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INTRODUCTION 
 
 
Clouds and their associated precipitation play a very important role in the global water and 
energy cycle. Accurate global measurements of precipitation are therefore important for the 
validation of global climate models and for understanding the natural variability of the earth's 
climate. Moreover, rainfall monitoring can serve as an important element for risk management 
in severe precipitation events. 
 
Space-borne monitoring of clouds and precipitation all around the globe has been gaining a 
growing interest from the international scientific community as a primary factor in determining 
and detecting the global climatic changes. Therefore, passive microwave techniques for the 
estimation of rainfall have advanced considerably over the past years, due largely to an 
increased understanding of the propagation of microwave radiation through precipitating 
clouds. 
 
Several techniques (empirical or physical) have been proposed and applied in the last two 
decades for estimating cloud and precipitation parameters from measurements taken by space-
borne microwave radiometers. Important approaches have been based on multiple regression 
and Maximum Likelihood methods. Bayesian techniques have proven to have a large potential 
and flexibility for precipitation profiling.  
Briefly, Bayesian techniques consist of two parts. The first (forward problem) is the generation 
of a database (the Cloud Radiation Database (CRD)) in which the simulated brightness 
temperatures (Tbs), that would be measured by a space-born radiometer, are associated with 
the various structures (hydrometeors and surface rain rate) generated by a cloud-resolving 
numerical model, to create “profiles” (the components of the database). The second (inverse 
problem) is the retrieval of atmospheric parameters, like surface rain rate, using the 
experimental data (brightness temperatures) of a microwave radiometer, and  the  probabilistic 
(Bayesian) analysis of the CRD. In this second part, the profiles used for retrieval are chosen 
and weights are given based on the proximity of the observed microwave radiances to those of 
the database. 
The unique feature of these techniques is that they constitute a rigorous statistical framework 
for developing cloud model-based inversion methods. As opposed to empirical methods, where 
measurements of both Tbs and precipitation parameters are collected to train a retrieval 
algorithm, the model-based approaches are based on refined physical models to simulate the 
measurements. This point of view offers the possibility to avoid in situ measurements and to 
deepen the understanding of the problem. On the other hand, model-based approaches have to 
tackle the critical issues of tuning simulations to the measurement manifolds in order to be 
representative of real observations, as well as the difficulties of an accurate representation of 
the microphysical properties of the atmosphere. 
 
In the evaluation of the complete process of retrieval, the sources of possible errors are 
manifold and distributed along all the steps of the algorithms. Fortunately, many experimental 
errors can be detected and corrected, or it can be proven that their effect on the retrieval is not 
relevant. On the contrary, the approximations in the forward model can be important sources of 
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error in the retrieval procedure. They can be responsible for the non-uniqueness of the CRD. 
This means that even if the database includes a full spectrum of possible cloud/precipitation 
profiles, the radiometer observations may be compatible with several different profiles, and so 
the actual profile may not be uniquely identified. In other words, hydrometeor profiles obtained 
as result of the retrieval algorithm are, in some cases, unrepresentative of the dynamical and 
thermodynamical state of the atmosphere under observation. For this reason, the current 
research activities on the algorithm consider that the utilization of further information on the 
state of the atmosphere, in addition to the brightness temperatures, can represent a suitable 
constraint in the selection of profiles of CRD, and can consequently reduce retrieval 
uncertainties.  
 
The research we have carried out in this thesis is aimed at reducing the non-uniqueness of the 
database, also referred to as “ambiguity”, which represents a severe limit for retrieval 
methodology.  
In our work we have first implemented a complete retrieval algorithm (inverse problem) based 
on the Bayesian estimation theory (BAMPR – Bayesian Algorithm for Microwave-based 
Precipitation Retrieval), and then we have tackled the problem of non-uniqueness. To this end 
we have analyzed the potential new information to be included in the retrieval procedure in 
order to reduce uncertainties. A better definition of the atmospheric state, and the vertical 
structure of clouds and precipitation, should improve the information extracted from satellite 
observations. We have therefore introduced “dynamical tags” in the procedure. This includes 
dynamics information such as geostrophic forcing or frontal lifting, but also thermodynamic 
and geographical information. 
 
This thesis is organized as follows. Chapter 1 recalls the importance of the monitoring activity 
and the continuous progress of passive microwave sensing of the atmosphere, and it mentions 
the present characteristics of some satellite-borne passive microwave sensors. It also describes 
the international research projects on remote sensing of the atmosphere in which the work of  
this thesis is included. 
Chapter 2 concerns the process of radiative transfer in the atmosphere, and the radiative 
transfer equation. It analyzes the effects of emission and scattering processes of hydrometeors 
on precipitation measurements, and presents an example of methods used in empirical 
algorithms for measuring rain rate.  
In chapter 3 several aspects of precipitation retrieval based on a physical approach are 
presented. In particular the algorithm we have developed, the BAMPR, and the microwave 
measurements from DMSP satellite are described. Particular attention has been paid to the 
“screening problem” - the problem of rejecting areas (pixels) without rain or with a very low 
probability of rain, and therefore not suitable for retrieval.  
Chapter 4 deals with uncertainties in retrieval, and presents the new possible dynamical and 
thermodynamical variables that can be combined with the brightness temperatures in retrieval. 
It describes the main elements of the new BAMPR algorithm, that include the use of the 
dynamical and thermodynamical variables, and that we are currently developing. Moreover, it 
presents the application of the new BAMPR to some disturbances over Italy, and gives some 
evaluations of the effects of the new variables on retrieval. Finally, it presents the results of a 
comparison of the new BAMPR with the “NESDIS” algorithm of NOAA. 
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CHAPTER 1 – Precipitation and remote sensing 
 
 
Knowledge of rainfall on a global basis is important in many areas of atmospheric science. In 
fact, precipitation is a key meteorological phenomenon and constitutes a major component in 
both the water and energy budgets of the weather and climate system.  
Accurate global measurements of precipitation are therefore important for the validation of 
global climate models and for understanding the natural variability of the earth's climate. 
There are different approaches to the measurement of precipitation, using surface-based and 
satellite-based instruments.  
Surface-based weather radars provide measurement of rainfall with a relatively high spatial 
and temporal resolution. Although they represent a valuable source of information, their 
coverage is limited and significant problems are involved in the measurements (for example 
ground clutter, and natural barriers such as mountains). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.1 - Distribution of about 40,000 stations of precipitation gauges utilized by the Global 
Precipitation Climatology Centre (GPCC). The histogram of the zonal fraction of stations 
depicts the non-uniform distribution with more than 60% of the precipitation gauges between 
30°N and 60°N (Landolt-Börnstein 2006). 
 
Rain gauges provide the only other ground-based source of rainfall measurement, but suffer 
from the fact that their distribution, particularly in developing countries, is not sufficiently 
dense to resolve the very large spatial variation of rainfall intensity. Moreover, their 
measurements suffer the effects of wind and evaporation. Figure 1.1 shows the distribution of 
about 40,000 stations utilized by the Global Precipitation Climatology Centre (Landolt-
Börnstein 2006). The figure is a significant picture of the distribution of precipitation gauges 
in the different continents. The histogram on the right side of the figure points out the non-
uniform distribution, with more than 60% of the precipitation gauges between 30°N and 60°N 
(Landolt-Börnstein 2006). 
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Over the oceans, radar coverage is virtually nonexistent except near the coasts, while ships 
provide only qualitative rainfall estimates (Petty 1995) because ship-borne rain gauge 
measurements are contaminated by sea spray and deflection of the wind by the ship's structure.  
In this context, satellites have the potential to give an important contribution to global rainfall 
monitoring. For this reason, space-borne microwave sensors have received, in recent years, 
several improvements in terms of ground resolution, number of microwave channels, and 
reliability. At the same time, considerable improvements in research activities on rain-rate 
retrieval algorithms have been made, as the relationships between the upwelling thermal 
radiation field and the underlying hydrometeor distribution have become better understood.  
 
This chapter deals with different aspects of rainfall monitoring. It recalls the importance of the 
monitoring activity and the continuous progress of passive microwave sensing of the 
atmosphere, and it mentions the present characteristics of  some satellite-borne passive 
microwave sensors. In particular, this chapter is organized as follows: Section 1.1 presents a 
few remarks on the relevance of clouds and precipitation on human life and the energy balance 
of the earth. Section 1.2  gives a short description of  the evolution of precipitation 
measurements by satellites and of some existing problems. Section 1.3 describes the main 
characteristics of passive sensors widely utilized in rainfall estimation. Section 1.4 describes 
the participation of CNR-ISAC in international research projects on remote sensing of the 
atmosphere. 
 
 
1.1 The importance of  precipitation 
Clouds are fundamental to most aspects of human life. Through production of precipitation, 
they are essential for supplying freshwater, upon which human life depends. Without rainfall 
most terrestrial forms of life would not exist and, in turn, the geology and chemistry of the 
planet would be quite different. Our planet is covered extensively by water, but the majority of 
it is salty. The actual freshwater resources are mainly composed of glaciers and permanent 
snow covers, and fresh ground water. However, only an extremely small fraction of the overall 
freshwater, coming from freshwater lakes and river storages, is completely renewable. The 
availability of freshwater is one of the greatest problems facing mankind at the beginning of 
the 21st century. Population growth, observed climatic instabilities, and the growing rate of 
global pollution have caused a drastic decrease in the availability of water. Over land, 
precipitation in all its forms is the ultimate source of freshwater.  
 
There is another aspect concerning the importance of clouds. They have an essential influence 
on the planet’s energy balance. Figure 1.2 shows a simplified scheme of the annual mean 
global energy balance for the earth-atmosphere system. It is in clouds that latent heat is 
released through the process of condensation and the formation of precipitation. Latent energy 
transferred away from the earth's surface during evaporation is redistributed in the atmosphere 
through the formation of clouds. This form of heat is the basis for  the development and 
evolution of the planet’s storm systems and, in turn, for the precipitation produced by these 
systems. Three-fourths of the energy that drives atmospheric wind circulation comes from the 
latent heat released by tropical precipitation.  
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Rainfall over land affects soil moisture and vegetation type, and then influences evaporation. 
On the other hand, a lack of rainfall leads to desertification and influences the radiation 
balance by altering the surface albedo.  
Regarding the ocean, the salinity, and hence the stability, of the ocean surface layer is 
controlled by the freshwater input of precipitation and evaporation. Anomalous sea surface 
temperatures, such as those that occur in extreme  events (for example El Niño), strongly 
affect global rainfall distribution producing floods in some areas and drought in others.  
 

    
     
Fig. 1.2 – The annual mean global energy balance for the earth-atmosphere system (Wallace 
1977) 
 
There is still another aspect to consider. It concerns the importance of an accurate prediction of 
severe precipitation events. Adverse weather events, especially severe thunderstorms and 
floods, represent a serious problem for humans, social activities, and lands. Rainfall 
monitoring can serve as an important element for risk management in these extreme 
circumstances.   
 
It is for such reasons that the need for information on the distribution and variability of the 
properties of clouds and precipitation has emerged as a priority in earth observations.  
Moreover, the current emphasis on climate change has motivated an interest in geophysical 
parameters derived from satellite data, in order to better understand the degree of variability of 
the global climate system. One parameter of great interest is rainfall and its global distribution 
on a month-to-month and even a day-to-day basis. 
 
 
1.2   Precipitation measurement from satellite 
Space-borne monitoring of clouds and precipitation all around the globe has been gaining a 
growing interest from the international scientific community as a primary factor in 
determining and detecting the slow global climatic changes.  
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Space-borne passive instruments for rainfall and atmospheric observations may be divided 
essentially into two groups, depending on the wavelength of the measured radiation: visible-
infrared (VIS-IR) and microwave (MW) sensors. VIS-IR sensors have the advantage of 
providing high-resolution measurements from very high altitudes. Thus, they are often placed 
aboard geo-stationary platforms allowing a continuous monitoring of (almost) a hemisphere. 
Visible to IR estimates of rainfall are only indirect because VIS-IR  measurements are 
sensitive only to the uppermost layer of clouds. They infer the underlying cloud structure from 
the top-of-the-cloud appearance (from its brilliance or from its temperature), based on the 
optical and thermal properties of the clouds. Microwave sensors, on the contrary, have the 
great advantage of providing a more direct measurement of the internal structure of the cloud. 
Microwave wavelengths are not affected by the high level cirrus clouds, and thus are more 
capable of penetrating the upper portions of the cloud and directly sensing the precipitating 
layers (Mugnai et al. 1990).  
 
Two different satellite systems are available for precipitation observation from space: first the 
meteorological geostationary satellites located at 36,000 km altitude (similar to the 
telecommunication satellites), and second the low level polar orbiting satellites (about 833 km 
altitude) of the US Defence Meteorological Satellite Program (DMSP is a meteorological 
long-term program of  the Department of Defence,  run by the Air Force Space and Missile 
Systems Center (Kramer 2002). 
The system of five geostationary satellites (METEOSAT positioned at 0° longitude, GOES-
East at 75°W, GOES-West at 135°W, GMS at 140°E and a second METEOSAT at 63°E) 
deliver full area-coverage of infrared radiation observations of a high spatial (4 km – GOES 
Imager) resolution in the belt between 65°S and 65°N (Kramer, 2002). Precipitation can 
empirically be estimated from infrared images. 
The polar orbiting, sun-synchronous, DMSP satellites carry the Special Sensor Microwave / 
Imager (SSM/I), providing passive radiation measurements in seven channels. As previously 
mentioned, the physical interaction with precipitation is more direct for microwave channels 
than for visible or infrared channels. Microwave radiation has the ability to penetrate the 
clouds and offer insight into the structure of the rainfall itself. On the other hand, the spatial 
and temporal resolution of SSM/I is much lower than the IR sensors. 
  
Passive microwave sensors have great potential for measuring precipitation from space, even 
though there are still some technological limits in their utilization. Looking at the history of 
satellite observation of precipitation, it becomes evident how technological innovations of 
sensors have marked the steps of  the growth and diffusion of this technique. 
In fact, the evolution of rainfall retrievals from passive microwave sensors closely followed 
the development and improvement of satellite sensors, starting with the Electronically 
Scanning Microwave Radiometer (ESMR) launched on Nimbus-5 in December 1972. It was a 
single channel, 19-GHz radiometer, that allowed to map rainfall areas in a variety of tropical 
disturbances (Allison et al. 1974). Nimbus-5 was followed by Nimbus-6  in June of 1975, 
carrying an ESMR with a 37-GHz channel. Consequently, more quantitative approaches were 
developed by many investigators. It became clear then that more than one frequency was 
needed in order to properly retrieve the column water amounts. The first multichannel sensor, 
the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, was launched in 
October 1978 and included frequencies ranging from 6.6 to 37 GHz, with spatial resolutions 
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ranging from 136 km × 89 km at 6.6 GHz to 22 km × 18 km at 37 GHz. SMMR measured 
both the horizontal and vertical polarizations (Shin and Kummerow 2003).  
Following SMMR, the aforementioned DMSP low earth orbit (LEO) satellites carried the 
Special Sensor Microwave Imager (SSM/I), which was first flown on DMSP-8  in August 
1987. SSM/I is a conically scanning radiometer with seven channels, ranging from 19.3 to 85 
GHz, and spatial resolutions ranging from 69 km × 43 km to 15 km × 13 km, respectively. The 
excellent calibration of the SSM/I, coupled with the data continuity provided by DMSP from 
1987 to the present, led to a real improvement in the estimates of microwave rainfall.  
 
The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997. It 
carries the TRMM Microwave Imager (TMI), which is based upon SSM/I technology, but 
with additional 10.7-GHz horizontal polarization and vertical polarization channels to expand 
the dynamic range of emission signals in the Tropics. The microwave observations cover the 
tropical belt from 30°S to 30°N on a 3-hourly basis. In addition to these channels, the TRMM 
satellite flies at a much lower altitude than the DMSP satellites (350 versus 833 km). This 
provides significantly improved spatial resolution for TMI (30 km × 18 km at 19.3 GHz) in 
comparison to what was previously available. TRMM is also the first satellite equipped with 
an active precipitation sensor (precipitation radar - PR). Its observation is used for calibration 
of the passive microwave based precipitation algorithms. 
 
At the present, some technological questions still remain. Poor ground resolution, for example, 
represents the main drawback of the measurements, and it is determined by antenna 
diffraction. The linear dimensions of the footprints increase linearly with wavelength and 
satellite altitude, and decrease linearly with antenna size. Then, large antennas are required. 
Also the intermittent nature of the low-earth orbiting (LEO) satellite observations can 
represent a problem. When products on climatological scales are required (e.g., global monthly 
averages), insufficient temporal sampling may introduce large errors since every day only two 
local overpasses are available when only one satellite is operated. 
 
 
1.3 Microwave remote sensors 
 
1.3.1   The Special Sensor Microwave Imager (SSM/I) 
The SSM/I is a seven-channel, four-frequency, orthogonally polarized, passive microwave 
radiometric system that measures atmospheric, ocean and terrain microwave brightness 
temperatures at 19.35, 22.2, 37.0, and 85.5 GHz. The data are used to obtain synoptic maps of 
critical atmospheric, oceanographic and selected land parameters on a global scale. The SSM/I 
archive data set consists of antenna temperatures recorded across a 1,400 km conical scan, 
satellite ephemeris, earth surface positions for each pixel and instrument calibration. 
The SSM/I is flown aboard Defense Meteorological Satellite Program (DMSP) satellites F8, 
F10, F11, F12, F13, and F15.  
Figure 1.3 shows a scheme of the radiometer and its scan geometry. 
The SSM/I instrument consists of an offset parabolic reflector of dimensions 24 x 26 inches, 
fed by a corrugated, broad-band, seven-port horn antenna. The reflector and feed are mounted 
on a drum that contains the radiometers, digital data subsystem, mechanical scanning 
subsystem, and power subsystem. The reflector-feed-drum assembly is rotated about the axis 
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of the drum by a coaxially mounted bearing and power transfer assembly (BAPTA). All data, 
commands, timing and telemetry signals, and power pass through the BAPTA on slip ring 
connectors to the rotating assembly. 
A small mirror and a hot reference absorber are mounted on the BAPTA and do not rotate with 
the drum assembly. They are positioned off axis so that they pass between the feed horn and 
the parabolic reflector, occulting the feed once each scan. The mirror reflects cold sky 
radiation into the feed, thus serving, along with the hot reference absorber, as calibration 
references for the SSM/I. This scheme provides an overall absolute calibration that includes 
the feed horn. Corrections for spillover and antenna pattern effects from the parabolic reflector 
are incorporated in the data processing algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      
Fig. 1.3   Scheme of SSM/I radiometer (left) and of the scan geometry (right). 
 
       
The SSM/I rotates continuously about an axis parallel to the local spacecraft vertical at 31.6 
rpm and measures the upwelling scene brightness temperatures over an angular sector of 102.4 
degrees about the sub-satellite track. The scan direction is from left to right when looking in 
the forward (F10, F11) or aft (F8) direction of the spacecraft. The active scene measurements 
lie  ±51.2 degrees from the forward (F10, F11) or aft (F8) direction. This results in a swath 
width of approximately 1400 km. The spin rate provides a period of 1.9 sec during which the 
spacecraft sub-satellite point travels 12.5 km. During each scan, 128 discrete uniformly spaced 
radiometric samples are taken at the two 85 GHz channels and, on alternate scans, 64 discrete 
samples are taken at the remaining five lower frequency channels. The antenna beam intersects 
the Earth's surface at an incidence angle of 53.1 degrees (as measured from the local Earth 
normal). Table 1.1 shows the radiometric characteristics of SSM/I 
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                               Tab 1.1  Radiometric characteristics of the SSM/I 
 
SSM/I Special Sensor Microwave - IMAGER 
Satellites DMSP F 8, 10, 11, 13, 14 and 15 
Status (June 2009) Operational - Utilisation period: 1987 to ∼ 2009 
Mission Multi-purpose MW imager 
Instrument type 4-frequency, 7-channel MW radiometer 
Scanning technique Conical: 53.1° zenith angle, swath 1400 km – Scan rate: 31.9 scan/min = 12.5 km/scan 
Coverage/cycle Global coverage once/day 
Resolution (constant) Changing with frequency, consistent with an antenna diameter of  61 x 66 cm 
Resources Mass: 48.5 kg  -  Power: 45 W  -  Data rate: 6.0 kbps 

      

Central frequency (GHz) Bandwidth (MHz) Polarisations Accuracy (NEΔT) IFOV Pixel 
19.35 400 V, H 0.43 K 45 x 68 km 25.0 x 12.5 km 

22.235 400 V 0.73 K 40 x 60 km 25.0 x 12.5 km 
37.0 1500 V, H 0.38 K 24 x 36 km 25.0 x 12.5 km 
85.5 3000 V, H 0.71 K 11 x 16 km 12.5 x 12.5 km 

  
    
 
1.3.2 The Special Sensor Microwave Imager/Sounder (SSMIS) 
The Special Sensor Microwave Imager/Sounder (SSMIS) is a passive microwave radiometer 
with a 53.1 degree Earth incidence angle sensing upwelling microwave radiation at 24 
channels covering a wide range of frequencies from 19 - 183 GHz. In common with its 
predecessor SSM/I, SSMIS employs conical scanning geometry that offers the advantage that 
the polarization of the measured radiances is invariant across the scan. In fact, these conical 
scanners provide images with a constant zenith angle, which implies a constant optical path in 
the atmosphere and homogeneous impact of the polarisation effects. In addition, the open 
design permits relatively large primary reflectors and consequently affords good horizontal 
resolution. 
Additionally, conical scanning provides constant resolution across the image, though changing 
with frequency.  It is noted that the IFOV is elliptical, with the major axis elongated along the 
viewing direction and the minor axis along-scan, approximately 2/3 of the major.  Its size is 
dictated by the antenna diameter (actually, the antenna is slightly elliptical, to partially 
compensate for the panoramic distortion), but also by the portion of antenna effectively 
illuminated (this makes it possible to obtain the same IFOV for a group of different 
frequencies, if co-registration is a strong requirement).  
 
SSMIS is the first conical scanner to be used for temperature sounding and it combines a range 
of temperature sounding channels (50 – 63 GHz) with humidity sounding channels (183 GHz) 
as well as a range of imaging channels (19 – 150 GHz).  
With respect to SSM/I, SSMIS adds temperature and humidity sounding channels that, 
operating in absorption bands, are applicable over land. They also carry forward information 
on the atmospheric thermal-hygrometric structure, useful in the retrieval process. 
Data are collected along an active scan of 144 degrees across track producing a swath width on 
the ground of 1707 km. The first of five sensors was launched on board DMSP F-16 on 
October 18, 2003.  
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The SSMIS is a joint US Air Force/Navy multi-channel passive microwave sensor that 
combines and extends the imaging and sounding capabilities of three separate DMSP 
microwave sensors including the SSM/T, SSM/T2, and SSM/I. 
Table 1.2 shows the radiometric characteristics of SSMIS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.4    The Special Sensor Microwave Imager/Sounder (SSMIS)  
 
 
 
1.3.3  The Advanced Microwave Sounding Unit  (AMSU) 
The AMSU system is implemented in two separate modules: the AMSU-A and AMSU-B (or 
MHS – Microwave Humidity Sounder). The AMSU is a multi-channel microwave radiometer 
that is used for measuring global atmospheric temperature profiles and provides information 
on atmospheric water in all of its forms (with the exception of small ice particles, which are 
transparent at microwave frequencies) 
AMSU is derived from the Microwave Sounding Unit (MSU) which began service in 1978 on 
TIROS-N and continued on the NOAA 6 through 14 satellites. AMSU flies on the NOAA 
KLM satellites: NOAA 15, launched 13 May 1998; NOAA 16, launched 21 September 2000; 
and NOAA 17, launched 24 June 2002.                    
AMSU-A is primarily a temperature sounder that provides atmospheric information in the 
presence of clouds, which can be used to correct the infrared measurements for the effects of 
clouds. This is possible because microwave radiation passes, as already mentioned, to a 
varying degree, through clouds - in contrast with visible and infrared radiation, which are 

Fig. 2.3 - Geometry of conical scanning for SSMIS.Fig. 2.3 - Geometry of conical scanning for SSMIS.
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stopped by all but the most tenuous clouds. Table 1. shows the channel characteristics of 
AMSU-A. 
 
