0.930 0.618 0.844 0.941 0.569 0.773 0.906 0.572

CPI-U: ALL ITEMS

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.558 1.000 1.000 0.583 1.000 1.000 0.552 1.000 1.000 0.506 1.000 1.000 0.500
GDFMG 0.876 0.960 0.618 0.691 0.866 0.641 0.636 0.824 0.664 0.506 0.739 0.618 0.474 0.718 0.621
GDFMS 0.841 0.917 0.638 0.711 0.856 0.652 0.678 0.836 0.664 0.531 0.754 0.624 0.517 0.760 0.644

Nonlinear
FNN-DFG 0.874 0.956 0.592 0.683 0.859 0.641 0.716 0.861 0.655 0.595 0.785 0.586 0.597 0.799 0.586
FNN-DFS 0.845 0.932 0.644 0.694 0.851 0.675 0.744 0.861 0.647 0.725 0.825 0.592 0.733 0.860 0.575

Pooling
PLS 0.840 0.930 0.624 0.687 0.852 0.649 0.653 0.832 0.658 0.491 0.723 0.632 0.477 0.727 0.632
EW 0.839 0.931 0.638 0.685 0.849 0.664 0.649 0.817 0.667 0.534 0.743 0.618 0.532 0.768 0.612

Notes: Entries are relative MSE and relative MAE, relative to the benchmark AR. DA is the directional accuracy

criterion. All the criteria were computed over the period 1974:1 - 2002:12-h. The pooling forecast is obtained applying

the simulated forecasting exercise described in Section (3.2). The various columns correspond to forecasts of 1, 3, 6, 9

and 12-month growth, where all the multiperiod forecasts were computed using direct methods.
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Table 3.3: Forecasting Results for the Period 1974 - 1984

PERSONAL INCOME

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.511 1.000 1.000 0.474 1.000 1.000 0.511 1.000 1.000 0.436 1.000 1.000 0.361
GDFMG 1.015 1.004 0.564 0.816 0.876 0.684 0.834 0.893 0.639 0.797 0.922 0.752 0.776 0.864 0.805
GDFMS 0.998 0.971 0.624 0.778 0.854 0.692 0.840 0.943 0.677 0.879 0.961 0.767 0.912 0.945 0.827

Nonlinear
FNN-DFG 0.967 0.989 0.564 0.777 0.852 0.677 0.801 0.894 0.624 0.791 0.921 0.707 0.785 0.885 0.782
FNN-DFS 0.912 0.944 0.594 0.746 0.809 0.669 0.806 0.910 0.662 0.711 0.880 0.752 0.939 0.977 0.767

Pooling
PLS 0.976 0.966 0.579 0.766 0.829 0.707 0.782 0.879 0.662 0.758 0.905 0.699 0.574 0.755 0.790
EW 0.954 0.968 0.587 0.760 0.828 0.692 0.786 0.881 0.647 0.737 0.902 0.767 0.770 0.872 0.812

REAL CONSUMPTION

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.466 1.000 1.000 0.421 1.000 1.000 0.571 1.000 1.000 0.414 1.000 1.000 0.278
GDFMG 1.060 1.040 0.549 0.781 0.891 0.692 0.670 0.780 0.654 0.675 0.803 0.707 0.678 0.809 0.609
GDFMS 1.071 1.055 0.541 0.836 0.938 0.647 0.678 0.799 0.692 0.712 0.791 0.714 0.694 0.799 0.677

Nonlinear
FNN-DFG 1.000 1.013 0.541 0.742 0.872 0.699 0.664 0.781 0.662 0.676 0.799 0.722 0.682 0.810 0.587
FNN-DFS 1.047 1.044 0.504 0.755 0.883 0.662 0.661 0.788 0.707 0.801 0.816 0.692 0.860 0.910 0.602

Pooling
PLS 1.021 1.028 0.541 0.747 0.887 0.654 0.638 0.766 0.677 0.608 0.739 0.707 0.608 0.753 0.684
EW 1.025 1.032 0.534 0.764 0.889 0.654 0.635 0.773 0.692 0.665 0.781 0.714 0.665 0.785 0.639

INDUSTRIAL PRODUCTION INDEX

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.556 1.000 1.000 0.647 1.000 1.000 0.481 1.000 1.000 0.308 1.000 1.000 0.293
GDFMG 0.630 0.814 0.707 0.550 0.743 0.790 0.398 0.626 0.790 0.360 0.593 0.805 0.346 0.534 0.850
GDFMS 0.647 0.840 0.714 0.567 0.760 0.782 0.375 0.624 0.797 0.396 0.612 0.797 0.381 0.568 0.842

Nonlinear
FNN-DFG 0.646 0.813 0.707 0.548 0.737 0.805 0.392 0.630 0.790 0.444 0.656 0.744 0.383 0.547 0.835
FNN-DFS 0.663 0.840 0.692 0.553 0.738 0.782 0.348 0.606 0.805 0.457 0.655 0.790 0.400 0.576 0.790

Pooling
PLS 0.635 0.812 0.714 0.576 0.737 0.812 0.420 0.635 0.805 0.506 0.663 0.820 0.422 0.601 0.827
EW 0.634 0.816 0.737 0.544 0.740 0.797 0.363 0.608 0.797 0.386 0.610 0.797 0.338 0.528 0.842

UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.632 1.000 1.000 0.639 1.000 1.000 0.466 1.000 1.000 0.391 1.000 1.000 0.384
GDFMG 0.752 0.920 0.684 0.701 0.840 0.677 0.497 0.712 0.699 0.463 0.651 0.767 0.433 0.596 0.835
GDFMS 0.747 0.923 0.669 0.661 0.812 0.714 0.429 0.682 0.729 0.421 0.624 0.759 0.470 0.604 0.850

Nonlinear
FNN-DFG 0.743 0.913 0.692 0.695 0.839 0.684 0.551 0.728 0.699 0.496 0.679 0.737 0.491 0.625 0.842
FNN-DFS 0.740 0.910 0.662 0.663 0.815 0.699 0.433 0.684 0.722 0.441 0.650 0.782 0.433 0.579 0.880

Pooling
PLS 0.732 0.908 0.669 0.678 0.827 0.684 0.513 0.734 0.699 0.468 0.651 0.722 0.488 0.650 0.752
EW 0.735 0.910 0.669 0.669 0.816 0.699 0.460 0.696 0.744 0.431 0.637 0.744 0.428 0.581 0.857

– Continued on next page –



MONEY SUPPLY - M2

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.677 1.000 1.000 0.669 1.000 1.000 0.729 1.000 1.000 0.609 1.000 1.000 0.278
GDFMG 0.683 0.835 0.744 0.650 0.840 0.774 0.615 0.782 0.744 0.575 0.714 0.790 0.560 0.744 0.812
GDFMS 0.668 0.802 0.774 0.705 0.841 0.774 0.773 0.862 0.782 0.713 0.772 0.797 0.677 0.814 0.774

Nonlinear
FNN-DFG 0.674 0.825 0.767 0.656 0.837 0.767 0.650 0.789 0.744 0.631 0.743 0.774 0.638 0.800 0.737
FNN-DFS 0.655 0.792 0.774 0.701 0.830 0.759 0.993 0.967 0.744 0.812 0.820 0.752 0.669 0.813 0.744

Pooling
PLS 0.649 0.796 0.767 0.550 0.762 0.812 0.562 0.679 0.752 0.501 0.712 0.790 0.510 0.678 0.774
EW 0.650 0.794 0.752 0.635 0.808 0.752 0.677 0.822 0.767 0.630 0.743 0.797 0.579 0.770 0.782

INTEREST RATE: FEDERAL FUNDS (EFFECTIVE)

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.624 1.000 1.000 0.541 1.000 1.000 0.451 1.000 1.000 0.459 1.000 1.000 0.263
GDFMG 0.791 0.897 0.752 0.951 0.943 0.647 0.992 0.910 0.699 1.086 0.964 0.632 0.951 0.853 0.594
GDFMS 0.836 0.965 0.707 0.976 0.977 0.624 1.030 0.939 0.722 1.117 0.990 0.669 0.951 0.869 0.662

