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A B S T R A C T 

 

 

 

 

 

 

The present thesis describes an investigation on the railway system motion like a wheel-set, a bogie 

or a wagon.  

Through the search of equilibrium configurations, the positions of contact points between rails and 

wheels are first located. The detection methods allow also the definition of the normal vectors to 

rail and wheel surfaces and the principal curvatures  at contact points. To reduce computing time 

the results are stored in a lookup table that can be used for dynamic analysis of wheel-sets, bogie or 

wagon. 

A dynamic analysis has been performed on a bogie composed of two wheel-sets and a frame. The 

bogie frame is joined to the wheel-sets by means of a primary suspension system, acting on the 

three principal directions, i.e. longitudinal, transverse and vertical. 

The bogie moves along rails following its variable path. In particular, the dynamic analysis 

investigates the bogie behaviour in both straight and curved paths, with or without an initial 

perturbation and a super-elevation angle. Imposing an initial transverse disturbance, the hunting 

motion is observed and the critical speed value estimated. 

The contact characteristics have been determined by means of  the lookup table. In order to 

minimize cpu-time, a new method for the interpolation of the lookup table entries has been 

developed. Finally, two different methods for the integration of the differential equations have been 

tested and comparisons with the results obtained by Simpack-rail multibody software are discussed.  

The railway systems have been analyzed in proximity of their critical conditions both in straight and 

curved tracks.  

The critical speed is estimated through the rise up of hunting motion. The critical speed, the contact 

forces in the critical conditions and the derailment limits are  determined under different load 

conditions and track paths; two methods are used for its determination. The influence of the 

longitudinal suspension stiffness of the primary and secondary suspension systems on the critical 

conditions of the bogie and wagon are deduced for straight and curved track type.  
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C  H  A P T E R    I 
 
 
 
 
 

FOUNDAMENTAL ELEMENTS IN RAILWAY ANALYSIS 
 
 
 
 

 
1.1 - Historical considerations on the development of the railway 

 

The birth of railway is not known with precision. The use of the iron rails goes back to the 

middle of 1700 together with the invention of the first steam machine. In 1803 the first public 

railway of the world was inaugurated: the Surrey Iron Railway used only for the food 

transportation. Various tests with one horse have been done on this line, at the end of which 

one horse was able to carry a convoy of 55 t with 50 people on board. 

Richard Trevithick created the first locomotive and he deposited its patent in 1800. Four years 

later its locomotive was able to carry a cargo for 15 km of railway but he didn’t develop its 

creation.  In 1814 George Stephenson built his first locomotive and some years later he 

convinces the responsibles of the Stockton-Darlington’s railway to introduce its locomotive on 

their line. In 1823 the English law authorized the company for the people transport. 

Finally on 27 September 1825 George Stephenson drives a steam locomotive between 

Stockton and Shildon, a part of the 34 km of the  Stockton-Darlington line, drawing a cargo of 

69 t including 6 wagons of coal and 21 wagons with wooden bench and 600 passengers. He 

named this steam-machine Locomotion and it was able to move until 24 km/h and it furnished 

the name to this machine. Today this day is considered the birth-day of the railway 

transportation and its creator was obviously George Stephenson. Figure  1.1 shows the 

Locomotion while Figure 1.2 its creator, George Stephenson. Table 1.1 reports some 

characteristics of the Locomotion. 
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Figure 1.1 

The Locomotion 
Figure 1.2 

George Stephenson (1781-1848) 

 
 

Gauge 1435 mm 

Maximum boiler pressure 2  76.1 cmkg  

Power wheel diameter 1219 mm 

Mean velocity hkm 6  

Weight 6 t 

 
Table 1.1 

Principal Locomotion characteristics 
 
At this time the city of Manchester and the harbour of Liverpool were at the beginning of their 

industrial revolution with many textile  farms that import a great quantity of cotton from the 

America. It was calculated that the time necessary to travel the  canal between Liverpool and 

Manchester, 50 km long, was longer than the time required to cross the Atlantic ocean and  the 

railway appeared the better solution to resolve this problem; in 1829 a competition was 

published for the building of the best locomotive with an award of 500 pound.  

The characteristics that this machine should had was:  

• low weight, less than 6 t;  

• move at 16 km/h with a load of 20 t. 

On 6 October 1829  George and Robert Stephenson won the competition with their Rocket 

locomotive that can be considered the first modern steam locomotive equipped with all the 

principal mechanisms of the modern machines. 

The competition included besides the building of a new locomotive also the construction of a 

railway line between  Liverpool and Manchester and this line was the first important railway 
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of the story. In fact, on 15 September 1830 the line Liverpool-Manchester was inaugurated 

and with this event began the railway age. 

In the first year of operation the line transported more than ten time the usual number of 

passengers and already in 1843 the railway was long 3274 km and in 1855 the lengh increases 

to 13315 km. 

After the Rocket, the  Robert Stephenson & Co. built some other locomotives, like the 

Northumbian, the Planet that drew a train of 80 t,  the Samson and in 1833 the Patentee, 

covered with a patent. This new machine opened the development of the railway 

transportation in all the countries of Europe included Italy. In this occasion the gauge adopted 

by Stephenson, 1435 mm, was adopted in all countries even if in some cases other locomotive 

builder chose a different gauge, as Isambard Kingdon, head of the Great Western Railway, 

who adopted in 1835 a larger gauge, 7 foot equal to 2134 mm, and he built the railway 

London-Bristol. 

But since the costs for the railway adjustments for the different gauges were too expensive, as 

near the switches and in proximity of the stations where one could find also three different 

gauges, the British Government promulgated the famous Gauge Act that fixed the Stephenson 

gauge as the universal gauge to use in all railway lines and except in some cases, all of these 

was conformed. 

 

The development of the railway transportation in the rest of the world was very different 

depending from the various countries. In Italy the first railway was the Naples-Portici line 

inaugurated on 3 October 1839 with a Patentee locomotive named Vesuvio and produced by 

Longridge & Starbuck. This locomotive transported King Ferdinando for a distance of 7.5 

Km. The design and the capitals was French while  the builder was Armand Bayard de la  

Vingtrie. In 1840 was built the first Italian plant for the construction and reparation of the 

locomotives: the Pietrarsa plants. After the two Sicilies kingdom, it was the turn of the  

Lombardo-Veneto state that built in 1840 the Milan-Monza railway and in 1842 was the time 

of the Padua-Mestre railway. In 1844 the grand duchy of Tuscany built the Pisa-Leghorn line.  

In 1848 the Sardegna kingdom built the Turin-Moncalieri line 8 km long and in 1853 the first 

important Turin-Genoa line with its tunnel long 3255 m under the Giovi crossing. In 1861, the 

year of birth of the Italy kingdom, the situation was the following: 101 km of railway in the 

Pontificial state, 305 km in the  grand duchy of Tuscany, 187 km in the two Sicilies kingdom, 

the line Piacenza-Bologna (1859) and the Bologna-Rimini-Ancona line (1861).  
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During the first world war the railway transportation had a fundamental importance: in three 

years more than 15 million of men and twenty million of tons of materials and ammunitions 

were transported with a mean of 270 trains at day. During the fascism age there was a large 

development of the railway transportation in Italy (Rome-Naples line in 1927 and Bologna-

Florence line in 1934). 

 
1.2 - The railway track 
 
The track is one of the most important element in the railway study. Its principal function is to 

operate as a guide for all the wheel-sets of the train and to support all the loads transmitted 

from the wheels to the rails and to damper the vibration generated during the motion. 

The form of the track can be rectilinear or curvilinear, with or without  inclination. The radius 

of curvature of the track depends from the railway importance and from the maximum 

velocity of the train. For modern high speed trains, moving with  velocity higher than 250 

km/h, the minimum allowed radius is very large, generally about 4000 – 5000 m; for mountain 

track, where the inclination is higher than 00
030 , the minimum allowed radius is about 250 m. 

In particular cases, for example in the urban transports, the radius can be also 60 m. In the 

cases in which the gauge is lower than the standard one, the minimum allowed radius is 

reduced. Obviously every railway has a maximum admissible train velocity depending from 

its minimum radius and its maximum inclination. 

The values of the minimum allowed radius
minR  and the maximum allowed 

inclination  maxi adopted in Italy are reported in table 1.2 by respect to the maximum admissible 

velocity maxV . 

 maxi ( 00
0 ) ( )m  minR     ( )hKmV   max  

30 250 74 

25 410 95 

20 550 110 

16 650 120 

13 750 128 

11 840 135 

8 900 140 

<6 >1000 <150 

 
Table 1.2 

Relation among the maximum allowed inclination, the minimum allowed radius and the maximum 

admissible velocity on a curved track. 
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1.3 - The track system 

 

The generic railway line can be distinguished in two subsystems: the superstructure or track 

and the subgrade. 

The first subsystem includes the rails, the sleepers and the track supports, while the second 

one includes the base and the formation layer. 

The rails support the load and guide the train wheels; the sleepers distribute the loads applied 

and keep the rails at constant distance; the ballast also distributes the load, damps the train 

vibration and ensures a fast drainage of the rainwater.  

Figure 1.3 show a scheme of the superstructure and the subgrade. 

 

 
 
 

Figure 1.3 
Scheme of a conventional track structure 

 

1.4 – The rails 

 

The rails are the supporting parts with which the wheels are in contact. They are steel made 

and must resist to the heavy vertical and transverse loads transmitted by the wheels. They are 

assimilated to a continuous beams put on distributed supports. The transverse section is like a 

double “T” to guaranties the maximum inertia moment with the same area. The principal parts 

of the rails are: the  head, that is in contact with the wheels, the foot that is connected with the 

sleepers and the web that connects together the head and the foot. 
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The rails are classified as function of the weight of  a piece long 1 m.; for example the type 

UNI 60 have a weight of 60 kg per linear meter.  

Today all the dimensions are standardized. In Italy the types more used are: UNI 21, UNI 27, 

UNI 30, UNI 36, UNI 46, UNI 50, UNI 60 ; the last one is also named UIC 60 and it is the 

most used in the new constructions and in the renovation of the old ones. This rail type are 

produced in two different lengths: 36 and 48 m. 

Generally the rails are inner tilted with a cone angle (mostly 1/20): the inclination increases 

the stability during the motion and permits the wheel-set to remain centred by respect to the 

track axis; moreover the cone angle compensates the absence of the differential between the 

two wheels in curve where they have the same angular velocity because rigidly mounted on 

the wheel-set axle; the wheel tread has a cone angle, generally equal to the rail one. 

The distance between the two rails is named gauge. Different types of gauges exist depending 

from the country. The most used is the standard gauge defined as the distance between the 

inner sides of the rails, measured 14 mm below the rolling plane. Tracks with different gauge 

exist and it varies from 0.6 m to 1.676 m; some examples are the following:  

 

• the mentioned standard gauge, equal to 1.435 m with a maximum permissible range of 

+10 mm and -3 mm;  

• the broad gauge, equal to 1.524 m (Russia) and 1.672 m (Spain) adopted mainly for 

political reason to prevent the movement of foreign trains into the national railway; 

• the metric gauge, equal to 1.000 m or 1.067 m;  

• the reduced gauge, equal to 0.95 m used in many European railways. The adoption of 

a reduced gauge permits to economize on the railway building, especially in the 

mountain line where the railway construction is more difficult and expensive than in 

the plain, because of the presence of many curves and tunnels.   

 

Generally where the track is curved the gauge is increased to facilitate the circulation of the 

wagons without bogies, having the wheel-sets mounted with large distance. The gauge 

expansion depends from the track radius: in Italy the expansion is applied where the radius is 

less than 484 m and it is 5 mm; the maximum expansion applicable is 30 mm used where the 

radius is less than 300 m. In every cases the expansion is applied on the inner rail and the 

transition between  the rectilinear to the curvilinear gauges is gradually made (1 mm for each 

meter of track where h
KmV 70max ≥  and 2 mm/m where h

KmV 70max < ). 
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Figure 1.4 shows the transverse sections of three types of rails: the first, named Vignola (by its 

inventor Charles Vignolas) is the most used in the railroads while the second and third types 

are used in the urban transport; the last type is used in the curve. 

 

 
Figure 1.4 

Transverse sections of rails 

 

1.5 - The sleepers 

 

The sleepers are the transverse elements mounted orthogonally to the track axis. They have 

the function to connect the two rails in such manner that their distance remains constant 

during the time and to transmit the load from the rails to the supports. Generally the sleepers 

are in wood made or in reinforced concrete, in some cases also in steel,  and they can be 

created in monobloc or bibloc forms. The dimensions depend from the track characteristics 

(i.e the gauge) and the train type; in every cases they are standardized. They can be made by 

different wood types: oak, English oak, Scot pine and they can be mounted naturally or soaked 

with a particular antiseptic. In Italy the dimensions and the treatments are regulated by the 

UNI 7407.  

The concrete sleeper type has generally the monobloc form, made with prestressed concrete 

and reinforced with high resistance steel bars. This type are used for the new constructions 

and  for the old ones renovation. In some cases, for instance in the underground sides, the 

sleepers can be absent because the rails are directly fixed to the floor by means of  particular 

elastic connections. 

The distance between the sleepers depends from the track importance: in Italy there exist three 

categories: principal lines, medium importance lines - used for wheel-set loaded at maximum 

with 16 t - and secondary lines; the sleeper distances are respectively 0.6 m, 0.666 m and 0.75 

m. 
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1.6 - The track support 

 

Usually the track rests on ballast but there are some cases in which the support is formed by a 

concrete slab. In the first case the support is flexible while in the second case it is inflexible. 

The slab track is used in some networks as in the. Japanese and German ones and in tunnels 

because it has a smaller cross-section and hence a cheaper maintenance.  However the ballast 

type is preferred for its higher flexibility and transverse resistance, especially for high speed 

lines.  

 
1.7 - The wheel-and-axle-set 

 

The wheel-and-axle-set is the principal component of every railway system. It is formed by  

the wheel-set and the bushes; the wheel-set is composed by two wheels and an axle joined 

together to form a single mechanical part and it is the only non suspended part of the train. 

The wheel oneself is formed by two parts: the disc and the tread. The disc is directly mounted 

on the axle to form a unique block and the tread is joined on the disc at high temperature. 

At the external extremity of the tread there is the flange that has the function to stabilize the 

wheel-set during the motion and maintains it on the railway. 

At the extremity of the wheel-set there are two spindles where are mounted the bushes; this 

extremities sustain the carriage through the suspension system. On the wheel-set axle are 

mounted the brake disks that furnish a wide surfaces for the brake shoes and they are 

furnished by wings to increase the  heat transfer. 

Figure 1.5 shows a wheel-set and its principal parts. 

 

 
 

Figure 1.5 
The wheel-set and its principal parts 
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CHAPTER 2 
 
 
 
 
 

THE CMS DEVELOPED MODELS  
 
 
 
 
 

2.1 - INTRODUCTION 
 

The acronym CMS means “Commercial Multibody Software” . This software used for the creation 

of the railway models used to validate first and to compare then the code developed in Matlab 

environment aimed to analyze the railway systems. The CMS models regard the following systems: 

 

• bogie with two wheel-sets; 

• wagon with two bogies; 

• the buffers-coupler system; 

• train formed by two wagons. 

 

2.2 – THE BOGIE MODEL 
 
The bogie developed in CMS environment is formed by two wheel-sets, one frame and the primary 

suspension system. The suspension system connects the frame with the wheel-sets; it has the 

function to transmit the loads from the frame to the wheel-sets and to damp the mass motion. It acts 

along the three principal directions, that is the longitudinal, the transverse and the vertical ones and 

it is formed by 12 elements: 6 elastic and 6 viscous. Table 2.1 reports the principal mechanical and 

inertial characteristics of the primary suspension system while Figure 2.1 shows the CMS bogie 

model with the suspension system. 
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Wheel-set mass 1595 Kg Longitudinal spring stiffness N/m 106  

Bogie frame mass 2469 Kg Transverse spring stiffness N/m 102 7⋅  

Wheel profile S1002 Vertical spring stiffness N/m 105.1 6⋅  

Rail profile UIC60 Longitudinal viscous coefficient Ns/m 1049.2 3⋅  

Wheel-set distance 2.5 m Transverse viscous coefficient Ns/m 1011.1 4⋅  

Wheel radius 0.457 m Vertical viscous coefficient Ns/m 1004.3 3⋅  

Rail gauge 1.360 m Vertical length at rest m .50  

Inclination rail angle 1/20 Longitudinal length at rest m .750  

Transverse length at rest m .30  xxI  Frame  2kgm 1301  

xxI Wheelset   2kgm 935  yyI  Frame  2kgm 1401  

yyI Wheelset   2kgm 741  zzI  Frame  2kgm 1422  

zzI Wheelset   2kgm 935    

 
Table 2.1 

Masses, main dimensions and features of the bogie components. 
 

 
 

Figure 2.1 
The CMS bogie model with the primary suspension system 

 
 
2.3– THE WAGON MODEL 
 
The CMS wagon model is formed by two bogies, one car body and the secondary suspension 

system. As for the bogie, the secondary suspension system transmits the loads from the car body to 

the bogies and damps the mass oscillations. It is formed by 6 elastic elements and 6 viscous ones 

that act along the longitudinal, transverse and vertical directions. Figure 2.2 shows the CMS wagon 

model and its suspension system while Table 2.2 reports the principal mechanical and inertial 

characteristics of the secondary suspension system. 

 



11 

 
 

a) 

 

 
 

b) 

 
 

 
 

c) 

 
Figure 2.2 

The CMS wagon model: a) the wagon with the two bogies; b) , c) particular of the secondary suspension system 
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Wagon mass kg   08164  Vertical spring stiffness N/m 105.1 5⋅  

bogie distance m 51  Longitudinal viscous coefficient Ns/m 103 3⋅  

xxIWagon   2kgm 00003  Transverse viscous coefficient Ns/m 103 3⋅  

yyIWagon   2kgm 870006  Vertical viscous coefficient Ns/m 103 4⋅  

zzIWagon   2kgm 870006  Vertical length at rest m .50  

Longitudinal spring stiffness N/m 108 6⋅  Longitudinal length at rest m .750  

Transverse spring stiffness N/m 105 6⋅  Transverse length at rest m .30  

 
Table 2.2 

Principal inertial and mechanical characteristics of the wagon and of the secondary suspension system. 
 
 
2.4 – THE BUFFERS 
 
The buffers principally carry out two functions: 

• they maintain constant the distance between two consecutive wagons or between the 

locomotive and the first wagon; 

• they damp the longitudinal motion between two consecutive wagons. 

There are various buffer types with different shapes depending from the convoy category and from 

the track characteristics as the gauge; they can be single or double. The most used type is the plate-

piston one, that makes very fast the change of the train configuration. Recently, because of the rapid 

development of the high-speed trains with fixed configuration, more complex integrated types have 

been developed, based on pneumatic systems. 

The plate-piston buffer is formed by the following parts: 

 

• the piston; 

• the cylinder; 

• the plate; 

• the elastic-viscous elements for the absorption of the loads. 

 

Figure 2.3 shows a scheme of the plate-piston type. In order to make better the response of the 

buffer during the crash, its elastic element is characterized  by an hysteresis behaviour, i.e. it has a 

variable stiffnesses during the leaving and approach phases and its value depends from the 

displacement of the piston. Figure 2.4 shows the elastic stiffness of the buffer used in the CMS 

model in function of the piston displacement when it is in approach and in leaving. 
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Figure 2.3 

The buffer and the coupler systems. 

 
Figure 2.4 

The buffer stiffness during the approach and leaving phases. 
 