 
                                 Tab. 1.2   Radiometric characteristics of  SSMIS  
 
SSMIS Special Sensor Microwave - Imager/Sounder 
Satellites DMSP F 16 and DMSP S 17 to 20 
Status (June 2009) Operational - Utilisation period: 2003 to ∼ 2016 
Mission Multi-purpose MW imager with temperature/humidity sounding channels for improved precipitation  
Instrument type 21-frequency, 24-channel MW radiometer 
Scanning technique Conical: 53.1° zenith angle, swath 1700 km – Scan rate: 31.9 scan/min = 12.5 km/scan 
Coverage/cycle Global coverage once/day 
Resolution (constant) Changing with frequency, consistent with an antenna diameter of  61 x 66 cm 
Resources Mass: 96 kg  -  Power: 135 W  -  Data rate: 14.2 kbps 

      

Central frequency (GHz) Bandwidth (MHz) Polarisations Accuracy (NEΔT) IFOV Pixel 
19.35 400 V, H 0.7 K 45 x 68 km 25.0 x 12.5 km 

22.235 400 V 0.7 K 40 x 60 km 25.0 x 12.5 km 
37.0 1500 V, H 0.5 K 24 x 36 km 25.0 x 12.5 km 
50.3 400 H 0.4 K 18 x 27 km 37.5 x 12.5 km 
52.8 400 H 0.4 K 18 x 27 km 37.5 x 12.5 km 

53.596 400 H 0.4 K 18 x 27 km 37.5 x 12.5 km 
54.4 400 H 0.4 K 18 x 27 km 37.5 x 12.5 km 
55.5 400 H 0.4 K 18 x 27 km 37.5 x 12.5 km 
57.29 350 - 0.5 K 18 x 27 km 37.5 x 12.5 km 
59.4 250 - 0.6 K 18 x 27 km 37.5 x 12.5 km 

60.792668 ± 0.357892 ± 0.050 120 V + H 0.7 K 18 x 27 km 37.5 x 12.5 km 
60.792668 ± 0.357892 ± 0.016 32 V + H 0.6 K 18 x 27 km 75.0 x 12.5 km 
60.792668 ± 0.357892 ± 0.006 12 V + H 1.0 K 18 x 27 km 75.0 x 12.5 km 
60.792668 ± 0.357892 ± 0.002 6 V + H 1.8 K 18 x 27 km 75.0 x 12.5 km 

60.792668 ± 0.357892 3 V + H 2.4 K 18 x 27 km 75.0 x 12.5 km 
63.283248 ± 0.285271 3 V + H 2.4 K 18 x 27 km 75.0 x 12.5 km 

91.655 3000 V, H 0.9 K 10 x 15 km 12.5 x 12.5 km 
150 1500 H 0.9 K 10 x 15 km 37.5 x 12.5 km 

183.31 ± 6.6 1500 H 1.2 K 10 x 15 km 37.5 x 12.5 km 
183.31 ± 3.0 1000 H 1.0 K 10 x 15 km 37.5 x 12.5 km 
183.31 ± 1.0 500 H 1.2 K 10 x 15 km 37.5 x 12.5 km 

  
 
 
The AMSU-A instrument consists of two independent modules (AMSU-A1 and AMSU-A2), 
with each module having separate spacecraft interfaces. AMSU-A is a crosstrack scanner.  
AMSU-A1 has two antenna/receiver systems and AMSU-A2 has one for processing the 
microwave channels. The three receiving antennas are parabolic focusing reflectors that rotate 
continuously, completing one revolution in 8 seconds. The 8-second scan cycle is divided into 
three segments. In the first segment the Earth is viewed at 30 different angles, symmetric 
around the nadir direction, in a step-and-stare sequence. 
 Each of the 30 Earth views (scene stations) takes about 0.2 seconds, for a total of 
approximately 6 seconds. 
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                               Table 1.3    Radiometric characteristics of AMSU-A 
 
 
AMSU-A Advanced Microwave Sounder Unit - A 
Satellites NOAA 15 to 19  -  MetOp 1 to 3 - EOS-Aqua 

Status (May 2008) Operational – Utilisation period: 1998 to ∼ 2014 on NOAA, 2006 to ∼ 2020 on MetOp, 2002 to ∼ 2009 
on EOS-Aqua 

Mission Temperature sounding in nearly-all-weather conditions 
Instrument type 15-channel MW radiometer 
Scanning technique Cross-track: 30 steps of 48 km s.s.p., swath 2250 km - Along-track: one 48-km line each 8 s 
Coverage/cycle Near-global coverage twice/day 
Resolution (s.s.p.) 48 km IFOV 
Resources Mass: 104 kg  -  Power: 99 W  -  Data rate: 3.2 kbps 

    

Central frequency (GHz) Bandwidth (MHz) Polarisation Radiometric accuracy (NEΔT) 
23.800 270 V 0.30 K 
31.400 180 V 0.30 K 
50.300 180 V 0.40 K 
52.800 400 V 0.25 K 

53.596 ± 0.115 170 H 0.25 K 
54.400 400 H 0.25 K 
54.940 400 V 0.25 K 
55.500 330 H 0.25 K 

f0 = 57.290344 330 H 0.25 K 
f0 ± 0.217 78 H 0.40 K 

f0 ± 0.3222  ± 0.048 36 H 0.40 K 
f0 ± 0.3222  ± 0.022 16 H 0.60 K 
f0 ± 0.3222  ± 0.010 8 H 0.80 K 

f0 ± 0.3222  ± 0.0045 3 H 1.20 K 
89.000 6000 V 0.50 K 

  
 
 
The second segment is a rapid scan covering a cold space view and an internal (warm) 
blackbody calibration target. Finally, each antenna returns to the starting position to start a 
new scan cycle.  
Since the incidence angle changes moving cross-track, the effect of polarisation also changes, 
thus the information stemming from dual polarisation would be very difficult to be used, and 
in effect the various frequencies are observed under a single polarisation, V or H.  
The AMSU-B (and MHS) is a crosstrack, continuous line scanning, total power radiometer 
and provides measurements of scene radiance in five channels. 
The instrument has an IFOV of 1.1° (at the halfpower points). Spatial resolution at nadir is 
nominally 16 km (9.94 mi).The antenna provides a crosstrack scan, scanning ±48.95° from 
nadir with a total of 90 Earth fields-of-view per scan line. The instrument completes one scan 
every 2.66 seconds.  
Table 1.4 shows the channel characteristics of AMSU-B and MHS. Most AMSU-B MHS 
frequencies lie in the 183 GHz band of H2O, for humidity profiling. 
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                           Table 1.4  Radiometric characteristics of AMSU-B and MHS  
 
 
AMSU-B Advanced Microwave Sounder Unit - B 
Satellites NOAA 15 to 17 
Status (May 2008) Operational – Utilisation period: 1998 to ∼ 2009 
Mission Humidity sounding in nearly-all-weather conditions.  Also precipitation 
Instrument type 5-channel MW radiometer 
Scanning technique Cross-track: 90 steps of 16 km s.s.p., swath 2250 km - Along-track: one 16-km line each 8/3 s 
Coverage/cycle Near-global coverage twice/day 
Resolution (s.s.p.) 16 km IFOV 
Resources Mass: 50 kg  -  Power: 90 W  -  Data rate: 60 kbps 

    

Central frequency (GHz) Bandwidth (MHz) Polarisation Radiometric accuracy (NEΔT) 
89.0 1000 V 0.37 K 

150.0 1000 V 0.84 K 
183.31 ± 7.0 2000 V 0.60 K 
183.31 ± 3.0 1000 V 0.70 K 
183.31 ± 1.0 500 V 1.06 K 

  
 
MHS Microwave Humidity Sounder Unit 
Satellites NOAA 18 to 19  - MetOp 1 to 3 
Status (May 2008) Operational - Utilisation period: 2005 to ∼ 2014 on NOAA, 2006 to ∼ 2020 on MetOp 
Mission Humidity sounding in almost all-weather conditions.  Also precipitation rate 
Instrument type 5-channel MW radiometer 
Scanning technique Cross-track: 90 steps of 16 km s.s.p., swath 2180 km - Along-track: one 16-km line each 8/3 s 
Coverage/cycle Near-global coverage twice/day 
Resolution (s.s.p.) 16 km IFOV 
Resources Mass: 63 kg  -  Power: 93 W  -  Data rate: 3.9 kbps 

    

Central frequency (GHz) Bandwidth (MHz) Polarisation Radiometric accuracy (NEΔT) 
89.0 2800 V 0.22 K 

157.0 2800 V 0.38 K 
183.31 ± 3.0 2000 H 0.42 K 
183.31 ± 1.0 1000 H 0.57 K 

190.311 2000 V 0.45 K 
  

 
 
 
Figure 1.5 shows the geometry of cross track scanning of AMSU. These cross-track scanners 
provide images with constant angular sampling across track, implying that the IFOV elongates 
as the beam moves from nadir toward the edge of the scan (see figure 1.5).  The elongation is 
such that:  
- for AMSU-A the IFOV at nadir is: 48 x 48 km2, at the edge of the 2250 km swath: 80 x 150 
km2; 
- for AMSU-B and MHS the IFOV at nadir is: 16 x 16 km2; at the edge: 27 x 50 km2. 
 
Fig. 1.6 shows the composite coverage of SSM/I-SSMIS and AMSU-MHS. It is important to 
note that precipitation retrieval from AMSU-MHS is essential for complementing SSM/I-
SSMIS coverage, which would otherwise lead to observational gaps lasting ~ 10 h. 
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Fig. 1.5   AMSU–A  and MHS of cross-track scanning (left), and schematic representation of 
cross track scanning geometry (right).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.6  Composite coverage of  SSM/I – SSMIS and AMSU – MHS. 

Fig. 2.6 - Geometry of cross-track scanning for AMSU.Fig. 2.6 - Geometry of cross-track scanning for AMSU.

Composite coverage from SSM/I-SSMIS and AMSU-MHS.Composite coverage from SSM/I-SSMIS and AMSU-MHS.
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1.3.4  The  Advanced Microwave Scanning Radiometer (AMSR-E) 
The AMSR-E is a conically scanning total power passive microwave radiometer sensing 
microwave radiation (brightness temperatures) at 12 channels and 6 frequencies ranging from 
6.9 to 89.0 GHz. Horizontally and vertically polarized radiation is measured separately at each 
frequency. There are 2 separate horns at 89 GHz, one being slightly offset from the centerline 
of the feedhorn array. 
The AMSR-E instrument has an offset parabolic reflector 1.6 meters in diameter. Figure 1.7 
shows the AMSR-E instrument (left), and the Aqua satellite with AMSR-E mounted in front 
(right). The atmospheric radiation is focused by the main reflector into an array of six 
feedhorns  which then feed the radiation to the detectors.  
A cold load reflector and a warm load  are mounted on the transfer assembly shaft and do not 
rotate with the drum assembly. They are positioned off axis so that they pass between the 
feedhorn array and the parabolic reflector, occulting it once each scan. The cold load reflector 
reflects cold sky radiation into the feedhorn array thus serving, along with the warm load, as 
calibration references for the AMSR-E. Calibration of the radiometers is essential for the 
collection of useful data. Corrections for spillover and antenna pattern effects are incorporated 
in the data processing algorithms. 
The AMSR-E rotates continuously about an axis parallel to the local spacecraft vertical at 40 
revolutions per minute (rpm). At an altitude of  705 km, it measures the upwelling scene 
brightness temperatures over an angular sector of ±61 degrees around the sub-satellite track, 
resulting in a swath width of 1445 km.  
 
 
 
 
 
 
 
 
 
 
 
 
 
         
 
 
 
             
 
 
 
Fig. 1.7  The AMSR-E instrument (left), and the Aqua satellite with AMSR-E mounted in 
front (right). 
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                                  Table 1.5   Radiometric characteristics of AMSR-E 
 
AMSR-E Advanced Microwave Scanning Radiometer for EOS 
Satellites EOS-Aqua 
Status (May 2008) Operational - Utilisation period: 2002 to ∼ 2009 
Mission Multi-purpose MW imager 
Instrument type MW radiometer with 6 frequencies / 12 channels 
Scanning technique Conical: 55° zenith angle; swath: 1450 km - Scan rate: 40 scan/min = 10 km/scan 
Coverage/cycle Global coverage once/day 
Resolution Changing with frequency, consistent with an antenna diameter of 1.6 m 
Resources Mass: 314 kg  -  Power: 350 W  -  Data rate: 87.4 kbps 
  

Central frequency (GHz) Bandwidth (MHz) Polarisations Accuracy (NEΔT) IFOV Pixel 
6.925 350 V, H 0.3 K 43 x 75 km 10 x 10 km 
10.65 100 V, H 0.6 K 29 x 51 km 10 x 10 km 
18.7 200 V, H 0.6 K 16 x 27 km 10 x 10 km 
23.8 400 V, H 0.6 K 14 x 21 km 10 x 10 km 
36.5 1000 V, H 0.6 K 9 x 14 km 10 x 10 km 
89.0 3000 V, H 1.1 K 4 x 6 km 5 x 5 km 

  
 
During a period of 1.5 seconds the spacecraft sub-satellite point travels 10 km. Even though 
the instantaneous field-of-view for each channel is different, active scene measurements are 
recorded at equal intervals of 10 km (5 km for the 89 GHz channels) along the scan. The half 
cone angle at which the reflector is fixed is 47.4° which results in an Earth incidence angle of 
55.0°. Table 1.5 shows the channel characteristics of AMSR-E. 
 
 
1.4  The HSAF, RISKMED, and FLASH  projects 
The research activity on the Bayesian estimation of precipitating cloud parameters, which is 
carried out at CNR ISAC, is part of international research projects that are aimed at producing 
weather forecasts, particularly for severe precipitation events. The results of the projects 
consist of the organization of early warning systems, addressed to regional authorities and civil 
protection agencies. In this way they contribute to the protection of lands and people from 
adverse weather conditions.  
The projects are based on international cooperation, which also includes research centers 
carrying out research projects on the remote sensing of atmosphere. The results of scientific 
investigations are then directly transferred to the users through the project’s products. The 
research activities developed within the projects concern different approaches to the analysis 
of atmospheric phenomena, including precipitation estimates on the ground using satellite-
based passive microwave measurements, or using combined microwave (LEO) and infrared 
(GEO) measurements, or using combined microwave and lighting measurement, as lighting 
activity can be an effective indicator of heavy convective precipitation events. Other research 
concerns the estimate of other meteorological events, as the accumulated precipitation at the 
ground by blended MW and IR data, the global surface soil moisture by radar scatterometer, 
the snow detection -snow mask- by VIS/IR radiometry. 
The contribution of CNR-ISAC is mainly focused on the precipitation retrieval from satellite-
based passive microwave measurements. Particularly, the results of the current research 
activity on surface rain rate retrieval (as described in the following ch. 3 and ch. 4) are steadily 
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examined and validated with the contribution of other partners, and then inserted in the 
project’s products. The results and the new research lines are also analyzed and evaluated with 
the collaboration of the Department of Atmospheric and Oceanic Sciences at the University of 
Wisconsin, USA. 
In the following paragraphs a short description of  the basic elements of the projects will be 
presented.  
 
1.4.1  The H-SAF project  
The “EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) 
Satellite Application Facility on Support to Operational Hydrology and Water Management 
(H-SAF)” was established by the EUMETSAT Council on 3 July 2005, and kicked-off on 16 
September 2005. The Development Phase will last 5 years, until late 2010. The work 
programme makes distinction between two phases. The first phase regards product 
development, prototype generation, and preliminary validation. The second phase deals with 
regular production, extended validation, and hydrological validation. 
The H-SAF objectives are, in particular: 
- to provide new satellite-derived products from existing and future satellites with sufficient 
time and space resolution to satisfy the needs of operational hydrology;  
- to perform independent validation of the usefulness of new products for fighting against 
floods, landslides, avalanches, and evaluating water resources. 
The project is based on international cooperation among Italy (CNR and CNMCA (Centro 
Nazionale di Meteorologia e Climatologia Aeronautica)) responsible for precipitation 
products, Austria (ZAMG (Zentralanstalt für Meteorologie und Geodynamik) and ECMWF 
(European Centre for Medium-range Weather Forecasts)) responsible for soil moisture 
products, Finland and  Turkey (FMI (Finnish Meteorological Institute) and TSMS (Turkish 
State Meteorological Service)) responsible for snow products. 
 
1.4.2    The RISKMED project 
The RISKMED project originates from the awareness that extreme weather events have an 
adverse impact on humans as well as on a large number of social and economic activities. The 
main objective of the project is to tackle this problem by building an early warning system that 
provides accurate and detailed weather forecasts and disseminates the appropriate warnings. 
The project is conducted by scientific groups involved in the production of detailed weather 
forecasts, based on observations (mainly from satellites since a majority of participating 
countries are covered by the sea) as well as from high-resolution weather and wave models.  
The scientific partners are the University of  Ioannina (Greece), the CNR-ISAC, the University 
of Malta, the Cyprus Meteorological Service, the National Observatory of Athens. 
The main activities of the project comprise: 
- Use of satellite and lightning data and meteo-marine sensors for the monitoring of severe 
weather events over the area  
- Operational use of high resolution modelling for the provision of weather forecasts in all 
major meteorological parameters (winds, rain, snow, temperature, etc).  
- Use of a wave model in case of strong winds and adverse marine conditions near selected 
coasts 
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- Presentation of the results in a user-friendly way, according to the requirements of the end-
users, and dissemination of warnings (through a dedicated web page, e-mails, text messages to 
mobile phones etc). 
The main deliverable will be the early warning system over four areas (Southern Italy, Malta, 
Northwestern Greece and Cyprus), in an operational mode.  
 
1.4.3   The FLASH project   
The FLASH project is focused on observations, analysis and modeling of lightning activity in 
thunderstorms, for use in short term forecasting of flash floods. 
Floods result from large weather systems with embedded severe thunderstorms that deposit 
large amounts of rainfall in short periods of time. Since lightning activity can be detected and 
monitored continuously from thousands of kilometers away, the project considers the use of 
lightning data to better nowcast (3-hour prediction) and forecast (24-48 hour prediction) the 
location, intensity and timing of heavy convective precipitation events.  
For this, the aim of the research is to analyse rainfall-lightning relationships using lightning 
and precipitation data sets in the Mediterranean region. It will also use lightning information in 
conjunction with infrared / microwave observations from geostationary / low Earth orbiting 
satellites to improve cloud characterization, convection detection and precipitation retrieval 
from space. 
The participants are: The Aviv University and the Open University of Israel, the CNR-ISAC, 
the National Observatory of Athens, the University of Barcelona, the Ministry of Agriculture, 
Natural Resources and Environment – Cyprus Meteorological Service of Cyprus. 
The contribution of CNR-ISAC is included in the research on precipitation retrieval using 
lightning data in combination with passive-microwave (MW) measurements from Low Earth 
Orbit (LEO) satellites and visible-infrared (VIS-IR) measurements from geosynchronous 
(GEO) Meteosat  Second generation (MSG) satellites. 
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CHAPTER 2 –  Microwaves radiative transfer  
 
 
The observed microwave radiances at the top of the atmosphere originate partly at the earth’s 
surface and partly from atmospheric constituents. The contribution from the earth’s surface 
depends primarily upon the nature of the surface (i.e., water or land) and on the temperature of 
that surface. Atmospheric constituents such as oxygen, water vapour and cloud water act to 
absorb and emit upwelling radiation. Large precipitation drops further act to scatter upwelling 
radiation. Because of the varied, and often complex nature of each of these components, it is 
necessary to first describe the basic process of radiative transfer in the atmosphere and then 
consider the effects of these components on the propagation of radiation through the 
atmosphere. 
In this chapter, the radiative transfer in the atmosphere and the radiative transfer equation are 
described first (section 2.1). Then, the passive microwave sensing of atmosphere, under clear-
sky conditions, both from upward looking and downward looking radiometers, is presented 
(section 2.2). In section 2.3 the different microwave frequencies of satellite-borne radiometers 
are considered with reference to the oxygen and water vapour absorption spectra. In section 2.4 
the effects of emission and scattering processes of hydrometeors on precipitation 
measurements are analyzed. Finally, section 2.5 presents an example of  methods used in 
empirical algorithms for measuring rain rate. 
 
 
2.1 The radiative transfer equation 
Before starting with the radiative transfer equation, it is appropriate to recall some basic 
quantities that are necessary for obtaining the equation (Wallace and Hobbs 1977, Ulaby et al. 
1986, Galati and Gilardini 2000). 
Radiant flux is the rate of energy transfer by electromagnetic radiation, and it is measured in 
joules per second or watts. The irradiance (E) is the flux divided by the area (orthogonal to the 
direction of the radiation) through which it passes, and it is expressed in units of watts per 
square meter. The irradiance per unit wavelength interval at wavelength λ is called the 
monochromatic irradiance Eλ; it has the units of watts per square meters per micrometer. The 
irradiance is therefore equal to 

                                                              λλdEE ∫
∞

=
0

.         (W/m2)                     (2.1) 

Radiance (or intensity ) is defined as the irradiance per unit solid angle and it is expressed in 
watts per square meter per steradian. 
The spectral radiance I (or specific intensity) is defined as the radiance per unit frequency 
interval (W m-2 sr-1 Hz-1) or per unit wavelength (W m-2 sr-1 μm-1).  
Figure 2.1 shows the passage of a radiation of  spectral radiance I(ν,r) through a cylindrical 
elementary volume having its axis in the direction r (r is the abscissa along r). In the figure dS 
is the surface of the base of the cylinder. It is supposed that the spectral radiance enters the 
cylinder in the direction r, that is normally to the surface dS, and that the material of the 
cylinder is homogeneous. I(ν,r+dr) is the spectral radiance coming out from the other base of 
the cylinder, in the direction r. The difference between I(ν,r) and I(ν,r+dr) is due to the 
interaction of the radiation with the material. The interaction can produce a reduction in the 
spectral radiance due to the absorption and scattering processes, and it can also produce an 
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increase due to the emission of the material and the scattering from all other directions in the 
direction r.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.1      Radiation transfer through a cylindrical elementary volume. 
 