Nonlinear
FNN-DFG 0.763 0.891 0.752 0.882 0.920 0.662 0.962 0.905 0.692 1.028 0.955 0.602 0.953 0.849 0.609
FNN-DFS 0.793 0.931 0.714 0.927 0.961 0.632 0.973 0.911 0.722 1.049 0.962 0.662 1.021 0.881 0.677

Pooling
PLS 0.784 0.906 0.722 0.881 0.927 0.647 0.886 0.875 0.684 0.892 0.888 0.692 0.701 0.771 0.654
EW 0.782 0.910 0.722 0.915 0.946 0.639 0.970 0.908 0.692 1.048 0.951 0.654 0.941 0.847 0.624

PRODUCER PRICE INDEX

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.617 1.000 1.000 0.602 1.000 1.000 0.677 1.000 1.000 0.564 1.000 1.000 0.444
GDFMG 1.094 1.079 0.504 0.925 1.021 0.662 0.859 1.008 0.714 0.763 0.898 0.752 0.564 0.744 0.812
GDFMS 1.108 1.066 0.526 0.843 0.983 0.677 0.804 0.949 0.714 0.683 0.863 0.782 0.587 0.771 0.797

Nonlinear
FNN-DFG 1.064 1.061 0.496 0.917 1.002 0.639 0.889 1.026 0.692 0.809 0.909 0.737 0.736 0.803 0.774
FNN-DFS 1.064 1.038 0.534 0.834 0.963 0.684 0.808 0.948 0.692 0.888 0.932 0.782 0.735 0.824 0.759

Pooling
PLS 1.069 1.047 0.504 0.867 0.977 0.662 0.796 0.967 0.707 0.666 0.824 0.827 0.603 0.737 0.790
EW 1.068 1.055 0.519 0.859 0.981 0.677 0.781 0.951 0.722 0.756 0.895 0.759 0.626 0.780 0.797

CPI-U: ALL ITEMS

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.677 1.000 1.000 0.669 1.000 1.000 0.639 1.000 1.000 0.564 1.000 1.000 0.466
GDFMG 0.871 0.976 0.654 0.547 0.756 0.759 0.516 0.755 0.774 0.361 0.587 0.790 0.322 0.539 0.865
GDFMS 0.898 0.954 0.684 0.569 0.752 0.767 0.576 0.764 0.759 0.395 0.608 0.759 0.388 0.599 0.842

Nonlinear
FNN-DFG 0.883 0.987 0.624 0.554 0.769 0.759 0.643 0.826 0.722 0.461 0.656 0.729 0.491 0.679 0.805
FNN-DFS 0.887 0.966 0.684 0.567 0.759 0.782 0.687 0.829 0.729 0.624 0.722 0.714 0.656 0.765 0.737

Pooling
PLS 0.869 0.963 0.654 0.562 0.765 0.774 0.554 0.781 0.752 0.377 0.611 0.790 0.372 0.604 0.827
EW 0.868 0.961 0.662 0.553 0.756 0.782 0.553 0.758 0.759 0.397 0.610 0.752 0.412 0.631 0.812

Notes: Entries are relative MSE and relative MAE, relative to the benchmark AR. DA is the directional accuracy

criterion. All the criteria were computed over the period 1974:1 - 1985:12-h. The pooling forecast is obtained applying

the simulated forecasting exercise described in Section (3.2). The various columns correspond to forecasts of 1, 3, 6, 9

and 12-month growth, where all the multiperiod forecasts were computed using direct methods.



T
ab

le
3.
4:

T
es
ts

of
E
qu

al
Fo

re
ca
st

A
cc
ur
ac
y
fo
r
th
e
P
er
io
d
19

74
-
19

84
.

P
A

N
E
L

A
.
F
O

R
E
C

A
S
T

IN
G

H
O

R
IZ

O
N

H
=

1

P
E
R

S
O

N
A

L
IN

C
O

M
E

R
E
A

L
C

O
N

S
U

M
P
T

IO
N

IN
D

U
S
T

R
IA

L
P
R

O
D

U
C

T
IO

N
U

N
E
M

P
L
O

Y
M

E
N

T
R

A
T

E

M
od

el
s

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

G
D

F
M

G
0.

56
1

0.
78

9
0
.0

1
1
+

0
.0

2
1
+

G
D

F
M

S
0.

49
7

0.
36

6
0.

77
0

0.
55

7
0
.0

2
4
+

0.
70

8
0
.0

2
0
+

0.
42

5
F
N

N
-D

F
G

0.
32

0
0
.0

3
4
+

0.
30

2
0.

50
4

0
.0

1
5
+

0.
16

3
0
.0

0
4
+

0.
70

7
0.

50
0

0
.0

1
0
+

0.
29

2
0.

44
4

F
N

N
-D

F
S

0
.0

4
9
+

0
.0

1
1
+

0
.0

4
4
+

0
.0

3
9
+

0.
77

3
0.

38
2

0.
27

1
0.

85
4

0
.0

1
0
+

0.
85

3
0.

65
7

0.
75

9
0
.0

1
0
+

0.
32

6
0.

33
7

0.
44

3

M
O

N
E
Y

S
U

P
P
L
Y

-
M

2
IN

T
E
R

E
S
T

R
A
T

E
P
R

O
D

U
C

E
R

P
R

IC
E

IN
D

E
X

C
P
I-

U
:
A

L
L

IT
E
M

S
G

D
F
M

G
0
.0

1
3
+

0
.0

2
4
+

0.
84

8
0.

14
3

G
D

F
M

S
0
.0

0
3
+

0.
38

1
0.

05
2

0
.9

5
6
−

0.
84

4
0.

61
7

0.
24

0
0.

72
5

F
N

N
-D

F
G

0
.0

0
7
+

0.
34

3
0.

54
1

0
.0

0
8
+

0.
20

7
0
.0

4
0
+

0.
84

1
0.

21
6

0.
26

9
0.

12
8

0.
70

3
0.

38
3

F
N

N
-D

F
S

0
.0

0
1
+

0.
29

6
0.

23
8

0.
33

3
0
.0

1
6
+

0.
51

4
0.

09
3

0
.9

5
3
−

0.
82

2
0.

30
6

0.
15

3
0.

51
1

0.
15

4
0.

66
5

0.
38

0
0.

56
4

P
A

N
E
L

B
.
F
O

R
E
C

A
S
T

IN
G

H
O

R
IZ

O
N

H
=

3

P
E
R

S
O

N
A

L
IN

C
O

M
E

R
E
A

L
C

O
N

S
U

M
P
T

IO
N

IN
D

U
S
T

R
IA

L
P
R

O
D

U
C

T
IO

N
U

N
E
M

P
L
O

Y
M

E
N

T
R

A
T

E

M
od

el
s

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

G
D

F
M

G
0.

09
8

0.
06

9
0
.0

0
5
+

0
.0

1
2
+

G
D

F
M

S
0
.0

5
8
+

0.
28

6
0.

15
7

0
.9

7
5
−

0
.0

0
6
+

0.
66

6
0
.0

0
4
+

0.
09

0
F
N

N
-D

F
G

0
.0

3
4
+

0
.0

4
1
+

0
.0

4
8
+

0
.0

2
2
+

0
.0

4
9
+

0
.0

4
1
+

0
.0

0
2
+

0.
47

1
0.

32
8

0
.0

0
9
+

0.
32

0
0
.9

6
0
−

F
N

N
-D

F
S

0
.0

1
4
+

0
.0

4
7
+

0.
20

5
0.

22
1

0
.0

2
8
+

0.
19

2
0
.0

2
1
+

0.
65

3
0
.0

0
3
+

0.
53

1
0.

23
9

0.
55

5
0
.0

0
4
+

0.
10

7
0.

58
0

0.
11

0

M
O

N
E
Y

S
U

P
P
L
Y

-
M

2
IN

T
E
R

E
S
T

R
A
T

E
P
R

O
D

U
C

E
R

P
R

IC
E

IN
D

E
X

C
P
I-

U
:
A

L
L

IT
E
M

S
G

D
F
M

G
0.

