
4.3 Network simulators

• collision free vehicle movement;

• several vehicle types;

• simulation of traffic lights;

• junction-based right-of-way rules (junctions with streets having equal / different

priorities, e.g. right-before-left);

• lane changing;

• lane-to-lane connections;

MOVE (46) is an extension to SUMO that adds a GUI for describing maps and defining

vehicle movement and allows the user to import Google Earth maps. MOVE also

includes a visualization tool that allows users to view the generated mobility trace.

Basically, MOVE is composed of two components: the road map editor and the vehicle

movement editor. The former serves to manually and randomly generate a road map,

either from TIGER/line files or Google earth files, whereas the latter allows to specify

the properties of each vehicle, like the maximum speed, the acceleration, the probability

of turning at crossroads, the path to take etc. The information collected by the two

editors are sent to the SUMO compiler, then a trace file in ns-2 or Qualnet format is

generated. MOVE has been compared by simulation to RWP using AODV. The results

show that MOVE causes low reception rate.

4.3 Network simulators

In this section we describe the most used network simulators in the research field. These

applications allow to simulate (at different level of detail) the ISO-OSI layers, taking

into account the propagation and fading effect of the radio signals.

As described earlier, a mobility simulator is generally used to produce node movement

traces that are then fed to the network simulator. Th e network simulator then controls

the communications between the mobile nodes. As these network simulators support

wireless communication, most of them include at least a simple node mobility model,

81



4. VEHICULAR NETWORK SIMULATORS

Figure 4.8: SUMO simulated network example. Two example networks as simulated
by SUMO; left: the city of Magdeburg from the INVENT-project; right: the area around
the city of Cologne.

which includes the following models: Random Drunken Model1, Random Waypoint

Model, Trace file2.

4.3.1 OPNET

OPNET3 is a commercial network simulator used for simulations of both wired and

wireless networks. It supports a wide range of wireless technologies such as MANETs,

IEEE 802.11 wireless LANs, WiMAX, Bluetooth, and satellite networks. OPNET pro-

vides a graphical editor interface to build models for various network entities from

physical layer modulator to application processes, and includes graphical packages and

libraries for presenting simulation scenarios and results. There are three basic phases

of the OPNET deployment process. First, choose and configure node models to use in

simulations, such as a wireless node, trajectory, and so on. Second, build and organize

the network by setting up connections for different entities. Third, select the desired

statistics (local or global) to collect during the simulation.

In order to setup a simulation, there are three main configuration files: network config-

1At each intersection, the vehicle randomly selects from four directions or chooses to remain sta-

tionary.
2Vehicles’ mobility is based on a trace file that can be imported into the simulator.
3Website: http://www.opnet.com

82



4.3 Network simulators

uration file (nodes, routers, applications, protocols, radio settings), node configuration

file (data related to mobile nodes such as IP addresses) and global parameter file (sim-

ulation time, coordinate system, random seed, protocol stack, statistic filter).

4.3.2 GloMoSim and QualNET

GloMoSim (112) is a network simulator developed at UCLA in 1999 especially designed

of MANET and includes a large set of routing protocols and several physical layer im-

plementations. Being an integrated network simulator, it offers also the possibility to

generate trace according to some mobility models like, i.e. Random Waypoint, Random

Drunken (and, of course, real traces import).

The software was dismissed in 2000 but it is still possible to download only for edu-

cational purposes. On the other side, the commercial version of GloMoSim became

Qualnet simulator, developed by Scalable Network Technologies.

Qualnet1 is an extremely powerful and detailed network simulator which provides a

large set of wireless physical and MAC layers models and mobility models, allowing

reseearchers to develop and and easily simulate protocols for sensor networks, satellite

and military warfare. Another important aspect of Qualnet, is the avaliability for Win-

dows and Unix/Linux platforms.

QualNet delivers high fidelity simulations of network devices, transmitters, antennas,

terrestrial characteristics, and human interactions, all at real time speed or greater

thanks to an efficient parallel kernel and patent-pending, computationally-efficient code,

making possible to get the same accurate simulations of wireless and wired networks for

50, 500, or 5,000 nodes. Models in source form provide developers with a solid library

on which to build and experiment with new network functionality. The end result is

accurate prediction of network performance for a diverse set of application requirements

and uses. From wired LANs and WANs, to cellular, satellite, WLANs and mobile ad

hoc networks, QualNet’s library is extensive and because of its efficient kernel, QualNet

models large scale networks with heavy traffic and mobility in reasonable simulation

times.