 
The effect of the absorption can be described using the volume absorption coefficient ka(ν,r) 
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where the term νν dddSrdIa ⋅Ω⋅⋅),(  represents the power absorbed by the cylinder, 
νν ddrI ⋅Ω⋅),(  represents the incident irradiance and drdS ⋅  the volume of the cylinder 

(Galati and Gilardini 2000). 
The variation (reduction) of the spectral radiance due to the absorption is then 
                                            dIa(ν,r) = - ka(ν,r) I(ν,r) dr.                                              (2.3) 
The effect of the scattering can be similarly expressed using the volume scattering coefficient 
ks(ν,r) defined as  
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where νν dddSrdIs ⋅Ω⋅⋅),(  is the power scattered by the cylinder. The reduction of the 
spectral radiance due to the scattering process is then  
                                              dIs(ν,r) = - ks(ν,r) I(ν,r) dr.                                           (2.5) 
It is possible to consider the overall extinction of the spectral radiance, as both the processes 
are linear, introducing the volume attenuation coefficient ke(ν,r) 
                                               ke(ν,r) = ka(ν,r) + ks(ν,r)                  (m-1).               (2.6) 
The coefficients ke, ka, and ks are also measured in units neper m-1, when the loge is used for 
the ratio dI/I. 
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The overall extinction can be expressed as 
             dIe(ν,r) = - (ka(ν,r) I(ν,r) dr +  ks(ν,r) I(ν,r) dr ) = - ke(ν,r) I(ν,r) dr.             (2.7) 
 
The process of thermal emission, that increases the value of the spectral radiance I(ν,r+dr) 
coming out from the cylinder, is related to the increase in temperature T of the cylinder 
consequent to the absorption of  the energy of the incident radiation. Taking Kirchhoff’s law 
into account, with reference to the equilibrium between thermal emission and absorption, the 
increase in the spectral radiance due to the thermal emission can be expressed as 
                                             dIte(ν,r) = ka(ν,r) B(ν,T(r)) dr                                 (2.8) 
where  B(ν,T(r)) is the spectral radiance of the blackbody at temperature T, that is (Plank’s law)  
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where h is the Plank’s constant, K the Boltzmann’s constant, and c the light speed in the 
vacuum. 
Another process that can also increase the value of the spectral radiance concerns the scattering 
of the radiation, travelling along directions different from r, which enters the cylinder and is 
diffused along r. The corresponding variation of the spectral radiance is 
                                              dIsc(ν,r) = ks(ν,r) Js(ν,r) dr                                      (2.10) 
where Js(ν,r) is a ‘source function’ that takes into account the contributions of the radiation 
coming from all directions and that is diffused along r. Denoting with I(ri) the spectral 
radiance entering the cylinder along the direction ri, and with Ψ(r,ri) a function that takes into 
account the coupling between the incident and the diffused intensities, the ‘source function’ 
can be expressed as  

                                          ∫Ψ=
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The equation of transfer is then 
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Introducing the ‘total source function’ J(ν,r) 
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where w = ks/ke is called the single scattering albedo, the radiative transfer equation can be 
written as 
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Introducing the optical thickness increment, dτ = kedr (dimensionless), the (2.14) can be 
expressed in the form 
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and the optical thickness between r = r1  and r = r2  in the form  
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The solution of the radiative transfer equation (2.15), for a semi-infinite medium with an 
attenuation coefficient ke  and a total source function J, has the expression (Galati and Gilardini 
2000) 
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where I(r) is the spectral radiance at the abscissa r, in the direction r, I(0) is the ‘boundary’ 
spectral radiance for r = 0. The first term on the right side of  (2.17) represents the contribution, 
to the spectral radiance observed at the abscissa r, in the direction r, of the radiance I(0) at r = 
0. I(0) is  reduced by the term (e-τ(0,r)) that represents the extinction effect of the medium. The 
second term on the right side of (2.17) represents the contributions (thermal emission and 
scattering in the direction r) of all the elements 'dr  of the medium, situated between 0 and r, 
reduced by the attenuation between 'r  and r. 
The complete solution of (2.17) is difficult, but some simplifications can be obtained if the 
spectral radiance is in the range of the microwaves. In this case  hν/kT << 1 and the spectral 
radiance of the blackbody can be written in the approximated form (Rayleight-Jeans)  
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The (2.18) shows that in the microwave region the spectral radiance B(ν,r) is proportional to 
the physical temperature T(r). 
The spectral radiance at the abscissa r, I(ν,r), can be expressed in terms of  the ‘apparent 
temperature’ TAP(ν,r), that is representative of the spectral radiance at the abscissa r, 
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Considering the (2.18), the TAP(ν,r) can also be seen as the temperature of a hypothetical 
blackbody emitting an identical amount of radiation at the same wavelength. For this reason 
the TAP(ν,r) is sometimes also referred as the ‘brightness temperature’ Tb. 
Introducing the temperature TSC, defined as 
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the solution (2.17) can be expressed in the form  
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For a non-scattering atmosphere (ks = 0) in local thermodynamic equilibrium, the (2.21) can be 
simplified in 
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and the optical thickness (2.16) results equal  
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The units of  τ(r’,r) are neper (Np) or dB, depending on whether the absorption coefficient ka(r) 
is expressed in neper per unit length or dB per unit length, respectively. 
 
 
2.2   Passive microwave sensing of the atmosphere 
With reference to a ground-based radiometer (figure 2.2), the radiation incident upon the 
radiometer antenna, in the microwave region and for a non-scattering atmosphere in local 
thermodynamical equilibrium,  can be represented by the apparent temperature TAP (Ulaby et 
al. 1986) 
                              ϑτννϑνϑν sec),0()(),(),( ∞−⋅+= eTTT EXTRADNAP                         ( 2.24) 
where TDN(ν,θ) represents atmospheric radiation at frequency ν downwelling at angle θ from 
the zenith,  
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Fig. 2.2  Upward-looking radiometer observing the atmosphere at zenith angle θ (Ulaby et. al 
1986). 
 
 
 

Y = e -τν(0,∞) secθ

TAP = TDN + Y TEXTRA
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TEXTRA(ν) represents radiation of extraterrestrial origin (prior to entering the earth’s 
atmosphere), and τν(0,∞) is the zenith opacity of the atmosphere 
                                                                             ∫

∞

=∞
0

')'(),0( dzzkνντ .                                                           (2.26) 

where kν(z’) is the total absorption coefficient at frequency ν and height z (km). In the (2.24) it 
is supposed the atmosphere horizontally stratified (plane parallel) so that both the temperature 
and the absorption coefficient depend only on the height z. 
The transmissivity Yνθ(0,∞) of the atmosphere is related to the opacity by 
 
                                   Yνθ(0,∞) = ϑτ sec),0( ⋅∞− ve  = [Yν(0,∞)]secθ                               (2.27) 
where  
                                                   Yν(0,∞) = ),0( ∞− ve τ                                              (2.28) 
is the zenith transmissivity. 
Under clear sky conditions, kν(z) is equal to the absorption coefficient due to atmospheric 
gases (kgν(z)). In general cases, however, it can also depend on the effect of hydrometeors 
included in the layer at height z and it can be expressed in the form 
                                           kν(z)= kgν(z)+ kcν(z)+ kpν(z)                                        (2.29) 
where g, c, and p refer to gases, clouds, and precipitation, respectively.  
Figure 2.3 shows the microwave absorption spectra of oxygen and water vapour, which, in 
clear air conditions, make a prevalent contribution to the absorption with respect to ozone and 
other gases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.3  Computed microwave absorption spectra of oxygen and water vapour at sea level, in 
clear air conditions (Ulaby el al. 1986).  
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Figure 2.4 shows the microwave spectra of the zenith opacity of a clear atmosphere, for surface 
water vapour densities of 0, 3, and 10 gm-3 and assuming a 2-km scale height for water vapour 
(Ulaby el al. 1986). The zenith opacity has a strong sensitivity to the surface water vapour 
density, except within the bands surrounding the oxygen absorption resonances centred at 60 
GHz and 118.75 GHz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.4  Zenith opacity of the US Standard Atmosphere for surface temperature T0=288 K, 
surface pressure P0=1020.5 mbar, moist atmosphere (ρ0=3 and 10 g m-3) and 1013 mbar for the 
O2 atmosphere (Ulaby et al.1986). 
 
 
 
Figure 2.5 displays the microwave spectra of the zenith transmissivity Yν(0,∞) for three 
different atmospheres, characterized by different surface temperatures T0 and total integrated 
water vapour content Mv. In the figure four window bands can be seen from 25 to 50 GHZ 
(B1), from 70 to 115 GHz (B2), from 125 to 160 GHz (B3), and from 200 to 250 GHz (B4). 
 
Using the expression (2.24), and defining an ‘effective (or mean) radiating temperature Tm(ν)’ 
as 
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the measure of the zenith opacity  τν(0,∞) of the atmosphere is possible, using a ground based 
radiometer directed along the zenith direction (θ=0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.5  Atmospheric transmittivity as characterized by different surface temperatures T0 and 
integrated water vapour content Mv (Ulaby et al. 1986). 
 
 
 
The denominator of  (2.30) can be reduced as follows: 
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Then, combining (2.30) and (2.31) with (2.24), TAP(ν) can be expressed as 
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v                        (2.32)  
where the extraterrestrial radiation has been considered equal to the cosmic radiation, TEXTRA ≈  
TCOS = 2.7 K. 
From the (2.32) the expression of  τν(0,∞) can be obtained  
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The temperature Tm(ν) can be estimated through statistical analysis of  the radiosonde 
measurements, and then τν(0,∞) can be estimated from a measurement of TAP(ν). 
From the values of  TAP(ν), many other measurements of atmospheric variables (such as 
profiles and integrated values) can be performed. 
 
Figure 2.6 presents the schema of the atmospheric sounding by satellite radiometers. 
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Fig. 2.6  Satellite-borne radiometer observing the earth at a nadir angle θ (Ulaby et al.1986). 
 
 
 
The apparent temperature observed by a satellite borne radiometer observing the earth at an 
angle θ relative to the nadir direction is given by 
                         TAP(ν,θ) = TUP(ν,θ) + Yνθ(0,∞)[TBs(ν,θ) + TSC(ν,θ)]                    (2.34) 
where Yνθ(0,∞) is the transmissivity of the entire atmosphere, defined as (see 2.28) 
                                                      Yνθ(0,∞) = θτν sec),0( ∞−e .                                  (2.35) 
The term TUP(ν,θ) represents the upward emission by the atmosphere and is given by 

                             ∫
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and is an important term for atmospheric sensing. The term Yνθ(0,∞)TBs(ν,θ) represents the 
emission by the earth surface (TBs) as attenuated by the intervening atmosphere. The surface 
brightness temperature TBs(ν,θ) is given by 
                                                    TBs(ν,θ) = es(ν,θ)Ts                                            (2.37) 
where  es(ν,θ) is the emissivity of the surface and Ts is its physical temperature. For non-nadir 
(θ ≠ 0) observations, es(ν,θ) is a function of  the roughness and the dielectric properties of the 
surface and is polarization dependent. The last term in (2.34), TSC(ν,θ), is the surface scattered 
contribution and represents the part of the downward-emitted radiation that is reflected 
(scattered) toward the radiometer antenna by the surface. An approximate expression for 
TSC(ν,θ) is 
                                                TSC(ν,θ) ≈ [1- es(ν,θ)] TDN(ν,θ)                           (2.38) 
where [1- es(ν,θ)]  is the surface reflectivity and  TDN(ν,θ) is the downward brightness 
temperature of the atmosphere (2.25). 
The (2.34) can then be expressed in the form 

Y

Y
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The contribution of the two terms on the right side of (2.39) to the apparent temperature 
observed by the radiometer, depends on the frequency. If a frequency is chosen corresponding 
to a low transmissivity of the atmosphere (Yνθ(0,∞) ≈ 0), the second term becomes negligible 
and TAP(ν,θ) ≈ TUP(ν,θ). On the other hand, if the satellite-borne radiometer is intended to 
provide information about the surface, the frequency should be chosen so that Yνθ(0,∞) ≈ 1, in 
which case TAP(ν,θ) approaches the surface brightness temperature. 
 
From (2.39) it is also possible to evaluate the surface emissivity using the brightness 
temperature observed by a satellite antenna (Schiavon et al. 1989). An approximate expression 
for es(ν,θ) as a function of  TAP(ν,θ), in absence of scattering phenomena,  is (Pierdicca et al. 
2008) 
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that is obtained from (2.39) using the expressions 
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where TmDN and TmUP represent the mean radiative temperatures associated with the 
downwelling and upwelling radiation respectively. These temperature can be defined as the 
temperatures that an isothermal atmosphere should have to be equivalent to the actual one and 
are determined applying the radiative transfer scheme to the atmospheric vertical profiles of 
pressure, temperature and relative humidity. 
 
 
2.3  The microwave frequencies of satellite-borne radiometers 
Looking at the evolution of atmospheric sounding by satellite radiometers, starting from the 
early observations in 1968 (see table 2.1), an increase emerges in the number and range of 
frequencies utilized, and a consequent improved precipitation retrieval capability from space. 
Figures 2.7-2.10 show the frequencies utilized by SSM/I, SSMIS, AMSU, and AMSR-E.  
Many frequencies are placed near the absorbing lines of water vapour, at 22 and 183 GHz,  and 
near the absorbing lines of oxygen, at 60 and 118 GHz. Other channels (<22, 85-91 and 150 
GHz) are in the window regions between the absorbing lines. 
 
The channels near 60 GHz - the frequency corresponding to an oxygen absorption band - are 
the “temperature sounding channels”. By operating at these frequencies, where the absorption 
coefficient kν(z) is dominated by the oxygen-absorption coefficient )(

2
zkO , the apparent 

temperature (2.39) can be expressed in the form 
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because the atmospheric transmissivity is quite small (Yνθ(0,∞) ≈ 0) at these frequencies (see 
fig. 2.5) and the last term on the right of the expression (2.39) is reduced to a negligible value.  
 
Table 2.1  Examples of  radiometer frequencies in the history of satellite-based radiometer systems. 
 

Launch 
  date 

Spacecraft and 
 instrument 
acronym 

Frequencies 
(GHz) 

Sept. 
1968 

Cosmos 
243 

 
3.5, 8.8, 22.2, 37 

11 Dec. 
1972 

Nimbus 5 
ESMR 
NEMS 

 
19.3 
22.2, 31.4, 53.6, 54.9, 58.8 

Mar. 
1978 

DMSP 5D-1 
SSM/T 

 
50.5, 53.2, 54.3, 54.9, 58.4, 58.8, 59.4 

24 Oct. 
1978 

Nimbus 7 
SMMR 

 
6.6, 10.7, 18.21, 37 

 
1987 
2003 

DMSP 
SSM/I 
SSMIS 

 
19.3, 22.2, 37, 85.5 
19.3, 22.2, 37, 50.3, 52.8, 53.6, 54.4, 55.5, 57.3, 59.4, 63.3, 63.8(5), 91.6, 150, 
183.3(3)   

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.7 Channels of SSM/I sensor. The channels are marked on the water vapour and oxygen 
opacity behaviour as a function of frequency.  
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Fig. 2.8  Channels of SSMIS sensor. The channels are marked on the water vapour and oxygen 
opacity behaviour as a function of frequency.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.9 Channels of AMSU-A and MH-S sensors. The channels are marked on the water 
vapour and oxygen opacity behaviour as a function of frequency.  
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Fig. 2.10  Channels of  AMSR-E sensor. The channels are marked on the water vapour and 
oxygen opacity behaviour as a function of frequency. 
 
 
 
The (2.42) can be rewritten in the form 

                                     ∫
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where WT(ν,θ,z) is the temperature weighting function 
                                θθν θτ

ν
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T ezkzW .                          (2.44) 
The reason for selecting frequencies in the oxygen-absorption band for the temperature 
retrieval problem is that )(

2
zkO  is strongly dependent on the partial pressure of oxygen in the 

atmosphere )(
2

zPO . Moreover, oxygen has a uniform and time-invariant  mixing ratio in the 
atmosphere ( )(

2
zPO  = 0,21 P(z)) and it follows that WT(ν,θ,z) = WT(ν,θ,P(z)). That is, WT 

depends on the height z  through the pressure P(z). Moreover, the height variation of 
atmospheric pressure  is generally known. These reasons, in addition to the fact that the oxygen 
absorption coefficient is only weakly dependent on temperature, underlie the choice of the 
oxygen bands as a means of retrieving T(z). Figure 2.11 shows plots of the temperature 
weighting functions for three channels in the oxygen band 50-60 GHz. Similar plots can be 
obtained using the other absorbing line of oxygen near 118 GHz.  
 
The channels near the absorption bands of water vapor, at 22 and 183 GHz, are the “humidity 
sounding channels”. They are used to estimate, often in association with other channels, some 
quantities related to water vapour in the atmosphere, as are for example the integrated 
precipitable water vapour or the integrated cloud liquid.  

AMSR-E

18.7
23.8 

36.6

89.0

ZE
N

IT
H

 O
PA

C
IT

Y
 (d

B
)

FREQUENCY (GHz)

6.925 

10.65  



 36

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.11  Temperature weighting functions for downward-looking observations, assuming zero 
surface reflectivity (Waters et al. 1975). 
 
 
Other channels are located in the window bands B1, B2, and B3 and are largely utilized in 
studies of meteorological events. In particular, the application of SSM/I channels, most of them 
lie in window bands, to the passive microwave estimation of precipitation is presented in the 
next section. 
Figure 2.12  shows an overall view of  microwave channels of  SSM/I, SSMIS, AMSU and 
AMSR-E in the plane of the atmospheric transmissivity versus frequency.  
 
 
2.4  Emission-based and scattering-based measurements of precipitation 
 “Precipitation” usually refers to hydrometeors reaching the surface of the earth.  The 
measurement of precipitation using satellite-borne passive radiometers is generally based on 
one of two different physical processes (Wilheit  1986, Wilheit et al. 1991, Berg and Chase 
1992, Spencer et al. 1989, Kummerow et al. 1996, Petty 2001, Kummerow et al. 2001, 
Stephens and Kummerow, 2007). The first is emission-based, where liquid precipitation causes 
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brightness temperature increases over a radiometrically cold background. The second is 
scattering-based, where precipitation, especially that above freezing level, causes brightness 
temperature decreases over a radiometrically warm background.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.12  Channels of SSM/I, SSMIS, AMSU, and AMSR-E sensors. 
 
 
The first process relates rainfall to the emission of thermal energy associated with absorption 
by liquid raindrops (Kirchoff’s law); the second associates the scattering by frozen 
hydrometeors in upper cloud regions with rainfall. In the last process, the scattering (Mie) 
reflects upwelling radiation back to the surface, lowering the observed brightness temperatures. 
While emission-based measurements represent observations of the liquid hydrometeors 
(raindrops) themselves and thereby can be considered direct measurements of rainfall, 
scattering-based measurements are observations of the ice phase, which is involved in the 
raindrop formation process, and are an intermediate case between the very direct microwave 
attenuation and very indirect visible/infrared technique. Moreover, the brightness temperatures 
that are observed in the scattering regime depend on the many details of the frozen 
hydrometeors such as particle sizes, shapes and density which do not appear to be uniquely 
related to rainfall intensity. 
In the emission-based process, a cold background is required in order to clearly observe the 
increase of the brightness temperature due to rainfall. Therefore, this process works well over 
ocean that appears uniformly cold due to its low emissivity at microwave frequencies. On the 
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other hand, it cannot work over land where high surface emissivity obscures the emission 
signal. 
The emission-based measurements of precipitation generally use the lower frequencies of 
microwave passive sensors, below 22 GHz,  where rain is highly absorptive. The scattering-
based measurements use frequencies above the 60 GHz oxygen complex, where scattering 
dominates. At the intermediate frequencies, roughly from 25 to 50 GHz, both approaches are 
considered. 
Using the Mie theory, and a Marshall-Palmer size distribution the radiation absorption and 
scattering properties of hydrometeors can be analyzed (Wilheit et al. 1994, Spencer et al. 
1989). With reference to SSM/I channels, passing from the lowest frequency (19.35 GHz) to 
the highest (85.5 GHz), dramatic increases in the volume scattering (ks) and absorption (ka) 
coefficients, and single scattering albedo (ks/(ks+ka)) are observed. Figures 2.13 and 2.14 
(Spencer et al. 1989) show the variations of these coefficients as a function of SSM/I 
frequencies and rain rate (water and ice spheres). Ice has much smaller absorption coefficients 
than water, leading to high albedo. A single scattering albedo approaching unity indicates that 
any thermal radiation upwelling from below an ice layer will be scattered out of the radiation 
field of view. If the scattering coefficient is large enough (such as at 85.5 GHz), very low 
brightness temperatures can result. On the contrary, if the value of single scattering albedo is 
low (as it is for water at 19.35 GHz) absorption is prevalent on scattering.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.13 Mie volume scattering coefficients (left), and volume absorption coefficients (right) 
for a Marshall-Palmer precipitation size distribution of water and ice spheres. The behavior for 
SSM/I frequencies is shown (Spencer et al. 1989). 
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Fig. 2.14  Single scattering albedo for a Marshall-Palmer precipitation size distribution of 
water and ice spheres. The behaviour for SSM/I frequencies is shown (Spencer et al. 1989). 
 
Most SSM/I frequencies lie in window channels, therefore are mostly suitable for observation 
over the ocean, where surface emissivity is minimal.  The lower frequencies are mostly 
sensitive to liquid water.  The 85-GHz frequency is sensitive to cloud ice scattering, thus it is 
also applicable over land. SSMIS adds temperature and humidity sounding channels that 
transmit information on the atmospheric thermal-hygrometric structure. 
 
 
2.5  Empirical algorithms for measuring rain rate 
A number of algorithms for measuring rain rate from satellite-borne microwave sensor data 
have been proposed since 1977, when the data from the Electrically Scanned Microwave 
Radiometers (Nimbus satellites) became available. Many of  these algorithms are described by 
Wilheit et al. (1994) and are broadly classified as either empirical or physical. Empirical 
algorithms (e.g. Adler and Rodgers 1977, Grody 1984, Spencer 1986, Petty and Katsaros 1990, 
Todd and Bailey 1995) are based on regression relations between satellite-observed brightness 
temperatures and surface- (e.g. radar-) measured rainfall rates. Physical algorithms (e.g. 
Wilheit et al, 1977, Mugnai et al. 1993, Kummerow and Giglio 1994b, Smith et al. 1994b, 
Mugnai et al. 2001, Tassa et al. 2003, Di Michele et al. 2003) use a radiative transfer model of  
varying sophistication to predict the radiation emerging at the top of the atmosphere.  
It must be specified that algorithms classified as empirical are not actually entirely empirical. 
All the algorithms use insights derived from radiative transfer models to select which 
brightness temperatures, or functions of the brightness temperatures, are used as independent 
variables in a regression against ground-based measurements. 
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While the physical algorithms, and particularly the algorithm we have developed at CNR 
ISAC, are described in chapter 3, some aspects of empirical algorithms are outlined in this 
section. 
The development of empirical algorithms has been supported by the fact that they avoid the 
need to determine the cloud microphysical structure that has proved difficult for physical 
algorithms. On the other hand, empirical algorithms depend on factors such as surface 
temperature and emissivity, that vary both spatially and temporally. Consequently, an 
algorithm optimized for a given location at a given time can be not optimal for different 
locations and/or times. For example, the relation proposed by Spencer (1986) has been 
developed for convective oceanic rain systems, based on the decrease of the polarization of the 
satellite-observed 37 GHz brightness temperature (Tb) due to scattering caused by rain: 
                                                   )( 3737 cTbTbbaR VH +−⋅=                                     ( 2.45) 
In (2.45) R is the rain rate (mm/h), Tb37H and Tb37V are the 37 GHz Tb’s (horizontal and 
vertical polarization, respectively), a,b and c are three constants that are obtained 
experimentally. The method is quite sensitive to the ice content of rain systems, so variations in 
storm-ice contents from different climate regimes do not allow the global application of (2.45). 
Grody (1991) proposed a method for the global classification of precipitation and snow cover 
that has been utilized in many algorithms for measuring rain rate. It is based on the 
consideration that the microwave radiation emitted from most natural materials depends 
primarily on the absorption properties of water.  
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Fig. 2.15  Examples of SSM/I measurements for snow cover, aged sea ice, precipitation over 
land (left panel) and for precipitation over ocean (right panel). Brightness temperatures at 
vertical (V) and horizontal (H) polarization are plotted as a function of frequency. In the right 
panel the value of the horizontal polarization channel at 22 GHz is estimated using the vertical 
polarization measurement (Grody 1991). 
 