05
3

0.
32

6
0.

34
5

0
.0

1
3
+

G
D

F
M

S
0.

06
8

0.
83

0
0.

43
6

0.
62

6
0.

21
6

0.
16

4
0
.0

2
3
+

0.
76

7
F
N

N
-D

F
G

0
.0

4
5
+

0.
57

9
0.

15
5

0.
11

2
0
.0

2
9
+

0.
14

4
0.

28
3

0.
44

5
0.

79
7

0
.0

1
2
+

0.
77

0
0.

32
1

F
N

N
-D

F
S

0
.0

4
1
+

0.
71

7
0.

47
0

0.
72

2
0.

27
2

0.
41

5
0
.0

4
7
+

0.
75

8
0.

14
9

0.
18

8
0.

44
0

0.
12

9
0
.0

1
8
+

0.
77

9
0.

46
0

0.
70

8

P
A

N
E
L

C
.
F
O

R
E
C

A
S
T

IN
G

H
O

R
IZ

O
N

H
=

6

P
E
R

S
O

N
A

L
IN

C
O

M
E

R
E
A

L
C

O
N

S
U

M
P
T

IO
N

IN
D

U
S
T

R
IA

L
P
R

O
D

U
C

T
IO

N
U

N
E
M

P
L
O

Y
M

E
N

T
R

A
T

E

M
od

el
s

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

G
D

F
M

G
0.

12
8

0
.0

0
8
+

0
.0

0
4
+

0
.0

0
8
+

G
D

F
M

S
0.

19
1

0.
51

7
0
.0

1
8
+

0.
53

3
0
.0

0
6
+

0.
30

7
0
.0

0
4
+

0.
15

3
F
N

N
-D

F
G

0
.0

4
7
+

0.
10

9
0.

37
1

0
.0

0
5
+

0.
39

7
0.

44
3

0
.0

0
3
+

0.
34

3
0.

65
1

0
.0

0
7
+

0
.9

5
9
−

0
.9

5
2
−

F
N

N
-D

F
S

0.
10

4
0.

37
8

0.
22

6
0.

52
4

0
.0

0
8
+

0.
44

2
0.

30
2

0.
48

0
0
.0

0
5
+

0.
17

6
0
.0

4
3
+

0.
17

7
0
.0

0
3
+

0.
16

2
0.

59
9

0.
08

5

M
O

N
E
Y

S
U

P
P
L
Y

-
M

2
IN

T
E
R

E
S
T

R
A
T

E
P
R

O
D

U
C

E
R

P
R

IC
E

IN
D

E
X

C
P
I-

U
:
A

L
L

IT
E
M

S
G

D
F
M

G
0
.0

4
8
+

0.
50

0
0.

33
5

0
.0

1
8
+

G
D

F
M

S
0.

20
6

0
.9

5
7
−

0.
55

6
0.

71
9

0.
27

9
0.

30
1

0
.0

4
7
+

0.
76

8
F
N

N
-D

F
G

0.
09

7
0.

80
5

0.
11

5
0.

43
8

0.
27

2
0.

16
5

0.
36

3
0.

81
8

0.
75

5
0.

07
0

0
.9

5
3
−

0.
68

4
F
N

N
-D

F
S

0.
48

5
0
.9

9
2
−

0
.9

5
0
−

0
.9

8
3
−

0.
45

7
0.

37
7

0.
08

1
0.

57
1

0.
26

2
0.

32
4

0.
53

1
0.

25
1

0.
10

5
0
.9

5
8
−

0.
90

4
0.

67
6

–
C
on

ti
nu

ed
on

ne
xt

pa
ge

–



P
A

N
E
L

D
.
F
O

R
E
C

A
S
T

IN
G

H
O

R
IZ

O
N

H
=

9

P
E
R

S
O

N
A

L
IN

C
O

M
E

R
E
A

L
C

O
N

S
U

M
P
T

IO
N

IN
D

U
S
T

R
IA

L
P
R

O
D

U
C

T
IO

N
U

N
E
M

P
L
O

Y
M

E
N

T
R

A
T

E

M
od

el
s

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

G
D

F
M

G
0.

08
6

0
.0

1
2
+

0
.0

0
2
+

0
.0

0
1
+

G
D

F
M

S
0.

32
0

0.
73

0
0.

06
6

0.
71

5
0
.0

1
1
+

0.
74

7
0
.0

0
1
+

0.
23

7
F
N

N
-D

F
G

0.
10

8
0.

42
0

0.
28

6
0
.0

0
4
+

0.
50

9
0.

34
1

0
.0

0
5
+

0
.9

9
9
−

0.
77

2
0
.0

0
2
+

0.
78

2
0.

90
9

F
N

N
-D

F
S

0.
06

6
0.

20
6

0.
12

6
0.

23
6

0.
17

0
0.

87
4

0.
80

9
0.

84
3

0
.0

1
2
+

0
.9

5
4
−

0
.9

5
3
−

0.
59

0
0
.0

0
2
+

0.
35

9
0.

89
5

0.
14

7

M
O

N
E
Y

S
U

P
P
L
Y

-
M

2
IN

T
E
R

E
S
T

R
A
T

E
P
R

O
D

U
C

E
R

P
R

IC
E

IN
D

E
X

C
P
I-

U
:
A

L
L

IT
E
M

S
G

D
F
M

G
0
.0

3
1
+

0.
60

3
0.

15
4

0
.0

0
0
+

G
D

F
M

S
0.

14
8

0
.9

5
8
−

0.
64

9
0.

68
3

0.
10

6
0.

22
0

0
.0

0
1
+

0
.9

7
1
+

F
N

N
-D

F
G

0
.0

5
0
+

0
.9

6
2
−

0.
20

4
0.

52
5

0.
21

7
0.

17
3

0.
18

0
0.

81
1

0.
84

7
0
.0

0
2
+

0
.9

6
7
−

0.
77

8
F
N

N
-D

F
S

0.
23

9
0
.9

9
5
−

0
.9

6
9
−

0
.9

7
9
−

0.
56

8
0.

42
1

0.
09

5
0.

65
3

0.
29

5
0.

81
4

0.
86

5
0.

80
2

0
.0

5
0
+

0
.9

5
7
−

0
.9

5
8
−

0
.9

5
7
−

P
A

N
E
L

E
.
F
O

R
E
C

A
S
T

IN
G

H
O

R
IZ

O
N

H
=

12

P
E
R

S
O

N
A

L
IN

C
O

M
E

R
E
A

L
C

O
N

S
U

M
P
T

IO
N

IN
D

U
S
T

R
IA

L
P
R

O
D

U
C

T
IO

N
U

N
E
M

P
L
O

Y
M

E
N

T
R

A
T

E

M
od

el
s

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

A
R

G
D

F
M

G
G

D
F
M

S
F
N

N
-D

F
G

G
D

F
M

G
0.

13
1

0
.0

2
6
+

0
.0

0
0
+

0
.0

0
0
+

G
D

F
M

S
0.

39
4

0.
83

1
0.

06
9

0.
56

7
0
.0

0
4
+

0.
70

4
0
.0

0
1
+

0.
75

6
F
N

N
-D

F
G

0.
11

1
0.

60
2

0.
21

4
0
.0

1
5
+

0.
55

6
0.

46
6

0
.0

0
0
+

0.
90

6
0.

51
5

0
.0

0
0
+

0
.9

6
7
−

0.
64

4
F
N

N
-D

F
S

0.
42

2
0.

87
1

0.
59

5
0.

83
5

0.
24

1
0
.9

5
7
−

0
.9

6
1
−

0
.9

5
7
−

0
.0

0
4
+

0.
79

0
0.

69
9

0.
59

4
0
.0

0
0
+

0.
49

2
0.

05
8

0.
12

2

M
O

N
E
Y

S
U

P
P
L
Y

-
M

2
IN

T
E
R

E
S
T

R
A
T

E
P
R

O
D

U
C

E
R

P
R

IC
E

IN
D

E
X

C
P
I-

U
:
A

L
L

IT
E
M

S
G

D
F
M

G
0
.0

1
5
+

0.
39

7
0
.0

0
8
+

0
.0

0
0
+

G
D

F
M

S
0.