 
2.5 – THE COUPLER 
 
The principal function of the coupler is to transfer the draught from the front to the back wagon. 

Many coupler configurations have been designed but the most used is the chain type having at 

minimum two links, a central threaded element to put it in tension and a hook having different 

shapes (see Figure 2.3). As the buffers, the coupler is characterized by an hysteresis behaviour with 

its elastic stiffness function of  the displacement, from the phases of the movement of the wagons 

(in approach or in leaving). Figure 2.5 shows the elastic stiffness of the coupler used in the CMS 

model in function of the coupler end displacements when it is in approach or in leaving. 
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Figure 2.5 
The coupler stiffness during the approach and leaving phases.  

 
 
2.6 – THE CMS BUFFERS-COUPLER MODEL 
 
A CMS buffers-coupler model has been developed in order to permit the linking of two consecutive 

wagons in the CMS train model; it is formed by the following parts: 

 

• buffer cylinders; 

• buffer pistons; 

• piston plates; 

• a coupler; 

• two connecting plates. 

 

The system is assembled in the following mode (see Figure 2.6): 

The two cylinder pairs of the buffers are fixed with the respective connecting plates. 

The two piston pairs of the buffers are coupled with the respective cylinders through  cylindrical 

connections. 

The piston plates are fixed with the buffer pistons.  

The coupler is modelled with a piston and a cylinder both coupled through a spherical connections 

with the two connecting plates. 

All the elastic elements are characterized by  hysteresis as shown in Figure 2.4 and 2.5.  

In order to make the system more realistic, the buffer plates are modelled with a segment of sphere 

having radius equal to 0.5 m 
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a)  

 
b) 

Figure 2.6 
Scheme of the buffers-coupler CMS model.  

 
 

The contact force between two buffer plates can be divided in two components: the normal and the 

tangential ones. The normal component N
r

 is directed along the normal versor n
r

 to the surface in 

the contact point and its value is proportional to the maximum normal indentation c between the 

two plates and to the elastic stiffness ck set equal to mN 1070 9⋅ . The expression of N
r

is the 

following:  

nckN el

rr
=  
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The tangential component T
r

belongs to the tangential plane and it is parallel to the relative velocity 

between the two bodies in contact and its value is calculated assuming the Coulomb’s friction 

model with the friction coefficient µ  set  0.1. The expression of T
r

is given by: 

tNT
rrr

µ−=  

where t
r

is the versor parallel to the relative velocity of the two plates in the contact point. 

Figure 2.7 shows the two components of the contact force between the two buffer plates in contact. 

 
 

Figure 2.7 
The two components of the contact force between the two buffer plates in contact. 

 
 
2.6.1 – Validation of the CMS model 
 
In order to validate the results achieved with the CMS model, it has been developed a similar model 

in Matlab environment. The new model is a simplified version of the CMS model; the variations 

regard the buffer plates that are replaced with two contact springs acting between the buffer pistons. 

All the remaining parts are unaltered. The motion of the original model (Figure 2.6) and that of the 

simplified version (Figure 2.8) coincide when the movement of the masses are one-dimensional i.e.  

it evolves along the symmetry axis. This event occurs when  the following conditions are verified: 

 

• the external force is directed along the coupler axis (axis of symmetry); 

• the initial kinematical conditions are symmetric respect the coupler axis.  

 

Under these conditions the two systems are equivalent. The scheme of the simplified CMS model is 

shown in Figure 2.8 while the scheme of the Matlab simplified model is reported in Figure 2.9 

where are also showed the simplification due to the symmetry. 
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Figure 2.8 

The CMS simplified version of the buffers-coupler model.  

 
Figure 2.9 

The Matlab simplified scheme of the buffers-coupler model. 

 
The masses of the system are the following: 

mA=500 Kg 

mB=500 Kg 

m=33000 Kg 

During the simulation the active force has the following expression: 
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( ) ( )

50B

150000 NA

where

BtAsentF

=
=

=

 

The elastic stiffnesses ck  of the contact springs is mN200000  The buffer and coupler springs 

have a hysteresis behaviour; the following figures report the stiffness of the buffers and the coupler 

springs: 

 

• front buffer: Figure 2.4; 

• back buffer: Figure 2.10; 

• coupler: Figure 2.5. 

 

 
Figure 2.10 

The back buffer stiffness during the approach and leaving phases. 
 

The positions of the masses mmm BA  , ,  are named respectively xxx  , , 12 and they are measured 

respect to the fixed mass. The initial conditions are the following: 

( )
( )

( )
( ) ( ) ( ) .0000

.m 5.00

m 00

;m 5.00

21

2

1

===
=
=
=

xxx

x

x

x

&&&

 

the length pl is equal to 0.25 m. The three masses motion equations are the following:  
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where the symbols have the following meaning: 
 

1F
r

is the force generated by the back buffer spring on the buffer piston; 

AF
r

is the force generated by the contact spring on the front buffer piston; 

'1F
r

is the force generated by the front buffer spring on the buffer piston; 

2F
r

is the force generated by the spring coupler on the moving mass m. 

( )tF
r

is the external force acting on the mass m  
 
The values of the elastic forces depend from the mass positions and from the spring elastic 
characteristics as follow:  
 

( )
( )

( )
( )

( ) ( )













⋅=

⋅−=
⋅−=

⋅=
⋅⋅+−=

itFtF

iklxfF
ikxxfF

ikxfF

ilxxkF pcA

rr

rr

rr

rr

rr

2022

1111

1211

12

,
',''

,

2

 

 
the symbols have the following meaning: 
 
i
r

is the versor parallel to the coupler axis directed from the back to the front buffers; 

ck is the elastic stiffness of the contact spring; 

1k is the elastic stiffness of the back buffer spring; it depends from the displacement of the mass 

Am and from the fact if the mass is in approach or in leaving, as shown in Figure 2.10; 

'1k is the elastic stiffness of the front buffer; it depends from the Bm and mdisplacements and from 
the fact if the masses are in approach or in leaving, as shown in Figure 2.4; 

2k is the elastic stiffness of the coupler; it depends from the displacement of the mass mand from 
the fact if the mass is in approach or in leaving, as shown in Figure 2.5; 

0l is the length at rest of the coupler spring, equal to 0.5 m. 

The functions 211 ,' , fff define the force values under  the following conditions: 

2F
r

is null when the coupler is not in tension, that is when ( ) 00 ≤− lx ; 

AF is null when the buffers are not in contact, i.e. when ( ) 0212 ≤⋅+− plxx  

 
Figure 2.11 shows the applied active force respect to time while Figures 2.12-2.17 report the 
comparison of the displacements of the three masses and their velocities obtained by means of the 
CMS and Matlab models.  
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Figure 2.11 

Active force respect to time 
 

 

 
 

Figure 2.12 
Comparison between the displacements of m in the CMS (red curve) and Matlab (blue curve) models.  
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Figure 2.13 
Comparison between the displacements of Bm in the CMS (red curve) and Matlab (blue curve) models. 

 
 

 
 

Figure 2.14 
Comparison between the displacements of Am in the CMS (red curve) and Matlab (blue curve) models. 
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Figure 2.15 
Comparison between the velocities of Bm in the CMS (red curve) and Matlab (blue curve) models. 

 
 

 
Figure 2.16 

Comparison between the velocities of m in the CMS (red curve) and Matlab (blue curve) models. 
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Figure 2.17 

Comparison between the velocities of Am in the CMS (red curve) and Matlab (blue curve) models. 
 

2.7 – THE CMS TRAIN MODEL 
 
The CMS model of the train is formed by two wagons connected together by means of the buffers-

coupler system described in paragraph 2.6. The buffers-coupler system is joined with the wagons 

through the two connecting plates. During the motion the buffer plates crash one against the other 

and the coupler transmits the draught from the front to the back wagons. The front wagon is put in 

movement by an engine couple applied to its wheel-sets. 

 

 

 

Figure 2.18 
The CMS train model 
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C H A P T E R    3 
 
 
 
 
 

THE ROLLING-CONTACT THEORIES 
 
 
 
 
 

3.1 - INTRODUCTION 
 

The determination of the contact forces between the wheel and the rail is one of the 

fundamental problem in a dynamic analysis of a railway system. Various contact models have 

been developed. In this chapter a rigid body contact is discussed, with particular reference to 

the Hertz’s theory and to the wheel/rail creep forces. 

The contact between two bodies can be possible in one point or area, depending from the 

shape of the two surfaces. In the first case we have a nonconformal contact while in the 

second one a conformal contact.  When a load is applied on the two bodies in the case of a 

nonconformal contact, they deform at the contact point to form a contact area that is very 

small as compared with the dimensions of the bodies.  

In 1882, Heinrich Hertz presented its contact theory that accounts for the shape of the two 

bodies in proximity of the contact point. The theory assumes that the contact area is elliptic.  

Generally, in wheel-rail interaction the nonconformal model is used, in spite of the wheel and 

rail surface are significantly different in the region of contact.  

Due to the elasticity of the bodies and to the normal forces applied, some points in the contact 

region may sleep or stick when the two bodies are moved one respect to the other. 

The difference between the tangential strains in the adhesion area generates the creepages that 

are defined considering the kinematic of the two bodies. 

The creepages generate the tangential creep forces and the creep spin moment. The creep 

forces and moment have a significant effect on the stability of a railway system. 

The force transmitted between the contact surfaces can be evaluated through different rolling 

contact theories. For a better understanding, in Figure 3.1 a scheme showing the theories, their 

relationships and interrelations is drawn. Authors and the period of development are reported 

too. 
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Figure 3.1 

Scheme of the various rolling contact theories and relative authors ([2]) 
 
In the figure the connecting lines indicate a theoretical link between theories.  

The most used theory in multibody softwares is the Kalker’s FASTSIM algorithm [2]. This 

algorithm is based on the Kalker simplified theory in which the contact surfaces are replaced 

by a set of springs. The advantages of the method are  simplicity of conception and 

operational speed. FASTSIM is 1000 times faster than the Kalker’s CONTACT algorithm 

which is based on the so called Kalker exact theory. However, results accuracy is about  15% 

lower than  experimental evidences. 

Polach [27] recently developed a method faster than FASTSIM. This method offers a trade off 

between calculation time saving and accuracy.  

FASTSIM is embodied in commercial multibody softwares such as ADAMS/rail, SIMPACK, 

MEDYNA, GENSYS, VOCO. 

 

3.2 – THE HERTZ THEORY 
 

In 1882 Hertz (Figure 3.2) presented its contact theory. In this theory the contact area is 

assumed elliptic and the theory is valid when the dimensions of the contact area are small 

compared with the dimensions of the two bodies and the relative radii of curvatures.  

The general assumptions used in the Hertz’s theory can be summarized as follow: 
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• small deformation of the two bodies in the region of contact under a static 

compression; 

• continuity of the two surfaces; 

• the stress resulting from the contact force vanishes at a distance far from the contact; 

• the surfaces are frictionless; 

• the two bodies are elastic and no plastic deformation occurs in the contact area. 

 

3.2.1 - Geometry and Kinematics 

 

We consider a body B and its surface S (see Figure 3.3). It is P a generic point on S. We 

consider the inner normal versor to S in P named n
r

 and a tangent plant t to S in P. 

 

 

 

 

 

Figure 3.2 
Heinrich Rudolf Hertz  

Figure 3.3 
The body B, its surface S, the point P, the normal 

versor n
r

 and the tangential plane t 
 

We consider a reference system 0S having the axes x and y on the tangent plane, the origin in 

P and the axis z directed as the normal n
r

. 

The surface S may be expressed with reference to 0S  with the equation ),( yxf . 

 
If we consider only a small interval about the point P having coordinate0x  and 0y , the 

function ),( yxf may be expressed with a Taylor envelope as follow: 
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Where the symbolijf denote the second order derivative respect to the i and j variable. Owing 

to  the choice of the reference system and to the tangential plane definition we have: 
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With these conditions the equation of the surface becomes: 
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Until now we have considered a generic reference system ;0S  we may consider a particular 

frame |
0S  with the same origin and axis Z but rotate by and angle ψ  around Z so that the term 

xyf becomes null. 

Considering the smallness of the examined interval  as the Hertz’s theory contemplates and 

hence the negligibility of the first derivative in the point P, we may approximate the second 

derivative with the surface curvature. In fact for a one variable function )(xy , the curvature C 

is given by: 
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where R is the radius of curvature. If 1<<
∂
∂
x

y
 the curvature expression becomes 

2

2

x

y
C

∂
∂= . 

Using the curvature approximation, considering that 000 == yx and expressing the equation 

respect to |
0S , ),( yxf becomes: 

( ) 22

2

1

2

1
, YCXCYXf yx +=  

 

Where xC and yC are respectively the surface curvatures respect to the X and Y directions of 

|
0S . 
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It is possible to demonstrate that with the new choice of the reference system |0S , the 

curvature xC and yC are the principal curvatures of the surface in the point P. 

At this point we may consider the two surfaces in contact and for every one we may define a 

reference system like the previous one. We have thus |
01S  and |

02S with the same origin P and 

with the axes 1Z and 2Z parallel but having opposite directions. The two axes 1X and 

2X belonging to the tangent plane are rotate by an angle ω .  The two bodies are illustrate in 

Figure  3.4. 

 

 
 

Figure 3.4 
The two bodies in contact and the respective reference systems. 

 
For the two bodies we can write the following equations: 
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where 1Z and 2Z are the third coordinates respectively of the first and second body, xC1 and 

yC1 are respectively the minimum and maximum curvatures of the first body, xC2 and yC2 are 

respectively the minimum and maximum curvatures of the second body, 1X and 1Y are the two 

coordinates of the first body on the tangent plane while 2X and 2Y are the two coordinates of 

the second body on the same plane. 
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If we consider a point M on the tangent plane and its normal projection on the two surfaces we 

have the points 1M and 2M respectively on the first and second surfaces. The distance between 

1M and 2M is defined by: 

2
22
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112112 2
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1

2

1

2

1
YCXCYCXCZZd yxyx +++=+=  

In order to simplify the 12d expression we may consider a third reference system ||
0S  having 

the axes X and Y on the tangent plane and the axis Z parallel to the normal surface and to the 

axis  1Z . The angle between the axes X and 1X   is named ϕ  as shown in Figure 3.5. 

 
 

Figure 3.5 

The reference systems ||
0S  and the gap 12d between the points 1M and 2M . 

 
The transformations between ||0S  and |

01S  and between ||
0S  and |

02S  may be expressed as 

follow: 
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Replacing the previous transformations, the 12d expression becomes: 
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If we choose the angle ϕϕ = defined by the following relation: 
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the expression of 12d change into the following: 
 

(3.1) 

 
In this manner if we fix 12d , the points having the same gap belong to an ellipse with equation 
(3.1). 
 
In order to simplify the treatment, we may introduce the angle τ given by: 
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Taking into account the equality 0=C and after some passages we obtain: 
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This expression proves that τcos depends only from the geometrical quantities of the two 

contact bodies. 

In order to determine the contact pressure between the two bodies, we must perform the 

following hypothesis: 

a) the total applied force N  between the two bodies must be equal to the total normal 

component of the pressure p in the contact area, that is: 

∫∫= pdxdyN           (3.2) 

22
12 YBXAd +=
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b) the displacement at a distance away from the contact region can be neglected; 

c) the normal stresses outside the contact region are assumed to be zero; 

d) the normal stresses acting on the two bodies are in balance within the contact region; 

e) the shear stresses along the surfaces of the bodies are zeros. 

 

These conditions can be satisfied by assuming from the pressure p the following quadratic 

form: 
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Where 0p is a constant, aand b are respectively the maximum and minimum semi-axes of the 

contact ellipse. Replacing (3.3) in (3.2) after some passages we have: 

22

0

1
2

3
),(

3

2








−






−=

=

b

Y

a

X

ab

N
YXp

and

abpN

π

π

 

 
The semi-axes aand b  have been determined by Hertz as follow: 
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where 1K and 2K are constant depending from the material properties of the two bodies: 
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where: 
 

1υ and 2υ are the Poisson module of the two bodies; 

1E and 2E are the elasticity module of the two bodies. 

The coefficients m and n are given by Hertz in table 3.1 as function of τcos . 
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( )degτ  m n ( )degτ  m n ( )degτ  m n 

0.5 61.4 0.1018 10 6.604 0.3112 60 1.486 0.717 

1 36.89 0.1314 20 3.813 0.4125 65 1.378 0.759 

1.5 27.48 0.1522 30 2.731 0.493 70 1.284 0.802 

2 22.26 0.1691 35 2.397 0.530 75 1.202 0.846 

3 16.5 0.1964 40 2.136 0.567 80 1.128 0.893 

4 13.31 0.2188 45 1.926 0.604 85 1.061 0.944 

6 9.79 0.2552 50 1.754 0.641 90 1.0 1.0 

8 7.86 0.285 55 1.611 0.678    

 
Table 3.1 

Hertz coefficients m and n. 

1882. Nov. Leipzig,isses,Gewerbefle des rderungoBefzur  Vereins desgen Verhandlun

 Harte, dieber u undrper oK elastischefester  hrunguber dieber U - H Hertz :Source

&&

&&&&&&&&

 

 
3.3 –  THE CREEPAGES  

 
Considering two moving bodies in contact, we can observe two phenomena in the contact 

region: the rolling and the sliding motion. In general case the bodies have different linear and 

angular velocities. The relative angular velocity along the normal to the surface in the contact 

point is called spin, while the relative linear velocity in the contact point is called sliding. 

When rolling occurs without sliding or spin it is called pure rolling. Generally when two 

moving bodies are pressed one against the other by a normal force some points in the contact 

area slip while other ones may stick. The difference between the tangential strains in the 

adhesion area are called creepages. 

To define the creepages between wheel and rail, we consider the wheel-rail  relative velocity 

PV
r

  at contact points. The creepages are classified in three different categories according to 

the directions interested: 

longitudinal creepage: 
G

longP

V

nV
rr

⋅
=ζ  

transverse creepage: 
G

transP

V

nV
r

rr
⋅

=η :  

spin creepage: 
G

normP

V

nV
rr

⋅
=ϕ  

where: 

normtranslong nnn
rrr

 , , are respectively the longitudinal, transverse and normal versors; 
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GV
r

 is the Euclidean norm of the barycenter velocity of the wheel-set. 

In Figure 3.6 are represented the wheel-set velocities at barycenter G , at contact point P and 

the principal contact versors. 

 

Figure 3.6 

Velocity of the wheel-set in the contact point and principal versors 

 

3.4 - WHEEL RAIL CONTACT FORCES 
 
When a wheel moves on the rail the creepages generate tangential forces in the contact region 

and this fact has a great importance in the steering and stability study of railroad system. 

According to the Hertz’s theory, the contact area is elliptic and when the wheel and rail are 

pressed one against the other by a compressive force, they deform and if they move relative to 

each other, tangential forces develop in the contact region.   

In general the contact area is divided in two regions: the adhesion region and the slip region. 

In the first region the body particles do not slide relative to each other, while in the second 

region there is sliding. 

Figure 3.7 show the two regions. 

 
 

Figure 3.7 
The adhesion and slip areas 
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The creep forces and the spin moment in general depend from the creepages, the extension 

and shape of the contact area and from the normal force. The relationship between the 

creepage components - longitudinal, lateral and spin – and the force components – 

longitudinal  and lateral -  and the spin moment are governed by the creep-force law. It has 

been developed  various creep-force theories in the time; the more accurate and applied today 

are the following: 

 

• the Johnson-Vermeullen’s theory 

• the Kalker’s linear theory 

• the Polach’s theory   

 

3.4.1 - Johnson and Vermeullen’s Theory 
 

In this theory the contact surfaces between the two rolling bodies is asymmetrically divided in 

two regions: the slip region and the stick or no-slip or adhesion region (see Figure 3.7). The 

adhesion area is assumed elliptical and its edge is in contact with the edge of the contact area. 