Since the absorption due to water increases with frequency, the emitted radiation also increases 
with frequency. This is the case of soil, vegetation and melting snow that are classified as 
“absorbers” for this reason. On the contrary, materials such as snow cover and precipitation 
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clouds, composed of ice particles which scatter microwave radiation, are classified as 
“scattering materials”. Since the scattering cross section of these materials generally increases 
with frequency, the radiation emerging from them drops as frequency increases.  
Using the brightness temperatures at 22 and 85 GHz, the two classes of materials can be 
classified in the following way 
            Scattering materials  (Tb22 > Tb85)               Absorbing materials (Tb22 < Tb85).   
Figure 2.15 shows two examples of SSM/I measurements over land (left panel) and over ocean 
(right panel).  
In the panel on the left the brightness temperatures for snow cover, aged sea ice and 
precipitation (scattering materials) are plotted as a function of frequency for the horizontal (H) 
and vertical (V) polarization measurements. In the panel on the right an example of 
precipitation measurements over ocean is shown. Since the low frequencies are least affected 
by scattering and absorption, they respond most strongly to the surface emission. This fact 
explains the different results at 19 GHz in the two panels. Moreover, since both the 22 and 85 
GHz channels respond to water vapour (fig. 2.7), the relatively lower measurement at 85 GHz 
is due to scattering effects. It follows that a “positive” difference between the 22 and 85 GHz 
vertical polarization channels can be used to indicate precipitation (and scattering surfaces) 
over ocean as well as land. In essence, this procedure uses the 22 GHz channel measurements 
to estimate the non-scattering contribution of the 85 GHz measurements. In order to obtain a 
better estimate of the 85 GHz measurements in the absence of scatterers, Grody (1991) has 
considered additional channels and a large training dataset containing a wide variety of surface 
and atmospheric conditions. Moreover, to eliminate any possibility of scattering surfaces or 
precipitation, the data set contains only measurements where the 22 GHz channel exceeds the 
85 GHz channel measurements by more than 10 K. The resulting most accurate two-channel 
relationship estimating the non-scattering contribution of the 85 GHz measurement has the 
form 
                              2

222219 )( VVV TbDTbCTbBAF ⋅+⋅+⋅+=                              (2.46) 
Then, the difference between the 22 and 85 GHz channels is replaced by the “scattering index” 
                                                 SI85V = F – Tb85V .                                                (2.47) 
Index values greater than 10 K are used to identify scattering materials. In order to distinguish 
the different scattering materials, geographic location can be utilized in some cases (desert 
sand and snow cover). Moreover, using SSM/I measurements of precipitation and snow cover, 
Grody (1991) has found a procedure for classifying snow cover and precipitation over land. 
Figure 2.16 shows the results based on snow (left) and precipitation (right) measurements. 
Both graphs contain three reference lines  
       Tb22V = Tb85V                           Tb22V = 257                       Tb22V = 158 + 0.49 Tb85V 
As seen when comparing the two panels, the measurements bound by these empirical 
relationships are predominantly due to precipitation or snow cover conditions. The procedure 
for classification is composed of  the following sequential steps: 
Condition 1 : check for scatterers 
                                                 SI85V  >  10 
Condition 2 : identify snow cover 
                                             Tb22V  <  257          and 
                                    Tb22V  <  158 + 0.49 Tb85V 
Condition 3 :  identify precipitation 
                                             Tb22V  >  257          or 
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                                    Tb22V  > 158 + 0.49 Tb85V 
                                               
For classification over oceans, a fourth condition is obtained using a similar procedure: 
Condition 4 : identify precipitation  (oceans only) 
                                       Tb22V  > 38 + 0.88 Tb19V. 
Finally, to provide an adequate separation between precipitation and desert sand the 
polarization difference of the 19 GHz channel is utilized. 
Condition 5 : identify desert sand 
                                        Tb19V – Tb19H > 20. 
 
The scattering index has also been applied to directly estimate the value of the rain rate 
(Ferraro and Marks, 1995, Kummerow et al. 2001, Wilheit et al 2003). The form of the rainfall 
rate estimation equation for land is  
                                               R = 0.00513 SI85V

1.9468                                      (2.48)     
where R is the rain rate in mm/h. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.16  SSM/I measurements at 22 GHz plotted against the 85 GHz vertically polarized 
measurements for (left) snow cover and (right) precipitation over land. For the expressions of 
the three lines see the text (Grody 1991). 
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CHAPTER  3  –  The Bayesian algorithm for precipitation retrieval 
 
 
Atmospheric sounding using satellite radiometers started in 1968 (Ulaby et al. 1986) with the 
launch of the first satellite carrying microwave radiometers, designed to make measurements of 
the earth surface and atmosphere. But, the first experimental spacecrafts suitable for rainfall 
measurements were launched from 1972 to 1978: Nimbus 5 (1972), Nimbus 6 (1975) with the 
Electrically Scanned Microwave Radiometers (EMSRs) and Nimbus 7 (1978) with the 
Scanning Multichannel Microwave Radiometers (SMMRs) (Spencer 1984, Spencer 1986, 
Prabhakara et al. 1982, Petty and Katsaros 1990). The first instruments used relatively simple 
sensors with few channels and limited spatial resolution, so, the first results were unsatisfactory 
for the meteorological and hydrological communities (Wilheit et al 1994).  
The launch of the Special Sensor Microwave/Imager (SSM/I) on the operational Defense 
Meteorological Satellite Program (DMSP) satellite (F-8) in 1987 introduced a new era of data 
continuity and quality. But it was in 1997, after the launch of the TRMM platform, that the 
retrieval of precipitation profiles received a new significant development (Simpson et al. 1988; 
Kummerow et al. 2000). 
Several techniques (empirical or physical) have been proposed and applied in the last two 
decades for estimating cloud and precipitation parameters from measurements taken by space-
borne microwave radiometers, especially the SSM/I (Wilheit et al. 1994, D.M. Smith et al. 
1998). Important approaches have been based on multiple regression and Maximum 
Likelihood methods. Recently, Bayesian (physical) techniques have proven to have a large 
potential and flexibility for precipitation profiling (e.g., Evans et al. 1995; Kummerow et al. 
1996; Pierdicca et al. 1996; Marzano et al. 1999; Kummerow et al. 2001, Mugnai et al. 2001).  
Briefly, Bayesian techniques (Kummerow et al.1996, Tassa et al. 2003, Di Michele et al. 2003, 
Di Michele et al. 2005) consist of two parts. The first (forward problem) is the generation of a 
database (the Cloud Radiation Database (CRD)) in which the simulated brightness 
temperatures (Tbs), that would be measured by a space-born radiometer, are associated with 
the various structures generated by a cloud-resolving numerical model, to create “profiles” (the 
components of the database). The second (inverse problem) is the retrieval of atmospheric 
parameters, like surface rain rate, using the experimental data (brightness temperatures) of a 
microwave radiometer, and  the  probabilistic (Bayesian) analysis of the CRD. In this second 
part, the profiles used for retrieval are chosen and given weights based on the proximity of the 
observed microwave radiances to those of the database. The unique feature of these techniques 
is that they constitute a rigorous statistical framework for developing cloud model-based 
inversion methods. As opposed to empirical methods, where measurements of both Tbs and 
precipitation parameters are collected to train a retrieval algorithm, the model-based 
approaches are based on refined physical models to simulate the measurements (e.g., Mugnai 
and Wiscombe 1980, Smith and Mugnai 1988, Smith et al. 1992; Mugnai et al. 1993; Smith et 
al. 1994a, Smith et al. 1994b). This point of view offers the possibility to avoid in situ 
measurements and to deepen the understanding of the problem. On the other hand, model-
based approaches have to tackle the critical issues of tuning simulations to the measurement 
manifolds in order to be representative of real observations (Panegrossi et al. 1998; Tassa et al. 
2003, Tassa et al. 2006), as well as the difficulties of an accurate representation of the 
microphysical properties of the atmosphere (Stephens and Kummerow  2007). 
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In this chapter, several aspects of precipitation retrieval based on a physical approach are 
presented. In particular the algorithm we have developed at the CNR ISAC, named Bayesian 
Algorithm for Microwave-based Precipitation Retrieval (BAMPR), and the microwave 
measurements from DMSP satellite are described. 
The chapter is organized as follows. Section 3.1 presents the “forward problem”, that is the 
procedure followed to calculate the simulated Tbs and the implementation of CRD database. 
Then, section 3.2 gives a general description of the inversion methodology, that is of the 
“inverse problem”. Section 3.2.1 delineates the main elements of the BAMPR algorithm 
implemented at CNR. Section 3.2.2 is focused on the “screening problem” - the problem of 
rejecting areas (pixels) without rain or with a very low probability of rain, and therefore not 
suitable for retrieval. Finally, section 3.3 describes an application of the screening procedure to 
atmospheric disturbances over Italy. 
 
 
3.1  The forward problem 
BAMPR is a cloud model-based statistical retrieval technique for estimating surface 
precipitation and cloud profiles. The retrieval is based on the Bayesian estimation theory. A 
schematic block diagram of BAMPR is shown in fig. 3.1. 
 

                       
                     
 
        
Fig. 3.1 –  Block diagram of the Bayesian Algorithm for Microwave-Based Precipitation  
Retrieval (BAMPR). 
 
The two boxes refer to the two main blocks common to all physically based retrieval 
approaches. They are generally referred as the “forward problem” and the “inverse problem”.  
The forward problem consists in the generation of a database (the Cloud Radiation  
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Database (CRD)), using a Cloud Resolving Model (CRM) and a Radiative Transfer Model.  
At the base of the forward problem there is the fact that precipitation on the ground can not be 
directly observed from space. However, in principle it can be derived from knowledge of cloud 
microphysical structure along the direction of sight. Consequently, information relating cloud 
microphysics to observations from satellite-borne microwave radiometers needs to be 
contributed from external sources. Such microphysical information can be derived from a 
Cloud Resolving Model. A shortcoming of this approach is that it is currently not possible to 
run these models in-line with the flow of satellite data.  It is therefore necessary to run the 
CRM off-line for a number of well-documented events (generally, results of re-analysis 
exercises) and collect the results in a database.  Then, in a post-analysis phase, a detailed 
Radiative Transfer Model (RTM), which is particularly necessary when ice is involved in the 
precipitation event, is applied to the CRM output to compute the upwelling brightness 
temperatures (Tbs) that would be measured by a satellite-borne MW radiometer. The collection 
of cloud and precipitation microphysical profiles for a series of different CRM simulations and 
of the associated Tbs at the instrument (for instance SSM/I or SSMIS) channel frequencies 
constitutes the Cloud-Radiation Database. 
It is important to use several cloud model simulations for different types of precipitation 
systems, and to generate the corresponding cloud-radiation databases in order to specialize the 
algorithm to different storm structures. In essence, the algorithm’s performance can be 
improved by generating a statistically significant CRD by means of a large number of different 
CRM simulations representing all precipitation regimes that occur in the zone and season under 
investigation. Figure 3.2 shows the scheme of the forward problem. 
The inverse problem consists in the retrieval of meteorological parameters, the hydrometeor 
columnar content and the surface rain rates, using the experimental data (the brightness 
temperatures) of a microwave radiometer, and  a  probabilistic analysis (Bayesian) of the CRD. 
Particularly, precipitation retrieval is performed by means of a physical-statistical profile-based 
Bayesian algorithm that has been developed and is continuously being improved at CNR-
ISAC.  The algorithm makes use of the CRD to search for the most probable profile(s) 
according to the proximity of measured and modelled Tbs and on a priori probabilities of 
occurrence of the various profile structures.  Surface rain rates are computed by means of the 
model rain rates for the solution hydrometeor profiles.  
 
3.1.1 Cloud Resolving Model  
The model used is the CRM “University of Wisconsin – Non-hydrostatic Modeling System” 
(UW-NMS) (Tripoli and Cotton, 1981, Tripoli 1992). 
The UW-NMS is a three-dimensional (3-D), time-dependent cloud/mesoscale numerical model 
capable of simulating atmospheric phenomena with horizontal scales ranging from the 
microscale (turbulence) to the synoptic scale (extratropical cyclones, fronts, etc.).  It is based 
on the non-Boussinesq quasi-compressible dynamical equations. Model thermodynamics are 
based on the prediction of a moist ice-liquid entropy variable, designed to be conservative over 
all ice and liquid adiabatic processes. Dynamic properties of flow such as vorticity, kinetic 
energy and potential enstrophy are conserved by the advection scheme in the UW-NMS.  The 
model uses variable step topography capable of capturing steep topographical slopes, while at 
the same time accurately representing subtle topography variations.  
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Fig. 3.2 – Scheme of the Cloud Radiation Database (CRD) generation (forward problem). 
 
 
Conservation equations for the specific humidity of total water and several ice and liquid water 
hydrometeor categories are also included.  
The model is formulated on a two-way multiply nested grid system. The microphysical module 
used in the UW-NMS version, is based on the scheme described by Flatau et al. (1989) and 
Cotton et al. (1986).  The microphysics is a bulk microphysics parameterization, which 
includes six hydrometeor categories labelled as: 1) suspended cloud droplets, 2) precipitating 
rain drops, 3) suspended pristine ice crystals, and precipitating 4) ice aggregates, 5) low-
density graupel particles (or snow) and 6) high density graupel particles.  Depending on the 
application, all or some of these categories may be selected. Any combination of frozen and 
liquid hydrometeors can coexist within the same grid volume at any given time to allow 
hydrometeor category interaction to take place.  
 
3.1.2 The Radiative Transfer Model 
In order to simulate the upwelling brightness temperatures (Tbs) to be included in the database, 
the radiative transfer (RT) code has been applied to the microphysical outputs of the simulated 
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precipitation events in order to compute the upwelling radiances over the simulated satellite 
footprints.  To this end, fully 3-D RT schemes should be used. However, these schemes are 
computationally heavy, and rely completely on the macrophysical structure of the cloud model 
simulation.  Thus, it is customary to resort to simpler one-dimensional (1-D) plane-parallel 
schemes, which are much faster – though less accurate.  
A 3-D adjusted plane parallel RT scheme, which has been developed by Roberti et al. (1994) 
(see also Liu et al. 1996, Bauer et al. 1998, Tassa et al. 2003) has been used. In this approach, 
the plane-parallel cloud structures are generated from the cloud model paths along the 
radiometer direction of sight, rather than from the vertical cloud model columns. The RT is 
therefore performed along a slanted profile in the direction of observation of the radiometer.  
Remarkably, the downward flux is computed through the cloud structure along the specular 
line reflected at the surface, a fact that may have a significant effect at cloud edges at low 
frequencies. This method is computationally efficient, and accounts for the geometrical errors 
that a complete 1-D RT scheme is prone to, partially reducing errors in radiative transfer 
modelling. However, pure 3-D radiative effects are neglected, since the radiation is still 
trapped inside the slanted (and reflected) column, and in case of enhanced horizontal 
inhomogeneities, the scheme may produce significant discrepancies with the results obtained 
from a fully 3D model.  
The performance of the slanted-path plane-parallel RT approximation has been deeply 
investigated by several authors (Roberti et al. 1994, Bauer et al. 1998, Kummerow 1993) who 
generally agree on the errors being limited to a few K on average scenes, even though local 
values may be important in case of large horizontal gradients (e.g., at the cloud edges) (see Liu 
et al. 1996, Czekala et al. 2000, Olson et al. 2001).  
Once the monochromatic upwelling radiances have been computed at high resolution (i.e., at 
the resolution of the CRM model – 2 km) for the full cloud model domain, the upwelling Tbs 
at sensor resolution (i.e., which would be observed by a real radiometer) are computed for each 
channel using the instrument transfer function: i.e., by first integrating the monochromatic 
upwelling radiances over the channel-width, taking into account the channel spectral 
responsivity, and then integrating the channel upwelling radiances over the field of view (i.e., 
over all cloud-model pixels that are contained in the field of view), taking into account the 
radiometer antenna pattern and radiometric noise.  
Then, the corresponding high-resolution hydrometeor liquid/ice water content profiles, as well 
as the corresponding precipitation rate profiles for both rain and ice, are extracted from the 
cloud model simulation and averaged over the field of view to produce the same quantities at 
sensor resolution.  A key point of this process concerns the definition of the cloud structures 
which have to be associated to the simulated Tbs.  In principle, for each channel a different 
cloud structure – (basically) filling up the slanted elliptical cylinder with sizes corresponding to 
the cross-track and along-track resolutions of the considered channel – should be associated 
with each Tb point of the database. This strategy, however, would make the multi-frequency 
retrieval rather complex and not univocal.  The simplest choice is therefore to choose a 
common single resolution for the microphysical parameters belonging to the cloud-radiation 
database.  Slanted cloud structures corresponding to the resolution of the 89 GHz frequency 
has been associated, as a reasonable compromise.  
Some of the outputs of the CRM simulations are inputs for the radiative transfer model in order 
to generate the upwelling Tbs.  In detail, these quantities are the vertical profiles of the 
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liquid/ice water contents (LWC and IWC, respectively) of the various hydrometeors, together 
with the surface temperature and the temperature / moisture profiles.  
Other inputs to the RTM are: the radiometer model, the surface emissivity model, and the 
single-scattering model (fig. 3.2).  
 
Radiometer Model  
The radiometer model is a secondary input to the RTM and specifies all characteristics of the 
radiometer that have to be simulated – i.e. frequency, polarization and width of the candidate 
channels; viewing angle of the radiometer; field of view and antenna pattern of the various 
channels. In principle, an Instrument Transfer Function has to be defined for each channel in 
order to compute the upwelling Tbs from the upwelling monochromatic radiances. For this 
study, the channel characteristics of the following radiometers have been used: 
Special Sensor Microwave Imager (SSM/I) 
Special Sensor Microwave Imager/Sounder (SSMIS) 
Advanced Microwave Sounding Unit – A  (AMSU-A) 
Advanced Microwave Sounding Unit – B   (AMSU-B) 
Microwave Humidity Sounder (MHS) 
TRMM Microwave Imager (TMI) 
Advanced Microwave Scanning Radiometer-EOS (AMSR-E)  
 
Surface Emissivity Models  
Surface emissivity impacts the upwelling Tbs especially at the lower window frequencies.  It 
depends on frequency and polarization, observation geometry, and surface characteristics 
(land/ocean, surface roughness, type of soil and soil cover, soil humidity, etc.).  Thus, three 
different surface emissivity models were selected to best represent the different surface 
backgrounds of the selected CRM simulations.  
The three surface emissivity models that have been implemented are:  
For land surfaces, the forest and agricultural land surface emissivity by Hewison (2001) ; 
For a sea surface, the fast and accurate ocean emissivity model of English and Hewison (1998) 
(see also Hewison and English 2000, and Schluessel et al. 1998), which provides accurate 
estimates of surface emissivity between 10 and 200 GHz for view angles up to 60° and wind 
speeds from 0 to 20 m s-1. 
For snow covered surfaces, the snow emissivity model that has been empirically derived by 
Hewison and English (1999) from satellite retrievals and ground-based measurements; in 
particular, five different snow cover types have been considered that cover the full range of 
snow emissivity presented by the previous authors – i.e., forest +snow, deep dry snow, fresh 
wet snow, frozen soil, first year ice, compact snow.  
 
Single-Scattering Models  
Computation of the single-scattering properties of the various hydrometeor species is 
straightforward if only pure water and ice spheres are considered (i.e., for Mie scattering), but 
can be a major challenge for natural ice hydrometeors (especially for snowflakes and ice 
aggregates) due to their wide variety of sizes, densities, and shapes.  Since information on 
shape is not available from the UW-NMS microphysical parameterization scheme, some 
assumptions have been taken; i.e.:  

http://en.wikipedia.org/wiki/Microwave
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Liquid (cloud and rain) particles are assumed to be spherical and homogeneous, and therefore 
their scattering properties are computed by means of Mie theory (Bohren and Huffman, 1983) 
using an efficient code developed by Wiscombe (1980).  
Graupel particles are assumed to be spherical with densities near to that of pure ice (0.9 g cm-

3). They are assumed to be “equivalent homogeneous spheres” having an effective dielectric 
function obtained by combining the dielectric functions of ice and air (or water, in case of 
melting) according to the effective medium Maxwell-Garnett mixing theory for a two-
component mixture of inclusions of air (water) in an ice matrix (see Bohren and Huffman 
1983). As a consequence, Mie theory is used even in this case.  
Pristine ice particles are highly non-spherical, and the use the Grenfell and Warren 
Approximation (1999) (see also Neshyba et al. 2003) was chosen. The single-scattering 
properties of each nonspherical ice particle were computed by means of a collection of  ns 
equal-size solid-ice spheres having a diameter determined by the volume to cross-sectional 
area ratio (V/A) of the original nonspherical ice particle. The volume (V) is provided by the 
UW-NMS simulation.  For calculating the cross-sectional area (A), the observational 
relationship 
                                                    A/ (πD2/4) = C0 DC                                   (3.2.3) 
has been used. The relation  3.2.3 was published by Heymsfield and Miloshevich (2003) for 
several different individual particle habits [here, D (in cm) is the maximum diameter of the 
particle, while the coefficients C0 and C depend on ice particle habit].  For pristine ice crystals 
and aggregates, we used the values C0 = 0.18 and C = 0.2707, that are indicated by the same 
authors as appropriate averages for midlatitude, continental mixed-habit cirrus clouds. As a 
result, the diameter (Ds) and the number (ns) of the equivalent solid-ice spheres are given by:  
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Where ρice = 0.916 g cm-3 while the density ρ of the pristine ice crystals is usually equal to 0.1 
g cm-3.  
Snowflakes and ice aggregates are low-density, fluffy ice particles (as long as they are 
completely frozen) that can not be modeled according to Maxwell-Garnett mixing theory – the 
resulting “equivalent homogeneous soft-ice spheres” would, according to Mie theory, have 
very large asymmetry factors (> 0.9) at the higher microwave frequencies and would not 
adequately “cool” the upwelling radiation.  To overcome this problem, the Chinnawat and 
Staelin (2005) model was used, in which non-spherical results were fitted using Mie 
calculations for spheres having a density that is a function of the wavelength. 
 
3.1.3 The Cloud Radiation Database  
To generate the CRD database for the European region sixty simulations of different 
precipitation events over the European area for the March 2006 – February 2007 one-year 
period were performed by means of the cloud resolving model UW-NMS, in such a way as to 
take into account the various climatic regions, types of precipitation and seasonal variations.  
Table 3.1 provides the details of all simulations.   
Figure 3.3 shows the geographic location (inner domain) of the simulation. The season and the 
duration of the simulations are also specified.  
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  Table 3.1 – Details of the 60 UW-NMS simulations, divided by season. 
 