09
3

0
.9

6
9
−

0.
41

2
0.

50
8

0
.0

1
0
+

0.
66

6
0
.0

0
0
+

0
.9

9
1
−

F
N

N
-D

F
G

0
.0

2
4
+

0.
82

4
0.

38
5

0.
41

4
0.

52
3

0.
51

1
0.

06
1

0
.9

6
7
−

0.
83

2
0
.0

0
2
+

0
.9

9
7
−

0
.9

5
4
−

F
N

N
-D

F
S

0.
06

5
0.

83
4

0.
47

2
0.

63
7

0.
51

9
0.

74
0

0.
89

3
0.

81
8

0
.0

4
2
+

0
.9

7
2
−

0.
86

7
0.

49
7

0
.0

3
6
+

0
.9

9
1
−

0
.9

6
7
−

0
.9

6
0
−

N
ot

es
:
R
es
ul
ts

of
te
st

of
eq
ua

l
fo
re
ca
st

ac
cu
ra
cy

as
de
sc
ri
be

d
in

Se
ct
io
n
3.
5.
1.

E
nt
ri
es

ar
e
th
e
p
-v
al
ue
s
of

th
e
te
st

fo
r
th
e
fo
re
ca
st

in
th
e
co
rr
es
po

nd
in
g
ro
w

an
d

co
lu
m
n.

A
pl
us

or
m
in
us

si
gn

in
di
ca
te
s
th
at

th
e
m
et
ho

d
in

th
e
ro
w

ou
tp
er
fo
rm

s
or

un
de
rp
er
fo
rm

s
th
e
m
et
ho

d
in

th
e
co
lu
m
n
at

th
e
5%

si
gn

ifi
ca
nc
e
le
ve
l.
Fo

r
ex
am

pl
e,

fo
r
P
er
so
na

lI
nc
om

e
at

th
e
H

=
1
ho

ri
zo
n,

eq
ua

lf
or
ec
as
t
ac
cu
ar
cy

of
th
e
G
D
F
M

G
an

d
th
e
F
N
N
-D

F
G

is
re
je
ct
ed

w
it
h
a
p
-v
al
ue

of
0.
03
4,

th
en

F
N
N
-D

F
G

ou
tp
er
fo
rm

s

G
D
F
M

G
.



Table 3.5: Forecasting Results for the Period 1984 - 2002

PERSONAL INCOME

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.507 1.000 1.000 0.614 1.000 1.000 0.488 1.000 1.000 0.428 1.000 1.000 0.488
GDFMG 1.060 1.042 0.521 1.142 1.089 0.558 1.185 1.085 0.488 1.212 1.094 0.428 1.247 1.104 0.470
GDFMS 1.109 1.098 0.512 1.220 1.139 0.512 1.245 1.124 0.470 1.276 1.124 0.419 1.264 1.127 0.498

Nonlinear
FNN-DFG 1.036 1.019 0.488 1.085 1.067 0.554 1.097 1.045 0.488 1.092 1.042 0.428 1.057 1.051 0.442
FNN-DFS 1.065 1.041 0.563 1.120 1.090 0.512 1.095 1.055 0.474 1.047 1.035 0.442 1.009 1.045 0.465

Pooling
PLS 1.051 1.027 0.512 1.121 1.095 0.521 1.121 1.056 0.461 1.112 1.041 0.419 1.034 1.022 0.461
EW 1.049 1.028 0.516 1.116 1.082 0.540 1.129 1.063 0.484 1.120 1.061 0.419 1.107 1.058 0.470

REAL CONSUMPTION

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.437 1.000 1.000 0.447 1.000 1.000 0.605 1.000 1.000 0.521 1.000 1.000 0.456
GDFMG 1.018 1.026 0.526 1.078 1.038 0.572 1.400 1.217 0.516 1.520 1.319 0.447 1.518 1.328 0.433
GDFMS 1.036 1.045 0.530 1.117 1.088 0.530 1.250 1.158 0.493 1.339 1.206 0.512 1.257 1.195 0.474

Nonlinear
FNN-DFG 0.982 1.002 0.554 1.012 0.997 0.586 1.318 1.178 0.502 1.406 1.257 0.465 1.422 1.276 0.414
FNN-DFS 0.986 1.007 0.516 1.043 1.035 0.526 1.168 1.115 0.516 1.246 1.159 0.498 1.206 1.163 0.479

Pooling
PLS 0.986 1.003 0.530 1.004 1.002 0.586 1.243 1.147 0.526 1.236 1.152 0.488 1.166 1.149 0.437
EW 0.989 1.006 0.558 1.029 1.024 0.591 1.235 1.145 0.512 1.311 1.206 0.484 1.285 1.214 0.451

INDUSTRIAL PRODUCTION INDEX

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.586 1.000 1.000 0.581 1.000 1.000 0.595 1.000 1.000 0.619 1.000 1.000 0.591
GDFMG 0.974 0.960 0.628 0.955 0.957 0.665 1.110 1.081 0.614 1.208 1.135 0.642 1.221 1.094 0.567
GDFMS 1.068 1.006 0.614 1.012 1.039 0.619 1.257 1.164 0.521 1.290 1.167 0.572 1.226 1.054 0.591

Nonlinear
FNN-DFG 0.973 0.933 0.628 0.944 0.947 0.656 1.091 1.074 0.600 1.218 1.145 0.623 1.223 1.098 0.558
FNN-DFS 0.998 0.979 0.614 0.966 1.020 0.623 1.220 1.148 0.507 1.304 1.180 0.563 1.210 1.074 0.567

Pooling
PLS 0.960 0.953 0.642 0.911 0.997 0.619 1.081 1.066 0.581 1.114 1.061 0.609 1.066 0.989 0.586
EW 0.954 0.952 0.633 0.885 0.980 0.619 1.142 1.107 0.544 1.219 1.144 0.614 1.188 1.061 0.572

UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.651 1.000 1.000 0.674 1.000 1.000 0.679 1.000 1.000 0.647 1.000 1.000 0.516
GDFMG 0.945 0.967 0.665 0.880 0.956 0.744 0.887 0.943 0.744 0.892 0.936 0.744 0.839 0.909 0.679
GDFMS 1.001 0.986 0.567 0.942 1.006 0.712 0.901 0.975 0.735 0.834 0.926 0.730 0.764 0.848 0.661

Nonlinear
FNN-DFG 0.924 0.960 0.656 0.872 0.950 0.740 0.890 0.958 0.740 0.936 0.961 0.726 0.863 0.926 0.661
FNN-DFS 0.941 0.969 0.637 0.905 0.989 0.726 0.910 0.962 0.735 0.902 0.947 0.758 0.811 0.881 0.661

Pooling
PLS 0.927 0.957 0.661 0.844 0.940 0.744 0.827 0.944 0.647 0.752 0.871 0.693 0.704 0.828 0.591
EW 0.932 0.960 0.647 0.870 0.954 0.749 0.854 0.933 0.749 0.824 0.903 0.744 0.745 0.855 0.665

– Continued on next page –



MONEY SUPPLY - M2

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.679 1.000 1.000 0.702 1.000 1.000 0.674 1.000 1.000 0.758 1.000 1.000 0.791
GDFMG 0.875 0.926 0.707 0.905 0.945 0.665 0.916 0.902 0.628 0.789 0.865 0.698 0.938 0.952 0.688
GDFMS 0.821 0.892 0.707 0.803 0.899 0.721 0.804 0.861 0.702 0.719 0.827 0.726 0.881 0.913 0.730

Nonlinear
FNN-DFG 0.866 0.926 0.707 0.903 0.947 0.679 0.939 0.917 0.637 0.839 0.885 0.688 0.935 0.928 0.679
FNN-DFS 0.820 0.894 0.712 0.808 0.908 0.726 0.828 0.882 0.698 0.723 0.827 0.735 0.849 0.906 0.707

Pooling
PLS 0.795 0.884 0.726 0.889 0.971 0.698 0.815 0.879 0.730 0.718 0.845 0.763 0.935 1.018 0.721
EW 0.817 0.891 0.721 0.820 0.910 0.702 0.834 0.872 0.698 0.734 0.835 0.721 0.853 0.906 0.707