Qualnet Simulator features can be summarized as the follows:

• instant playback of simulation results to minimize unnecessary model executions;

1http://www.scalable-networks.com

83



4. VEHICULAR NETWORK SIMULATORS

Figure 4.9: Qualnet simulator. Qualnet in visual mode.

Figure 4.10: Qualnet simulator. Qualnet in visual mode, additional example.

84



4.3 Network simulators

• fast simulation results for thorough exploration of model parameters;

• fast model set up with a powerful Graphical User Interface (GUI) for custom code

development and reporting options;

• scalable up to tens of thousands of nodes;

• real-time simulation for man-in-the-loop and hardware-in-the-loop models;

• multi-platform support;

and it consists of several modules which handle specific functions like:

• Scenario Designer

It is a graphical tool that provides an intuitive model set up capability and is used

to create and design experiments in QualNet. The Scenario Designer enables a

user to define the geographical distribution, physical connections and the func-

tional parameters of the network nodes, all using intuitive click and drag tools,

and to define network layer protocols and traffic characteristics for each node.

• Animator

This module is used to execute and animate experiments created in the Scenario

Designer. Using the Animator a user can watch traffic flow through the network

and create dynamic graphs of critical performance metrics as a simulation is

running.

• Packet Tracer

It is a packet-level visualization tool for viewing the contents of packets as they

travel up and down the protocol stack.

• Analyzer

Statistical graphing tool that displays network statistics generated from a Qual-

Net experiment. Using the Analyzer, a user can view statistics as they are being

generated, as well as compare results from different experiments.

Due to its powerful features and scalability, we decided to use Qualnet in our re-

search on data dissemination with rateless codes in vehicular networks.

85



4. VEHICULAR NETWORK SIMULATORS

4.3.2.1 Discrete event simulation

QualNet is a discrete-event simulator. In discrete-event simulation, a system is modeled

as it evolves over time by a representation in which the system state changes instanta-

neously when an event occurs, where an event is defined as an instantaneous occurrence

that causes the system to change its state or to perform a specific action. Examples of

events are: arrival of a packet, a periodic alarm informing a routing protocol to send

out routing update to neighbors, and so on. Examples of actions to take when an event

occurs are: sending a packet to an adjacent layer, updating state variables, starting or

restarting a timer, etc.

In discrete-event simulation, the simulator maintains an event queue. Associated with

each event is its event time, i.e., the time at which the event is set to occur. Events in

the event queue are sorted by the event time. The simulator also maintains a simula-

tion clock which is used to simulate time. The simulation clock is advanced in discrete

steps, as explained below.

The simulator operates by continually repeating the following series of steps until the

end of simulation:

1. the simulator removes the first event from the event queue, i.e., the event sched-

uled for the earliest time;

2. the simulator sets the simulation clock to the event time of the event. This may

result in advancing the simulation clock;

3. the simulator handles the event, i.e., it executes the actions associated with the

event. This may result in changing the system state, scheduling other events,

or both. If other events are scheduled, they may be scheduled to occur at the

current time or in the future.

4.3.2.2 Qualnet protocol stack

One of the best feature in Qualnet (very appreciated from researchers) is the protocol

stack’s implementation, a layered architecture similar to that of the TCP/IP network

protocol stack. According to this architecture, data moves between adjacent layers

(from top to bottom): Application, Transport, Network, Link (MAC) and Physical

Layers. Adjacent layers in the protocol stack communicate via well-defined APIs, and

86



4.3 Network simulators

generally, layer communication occurs only between adjacent layers. For example,

Transport Layer protocols can get and pass data to and from the Application and Net-

work Layer protocols, but cannot do so with the Link (MAC) Layer protocols or the

Physical Layer protocols. This rule concerning communication only between adjacent

layers is not a limit of the simulator because it can be also circumvented by the pro-

grammer.

Each protocol operates at one of the layers of the stack. Protocols in QualNet essen-

tially operate as a finite state machine. The occurrence of an event corresponds to a

transition in the finite state machine. The interface between the layers is also event

based. Each protocol can either create events that make it change its own state (or

perform some event handling), or create events that are processed by another protocol.