 

    Initialization Duration     
  code Date Time in hours Lat  Lon (E > 0) 

100 2-mar-06 12.00 36 48,0 4,0 
101 6-mar-06 0.00 36 38,0 28,0 
102 9-mar-06 12.00 36 48,0 22,0 
103 19-mar-06 12.00 36 42,0 -9,0 
104 25-mar-06 12.00 24 40,0 -15,0 
105 26-mar-06 12.00 24 50,0 10,0 
106 4-apr-06 6.00 24 62,0 -18,0 
107 9-apr-06 6.00 36 59,0 28,0 
108 13-apr-06 12.00 36 65,0 -25,0 
109 22-apr-06 6.00 30 36,0 -6,0 
110 3-mag-06 18.00 30 54,0 -7,0 
111 8-mag-06 0.00 24 30,5 17,0 
112 12-mag-06 0.00 36 63,0 0,0 
113 16-mag-06 12.00 24 50,0 -15,0 

S
P

R
IN

G
 

114 25-mag-06 0.00 24 55,0 15,0 
115 5-giu-06 12.00 36 62,0 33,0 
116 10-giu-06 12.00 30 35,0 9,0 
117 14-giu-06 0.00 24 41,0 -6,0 
118 16-giu-06 18.00 30 46,0 2,0 
119 23-giu-06 18.00 30 57,0 -5,0 
120 2-lug-06 0.00 24 42,0 27,0 
121 5-lug-06 18.00 30 47,0 1,0 
122 13-lug-06 6.00 24 35,0 -2,0 
123 22-lug-06 12.00 36 50,0 28,0 
124 28-lug-06 0.00 24 63,0 14,0 
125 2-ago-06 12.00 30 60,5 -22,0 
126 6-ago-06 12.00 30 47,0 12,0 
127 12-ago-06 18.00 36 41,0 17,0 
128 20-ago-06 6.00 24 54,0 25,0 

SU
M

M
ER

 

129 28-ago-06 0.00 24 52,0 -20,0 
130 2-set-06 12.00 24 57,0 5,0 
131 5-set-06 12.00 30 53,0 35,0 
132 7-set-06 18.00 24 57,0 30,0 
133 16-set-06 12.00 36 68,0 17,0 
134 2-ott-06 12.00 30 48,0 5,0 
135 6-ott-06 18.00 24 47,0 7,0 
136 9-ott-06 18.00 36 36,0 23,0 
137 17-ott-06 18.00 24 55,0 5,0 
138 22-ott-06 12.00 30 57,0 13,0 
139 31-ott-06 6.00 24 36,5 31,0 
140 5-nov-06 18.00 24 60,0 25,0 
141 6-nov-06 12.00 24 57,0 -5,0 
142 10-nov-06 12.00 24 53,0 5,0 
143 11-nov-06 18.00 24 64,0 -20,0 

FA
LL

 

144 19-nov-06 0.00 24 53,0 -10,0 
145 2-dic-06 18.00 24 53,0 -2,0 
146 9-dic-06 18.00 24 45,0 24,0 
147 12-dic-06 0.00 24 34,0 -3,0 
148 20-dic-06 12.00 36 40,0 14,5 
149 23-dic-06 12.00 36 37,0 12,0 
150 1-gen-07 12.00 36 63,0 7,0 
151 3-gen-07 6.00 36 60,0 5,0 
152 5-gen-07 18.00 24 51,0 -3,0 
153 10-gen-07 6.00 24 58,0 23,0 
154 12-gen-07 18.00 30 35,0 30,0 
155 2-feb-07 0.00 36 65,0 -20,0 
156 5-feb-07 12.00 36 33,0 35,0 
157 12-feb-07 12.00 30 45,0 17,0 
158 16-feb-07 12.00 36 43,5 -17,0 
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159 23-feb-07 12.00 30 67,0 5,0 
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Fig. 3.3  – Geographical location of the NMS simulations. In the two panels, the season (top) 
and the duration (down) of the simulations are also shown. 
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For all UW-NMS simulations, all particles are assumed to be spherical.  While cloud droplets 
and pristine ice crystals are assumed to be monodispersed (with characteristic diameters of 
0.002 and 0.024 cm, respectively), the other hydrometeors are supposed to be distributed with 
size (diameter DR of the circumscribed sphere) according to inverse-exponential constant-
slope / constant-intercept distributions (Panegrossi et al. 1998) 
                                                     n(DR) = A exp (-B DR)  cm-3 cm-1          (3.2.1) 
where the intercept (A) or the slope (B) are derived by the model at each grid point. 
Specifically, constant intercepts of 0.08 cm-4, 0.071 cm-4, and 0.014 cm-4 are assumed for rain, 
graupel, and snow, respectively; for aggregates, a constant slope of 10 cm-1. Finally, while ice 
crystals and graupel particles have constant density ρ equal to 0.1 g cm-3, and  0.9 g cm-3 

respectively, ice aggregates have size-dependent densities  
                                                      ρ(DR) = 0.015 / DR 0.6  

 
g m-3 ,                (3.2.2) 

as in Panegrossi et al. (1998). Finally snowflakes have a density related with snowflake history 
that is directly predicted by the CRM. 
For each simulation, three nested, concentric and steady grids were used – as schematically 
shown in Figure 3.4.  The first and outer grid was set at 50 km resolution, covering a large 
region of 4550 km x 4550 km (Domain A). The second and intermediate grid was set at 10 km 
resolution, covering a 910 km x 910 km region (Domain B). The third and inner grid was set at 
2 km resolution, covering a 502 km x 502 km region (Domain C).  For all grids, 35 vertical 
levels were used up to about 18 km.  
Each simulation was run for 24 or 36 hours with a 12-hour spin-up time.  This initial period is 
necessary to better initialize the model by adapting the initial data to the maximum resolution 
of the model.  The NOAA National Centers for Environmental Prediction (NCEP) Global 
Forecasting System (GFS) gridded analysis fields at about 100 km resolution were used as 
initial conditions and to nudge the boundaries of the outer grid every six hours throughout the 
simulation period.  After the first 12 hours, the model extracts hydrometeor profiles over the 
inner domain C – this is done every hour of the remaining simulation time.  
As an example, Figure 3.5 shows some details of the simulation of an oceanic storm that 
occurred near the Azores islands on March 25, 2006 (simulation number 104 – see table 3.1).  
It is evident that in the synoptical wind pattern of the outer domain (Domain A); a large scale 
wind convergence triggers strong convection that is aligned along the convergence line itself.  
Once convection has developed, it exalts convergence with a positive feedback and produces 
intense convective clouds in the inner grid (Domain C). Then, the simulated upwelling 
brightness temperatures were computed, following the procedures explained in Section 3.1.1, 
on the basis of all high-resolution (Domain C) atmospheric and hydrometeor profiles at all one-
hour time steps of all 60 simulations.  
 
Database contents and statistics 
The CDR database generated at CNR ISAC, contains about 1,000,000  rainy profiles (selected 
from about 70,000,000 simulated profiles), obtained from the aforementioned 60 simulations. 
These profiles and the associated Tbs have been averaged to produce the sensor-resolution (15 
km) profiles and the associated Tbs that simulate the SSM/I – SSMIS observations.  There are 
about 300.000 of these profiles that contain at least one high-resolution rainy profile.  These 
are the profiles that enter in the database, together with the associated Tbs.  As an example, 
table 3.2 shows the components of each profile in the database, for SSM/I. 
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Fig. 3.4  – Example of grid nesting design (3 grids for each UW-NMS simulation). 
 
 
 

    
 
 
Fig. 3.5 – UW-NMS simulation of a storm over the Atlantic Ocean (case 104). Left panel: 
sea-level wind field in a portion of outer Domain A. Right panel: sea-level wind field and 
cloud field within inner Domain C. 
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            Table 3.2   Components of a profile in CRD. 
 
 

 
   Tb19.35V (K)                  Tb85.00V (K)               Tb150.00H(K)                 Tb52.80H(K) 
   Tb19.35H (K)                  Tb85.00H(K)                Tb183.31±7H(K)              Tb53.59H(K) 
   Tb22.24V (K)                  Tb91.66V(K)                Tb183.31±3H(K)            
   Tb37.00V (K)                  Tb91.66H(K)                Tb183.31±1H(K) 
   Tb37.00H  (K)                 Tb150.00V(K)               Tb50.30H(K) 
 
   Vert-integrated cloud water path (kg/m**2) 
   Vert-integrated rain water path (kg/m**2) 
   Vert-integrated graupel water path (kg/m**2) 
   Vert-integrated pristine water path (kg/m**2) 
   Vert-integrated snow water path (kg/m**2) 
   Vert-integrated aggregates water path (kg/m**2) 
   Surface rainrate (mm/hr) 
   Surface pristine (mm/hr ) 
   Surface aggregate (mm/hr ) 
   Surface graupel (mm/hr ) 
   Surface snow (mm/hr ) 
    
   Profile number             Latitude                     Longitude 
   Percent land                 Percent snow              Percent ice 
   Height of surface (km) 

 
 
 
 
 
Microphysical quantities 
Table 3.3 and figures 3.6 and 3.7 provide some simple statistics of the microphysical properties 
of the cloud structures in the CRD database.  It is quite evident that even though the cases of 
low water/ice contents and low precipitation are the majority, there is a large variability in the 
cloud microphysical properties which is related to the fact that our simulations attempt to cover 
the different climatic regions, types of precipitation and seasonal variations that can occur in 
the European area.  Additional brief comments are inserted at the end of table and figure 
captions. 
 
Upwelling brightness temperatures 
Tables 3.4 and 3.5 and figures 3.8 to 3.10 provide the same statistics for the simulated 
upwelling Tbs for all relevant SSM/I-SSMIS channels within the CRD database. Large 
variations may be observed, which are due to the wide range of different meteorological and 
environmental conditions of the simulated events. Additional brief comments are inserted at 
the end of table and figure captions. 
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Comparison of observed and simulated  brightness temperatures 
As underlined in next chapter, the database plays an essential role in the Bayesian technique. 
Two properties of the database are relevant in this sense: the “completeness” (number of 
simulated profiles) and the “consistency” with the experimental data.  
 
 
            Table 3.3 - Statistical indexes of simulated Tbs over land 
 

 mean variance spread 
Cloud Columnar Content (Kg m-2) 0,26 0,12 0 - 5,66 
Rain Columnar Content (Kg m-2) 0,34 0,53 0 - 32,95 
Graupel Columnar Content (Kg m-2) 0,06 0,18 0 - 18,57 
Pristine Ice Columnar Content (Kg m-2) 0,74 2,51 0 - 22,38 
Snow Columnar Content (Kg m-2) 0,54 0,56 0 - 5,31 
Aggregate Columnar Content (Kg m-2) 0,07 0,04 0 - 10,02 
Surface Rain Rate (mm hr-1) 1,11 7,00 0 - 130,69 

 
         
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.6 – Probability Distribution Functions (PDFs) of the columnar contents (CC) of liquid 
and frozen hydrometeors within the CRD European database.  Note that all quantities are 
strongly peaked at 0 kg/m2. 
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Fig. 3.7 -  PDFs of liquid (bottom) and solid (top) precipitation rates at the surface within the 
CRD European database.  As observed also in Table 3.3, liquid precipitation may have very 
high rates, while solid precipitation is always low. 
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        Table 3.4 - Statistical indexes of simulated Tbs over land.    
 

Over land polarization mean variance spread mode 
tb 19.35GHz  V 275 41 220 - 294 279 
tb 19.35GHz  H 271 207 164 - 294 279 
tb 22.235GHz  V 275 24 232 - 293 277 
tb 37 GHz  V 274 25 224 - 293 276 
tb 37 GHz  H 271 104 193 - 293 276 
tb 85 GHz  V 269 85 110 - 294 271 
tb 85 GHz  H 268 106 110 - 294 272 
tb 91.66 GHz  V 269 93 105 - 294 273 
tb 91.66 GHz  H 268 112 105 - 294 273 
tb 150 GHz  V 266 158 92 - 290 273 
tb 150 GHz  H 266 161 92 - 290 273 
tb 183.31±7 H 242 19 133 - 261 240 
tb 183.31±3 H 253 31 107 - 272 252 
tb 183.31±1 H 261 80 96 - 281 263 
tb 50.3 GHz  H 268 39 188 - 285 271 
tb 52.8 GHz  H 258 15 198 - 268 260 
tb 53.596 GHz  H 245 9 210 - 251 246 

 
 
 
 
       Table 3.5 - Statistical indexes of simulated Tbs over ocean. 
 

Over Ocean polarization mean variance spread  mode 
tb 19.35GHz  V 196 122 178 - 266 185 
tb 19.35GHz  H 136 348 98 - 251 118 
tb 22.235GHz  V 219 249 189 - 273 203 
tb 37 GHz  V 222 121 165 - 263 210 
tb 37 GHz  H 170 536 127 - 260 149 
tb 85 GHz  V 256 69 60 - 279 260 
tb 85 GHz  H 232 470 60 - 273 256 
tb 91.66 GHz  V 258 68 59 - 282 259 
tb 91.66 GHz  H 235 453 59 - 274 247 
tb 150 GHz  V 267 80 66 - 290 266 
tb 150 GHz  H 259 144 66 - 289 270 
tb 183.31±7 H 242 21 81 - 261 239 
tb 183.31±3 H 253 24 73 - 271 250 
tb 183.31±1 H 262 45 70 - 282 260 
tb 50.3 GHz  H 235 131 121 - 266 225 
tb 52.8 GHz  H 253 31 135 - 266 247 
tb 53.596 GHz  H 242 23 159 - 252 239 
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Fig. 3.8 - PDFs of the simulated upwelling Tbs in the CRD European database for the five low-
frequency SSM/I – SSMIS window channels over land (top) and ocean (bottom).  As expected, we find: 
a) a large difference between the PDF peaks for land and ocean, which is due to the “cold” emission 
from the sea surface as compared to land surfaces; and b) a large difference over ocean between the two 
polarizations for each frequency, which is due to the higher ocean emissivity at vertical polarization. 
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Fig. 3.9 - Same as figure 3.8, but for the high-frequency window channels.  As expected, the 
differences between land and ocean and between the two polarizations are considerably lower 
than for the low-frequency channels because of the much larger atmospheric contribution to the 
upwelling Tbs. 
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Fig. 3.10 -  PDFs of the simulated Tbs for the three lower SSMIS channels in the 50-60 GHz oxygen 
band over land (top) and for the three SSMIS channels in the 183 GHz water vapor line over ocean 
(bottom).  In both cases, the corresponding results for the other background are not shown because at 
these absorption frequencies the atmosphere has a much larger effect than the background.  As 
expected, in each panel the PDF peak position is colder for channels that have a weighting function 
peaked at higher atmospheric levels. In the lower panel, a cold tail is found for the 183.31±7 channel 
since it is more external to the absorption band and therefore more influenced from ice scattering. 
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A good completeness is obtained if the N-dimensional space of the simulated Tbs contains the 
space of the experimental Tbs. More precisely, the minimum distance among each 
experimental point and the simulated points in this space must be less than the uncertainty of 
the experimental measure. A good consistency is obtained if the relation between the Tbs are 
equal in the simulated and experimental Tbs. 
To analyze the database in terms of consistency and completeness a sample of experimental 
Tbs was built collecting data from 9976 SSM/I and 1011 SSMIS overpasses. 
 
With reference to the “consistency” analysis, figures 3.11- 3.15 show the results of a study on 
the relations between couples of Tbs existing in both the simulated and observed data. 
In each image the two Tbs are reported on the axes, and for each point the log of the 
occurrences is shown. A preliminary analysis was performed using two different scattering 
models for ice particles: Maxwell-Garnett and Grenfell-Warren. The best agreement between 
observed and simulated data was found with the Grenfell-Warren model. A good overlapping 
is evident in some cases (i.e. fig. 3.14), but some problems are pointed out in others (i.e. fig. 
3.15) highlighting the limits of the CRD and of the forward model. For this reason in the 
retrieval procedure a low weight (Wj) was assigned to these channels. 
 
Figure 3.16 shows the result of a study on the completeness of the database. To obtain the 
figure the following procedure was followed: 
 
1 - In the Tb’s space of the database, a neighbourhood with a radius of 1K was fixed. 
2 - For each experimental point in this space, the number of simulated points included in its 
neighborhood was considered; N0 is the number of experimental points with no simulated 
points in its neighbourhood, and N1 is the number of experimental points with at least 1 simulated 
point in its neighbourhood. 
3 – The value of  N01 = N0/(N0+N1) was then calculated. 
4 – Steps 2 and 3 were then repeated using radii ranging from 1 to 10K. 
 
The complete procedure was repeated for different groups of channels. 
 
Figure 3.16 shows the result of this study for three different groups of Tbs. On the vertical axis 
N01 (the % of missed points), and on the x axis the radius of the neighbourhood, are shown. For 
the  ‘all frequencies’ (black line) analysis, the dataset shows a good completeness for a radius 
of about 10K, considering only the highest frequencies (red line), or the window frequencies 
(without 19GHz) (green line) a good completeness is obtained with a radius of about 7K.  
This result gives an important reference in the determination of the minimum distance in the 
selection of profiles of the database in the Bayesian retrieval algorithm. 
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Fig. 3.11 – Relation between the Tbs at 19.350 and 37.000 GHz for the simulated (top-left), 
and observed data (top-right) over land. The log of occurrences is shown for each point. The 
overlapping of simulated and observed points is also shown (down). 
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Fig. 3.12 - Relation between the Tbs at 37.000 and 50.300 GHz for the simulated (top-left), and 
observed data (top-right) over land. The log of occurrences is shown for each point. The 
overlapping of simulated and observed points is also shown (down). 
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Fig. 3.13 - Relation between the Tbs at 91.660 and 150.000 GHz for the simulated (top-left), 
and observed data (top-right) over land. The log of occurrences is shown for each point. The 
overlapping of simulated and observed points is also shown (down). The two distributions are 
very similar.  
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Fig. 3.14 - Relation between the Tbs at 183.313 and 183.317 GHz for the simulated (top-left), 
and observed data (top-right) over land. The log of occurrences is shown for each point. The 
overlapping of simulated and observed points is also shown (down). The two distributions, of 
the sounding channels in the water vapor band,  are very similar.  
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Fig. 3.15 - Relation between the Tbs at 19.350 and 183.313 GHz for the simulated (top-left), 
and observed data (top-right) over land. The log of occurrences is shown for each point. The 
overlapping of simulated and observed points is also shown (down). The two distributions are 
very different. The vertical tail of the simulated Tbs is missing in the observed Tbs. This tail, 
corresponding to variations of the 19 GHz Tbs not observed experimentally, points out a 
mismatch probably due to errors in the surface parameterization.    
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Fig. 3.16 – Analysis of the completeness of the database (see the text). 
 
 
3.2 The inverse problem 
The inverse problem consists in the retrieval of meteorological parameters, like the 
hydrometeor columnar content and surface rain rates, using the experimental data (the 
brightness temperatures) of a microwave radiometer, and  a  probabilistic analysis (Bayesian) 
of the CRD data. The scheme of the inversion technique is shown on the right side of fig. 3.1.  
The Bayesian approach to precipitation retrieval has become fairly common in the remote 
sensing community (Kummerow et al. 1996). Indeed, the adjective "Bayesian" is very often 
synonymous of a statistical inversion algorithm, resembling a Maximum Likelihood estimation 
trained by a CRD (Marzano et al. 1994). Strictly speaking, a Bayesian algorithm simply uses 
the Bayes theorem to obtain an optimal estimation of a set of random parameters from a given 
set of measurements (observables). Although the inversion techniques have been widely 
described (see for instance Evans et al. (1995), Pierdicca et al. (1996)), the theoretical concepts 
representing the basic underlying principles used in implementing the algorithm are expounded 
in this section. 
 
3.2.1    The BAMPR algorithm   
The BAMPR technique is based on a probabilistic approach, due to the statistical nature of 
precipitating cloud parameters. 
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Let us consider the vector g of cloud parameters as a random variable: it is fully described by 
the probability density function (pdf) p(g). Making the measurement tm, the conditional pdf of 
g given tm, indicated as p(g|tm), is called the a posteriori probability. In principle, the result of 
estimating ĝ through the observation tm is given by the complete pdf  p(g|tm), although it is 
often convenient to represent it with only one value ĝ. Criteria to define such a value are 
identified in the framework of the decision theory, where a "weight" w(g,ĝ) is assigned to the 
couples (g,ĝ) of all possible va1ues of the cloud parameters g and their estimates ĝ. The weight 
represents a measure of the quality of the estimation and is expressed as a non negative real 
function W of the two random variables g and ĝ. The ensemble average of the weight function 
is called "risk function" R (Barkat, 1991): 
                                                        R = ‹W( g, ĝ)›                                                  (3.3.1)    
The risk function R can be interpreted as the confidence interval of the estimate. The value of g 
that minimizes R is intended as an optimal Bayesian estimation. Different forms of the weight 
function give different kinds of estimation, but two are the forms leading to the most 
frequently used estimation criteria. The first one is the uniform weight function: 
 
                                                                     0 if  g = ĝ 

                                             W(g, ĝ) = {                                                    (3.3.2) 
                                                                    1 elsewhere 
 
When W has the expression in (3.3.2), minimizing R we obtain as optimal estimation the value 
of g corresponding to the maximum of p(g|tm ), i.e. its modal va1ue: 
 
                                                     ĝ MAP = Mode{g|tm }                                          (3.3.3) 
 
This represents the estimation criterion of the Maximum A posteriori Probability (MAP). 
A second common form for W is the quadratic one: 
                                                    W(g, ĝ) = (g – ĝ)2                                                    (3.3.4) 
In this case, it can be demonstrated that the optimal estimation is the expected value of g, given 
a set of measurements tm: 
                                         ĝMMS = E{g|tm } =  ∫ g p(g|tm) dg                                        (3.3.5) 
This choice for the weight function leads to the estimation criterion of the Minimum Mean 
Square (MMS). 
From a numerical point of view, the implementation of (3.3.3) imposes the search of a 
histogram maximum. This algorithmic aspect can be very sensitive to the sampling and the 
density of cloud structure parameters (and corresponding Tbs) within the CRD (Marzano et al. 
2001). To overcome these difficu1ties intrinsic to the MAP solution, in the retrieval scheme we 
have developed at CNR ISAC  the MMS criterion expressed by (3.3.5) was utilized. 
Introducing the vector t of simulated Tb and the function t(g) that represents the adopted 
radiative transfer model, tm (the measurement of a real radiometer when observing g) can be 
written as (Pierdicca et al. , 1996) : 
                                                      tm = t(g) + εt(g)                                                 (3.3.6) 
where εt(g) takes into account both the radiometric absolute accuracy (εt,rad(g)) and all other 
possible sources of error due to the forward modelling (εt,mod(g)): 
                                                 εt(g)= εt,rad(g)+ εt,mod(g)                                          (3.3.7) 
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Under the previous assumptions, we have (Di Michele et al. 2005): 
                                     p(tm|g) = p[(t(g)+ εt(g))|g] = p[εt(g)]                                  (3.3.8) 
Thus, according to Bayes theorem, p(tm|g) can be transformed in the following way: 
 

                         p(g|tm) = [ ]
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where p(tm) is the pdf of tm. 
A common approach is to take as p(g) the occurrence of g into the CRD. This is reasonable 
when the consistency and the completeness of the database are good enough to avoid 
considering any additional virtual measurements (for example, climatological statistics).  
Substituting (3.3.9) in (3.3.5) ĝMMS  can be expressed in the form: 
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Making the further hypothesis that the error sources are independent (Lorenc, 1986), the 
central limit theorem let us assume that εt(g) is a random variable with Gaussian distribution: 
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where tε (g) and Cεt(g) are the mean value and the covariance matrix of εt, respectively, whi1e 
T stands for matrix transposition. Alternative forms for the measurement error model are also 
possible, i.e. a uniform distribution function could be more suitable in case we want profiles of 
the CRD that have Tbs "close enough" to the measured ones to equally contribute to the 
estimation. 
Since the two components in (3.3.7) are supposed to be independent (thus uncorrelated), the 
error covariance matrix can be written as:  
                                      Cε(g) = Cεt,rad(g) + Cεt,mod(g)                                (3.3.12) 
If the radiometric noise has zero mean value, we also have: 
                                        tε (g) = tε ,mod( g)                                               (3.3.13) 
When the dependence of εt from g is not considered, (3.3.11 ) allows to express (3.3.10) as: 
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This equation represents a common expression for the solution of the inversion problem. 
Quantification of retrieval accuracy can become almost as important a demand as the estimate 
itself. For example, satellite rainfall estimates can be assimilated into numerical weather 
prediction models only when the corresponding accuracies are also provided (Marecal and 
Mahfouf, 2002). Difficulties in modelling the various parameters of the forward model  lead to 
Tb ambiguities that propagate into the final estimate. The Bayesian approach allows us to take 
them into account in a rigorous way. When W has the form in (3.3.4), it can be proved (Di 
Michele et al. 2005) that R is equa1 to the conditional covariance matrix of g given tm: 
                        RMMS = C MMSĝ  = gtggggg m dpT

MMSMMS )|()ˆ)(ˆ(∫ −−             (3.3.15) 
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Thus, the MMS estimate has, as a confidence interval, the conditional variance C MMSĝ of the 
estimate. For this reason the MMS solution can be also referred to as the Minimum Variance 
(MV) algorithm. Applying (3.3.9), the previous expression can be rewritten as:  
         

                      C MMSĝ = [ ] g
t

ggεgggg
m

d
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pp tT
MMSMMS )(

)()()ˆ)(ˆ(∫ −−                       (3.3.16) 

 
The previous establishes the desired relationship between the retrieval error (g - MMSĝ ) and the 
modeling one εt. In case the components of g are uncorrelated, C MMSĝ becomes diagonal, with 
the following vector of variances: 
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If the modeling error can be expressed as a sum of the contributions from different sources, i.e. 
: 
                                         εt(g) = εt,1(g) +...+ εt,n(g)                                              (3.3.18) 
then it is possible to quantify the partial contribution to the uncertainty given only by a 
particular source introducing in (3.3.16) only the corresponding term. 
 