INTEREST RATE: FEDERAL FUNDS (EFFECTIVE)

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.628 1.000 1.000 0.656 1.000 1.000 0.628 1.000 1.000 0.516 1.000 1.000 0.447
GDFMG 1.227 1.117 0.661 0.920 0.912 0.716 0.991 0.955 0.647 0.926 0.955 0.674 1.002 0.927 0.600
GDFMS 1.045 1.042 0.670 0.977 0.913 0.726 1.278 1.045 0.670 1.212 0.995 0.656 1.425 1.062 0.605

Nonlinear
FNN-DFG 1.023 1.031 0.665 0.914 0.965 0.698 0.971 0.952 0.642 0.904 0.961 0.661 0.966 0.921 0.614
FNN-DFS 0.933 0.996 0.665 0.892 0.883 0.730 1.140 1.010 0.661 1.078 0.970 0.661 1.345 1.047 0.605

Pooling
PLS 0.940 0.996 0.642 0.924 0.972 0.730 1.048 0.988 0.656 0.971 0.956 0.661 0.943 0.936 0.595
EW 0.951 0.994 0.674 0.936 0.974 0.716 1.002 0.972 0.679 0.955 0.965 0.656 1.091 0.976 0.595

PRODUCER PRICE INDEX

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.484 1.000 1.000 0.447 1.000 1.000 0.433 1.000 1.000 0.456 1.000 1.000 0.512
GDFMG 0.913 0.990 0.544 1.053 1.010 0.479 0.894 0.914 0.554 0.971 0.990 0.428 1.034 1.045 0.447
GDFMS 0.877 0.953 0.586 1.087 1.040 0.484 0.918 0.948 0.544 1.034 1.017 0.484 1.116 1.084 0.423

Nonlinear
FNN-DFG 0.900 0.978 0.567 1.030 1.002 0.484 0.889 0.916 0.535 0.918 0.962 0.447 0.982 1.023 0.423
FNN-DFS 0.861 0.955 0.563 1.027 1.004 0.479 0.875 0.923 0.507 0.938 0.984 0.447 1.025 1.043 0.409

Pooling
PLS 0.865 0.966 0.554 0.996 0.989 0.470 0.896 0.923 0.535 0.929 0.970 0.470 0.968 1.004 0.447
EW 0.868 0.966 0.554 1.034 1.001 0.484 0.875 0.914 0.554 0.948 0.981 0.451 1.018 1.035 0.433

CPI-U: ALL ITEMS

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.484 1.000 1.000 0.530 1.000 1.000 0.498 1.000 1.000 0.470 1.000 1.000 0.521
GDFMG 0.882 0.945 0.595 0.938 0.993 0.567 0.865 0.904 0.595 0.863 0.953 0.512 1.008 1.017 0.470
GDFMS 0.768 0.884 0.609 0.953 0.976 0.581 0.872 0.919 0.605 0.866 0.961 0.540 0.971 1.030 0.521

Nonlinear
FNN-DFG 0.862 0.929 0.572 0.902 0.964 0.567 0.857 0.901 0.614 0.926 0.967 0.498 0.973 0.999 0.451
FNN-DFS 0.792 0.900 0.619 0.909 0.957 0.609 0.852 0.898 0.595 0.973 0.972 0.516 1.005 1.020 0.474

Pooling
PLS 0.804 0.901 0.605 0.900 0.952 0.572 0.844 0.892 0.600 0.772 0.882 0.535 0.845 0.935 0.512
EW 0.801 0.903 0.623 0.909 0.957 0.591 0.834 0.886 0.609 0.870 0.931 0.535 0.956 0.997 0.488

Notes: Entries are relative MSE and relative MAE, relative to the benchmark AR. DA is the directional accuracy

criterion. All the criteria were computed over the period 1985:1 - 2003:12-h. The pooling forecast is obtained applying

the simulated forecasting exercise described in Section (3.2). The various columns correspond to forecasts of 1, 3, 6, 9

and 12-month growth, where all the multiperiod forecasts were computed using direct methods.
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3.7 Changes in U.S. Economic Time Series

In this chapter we present the same analysis as in Section (3.5); however, the difference between

the two sections concerns the period in which it was conducted. As seen in Section (3.5) the

period under study covers the time span between 1974 and 2002. Here, the analysis will be

performed for the period between 2003 and 2008. The reasons for extending the analysis to

this period are varied. In general, the vast majority of papers concerning the use of factor

models in predicting US macroeconomic time series, are based on and compared to the dataset

presented in the previous section found here. It is now established that the forecasts made with

these types of models have better performance in the period between 1970 and 1985, compared

to very simple models, such as autoregressive models. This evidence, however, changes in the

period following the 1985 to 2002, namely during the so-called Great Moderation, where the use

of many predictors does not improve the forecasts obtained with very simple models, especially

for key series such as Industrial Production Index or Consumer Price Index. For this reason, it

will be interesting to see whether the forecasting ability of factor models for the period between

2003 and 2008 are still marked by poor forecasting or if it is reasonable to think that something

has changed.

The dataset has been updated taking into account the changes that have elapsed since 2003. In

particular the new dataset is no longer composed of 131 series as the original but 130. In this

extended analysis the monetary aggregate M3 is excluded; the M3 series includes all physical

currency and deposits in checking accounts, deposits in savings accounts, certificates of deposit,

institutional money market accounts, repurchase agreements, and other large liquid assets that

do not circulate very often. However, On March 23 2006, the Board of Governors of the Federal

Reserve System ceased publication of the M3 monetary aggregate, because it does not appear

to convey any additional information about economic activity that is not already embodied in

M2 and has not played a role in the monetary policy process for many years.

In order to determine the number of factors, we proceed as in Section 1.5. In Figure (3.2) the

criterion proposed by Hallin and Liska (2007) sets the number of dynamic factors equal to 1.

Whereas the criterion proposed by Alessi et al. (2007) sets the number of static factors equal to

4.

The results obtained confirm that there is no change in the forecasting ability of models GDFM
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Figure 3.2: Plot of the Criteria proposed to determine the number of factors.

and FNN-DF. Comparing the Tables 3.5 and 3.6 and Tables 3.7 and 3.8, this lack of change in

forecasting ability is clear, as the results for the period between 1985 and 2003 are in line with

the results for the new period under study.



Table 3.7: Forecasting Results for the period between 2003 - 2008

PERSONAL INCOME

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.561 1.000 1.000 0.526 1.000 1.000 0.649 1.000 1.000 0.632 1.000 1.000 0.561
GDFMG 0.995 0.960 0.649 0.814 0.902 0.667 0.906 0.952 0.649 0.973 0.992 0.667 1.150 1.115 0.561
GDFMS 1.016 1.029 0.561 0.963 1.023 0.526 1.254 1.108 0.491 1.377 1.140 0.544 1.309 1.171 0.509

Nonlinear
FNN-DFG 0.954 0.950 0.579 0.803 0.873 0.632 0.931 0.980 0.649 0.971 0.974 0.702 1.099 1.072 0.561
FNN-DFS 0.967 0.976 0.561 0.871 0.931 0.561 1.190 1.068 0.509 1.289 1.108 0.526 1.260 1.132 0.491

Pooling
PLS 0.973 0.984 0.544 0.861 0.930 0.544 0.994 0.978 0.561 1.086 0.996 0.614 1.154 1.075 0.544
EW 0.967 0.959 0.632 0.841 0.915 0.579 1.017 0.993 0.544 1.102 1.022 0.632 1.184 1.108 0.509

REAL CONSUMPTION

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.421 1.000 1.000 0.561 1.000 1.000 0.614 1.000 1.000 0.491 1.000 1.000 0.579
GDFMG 0.944 0.989 0.597 0.948 0.984 0.649 1.197 1.096 0.526 1.249 1.098 0.439 1.369 1.304 0.561
GDFMS 0.988 0.985 0.526 0.973 0.985 0.561 1.188 1.091 0.509 1.262 1.115 0.421 1.425 1.321 0.526