         The total resulting tangential force is defined as: 
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where the symbols have the following meaning: 
 

0ζ and 0η are the normalized longitudinal creepages, defined as: 

 

ψµ
ηπη

φµ
ζπζ
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N is the normal force component; 

  and ηζ are respectively the longitudinal and lateral creepages; 

G is the modulus of rigidity; 

a and b are the semi-axes of the contact ellipse; 

µ is the coefficient of friction. 
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are respectively the longitudinal and lateral versors. 

The coefficient φ and ψ are function of the complete elliptical integrals eee DCB  , ,  of 

argument e as follow (ν is the Poisson’s ratio): 
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It is important to note that this theory is valid in the case of no spin. 

The complete elliptical integrals are given as follows: 
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It is clear that the elliptical integrals are related to each other as follows: 
 

( )
2

2 ;

e

BD
C

CeDB

ee
e

eee

−=

−=
 

 
In order to simplify the calculation it is reported the values of the elliptical integrals as 
function of bag = in table 3.2. 
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g  
eB  

eC  eD  

0 1.0 )4ln(2 g+−  )4ln(1 g+−  

0.05 0.9964 2.3973 3.3877 
0.1 0.9889 1.7352 2.7067 
0.15 0.9794 1.3684 2.3170 
0.2 0.9686 1.1239 2.0475 
0.25 0.9570 0.9463 1.8442 
0.3 0.9451 0.8105 1.6827 
0.35 0.9328 0.7036 1.5502 
0.4 0.9205 0.6170 1.4388 
0.45 0.9081 0.5460 1.3435 
0.5 0.8959 0.4863 1.2606 
0.55 0.8838 0.4360 1.1879 
0.6 0.8719 0.3930 1.1234 
0.65 0.8603 0.3555 1.0656 
0.7 0.8488 0.3235 1.0138 
0.75 0.8376 0.2955 0.9669 
0.8 0.8267 0.2706 0.9241 
0.85 0.8159 0.2494 0.8851 
0.9 0.8055 0.2289 0.8490 
0.95 0.7953 0.2123 0.8160 
1.0 4π  16π  4π  

 
Table 3.2 

Complete elliptical integrals, tabulated in Jahnke-Emde (1943) 
 
        3.4.2 – The Kalker’s linear theory 
 

Kalker (1967, Figure 3.8) suggested that, for very small creepages, the area of slip is very 

small and its effect can be neglected; in this manner the adhesion area can be assumed to be 

equal to the area of contact. 

 

 

Figure 3.8 

Joost Kalker 
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This theory is based on a linear relationship between the creepage and the tangent force. The 

tangential components along the longitudinal direction, longF
r

, along the lateral direction, 

transF
r

, and the moment of spin spinM
r

 are given by: 
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The symbols have the following meaning: 

1G  and 2G are the wheel and the rail tangent elasticity modules, respectively; 

ϕηζ ,,  are the longitudinal, lateral and spin creepages of the wheel respect to the rail at the 

contact point; 

3223332211 ,,,, CCCCC  are the Kalker’s coefficients functions of the ratio a/b and the Poisson’s 

module; 

normtranslong nnn
rrr

,, are the longitudinal, lateral and normal versors at contact points.  

 

In 1984 Kalker calculated the creepage and spin coefficients when the relative slip is small but 

the contact area is not necessarily elliptic. This calculations were made with the aid of the 

program CONTACT and the error found was less than 5% respect to the measurements. This 

fact proves that the Kalker’s coefficients are very accurate for the analysis of the wheel/rail 

problems. In fact nowadays the linear theory is extensively used in railroad vehicle dynamic 

analysis. The Kalker’s coefficients 11C , 22C , 33C , 23C  and 32C  are reported in table 3.3. They 

are function of the ratio a/b between the two contact ellipse semi axes and of the Poisson 

coefficient ν . 
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 11C  22C  3223 CC −=  33C   

 
 g 0=υ  41  21  0=υ  41  21  0=υ  41  21  0=υ  41  21  

0.0↓  ( )νπ −1
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0.1 2.51 3.31 4.85 2.51 2.52 2.53 0.334 0.473 0.731 6.42 8.28 11.7 

0.2 2.59 3.37 4.81 2.59 2.63 2.66 0.483 0.603 0.809 3.46 4.27 5.66 

0.3 2.68 3.44 4.80 2.68 2.75 2.81 0.607 0.715 0.889 2.49 2.96 3.72 

0.4 2.78 3.53 4.82 2.78 2.88 2.98 0.720 0.823 0.977 2.02 2.32 2.77 

0.5 2.88 3.62 4.83 2.88 3.01 3.14 0.827 0.929 1.07 1.74 1.93 2.22 

0.6 2.98 3.72 4.91 2.98 3.14 3.31 0.930 1.03 1.18 1.56 1.68 1.86 

0.7 3.09 3.81 4.97 3.09 3.28 3.48 1.03 1.14 1.29 1.43 1.50 1.60 

0.8 3.19 3.91 5.05 3.19 3.41 3.65 1.13 1.25 1.40 1.34 1.37 1.42 

b

a
 

0.9 3.29 4.01 5.12 3.29 3.54 3.82 1.23 1.36 1.51 1.27 1.27 1.27 

1.0 3.40 4.12 5.20 3.40 3.67 3.98 1.33 1.47 1.63 1.21 1.19 1.16 

0.9 3.51 4.22 5.30 3.51 3.81 4.16 1.44 1.59 1.77 1.16 1.11 1.06 

0.8 3.65 4.36 5.42 3.65 3.99 4.39 1.58 1.75 1.94 1.10 1.04 0.954 

0.7 3.82 4.54 5.58 3.82 4.21 4.67 1.76 1.95 2.18 1.05 0.965 0.852 

0.6 4.06 4.78 5.80 4.06 4.50 5.04 2.01 2.23 2.50 1.01 0.892 0.751 

0.5 4.37 5.10 6.11 4.37 4.90 5.56 2.35 2.62 2.96 0.958 0.819 0.650 

0.4 4.84 5.57 6.57 4.84 5.48 6.31 2.88 3.24 3.70 0.912 0.747 0.549 

0.3 5.57 6.34 7.34 5.57 6.40 7.51 3.79 4.32 5.01 0.868 0.674 0.446 

0.2 6.96 7.78 8.82 6.96 8.14 9.79 5.72 6.63 7.89 0.828 0.601 0.341 

0.1 10.7 11.7 12.9 10.7 12.8 16.0 12.2 14.6 18.0 0.795 0.526 0.228 

a

b
 

0.0↓  ( ) 







−∆
−+

−∆ νν
π

2

4ln3
1

2

2

g
 

( )( )
( )

( ) νν
νν

νπ

21

21

4ln31
1

2

+∆−








+∆−
−−+

g  
( )( )νν

π

421

3

2

+−∆−
gg  

( )
( ) 








+−∆−
−∆−

νν
νπ

421

2
1

4
 

 
Table 3.3 
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3.4.3 - The Polach nonlinear theory 
 
In 1999 Polach (Figure 3.9) introduced an algorithm for the computation of the wheel/rail 

creep forces. In this model the shape of the contact area is elliptic. Since in the Hertz theory 

the maximum stress distribution is equal to σ , the maximum tangential stress at any point is 

µστ =max  , where µ is the friction coefficient assumed constant in the whole contact area. 

In this theory it is assumed that the relative displacement between the bodies in the adhesion 

area increases linearly from one side A to the other side C, as shown in Figure 3.10. At same 

time the tangential stress increases linearly with the distance from the leading edge. When the 

tangential stress reaches the maximum value, sliding takes place. 

 

 

  

Figure 3.9 
Oldrich Polach 

Figure 3.10 
Normal and tangential stress distribution 

according to Polach theory 
 

The tangential force is given by: 
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where the symbols have the following meaning: 
 
N is the normal component of the contact force; 

ε is the gradient of the tangential stress in the area of adhesion and it is given by: 
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where G is the modulus of rigidity while hC is a constant depending from the Kalker’s 

coefficients as follows: 
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where: 
 
ζ and η are respectively the longitudinal and lateral creepages; 

11C  and 22C are the Kalker’s coefficients; 

Using the modified lateral creepage that accounts for the effect of spin creepage ϕ  the 

magnitude of the creepage becomes: 
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where the modified lateral creepage cη is given by: 
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The lateral tangential force that accounts for the effect of the spin is given by: 
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where K is a constant given by: 
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and δ  is given by: 
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yε is the gradient of the tangential stress and it is given by ( 23C is the Kalker’s coefficient): 
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Finally the creep forces are given as follows: 
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The Polach theory yields accurate prediction of the tangential contact forces and today it is 

implemented in some computer code for the dynamic simulation of railway system.  

 

3.5 – THE SURFACE CURVATURES 

 

In order to determine the principal curvatures [11] on the wheel and on the rail at contact 

points let us consider a generic surface z=f(x,y) and a generic point P(x,y) on it. The Gauss 

coefficients are defined as follows: 
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where the coefficients p, q, r, s, t are the first and second partial derivatives of f(x, y) evaluated 

at point P; 
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The Gauss curvature is given by 
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while the mean curvature is: 
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Hence, the principal curvatures maxC and minC  , namely the maximum and minimum ones, are:  
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The two principal directions 1ϕ  and 2ϕ are obtained solving the second order algebraic 

equation:   

( ) ( ) ( ) 02 =−+−+− FLEMGLENGMFN ϕϕ  

 

Figures 3.11 and 3.12 show the mapping of the minimum and maximum curvatures and the 

principal directions on the wheel and rail. It is important to observe that the curvature of a 

generic curve on a surface in a definite point can be positive or negative.  

In order to better explain the concept we consider a solid limited by a surface. We consider a 

curve  on the surface and a point P on the curve. It is defined the tangent line to the curve in P 

named t. The curvature Cr of the curve in P will be positive if the position of the center of 

curvature C and the solid are to the same part respect to t, otherwise it is assumed negative. 

Figure 3.13 explains the sign rule used for the curvature. 
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Figure 3.11 

The principal curvatures and angles on the left wheel and rail 
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Figure 3.12 

The principal curvatures and angles on the right wheel and rail 
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Figure 3.13 

The rule used for the determination of the curvature sign 
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CHAPTER 4 
 
 
 
 
 
 

THE STABILITY OF THE MOTION 
 
 

 
4.1 - INTRODUCTION 

 

The dynamic analysis of railway systems, like wheel-sets, bogies or trains, in proximity of 

their critical behaviour, is one the most important analysis for the design of these complex 

systems. An important role is played by the dimensioning of the primary and secondary 

suspension systems. In the preliminary design of a bogie the search of the optimum value of 

the suspension characteristics has a major importance. However, the stiffness and damping of 

the suspension elements have a different effect on the bogie behaviour in straight or curved 

paths. Let us consider a standard bogie, like the one depicted in paragraph 6.2,  provided with 

a primary suspension system acting along the three principal directions: vertical, longitudinal 

and transverse. When considering two opposite variations of the longitudinal stiffness one can 

observe a variation of the critical speed in straight paths: the critical speed variation maintains 

the same sign of the stiffness variation. This means that the higher is the longitudinal stiffness 

the better are the stability characteristics of the bogie. On the contrary, considering the bogie 

behaviour in curved paths and focusing the attention on the contact forces between wheels and 

rails, we observe that reduction of these loads are achieved with lower values of the 

longitudinal stiffness. In conclusions, variations of the longitudinal stiffness causes opposite 

effects on the bogie when it moves on straight or curved tracks. 

This phenomenon is partially explained in Figure 4.1 that reports the two bogie wheel-sets 

moving in an horizontal plane. When perturbed, the wheel-sets the following configurations 

(eigenmodes) can be distinguished: 

• Tractive mode, the two wheel-sets longitudinally move in phase mode; 

• Longitudinal anti-phase mode, the two wheel-sets longitudinally move in anti-phase mode; 

• Shearing mode, the two wheel-sets rotate in phase about the vertical axis; 

• Bending (steering) mode, the two wheel-sets rotate in anti-phase around the vertical axis; 
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To achieve a self-steering ability in curve associated with a high critical speed, the 

longitudinal stiffness should be decreased for the bending mode and increased for the shearing 

mode. To guarantee a proper transmission of the braking and acceleration actions between the 

wheel-sets and the frame bogie the stiffness must be high in the tractive eigenmode, this 

condition conflicts with the self-steering of the bogie in curved tracks. For these reasons an 

optimum value of the longitudinal stiffness does exist, depending on the stability requirements 

demanded to the railway system. The effective critical speed depends by many variables; one 

of the most important is the bogie load ratio, defined as the ratio between the vertical load 

directly applied on the frame bogie and its weight. In curved tracks the radius of curvature 

also strongly influences the critical speed; some plots have been generated to show the 

dependence of the bogie critical speed to both the load ratio and the radius of curvature. 

 
 

  
Tractive mode Longitudinal anti-phase mode 

 

 

 

 
Shearing mode Bending mode 

 
Figure 4.1 

The four eigenmodes of a two wheel-sets bogie 
 
 
An analysis on the influence of the longitudinal stiffnesses of the primary suspension system 

of the bogie on the critical speed and on the contact forces is reported in chapter 8 respect to 

the load conditions and the track characteristics. 
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4.2 - THE CRITICAL SPEED DETERMINATION 
 
The determination of the critical speed can be made with two methods  [4, 6, 8, 9, 15, 26]  that 

are both connected with the concept of hunting motion.  

 

4.2.1 – The hunting motion 

 

One of the most important aspect of the motion of a rail-system is the hunting motion. 

The hunting motion is defined as the lateral motion of the wheel-set with respect to its 

centered position. In a simplified model, the wheels are conical, with the largest diameter at 

the internal extremity, that is in proximity of the inner faces of the rails, as shown in Figure 

4.2. 

 

 
 

Figure 4.2 

The simplified model of a wheel-set having two conical wheels. 

 

To explain the hunting motion the simplified model is used, having two  conical wheels and a 

cone angle named γ   as shown in Figure 4.2. The wheel-set is centered respect the two rails 

and moves with longitudinal velocity named longV . When a perturbation appears the wheel-set 

begin to move laterally. We assume that when the transverse displacement y of the barycentre 

is not null, the two wheel radii at contact points are rR and lR respectively for the right and 

left wheels. If 0=y the two radii are equal, that is 0RRR lr == . 

When y is not null, the variations of the two radii in the contact points respect to the centered 

positions are: 
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γyR =∆   

 and the two rolling radii become: 
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If the wheel-set rotates with a constant angular velocity ω , the velocity rV and lV respectively 

of  the right and left wheels in proximity of the contact points are: 
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while the velocity of the barycentre of the wheel-set is given by: 

( ) ω02
R

VV
V lr =

+
=  

If we indicate with ψ the yaw angle of the wheel-set, as shown in Figure 4.3, the following 

expression is valid: 

dx

dy=ψtan  

and if 1<<ψ  the approximation ψψ ≅tan   is true. The lateral velocity yV is given by: 

ωψψψψψ 0cos RVVV
dt

dx

dx

dy

dt

dy
V xy =≅====               (4.1) 

where xV is the longitudinal component of V . 
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Figure 4.3 

The yaw angle ψ and the lateral velocity of the wheel-set. 

The rate of change of ψ can be written as: 

G

y

G

VV

dt

d lr ωγψ 2−=
−

=       (4.2) 

where G is the distance between the two contact points measured orthogonally to the rail axis. 

Differentiating equation 4.1 respect to time and substituting the expression of 
dt

dψ
before 

determined, we have: 
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This equation describes the lateral motion of the perturbed wheel-set moving with angular 

velocity ω . 

The general solution is given by: 

( )CtAy n += ωsin  

that is a constant amplitude oscillation. The constants Aand C depend from the initial 

conditions. We note that the previous relation is correct if the following relation is true: 

 0
2 2

0 >
G

R γω
 

nω is the natural frequency of the undamped system and it is given by: 
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GR
Vn

0

2γω =  

Clearly the conicity γ must be positive. The oscillation period is given by the known Klingel’s 

formula: 

γ
π

ω
π
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22 0GR
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==  

When the wheels are cylindrical or in other words the conicity is null, the solution of 4.3 is a 

straight line and the motion after a perturbation is not oscillatory. In the case of negative 

conicity the coefficient of y is negative and the solution is an exponential one with the lateral 

displacement increasing continuously with time. Therefore, as these simple kinematic 

considerations demonstrate, the fundamental characteristics that a wheel-set must posses to 

guarantee a stable oscillatory solution is to have a positive conicity. These concept are 

explained in Figure 4.4. 

 

   

0fγ  0=γ  0pγ  

Figure 4.4 

The three motion types associated with the conicity values. 

 

It is important to note that the Klingel’s formula has been derived only with a simple 

kinematic considerations without considering the effect of any forces. In reality the wheel-set 

is subjected to  the normal and tangential contact forces that influence the oscillatory motion. 

In fact when the rolling radii are different, also the velocities in the contact points are distinct 

as  the creepages. For these reasons, the tangential forces create a dissymmetrical condition on 

the wheel-set and generate the oscillatory motion. The oscillation can increase or decrease 

with time, also with a positive conicity, depending from the initial wheel-set velocity.  
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From equation 4.1 and  4.2 we can see that the derivative of the yaw angle ψ  is null when the 

lateral displacement y is null and this means that ψ is maximum or minimum when y is null 

and vice versa. This implies that there is a phase shift equal to 2
π  between the lateral 

displacement and the yaw angle.  

 

        4.2.2 – Methods for the critical speed determination 

 

We now consider a wheel-set moving on a straight path. If the initial lateral displacement is 

null and if the motion is unperturbed, the wheel-set remains centered between the two rails. 

Otherwise, if the conicity is positive and the motion is laterally perturbed, an oscillation 

appears and it can be damped or undamped, depending from the initial longitudinal velocity. 

If the mass oscillations extinguish themselves with time, it means that the longitudinal speed 

is lower than the critical one otherwise if the oscillations increase then the velocity is greater 

than the critical velocity. 

The previous definition of the critical speed suggests the method for its calculation.  One 

should observe the motion of the bogie at different longitudinal velocities to find the velocity 

at which the oscillation amplitudes are at least constant with time. The method gives precise 

results but has the disadvantage of being too time consuming. The second method  searches 

for the critical speed starting from the higher values. The bogie runs with an initial 

longitudinal velocity higher than the critical speed, an initial perturbation is applied. Because 

of the friction forces acting on the wheels, the bogie slows down with time when no driving 

forces are applied. When the speed is higher than the critical one, the hunting oscillations 

increase with time.  The trend reverses when the decreasing velocity overcomes the critical 

speed. Therefore, in order to determine the critical speed one needs only to detect the velocity 

value at which the trend changes. This method is faster than the first one, but this is paid to the 

detriment of accuracy. Figures 4.5a and 4.5b show the plots used by the first method, whereas 

Figure 4.5c and 4..5d the one used by the second method. 
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a) Transverse displacement of the 

wheel-set at stable velocity V1 
 b) Transverse displacement of the  

wheel-set at unstable velocity V2 
 

 
 

 

 
 

c) Transverse displacement of the  
wheel-set started at unstable velocity V2 

d) Time in correspondence of which the trend changes 
and at which the critical speed is defined 

Figure 4.5 
The two methods used to the determination of the wheel-set critical speed; a) 1st method: transverse 

displacement in a stable motion ; b) 1st method: transverse displacement in a unstable motion; c) 2st method: 
transverse displacement in a unstable-stable motion; d) zoom of the graphic c). 
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Part two 
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CHAPTER 5 
 
 
 
 
 

THE CONTACT CHARACTERISTICS 
 
 
 
 
 

5.1 - INTRODUCTION 
 
The solution of wheel/rail contact problem is required by the dynamic analysis of railways 

systems. In particular, for each wheel-set it is necessary: 

 

• to define the spatial attitude of the axle in its workspace; 

• to locate the actual wheel/rail contact points; 

• to compute the value of normal force components generated in the contact between 

surfaces. 