The implementation of (3.3.14) can be easily carried out when an analytical expression for 
p(g) is chosen. Typically, for the sake of simplicity, uniform, normal or log-normal 
distributions are chosen, but each of these choices can often be unrealistic. In general, available 
p(gi) are not continuous functions, and any assumption for p(gi) can often be unrealistic. p(gi) 
can be approximated by 

                                                     p(gi) '
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where h(gi,Δgi) is the histogram relative the sample gi within a variable bin Δgi and 'k  a 
constant such that 
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Noting that the  database CRD consists of a discrete number of profiles (NP), the relation 
(3.3.14) can be approximated by (Tassa et al. 2003) 
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where jg  is the j-th profile sample of the CRD with )(ijg  the i-th element, t(gj) is the 
corresponding Tb, and Cεt is the error covariance matrix. The normalizing constant  k is given 
by the expression 
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The variance of the estimated )(ˆ igMMS  is (Di Michele et al. 2005) 
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                                                                                                                                     (3.3.23) 
 
In all the following applications of (3.3.21), (3.3.22) and (3.3.23), the total error εt(g) has been 
assumed additive, Gaussian, and with zero mean value.  
Fig. 3.17 presents the scheme of the inversion procedure in greater detail.  
The Tbs measured by SSM/I or SSMIS (Tab. 3.6) are processed first (data processing block) in 
order to estimate the Tb measurements by all different channels at the same geographical 
position (latitude and longitude). This is necessary because the low frequency channels (19, 22, 
and 37 GHz) have larger footprints than the higher-frequency channels, and therefore a lower 
number of Tbs is measured for them during each swath (fig. 3.18). Thus, an interpolation 
procedure is used for the low resolution channels.  
Subsequently, all the data are analyzed with a “screening procedure” in order to reject areas 
(pixels) having incorrect Tb values due to sensor errors, or recognized as areas without rain or 
with a very low probability of rain.  
The Tbs of selected pixels are then used for the inversion algorithm, using the MMS Bayesian 
criterion and the Tbs of the CRD. For each pixel the ”Bayesian distance” between the multi-
frequency experimental Tb vector and all simulated multi-frequency Tb vectors of the CRD 
database are computed 
 
 
 
                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.17 - Block diagram of the Bayesian retrieval algorithm (inverse problem). 
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The distance is based on the expression 3.3.21 and is given by 
 
                                   d2tb(gi) = ( WtgtCtgt mm ⋅−⋅⋅− − )))(())(( 1

it
T

i ε                   (3.3.24) 
 
where t(gi) and  tm  are respectively the Tb vectors of the profile gi selected in the database and 
the experimental Tbs; W is the weight vector of the microwave channels. Profiles with a 
distance d2tb>dthre (dthre is an a-priori fixed threshold) are rejected.  
 
Finally, all selected CRD profiles are used, with their different Bayesian weights, to compute 
the average value of the retrieved surface rain rate (3.3.21 and 3.3.22) and the associated rain 
rate Bayesian variance (3.3.23). Table 3.7 shows the components of a typical output of 
BAMPR (for each pixel). 
In the following paragraph the screening procedure is presented in detail. 
 
 
 
 

                            
 
 
 
Fig. 3.18 - Scheme of the SSM/I scan geometry, including swath extent, and footprint sampling 
location and integrated fields of view (Spencer 1989). 
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                  Tab. 3.6 - Microwave channels of SSMIS and SSM/I radiometers 
 

channels SSM/I SSMIS 
1 19V 91V 
2 19H 91H 
3 22V 150H 
4 37V 183 
5 37H 183 
6 85V 183 
7 85H 19V 
8  19H 
9  22V 
10  37H 
11  37V 
12  50 
13  52 
14  53 
15  54 
16  55 
17  57 
18  59 
19  59 
20  63 
21  64 
22  64 
23  64 
24  64 

 
 
  
3.2.2  The “screening” problem 
There are two kinds of screening procedures that are normally included in the retrieval 
algorithm. 
The first is a “quality control” screening aimed at rejecting telemetry errors that result in non 
physical antenna temperatures. For this, in the retrieval algorithm, a check is carried out on the 
brightness temperatures.  If they are out of  reasonable physical limits (50 – 350 K) the pixels 
are rejected. These limit values represent ranges in Tb that are thought to be the approximate 
physical limitations of measurements in the SSM/I and SSMIS FOV and are based on both 
empirical and radiative transfer calculations. 
The second is a “geographic” screening and it is linked to the type of surface (land or ocean or 
coast). In fact, rainfall retrieval presents different levels of difficulty depending on the surface 
examined. 
It must be mentioned that many screening methodologies are based on the experimental results 
mentioned in sections 2.4 and 2.5, concerning the emission- and scattering-based 
measurements. As pointed out in section 2.4, while over the sea surface, with a relatively low 
and constant emissivity, the retrieval do not appears to be complex, over land it is more 
difficult due to the large and variable emissivity of the land surface. Specifically, the high 
emissivity masks the emission signature that is related directly to the water content in the 
atmosphere. Instead, only the brightness temperature depression due to scattering in the upper 
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portion of clouds is observed. As scattering increases with increasing frequencies (section 2.5), 
brightness temperature depressions at the 85-GHz channel will contain the least ambiguous 
signal of scattering by ice and/or large raindrops.   
 
Table 3.7  - Components of a typical output of BAMPR (for each pixel) 
  

Pixel enumeration 
Surface type (ocean/land/coast) 
Rain status (rain/no rain) 
Latitude, Longitude 
Number or profiles of the CRD that contributed to the retrieval 
Vertical-integrated vapor water path (kg/m2) 
Vertical-integrated cloud water path (kg/m2) 
Vertical-integrated rain water path (kg/m2) 
Vertical-integrated graupel water path (kg/m2) 
Vertical-integrated pristine water path (kg/m2) 
Vertical-integrated snow water path (kg/m2) 
Vertical-integrated aggregates water path (kg/m2) 
Surface rainrate (mm/hr) 
Surface pristine (mm/hr ) 
Surface aggregate (mm/hr ) 
Surface graupel (mm/hr ) 
Surface snow (mm/hr ) 
Experimental Tbs mean values (land/ocean) of the pixel (Tb19V, Tb19H, Tb22V,  
Tb37V, Tb37H, Tb85V, Tb85H)  
Surface rain rate variance (mm/hr)2 

 
 
A further complication that arises over land is the lack of consistent backgrounds against which 
to compare the Tb depression.  To solve this problem caused by the varying emissivity 
associated with changes in surface characteristics (e.g., surface wetness, snow cover, 
vegetation, etc.), a rain/no-rain temperature depression threshold is required. Additionally, 
snow and desert surfaces cause depressed Tbs at high frequencies (due to the high volume 
scattering coefficient ks) and can be confused with the rain signature.  If these surface types are 
not properly screened, they can be misinterpreted as ice scattering in clouds.  
Over coasts, the microwave footprint is a mixture of the radiometrically cold ocean and 
radiometrically warm land surface. This fact increases the difficulties in the rainfall retrieval 
and makes the screening procedure an essential part of the retrieval algorithm.  
Thus, a preliminary step in a  retrieval is the selection of pixels for which some rain is likely, 
before attempting to quantify the rainfall, in order to minimize the contribution due to false 
alarms; this is the so called “screening” problem. 
Many of the screens developed are empirical in the sense that the equations are based upon 
comparisons between observed precipitation and actual SSM/I (or SSMIS) measurements.  
Although many of the screening methodologies appear simple in formulation and originate 
from empirical analysis, they play an important role in the retrieval procedure. Failure to 
properly identify surface types can ultimately lead to the discrediting of the retrieval algorithm; 
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even the most brilliantly conceived retrieval scheme can be rendered impotent if the screening 
portion of the algorithm cannot distinguish between raining and non-raining pixels. 
Moreover, an important advantage of the statistical-empirical algorithm is the simplicity of 
their calculation.  
The complicated interaction of earth-emitted microwave radiation with various surface types 
and atmospheric variables makes it very difficult to develop surface screens that work 
everywhere. Therefore three different “geographic” screening procedure are currently used for 
land, ocean, and coast, to take into account  the different criteria suitable for these surfaces. 
 
3.2.2.1 – Screening over ocean  
A sea surface has a low and relatively constant emissivity (approximately 0.4 - 0.5), so that the 
radiation emitted by the surface is small. Any precipitation over this surface (emissivity 0.8) 
will augment the radiation stream by emission, increasing the amount of radiation received by 
the satellite. The rain area will thus appear as warm area against a cold background.  
With reference to the SSMI/S channels, in the case of clouds over oceans, each channel 
responds differently to cloud liquid water depending on the cloud droplet size. The 19 GHz 
channel provides the most direct measurement of liquid water for rain-bearing clouds; that is, 
its linear response does not saturate for large drop size (Grody 1993). However, the 37 GHz 
channel is more sensitive to non-precipitating clouds with a smaller size. For low-lying thin 
stratus clouds with the smallest amount of liquid water, the 85 GHz channel offers the highest 
sensitivity; it is, however, strongly affected by the scattering from precipitation sized ice 
particles (Weng et al. 1977). 
Rain identification over ocean is accomplished through both scattering and emission-based 
methods. Many of these are detailed in Smith et al. (1998). Obviously, the validation of such 
techniques becomes difficult over open ocean where little or no validation data exist. Recent 
use of ship reports to evaluate the occurrence of rainfall retrieved by the SSM/I provides some 
insight as to which techniques perform best in certain rainfall regimes (Petty 1995). 
Some of the simpler methods that can be used as a first guess of the rain–no rain boundary 
include the scattering index approach (e.g., Ferraro et al. 1994b), and the emission approach 
(e.g., Weng and Grody 1994). As described in section 2.6, the scattering index (SI), worked out 
by Grody (Grody 1991), and used also for rainfall retrieval over land, is based on the values of 
the brightness temperatures at the frequencies of 19, 22 and 85 GHz. (Wilheit 2003) The 
rationale is first to develop a relationship using the 19 and 22GHz channels which could best 
predict the 85GHZ Tb under non-raining conditions for the water surface in question. Then, by 
subtracting the actual 85GHz Tb, a measure of the depression due to scattering by precipitating 
ice/rain drops can be determined. 
Specifically, the scattering index is defined as 
                                                         SIS =  FS  –  Tb85V 
                                          FS =  A + B·Tb19V + C·Tb22V + D· 2

22VTb  
Where S indicates the surface type (land or water), and the coefficients A,B,C and D, are 
derived empirically by assembling a global dataset of  SSM/I observations under rain-free 
conditions. 
The form of the SI for ocean is: 
         SIo  =  0.7152(Tb19V) + 2.4387(Tb22V) – 0.00504( 2

22VTb ) – 174.38 - Tb85V    (3.3.25) 
Through an exhaustive evaluation, Grody (1991) found that a SI value of 10K or greater was a 
good global indicator of rain (see section 2.6). 
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In addition to the scattering signatures, an emission component of rain is used over the ocean:  
the liquid water path (LWP). To measure the large dynamic range of cloud liquid water, Weng 
and Grody (1994) proposed a composite algorithm based on the values of  LWP obtained using 
different SSMI/ channels:  
                     LWP19V = -3.20[ln(290 - Tb19V ) -  2.80 – 0.42 ln(290 – Tb22V )]         (3.3.26) 
                     LWP37V = -1.66[ln(290 – Tb37V ) -  2.90 – 0.35 ln(290 – Tb22V )].         (3.3.27) 
The first algorithm (LWP19V) concerns a test for moderate to heavy rain in which a Tb37V 
would be saturated; the second (LWP37V) concerns light rain in which a Tb19V  would exhibit 
too little dynamic range. For the 19-GHz test, if LWP19V exceeds a threshold, nominally 0.6 kg 
m−2, then rain is assumed present; at 37 GHz, if LWP37V exceeds a corresponding threshold, 
nominally 0.2 kg m−2, then rain is assumed present.  
Some other tests are necessary to complete rain identification over the sea. In fact, sea ice and 
surface winds increase the emission and can cause misclassification in the retrieval procedure. 
To separate and remove sea ice from rain, the following condition is utilized (Ferraro et 
al.1998) 
                                                      Tb22V < 44 + 0.85Tb19V. 
This relationship accounts for all types of sea ice (e.g., new and multiyear), including the 19-
GHz footprint partially filled by ice. A second check is used to separate sea ice from heavy 
precipitation and is given by (Ferraro et al.1998) 
                                  Tb22V > 264            and               Tb22V − Tb19V < 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.19 – Screening procedure over ocean used in the BAMPR algorithm. 
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To identify the effect of surface winds, some retrieval algorithms have been proposed, based 
on the use of the lower frequencies of SSM/I and polarization differences. In fact, strong winds 
near the ocean surface impacts the emitting temperature and dramatically reduce the 
polarization, especially at lower frequencies.  
Finally, some other tests are suggested to eliminate misclassifications due to a “cold” ocean. 
Under clear, calm conditions, the ocean surface emissivity is at its lowest. If the atmosphere is 
dry, extremely low Tbs are found. These can pose a serious problem to some retrieval 
algorithms, especially those 85-GHz scattering-based techniques that use single polarization 
temperature thresholds to delineate rain areas and retrieve rain rate. An empirically derived test 
developed by Adler et al. (1993) identifies these regions by means of the following two 
conditions 
                                        Tb85H – Tb37H > 3K   and     Tb37H < 190K. 
Some tests on ocean rain detection using both the scattering (SI) and the emission approach 
(LWC), have pointed out that the emission-method can produce a better identification of rain. 
This fact depends on the use of the 37 GHz channel, which is more sensitive to light rain. For 
this reason and also on the base of the results of tests, in the application of the screening 
procedure in BAMPR algorithm, the check on the liquid water path was preferred (fig. 3.19). If 
the estimated liquid water path is above a threshold, which depends on the estimated freezing 
level height, that area (pixel) is accepted for rainfall retrieval. However, additional screens are 
necessary to ensure that cold (either clear ocean or possibly ice) surfaces are either screened or 
flagged if there is ambiguity in the signal.  
After all, the complete definition of the screening procedure of the BAMPR algorithm has 
required many experimental tests, in order to verify their efficiency in the environmental 
conditions of  the present (Europe) BAMPR applications. 
Only a few of the checks mentioned above have been utilized for the screening, on the base of 
their experimental effectiveness in the identification of raining surface. Moreover, both the 
coefficients used in these checks and the thresholds have been modified in order to optimize 
the screening. The values obtained resulted slightly different from those used in the literature. 
 
3.2.2.2 – Screening over land   
As mentioned before, the difficulties in retrieving the rain over land are due to the large and 
variable emissivity of the surface (depending on the type of surface: vegetation, snow cover, 
deserts, semiarid land, etc). The rather high emissivity, ranging from 0.6 to 0.95 (Grody 1988), 
in fact masks the emission signature of the liquid water content in the atmosphere. 
Consequently, detection of the emission signals of clouds and rain over land is not always 
possible, and essentially all land-based rain-retrieval algorithms utilize the scattering properties 
of rain. Fig. 3.20 shows “typical” Tb and polarization variations with frequency for a variety of 
surface types (see also section 2.5). These were obtained from actual SSM/I measurements 
where additional data were available to classify the different surface types. As the figure 
demonstrates, there are several surface types (i.e., snow and desert, semiarid land) that exhibit 
a scattering typical behaviour (signature) that is similar to precipitation, especially light rain. 
All of these surfaces must be screened properly in order to identify rain in the satellite FOV.  
Polarization differences [e.g., Tb(V) − Tb(H)] are also a function of surface type and 
frequency, and these are depicted in Fig. 3.20(b). For most surfaces, the polarization is greater 
at 19 GHz than at 85 GHz, whereas precipitation exhibits a rather flat polarization signature 
with frequency. Finally, desert surfaces generally have the highest polarizations of all land 
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surfaces although some snow surfaces also exhibit similar characteristics. It is evident from fig. 
3.20 that the use of a single channel or a single polarization difference cannot identify the rain 
signature, given the variety of surface types. Two steps are necessary; the detection of the 
scattering signature of rain and the surface type identification. 
The scattering signatures of rain can generally be detected by using the decrease in Tb with 
frequency as illustrated in fig.3.20. This signature is most easily obtained by comparing a low-
frequency measurement (e.g., 19 or 22 GHz) with a high-frequency measurement (e.g., 85 
GHz). Ferraro et al. (1994) present this basic identification of scatterers as any occurrence of 
the Tb22V > Tb85V. 
A more precise measurement of scattering can be obtained using the “scattering index” (Grody 
1991), which combines the 19, 22, and 85 GHz channels. The form of the “index” is the same 
used for ocean (see previous chapter), but with different values for the coefficients  
       SIL  =  -0.4400(Tb19V) – 1.7750(Tb22V) + 0.00574( 2

22VTb ) + 451.88 - Tb85V       (3.3.28) 
 The departure of this estimate from the actual measurement at 85 GHz is a measure of the 
scattering signal, with the potential rain areas being identified by an index value exceeding  5–
10 K.  
Other methods include simple thresholds of the 85-GHz temperatures (i.e., the GSCAT2 
algorithm in PIP-2), or utilize climatological Tb information based upon data for a period prior 
to the 
retrievals or a similar time period from previous years (i.e., Kniveton et al. 1994; Conner and 
Petty 1996).  
Finally, the polarization corrected temperature (PCT) method, that will be described in next 
paragraph (screening over coasts), has been widely used in screening over land. 
As mentioned before, the methods described can present problems in the retrieval of rain over 
surfaces such as desertified regions, cold semiarid regions, or snow cover, all of which exhibit 
significant scattering signatures. Further tests are then required to distinguish the contribution 
of these surfaces to measured Tb. 
Deserts are much more highly polarized than precipitation and other surfaces, so they can be 
removed from the rain signature using the condition (Grody 1991)(section 2.5)  
                                                   Tb19V − Tb19H > 20. 
Other more complicated methods have also been proposed by some investigators (Neale et al. 
1990, Hollinger 1991) for desert identification. 
Arid regions can also produce a scattering signature. These surfaces are generally non 
vegetated and consist of dry soil for a portion of the year. They exhibit strong polarization 
characteristics but not as strong as desert regions. A check, developed by Ferraro et al. (1994), 
used to identify and remove these features, is  
                                          Tb85V > 253     and    Tb19V – Tb19H > 7 
Another check, developed for use by the GSCAT2 algorithm, that may perform better globally 
is given as 
                      Tb19V – Tb19H > 10.5   and   Tb19V – Tb19H > 0.25 (301 - Tb85H)          (3.3.29) 
There are several classes of snow cover (dry snow, wet/melting snow, and refrozen snow) that 
need to be identified for proper rainfall classification.                 
The algorithms proposed (i.e. Grody and Basist 1996) utilize the scattering (SCAT= max( 
Tb22V-Tb85V; Tb19V-Tb37V) and polarization signatures to identify snow and separate snow 
cover from other surface types, and involve several steps and checks. Fig. 3.21 shows the 
proposed  procedure in detail. 
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Fig. 3.20 - Brightness temperature variations as a function of frequency for various land 
surfaces, and for rain. (a) Vertical polarization variations and (b) polarization differences 
(Ferraro et al. 1998). 
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Another approach is to use local climatological information to screen for snow cover. This 
climatology concerns the mean snow cover (obtained from many years of measurements), 
probability of occurrence, and snow cover variance.  
Once the snow cover is identified,  the rain contribution to the Tb can be separated using 
simple threshold conditions on the Tb (Grody 1991). Whenever the  
                                                              Tb22V > 264 K,  
rain is present, provided that a scattering signal exists. This condition assumes that the surface 
is colder for snow conditions than in the case of rain. The threshold condition also works 
because the large ice crystals within the snow pack scatter at low frequencies, while the 
smaller-sized ice particles associated with light to moderate rain produce little scattering. The 
264K threshold represents average conditions and the local value can deviate by approximately 
±3 K depending on the surface and atmospheric conditions. For example, cold rain can reduce 
the Tb22V to 261 K while melting snow increases Tb22V to 267 K. The problem is difficult for 
winter storm systems, where snow and rain generally fall adjacent to one another. 
The GSCAT2 approach to this problem is to label observations near this threshold as 
ambiguous and introduce another check that examines the standard deviation of the Tb85H in a 
5 × 5 set of pixels centred around the pixel in question. Low values of this parameter indicate 
likely snow, while high values indicate convective rain. 
 

              
 
 
Fig 3.21  - Decision tree structure of the snow cover retrieval algorithm (Grody and Basist 
1996, Ferraro et al. 1996). 
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For intense convective rain, which contains large ice particles, scattering occurs at low 
frequencies for both rain and snow. This can cause the Tb22V to fall below 264 K. However, 
this confusion can easily be eliminated by applying the threshold under cold seasons and over 
certain latitude zones (i.e., the use of climatological limits of snow). However, a second 
condition is necessary to separate intense rain from snow cover (Grody 1991) and is given by 
                                                  Tb22V > 175 + 0.49Tb85V. 
As mentioned, the use of this check depends on the latitude and the season. An incorrect use 
could eliminate some pixels in intense convective systems. As previously described, the 
GSCAT2 method would classify these situations as rain if the standard deviation of the Tb85H 
measurements of adjacent pixels is large. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.22 – Screening  procedure over land used in the BAMPR algorithm.  
 
Fig. 3.22 shows the screening procedure over land used in the BAMPR algorithm. Only a few 
simple checks have been selected, among those proposed in the literature, on the basis of tests 
carried out during the case studies. Moreover, the coefficients used in these checks have been 
modified in order to optimize screening efficiency. 
 
3.2.2.3 – Screening over coasts   
Rainfall retrieval over coasts is crucial for regions like Italy where a high portion of the region 
is considered to be ‘coastal’. Nevertheless, the retrieval presents real difficulties for the 
presence of  sea and land areas in the same footprint, with different emission signatures. In 
fact, over coasts the microwave footprint is a mixture of radiometrically cold ocean and 
radiometrically warm land surfaces. 
The main problem originates from the fact that land or water, adding the opposite surface into 
the footprint, has the same effect as rain. Over land, adding surface water to the footprint will 
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reduce the Tbs, as scattering caused by rain does; adding land to a water footprint will increase 
Tbs, with a similar effect of the rain over water (emission). This is illustrated in Fig. 3.23 using 
the GPROF (Goddard Profiling Algorithm) surface-type classification map. 
The black lines are for TMI water footprints, and these Tbs increase with increasing rain rate, 
except for Tb85V, which decreases above 1 mm h-1 due to scattering. The coloured lines are for 
footprints that are classified as coast, but starting with those footprints bordering the water 
classification and thus, not containing much land (coast < 10 km from ocean). As the distance 
from the footprints classified as water increases, the fraction of land within the footprints and 
the Tbs at all frequencies increase.  
One method to account for the complexity of the land-water mixture is to develop an algorithm 
to use the effective antenna pattern function and scan geometry of the microwave instrument, 
along with a very high resolution land water mask to estimate the fraction of land versus water 
in each footprint. A study (Bennartz 1999) of this methodology pointed out the difficulties in 
its application related to satellite navigation uncertainties and to the highly variable land 
surface emissivity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.23 - Brightness temperatures spectrum over water for increasing rain rate, and over non-
raining coasts with increasing land fractions ( McCollum 2005). 
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The easiest method for coastline identification is to simply discard any observation tagged as 
coast and perform no retrievals there. However, this will eliminate raining coastal pixels. Since 
the SSM/I  FOVs are relatively large, they contain a mixture of land and water that extends 
farther than one pixel from the coast and can cause false rain signatures. 
Another scheme used to minimize the coastline effects, and employed by the National 
Environmental Satellite, Data and Information Systems (NESDIS) (Smith et al. 1998, Ferraro 
1997), was to use a 5 × 5 grid of A-scan observations surrounding the pixel for which the 
retrieval is performed. Any coastline or land identified in this grid was classified as land.  
They simply used their land algorithm over these coast and “near coast” FOVs. This approach 
seems to reduce many of the false signatures along the coastline. The trade-off for this 
approach is that the sensitivity to emission-type rain is lost along the coast; however, this is 
better than no retrieval at all. In addition, there is not much difference noted in convective rain. 
One of the first global rainfall algorithms, developed specifically for coasts, was proposed by 
Adler et al. (1993). It is a sophisticated algorithm, with a decision-tree method for coasts to 
isolate possible rain from the similar brightness temperature signatures resulting from the 
different relative fractions of land and ocean in the footprint. The identification of non-
precipitating coastline pixels is performed with the following procedure.  
Clear-sky coast is identified as (Adler et al.1993) 
 
                    σ [Tb85H] >10K    and    ρ [Tb37H, Tb85H] >0.5  and     slope  < 1.2        (3.3.30) 
 
where σ is the standard deviation, ρ is the cross correlation, and slope is defined as 
 
                           slope =  ρ [Tb37H, Tb85H] ×  σ [Tb85H]  ×  σ [Tb37H]                   (3.3.31) 
 
all of which are computed on a 5 × 5 pixel array centered on the pixel of interest. Adler et al. 
(1993) also recommend another test, run before (3.3.30) and (3.3.31), to identify cases that 
satisfy the coast check but proved to have precipitation in verification studies. This “not-coast” 
test diagnoses the presence of precipitation when 
 