Nonlinear
FNN-DFG 0.926 0.966 0.561 0.912 0.977 0.614 1.261 1.093 0.509 1.250 1.093 0.456 1.330 1.270 0.561
FNN-DFS 0.970 0.975 0.509 0.925 0.931 0.597 1.250 1.093 0.491 1.250 1.091 0.421 1.362 1.279 0.526

Pooling
PLS 0.957 0.980 0.526 0.846 0.893 0.614 1.257 1.097 0.509 1.245 1.085 0.456 1.324 1.258 0.544
EW 0.950 0.977 0.544 0.781 0.867 0.632 1.214 1.087 0.526 1.240 1.084 0.439 1.352 1.283 0.561

INDUSTRIAL PRODUCTION INDEX

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.614 1.000 1.000 0.614 1.000 1.000 0.561 1.000 1.000 0.614 1.000 1.000 0.754
GDFMG 0.996 0.994 0.632 1.008 0.998 0.667 0.948 0.999 0.632 1.072 1.187 0.737 1.248 1.315 0.754
GDFMS 0.939 0.968 0.614 1.061 1.019 0.632 0.915 0.994 0.649 1.196 1.156 0.667 1.333 1.170 0.772

Nonlinear
FNN-DFG 0.940 0.943 0.684 0.970 0.963 0.667 0.652 0.920 0.667 0.984 1.077 0.719 0.999 1.135 0.737
FNN-DFS 0.907 0.917 0.649 1.029 0.989 0.632 0.735 0.935 0.667 1.032 1.055 0.684 1.073 1.096 0.702

Pooling
PLS 0.940 0.953 0.632 1.005 0.977 0.667 0.927 0.963 0.667 1.039 1.091 0.702 1.071 1.108 0.702
EW 0.939 0.949 0.632 1.007 0.986 0.667 0.919 0.951 0.667 1.023 1.098 0.684 1.100 1.148 0.754

UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.649 1.000 1.000 0.754 1.000 1.000 0.737 1.000 1.000 0.702 1.000 1.000 0.807
GDFMG 0.922 0.993 0.719 0.693 0.888 0.825 0.610 0.786 0.807 0.722 0.805 0.790 0.648 0.710 0.807
GDFMS 0.925 0.989 0.719 0.672 0.877 0.842 0.553 0.808 0.825 0.680 0.798 0.772 0.650 0.756 0.807

Nonlinear
FNN-DFG 0.918 0.975 0.702 0.712 0.881 0.807 0.610 0.790 0.807 0.708 0.794 0.772 0.665 0.722 0.790
FNN-DFS 0.918 0.977 0.702 0.717 0.873 0.825 0.566 0.812 0.807 0.665 0.781 0.790 0.655 0.758 0.772

Pooling
PLS 0.914 0.974 0.754 0.706 0.869 0.825 0.608 0.842 0.772 0.683 0.797 0.790 0.701 0.800 0.772
EW 0.910 0.983 0.719 0.692 0.873 0.842 0.578 0.796 0.807 0.686 0.788 0.790 0.645 0.725 0.807

– Continued on next page –



MONEY SUPPLY - M2

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.421 1.000 1.000 0.333 1.000 1.000 0.351 1.000 1.000 0.351 1.000 1.000 0.298
GDFMG 1.055 1.010 0.509 1.264 1.033 0.544 1.088 1.063 0.509 0.870 0.897 0.561 0.688 0.820 0.439
GDFMS 1.183 1.083 0.509 1.137 1.002 0.597 1.361 1.150 0.526 1.077 0.962 0.544 0.757 0.796 0.439

Nonlinear
FNN-DFG 1.002 0.987 0.474 1.150 0.989 0.491 1.062 1.061 0.439 0.902 0.963 0.474 0.760 0.900 0.386
FNN-DFS 1.039 1.020 0.474 1.042 0.971 0.526 1.233 1.124 0.491 1.066 1.015 0.491 0.830 0.893 0.333

Pooling
PLS 1.047 1.017 0.474 1.129 0.991 0.561 1.171 1.101 0.509 0.869 0.928 0.509 0.674 0.816 0.404
EW 1.055 1.021 0.474 1.134 0.993 0.561 1.164 1.088 0.509 0.957 0.952 0.526 0.731 0.845 0.439

INTEREST RATE: FEDERAL FUNDS (EFFECTIVE)

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.912 1.000 1.000 0.895 1.000 1.000 0.684 1.000 1.000 0.509 1.000 1.000 0.316
GDFMG 0.702 0.848 0.877 0.565 0.784 0.860 0.550 0.742 0.860 0.418 0.634 0.807 0.405 0.624 0.825
GDFMS 0.653 0.853 0.877 0.515 0.758 0.860 0.553 0.710 0.895 0.403 0.627 0.842 0.423 0.634 0.877

Nonlinear
FNN-DFG 0.721 0.864 0.842 0.587 0.801 0.860 0.569 0.758 0.860 0.439 0.654 0.807 0.440 0.660 0.825
FNN-DFS 0.669 0.854 0.895 0.538 0.766 0.860 0.533 0.701 0.895 0.419 0.641 0.860 0.442 0.652 0.877

Pooling
PLS 0.687 0.843 0.895 0.532 0.762 0.877 0.577 0.762 0.895 0.428 0.650 0.860 0.448 0.665 0.860
EW 0.674 0.843 0.860 0.543 0.772 0.877 0.542 0.721 0.895 0.414 0.637 0.842 0.420 0.639 0.842

PRODUCER PRICE INDEX

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.597 1.000 1.000 0.561 1.000 1.000 0.632 1.000 1.000 0.632 1.000 1.000 0.526
GDFMG 1.241 1.114 0.561 1.016 1.013 0.509 1.200 1.079 0.614 1.278 1.206 0.526 1.505 1.171 0.421
GDFMS 1.279 1.136 0.509 1.032 1.040 0.491 1.270 1.139 0.649 1.459 1.337 0.509 1.731 1.273 0.404

Nonlinear
FNN-DFG 1.140 1.074 0.526 0.980 0.989 0.526 1.103 1.040 0.632 1.192 1.151 0.509 1.420 1.135 0.421
FNN-DFS 1.162 1.089 0.491 0.993 1.004 0.509 1.158 1.090 0.632 1.357 1.278 0.509 1.634 1.225 0.404

Pooling
PLS 1.195 1.099 0.491 0.995 1.005 0.509 1.151 1.070 0.632 1.321 1.250 0.509 1.540 1.179 0.404
EW 1.197 1.100 0.526 0.998 1.007 0.544 1.167 1.071 0.632 1.298 1.235 0.509 1.544 1.182 0.421

CPI-U: ALL ITEMS

H = 1 H = 3 H = 6 H = 9 H = 12
rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA rMSE rMAE DA

Benchmark
AR 1.000 1.000 0.702 1.000 1.000 0.597 1.000 1.000 0.719 1.000 1.000 0.737 1.000 1.000 0.579
GDFMG 0.916 0.928 0.702 1.041 0.994 0.667 0.842 0.864 0.667 1.141 1.077 0.719 1.515 1.187 0.561
GDFMS 0.970 0.975 0.632 1.033 1.031 0.597 0.837 0.901 0.737 1.248 1.139 0.667 1.634 1.232 0.526

Nonlinear
FNN-DFG 0.960 1.006 0.702 1.010 1.017 0.561 0.845 0.871 0.684 1.112 1.056 0.754 1.476 1.177 0.579
FNN-DFS 0.986 1.028 0.614 1.011 1.042 0.491 0.836 0.897 0.719 1.215 1.111 0.649 1.591 1.211 0.561

Pooling
PLS 0.958 0.990 0.667 1.007 1.014 0.526 0.824 0.883 0.702 1.197 1.100 0.684 1.538 1.193 0.579
EW 0.947 0.974 0.684 1.015 1.015 0.597 0.828 0.881 0.684 1.164 1.087 0.719 1.541 1.193 0.579

Notes: Entries are relative MSE and relative MAE, relative to the benchmark AR. DA is the directional accuracy

criterion. All the criteria were computed over the period 2003:1 - 2009:12-h. The pooling forecast is obtained applying

the simulated forecasting exercise described in Section (3.2). The various columns correspond to forecasts of 1, 3, 6, 9

and 12-month growth, where all the multiperiod forecasts were computed using direct methods.
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Conclusions

In this dissertation we introduced a new forecasting technique for macroeconomics and financial

variables which was obtained from the combination of two different methods of data modeling,

both well-established in economic forecasting literature. The methods under study relate to

factor analysis and artificial neural networks of the FNN-DF type. The forecasting ability of the

model FNN-DF was studied for eight monthly series of the U.S. economy, grouped in real and

nominal variables, for the period between 1974 and 2008. In the introduction to Chapter 3 we

posed three questions which were designed to verify whether the use of nonlinear techniques is

superior and if such an improvement is significant enough to justify their use, lastly we asked if

the combined techniques provide a further improvement.