 

The compilation of a lookup table - where the numeric relationships between coordinates are 

stored – makes it possible the development of a software dedicated to the dynamic simulation 

of the wheel-set, of the bogie or of the entire railway convoy. In this way different types of 

analyses [1-6, 8] can be carried out, such as the determination of wheel-set critical speed and 

the simulation of contact forces under dynamic conditions. 

  
During dynamic analysis the implemented software solves numerically the equations of 

motion. At each time step the dependent coordinates, consistent with the contact constraints, 

are obtained through interpolation from the lookup table. 

The advantages of the methods herein presented are: 

 

• reduction of the computation time, since the identification of the contact conditions is 

obtained by a linear interpolation scheme; 

• possibility to extend the simulation over a long time interval; 

• capability of a real time simulation with the appropriate hardware;  
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• possibility to study the dynamics with different wheel-set and rail profiles through the 

update of the lookup table. 

Different methodologies for the investigation on wheel-rail contact are available [8,11-15]. 

These can be classified into two main groups. The first group searches for the contact points 

by solving the system of algebraic-differential equations that includes the constraints due to 

rigid contact between wheels and rails. The second group, to which the methods herein 

presented belongs, introduces elasticity between the mating surfaces. 

 

In reference [8] the contact points are determined through the concept of difference surface, 

defined as the distance - measured along the normal direction - between the wheel and rail 

surfaces. 

If such difference surface presents only positive values, then the rail and the wheel are not in 

contact. If the difference surface shows at least some negative values, then there are one or 

more contact areas. Contact points are located where the difference surface reaches its local 

minima, with a negative value of the function. Accordingly, at these points the indentation 

between the contact bodies attains a maximum. This criterion is also used to calculate the 

contact force components. 

In order to calculate the minimum of the difference, the simplex method is iteratively 

exploited.  

The results obtained with this method are compared with those achieved with the grid method. 

This last evaluates the function in a series of points and find the minima comparing all 

obtained values. The reliability of the grid method, depends mainly on the number of points 

chosen to evaluate the function. Even if the grid method is simple and reliable, it cannot be 

used for this type of application because of its high computational costs.  

 

In reference [12-14] it is hinted a method alternative to the one based on lookup tables. In 

particular, the contact characteristics are calculated on-line during the dynamic simulation, 

considering the sections of the rails and the wheel for each position of the wheel-set on the 

rails. For each section a group of nodal points is used through interpolation by a spline to 

mimic the profiles of the contact surfaces. The position of the contact points and directions of 

normal versors are then calculated.   In particular, it is required  that the vector joining the 

contact points, one on the rail and one on the wheel, and the normals through these points, 

belong to the same straight line. This method allows the on-line change of surface profiles. 

This feature is useful in case of rail-switch, local gauge and slope variations.  
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In reference [15-18] two methods for the determination of the contact points are presented: the 

constraint method and the elastic method, with which the normal forces on the surfaces can be 

calculated as well. 

In the constraint method the contact points on both solids coincide as it is guaranteed by 

imposing the kinematic contact constraints. In the elastic method the contact points do not, in 

general, coincide. The contact point on the first body is located inside the volume of the 

second body when the solids interact each other. In this case, the contact points are selected 

within the intersecting volume. Points presenting the maximum normal distance are the 

elected contact points.  

In the constraint method, no penetration is allowed between the bodies since it is assumed that 

the surfaces do not experience any deformation. On the other hand, in the elastic method 

penetration occurs and this is used to evaluate contact forces. These are null when penetration 

is absent. Two surface parameters are used to describe the geometry of each of the two 

surfaces in contact. In the analysis, the contact points are grouped in batches. A batch is a 

collection of sets of pairs of nodal points on the wheel and rail, respectively. A limit of two 

contact batches is assumed. The two points (one on the wheel and one on the rail) that lead to 

the maximum indentation are selected as the points of contact for any given batch. The 

number of points of contact between the wheel and the rail is assumed to be equal to the 

number of the contact batches. 

 

All methods share the difficulties of lengthy computing times and of managing great amounts 

of data. In fact, these analyses usually require many iterations and the matrices containing the 

surface geometries are huge. 

 

In this paper three new different methods for the compilation of a lookup table, storing 

precalculated solutions for the wheel/rail contact location, are discussed. According to this 

point of view, the location of contact points is preliminary established for a given finite set of 

independent variables. In a dynamic analysis, the values of the dependent variables are 

obtained through interpolation on previous discrete set of values. Obviously, the accuracy of 

the interpolation depends on the following factors: the Euclidean distance between two 

adjacent nodes of the mesh, the local linearized shape of the mesh and the admissible 

penetrating gap. The numerical tests herein carried out confirm the reliability and the 

computational efficiency of the method. 
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5.2 - THE WHEEL-SET/RAILS SYSTEM 

 

The shape profile of the wheels and of the rails section are S1002 e UIC60, respectively. Table 

5.1 summarizes the main geometric features of the wheel-set-rails system. Figure 5.1 depicts 

the axle, the two wheels (wheel-set) and the track considered in this investigation. 

 

Internal gauge 1.360 m 

Wheel radius rw 0.457 m 

Rails tilt 1/20 

 

Table 5.1   

Main  geometric features of the wheel-set-rails system 

 

The wheel-set has six degrees-of-freedom when not constrained. These degrees-of-freedom 

reduce to two due to the constraints introduced by imposing continuous contact with rails. 

Thus only two independent variables need to be prescribed to compute the spatial position of 

the wheel-set. 

With reference to Figure 5.2, a fixed and a moving right-hand Cartesian coordinate system are 

introduced. The fixed inertial coordinate system, denoted by SRo, has its origin O in the 

middle of the gauge, the axis Xo tangent to the rails and the Zo axis directed upward.  The 

moving coordinate system, denoted by SRG, has its origin in the centre of mass G of the 

wheel-set, axis YG directed along the axis of the axle and the ZG axis directed upward. 

Initially the axes of the fixed and moving coordinate systems are all parallel and the centre of 

mass G  is on Zo axis at a distance rw  from the origin O. 

The absolute coordinates of G will be denoted xg, yg, zg whereas θx, θy, θz denote the angles 

between couples of x, y and z axes, respectively. 

The displacement yg and the yaw angle θz are assumed as independent variables; therefore, the 

four dependent variables should be deduced by imposing a continuous physical contact 

between rails and wheel-set. 
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Figure 5.1 
Axle, wheels and track: Physical model 

 
Figure  5.2 

Cartesian coordinate systems and independent 
degrees of freedom of the axle 

 

5.3 - MODEL SETUP 

 

The first modeling step is the acquisition of wheel and rail profiles, as shown in figure 5.3. 

The surface of the rail is obtained by means of an extrusion of the rail profile along the Xo 

axis. 

The surface of the wheel is generated through a revolution of the wheel profile about YG, as 

shown in figure 5.4. 

The two surfaces are meshed. The coarser is the mesh the less is the expected accuracy and 
the computation time.  
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Figure 5.3  
Wheel and rail profile shapes 

 
Figure  5.4 

Meshes representing the wheel and rail surfaces 

 

In spite to locate contact points, as shown in figure 5.5a, four fictitious spring elements are 

added to the wheel-set: one for each dependent position variable. The spring ends are attached 

to G and to the ground, respectively. Under static conditions the forces and torques generated 

by these spring elements and the contact forces must satisfy the following vector equilibrium 

equations: 
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a) 

 
b) 

Figure 5.5 
Free-body diagram for the static equilibrium of the wheel-set 
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where: 

the upperscript i varying from 1 to 3 denotes the  x, y, z components; 

i
elk  is the stiffness of the spring acting along the i th axis of SRo;  

i
rotk  is the stiffness of the torsional spring which counteracts rotations about the ith axis of 

SRo; 
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il0  is the undeformed spring length; 

CSn and CDn are the number of contact points on left and right wheels, respectively; 

h
csF
r

 are the contact forces at the hth contact points on the left wheel;  

g
cdF
r

 are the contact forces at the gth contact points on the right wheel; 

h
sPG

r
are the vectors oriented from G to the hth left point of contact; 

g
dPG

r
is the vectors oriented from G to the gth right point of contact; 

iN
r

is the versor oriented along the i th axis of SRo. 

 

In table 5.2 the spring stiffnesses are summarized. 

 

x
elk  

m

N710  x
rotk  Nm6106.5 ⋅  xl0  0 

z
elk
 m

N710  y
rotk  Nm6106.5 ⋅  zl0  7 mm 

 

Table 5.2 

 Stiffnesses and undeformed lengths of the spring elements 

 

5.4 - CONTACT POINTS DETECTION 

 

5.4.1 - The intersecting volume 

 

As shown in the geometry depicted in figure 5.6a, the intersecting volume intV  is the one 

shared by the wheel and rail when they are in contact through a penetration volume between 

the bodies.  

Let us denote by: 

Sr and Sb the wheel and rail portions of surface delimited by nr and nb nodes, respectively; 

i=3,…, nr and j=3,…, nb the nodes of the wheel and rail surfaces, respectively; 

ijV
r

 the vector joining the nodes i and j; 

iN
r

 the normal to surface Sr at the i th node, oriented toward the convexity of Sr; 

jN
r

the normal to surface Sb at the j th node, oriented toward the convexity of Sb; 
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The i th node and j th node are included in the intersecting volume only if the following 

inequalities are simultaneously satisfied:  

0

0

≤⋅

≥⋅

iij

jij

NV

NV
rr

rr

 

Among the nodes included in the intersecting volume we distinguish those which belong to 

wheel, or to the surfacerS , and form the intersecting volume rVint , from those which belong to 

the rail, or to the surface  bS , and form the volume bVint . The union of rVint  and bVint  gives the 

volume intV . Hereinafter, we will focus on the determination of the centre of contact on both 

surfaces. However, compenetrating volume magnitudes are not really necessary. This is the 

reason why nodal points coordinates are used to test contact conditions. 

 

 

 

a) b) 

Figure 5.6 
a) Wheel/rail intersecting volume in the method of maximum distance; b) elastic model used for the contact force 

between the wheel and rail. 
 

5.4.2 -  The contact points 

 

Three different methods for computing wheel-rail contact points are proposed and discussed. 

All the methods share the same objective of locating the intersections between bVint  and rVint .  

We named these methods as follows: 

• maximum distance  

• maximum normal distance  

• load centre 
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5.4.2.1 -  Method of the maximum distance  

 

All nodes included in intV  are candidate to be contact points between the surfaces. For each 

node *i of Sr within intV  we find the node *j of  Sb  within intV such that the norm of ** ji
V
r

has 

the minimum value. In this way a correspondence between the set of nodes *i and the set of 

nodes *j  is established.  The indentation is computed by means of the scalar product 

 

 

 

Among all the set of nodes ** , ji  the contact points are those experiencing the maximum 

value of ** ji
C . 

( )**max max jiCC =  

 

5.4.2.2 -  Method of the maximum normal distance 

 

This method offers a refinement in the computation of contact point bP'  but needs the election 

of a reference surface. Here the wheel surface is adopted. The method of maximum distance is 

initially applied. Then, with reference to the geometry depicted in figure 5.7, the coordinates 

of the new contact point bP'  on the rail  are obtained from: 

( )( ) rrrbrb NNPOPOPOPO
rrrrrr

⋅−+='  

 where: 

rPO
r

 is the position vector of the contact point on the wheel computed with the method of the 

maximum distance; 

bPO
r

 is the position vector of the contact point on the rail computed with the method of the 

maximum distance;  

rN
r

 is the normal versor to the wheel surface at point rP . 

 

The maximum indentation maxC  is calculated using the formula: 

( ) rrb NPOPOC
rrr

⋅−=max  

***** jjiji
NVC
rr

⋅=
 

    (5.2)                           
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With this method the accuracy of the computation is less dependent on the surface mesh 

coarseness.  This turns also into an overall speedup. The main limitation of this method is that 

the contact points on the wheel surface need to be located on the grid nodes. 

 

 
 

Figure 5.7 
Wheel/rail intersecting volume in the method of the maximum normal distance. 

 

5.4.2.3 -  Method of the centre of load 

 

In this method the volumes of intersection bVint  and rVint  are separately considered. 

The contact points are made coincident with the load centre GrP and GbP  of the grid nodes on 

the boundary of intV . Analytically this results into: 

b

n

j

b
j

Gb

r

n

i

r
i

Gr

n

PO

PO

n

PO
PO

b

r

∑

∑

=

=

=

=

1

1

r

r

r

r

 

where : 

GrPO
r

and GbPO
r

 denote the position vectors of the barycentres of the grid nodes on the 

boundaries of bVint  and rVint , respectively;  

r
iPO
r

and b
jPO
r

 denote the position vectors of generic grid nodes on the boundaries of bVint  and 

rVint respectively; 

rn and bn denote the nodes number of the intersection volumes of the wheel and the rail, 

respectively.  

The maximum indentation maxC is calculated by means of the formula: 
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( ) rGrGb NPOPOC
rrr

⋅−=max  

Since GrP  does not belong to the wheel surface, the normal versor rN
r

 coincides with the 

normal to the wheel surface passing through GrP , as shown in figure 5.8.    

 

 
 

 
Figure 5.8 

Wheel/rail intersecting volume in the method of barycentre. 
 

5.4.3 -  Normal contact forces 

 

With reference to the geometry depicted in figure 5.7b, the normal contact forces csF
r

 and cdF
r

, 

in the left and right wheel-rail interface respectively, are computed as follows : 

dc
d

cd

sc
s

cs

NkCF

NkCF
r

rr

max

max

−=

−=
 

where: 

kc  is the contact stiffness;  

sCmax and dCmax are the maximum normal indentations of the left and right wheel respectively; 

 sN
r

and dN
r

are the outward normals of the left and right wheel, respectively. 

 

The value of kc is established through iteration. In particular, convergence is achieved when 

the variables xG, yG, zG, θx, θy, θz simultaneously satisfy both the equilibrium equations (5.1) 

and the following inequalities: 

 

ammd

amms

CC

CC

maxmax

maxmax

≤

≤
 

                                                   

(5.3)                                                                         
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where ammCmax   is the maximum indentation allowed.  In this investigation ammCmax =0.01 mm is 

assumed. This last value is broadly justified by some qualitative considerations. The value 

should be lower than the expected compression as suggested by the Hertz theory. 

Furthermore, the mesh refinement should be carried out in such a way that edge effects due to 

meshing are lower than the same value. 

 

It should be observed that the values of contact stiffness, within a given range, do not 

influence the position of the contact points which depends on the surfaces geometry. The 

stiffness values adopted solving the system of equations (5.1) are those given in Table 5.2. It 

can be observed that changing the stiffness values for n times, with n spanning between 1 to 

10, the maximum values of the contact point displacements achieved is 10-19 m.  

m
Nnkk z

el
x
el

710⋅==  

This result, showed in Figure 5.9, proves that the position of the contact point is almost 

independent on the initial preload of the external springs. This rests upon the convergence of 

the iterative method. 

 

 
 

Figure 5.9 
Relative distance from contact points as regard to n 

 

The proposed algorithm for the detection of contact points can be summarized in the 

following steps: 

1) Prescribe the values of the independent variables yg e θz. Set to zero the dependent 

variables xg, zg, θx, θy .  

2) Prescribe an initial value to the stiffness kc. 

3) Define the intersecting volumeintV , the position of the provisory contact points, normals 

and maximum indentation between the wheels and the rails.  
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4) Compute the normal forces with equations (5.2).  

5) Update the values of xg, zg, θx, θy making use of equilibrium equations (5.1). 

6) Update the intersecting volumeintV , the position of the provisory contact points, normals 

and maximum indentation between the wheels and the rails.  

7) If the maximum indentation is less than ammCmax   then store in a database the values of xg, yg, 

zg, θx, θy, θz and the contact points; 

8) If the previous condition is not satisfied then increase the value of kc and go back to step   

4). 

The flow-chart of this algorithm is shown in figure 5.10. 

 

 
 

Figure 5.10 
Iteration scheme for the detection of contact points 
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5.4.4 -  The maximum indentation value 

 

The limit ammCmax = 0.01 mm, adopted as the maximum indentation value, has been established 

considering Hertz theory for the contact cylinder-plane (see Figure 5.11). The average vertical 

load estimated on each wheel is P=75000 N. 

The width L=5mm of the cylinder has the same order of magnitude of the transverse 

dimension for the wheel-rail contact area. 

The radius R of the cylinder is the same of the wheel. Cylinder and plane are both in steel with 

Young’s modulus 
2

910206
m

N
E ⋅=  and Poisson’s coefficient 3.0=ν . 

Hence, the maximum value of the indentation is 

 

mm
KPR

L

L

PK
C amm 11.0

2

4
ln1

2 3

max ≈
















+=   where    

E
K

π
ν 21 −=  

 

 
 

Figure 5.11 
Indentation in the contact cylinder-plane 
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5.4.5 -  The stiffness of the lateral flange  

 

Because of the special shape of the wheel profile with the presence of a lateral flange, a 

linearly variable value of wheel-flange stiffness ck is herein assumed. In particular ck  is 

linearly interpolated only on the flange between a maximum value Kmax at the flange base and 

a minimum value Kmin at the flange tip.  

The value of Kmax at the base of the flange is estimated considering the Hertz’s type of 

deformation. The value of Kmin is calculated considering two contributions: the first one is the 

Hertz’s deformation, the second regards the flange bending as a cantilever beam. Figure 5.12 

illustrates the two contributions to the overall displacement caused by an applied force at the 

tip of the flange. 

 
Figure 5.12 

Contributions to the total displacement of the flange 
 

The stiffnesses due to Hertz’s type deformation is computed by means of the formula:     

( )
( )
( )2

3
minmax

1

13

2

ggW

gE

DD

G
Khertz +−

=
ν

π
 

where: 

G is the tangential module of elasticity; 

ν is the Poisson coefficient; 

maxD  and minD  depend on the local curvatures of the two surfaces in contact, in particular; 

maxD =max( longD , trasvD ) 

minD =min( longD , trasvD )          

with: 
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( )

( )b
trasv

r
trasvtrasv

b
oong

r
longlong

CCD

CCD

+=

+=

2

1
2

1

 

r
longC  and b

longC  are the longitudinal curvatures at contact point of the wheel and the rail, 

respectively; 

r
trasvC  e b

trasvC  are the transversal curvatures at contact point of the wheel and the rail 

respectively; 








=
a

b

b

a
g ,min  

where a and b are the semi-axis lengths of the contact ellipse, K (g) and W (g) are elliptic 

integrals, defined as follows: 

( )
( ) ( )

1/ 2/ 2 2 2

0

/ 2 1/2
2 2

0

( ) 1 1 sin

1 1 sin

W g g d

E g g d

π

π

ψ ψ

ψ ψ

−
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 = − − 

∫

∫
 

Replacing the values of the curvatures for the contact on the base and the contact on the tip of 

the flange, the stiffness values follows: 

m

N
k

m

N
k

pf
hertz

bf
hertz

9

10

1009.7

1087.7

⋅=

⋅=

 

where bf
hertzk and pf

hertzk  are the values of the Hertz’s stiffnesses at the base of the flange and at 

the tip, respectively. The second contribution pf
elk  is obtained considering the wheel flange as 

a cantilever beam having the dimensions of the base section equal to (see figure 5.13): 

 

m

N

l

Ebh
k

ml

mh

mb

pf
el

10
3

3

106.7
4

0275.0

045.0

32.0

⋅==

=
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=
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Figure 5.13 
Model of the flange as a cantilever beam 

 
 

The overall stiffness at the tip flange is: 

m

N

kk

kk
k

pf
el

pf
hertzx

pf
el

pf
hertzpf 91048.6 ⋅=

+
=  

while the ratio between the stiffnesses at the tip and the base of the flange is given by: 

082.0==
bf
ertz

pf

k

kχ  

Figure 5.14 shows the concept. The magnitude of this ratio, though significant, seems 

neglected in the models available in the current literature. The intermediate stiffnesses values 

within the base and the tip of the flange are calculated with a linear interpolation assuming as 

parameter the distance between the contact point and the axis of the wheel.  