To pass data to, or request a service from, an adjacent layer, a protocol creates an

event for that layer.

Figure 4.11: Qulanet protocol stack. This picture shows the simulator protocol stack
and the general functionality of each layer.

• Application Layer

The Application Layer is responsible for traffic generation and application level

87



4. VEHICULAR NETWORK SIMULATORS

Figure 4.12: Qualnet protocol model. The picture shows the finite state machine
representation of a protocol in QualNet. At the heart of a protocol model is an Event
Dispatcher, which consists of a Wait For Event state and one or more Event Handler states.
In the Wait For Event state, the protocol waits for an event to occur. When an event for
the protocol occurs, the protocol transitions to the Event Handler state corresponding to
that event (e.g., when Event 1 occurs, the protocol transitions to the Event 1 Handler
state). In this Event Handler state, the protocol performs the actions corresponding to
the event, and then returns to the Wait For Event state. Actions performed in the Event
Handler state may include updating the protocol state, or scheduling other events, or both.

88



4.3 Network simulators

routing. Protocols written at the Application Layer rely on the Transport Layer

to deliver application-level data from the source to the destination. Thus, Appli-

cation Layer protocols pass data down to the Transport Layer at the source node,

and receive data from the Transport Layer at the destination node. Examples of

traffic- generating Application Layer protocols implemented in QualNet are Con-

stant Bit Rate (CBR), FTP, and Telnet. Examples of Application Layer routing

protocols implemented in QualNet are RIP, Bellman-Ford, and BGP.

• Transport Layer

The Transport Layer provides end-to-end data transmission services to the Ap-

plication Layer. Protocols written at the Transport Layer receive data from the

Application Layer and rely on the Network Layer for data forwarding at the source

node, and receive data from the Network Layer and pass data to the Application

Layer at the destination node. Examples of Transport Layer protocols include

UDP, TCP and RSVP-TE.

• Network Layer

The Network Layer is responsible for data forwarding and queuing/scheduling.

The Internet Protocol (IP) resides at this layer and is responsible for packet for-

warding. At the source node, the Network Layer receives data from the Transport

Layer and relies on the Link (MAC) Layer for link-by-link data delivery. At the

destination node, the Network Layer receives data from the Link (MAC) Layer

and passes the data up to the Transport Layer. The Network Layer also im-

plements certain types of routing protocols. Examples of Network Layer routing

protocols implemented in QualNet are AODV, DSR, OSPF, and DVMRP. Exam-

ples of queuing/scheduling protocols implemented in QualNet are FIFO, RED,

RIO, WFQ, and WRR.

• Link (MAC) Layer

The Link (MAC) Layer provides link-by-link transmission. At the sending side,

the Link (MAC) Layer receives data from the Network Layer and passes the data

to the Physical Layer for transmission over the wired or wireless channel. At the

receiving side, the Link (MAC) Layer receives data from the Physical Layer and

forwards the data up to the Network Layer. Examples of protocols at the Link

89



4. VEHICULAR NETWORK SIMULATORS

(MAC) Layer implemented in QualNet are point-to-point, IEEE 802.3, IEEE

802.11, and CSMA.

• Physical Layer1

The Physical Layer is responsible for transmitting and receiving raw bits from

the wired and wireless channel. At the source node, the Physical Layer receives

data from the Link (MAC) Layer and sends the data to the Physical Layer of the

destination node. At the destination node, the Physical Layer receives data from

the Physical Layer of the source node and passes the data to the Link (MAC)

Layer. Examples of Physical Layer protocols implemented in QualNet are wired

point-to-point links, IEEE 802.3, and IEEE 802.11.

• The Communication medium

The communication medium transmits signals between nodes. It interfaces with

the Physical Layer entities at the nodes. A wireless communication medium

model in QualNet simulates the propagation of signals between nodes, taking

into account both propagation delays and signal attenuation due to path loss,

fading, and shadowing.

In QualNet, a communication medium model has three components: a path loss

model, a fading model, and a shadowing model. Path loss models in QualNet

include free space, two ray, and Irregular Terrain Model (ITM). QualNet imple-

ments the Ricean fading model. Rayleigh fading is a special case of Ricean fading.

QualNet provides models for two shadowing models: constant and lognormal.