The immediate conclusion which comes from the empirical study is that the FNN-DF model

has the same forecasting ability as linear models even when the linearity seems prevalent in

the data. However, a careful and comparative analysis of FNN-DF and GDFM can not be

comprehensive, because, as it has often been noted, linear models do not provide improved ac-

curacy in forecasting with respect to the benchmark in the dataset examined. It is interesting

to note that in constructing FNN-DF further complexities , compared to the GDFM, are not

required. In other terms we tried to find a compromise between the numerous techniques al-

ready established to construct FNN and their forecasting accuracy. In this sense, the Bayesian

Regularization uses less subjective evaluation than other methods considered and was therefore

the most advantageous choice.

In general the results obtained do not indicate FNN-DF models have superior performance com-

pared to GDFM, except in some cases such as Real Consumption and Interest Rate. In fact

there is no model that dominates the others as can be seen in Tables 3.2 to 3.8; moreover, the

models having some significant differences, are not the same for all variables and for all fore-

casting horizons. Empirical evidence in favor of non-linearity exists only for the period between

1974 and 1985; afterwards, as analyzed by the growing literature on the Great Moderation, the

forecasting ability of complex models is reduced drastically.

Lastly the issue of whether the use of combined techniques provides an improvement over each



single model, namely when the forecaster is uncertain about which model to use, should he pool

the results or verify which of these is most appropriate for the problem at hand? The results

suggest that combining the forecasts provides some improvement only for long-term horizons.

Long-term forecasting is effected by high uncertainty and the error made in the long run can be

mitigated by the forecast combination. A further distinction can be made with respect to the

two techniques used. On the one hand the Equal Weight technique does not provide benefits.

Whereas in the case of PLS, this technique shows good ability to weight properly different

forecast. However, we have combined only four models, the gain may be more evident if the

number of forecast is large.

The results obtained in this dissertation are based on the estimation of the factors using linear

techniques. This, in general, can have limiting effects, when some of the variables considered

are strongly nonlinear. For future research it could be interesting to implement a more general

dimensionality reduction technique, which takes into account both the linear and the nonlin-

ear correlations between the series used, without imposing any restrictions on the character of

nonlinearity in the data.

Another possibility is to implement a new forecasting technique using the test proposed by Gia-

comini and White (2006) to automatically determine which model is better to predict the given

time period. To our knowledge this particular model selection has not been applied in selecting

linear or nonlinear models, for example in the neural networks framework.



Appendix A

Data Sources

Mnemonic Description Transf.

1 a0m052 Personal Income (Ar, Bil. Chain 2000 $) ∆ln

2 a0m051 Personal Income Less Transfer Payments (Ar, Bil. Chain 2000 $) ∆ln

3 a0m224_r Real Consumption (Ac) A0M224Gmdc ∆ln

4 a0m057 Manufacturing And Trade Sales (Mil. Chain 1996 $) ∆ln

5 a0m059 Sales Of Retail Stores (Mil. Chain 2000 $) ∆ln

6 ips10 Industrial Production Index - Total Index ∆ln

7 ips11 Industrial Production Index - Products, Total ∆ln

8 ips299 Industrial Production Index - Final Products ∆ln

9 ips12 Industrial Production Index - Consumer Goods ∆ln

10 ips13 Industrial Production Index - Durable Consumer Goods ∆ln

11 ips18 Industrial Production Index - Nondurable Consumer Goods ∆ln

12 ips25 Industrial Production Index - Business Equipment ∆ln

13 ips32 Industrial Production Index - Materials ∆ln

14 ips34 Industrial Production Index - Durable Goods Materials ∆ln

15 ips38 Industrial Production Index - Nondurable Goods Materials ∆ln

16 ips43 Industrial Production Index - Manufacturing (Sic) ∆ln

17 ips307 Industrial Production Index - Residential Utilities ∆ln

18 ips306 Industrial Production Index - Fuels ∆ln

19 pmp Napm Production Index (Percent) lv

20 a0m082 Capacity Utilization (Mfg) ∆lv

21 lhel Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa) ∆lv

22 lhelx Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf ∆lv

23 lhem Civilian Labor Force: Employed, Total (Thous.,Sa) ∆ln

24 lhnag Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa) ∆ln

25 lhur Unemployment Rate: All Workers, 16 Years & Over (%,Sa) ∆lv

26 lhu680 Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa) ∆lv

27 lhu5 Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa) ∆lv

28 lhu14 Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa) ∆lv

29 lhu15 Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa) ∆ln

30 lhu26 Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa) ∆ln

31 lhu27 Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa) ∆ln

32 a0m005 Average Weekly Initial Claims, Unemploy. Insurance (Thous.) ∆ln

33 ces002 Employees On Nonfarm Payrolls - Total Private ∆ln



34 ces003 Employees On Nonfarm Payrolls - Goods-Producing ∆ln

35 ces006 Employees On Nonfarm Payrolls - Mining ∆ln

36 ces011 Employees On Nonfarm Payrolls - Construction ∆ln

37 ces015 Employees On Nonfarm Payrolls - Manufacturing ∆ln

38 ces017 Employees On Nonfarm Payrolls - Durable Goods ∆ln

39 ces033 Employees On Nonfarm Payrolls - Nondurable Goods ∆ln

40 ces046 Employees On Nonfarm Payrolls - Service-Providing ∆ln

41 ces048 Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities ∆ln

42 ces049 Employees On Nonfarm Payrolls - Wholesale Trade ∆ln

43 ces053 Employees On Nonfarm Payrolls - Retail Trade ∆ln

44 ces088 Employees On Nonfarm Payrolls - Financial Activities ∆ln

45 ces140 Employees On Nonfarm Payrolls - Government ∆ln

46 a0m048 Employee Hours In Nonag. Establishments (Ar, Bil. Hours) ∆ln

47 ces151 Avg Weekly Hours Of Prod. Or Nonsuperv. Workers On Private Nonfarm lv

48 ces155 Avg Weekly Hours Of Prod. Or Nonsuperv. Workers On Private Nonfarm ∆lv

49 a0m001 Average Weekly Hours, Mfg. (Hours) lv

50 pmemp Napm Employment Index (Percent) lv

51 hsfr Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,Sa ln

52 hsne Housing Starts:Northeast (Thous.U.)S.A. ln

53 hsmw Housing Starts:Midwest(Thous.U.)S.A. ln

54 hssou Housing Starts:South (Thous.U.)S.A. ln

55 hswst Housing Starts:West (Thous.U.)S.A. ln

56 hsbr Housing Authorized: Total New Priv Housing Units (Thous.,Saar) ln

57 hsbne Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A ln

58 hsbmw Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A. ln

59 hsbsou Houses Authorized By Build. Permits:South(Thou.U.)S.A. ln

60 hsbwst Houses Authorized By Build. Permits:West(Thou.U.)S.A. ln

61 pmi Purchasing Managers’ Index (Sa) lv

62 pmno Napm New Orders Index (Percent) lv

63 pmdel Napm Vendor Deliveries Index (Percent) lv

64 pmnv Napm Inventories Index (Percent) lv

65 a0m008 Mfrs’ New Orders, Consumer Goods And Materials (Bil. Chain 1982 $) ∆ln

66 a0m007 Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000 $) ∆ln

67 a0m027 Mfrs’ New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) ∆ln

68 a1m092 Mfrs’ Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) ∆ln

69 a0m070 Manufacturing And Trade Inventories (Bil. Chain 2000 $) ∆ln

70 a0m077 Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $) ∆lv

71 fm1 Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck’Able Dep)(Bil$,Sa) ∆2ln