                                             Tb85H − Tb37H ≤  −10 K.                                       (3.3.32) 
 
Finally, the use of the polarization-corrected temperature (PCT) approach (Spencer et al. 1989) 
and similar procedures (Conner and Petty 1996) has been diffusely used to minimize coastline 
effects. These procedures involve a linear transformation between TbV and TbH that effectively 
removes the land–ocean emissivity contrast.  
In fact, the PCT corrects the passive microwave measurements to unify surface emissivity by 
combining the vertical and horizontal brightness temperatures Tbv and TbH, respectively, at a 
single microwave frequency. The theoretical basis is outlined by Grody (1984) . The radiative 
transfer equation (Ulaby et al.1986), describing the emission contributions received by a 
spaceborne PM sensor, is (see fig. 2.6, and expression 2.34) 
            Tb(p) = τ  ε(p) T  +  TUP  +  τ [1 - ε(p)]  TDOWN  +  τ2 [1 - ε(p)]  TSP            (3.3.33) 
where Tb(p) is the satellite-measured brightness temperature at polarization p, ε(p) is the 
surface emissivity at polarization p, τ is the atmospheric transmittance, TUP  = TDOWN  is the 
total atmospheric emission, TSP = 2.7 K is the cosmic residual radiation, and T is the surface 
temperature. 
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Grody (1984) introduced a parameter β, function of  emissivities at the vertical  εv and 
horizontal εh polarizations, as  

                                                         β =  
h

v

ε
ε

−
−

1
1

                                             (3.3.34) 

This relation between εv and εh for a given microwave frequency enables surface emissivity to 
be removed from (3.3.33). Substitution of (3.3.34) into (3.3.33) for both vertical and horizontal 
polarization yields  
                          TbV = τ  εv T  +  TUP  +  τ [1 - εv]  TDOWN  +  τ2 [1 - εv]  TSP 
                          TbH = τ  εh T  +  TUP  +  τ [1 - εh]  TDOWN  +  τ2 [1 - εh]  TSP 
Using 3.3.34 
                                                            εv = 1 – β + β εh  
and substituting in previous expressions 
        TbV = τ  (1 – β + β εh) T  +  TUP  +  τ β[1- εh]  TDOWN  +  τ2 β[1- εh]  TSP = 
                  τ  (1 – β) T + TUP(1 – β) + β τ εh T + βTUP+  τ β[1- εh]  TDOWN  +  τ2 β[1- εh]  TSP =     
                 τ  (1 – β) T + TUP(1 – β) + β TbH 
Therefore, 
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Thus, with β defined, the PCT can be established from the left side of (3.3.35). To simplify the 
use of the PCT, Barrett and Kidd (1990) further defined a Θ parameter as 

                                                            Θ   =   
β

β
−1

                                         (3.3.36) 

such that by insertion of (3.3.36) into (3.3.35) the PCT can be defined as 
 
                               PCT =  (l + Θ)TbV - Θ TbH   =  TbV  +  Θ (TbV  -  TbH)             (3.3.37) 
 
According to (3.3.35) the PCT is equivalent to the Tb for a unity emissivity surface and in 
principle is sensitive only to surface temperature and atmospheric emission. 
The value of Θ needs to be set in relation to the meteorological conditions prevailing at the 
time, and a threshold needs to be chosen to discriminate rain from no-rain. The values of theta 
are dependent on the rain/no-rain threshold: as theta increases the rain/no-rain threshold also 
increases. 
Any dual polarized frequency can be used, but high frequencies are preferred where sensitivity 
to rainfall is greatest and the spatial resolution is the best available. Although the 85 GHz 
channels, and hence the PCT at 85 GHz, will be strongly affected by thick cirrus, the 
sensitivity to light precipitation makes it ideal for rain/no-rain discrimination. 
In the expression (3.3.37), the value of PCT is equal to TbV  for Θ=0. As the value of Θ 
increases, the amount of polarization added to the vertical channel increase so that when Θ=1, 
the PCT is the polarization (TbV  -  TbH) added to the vertical brightness temperature.  
Areas with low vertical brightness temperatures, but high polarization, like sea surfaces, will 
increase their PCT faster then those with high vertical brightness temperatures but low 
polarization, like land surfaces. Therefore, a point is reached where the low vertical brightness 
temperature/high polarization pixels exceed the PCT of the high vertical brightness 
temperature/low polarization pixels. The intercept of the two straight lines corresponds to the 
value of Θ that normalize the different background emissivities. Fig. 3.24 shows the PCT 
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behaviour as a function of Θ, for ocean and land, obtained in a case study (see section 3.4) over 
Calabria.  
The intercept also gives, on the vertical axis, the value of   PCT corresponding to the condition  
                             TbVS  +  Θ (TbVS  -  TbHS) = TbVL  +  Θ (TbVL  -  TbHL) 
of normalization of the different background emissivities.  
Then, any rain will appear as lower PCT values due to the scattering of the upwelling radiation 
stream. 
 
          
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
Fig. 3.24 -  Polarization-corrected temperature as a function of  Θ for two different surface 
types, sea and land. TVS is the vertical brightness temperature of sea, TVL the brightness 
temperature of land, POLS the polarization difference of sea (TVS -THS), POLL the polarization 
difference of land (TVL -THL). 
 
 
The screening on coasts can be based on this value of PCT.  The area used in determining a 
valid value of Θ and the threshold is, however, crucial. In fact, this technique relies upon the 
premise that values of PCT are based on non-raining observations. Therefore a careful balance 
needs to be met between an area small enough to have a homogeneous meteorological regime, 
but large enough to provide a representative number of non-raining samples.  
Moreover, a study (Kidd 1998) throughout a year over the UK region  has pointed out that 
there are seasonal variations in Θ and threshold values. Calibration studies have shown that the 
rain/no rain boundary can be set at about 4 ÷ 10K below this value. 
 
Figure 3.25 shows the complete screening procedure over coasts used in the BAMPR 
algorithm.  
The check on the PCT is the first step in the procedure. Further steps concern the 
discrimination of clear ocean and ice emissivities, and a few tests for light precipitation 
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identification. As pointed out for previous screenings over ocean and land, also the procedure 
over coast has been defined after testing the effectiveness of the different checks in the 
environmental conditions of the present (Europe) BAMPR applications. 
 
 
 
 
 
 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.25 -  Screening  procedure over coast used in BAMPR algorithm. 
 
 
 
3.3  Tests on the screening procedures 
An application of the PCT algorithm is presented in this section. A study concerning a 
disturbance, located on the Balkans, that affected the Calabria region and the Ionian Sea (13 
August 2006) has been carried out. A strong thermal gradient was present that triggered a 
strong mesoscale convection over the South of Italy (fig 3.26). Figures 3.27-3.29  show the 
experimental Tbs measured at 16:06 UTC by the SSM/I radiometer on board satellite DMSP F-
14 of the U.. Defense Meteorological Satellite Program (DMSP). The figures clearly show the 
thermal variations due to the presence of the disturbance. 
The screening problem has been experimentally analyzed in this study, to test the different 
possible screening criteria (sect. 3.2.2), and find the most suitable procedures for Europe and 
the Mediterranean Sea ( figg.3.19, 3.22, 3.25). 
The values of PCT and Θ were obtained using the technique of fig 3.24 (at 85GHz). 
The following figures 3.30 and 3.32 show the results obtained. 
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Figure 3.30 shows the effects of the screening procedure, and the resulting rain/no-
rain/ambiguous classification (rain status) of pixels (see figg. 3.19, 3.22, 3.25). The red area 
corresponds to pixels rejected as corresponding to no-rain situations (their rain status, that is 
represented in the figure, is labelled with a negative value). The orange pixels correspond to 
clear rain situations (labelled with 0), and yellow areas correspond to “ambiguous” pixels 
where the rain is considered probable (labelled with a positive number).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.26 – Case study  Calabria, 13 August 2006 h 16:06 
 
 
 
The orange and yellow pixels are then accepted and passed to the Bayesian procedure for the 
comparison with the profiles of CRD, and the retrieval of meteorological variables. 
Figure 3.31 shows the direct effect of the application of the PCT. The figure compares the Tb 
at 85Ghz and the PCT (Θ = 0.65819). It is evident in the figure how the use of PCT reduces the 
effect of background surface emissivities, unifying the surface brightness temperatures and 
then making it possible to delineate areas of rainfall over varying surface types. 
 
The result of the screening procedure is shown, in a different way in fig. 3.32. This figure 
distinguishes the area with no/rain (black area) from the area considered for the retrieval 
procedure: Moreover, the figure shows the values of Tb at 85 GHz that contribute (with the 
others channels) to the Bayesian estimation of rain rate.    
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Fig. 3.27 - Case study  Calabria, 13 August 2006 h 16:06 (DMSP F-14): SSM/I brightness 
temperatures (K) at 85 Ghz  (H and V). 
 
 

 
 
 
 
Fig. 3.28 - Case study  Calabria, 13 August 2006 h 16:06 (DMSP F-14): SSM/I brightness 
temperatures (K) at 37 Ghz  (H and V). 
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Fig. 3.29 - Case study  Calabria, 13 August 2006 h 16:06 (DMSP F-14): SSM/I brightness 
temperatures  (K) at 19 Ghz  (H and V) and 22V GHz 
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Fig. 3.30 – Case study  Calabria, 13 August 2006 h 16:06 (DMSP F-14). Effect of screening 
procedure, showing the rain/no rain selection of pixel. The red areas correspond to pixels 
rejected as corresponding to no rain situations (their rain status is labelled with a negative 
value). The orange pixels correspond to rain situations (labelled with 0), and yellow areas 
correspond to pixels with probable rain (labelled with a positive number). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.31 -  Case study  Calabria, 13 August 2006 h 16:06 (DMSP F-14). Effect of the use of 
the PCT (right panel) that makes the surface brightness temperatures in no/rain areas uniform. 

PCT
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Fig. - 3.32 Case study  Calabria, 13 August 2006 h 16:06 (DMSP F-14). Effect of screening 
procedure, showing the rain/no rain selection of pixel. The left panel shows the Tb (K) at 85 
GHz, the right panel points out the pixels rejected (black area). In the right panel the values of 
Tb at 85 GHz are shown for pixels accepted for the retrieval procedure.     
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CHAPTER  4 – The use of  information on dynamical and thermodynamical structure of 
the atmosphere 
 
 
Passive microwave techniques for the estimation of rainfall have advanced considerably over 
the past years, due largely to an increased understanding of the transfer of microwave radiation 
through precipitating clouds. Moreover, especially in the last two decades, the large number of 
satellite missions with an ever-increasing number of sensors have improved the amount of 
measurements available, and have increased their ground resolution and reliability. Then, a 
large number of algorithms have been proposed in the literature (Wilheit et al. 1994, E.A. 
Smith et al. 1998, Kummerow et al. 2000) for retrieving rainfall from passive microwave 
brightness temperature, based on different approaches and often classified in different classes, 
as emission-based or scattering-based (Todd and Bailey 1995) or multichannel-inversion-
based (Kummerow et al 1996, Shin and Kummerow 2003), as empirical or physical (D.M. 
Smith et al. 1998). In comparison with this large number of methods, little has been written 
about the quantitative assessment of the expected uncertainties in these rainfall products. This 
is certainly related to two factors: sparse validation sites over most of the world’s oceans, and 
algorithm sensitivities to rainfall regimes that cause inconsistencies against validation data 
collected at different locations. Precipitation, unfortunately, is one of the most difficult 
atmospheric parameters to measure because of the large variations in space and time. But, 
there is on the basis the fact that understanding and quantifying the real capability of satellite-
based cloud and precipitation observing systems is a complex task. As a consequence, errors 
are very often only superficially derived, overlooking main error sources, and in some 
instances no error estimates are given. Validation of these errors too is a complex task, and one 
that has generally remained elusive. For this reason, various precipitation algorithm 
intercomparison projects have been conducted in order to assess the state of the art and the 
degree of accuracy possible with satellite-based methods (E.A. Smith et al. 1998, Conner and  
Petty 1998, Kummerow  et al. 2000, Masunaga et al. 2002). Various analyses have also been 
carried out on the various possible errors that affect rainfall retrieval (Bauer et al. 2002, 
Kummerow et al. 2006, Stephens and Kummerow 2007).  
In the evaluation of the complete process of retrieval, the sources of possible errors are 
manifold and distributed along all the steps of the algorithms. The experimental data of the 
microwave sensor, for example, may be affected by different kinds of errors: large blocks of 
scans can occasionally be located incorrectly by up to several thousand kilometers (incorrect 
geolocation); an incorrect antenna temperature for a single pixel can result from telemetry 
errors. Another error can be present in the data if the rainfall is not homogeneous across the 
satellite field of view. This is called the “beamfilling” error, and can lead to underestimates in 
the retrieved precipitation (Kummerow 1998, Kummerow et al. 2004). Fortunately, many 
experimental errors can be detected and corrected, or it can be proven that their effect on the 
retrieval is not relevant. On the contrary, the approximations in the forward model can be 
important sources of error in the retrieval procedure. They can be responsible for the non-
uniqueness of the CRD. This means that even if the database includes a full spectrum of 
possible cloud/precipitation profiles, the radiometer observations may be compatible with 
several different profiles, and so the actual profile may not be uniquely identified. For this 
reason, current research activities on the algorithm consider that the utilization of further 
information on the state of the atmosphere, in addition to brightness temperatures, can 
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represent a suitable constraint in the selection of profiles of CRD, and can consequently reduce 
retrieval uncertainties (Hoch 2006, Hoch et al. 2006).  
In this chapter, the problem of uncertainties in retrieval is analyzed, and some preliminary 
results are presented from a new Bayesian approach, which uses new dynamical and 
thermodynamical variables in order to reduce the ambiguity in the retrieval procedure.  
The chapter is organized as follows. Section 4.1 describes a mathematical tool for the 
evaluation of uncertainties in retrieval. In particular, it allows the estimation of the 
contribution of the CRD to the overall uncertainty. Section 4.2 presents new possible 
dynamical and thermodynamical variables that can be combined with the brightness 
temperatures in retrieval. Section 4.3 delineates the main elements of the new BAMPR 
algorithm, that include the use of the dynamical and thermodynamical variables, and that we 
are at present developing. Section 4.4 presents the application of the new BAMPR to some 
disturbances over Italy, and gives some evaluations of the effects of the new variables on 
retrieval. Section 4.5 presents the results of a comparison of the new BAMPR  with the 
“NESDIS” algorithm of NOAA. 
 
 
4.1 The uncertainties in the forward-inverse problems 
The retrieval uncertainties associated with the forward-inverse systems presented in chapter 3, 
depend on various sources of error, They can derive from the experimental measurements and  
the approximations in the forward model (cloud and radiative transfer) and in the model 
parameters, in the inversion parameters and in the “a priori knowledge” used in the systems.  
An “error model”, proposed by L’Ecuyer and Stephens (2002), provides a mathematical tool 
for the evaluation of the contribution to retrieval uncertainties of the database (CRD) structure, 
and the measurements and model approximations.  Starting from the equations 3.3.21 and 
3.3.22, the following  simplified expression can be written  
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where jkδ  represents the error covariance of  )( '
jjWg  and  )( '

kkWg , and Mj  is the total 
number of profiles (NP) in summation (4.1). Finally, the uncertainty associated with the 
denominator of equation (4.1) is 
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where ndδ  is the correlation in errors between the numerator and the denominator. Due to the 
complexity of this formula, it is convenient to use a simpler expression, assuming that all the 
uncertainties are uncorrelated (that is ndδ = 

kjWWδ = 
jjWgδ = jkδ = 0).  The result is 
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which represents a first-order approximation to the overall uncertainty in MMSĝ . 
The last equation demonstrates that the overall uncertainty in the retrieval consists of two 
factors. The first component, 
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derives from uncertainty in computing the weights assigned to each profile, while the second 
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accounts for the impact of the finite cloud database. Equation (4.3) allows the determination of 
the dominant source of uncertainty in the retrieval. 
Considering the expression (4.2) of  jW , the fractional uncertainty in jW  results as 
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This takes into account the errors of both the measurements and the models used for the 
simulated profiles (forward problem).       
 
 

                        
 
Fig. 4.1 -  Graphical representation of two different situations in the retrieval process. Panel (a) 
illustrates a case where all profiles are uniquely identified by their measurement (Tbs) 
signatures; panel (b) illustrates the problem of non-uniqueness. On the x axis a hypothetical 
parameter (for example surface rain rate) is represented ( L’Ecuyer  and Stephens 2002). 
 
 
In order to analyze the database uncertainty, resulting from formula (4.5), let us consider that 
each profile in the database is a point in the multidimensional space defined by the Tbs. The 
retrieval algorithm proceeds by finding the point in this multi-dimensional space which most 
closely corresponds to the observations and assigns the largest weight to that parameter 
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(hydrometeor or rain rate). All parameters are utilized with the appropriate weights to produce 
the retrieved value. Figure 4.1 graphically represents this process, from a theoretical point of 
view, for a hypothetical parameter x (for example rain rate). The histogram represents the 
distribution of profile frequencies, in a hypothetical database, as a function of the value of the 
parameter x. In the figure there are also dashed curves, which represent the weights (in case of 
Gaussian distribution of weights) assigned to parameters based on a particular set of 
measurements. Two distinct cases emerge. Figure 4.1(a) corresponds to the case where the 
profiles in the database contribute to the retrieval with a unique set of measurements. In this 
case, x varies only moderately over the range of simulated measurements for which the 
weights are significant. As a result, the measurements drive the retrieval towards the correct 
result. Figure 4.1 (b) displays a scenario where significantly different values of x yield similar 
simulated measurements. Under these circumstances, the shape of the database is critical in 
determining the total weight assigned to each parameter. The main issue regarding the 
'completeness' (sect. 3.1.3) of the database is, therefore, one of non-uniqueness. Formula (4.5) 
gives an evaluation of the non-uniqueness contribution to the uncertainty. 
A relevant point of this mathematical procedure is the possibility of separating the database 
contribution, indicating its weight on the overall uncertainty.  
In spite of the theoretical approach of the method, an application to the Goddard Profilig 
Algorithm (GPROF) (Kummerow and Giglio 1994b) was carried out by L’Ecuyer and 
Stephens (2002).  
An important result of this application is that, in rain rate retrieval, database uncertainty 
contributed for more than 50% of the total, for rain rate below 4 mm/h. A large number of 
profiles were indistinguishable from one another through the brightness temperatures alone, 
particularly in conditions characterized by light rainfall. 
 
Indeed, the non-uniqueness of the database, also referred to as “ambiguity” (Tassa et al. 2006, 
Bauer 2001), is a severe limit for retrieval methodology. The problem is that a non unique 
relationship exists between Tbs and precipitation parameters. Different profiles can generate 
similar Tb vectors that cannot be distinguished as long as they remain within the resolution 
distance from the experimental Tb. 
Fig 4.2 shows an example of this problem in the CRD implemented at CNR ISAC, which was 
described in chapter 3.  
Starting from the plot of the relation between the Tb at 91 GHz and the Tb at 150GHz (top left 
in the figure), a detail is enlarged showing the corresponding values of rain rate. It is evident 
from the figure that many different values of rain rate are concentrated in small areas in the Tb 
space. Another example concerning this problem is shown in fig. 4.3, where four panels 
present the distribution of rain rate, ice rate, columnar liquid water content and columnar ice 
water content values in the CRD, for  the Tb at 150 GHz. Also in this example, many values of 
the four variables correspond to the same value (i.e. 250K in the figure) of Tb. 
 
A detailed analysis of this problem, and in general of the main sources of uncertainties present 
in many retrieval methodologies, has been performed by Stephens and Kummerow (2007) 
using the schematic diagram of the “satellite observing system” shown in fig. 4.4. 
The figure identifies the main component of the observing system transfer function that 
determines the relationship between a given input of the system and the desired output of the 
system. In the figure, x(r,t) is the input signal (cloud or precipitation parameters) to the system 



 98

(r is the spatial coordinate and t the time), y(r,t) is the measured quantity (brightness 
temperatures for example), and ),(ˆ trx is the output/retrieved signal (that is cloud and 
precipitation parameters of the observed atmosphere). In an ideal situation when the system is 
operated correctly, ),(ˆ trx  reproduces exactly x(r,t). 
In the real situation the uncertainties associated with the forward-inverse system cause the 
differences between the two signals.  
In the figure, F(x,b) represents the real (correct) forward model, and b are the parameters that 
defines this model; f( x̂ , b̂ ) is the approximate model used in the retrieval process, and b̂  
represents the approximate values of  b; xa (with the error εa) and c represent other inputs to 
the system (a priori information about the “state” of the system, for example). 
The output signal of the system (physical parameters retrieved, as cloud and precipitation 
parameters) is obtained from the inversion process utilizing the approximate forward function 
f ( x̂ , b̂ )   
                                                         x̂  =  I ( f ( x̂ , b̂ ) , xa , c , …) 
and is therefore affected by all the approximations and errors mentioned. In fact, it is in this 
part of the system that several sources of uncertainty get into the process, producing the total 
error of the system. 
 
 
 
 
 
 
 
                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2 - Relation between Tbs at 91 and 150 GHz (top left) in the CRD, and detail of the plot 
showing rain rate values (mm/h). 
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Fig. 4.3 -  Plot of the values of rain rate, ice rate, columnar liquid water content and columnar 
ice water content as a function of TB 150 GHz in the database (CRD). Different values 
corresponding to 250K are  highlighted. 
 
 
 
An evaluation of the contribution of the different uncertainties to the output signal, carried out 
by Stephens and Kummerow (2007), has pointed out the important role of the atmosphere 
model. In fact, while the measurement error εy  associated with y due to instrument factors, 
including calibration uncertainties, is usually minor compared to all others, the approximations 
in the function f( x̂ , b̂ ) (due to simplified atmosphere models) and in the approximate 
parameters b̂  (due to the uncertainties associated, for example, with microphysical properties 
of particles, such as shape, size, concentrations, etc.), represent one of the most significant 
source of errors of the entire inversion process. This fact affects the quality of the CRD and is 
the cause of its ambiguity. 
 
 
 
 
 

(mm/h) (mm/h)
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Fig. 4.4 – Schematic representation of the transfer function of a satellite observing system. 
x(r,t) and x̂ (r,t) represent respectively the input and the output of the system; F(x,b) is the 
(physical) forward model of the system and f( x̂ , b̂ ) the approximate forward model; y(r,t) is 
the measured quantity (radiance) and xa and c are other inputs (Stephens 2007). 
 
 
 
 
4.2   From CRD to CDRD 
As mentioned in previous section, a problem with CRD based retrieval systems is that 
hydrometeor profiles obtained as result of the retrieval algorithm are, in some cases, 
unrepresentative of the dynamical and thermodynamical state of the atmosphere under 
observation. This is a consequence of the fact that often various configurations of 
hydrometeors can produce similar brightness temperatures. And this is, after all, a result of the 
approximations contained in the model used to describe the atmosphere, the cloud and 
precipitation structure embedded in that atmosphere, and the radiative transfer (forward 
problem).  
Clearly, a better definition of the atmospheric state, and the vertical structure of clouds and 
precipitation, will improve the information extracted from satellite observations.  
Therefore, despite some reasonable success with the CRD and the Bayesian approach, there is 
a considerable reservoir of potential information available that is not usually tapped. This 
ancillary information exists in the knowledge of the “synoptic situation” of the considered 
event and the geographical and temporal location of the event. This knowledge renders some 
entries into the CRD more relevant than others by virtue of how similar the circumstances of 
the simulated event are to those of the event for which the database is applied. This 
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information can be captured in the form of “dynamical tags” which can be used to link a 
satellite-observed event to a subset of the entire CRD using an independent estimate of these 
tags always available from short-term model forecast products, such as the Global Forecasting 
System (GFS) model of the National Oceanic and Atmospheric Administration (NOAA).  
Here the term “dynamical tags” actually refers not only to ancillary dynamics information 
such as geostrophic forcing or frontal lifting, but also thermodynamic and geographical 
information.  To accomplish this, the CRD must be expanded to include these “dynamical 
tags”.  The expanded CRD is called the Cloud Dynamics and Radiation Database (CDRD) 
(Mugnai et al. 2006c, Mugnai et al. 2007c, Hoch 2006, Hoch et al 2006, Sanò et al. 2007, 
Casella et al. 2009). Presently we are testing a new passive microwave precipitation retrieval 
algorithm which employs these tags, and that we denote as the “new BAMPR” algorithm.  
 