 

 
 

Figure 5.14 
Variation of contact stiffness kc according to the 

position of the point of contact Pc. 
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5.4.6 -  The double contact 

 

In most cases, our model finds only one point of contact between the wheel and rail surfaces. 

However, in some cases there are configurations with a double contact, i.e. flange-rail and 

tread-rail. In this case two separated volumes of intersection are created on the same wheel. 

With reference to figure 5.15, two different possibilities are considered: 

• split intersecting volumes; 

• merged intersecting volumes. 

In order to establish if the intersecting volumes are split or merged, i.e. the contact is double 

or single, the following test is applied: if one or more  rows of aligned nodes that do not 

belong to intV  exists in the group of nodes that form the surface of intV  then there are two 

contact points. As can be observed from figures 5.6a and 5.15, the presence of such rows 

implies split intersecting volumes and a double contact. Figure 5.16 shows the wheel and rail 

surfaces in two configurations: single and double contact. 

 
Figure 5.15 

Example of united and split volume of intersection 
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Figure 5.16 
Wheel and rail surfaces in two configurations with normal versors: a) double contact; b)  single contact. 

 

5.5 -  GENERATION OF THE LOOKUP TABLE 

 

In order to reduce CPU time required, the points of contact and all the other contact 

characteristics - for a given configuration of the wheel-set - are obtained from a previously 

compiled lookup table. This consists of matrices in which the dependent variables are 

computed as a function of the two independent variables. 

The values of the two independent coordinates are uniformly spaced within an interval 

extended to the obvious engineering range of interest: 

. 12.0 12.0            ; 9 9 radradmmymm zG ≤≤−≤≤− α  

The values of dependent coordinates are here stored in 1003737 ××  matrix, . The rows 

represent the values of Gy  while the columns define the yaw angle zϑ .  
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The contact features stored in the lookup tables are: 

• four dependent coordinates; 

• coordinates of the contact points on the wheel; 

• coordinates of the contact points on the rail; 

• components of the longitudinal, transverse and normal versors on the wheel in 

correspondence to the contact point; 

• components of the longitudinal, transverse and normal versors on the rail in 

correspondence to the contact point; 

• principal curvatures and directions on the wheel surface in the contact point; 

• principal curvatures and directions on the rail surface in the contact point; 

• contact characteristics determined by means of the Hertz theory (e.g. the major and minor 

semi-axes of the contact ellipse). 

 

Given two values of the independent variables the remaining four values of the dependent 

variables are readily obtained through linear interpolation. Furthermore, the position of the 

contact points between wheels and rails and the normal versors are computed making use of 

the interpolated data. All the stored quantities can be visualized by means of three-

dimensional diagrams. The axes represent the coordinate Gy , the angle zϑ  and vertical depth 

is the quantity to visualize. Figure 5.17 shows a simplified scheme of the lookup table while 

Figure 5.18 shows the surface of the coordinate x of the contact point on the left wheel, 

obtained with the three discussed methods. 

The three methods are denoted as follows:  1 (method of the centre of load), 2 (method of 

maximum distance), 3 (method of maximum normal distance). We observe that: 

 

• the results of method 1 are much more smoothed than the remaining methods, this is 

observed on both wheel-set positions and contact points; 

• the results of method 1 are less affected by mesh refinement; 

• method 2 supplies lightly irregular results, mainly caused by the location of the contact 

points within the grids points;  

• method 3 supplies irregular surfaces again, although these are smoothed on the rail; this is 

due to the search contact algorithm that refers to wheel nodes 

 

Figures 5.19-5.22  show the dependent coordinates versus the values of yG and θz. 
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Figures 5.23-5.28 show the coordinates of the contact points on the left wheel and rail. Figures  

5.29-5.31 show the three components of the normal versor to the left wheel in the contact 

point. Figures 5.32-5.37 show the coordinates of the contact points on the right wheel and rail. 

Figures 5.38-5.40 show the components of the normal versor to the right wheel in the contact 

point. Figures 5.41-5.48 show the longitudinal and transverse curvatures of the wheel and rail 

surfaces in correspondence of the contact point. 

All the surfaces are very regular, not presenting any isolated peaks. In the cited figures all the 

lengths are expressed in meters, while the angles are given in radians.  

 

 

 

 

 

 

 

 

 
 
 

 
 

 
 
 
 
 

 
Figure 5.17 

Scheme of lookup table 
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Coordinate x of the contact point on the left wheel with the method of center of 

load 
 

 
Coordinate x of the contact point on the left wheel with the method of the 

maximum distance 
 

 
Coordinate x of the contact point on the left wheel with the method of the 

maximum normal distance 
 

Figure 5.18 
Graphic of coordinate x of the contact point on the left wheel regarding the two independent position variables 
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Figure 5.19 

 Coordinate ZG of the wheel-set 

 
 

 
Figure 5.20 

Coordinate XG of the wheel-set 

  

 
Figure 5.21 

Angle θy of the wheel-set. 
 

 

 
Figure 5.22 

Angle θx of the wheel-set. 
 

  

 
Figure 5.23 

Coordinate y of the contact point on the left wheel. 
 

 
Figure 5.24 

Coordinate z of the contact point on the left wheel. 
 

θy 

θy 
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Figure 5.25 

 Coordinate x of the contact point on the left wheel 
 

 
Figure 5.26 

Coordinate y of the contact point on the left rail 
 
 

  
 

Figure 5.27 
Coordinate z of the contact point on the left rail. 

 
Figure 5.28 

Coordinate x of the contact point on the left rail. 
 

 

 
 

 
Figure 5.29 

Component y of the normal versor on the left wheel. 
 

 
Figure 5.30 

Component z of the normal versor on the left wheel. 
. 
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Figure 5.31 

Component x of the normal versor on the left wheel. 
 
 
 

 
Figure 5.32 

Coordinate y of the contact point on the right wheel 

 
 

 
Figure 5.33 

Coordinate z of the contact point on the right wheel. 
 

 

 
Figure 5.34 

Coordinate x of the contact point on the right wheel. 
 

  

 
Figure 5.35 

Coordinate y of the contact point on the right rail. 

 
Figure 5.36 

Coordinate z of the contact point on the right rail. 
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Figure 5.37 

 Coordinate x of the contact point on the right rail 
 
 

 
Figure 5.38 

Component y of the normal versor on the right wheel. 
 

  
 

Figure 5.39 
Component z of the normal versor on the right wheel. 

 
 

 

 
Figure 5.40 

Component x of the normal versor on the right wheel. 
 
 

 
 

Figure 5.41 
Longitudinal curvature of the left wheel in 

correspondence of the contact point. 
 

 
Figure 5.42 

Transverse curvature of the left wheel in correspondence 
of the contact point. 
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Figure 5.44 

Transverse curvature of the left rail in correspondence of 
the contact point. 

 

 
 

Figure 5.46 
Transverse curvature of the right wheel in 

correspondence of the contact point. 
. 

 

 
Figure 5.43 

Longitudinal curvature of the left rail in correspondence 
of the contact point. 

 
 

Figure 5.45 
Longitudinal curvature of the right wheel in 

correspondence of the contact point. 
. 

 
 
 

Figure 5.47 
Longitudinal curvature of the right rail in 

correspondence of the contact point. 

Figure 5.48 
Transverse curvature of the right rail in correspondence 

of the contact point. 
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C H A P T E R    6 
 
 
 
 

 
THE BOGIE DYNAMIC 

 
 
 
 
 

6.1 - INTRODUCTION 

 
The dynamic analysis of a single wheel-set and an assembled bogie plays an important role for 

the monitoring the different events characterizing the motion. In particular [1-4, 8, 15, 24], the 

following analyses have a significant interest: 

 

• wheel-set, bogie and convoy critical speed determination; 

• study of the hunting motion, both in time and frequency domain; 

• analysis of the behaviour while turning; 

• analysis of the contact forces; 

• analysis of the limit derailment conditions; 

• study of the forces transferred by the suspension elements to the bogie frame; 

• passenger comfort optimization; 

• study of the acoustic emissions from the contact surfaces. 

 

Rail defects, extraneous bodies on the rails, railroad switches, work imperfections cause 

sudden perturbations to the motion of a wheel-set or of a bogie. Under these conditions 

hunting motion occurs with transverse oscillations whose amplitudes, frequencies and 

eventual decay depend on perturbation itself and on the wheel-set velocity [4,6,8,9,15].  

 

The oscillatory motion is caused by the changing of the curvature radii of the wheels in the 

contact points when the wheel-set is displaced from its centered position. In fact, when the 

barycenter of the wheel-set is moved from the middle of the rail, the tangent forces acting on 

the two wheels are different. This unbalance generates a yaw torque. The corresponding yaw 

motion is coupled with the transverse motion. 
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The oscillations may affect motion stability. In fact, when the bogie has a speed lower than the 

critical speed the amplitude of the oscillations decreases with time. On the contrary, when the 

speed is higher than the critical speed, instability occurs. 

Because of its influence on contact forces, passenger comfort, noise and, in the extreme event 

of the derailment of the convoy, bogie travelling around unstable conditions must be avoided 

or at least controlled in transitory events. 

The primary suspension system has a beneficial effect on the stability limits of the bogie. The 

system acts mainly towards the transverse and longitudinal directions. In this manner the 

spring-damper suspension elements reduce the hunting motion and, as a consequence, the 

working speed can be increased safely.  

 

For these reasons, it is crucial to assess at which operating conditions instability occurs. In 

particular, an estimate of the critical speed is required to guarantee the system safety. 

Therefore in this investigation a software tool for the dynamic analysis of the main bogie 

components has been developed. A reliable computation of a railway vehicle dynamics needs 

an accurate wheel-rail contact model. This usually increases the computation time. To reduce 

the cpu-time required by the simulation the approach of the lookup tables [1] is adopted. In 

particular, precalculated tables have been compiled in order to evaluate in a very short time 

the actual wheel-rail contact characteristics, such as the location of contact points and the 

direction of normal versors to the surfaces. 

 

The analysis herein described uses the Kalker linear theory explained in detail in paragraph  

3.4.2 [2, 3]. Tangential forces are linearly dependent on local creepages between the contact 

surfaces.  

The starting point has been the creation of the wheel and rail models and their programming in 

a Matlab environment. Wheel and rail surfaces are considered as a node grid. The compilation 

of the lookup tables was obtained by adopting the load center method explained in paragraph  

5.4.2.3. The results of this method appear more uniform and less affected by mesh coarseness. 

The classical Hertz theory has been adopted for the accounting of the actual contact surfaces.  

 

In order to reduce cpu time, the standard Matlab function that is able to access and interpolate 

the numerical values stored in the lookup tables has been substituted with a new one. 

Moreover, two different strategies during the integration of differential equations have been 

tested; namely the “macrostep method” and “variable step method”. 
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The main components of the bogie are the two wheel-sets and a bogie frame. These are 

connected through a suspension device. This last is modelled by means of spring-damper 

elements acting towards vertical, longitudinal and transverse directions. The literature records 

different bogie types and models. The main differences regard the accuracy in modelling the 

suspension system, the degrees of freedom of the moving masses and the models adopted to 

manage surfaces contact . Table 6.1 reports a concise and not exhaustive list of the assumption 

made for each model with the appropriate bibliographic references. 

 

Ref Analyzed 
system 

Wheel-set 
d.o.f 

 

Bogie 
frame 
d.o.f. 

Wheel-set 
Independent 
coordinates 

Wheel-set 
dependent 
coordinates 

Bogie frame 
Independent 
coordinates 

Contact model Direction interested to 
suspensions 

This Bogie 6 6 zGy ϑ,    
yxGG zx ϑϑ ,,,
  Lookup table All directions 

[4] Bogie 4 2 xzGG zy ϑϑ ,,,
  zGy ϑ,  Equivalent conicity All directions 

[19] Bogie       All directions 

[20] 
Wheel-

set 
     Double cone  

[21] Bogie       Lateral, longitudinal 

[22] Bogie 6 6 zGy θ,  
yxGG zx ϑϑ ,,,
  Equivalent conicity All directions 

[23] Bogie       Lateral, longitudinal 

[28] Bogie      Non linear model 
Active lateral and 

longitudinal 

Table 6.1 

Comparison among different bogie models found in literature. 
 

6.2 - THE BOGIE MODELLING 

 
The bogie here examined is composed of three masses: two wheel-sets, a bogie frame and a 

primary suspension system. The masses,  main dimensions and features of the components are 

summarized in Table 6.2. 

 
Wheel-set mass 1595 Kg Wheel-set distance 2.5 m 
Bogie frame mass 2469 Kg Wheel radius 0.457 m 
Wheel profile S1002 Rail gauge 1.360 m 

Rail profile UIC60 Inclination rail angle  1/20 

Table 6.2 

Masses, main dimensions and features of the bogie components. 
 

6.2.1 - The suspension system 

 
As shown in Figure 6.2, for each wheel the primary suspension system has been modelled 

with three translational spring-damper elements: one for each principal direction. The 

stiffnesses and the damping of the suspension elements are reported in Table 6.3. 
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Longitudinal spring stiffness mN610  Vertical damping coefficient mNs31004.3 ⋅   

Transverse spring stiffness mN7102⋅  Vertical length at rest 0.5 m 

Vertical spring stiffness mN6105.1 ⋅  Longitudinal length at rest 0.75 m 

Longitudinal damping 
coefficient mNs31049.2 ⋅   Transverse length at rest 0.3 m 

Transverse damping 
coefficient mNs41011.1 ⋅     

Table 6.3 

Stifnesses and damping coefficients of the suspension elements. 
 

 
 

  
Figure 6.1 

The bogie with the primary suspension system 
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6.3 – THE WHEEL-SET-RAIL MODEL 

 
Due to symmetry we refer only to the front wheel-set. The first step in the model generation is 

the acquisition of wheel and rail profiles (see Figure 5.3) . The creation of the wheel and rail 

surfaces is carried out with the procedure described in paragraph 5.3. 

 

6.4 – THE CARTESIAN COORDINATE SYSTEMS  

 
The following right-hand Cartesian coordinate systems are introduced in the analysis: 

 

• inertial fixed reference system SR0; 

• reference system fixed with the front wheel-set SRGfront;  

• reference system fixed with the back wheel-set SRGback; 

• reference system fixed with the bogie frame SRGfr; 

• reference system that follows the front wheel-set on the rail path SR1front; 

• reference system that follows the back wheel-set on the rail path SR1back; 

 

The fixed inertial reference system SR0 has its origin on the rail longitudinal plane of 

symmetry and on the rolling plane, the axis xo is  tangent to the railway path. The axis zo is 

vertical and directed upward. 

 

The coordinate systems SRGfront and SRback are framed with the front and back wheel-sets, 

respectively. Their origins are coincident with their centers of masses. The axes yGfront and 

yGback are coincident with the wheel-sets axes, whereas the axes zGfront and zGback are initially 

vertical and directed upwards. 

The coordinate system SRGfr is fixed with the bogie frame mass. Its origin is coincident with 

the bogie frame center of mass. The axis xGfr is initially parallel to the rail direction, the axes 

zGfr is initially vertical and directed upwards. 

 

The two reference systems attached to the wheel-sets – SR1front and SR1back for the front and 

back one respectively -  have their origins belonging to the track longitudinal plane of 

symmetry and to the rolling plane. The origins of the two coordinate systems follow the path 

of the centers of mass of the wheel-sets (see Figure 6.2). Therefore, when the rail path is 

straight, the positions of the two frames have the same coordinates x of the wheel-set centers 

of mass. 
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The axes x1front and x1back are parallel to the rail direction. The axes z1front and z1back are 

orthogonal to the rolling plane and directed upward. Figure 6.2 locates all the coordinate 

systems introduced. 

 

 
 

Figure 6.2 

Reference systems used in the dynamic analysis of the bogie 
 

6.4.1 - Transformation between coordinate systems 

 

In order to obtain the transformation matrix between two generic coordinate systems, the 

following convention regarding the rotation angles has been adopted: given the two coordinate 

systems Sa and Sb, Sa is assumed fixed while  Sb is moving. 

Let us denote with zyx ααα ,, the Bryant’s angles which define the attitude of Sb with respect 

to Sa. 

The rotation order with which Sa must rotate in order to superimpose himself on Sb is the 

following: 
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• 1° rotation about axis za belonging to Sa.. Under this rotation axes x and y move to x’  and 

y’, respectively. 

• 2° rotation about axis x’  belonging to the intermediate frame. Under this rotation axis y’ 

moves to y’’ ; 

• 3° rotation about axis y’’  coincident with yb. 

 

In this manner the matrix which transforms the vector components from Sb  to Sa has the 

following expression: 

















+−+−
−

++−
=→

zyzyxzyxyzxz
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zyyxzyzxyzxz
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rot

sensensensensensensen

sensen

sensensensensensenos

A ab

αααααααααααα
ααααα

αααααααααααα

coscoscoscoscos

coscoscos

coscoscosccoscos

 

Hence, the relation between the vector components in the two reference systems is: 

b

ab

a S
SS

rotS VAV
rr

→=  

where: 

aSV
r

is the vector V
r

 according to Sa; 

bSV
r

 is the vector V
r

 according to Sb. 

 
6.4.1.1 - The coordinate system transformations regarding the rail path 

 

The analyses regard both straight and curved paths. In the first case, making reference to the 

motion of a single wheel-set, the frame SR1 translates with respect to SR0 (see Figure 6.3). 

When the track is curved, the motion of the frame SR1 is characterized by a translational 

motion together with a rotational one, such that x1 axis is tangent to the rail track centerline 

and y1 axis points toward the center of curvature. In this case the reading of the lookup tables 

is done with reference to the relative attitude of the frame SRG – fixed with the wheel-set -  

respect to the frame SR1; then, the relative position and orientation of SRG respect to SR1 and 

all the data obtained from the lookup tables are transformed respect to SR0 by means of the 

transformations reported in section 6.4.1. 
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Figure 6.3 

SR1 attitude in the straight and curved rail path cases. 
 

6.5 – THE EQUATIONS OF MOTION OF THE BOGIE 

 

6.5.1 – The cardinal equations 

 

The equations of dynamics are written only for the main three moving masses. The inertia of 

the suspension deformable elements is neglected. 