4.3.3 NS-2

NS-2 is an open-source discrete event network simulator that supports both wired and

wireless networks, including many MANET routing protocols and an implementation

of the IEEE 802.11 MAC layer and it is the most widely used simulator for academic

networking research. There are implementations of several mobility models available

for NS-2, including Random Trip Mobility(73) and Semi-Markov Smooth Mobility(114).

NS-2 simulates the wireless physical layer and the important parameters that influence

its behavior (e.g., channel fading).

The core of NS-2 is written in C++, but users interact with NS-2 by writing TCL
1For wired networks, the Physical Layer code is incorporated into the Link (MAC) Layer.

90



4.3 Network simulators

scripts. which should contain all of the commands needed to run the simulation (e.g.,

setting up the topology, specifying wireless parameters, and so on). As with QualNet,

several of the mobility simulators can generate node descriptions and movement traces

suitable for use in NS-2.

A typical wireless NS-2 simulation produces an event trace file and an animation trace

file, used by the included utility nam to provide animation of the simulation. The event

trace file includes packet enqueue (transmission), packet dequeue (forwarding), packet

drops, and packet reception.

4.3.4 J-Sim

J-Sim is an open-source simulation environment, developed entirely in Java. J-Sim pro-

vides two mobility models: trajectory-based and random waypoint. J-Sim is presented

as an alternative to ns-2, because it is designed to be easier to use. In J-Sim, appli-

cations are built as a set of components that can be designed and tested separately.

J-Sim can take a TCL fi le as input, similar to ns-2, but with a diff erent format. Like

ns-2, J-Sim produces an event trace file and an animation file, suitable for use in nam.

4.3.5 OMNeT++

OMNeT++1 is an open-source simulation environment. The primary simulation ap-

plications are Internet simulations, mobility, and ad hoc simulations. OMNeT++ has

a component-based design, meaning that new features and protocols can be supported

through modules. OMNeT++ supports network and mobility models through the inde-

pendently developed Mobility Framework and INET Framework modules. Simulation

design in OMNeT++ is GUI-based, and output data can be plotted through the GUI

as well. OMNEST2 is the commercial version of OMNeT++, offered by Simulcraft ,

Inc.

4.3.6 SWANS

SWANS(13) (Scalable Wireless Ad hoc Network Simulator) was developed to be a scal-

able alternative to ns-2 for simulating wireless networks. Based on comparisons of

SWANS, GloMoSim, and ns-2, (45) SWANS was determined to be the most scalable
1OMNET++ website: http://www.omnetpp.org/
2OMNEST website: http://www.omnest.com/

91



4. VEHICULAR NETWORK SIMULATORS

and the most efficient in memory usage with the fastest runtime. Along with better

performance, SWANS delivered similar results as ns-2, at least for the network compo-

nents that were implemented in both. The input for SWANS is a Java file that creates

the nodes and specifies how these nodes should move (the node movement scenario)

and how they should communicate (the communication scenario). The user can select

any of the ready-made applications in SWANS and associate it with any node(s) to

execute it at the node application layer. Also, SWANS gives the user the flexibility to

build a custom application and execute it at the application layer of any node.

4.4 Tightly Integrated Simulators

As mentioned in 4.1, the simulation of VANET applications not only requires simulat-

ing the wireless communication between the vehicles, but also requires simulating the

mobility of the vehicles. Unfortunately, these two aspects of VANET simulation have

often been decoupled. Both vehicular mobility and wireless communication have large

communities concerned with their modeling and simulation, so high-quality simulators

exist in each of these areas, as discussed in the previous sections. The problem is how

to merge the two types of simulators (network simulator and mobility simulator).

A simple method to achieve this goal is to implement mobility models in a network

simulator, but without allowing the network messages to feed back to the mobility

model. This kind of simulation is called one-way communication (from mobility model

to network). These types of simulators are suitable for simulating infotainment-related

VANET applications, including Internet connectivity, multimedia applications, and

peer-to-peer applications, where the communication does not affect vehicles movements.

In contrast, tightly integrated simulators, that offer two-way communication, usually

consist of two sub-simulators (network and mobility) which can communicate with each

other. These simulators are more appropriate for safety-related and traffic information

applications that assume that feedback from the network will affect vehicles movements.