72 fm2 Money Stock:M2(M1+O’Nite Rps,Euro$,Gp&Bd Mmmfs&Sav&Sm Time , ∆2ln

73 fm3 Money Stock: M3(M2+Lg Time Dep,Term Rp’S&Inst Only Mmmfs) Sa ∆2ln

74 fm2dq Money Supply - M2 In 1996 Dollars (Bci) ∆ln

75 fmfba Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa) ∆2ln

76 fmrra Depository Inst Reserves:Total,Adj For Reserve Req Chgs(Mil$,Sa) ∆2ln

77 fmrnba Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa) ∆2ln



78 fclnq Commercial & Industrial Loans Oustanding In 1996 Dollars (Bci) ∆2ln

79 fclbmc Wkly Rp Lg Com’L Banks:Net Change Com’L & Indus Loans(Bil$,Saar) ∆ln

80 ccinrv Consumer Credit Outstanding - Nonrevolving(G19) ∆2ln

81 a0m095 Ratio, Consumer Installment Credit To Personal Income (Pct.) ∆lv

82 fspcom S&P’S Common Stock Price Index: Composite (1941-43=10) ∆ln

83 fspin S&P’S Common Stock Price Index: Industrials (1941-43=10) ∆ln

84 fsdxp S&P’S Composite Common Stock: Dividend Yield (% Per Annum) ∆lv

85 fspxe S&P’S Composite Common Stock: Price-Earnings Ratio (%,Nsa) ∆ln

86 fyff Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa) ∆lv

87 cp90 Cmmercial Paper Rate (Ac) ∆lv

88 fygm3 Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa) ∆lv

89 fygm6 Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa) ∆lv

90 fygt1 Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa) ∆lv

91 fygt5 Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa) ∆lv

92 fygt10 Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa) ∆lv

93 fyaaac Bond Yield: Moody’S Aaa Corporate (% Per Annum) ∆lv

94 fybaac Bond Yield: Moody’S Baa Corporate (% Per Annum) ∆lv

95 scp90 Cp90-Fyff lv

96 sfygm3 Fygm3-Fyff lv

97 sfygm6 Fygm6-Fyff lv

98 sfygt1 Fygt1-Fyff lv

99 sfygt5 Fygt5-Fyff lv

100 sfygt10 Fygt10-Fyff lv

101 sfyaaac Fyaaac-Fyff lv

102 sfybaac Fybaac-Fyff lv

103 exrus United States;Effective Exchange Rate(Merm)(Index No.) ∆ln

104 exrsw Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$) ∆ln

105 exrjan Foreign Exchange Rate: Japan (Yen Per U.S.$) ∆ln

106 exruk Foreign Exchange Rate: United Kingdom (Cents Per Pound) ∆ln

107 exrcan Foreign Exchange Rate: Canada (Canadian $ Per U.S.$) ∆ln

108 pwfsa Producer Price Index: Finished Goods (82=100,Sa) ∆2ln

109 pwfcsa Producer Price Index:Finished Consumer Goods (82=100,Sa) ∆2ln

110 pwimsa Producer Price Index:Intermed Mat.Supplies & Components(82=100,Sa) ∆2ln

111 pwcmsa Producer Price Index:Crude Materials (82=100,Sa) ∆2ln

112 psm99q Index Of Sensitive Materials Prices (1990=100)(Bci-99A) ∆2ln

113 pmcp Napm Commodity Prices Index (Percent) lv

114 punew Cpi-U: All Items (82-84=100,Sa) ∆2ln

115 pu83 Cpi-U: Apparel & Upkeep (82-84=100,Sa) ∆2ln

116 pu84 Cpi-U: Transportation (82-84=100,Sa) ∆2ln

117 pu85 Cpi-U: Medical Care (82-84=100,Sa) ∆2ln

118 puc Cpi-U: Commodities (82-84=100,Sa) ∆2ln

119 pucd Cpi-U: Durables (82-84=100,Sa) ∆2ln

120 pus Cpi-U: Services (82-84=100,Sa) ∆2ln

121 puxf Cpi-U: All Items Less Food (82-84=100,Sa) ∆2ln



122 puxhs Cpi-U: All Items Less Shelter (82-84=100,Sa) ∆2ln

123 puxm Cpi-U: All Items Less Midical Care (82-84=100,Sa) ∆2ln

124 gmdc Pce,Impl Pr Defl:Pce (1987=100) ∆2ln

125 gmdcd Pce,Impl Pr Defl:Pce; Durables (1987=100) ∆2ln

126 gmdcn Pce,Impl Pr Defl:Pce; Nondurables (1996=100) ∆2ln

127 gmdcs Pce,Impl Pr Defl:Pce; Services (1987=100) ∆2ln

128 ces275 Avg Hourly Earnings Of Prod. Or Nonsuperv. Workers On Private Nonfarm ∆2ln

129 ces277 Avg Hourly Earnings Of Prod. Or Nonsuperv Workers On Private Nonfarm ∆2ln

130 ces278 Avg Hourly Earnings Of Prod. Or Nonsuperv. Workers On Private Nonfarm ∆2ln

131 hhsntn U. Of Mich. Index Of Consumer Expectations(Bcd-83) ∆lv



Appendix B

Parameters Initialization Technique

In the following appendix we summarize the techniques used in the dissertation for initializing

the parameters in FNN-DF and well described in (Reed and Marks, 1998, pages 97-105). In

literature there are basically two methods. One consists of methods of choosing parameters by

controlling the distribution of random initial parameters. The idea is to avoid sigmoid saturation

problems causing slow estimation and poor response in the output of hidden units. The other

method consists of initializing the FNN-DF from an approximate solution found by another

modeling system, examples are decision tree and discriminant analysis. Here we adopt the

method proposed by Nguyen and Widrow (1990), which in principle belongs to the cluster of

random initialization but also possesses several characteristics which decrease the chance of the

network becoming trapped in a local minimum, as discussed in Wessels and Barnard (1992).

Nguyen-Widrow Initialization. Parameter vectors are chosen with random directions, mag-

nitudes are adjusted so each hidden unit is linear over a fraction of the input space with some

overlap of linear regions between the hidden units with similar directions, and constants are set

so the hyperplanes have random distances from the origin within the region occupied by the

input data.

Let γ̄ represent the parameter vector excluding the constant term and let γ̄0 denote the constant.

The sum in an hidden unit is ut = γ̄ ′st + γ̄0.

I. First, set the parameters so each vector has a random direction. A Gaussian distribution

is used because this makes all directions equally likely (a uniform distribution tends to

favor directions pointing to corners of the hypercube); then γ̄ ∼ N(0, 1);

II. Adjust the magnitude of γ̄ so the linear region covers a fraction of the input space. The

best width for the linear region depends on the number of hidden units. The linear

region of the hidden unit with sigmoid activation function covers the region from - usatt



to + usatt . The hyperbolic tangent activation function usatt is determined as follows. For

yt = tanh(ut) nonlinearities, the input ut needed to produce an output yt is ut = ln 1+yt

1−yt
.

The hidden unit is saturated for |yt| > 0.9 so usatt = ln 19 = 2.94. If the inputs lie in the

interior of the unit hypersphere, the maximum hidden unit occurs when st = γ̄, namely

umaxt = ‖γ̄‖2. To make the linear region approximately 1/5 of the diameter of the input

space this should be about 5 times usatt , namely umaxt = 5usatt . Normalization of γ̄ to a

magnitude ‖γ̄‖ =
√

5usatt = 3.84 gives

γ̄ ← 3.84
γ̄

‖γ̄‖

III. Set the constant term γ̄0 so the distance of the hyperplane from the origin has a random

distribution between 0 and 1. The distance of the hyperplane from the origin is d = γ̄0
‖γ̄‖

so choose

γ̄0 = ‖γ̄‖τ

where τ is a random number between 0 and 1.
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