The equations are expressed in the inertial coordinate system SRo and are given below:  

(6.1)       .       ;       ;       ;
dt

Kd
MamF

dt

Kd
MamF

fr
Gfr

Gext
fr

Gfr
fr

ext

i
Gi

Gext
i
Gi

i
ext

r
rrr

r
rrr

====                                                                                                                  

where: 

subscript or upperscript i  can assume the meaning of “front” or “back” when denoting  the 

front or back wheel-set, respectively;  

i
extF
r

 is the sum of all external forces acting on the i th wheel-set; 

i
Ga
r

 is the acceleration of the barycenter of the i th wheel-set; 

mi is the mass of the i th wheel-set; 

i
GextM

r
  is the resultant external moment about the center of mass  acting on the i th wheel-set; 

i
GK
r

 is the angular momentum about the center of mass of the i th wheel-set; 

fr
extF
r

 is the sum of all the external forces acting on the bogie frame; 

mfr is the bogie frame mass; 

fr
GK
r

 is the angular momentum about the center of mass of the bogie frame; 
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fr
GextM

r
 is the resultant of all external forces moments about the center of mass and acting on 

the bogie frame; 

 
6.5.2 – The external forces and moments 

 

The external forces acting on the wheel-sets and on the bogie frame are obtained from the 

following sums: 

 

o
i

susp
i

Nr

k

k
icr

Nl

h

h
icli

i
ext FFFFPF

rrrrrr
++++= ∑∑

== 11

 

o
fr

susp
frfr

fr
ext FFPF

rrrr
++=  

where: 

iP
r

 is the weight of the i th wheel-set; 

h
icl F
r

is the contact force acting on left wheel regarding the hth contact point on the i th wheel-set  

k
icr F
r

 is the contact force acting on right wheel regarding the kth contact point on the i th wheel-

set 

susp
iF
r

 is the sum of all forces acting on ith wheel-set and transmitted by the suspension system; 

o
iF
r

is the sum of all possible further external forces (pull force, load directly applied on the 

masses, etc..) acting on the i th wheel-set; 

frP
r

 is the weight of the bogie frame; 

susp
frF
r

is the sum of all forces acting on the bogie frame and transmitted through the suspension 

system; 

o
frF
r

is the sum of the remaining external forces (e.g. pull force, load directly applied on the 

bogie frame, etc..) acting on bogie frame; 

Nl is the number of the contact points on the left wheel; 

Nr is the number of the contact points on the right wheel. 

 

The resultant bending moments acting on the wheel-sets and on the bogie frame are: 

( ) ( ) mot
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o
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k
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where: 

h
icl PG
r

is the vector joining the barycenter of the i th wheel-set with the hth contact point on the 

left wheel of the i th wheel-set; 

k
icr PG
r

is the vector joining the barycenter of the i th wheel-set with the kth contact point on the 

right wheel of the i th wheel-set; 

h
spin

cl
i M
r

 is the spin moment acting just on the hth contact point on the left wheel of the i th 

wheel-set; 

k
spin

cr
i M
r

 is the spin moment acting just on the kth contact point on the right wheel of the i th 

wheel-set; 

susp
Gi M

r
is the resultant moment about the center of mass of the forces transmitted by the 

suspension system to the i th wheel-set. 

o
Gi M

r
is the resultant moment about the center of mass of all possible further external forces 

acting on the i th wheel-set; 

mot
Gi M

r
is the engine couple applied on the i th wheel-set; 

susp
Gfr M

r
 is the resultant moment about the center of mass of the forces transmitted by the 

suspension system to the bogie frame; 

o
Gfr M

r
 is the resultant moment about the center of mass of the remaining external forces acting 

on the bogie frame; 

 
Figure 6.4 shows the block-diagram used for the dynamic analysis of each wheel-set. 

Therefore, in this diagram the wheel-set is assumed as isolated from the rest. 
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Figure 6.4 

Flow chart of the wheel-set dynamic analysis. 
 

6.6 – CONTACT POINTS DETECTION  

 
The position of the contact points, the normal versors and the principal curvatures has been 

determined using the lookup table. The contact points  has been determined with the method 

of the barycentre illustrated in paragraph 5.4.2.3. 

 

6.6.1 – Use of lookup tables 

 

Given the generic values yG and zα , the corresponding values of xG, zG, yx αα , are computed by 

means of linear interpolation of the values stored in the lookup tables.  

The query of the values can be done through two different strategies: 

• method 1: at each integration step 

• method 2: at previously established steps (macrosteps 

In the first method the query to the lookup table occurs every time the Matlab procedure, 

namely ODE23t, evaluates the differential equations. Alternatively with the method 2, a 

constant macrostep is introduced.  Within the macrostep the dependent values are not updated. 
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When switching from one macrostep to the next one, the coordinates at the end of a macrostep 

are considered as initial conditions for the next time interval. The two different strategies are 

sketched in Figure 6.5. 

 

Figure 6.5 

The two query methods of the lookup tables 
 

With the aim to find the best method for both cpu time and data accuracy, the results of the 

two methods have been compared with these obtained a commercial multibody software. For 

the second method of query, we have adopted three different macrosteps, i.e. 

s 102.4 ,104 ,10 444 −−− ⋅⋅ ss . 

Figure 6.6a shows the transverse displacement of  the wheel-set moving with a longitudinal 

speed equal to 12 m/s, initially perturbed through a transverse velocity of 0.1 m/s. The 

simulation lasts for 10 s. Figure 6.6b shows the absolute value of the relative error obtained by 

the comparison of the two method results and these given by the commercial multibody 

software. 

The absolute value of the relative error at time t is calculated as follow: 

( )
)(

)()(

tg

tgtf
terrabs

rel

−=   

 While the mean of abs
relerr on a interval (t1-t0) is: 

( )
( )01

1

0
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t

t
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rel −
=
∫

 

 

In the formula f(t) and g(t) are two given time functions to compare. It is natural that the lower 

is relmean the higher is the result accuracy. Table 6.4 compares the two methods for different 

macrosteps length. It is evident that the first method is the most accurate and (this is 

unexpected at first glance) rapid. For this reason we have adopted the first method in all 
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simulations. As a matter of fact, even if the increasing number of queries should require a 

longer cpu-time, the abrupt change of contact condition encountered in the second method 

implies a significant reduction in the time step (more iterations are needed for the same 

analysis) that masks the benefits of lighter queries.  

 

METHOD 
CPU TIME 

(sec) 
MEAN RELATIVE 

ERROR 
Method 1 346 0.53 

Macrostep (sec)   
4101 −⋅  8415 4.85 
4104 −⋅  1122 1.71 

Method 2 
 

4102.4 −⋅  1037 0.84 

Table  6.4 
Cpu time  for 10 s simulation and mean relative error referred to the commercial multibody software results 

obtained by means of the two methods and with 3 macrostep values. 
 

 

a) 

 

b) 

Figure 6.6 

Wheel-set barycenter motion calculated by means of the two query methods compared with the commercial 
multibody software (CMS) results; a) Transverse displacement; b) Mean relative error of the transverse 

displacement 
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         6.6.2 – The interpolation of the lookup tables 

 

In order to optimize the interpolation of the values stored in the lookup tables, a new function 

called my_interp2.m has been developed in replacement of the two functions interp2.m and 

griddata.m given in the  standard Matlab library. 

The interpolation is performed in two steps:  

• query of the matrix stored in the lookup tables; 

• apply linear interpolation. 

The 1003737 ××  matrix is initially saved on the mass storage. Herein we refer for generality to 

a generic pmr ×× matrix, where r is the number of rows, m the number of columns and p 

the number of layers. 

Let us denote by x and y the two coordinate axes related to the column and row directions 

respectively. The values of xi and yi, both monotonically varying, satisfy the following 

inequalities: 

maxmin

maxmin

yyy

xxx

j

i

≤≤
≤≤

 

where: 

 xi and yj are the values of x and y in correspondence to the i th column and j th row; 

minx and maxx  are the minimum and maximum values of the column values; 

miny and maxy  are the minimum and maximum values of the row values. 

[ ]mi ,1∈  and [ ]rj ,1∈  are integer subscripts. 

 

In order to reduce cpu-time a block matrix [A]  of dimensions p×× 22  is extracted from the 

whole matrix containing the lookup table. Let us denote by xc and yc the generic values of the 

independent coordinates. At the row and column boundaries of the block matrix there are the 

stored independent coordinates adjacent to xc and yc  such that (see Figure 6.7) 

1

1

+

+

≤≤
≤≤

hyh

nxn

ycy

xcx
 

Given [A], the linear interpolation is applied. The following procedure refers to a smaller 

block matrix with dimensions 122 ×× .  

Let us denote by: 
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- ( )xyz ,  the value of the matrix element in correspondence of the y and x values and related to 

the directions of the row and the column; 

- ),( srAzrs = the value of the block matrix [A] element in correspondence of the r th row and 

sth column. 

Given the matrix of the whole lookup table  and the values xc and yc , the linearly interpolated 

value ( )xy cczz ,0 =  is computed through the following steps. 

1) Form the elements of the block matrix: 

( ) ( ) ( ) ( );1,1    ;,1     ;1,     ;, 22211211 ++=+=+== nhAznhAznhAznhAz  

2) Let iix xx −=∆ +1 the constant column spacing and jjy yy −=∆ +1 the constant row spacing. 

3) Evaluate ( )xh
up cyzz ,=  and ( )1,low

h xz z y c+= in correspondence of the valuexc by means of 

the following expressions: 

( ) ( )
x

nx
low

x
nx

up zz
xczz

zz
xczz

∆
−−+=

∆
−−+= 2122

21
1112

11                     

4) Evaluate the column 0z  value, namely xz0 , by means of the following expression: 

( )
y

uplow

hy
upx zz

yczz
∆
−−+=0  

5) Evaluate ( )ny
lft xczz ,=  and ( )1, += ny

rig xczz  in correspondence of the value cy by means of 

the following expressions: 

( ) ( )
y
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y
hy

lft zz
yczz

zz
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∆
−−+=

∆
−−+= 1222

12
1121

11                   ; 

6) Evaluate the row 0z , namely yz0 , by means of the following expression: 

( )
x

lftrig

nx
lfty zz

xczz
∆
−−+=0  

7) Finally, the value of z0 is given by: 

( )
2

00
0

yx zz
z

+= . 

The Figure 6.7 shows the diagram of the whole and the block matrix [A]. 
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Figure 6.7 

Diagram of the interpolation method used for the lookup table. 
 
In order to test the speedup obtained by adopting the new function, the cpu time requested for 

the interpolation of the two standard  Matlab functions interp2.m and griddata.m  and the new 

function my_interp2.m is compared. The superiority of the proposed approach is demonstrated 

by the fact that using a 2x2 matrix the new function is almost  5.3 and 4.75 faster than 

interp2.m and griddata.m, respectively.  

 
6.7 – THE CONTACT FORCES 

 

6.7.1 – Classification of the contact forces 

 

The contact force cF
r

 between the wheel and rail are split in normal and tangent components. 

The normal component cN
r

 has the direction of the normal versor at the contact point. The 

current normal components is obtained adding spring elN
r

and damper viscN
r

 forces.. The 

tangent component lies in the tangent plane and is formed by two contributions: longF
r

, directed 

along the longitudinal direction and transF
r

, parallel to the transverse versor. The tangent 

component is estimated by means of Kalker linear theory [2]. 

In conclusion the following relationships can be established: 

 

;           ;           ; translongtangelviscctangcc FFFNNNFNF
rrrrrrrrr

+=+=+=  
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6.7.2 – Computation of the normal component cN
r

 

 

6.7.2.1 – The elastic contribution 

 

The elastic contribution elN
r

 is expressed in the form 

nCkN elel

rr
=  

where: 

n
r

is the normal versor to the surface in the contact point; 

C   is the indentation between the wheel and rail; 

elk  is the elastic contact stiffnesses; 

The value of elk  depends from the location of the area of contact and it is calculated according 

to the procedure illustrate in the paragraph 5.4.5. 

 

6.7.2.2 – The damping contribution 

 
The contribution to contact forces due to damping is proportional to the interpenetrating 

velocity vpen of the wheel in the rail. One can use the following expressions: 

nvcN penvvisc

rr
=   if  0>penv  

0=viscN
r

           if  0≤penv  

where 

nVv Ppen

rr
⋅=  

PGVV GP

rrrr
×+= ω                  (6.2) 

The previous symbols have the following meaning: 

cv  damping coefficient; 

PV
r

 is the velocity of the wheel in correspondence of the contact point; 

n
r

 is the normal versor in the contact point; 

GV
r

is the velocity of the barycenter of the wheel-set; 

ϖr  is the angular velocity of the wheel-set; 

PG
r

is the vector joining the barycenter of the wheel-set with the contact point P; 

The damping coefficient cv depends on the material of the solids in contact. A value usually 

reported in literature for similar analyses it is assumed as Ns/m104=vc . 
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6.7.3 – Wheel-rail tangent component analysis 

 

The tangent component of the contact force, longF
r

and transF
r

and the moment of spin, spinM
r

, is 

determined by means of the Kalker’s linear theory according to the procedure reported in 

paragraph 3.4.2 [2].  This is based on a linear relationship between the tangent forces and the 

creepages, ηζ ,  and ϕ determined as showed in paragraph 3.3.  

A creep force saturation coefficient ε is defined according to the modified Johnson-Vermeulen 

formulation [8], that permits to use  a nonlinear model instead of a linear one: 
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withε computed according to the following equations 
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The symbols have the following meaning: 
 

longF
r

and transF
r

are respectively the longitudinal and transverse component of the tangential 

force; 
nl

longF
r

and nl
transF
r

 are respectively the longitudinal and transverse component of the tangential 

force calculated in the non linear model;  

N is the normal force component; 

22
translongtantan FFFF +==

r

 is the Euclidean norm of the tangential force tanF
r

. 

longF and transF are respectively the longitudinal and transverse component of the tangential 

force; 

µ is the friction coefficient equal to 0.2. 
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6.8 - FORCES GENERATED BY THE SUSPENSION SYSTEM  

 

The forces generated by the suspension system are due to elastic and damping effects. These 

last are expressed by the following formulas 

( ) ( )( );              ;susp susp
el o el AB v v A B AB ABF l AB k n F c V V n n= − = − ⋅
r r r rr r r

 

where the symbols have the following meaning: 

susp
elF
r

 is the elastic contribution to the suspension force; 

susp
vF
r

 is the viscous contribution to the suspension force; 

AB is the length of the segment AB; 

elk is the elastic constant of the suspension; 

vc  is the damping coefficient of the suspension; 

ABn
r

is the versor along the line through attachment points A and B, oriented from A to B;  

AV
r

 is the velocity of point A; 

BV
r

 is the velocity of  point B; 

ol is the length of the unloaded elastic element. 

In Figure 6.8 is given a scheme of  the spring-damper element modelling the suspension 

 

  

Figure 6.8 

Spring-damper suspension element 
 

 
6.9 - THE DIFFERENTIAL EQUATIONS 

 

The dynamic equilibrium conditions (6.1) form a system of 18 second order differential 

equations. The unknowns are the following  coordinates of the  moving bodies: 

 

( ) ( ) ( )tztytx j
G

j
G

j
G  , ,  , coordinates of the barycenter of the j th body respect to a SRo; 

( ) ( ) ( )ttt j
z

j
y

j
x ϑϑϑ  , ,  ,  attitude angles of the frame SRGj, connected to j th body, respect to a SRo; 
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The subscript j is equal to “front” , “back” or “fr”  when the variable pertains to front, back 

wheel-set bogie frame, respectively.  

The accelerations of the barycenters are given by the following relations: 

o

j
G

o

j
G

o

j
Gj

G k
dt

zd
j

dt

yd
i

dt

xd
a

rrrr

2

2

2

2

2

2

++=  

where ooo kji
rr

 , , denote the versors of SRo. 

The equilibrium at rotation is expressed by the differential equations 
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where: 

j
zz

j
yy

j
xx III  , , are the central moment of inertia of the j th body; 

jjj rqp  , , are the angular velocity  components of the j th body expressed in the local frame  

SRGj; 

 j

G

z
ext

j

G

y
ext

j

G

x
ext MMM ***  , ,  are the Cartesian components of the external resultant moment about 

the barycenter of j th body of the external forces expressed in the local frame  SRGj. 

 

The relations between the angular velocity components expressed in the local frames and the 

attitude angles and their derivatives are determined by means of the following transform 
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The j th body angular velocity components expressed in the absolute frame SRo  follow from the 

transformation 
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CHAPTER 7 
 
 
 
 
 

THE WAGON DYNAMIC 
 
 
 
 
 
 

 
7.1 – INTRODUCTION 

 
As for the bogie, the wagon analysis is very important for many reasons because it allows the 

definitions of the stability limits of the wagon on different tracks. Moreover the secondary 

suspension system makes the analysis more complex and variegated. 

Beyond the list reported in the chapter 6 introduction, the following items have a significant 

interest in the analysis of the wagon motion: 

 

• analysis of the interactions between the primary and secondary suspension system; 

• analysis of the reciprocal motion of the two bogies; 

• influence of the secondary suspension system characteristics on the critical limits of the 

wagon; 

• investigation on the transmission of the vibrations through the suspension systems; 

• analysis of the maximum attitude values of the car body during the curved and straight 

track; 

• analysis of the transient period of the motion during the braking and acceleration phase. 

 

These analysis can be carried out by means of a dynamic model of the wagon. The model 

presented herein has been developed in Matlab environment using the two bogie models described 

in chapter 6. 
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7.2 – THE WAGON MODEL 

 

The wagon described in this chapter is formed by the following masses: 

 

• the car body; 

• the two bogies; 

• the secondary suspension system. 

 

The secondary suspension system acts on the three principal directions, that is the longitudinal, 

transverse and vertical ones; it is able to damp all the car body oscillations and to transmit the 

motion from the bogies to the car body. 

The masses,  main dimensions and features of the components are summarized in Table 2.2, while 

figure 7.1 shows a scheme of the wagon.  

The motion can be analyzed in a straight or curved paths, with or without an initial perturbation. 

Some dynamic results are reported in chapter 8 where the graphics are compared with those 

obtained by means of a CMS software. 
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Figure 7.1 

The wagon model developed in Matlab environment with the secondary suspension system 

and its reference systems. 
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        7.3 – THE CARTESIAN COORDINATE SYSTEMS  

 

The following right-hand Cartesian coordinate systems are introduced in the analysis: 

• absolute reference system 0SR ; 

• reference systems inherent the front bogie, as described in paragraph 6.4; 

• reference systems inherent the back bogie, as described in paragraph 6.4; 

• reference system fixed with the car-body GcbSR ; 

• reference system that follows the car-body on the rail path cbSR1 ; 

The coordinate system GcbSR  is fixed with the car-body mass. Its origin is coincident with the 

car-body center of mass. The axis Gcbx  is initially parallel to the rail direction, the axes Gcbz is 

initially vertical and directed upwards. 

The reference system cbSR1 has its origin belonging to the track longitudinal plane of 

symmetry and to the rolling plane. The origin of the coordinate system follows the path of the 

center of mass of the car-body (see Figure 7.1). Therefore, when the rail path is straight, the 

positions of the frame has the same coordinate x of the car-body center of mass. 

The axes cbx1  is parallel to the rail direction. The axes cbz1  is orthogonal to the rolling plane 

and directed upward.  

 
7.4 – THE EQUATIONS OF MOTION OF THE WAGON 

 

7.4.1 – The cardinal equations 

 

The equations of dynamics are written only for the main seven moving masses. The inertia of 

the suspension deformable elements is neglected. 