In these types of applications, the traffic simulator feeds the network simulator with

position information, speed, acceleration, direction, and so on. The VANET applica-

tion that runs at the top level of the network simulator incorporates this information

with surrounding vehicles information in order to notify the driver of upcoming con-

gestion or a possible collision. Based on this notification, driving decisions (i.e., vehicle

92



4.4 Tightly Integrated Simulators

mobility) may be affected. For example, in a congestion notification system, the driver

may choose to change lanes or take a different path. These decisions need to propagate

back to the mobility simulator to be reflected in the vehicle mobility information.

Usually, any simulator has an events queue to store the events that should be exe-

cuted according to their scheduled execution time. In case of two-way communication

simulators, each sub-simulator has its own events queue; these two events queues can

be combined into one events queue, or they can be kept separate, which implies that

extra overhead will be needed for synchronization. Based on this decision, the two-way

communication simulators are separated into two categories: those with a single events

queue and those with two events queues. Having a single events queue can be achieved

through implementing one of the sub-simulators in the other. Often, the vehicular mo-

bility sub-simulator is implemented in the network sub-simulator, as in ASH (7) or the

two simulators can be highly integrated together, as in NCTUns (99). The advantages

of having a single events queue are that the vehicles mobility events and the network

events will be inserted in the same queue, which removes the burden of synchronizing

the two types of events. In addition, the simulation will be more efficient from the exe-

cution time and memory consumption perspectives. The main disadvantage of having

a single events queue is that the process of maintaining and extending such simulators

is not easy. With two events queues, two-way communication is achieved through an

interface that is implemented between the network sub-simulator and the mobility sub-

simulator itself. The main function of that interface is to update each sub-simulator

with the recent events in the other sub-simulator and, moreover, it synchronizes the

event execution in each of the events queues. The main disadvantages are that these

types of simulators consume more memory and execution time.

In this section, tightly integrated simulators with one-way communication will be dis-

cussed first. However, only those simulators that attempt to package the mobility and

network simulator in a single program are included, rather than those that manually

feed the mobility simulators movement trace to the network simulator. Next will come

an overview of tightly integrated simulators with two-way communication and two

events queues, and finally tightly integrated simulators with two-way communication

and a single events queue.

93



4. VEHICULAR NETWORK SIMULATORS

4.4.1 SWANS++

SWANS++1 extends the network simulator SWANS by adding a GUI to visualize the

scenario and a mobility model, STRAW (21) for the vehicles movement in street sce-

narios. STRAW uses the simple random waypoint mobility model, but it restricts

the vehicles movement to real street boundaries, loaded from TIGER/Line data files.

STRAW consists mainly of three components: intrasegment mobility, intersegment

mobility, and route management and execution. In intersegment mobility, the vehi-

cles move according to a car-following model and change their speed only in certain

situations:

1. when the vehicle arrives at an intersection and the next segment is full, the vehicle

stops until the next segment has a free slot;

2. when the vehicle has a vehicle in front of it, the vehicle adjusts its speed accord-

ingly in order to maintain a certain distance in between;

3. when the vehicle arrives at a traffic control or stop sign;

4. when the vehicle makes a turn.

For intersegment mobility, according to the system design, there is either a traffic con-

trol sign or a stop sign at each intersection that forces the vehicle to alter its speed.

The mobility model implemented in STRAW (and therefore, SWANS++) does not

support lane changing. The route management and execution (RME) module is re-

sponsible for determining the vehicles routes during the simulation. The RME has

two techniques to fulfill its task. The first technique is simple intersegment mobility

(simple STRAW) at which the vehicles next segment is determined stochastically, while

the second technique is origindestination mobility (STRAW OD), in which the vehicles

route is predetermined based on the shortest path between the origin and destination.

SWANS++ is a tightly integrated simulator, but it does not provide feedback between

the mobility and networking modules.

1SWANS++ is avaliable at http://www.aqualab.cs.northwestern.edu/projects/swans++/

94



4.4 Tightly Integrated Simulators

4.4.2 GrooveNeT

GrooveNet1 (63) (originally known as GrooveSim (64)) is an integrated network and

mobility simulator that allows communication between real and simulated vehicles.

Originally, GrooveNet extended the open-source simulator RoadNav 2 by adding a

Figure 4.13: Groovenet. An example of GrooveNet simulation, where vehicles are
moving in a real map with their coordinates being updated almost in realtime.

network model and a GUI based on Qt. GrooveNet can load real street maps from

the TIGER/Line database in order to simulate vehicles mobility on real roads, in-

cluding fixed mobility, street speed, uniform speed, and car-following mobility mod-

els. GrooveNet also supports many operational modes such as drive mode, simulation

mode, playback mode, hybrid simulation mode, and test generation mode. Further-

more, the simulator has capabilities such as communicating with surrounding vehicles

1http://www.seas.upenn.edu/ rahulm/Research/GrooveNet/
2RoadNav is an open source street navigation solution capable of running on a variety of operating

systems. It can obtain your position from a GPS unit, plot a map of your area, and provide directions

to locations in the USA. It can also verbalize directions using Microsoft SAPI 5.1, Festival, flite, and

OS X’s built in text to speech engine.

Roadnav uses the free TIGER/Line (Topologically Integrated Geographic Encoding and Referencing)

files from the US Census Bureau to build the maps, along with the GNIS state and topical gazetteer data

from the USGS to identify locations. It has experimental support for scripting, LCDproc, importing

OpenStreetMap data, and importing GPX waypoints and tracks.

95



4. VEHICULAR NETWORK SIMULATORS

to get real traffic information, executing a specific scenario, mixing between the previ-

ous two modes, and finally playing back the logfile generated during any of the modes

operation for further analysis. GrooveNets unique ability to integrate simulated vehi-

cles with real vehicles allows it to function as testbed software as well as a simulator.

Figure 4.14: Groovenet. The GrooveNet simulator allows to broadcast emergency
alerts or road warnings, thus analyzing the effect on the vehicles in realtime. This unique
characteristic makes GrooveNet suitable both for simulations and real research testbeds.

4.4.3 TraNS

TraNS1 (Traffic and Network Simulation Environment) (76) can be called the first

VANET simulator. It was the first work to combine a network simulator, ns-2, with a
1http://trans.epfl.ch/

96



4.4 Tightly Integrated Simulators

vehicular mobility simulator, SUMO, and to provide feedback from the network sim-

ulator to the mobility simulator. TraNS can operate in two modes: network-centric

mode and application-centric mode. In the network-centric mode, there is no feedback

provided from ns-2 to SUMO, so the vehicles mobility trace file can be pre-generated

and fed to the network simulator later. The link between the two simulators in this

case is done through a parser that analyzes the mobility trace file generated by SUMO

and converts it to a suitable format for ns-2.

In the application-centric mode, the feedback between ns-2 and SUMO is provided

Figure 4.15: TraNS simulator. Screenshot of a light version of TraNS, called TraNS
Lite.

through an interface called TraCI (100). In this mode the two simulators (SUMO and

ns-2) must run simultaneously. TraCI achieves the link between ns-2 and SUMO by

converting the mobility commands coming from ns-2 to a sequence of mobility prim-

itive commands such as stop, change lane, change speed, and so on that can be sent

to SUMO. As both simulators are running separately at the same time, the two-way

communication in application-centric mode uses two separate events queues.

97



4. VEHICULAR NETWORK SIMULATORS

4.4.4 Veins

Veins (Vehicles in Network Simulation) (90) is another simulator that couples a mobil-

ity simulator with a network simulator: SUMO is paired with OMNeT++ by extending

SUMO to allow it to communicate with OMNeT++ through a TCP connection. In

order to create a bidirectional communication between the two simulators, OMNeT++

has also been extended by adding a module that allows all participating nodes (vehi-

cles) to send commands via the established TCP connection to SUMO. In this case, the

two extensions represent the interface between the network simulator and the mobility

simulator. Thus, the network simulator can react to the received mobility trace from

the mobility simulator by introducing new nodes, by deleting nodes that have reached

their destination, and by moving nodes according to the instructions from the mobility

simulator.

In Veins, there is a manager module that is responsible for synchronizing the two simu-

lators. At regular intervals, the manager module triggers the execution of one timestep

of the traffic simulation, receives the resulting mobility trace, and triggers position up-

dates for all modules it had instantiated. Thus, as with TraNS, this simulator has two

separate events queues.