The equations are expressed in the inertial coordinate system SRo and are given below:  
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where: 

subscript or upperscript i  can assume the meaning of “front” or “back” when denoting  the 

front or back wheel-set respectively while the upperscript j  can assume the meaning of 

“ front” or “back” when denoting  the front or back bogie;  
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i
ext

j F
r

 is the sum of all external forces acting on the i th wheel-set belonging to the j th bogie; 

i
G

j a
r

 is the acceleration of the barycenter of the i th wheel-set belonging to the j th bogie; 

jmi is the mass of the i th wheel-set belonging to the j th bogie; 

i
G

j
ext M

r
  is the resultant external moment about the center of mass  acting on the i th wheel-set 

belonging to the j th bogie; 

i
G

j K
r

 is the angular momentum about the center of mass of the i th wheel-set belonging to the j th 

bogie; 

fr
ext

j F
r

 is the sum of all the external forces acting on the bogie frame belonging to the j th bogie; 

jmfr is the bogie frame mass belonging to the j th bogie; 

fr
G

j K
r

 is the angular momentum about the center of mass of the bogie frame belonging to the j th 

bogie; 

fr
G

j
ext M

r
 is the resultant of all external forces moments about the center of mass and acting on 

the bogie frame belonging to the j th bogie; 

wag
extF
r

 is the sum of all the external forces acting on the car body; 

mwag is the car body mass; 

wag
GK
r

 is the angular momentum about the center of mass of the car body; 

wag
GextM

r
 is the resultant of all external force moments about the center of mass and acting on 

the car body; 

 
7.4.2 – The external forces and moments 

 

The external forces acting on the wheel-sets, on the bogie frame and on the car body are 

obtained from the following sums: 
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where: 

i
j P
r

 is the weight of the i th wheel-set belonging to the j th bogie; 
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h
i

j
cl F

r
is the contact force acting on left wheel regarding the hth contact point on the i th wheel-

set belonging to the j th bogie; 

k
i

j
cr F

r
 is the contact force acting on right wheel regarding the kth contact point on the i th 

wheel-set belonging to the j th bogie; 

1susp
i

j F
r

 is the sum of all forces acting on i th wheel-set belonging to the j th bogie and transmitted 

by the primary suspension system; 

o
i

j F
r

is the sum of all possible further external forces (pull force, load directly applied on the 

masses, etc..) acting on the i th wheel-set belonging to the j th bogie; 

fr
j P
r

 is the weight of the bogie frame belonging to the j th bogie; 

1susp
fr

j F
r

is the sum of all forces acting on the bogie frame belonging to the j th bogie and 

transmitted through the primary suspension system; 

o
fr

j F
r

is the sum of the remaining external forces (e.g. pull force, load directly applied on the 

bogie frame, etc..) acting on bogie frame belonging to the j th bogie; 

 i
j Nl  is the number of the contact points on the left wheel of the i th wheel-set belonging to the 

j th bogie; 

i
j Nr  is the number of the contact points on the right wheel of the i th wheel-set belonging to the 

j th bogie; 

2susp
fr

j F
r

 is the sum of all forces acting on the bogie frame belonging to the j th bogie and 

transmitted through the secondary suspension system; 

The resultant bending moments acting on the i th wheel-sets belonging to the j th bogie, on the j th 

bogie frame and on the car body are the following: 
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where: 

h
i

j
cl PG

r
is the vector joining the barycenter of the i th wheel-set belonging to the j th bogie with 

the hth contact point on its left wheel; 

k
i

j
cr PG

r
is the vector joining the barycenter of the i th wheel-set belonging to the j th bogie with 

the kth contact point on its right wheel; 
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h

spinj

cl

i
M
r

 is the spin moment acting just on the hth contact point on the left wheel of the i th 

wheel-set belonging to the j th bogie; 

k

spinj

cr

i
M
r

 is the spin moment acting just on the kth contact point on the right wheel of the i th 

wheel-set belonging to the j th bogie; 

1susp
G

j
i M

r
is the resultant moment about the center of mass of the forces transmitted by the 

primary suspension system to the i th wheel-set belonging to the j th bogie; 

o
G

j
i M
r

is the resultant moment about the center of mass of all possible further external forces 

acting on the i th wheel-set belonging to the j th bogie; 

mot
G

j
i M

r
is the engine couple applied on the i th wheel-set belonging to the j th bogie; 

1susp
G

j
fr M

r
 is the resultant moment about the center of mass of the forces transmitted by the 

primary suspension system to the bogie frame belonging to the j th bogie; 

o
G

j
fr M

r
 is the resultant moment about the center of mass of the remaining external forces 

acting on the bogie frame belonging to the j th bogie; 

2susp
G

j
fr M

r
 is the resultant moment about the center of mass of the forces transmitted by the 

secondary suspension system to the bogie frame belonging to the j th bogie; 

o
Gwag M

r
 is the resultant moment about the center of mass of the remaining external forces 

acting on the car body;  

2susp
Gwag M

r
 is the resultant moment about the center of mass of the forces transmitted by the 

secondary suspension system to the car body. 

 

7.4.3 - FORCES GENERATED BY THE SECONDARY SUSPENSION SYSTEM  

 

The forces generated by the secondary suspension system are due to elastic and damping 

effects. The force expressions are reported in paragraph 6.8 with reference to the secondary 

suspension system;  point A of Figure 6.8 belongs to the bogie frame while point B belongs to 

the car body.  
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7.5 - THE WAGON DIFFERENTIAL EQUATIONS 

 

The dynamic equilibrium conditions of the wagon form a system of 42 second order 

differential equations. The unknowns are the following  coordinates of the  moving bodies: 

 

( ) ( ) ( )tztytx j
G

j
G

j
G

i ii  , ,  , coordinates of the barycenter of the j th body respect to a SRo of the ith 

bogie; 

( ) ( ) ( )ttt j
z

j
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j
x

i ϑϑϑ ii  , ,  ,  attitude angles of the frame SRGj, connected to j th body of the ith bogie, 

respect to a SRo; 

( ) ( ) ( )tztytx wag
G

wag
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wag
G  , ,  , coordinates of the barycenter of the car body respect to a SRo;  

( ) ( ) ( )ttt wag
z

wag
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x ϑϑϑ  , ,  ,  attitude angles of the frame fixed with the car body, respect to a SRo; 

 

The subscript j is equal to “front” , “back” or “fr”  when the variable pertains to front, back 

wheel-set, bogie frame, respectively and the subscript i is equal to “front”  or “back” when the 

variable pertains to front, back bogie.  

The accelerations of the barycenters are given by the following relations: 
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where ooo kji
rr

 , , denote the versors of SRo. 

The equilibrium at rotation is expressed by the differential equations 

( )

( )

( )

*

*

*

 

 

 

jj j j x j
xx yy zz j j ext G

jj j j y j
yy zz xx j j ext G

jj j j z j
zz xx yy j j ext G

dp
I I I q r M

dt
dq

I I I r p M
dt

dr
I I I p q M

dt


− − =


 − − =



− − =


 

where: 

j
zz

j
yy

j
xx III  , , are the central moment of inertia of the j th body; 

jjj rqp  , , are the angular velocity  components of the j th body expressed in the local frame  

SRGj; 
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ext MMM ***  , ,  are the Cartesian components of the external resultant moment about 

the barycenter of j th body of the external forces expressed in the local frame  SRGj. 
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CHAPTER 8 
 
 

 
NUMERICAL RESULTS 

 
 
 
 
 
 
 
 
 

8.1- INTRODUCTION 

 

The numerical results discussed in this chapter regard: 

 

• code and lookup table validation; 

• monitoring the time-steps variation under strongly non stationary conditions; 

• investigation of the wheel-set and bogie critical speed under different loads and 

configurations;   

• analysis of the influence of the longitudinal stiffness of the primary suspension system on 

the bogie critical velocity;  

• analysis of the contact forces between the bogie wheels and the rails in a curved track; 

• investigation of the derailment conditions in function of the longitudinal characteristics of 

the primary suspension system in a curved track; 

• analysis of the critical speed in function of the super-elevation in a curved track. 

 

8.2 – CODE AND LOOKUP VALIDATIONS 

 
In order to validate the lookup table and the developed code, a comparison is made with the 

results supplied by a commercial multibody software (CMS); in particular the analyses 

concerns with the behaviour of a single wheel-set and of a complete bogie behaviour under 

stable, critical and unstable conditions. 

To obtain the critical speed of the wheel-set and  the bogie - namely w
crV  and b

crV - moving on a 

straight path, the two systems - the wheel-set and the bogie - running with a longitudinal 
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velocity longV  are initially perturbed with a transverse velocity component transV . In all 

simulations the  transV is set equal to 0.1 m/s. For the wheel-set case let us assume that longV  is 

lower than the w
crV . For establishing the critical speed  the hunting motion after the initial 

kinematic perturbation should be monitored. If the amplitudes of the oscillations decrease with 

time then w
crlong VV < and it is necessary to increment longV . Otherwise, if the amplitudes 

increase, then w
crlong VV > and longV  must be decreased. When the amplitudes are almost constant 

in time the condition for which w
crlong VV = is given.  

The same procedure is applied to the computation of b
crV .  In this case kinematic perturbations 

are initially applied to both wheel-sets.  

Figures 8.1-8.4 show the transverse displacement, the yaw and roll angles of the wheel-set and 

the transverse tangent contribution of the tangent component acting on the two wheels in three 

different initial conditions, that is w
crlong VV < , w

crlong VV =  and w
crlong VV > . 

Figures 8.5-8.10 show the transverse, vertical and longitudinal displacements and the rotation, 

yaw and roll angles of the three masses of the bogie that is the front and back wheel-sets and 

the bogie frame; Figures 8.11-8.13 show  the two contributions of the tangent component and 

the normal one acting on the four wheels in the case of w
crlong VV < . 

Figure 8.14 and 8.15 show the barycentre transverse displacement and the yaw angle of the 

unperturbed wheel-set in a curved track with radius of curvature equal to 900 m and with 

initial longitudinal velocity equal to 10 m/s. 

Figure 8.16 shows the barycentre transverse displacement of all wagon masses - the four 

wheel-sets, the two bogie frames and the car body - moving with longitudinal velocity equal 

to 15 m/s and initially perturbed with a transverse velocity equal to 0.1 m/s. Figures 8.17 and 

8.18 show the yaw and roll angle respectively of all wagon masses; Figures 8.19 and 8.20 

report respectively the transverse component of the tangential force and the normal 

component of the contact force among all wagon wheels and rails. 

 The symbols in the figures have the following meaning: W=wheel, WS=wheel-set, 

CMS=commercial multibody software, BG=bogie, MAT=Matlab. 
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Figure 8.1  

Plots of the transverse displacement of the wheel-sets obtained by means of the Matlab software and the 
commercial multibody software with three longitudinal velocity: stable, critical and unstable conditions. 

 
 
 
 

 

Figure 8.2  

Plots of the yaw angle of the wheel-set obtained by means of the Matlab software and the commercial multibody 
software with three longitudinal velocities: stable, critical and unstable conditions. 
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Figure 8.3  

Plots of the roll angle of the wheel-set obtained by means of the Matlab software and the commercial multibody 
software with three longitudinal velocities: stable, critical and unstable conditions. 

 
 
 
 

 

Figure 8.4  

Plots of the transverse tangent component acting on the two wheels obtained by means of the Matlab software 
and the commercial multibody software with three longitudinal velocities: stable, critical and unstable 

conditions. 
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Figure 8.5  

Plots of the transverse displacement of the two wheel-sets and the bogie frame obtained by means of the Matlab 
software and the commercial multibody software. 

 

 
Figure 8.6  

Plots of the vertical displacement of the two wheel-sets and the bogie frame obtained by means of the Matlab 
software and the commercial multibody software. 
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Figure 8.7  

Plots of the longitudinal displacement of the two wheel-sets and the bogie frame obtained by means of the Matlab 
software and the commercial multibody software. 

 

 
 

Figure 8.8  

Plots of the rotation angle of the two wheel-sets and the bogie frame obtained by means of the Matlab software 
and the commercial multibody software. 
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Figure 8.9  

Plots of the yaw angle of the two wheel-sets and the bogie frame obtained by means of the Matlab software and 
the commercial multibody software. 

 

 

Figure 8.10  

Plots of the roll angle of the two wheel-sets and the bogie frame obtained by means of the Matlab software and 
the commercial multibody software. 
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Figure 8.11 

Plots of the longitudinal tangent components acting on the four wheels obtained by means of the Matlab software 
and the commercial multibody software. 

 
 

Figure 8.12 

Plots of the transverse tangent component acting on the four wheels obtained by means of the Matlab software 
and the commercial multibody software. 
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Figure 8.13 

Plots of the normal components acting on the two back wheels obtained by means of the Matlab software and the 
commercial multibody software. 

 

 
Figure 8.14 

Plots of the transverse displacement of the unperturbed wheel-set obtained by means of the Matlab software and 
the commercial multibody software in a curved track with radius of curvature equal to 900 m and with initial 

longitudinal velocity equal to 10 m/s. 
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Figure 8.15 

Plots of the yaw angle of the unperturbed wheel-sets obtained by means of the Matlab software and the 
commercial multibody software in a curved track with radius of curvature equal to 900 m and with initial 

longitudinal velocity equal to 10 m/s. 
 
 

 
Figure 8.16  

Plots of the transverse displacement of the wagon masses that is the four wheel-sets, the two bogie frames and the 
car body, obtained by means of the Matlab software and the commercial multibody software.  
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Figure 8.17  

Plots of the yaw angle of the four wheel-sets, the two bogie frames and the car body, obtained by means of the 
Matlab software and the commercial multibody software.  

 
 

 
Figure 8.18  

Plots of the roll angle of the wagon masses that is the four wheel-sets, the two bogie frames and the car body, 
obtained by means of the Matlab software and the commercial multibody software.  
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Figure 8.19  

Plots of the transverse tangential components among the wagon wheels and the rails; obtained by means of the 
Matlab software and the commercial multibody software.  

 

 
Figure 8.20  

Plots of the normal contact components among the wagon wheels and the rails; obtained by means of the Matlab 
software and the commercial multibody software.  
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The mentioned figures demonstrate the agreement between the results obtained by means of the 

Matlab code and the commercial multibody software models described in chapter II. This is 

observed for both the displacements (kinematics) and the contact forces (dynamics). Moreover it 

can see that the displacement and the yaw angle present a very similar periodicity; this prove that 

the hunting motion is coupled and thus generated by the interaction of the transverse displacement 

and the yaw rotation. From the Figures 8.5, 8.9, 8.10 one observe that all the masses concerning the 

bogie oscillate in phase; this behaviour is characteristic of the rectilinear track when the 

perturbations are applied to the front and back wheel-sets at the same manner.  

 

8.3 – THE TIME STEP MONITORING  

 

With the aim to monitor the time-step variation during integration, so that the simulation duration, 

we have observed that the required step depends strongly on the degree of variation of the variables 

that control the motion of the system. When the variables are stationary the integration step 

increases continuously; on the contrary, when many perturbations occur, for example when the 

contact point crosses from the wheel tread to the flange, the step stays at its lower values.  

 

Figure 8.21 compares in a semi-logarithmic scale three different simulations of the same system 

having equal time span but with the following initial conditions:  

• absence of perturbation (Figure 8.21a); 

• initial transverse perturbation set to 0.1 m/s, so that the contact points remain on the wheel 

tread (Figure 8.21b); 

• initial transverse perturbation set to 0.35 m/s in such a way that the contact points concern 

both the tread and the flange wheel (Figure 8.21c); 

One can observe that: 

a) the step lengths increase with time up to 0.25 s in the case of unperturbed motion; the sharp 

decrease observed after the first peak is due to the vertical motion of the wheel-set in the 

transitory phase; 

b) in the case of small initial perturbation, for instance 0.1 m/s, we have a hunting motion and 

the step length, after a first increasing phase, stabilizes on a value close to 3102.1 −⋅  s. This 

behaviour can be justified considering the higher variation of the motion variables by 

respect to the unperturbed motion;  

c) with a perturbation allowing the flange contact, Figure 8.21c, the variables rate of change is 

very high when the contact points moves between the tread and the flange; in the same 
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figure we can observe three consecutive and alternate (left-right) flange contacts. Hence due 

to the sharp discontinuities the integration step is reduced . 

The step length influences the duration of the simulation and the global step number; in fact we pass 

from 125 steps in the first case to 320 in the second one and even to 4900 in the last one. 

 

 
 

 

 

 
 

a) b) 

 
c) 

Figure 8.21 

Step length in semi-logarithmic scale in three different cases: a) unperturbed motion; b) small initial 
perturbation without flange contact; c) relevant initial perturbation with flange contact. 

 

8.4 – THE CRITICAL SPEED 

 

It is well known that the critical speed of a wheel-set depends also from the external load 

applied on it. In fact one can report (see Figure 8.22a) the critical speed by respect to the wheel-

set load ratio, defined as the ratio between the vertical load directly applied on the wheel-set 
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barycentre and the wheel-set weight. At the same time one can plot the curve of the critical 

hunting frequency obtained by means of a Fourier’s analysis of the displacement oscillations by 

respect to the load ratio (see Figure 8.22b).  Figure 8.23a shows the bogie critical speed vs. the 

bogie load ratio defined as the ratio between the vertical load directly applied on the frame 

bogie and its weight. Figure 8.23b reports the bogie hunting frequency vs. the bogie load ratio. 

 

 

   

                                                 a)                                                                                             b) 

Figure 8.22 

Plots of the critical speed and hunting frequency of the wheel-set as regards the wheel-set load ratio. 
 
 

 
                                                 a)                                                                                             b) 

Figure 8.23 

Plots of the critical speed and hunting frequency of the bogie .vs. the bogie load ratio 

 
As one can observe from the figures, the critical bogie speed is much higher when compared to 

the wheel-set one, having the same load ratio. This is mainly due: 

 

- the presence of spaced wheel-sets on the bogie 

- the presence of the  primary suspension system. 
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 The strongly perturbed wheel-set is not able, by means of the contact force actions, to generate 

a set of forces able to damp the motion. However, the stabilizing action generated by the bogie 

can reach very high values as it is promoted by the distance of the two wheel-set .  

 

 Also the primary suspension system contributes to the stabilizing action. 

Another interesting evidence is the rise of the critical speed when the load ratio increases. This 

phenomenon reveals the importance of the contact forces on the stability of the system; in fact 

when the external load is increased also the normal and tangential components rise accordingly.  

The system has better possibilities of reacting to the perturbations. In order to explain this 

concept we can imagine the limit case where all the external loads, included the weight, are null. 

The contact forces are null as well and the system cannot counter any perturbation. 

 

8.5 – THE INFLUENCE OF THE BOGIE LONGITUDINAL STIFF NESS IN A 

STRAIGHT TRACK 

 
The analysis of the  influence of the longitudinal stiffness of the bogie primary suspension 

system on the bogie stability limits in the case of straight track is carried out by the hunting 

motion analysis with different value of the stiffness. In particular we consider the stiffness 

value: 

0hkklong =
 

where h is a numerical coefficient and  0k is the value reported in table 6.3 and it is equal to 

.106 mN  

The critical speed is determined also with different load conditions, defined by means of the 

bogie load ratio. The used values for h are: 

0.05; 0.1; 0.5; 1;  1.5;=h  

The critical velocity respect the load ratio and longk is  reported in figure 8.24 where the results 

obtained by means of the Matlab code and Simpack software are compared. 
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Figure 8.24 
Critical bogie velocity respect to the load ratio and longk  

 
From the figure it is evident that the critical velocity strongly increases when longk rises. In fact 

we pass from a value like 30 m/s to about 150 m/s with an increment of 30 times of  longk .  

Observing Figure 8.24 one can notate two different behaviours of the critical speed especially 

for the intermediate values of longk ; the first one occurs for low values of the load ratio and 

reveals a rapid change of the critical speed respect to the load and in the second behaviour the 

stability characteristics are not very variable respect to the load. 

This fact permits to define a stability limit after which it is possible to use the bogie with a load 

stability interval. From the figure one can observe that the limit and the interval change with 

longk , that is the higher is longk , the higher is the stability limit and the lower is the stability 

interval extension. In fact, considering h=1, we show that the stability limit is about 3 and the 

extension of the interval is from 3  (empty wagon)  to 8 (full loaded wagon). Any change to the 

load ratio generate, at the external of the interval, a higher change in the critical speed than at 

the inner of the interval. It is interesting to observe that such critical conditions can be 

approached also when an emergency braking is necessary.  As a matter of fact in an emergency 

braking of a long train some wagons can have their load-ratio reduced due to the friction forces 

transmitted by bumpers. 
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8.6 – THE INFLUENCE OF THE BOGIE LONGITUDINAL STIFF NESS IN A 

CURVED TRACK 

 

The influence of longk  on the stability limits of the bogie in a curved track should account of the 

effective radius of curvature. The diagrams presented show the critical speed as a function of 

longk having the track radius of curvature as a parameter. All computations are here conducted 

with a fixed load ratio equal to 8.26. The analysed radii of curvature are the following:  

 

 Rcurv =1000 m,  1200 m,  2000 m,  2500 m, 3500 m, 4500, 6000 m.  

 The used values for h are: 

 

 

The values of the bogie critical speeds as a function of longk and Rcurv are reported respectively in 

Figure 8.25 and Figure 8.26. a comparition between the results obtained by means of the Matlab 

code and Simpack software are also showed. 

 
 

Figure  8.25 
Critical bogie velocity in a curved track respect to longk at different radius of curvature. The bogie load ratio 

is equal to 8.26. 
 

0.1. 0.5; 1;  1.5;=h
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Figure  8.26  
Critical bogie velocity in a curved track respect to the radius of curvature at different value of longk . The 

bogie load ratio is equal to 8.26. 
 
 
 

The figures show that for all the radii of curvature the critical speed increases with the rise of 

the longitudinal stiffness, thus reflecting the same behaviour of the rectilinear track case. 

However, the values obtained are much different. In fact in the curved track the critical speed 

does not exceed the value of 34 m/s, even when introducing a high stiffness. This apparently 

unexpected event is explained by the continuous interactions among the wheel flanges and the 

rails when running on a curved track, in particular among the outer wheels and rail. This 

occurrence  doesn’t happen in a straight track if the initial perturbation is sufficiently small. In 

fact the graphic reported in Figure 8.24 is obtained with an initial perturbation set to 0.1 m/s. 

This lateral displacement of the wheel-sets is not enough to guarantee the flange-rail contact 

condition. Considering a bogie having h=1 and load ratio equal to 8.26, when the initial 

perturbation is equal to 0.25 m/s, the contact among the wheel flanges and the rails does happen. 

The bogie critical speed strongly reduces passing from a value of 123 m/s in the small 

perturbation case to 43 m/s in the case of severe perturbation. This last value is now comparable 

with the one obtained along a curved track even at very large radius of curvature. The 

significant reduction of the critical speed is due to the sharp variations of the geometrical 

characteristics of the surfaces in contact when the contact region goes by the wheel tread to the 
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flange. This variations have a great influence on the tangential forces in particular on the spin 

components affecting the system dynamic. 

 

 

 
 

 

 
a) Yaw angle of the back and front wheel-sets with h=1.5 and radius equal 

to 1200 m. 
 

Bending mode 

 

 

 
b) Yaw angle of the back and front wheel-sets with h=1.5 and radius equal 

to 3500 m. 

Shearing mode 

Figure 8.27 
Yaw angle of the two wheel-sets in the two oscillatory modes, bending and shearing ones.  

 
 

Figure 8.26 shows that with radius of curvature included between 1200 m and 3500 m, the critic 

speed slightly decreases with the rise of the radius while after 3500 m it increases again. This 

behaviour is explained with the two different oscillatory modes of the two wheel-sets. Figure 

8.27 reports the two yaw angles at regime of the two wheel-sets, the front one (FW
zϑ ) and the 

back one ( BW
zϑ ) considering the radius equal to 1200 m and  3500 m;  h is assumed equal to 1.5; 

the critic velocities are respectively 31 m/s and 28.5 m/s. We can notate that the two signs of the 
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wheel-set yaw angles are different: in the case of 1200 m the two angles have opposite signs, 

while in the case of 3500 m the angles have the same sign that is they are negative. This fact 

demonstrate that in the first case the wheel-sets oscillate in bending mode while in the second 

one they oscillate in the shearing mode (see figures 4.1 and 8.27 ) . It is well known that the best 

condition for a bogie moving in a curved track is realized  when the two wheel-sets are 

positioned in a symmetric  configuration respect to the radial direction of the track and this 

condition is realized when the two yaw angles have opposite signs, that is they assume a 

bending configuration. This condition influences also the bogie critic velocity that tends to be 

slightly higher in the bending mode than in the shearing one also in presence of a lower radius. 

 

The plots in the straight and curved tracks suggest that the optimum value of longk is toward the 

highest values, but this is only apparently true. A complete and more realistic stability 

investigation must consider the wheel-set or bogie not as an isolated systems but as coupled 

with the rails. In other words, in order to predict the stability limits of a railway systems the rails 

layout and their geometric and resistance characteristics must be considered as well. 

It is the case for example of the lateral displacement of the rails generated by the lateral force 

transmitted from the wheel-flange in the contact point. The rail displacement can produce the 

following effects [29]: 

 

 - the gage widening, that can lead to a wheel-rail separation as shown in Figure 8.28; 

 -  the rail rollover , that is a rotation of the rail about its corner, as shown in Figure 8.29. 

In many cases one of these effects can cause the entire system to be unstable. 

 
 

 
     

Figure 8.28 
The gage widening 

Figure 8.29 
The rail rollover  

 
For these reasons, in order to analyze these two last critical phenomena, it is necessary to evaluate 

the contact forces between the wheels and the rails as a function of the geometrical and dynamical 
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characteristics of the system. The lateral component of the contact force is the one that strongly 

stresses the rail in the horizontal plane. Figure 8.30 shows the lateral components of the four wheels 

of the bogie in a curved track; they are considered positive when directed outward the rails. 

 
Figure 8.30 

The lateral components of the contact forces acting on the inner and outer rails in a curved track. 
 
The lateral component of the contact force depends on the following characteristics: 

• vertical load acting on the bogie; 

• track radius of curvature; 

• bogie velocity; 

• characteristics of the primary suspension system; 

• wheel-rail geometry. 

Figure 8.31 reports the plots of lateral components of the contact forces, transmitted from the four 

wheels of the bogie to the inner and outer rails, versus the track radius and the longitudinal stiffness 

parameter h of the primary suspension system. The velocity of the bogie is the critical one showed 

in Figure 8.25. The load ratio is equal to 8.26. The results are compared with which obtained by 

means of Simpack software. 
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a) b) 

  
c) d) 

 
Figure 8.31 

Lateral component of the contact forces acting on the outer and inner rails respect to the longitudinal stiffness 
parameter h and the track radius of curvature. 

 
The figures show how the lateral component is differently distributed on the four wheels; the wheel 

that strongly stresses the rail is the one belonging to the front wheel-set in contact with the outer 

rail. This wheel is the first one that experiences the rail curvature in the transition from the 

rectilinear to the curved  track. For this reason this wheel will be accounted for in all following 

considerations. With reference to the Figure 8.31a, we observe that the lateral component increases 

when the longitudinal stiffness rises at any curvature radii.   

Hence, the use of very stiff longitudinal suspensions from one side increases the critical speed, both 

in a rectilinear and curved tracks, but from another side increases the stress on the rails and exposes 

the system to a dangerous phenomena. We can also observe that the lateral component increases 

when the track radius decreases. In fact, the lower is the track radius, the higher will be the 

constraint force. 

A significant parameter used for the critical conditions analysis is the ratioVL , between the lateral 

and vertical components of the contact force acting on the rail, as shown in Figure 8.32. The two 

components L and V follow from a different decomposition of the contact force that traditionally is 
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decomposed in the  normal and tangential components. The ratio VL is the most important criterion 

for predicting derailment of locomotives or bogies due both to the wheel flange climbing and to the 

rail rollover. The studies about this parameter were initiated by Nadal in 1908. Figure 8.33 reports 

the plots of VL of the outer wheel of the front wheel-set of a bogie in a curved track moving at 

critical velocity, as shown in Figure 8.25, under the stationary conditions. 

 

 
 

Figure 8.32 
The L and V components of the contact force between wheel and rail. 

 
 

 
 

Figure 8.33 
Ratio VL of the outer wheel of the bogie front wheel-set in a curved track moving at critical velocity and at 

stationary regime 
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From Figure 8.33 one can infer that the ratio VL increases with the rise of the longitudinal stiffness 

and with the decreasing of the track radius. The values reported in the figure are not too high 

because they are the values obtained at stationary running, few seconds of motion after the passage 

from a rectilinear to a curved track, when all lateral displacements and force oscillations are 

damped. 

It is interesting to visualize the plot of the maximum ratio ( )maxVL , shown in Figure 8.34, 

concerning the same wheel and obtained when the bogie enter the curved part of the track from the 

straight one.  The values are higher than the ones obtained at regime; ( )maxVL  increases when the 

radius of curvature decreases. We also see that the dependence of ( )maxVL from the longitudinal 

stiffness is low. The maximum value of VL is obtained at the first interaction between the wheel 

flange and the rail, after the passage from straight to curved track. Since the interaction is very 

short, the suspension system has almost no time to influence the dynamics of the system. 

 

 
 

Figure 8.34 
Peak of the ratio L/V of the outer wheel of the front wheel-set of a bogie in a curved track moving at critical 

velocity. 
 
The limit values of the ratio ( )derVL that predict the derailment of the system are not precisely 

defined in literature because they depend on many parameters such as: 

• the system  analyzed: wheel, wheel-set or bogie; 

• the gage widening or rail rollover phenomena; 

• the models or standards adopted. 
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Let us denote by α the wheel flange angle (see Figure 8.32), by µ the friction coefficient between 

wheel and rail. The ( )derVL is given by the following simple formula valid for a positive angle of 

attack of the wheel-set: 

αµ
µα

tan1

tan

+
−=









derV

L
     (8.1) 

Replacing the value α = 75° and µ =0.2 we obtain: 

02.2=








derV

L
 

that is extremely conservative for most practical cases. This is due to the simplification of the 

Nadal’s model that consider the tangential force acting only on the plane perpendicular to the track 

axis.  Other accurate methods that predict the derailment conditions of a vehicle are available. 

Blader (1989) [29, 32] showed that if the contact point on the rail is near the gage point, the ratio 

VL must be between the limits 0.66 and 0.73 depending from the shape of the rail. Obviously if the 

contact point moves toward the corner of the rail, the ratio ( )derVL is reduced. The AAR 

(Association of American Railroads) standard distinguishes the systems wheel, wheel-set and bogie 

and adopts the following limits: 

•  ( )W
derVL =1 for wheel;  

•  ( )WS
derVL = 1.5 for wheel-set; 

•  ( )TS
derVL = 0.6 for truckside.  

In the case of a wheel-set a Weinstock criterion is adopted. The ratio ( )WSVL  of the wheel-set is 

calculated as the sum of the absolute values of the ratios ( )WVL of the two wheels as follows: 

W

R

W

L
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V

L

V

L

V

L +=







     (8.2) 

The advantage of using this criterion is that it has a reduced dependence from the coefficient of 

friction. This coefficient being difficult to measure in an experimental test. 

The third derailment measure is the truckside VL ratio. This is the ratio between the sum of the 

lateral forces to the sum of the vertical forces for the wheels on one side of a truck: 

( ) ∑
=








=
n

i i

TS

V

L
VL

1

     (8.3) 

Where n is the number of wheels on one side of the truck. This criterion is devoted to rail rollover. 
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8.7 – THE INFLUENCE OF THE SUPER-ELEVATION 

 

In order to reduce in a curved track the contact forces between wheels and rails and to improve the 

stability characteristics of the system, the rolling plane is inclined at an angle α named super-

elevation angle. In this manner the two rails lies on different horizontal planes,  spaced by a 

distance s named super-elevation. One can establish that: 

 
G

s=αtan  

where G is the horizontal cross distance between the rails.  Since α is very small,  G  is generally 

approximated with the gauge. With reference to Figure 8.33, the super-elevation s is calculated 

imposing  the equilibrium conditions with the centrifugal force as follow:  

( ) (8.4)                
2

FmgR

GmV
s

+
=  

obtained supposing that the centrifugal force, the weight and the force F acting on the bogie frame 

are applied on the centre of mass of the system. In the expression (8.4) m is the mass of the system, 

V the bogie longitudinal velocity, g the gravity acceleration, R the radius of curvature of the track 

and F is the external vertical force applied on the bogie. 

 
 

Figure 8.35 
The mass and external forces acting on the bogie and the super-elevation in a curved track. 

 
In order to verify the influence of s on the bogie critical velocity, the motion of a bogie on a curved 

track having super-elevation s and radius equal to 800 m has been studied; the longitudinal stiffness 

is set equal to mN  106 . The results are plotted in Figure 8.36. 
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Figure 8.36 
The bogie critical and equilibrium velocities as regards the track super-elevation with a bogie load ratio equal to 

8.26 and track radius equal to 800 m .  
 

The Figure 8.36 shows that the critical velocity crV increases with the super-elevation in a nearly 

linear pattern from a value of 32 m/s, with a planar track, to 39 m/s in the case of 0.2 m of super-

elevation. This behaviour is strongly influenced by the intensity of the wheel-rail forces.  

Let us denote by eqV  the velocity at which the resultant of the external and mass forces acting on the 

system has only an orthogonal component to the rolling plane. Its value is determined from equation 

(8.4). Figure 8.36 reports the plot of eqV . There exists a critic super-elevation crs beyond which 

creq VV > . Since eqV is the optimum velocity for a bogie moving in a curved track, the preferred super-

elevation values are those for which eqVV =    and  crVV < where V is the bogie longitudinal velocity. 

These conditions are satisfied when crss < . On the contrary, if crss >  then it is not possible to find 

an equilibrium configuration. crs may be obtained also by means of the analysis of the lateral 

components of the contact forces acting on the rails. Figure 8.37 shows the plots of two lateral 

components of the contact forces transmitted from the two wheels of the front bogie wheel-set on 

the inner and outer rails. The bogie moves with the critical velocity reported in Figure 8.36. 
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Figure 8.37 
Lateral components of the contact forces transmitted from the bogie front wheel-set to the inner and outer rails 

in a curved track with radius equal to 800 m.  
 
 
Figure 8.37 shows that when the super-elevation increases, the lateral component acting on the 

outer rail decreases while the one acting on the inner rail increases. The plots in both cases are 

nearly linear. crs is determined from the equivalence of the lateral components acting on the rails. 

For crss > the lateral component acting on the inner rail is predominant on the one acting on the 

outer rail, otherwise when crss< the component acting on the outer rail prevails. 

We can also observe that the lateral component acting on the outer rail assumes negative values 

beyond a second-critic super-elevation 2crs , that is directed along the inner direction of the 

curvature. In this case there is a super-elevation excess. To overcome this condition it is necessary 

to increment the centrifugal force and then the bogie velocity beyond the critical one, forcing the 

system to move in an unstable condition. A similar behaviour is noticed in the plot of the ratio 

VL for what concerns the super-elevation. Figure 8.38 shows the ratios at stationary regime of the 

two wheels of the front  wheel-set of the bogie moving at critical speed as a function of s in a 

curved track with radius equal to 800 m and bogie load ratio equal to 8.26. 
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Figure 8.38 
Ratio L/V at stationary regime of the inner and outer wheels of the front wheel-set in a curved track with radius 

equal to 800 m. 
 
 
 

8.8 – THE INFLUENCE OF THE WAGON LONGITUDINAL STIFF NESS IN A 

STRAIGHT TRACK 

 

The analysis of the  influence of the longitudinal stiffness W
longk of the wagon secondary 

suspension system on the wagon stability limits in the case of straight track is carried out by the 

hunting motion analysis with different values of the stiffness and the load wagon ratio. In 

particular we consider the stiffness value: 

W
ow

W
long khk =  

where hw is a numerical coefficient and  Wok is equal to .108 6 mN⋅  

The used values for hw are: 

0.1; 0.5; 1;  1.5;=Wh  

The load conditions are defined by means of the wagon load ratio defined as the ratio between 

the car-body and the bogie frame weights. Three wagon ratios are considered, that is 12.5, 16.2 

and 20.25. 

The wagon critical velocity respect the load ratio and W
longk is reported in figure 8.39 where the 

results obtained by means of the Matlab code and Simpack software are compared. The h bogie   

value is assumed equal to 1. 
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Figure 8.39 

Critic wagon speed in function of the wagon load ratio and the longitudinal stiffness of the secondary suspension 
system 

 

From the figure it is evident that the wagon critical velocity decreases when Wlongk rises and it 

increases when the wagon load ratio rises. We may observe also that the wagon critical speed 

values are lower than the bogie ones loaded with the same vertical cargo; this fact is due to the 

mutual influence of the two bogies through the secondary suspension system that  reduces the 

critical speed of the entire wagon. 
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C O N C L U S I O N S    A N D    F U T U R E    W O R K 

 

In the thesis the models and dynamic behaviours of a railway systems, as a wheel-set, bogie and 

wagon  are presented. The bogie is composed by two wheel-sets, a frame and by the primary 

suspension system while the wagon by two bogies, a car-body and by the secondary suspension 

system.  

 The computer simulation includes a new wheel-rail contact model that accounts a different local 

stiffness of tread and flange wheel. Thanks to an optimized use of a  a preliminary compiled look-

up table the computation time is reduced considerably. In particular, all data that define the complex 

contact between wheel and the rail are stored as a function of two independent coordinates.  

Both straight and curved tracks could be analysed for the monitoring of the hunting phenomenon 

and critic conditions. 

Because of its influence on overall cpu-time, the interpolation procedure of the look-up table has 

been optimized. 

A particular interest is given by the results concerning hunting instability when varying the load on 

each axes and the track radius of curvature . It has been recorded a different influence of the load 

ratio on the critical speed of the wheel-set and of the bogie assembly. For the wheel-set the load 

ratio has an almost linearly proportional influence. For the bogie, this influence is much more 

limited in the range of practical interest. 

In order to reduce the danger caused by critical speed, the influence of the longitudinal stiffness of 

the primary suspension system and the super-elevation angle are analysed. Super-elevation changes 

the stability motion condition but a careful analysis should be carried out in order not to increase 

dangerously lateral loads. 

The software developed in Matlab environment has been validated through the comparison with 

Simpack-rail, a widely tested multibody software for the dynamic analysis of railway systems. 

As regard the future developments, a different wheel-rail profiles may be analysed, in particular a 

worn out ones to study the influence of the wear on the critic limits and on the contact forces 

between the wheel and rail. 

As regard the stability analysis field the influence of the other suspension characteristics that is the 

lateral and vertical ones and its geometric configurations  may be studied in order to optimize the 

design of the primary and secondary suspension systems. 
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