4.4.5 NCTUns

NCTUns1 (National Chiao Tung University Network Simulation) (99) implements two-

way communication with a single events queue. NCTUns 1.0 was developed only as

a network simulator, but the most recent version, NCTUns 6.0 (released on 15 Jan-

uary, 2010), integrates some traffic simulation capabilities, such as designing maps and

controlling vehicles mobility. A large variety of maps can be designed using different

types of supported road segments (e.g., single-lane roads, multilane roads, crossroads,

T-shape roads, and lane-merging roads). Also, NCTUns includes a GUI to aid in the

design process of the maps.

The supported vehicular movement has two modes, prespecified and autopilot. In the

prespecified movement mode, the scenario designer specifies the moving path and the

speed for each vehicle. In autopilot mode, the scenario designer specifies the following

1http://nsl10.csie.nctu.edu.tw/

98



4.4 Tightly Integrated Simulators

Figure 4.16: NCTUns simulator. The architecture of NCTUns 6.0 network simulator.

parameters for each vehicle: initial speed, maximum speed, initial acceleration, maxi-

mum acceleration, maximum deceleration, and so on. Then, the autopilot selects the

best route to navigate in the map. Autopilot mode is also capable of performing car fol-

lowing, lane changing, overtaking, turning, and traffic light obeying. The best feature

avaliable in NCTUns is that its network protocol stacks includes the Linux kernel pro-

tocol stack, including TCP/IP and UDP/IP, and the user level protocol stack and the

MAC and PHY layer protocols. This means that it is possible to run on the simulated

nodes whatever application which runs on Linux! Furthermore, as the simulator works

directly on the Linux kernel’s network stack, it is not needed the protocol validation

(the first version of NCTUns did not rely on real network stack, thus requiring a val-

idation). However, the main disadvantage of NCTUns is tha the code for the vehicles

movement logic is integrated with the network simulation code, which makes it difficult

to extend. Another disadvantage of this simulator is that, at the moment, it is released

for one Linux distribution, Fedora 12 (as it is based on the linux kernel, the portability

suffers a bit).

4.4.6 ASH

ASH (Application-aware SWANS with Highway mobility) (7) is an extension of the

wireless network simulator SWANS that implements the IDM vehicular mobility model

and MOBIL lane changing. ASH supports feedback between the vehicular mobility sub-

99



4. VEHICULAR NETWORK SIMULATORS

Figure 4.17: NCTUns simulator. The architecture of NCTUns 6.0 network protocol
simulation.

simulator and the network subsimulator, making it one of the two-way communication

simulators with a single events queue. ASH allows users to design a simple highway

segment and customize it by specifying the directions (one-way or two-way), the number

of lanes, the number of entries and exits and their corresponding locations along the

segment.

In addition to adding highway mobility models to SWANS, ASH extends the node types

available:

1. mobile communicating node: this represents a participating vehicle that should

execute a user-defined appl ication, which specifies how the vehicle should behave;

2. mobile silent node: this represents a non participating vehicle that should execute

a null application so that it will not be able to send or receive any messages;

3. static communicating node: this represents road-side infrastructure that should

execute a user-defined application, which specifies how the road-side unit should

behave. Also, this kind of node may have different physical layer characteristics

(e.g., transmission power) than the mobile communicating nodes;

100



4.4 Tightly Integrated Simulators

Attribute SUMO/Move VanetMobiSim NCTuns
TraNS

Custom graphs supported supported supported

Random graphs grid based voronoi graph shape-file

Map based graphs Tiger DB GDF bitmap image

Multilane graphs supported supported supported

Start/End position AP, random AP, random random

Trip random start-end random start-end random

Path random walk, Dijkstra random walk, Dijkstra random walk

Velocity road dependent road dependent road dependent
smooth smooth smooth

Table 4.1: Traffic level features in SUMO/Move/TraNS, VanetMobiSim and NCTuns
mobility simulators.

Attribute SUMO/Move/TraNS VanetMobiSim NCTuns

Human patterns car following models IDM, IDM-IM IDM, IDM-IM
IDM-LC IDM-LC

Intersection Stoch turn traffic lights traffic lights
management and signs

Lane changing not supported supported supported

Radio obstacles not supported supported supported

Table 4.2: Motion level features in SUMO/Move/TraNS, VanetMobiSim and NCTuns
mobility simulators.

4. static silent node: this represents a road obstacle that should execute a null

application.

In particular, the addition of the mobile silent node is important to allow testing

of protocols under different penetration rates, where not all vehicles are equipped with

communication devices. The location of the static silent node can either be prede-

termined before running the simulation or can be determined at runtime, in order to

simulate an accident, for example.

Because most VANET applications use flooding-based techniques to disseminate data,

ASH also implements the Inter-Vehicle Geocast protocol (IVG) (12). Moreover, it sup-

ports a probabilistic version of IVG to take the surrounding traffic density into account.

101



4. VEHICULAR NETWORK SIMULATORS

Attribute SUMO/Move/TraNS VanetMobiSim NCTuns

GUI not supported supported supported

Output ns-2, GlomoSim ns-2, GlomoSim ns-2
Qualnet Qualnet

Level of integration federated/integrated separated integrated

Table 4.3: Other features in SUMO/Move/TraNS, VanetMobiSim and NCTuns mobility
simulators.

ASH also implements statistical and logging utilities to support simulations. The util-

ities provide information about the simulation entities at different granularity. This

information can be retrieved at the simulation level, lane level, vehicle level, or mes-

sage type level. The statistics utility provides statistics about all possible events that

can occur in the simulation.

ASH accepts a configuration file for the highway scenario. The nodes creation and the

communication scenario should be specified in a Java file as done in SWANS.

Figure 4.18: Benefits and drawbacks. Benefits and drawbacks of several VANETs
simulator.

4.5 Scalability of VANET simulators

This section aims to provide a brief overview of network simulators scalabilty, with an

experimental result on Qualnet and Ns2, two simulators which have recently gained

attention in the research community. When simulating a complex scenario including

vanet networks, with both mobility and signal transmission and propagation models, it

102



4.5 Scalability of VANET simulators

might be valuable to understand how far you can go with your simulation. This means

that the most important parameters that every researcher should keep in mind before

approaching any kind of simulation are scalability and overall performance. Scalability,

which is, generally speaking, the ability to either handle growing amounts of work in

a graceful manner or to be readily enlarged, gives to the researcher an idea on the

maximum scenario he is allowed to simulate, in terms of number of mobile nodes, ter-

rein dimensions, number of simultaneus protocols and details’ level of the simulation’s

outcome. For example, one may simply think to simulate a large network of thousands

of nodes with many details per network layer but if the simulation time or the memory

consumption start growing too fast, this may turn out to be unfeasible.

Trying to compare two network simulators is not an easy task to accomplish, first of all

beacuse of the different implementations of both kernel and protocols, which may result

in completely different resource consumption. Secondly, it should also be considered

the detail’s level of the simulation itself. In order to gain some experimental results of

the performance trend in Qualnet and Ns2 (for a quick comparison), we implemented

in both the simulators the following simulation set-up:

• simulation time: 600 secs;

• simulation area: 2000x2000 sqm.;

• number of mobile nodes: up to 1000 in Ns2, up to 4000 in Qualnet;

• mobility: random waypoint with initial uniform distribution;

• wireless protocol: 802.11b with 150 m nominal radio range, two-ray propagation

pathloss model and constant shadowing model;

• routing protocol: AODV

• traffic: a couple of nodes always involved in UDP CBR (”Constant Bit Rate”)

transfer with a packet size of 1460 bytes.

The difference in the range of mobile nodes is due to the limitation in the Ns2 scal-

ability which, compared to Qualnet, does not allow simulation of thousands of nodes.

In fact, in (110) it was proved that Ns2 does not scale well for wireless sensor network

(and then it makes sense to extend the results for Vanet, which is a specialization of a

103



4. VEHICULAR NETWORK SIMULATORS

Figure 4.19: Simulation time in Ns2. Simulation time in Ns2 (version 2.34) with
mobile nodes ranging from 50 up to 1000 in a 2000x2000 sqm area.

Figure 4.20: Memory memory consumption in Ns2. Memory consumption in Ns2
(version 2.34) with mobile nodes ranging from 50 up to 1000 in a 2000x2000 sqm area.

104



4.5 Scalability of VANET simulators

Figure 4.21: Simulation time in Qualnet. Simulation time in Qualnet (version 4.5)
with mobile nodes ranging from 50 up to 4000 in a 2000x2000 sqm area.

Figure 4.22: Memory memory consumption in Qualnet. Memory consumption in
Qualnet (version 4.5) with mobile nodes ranging from 50 up to 4000 in a 2000x2000 sqm
area.

105