4.2.1 The dynamical tags 
As previously mentioned, the utilization of further knowledge of the state of the atmosphere, 
in addition to brightness temperatures, can represent further constraints in the selection of 
profiles of CRD, and can consequently reduce the retrieval uncertainties.  
Different dynamical and thermodynamical parameters (dynamical tags) can contribute to this 
purpose and are currently under test at CNR ISAC.  
A first group of tags, we have selected to be included in the CDRD, is composed by: 
Surface Height (m) 
Freezing Level  (m) 
Vertical Moisture Flux at 50 mb AGL (Above the Ground Level) (g*m-2*s-1) 
Vertical Wind velocity at 700 mb (Omega) (Pa/s) 
Convective Available Potential Energy (CAPE) (J/kg) 
Wind Shear at 300 mb (s-1) 
 
Surface height (m) is certainly an important parameter when the orography has a relevant 
influence on cloud dynamics and leads to the formation of orographic precipitation. The 
topography has an important role in convection triggering. When a flow advances toward a 
mountain it is forced to rise over the mountain and the air parcels can reach the free 
convection level. During the warm season, solar warming concurs to the destabilization of the 
atmosphere and the topography enhances this effect, so the greater portion of summer 
convection occurs over mountainous regions.  
 
Freezing level (m), or 0°C (zero-degree) isotherm, represents the altitude in which the 
temperature is at 0°C in a free atmosphere. The profile of this level, and its variations, are 
important parameters in meteorological evaluations. In fact, it is an important element in 
determining the part of a water column consisting of liquid water and the part consisting of 
ice. It is also a climatologic parameter that, together with the surface temperature, can guide a 
preliminary rough selection of profiles in the database in terms of season and latitude of the 
event. This role of the freezing level is, in fact, already utilized in retrieval algorithms 
(Kummerow and Giglio 1994b, Kummerow et al. 2001).  
 
 
Vertical Moisture Flux at 50 mb AGL (Above the Ground Level) (g*m-2*s-1) is the vertical flux 
of surface moisture due to atmospheric turbulent transport. It is very often connected with 
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precipitation. Moisture is a necessary ingredient for the production of clouds and precipitation. 
In fact, no amount of rising air will produce precipitation unless moisture is present. The more 
moisture that is present, the higher the potential is for precipitation if uplift mechanisms are in 
place. In order for  thunderstorms to occur, there must be moisture in the low levels of the 
troposphere (between the surface and 700 millibars). 
 
Vertical Wind velocity at 700 mb (Omega) (ω=dp/dt (Pa/s)). The combined utilization of this 
parameter with the vertical moisture flux near the surface can characterize areas of 
precipitation. At mid-latitudes, there is a high probability of rain in the areas with a strong 
vertical flux at 700 mb and enough moisture at low level. High values of moisture flux will 
increase this probability. 
 
The Convective Available Potential Energy (CAPE, J/kg) at the surface is closely connected to 
the intensity of vertical motions. It is a measure of the amount of energy available for 
convection, and in fact, it is directly related to the maximum potential vertical speed within an 
updraft.  
The potential energy is given by the buoyancy of a parcel warmer than the environment.  
The expression of CAPE can be obtained starting from the vertical momentum equation 
(Holton  1979) in the simplified form 
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where w is the vertical velocity of an isolated parcel of atmosphere dV 
 

                                                          
ρ0 is the density of the environment,  ρ1  is the density of the parcel and  01' ρρρ −= .     
Integrating the (4.6), an equation for the profile of the vertical component of the specific 
kinetic energy is obtained  
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It can be thought of as an upper bound (because it neglects potentially dissipative forces 
(viscosity), adverse pressure gradients and the entrainment of less vigorous air) on the energy 
a parcel achieves when displaced from rest to some height z.   
Using the moist equation of state ( vd TRp ⋅⋅= ρ ),  small perturbations in the density can be 
related to perturbations in the virtual temperature Tv  (Tv of a moist air parcel is the 
temperature at which a theoretical dry air parcel would have a total pressure and density equal 
to the moist parcel of air): 
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where zf and zn are, respectively, the heights of the level of free convection and equilibrium 
(neutral buoyancy). Tv-parcel is the virtual temperature of the specific parcel, Tv-envir is the virtual 
temperature of the environment, and g is acceleration due to gravity. 
If convection starts, this potential energy will be converted to kinetic one as vertical wind. 
Using the CAPE the maximum theoretical vertical velocity and the intensity of the storm can 
be estimated.  The upper bond on the maximum vertical velocity of a buoyant parcel is  
                                                             CAPEw ⋅= 2max  
In particular, high values of vertical velocities are correlated to hailstorm because of 
mechanical sustentation of heavy hailstones in the cloud by the strong updraft. 
Higher values of CAPE indicate greater potential for instabilities and severe weather: 
 
 

CAPE value Convective potential 
0 Stable 
0-1000 Marginally unstable 
1000-2500 Moderately unstable 
2500-3500 Very unstable 
> 3500 Extremely unstable 

 
 
 
Wind shear (s-1) is a difference in wind speed and direction over a relatively short distance in 
the atmosphere. Wind shear can be broken down into vertical and horizontal components. It is 
an important parameter in the presence of fronts and tornadoes and it is a  key factor in the 
creation of severe thunderstorms and in the development of big convective structures such as 
multicell systems and supercells (Houze 1993). The mechanism of self sustainment of a 
complex storm is shown in figure  4.5. The heavy rainfall generates a cold core in the cloud 
that falls down violently and when the downdraft impacts with the ground, the cold air 
expands horizontally in a sort of small cold front (gust front). If the wind shear is in a 
favourable configuration, strong forced updrafts occur in some points of the gust front. In 
these points new cumulus clouds develop generating new storm cells and the process starts 
again. 
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Fig. 4.5 - Schematics of a multicell storm. The small arrows represent low level winds. The 
cold air falling down is depicted in blue. The convergence of ambient wind with a gust front 
generated by the cold pool generates new cells.  
 
 
4.2.2 The dynamical tags in the CDRD 
The inclusion of the dynamical tags in the CDRD has required a preliminary test on the 
consistency of the methodologies for the production of tags used by the UW-NMS and the 
GFS models. To perform this test, the tags corresponding to all the events simulated in the 
CRD (section 3.1.3), produced from both models, were compared. Figures 4.6 - 4.10 show 
some results of this analysis. Figures 4.6 and 4.7 present the scatterplots of  freezing level and  
vertical moisture flux at 50 mb AGL values, obtained from UW-NMS (vertical axis) and GFS 
(horizontal axis) models. Figure 4.8 shows the similar scatterplot for vertical wind velocity at 
700 hPa (Omega). Apart from some minor statistical differences, the figures point out a good 
consistency between the two models. Figures 4.9 and 4.10 present the resulting pdf’s  for 
vertical moisture flux at 50 mb AGL  and  vertical wind velocity at 700 mb, corresponding to 
the UW-NMS (black line) and GFS (red line) results. These figures also point out a quite good 
agreement between the two models. 
 
 
 
4.3 The new BAMPR 
 
4.3.1 The new Bayesian distance  
Some changes to the algorithm are necessary in order to follow the new structure of the 
database. 
A new vector tg, having the tag values as components, is inserted in the Bayesian retrieval 
procedure. Since the tags and brightness temperatures errors can be considered statistically 
independent, the conditional a posteriori pdf  (3.3.9) can be expressed as follows (Marzano et 
al. 1999)   
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Fig. 4.6 - Scatterplot of  freezing level values (m), for the CDRD simulated events (sect. 3.1.3), 
obtained from UW-NMS (vertical axis) and GFS (horizontal axis) models.  
 
 

                              
 
Fig. 4.7 - Scatterplot of  vertical moisture flux at 50 mb AGL values (g*m-2*s-1), for the CDRD 
simulated events (sect. 3.1.3), obtained from UW-NMS (vertical axis) and GFS (horizontal 
axis) models. 
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Fig. 4.8 - Scatterplot of  vertical wind velocity at 700 hPa (Omega) values (Pa/s), for the 
CDRD simulated events (sect. 3.1.3), obtained from UW-NMS (vertical axis) and GFS 
(horizontal axis) models. 
 

                         
 
Fig. 4.9 - Pdf of  vertical moisture flux at 50 mb AGL  (g*m-2*s-1) for the CDRD simulated 
events (sect. 3.1.3), obtained from UW-NMS (black line) and GFS (red line) models. 
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Fig. 4.10 -  Pdf of  vertical wind velocity at 700 mb (Omega) (Pa/s), for the CDRD simulated 
events (sect. 3.1.3), obtained from UW-NMS (black line) and GFS (red line) models. 
 
 
 
Therefore a new distance, among tags (measured and simulated), must be evaluated. In fact, 
the selection of profiles from the new database (CDRD) needs, in addition to the check on the 
distance among the brightness temperatures, also a check on the distance among the dynamical 
tags. 
The Bayesian distance among the tags is given by 
 

                                  p
σ
t

σ
gt

C
σ
t

σ
gt

g
tm

gm

td

g

tm

gm

td

g ⋅⎥
⎦

⎤
⎢
⎣

⎡
−⋅⋅−= − )

)(
()

)(
()( 1i i

etag
T

idtag  

 
where tg(gi) and tgm represent the tag vectors of the profile gi selected in the database and of 
the experimental tags, respectively; σtd  and  σtm  represent the standard deviation vectors of  
tg(gi) and tgm, respectively; p is the weight vector of the tags.  Due to the different physical 
dimensions of tags, the dimensionless variable tag/σ is used.  
Taking into account the Bayesian distance (d2tb) defined for the Tbs (3.3.24), the resulting 
distance between the experimental data and the data of the selected profile (gi) in the database 
is  
                                                           dist(gi)   = d2tb(gi) + dtag(gi). 
Only the profiles of the database with dist<dthre (dthre is an a-priori fixed threshold) are 
considered for the Bayesian retrieval of surface rain rate and the other cloud parameters. 
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4.3.2  The new retrieval system 
The retrieval methodology described in chapter 3 has been modified in order to respond to the 
introduction of tags. The first change concerns the new Bayesian distance, as mentioned in the 
previous section. The second concerns the interpolation of tags. In fact the values obtained 
from NOAA need to be interpolated to match those of CDRD, in terms of time and 
geographical location (latitude, longitude). Figure 4.11 schematically represents the block 
diagram of the processing procedure of tags. The two preliminary checks concern the time of 
acquisition and the location of the data. Regarding the time, two files of the Global Forecast 
System of NOAA are selected, approximately corresponding to the time of Tbs measurements. 
The values of tags at this time are then computed by an interpolation.  
In order to increase the flexibility of the algorithm, the selection of the channels (NC) to be 
utilized in the retrieval, up to a maximum of 19 (SSMIS), has been allowed. This means also 
an automatic change of the dimensions of vectors and matrices in the algorithm (i.e the error 
covariance matrix Cεt), in accordance with the Tbs selected. 
Moreover, three different weights for the channels (Wj) and three different thresholds (dthre) 
are used, for measurements over ocean, land and coast, in order to allow different selection 
criteria.   
Fig. 4.12 shows the block diagram of the algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.11 -  Schematic diagram of the checks and the interpolation procedure of tags. 

Data from NOAA GFS

check on the time of acquisitions

interpolation at the time of the radiometer measurements

check on the geographical location of data

spatial interpolation at the locations (lat., lon.)
of radiometer measurements

temporal
mismatch

spatial
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Fig. 4.12 - Block diagram of the new Bayesian retrieval algorithm (CDRD database). 
 
 
 
4.4   Case studies 
In the following section, some case studies of meteorological events over Italy are presented. 
The studies are aimed at testing the new Bayesian algorithm, and at analyzing the effects of 
tags on retrieval.  
The check of the real effectiveness of the dynamical tags in the selection of profiles, in order 
to reduce the “ambiguity” of the CDRD is, in fact, a fundamental aim of this research. To this 
end, the effects (on rain rate estimate and variance) of each tag are first analyzed separately. 
Then the combined use of the tags is studied.  
Regarding tags, we started with the use of  vertical wind velocity at 700 mb (Omega),  vertical 
moisture flux at 50 mb AGL, CAPE and  freezing level, as certainly related to the structure of 
the events considered in the studies. 
As the case studies concern the Rome and the Lazio area, and the evaluation of the results are 
based on a comparison with simultaneous measurements of the CNR-ISAC Polar55 radar, a 
short description of this radar is first presented.  
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4.4.1 The ISAC-CNR Polar55 radar 
The CNR-ISAC radar meteorology group employs the coherent C-band Doppler dual 
polarization Polar 55C radar for research in the field of meteorological and hydrological 
application of radar polarimetry. 
 
 
                         Table 4.1 – Characteristics of the CNR-ISAC Polar55 radar 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The most common algorithms using polarimetric measurements are  

 
      ( ) dpdp KaKR 2=                       ( ) 33
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dr
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where R is the rainfall rate (mm h-1), Zh  is the horizontal reflectivity (mm6m-3),  Zdr  
(dimensionless) is the differential reflectivity and Kdp (deg km-1) is the specific differential 
phase. Coefficients of these algorithms are determined through simulations assuming 
theoretical or experimentally derived distribution of the DSD parameters, a drop shape model, 
and a fixed temperature.  

Polar 55C characteristics

 Type  Offset fed Paraboloid
 Feed  Corrugated horn
 Aperture diameter  4.57 m
 Polarization  Horizontal and Vertical
 Azimuth beamwidth 0.92 deg
 Elevation beamwidth 1.02 deg
 Gain  45.5 dB
 Sidelobe level  -32 dB
 Cross Polarization  -27 dB

 Power Amplifier  Klystron VCK 7762
 Frequency Fixed, selectable in the band 5600-5650 MHz
 Peak Power 500 kW
 Pulse width (maximum) 0.5 – 1.5 - 3.0 μs
 PRF 1200 – 600 – 300 Hz
 Average Power 300 – 450 – 450 W
Available polarizations H and V

 Number of channels  2: (RX and TX sample down conversion to IF)
 Noise figure  2.0 dB from the input of the first down 
 Image Rejection > 50dB
 Dynamic range > 100dB at 1dB compression
 IF  60 MHz
 IF bandwidth 2.0 – 0.7 – 0.5 MHz

Receiver

Transmitter 

Antenna 
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R(Kdp) is a robust estimator, especially in the presence of heavy rain, where it can benefit from 
the property that, being based on a phase measurement, it is affected by neither attenuation, 
nor by calibration bias 
R(Zh, Zdr) represents a good compromise, providing accurate measurement over a wide range 
of rainfall rate, from moderate to heavy. For this reason it is used to develop the procedure at 
C-band. 
 
The exact position of the Polar 55C corresponds to North Latitude 41° 50’ 24”, East Longitude 
12° 38’ 50” and a height of 102 m. The figure below shows reflectivity observed at an 
elevation angle of 1.04° on 6 June 2002. 
 
 
       

                                                                                
    
 
 
Fig. 4.13 – CNR-ISAC polar55c radar. Reflectivity observed at an elevation angle of 1.04° on 
6 June 2002 (http://polar55c.artov.isac.cnr.it/). 
 
 
Main limitations to visibility are created by Monte Cavo, located a few kilometers south of the 
radar site, by the two minor hills of Monti Prenestini and Monti Sabini located 20 km in the E-
NE direction, and finally by the tall Mount Terminillo, located 70 km from the radar site along 
the N-NE direction. The occultation constituted by Monte Cavo is total and determines the 
presence of an occulted sector, from 120° to 150°, recognizable in the map. Good visibility in 
the North West sector allows the monitoring of precipitation over the Tyrrhenian Sea. 
 
 
 

http://polar55c.artov.isac.cnr.it/
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4.4.2  Case study over Lazio area (November 4, 2008 16:18 UTC)   
On November 4, 2008, a deep low pressure area centred near the Balearic Islands was carrying 
a strong southern flux over the Tyrrhenian Sea. Pictures in figure 4.14 show the analyses 
(pressure and geopotential) produced by the Global Forecasting System (GFS) global model of 
the U.S. National Oceanic and Atmospheric Administration (NOAA). The strong southern 
winds collected a lot of moisture from the sea that was still relatively warm because of the 
energy accumulated during the summer. The air became unstable and the complex pattern of 
the coasts and orography produced many low level wind convergence lines. Strong multicell 
storms developed along  these lines. 
 
 
             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.14  – Case study over Lazio, November 4, 2008. Left panel: sea level pressure map. 
Right panel: 500 mb geopotential pattern.  
 
 
In addition, a cold flux entering from the western Mediterranean Sea  increased air instability 
as shown in figure 4.15.  
Figure 4.16 shows the Meteosat Second Generation (MSG) images of the event. The left panel 
shows the IR (10.8 m) image with superimposed ZEUS (Lagouvardos et al. 2009) lightning; 
the right panel shows the MSG image at the HRV visible channel; there are many overshooting 
tops rising over the cumulonimbi.  
Using the UW-NMS model, we have carried out at CNR ISAC a simulation of the event. 
Figure 4.17 shows a three dimensional visualization of the NMS results; the white surfaces are 
the cloud field with surface winds (arrows) and precipitation patterns (blue shading). The storm 
is structured as a “line” because the storm cell developed along a low level wind convergence. 
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This case study points out a variety of precipitation regimes; in fact although it is a convective 
system with well defined heavy rain clusters, it evolves into a long lasting cloud system with 
extensive stratiform rain. This characteristic is shown in figure 4.18 that presents the radar 
rainfall measurements, taken at two different instants of the event. The top panel in the figure 
shows the young phase of the convective system with clusters of heavy rain without a large 
stratiform area (red circle).  
The bottom panel clearly shows a vast area with weak uniform rain, typical of the dissipating 
stage of storms, with long lasting clouds (anvils) (green circle). In this situation, large snow 
fields develop from high level clouds that melt in light rain fields extended for many 
kilometres.  
 
 
 

                             
 
 
 
Fig. 4.15 -  Case study over Lazio, November 4, 2008. Thermal field superimposed to the wind 
at 850 mb.  
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Fig. 4.16 - Case study over Lazio, November 4, 2008. MSG image at the IR band (10.8 m) 
with ZEUS lighting superimposed (left panel), and MSG image at the HRV visible channel 
(right panel). 
 

                               
 
 
Fig. 4.17 – Case study over Lazio, November 4, 2008. UV-NMS simulation. The storm line is 
approaching the coast of central Italy. 
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Fig. 4.18 – Rainfall rates on November 4, 2008 at UTC 15:00 (top) and 16:20 (bottom) as 
result from radar measurements (CNR-ISAC C-band polarimetric Doppler radar Polar 55C). 
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Fig. 4.19 - Case study over Lazio, November 4, 2008, 16.18 UTC. Microwave brightness 
temperatures (K) at 91 (H,V) GHz, as measured by the SSMIS radiometer onboard the DMSP 
F-16 satellite. 
 
 
Figure 4.19 shows the brightness temperatures at 91 (H,V) GHz, obtained from SSMIS 
radiometer onboard satellite DMSP F-16, on November, 4 2008.  
Figure 4.20 shows the corresponding microwave brightness temperatures at 150 (H), and 183 
(H) GHz (see Tab. 1.2 of chapter 1). In both figures, and especially in the last one, the 
atmospheric disturbance over the Rome area is quite evident. The corresponding retrieval 
results of the new BAMPR algorithm are shown in figures 4.21 and 4.22. 
 
The CRD version of the database is used, i.e. the one without dynamical tags.  Figure 4.21 
shows the surface rain rate and points out some rain rate peaks of about 20-25 mm/h. 
Figure 4.22 shows, in the left panel, the number of profiles of CRD for each pixel contributing 
to the retrieval (common logarithm); in the right panel the variance to rain rate ratio (mm/h). 
For each pixel a large number of profiles from the CRD database are selected for the Bayesian 
retrieval. A greater number of profiles are selected for low rain rates, depending on the 
structure of CRD that has a profile majority corresponding to low rain rate values. 
Figure 4.23 shows the result of Polar 55C radar measurements over Lazio at 16:21 UTC, and 
figure 4.24 compares the BAMPR retrievals (top right panel) over Lazio with the 
corresponding radar (top left panel) measurements. To carry out this comparison, radar 
measurements and satellite retrievals have been reduced to the same resolution. A smoothing 
procedure (3x3 filter) has then been applied to the data. In the figure some statistical indexes 
are shown: the direction coefficient of the fit (m fit), the sum of residuals about the bisector 
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(sum B res), the summed square of residuals (sqr B res),  sum of squares due to error (sse - this 
index measures the total deviation of the response values from the fit to the response values), 
the square of the correlation between the response values and the predicted response values 
(rsquare -  this index measures how successful the fit is in explaining the variation of the data). 
The results of figure 4.24 show that there is quite a good agreement both in terms of 
precipitation path and rain rate values, even though the scatterplot points out that the BAMPR 
algorithm slightly overestimates the rain rate with respect to the radar measurements 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
Fig. 4.20 – Case study over Lazio, November 4, 2008, 16.18 UTC. Microwave brightness 
temperatures (K) at 150 (H), and 183 (H) GHz (see Tab. 1.2 of chapter 1), as measured by the 
SSMIS radiometer onboard the DMSP F-16 satellite. 
 
 
 
In order to check the effect of the dynamical tags on the retrieval, we analyzed the changes in 
new BAMPR output (rain rate and relative Bayesian variance) introducing, in a preliminary 
test, the tags freezing level, vertical moisture flux at 50 mb AGL and  vertical wind velocity at 
700 mb (Omega) in the Bayesian procedure. 
  
Figures 4.25 and 4.26 show the values of  these tags during the event. The circles in the figures 
delimitate the area selected for the comparison with radar. Figure 4.25 shows the tags vertical 
moisture flux at 50 mb AGL (left panel) and vertical wind velocity at 700 mb (Omega) (right 
panel). 
  

183(±6.6)
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Fig. 4.21 - Case study over Lazio, November 4, 2008, 16.18 UTC (DMSP F-16). Surface rain 
rate (mm/h) obtained by BAMPR algorithm (CRD version).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.22 -  Case study over Lazio, November 4, 2008, 16.18 UTC (DMSP F-16). Outputs of 
BAMPR algorithm: the panel on the left shows the number of profiles of CRD that contributed 
to the retrieval (common logarithm); the panel on the right shows the variance to rain rate ratio 
(mm/h).  
 



 119

                          
 
 
Fig. 4.23 – Reflectivity measured on 4 November 2008 at 16:21 UTC by the CNR-ISAC C-
band polarimetric Doppler radar Polar 55C – note that the Rome area is delimited by the red 
line. 
 
 
 
The vertical moisture flux at 50 mb AGL presents a slight decrease from the coast toward the 
area of the event, while the wind velocity at 700 mb (Omega) presents a more evident variation, 
with an increase in the values from the coast to the area of the event. 
 
Fig. 4.26 shows the tags CAPE (left panel) and freezing level (right panel). The CAPE presents, 
in the circled area, an evident variation, with a decrease in proximity to the coast. The values in 
the area of the event are in the range 200-1100 J/kg, denoting that by this time the potential 
energy is converted into kinetic energy. Therefore, this tag cannot be useful in the retrieval 
procedure. 
The freezing level presents a slight variation in the circled area, with an increase moving from 
the coast to the area of the event.  
 
These variations of tag values are presented in a more detailed way in figure 4.27, which 
concerns only the circled areas of previous figures 4.25 and 4.26. In the figure the values of the 
vertical moisture flux at 50 mb AGL (top left panel), of the vertical wind velocity at 700 mb 
(Omega) (top right panel) and freezing level (bottom panel) are shown. The CAPE is not 
presented in the figure.  
The details suggest that, in this convective system evolving into a long lasting cloud system 
with extensive stratiform rain, the vertical wind velocity at 700 mb (Omega) should play an 
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important role in the retrieval procedure, allowing a more correct selection of profiles in the 
CDRD. This fact is confirmed by figures 4.28 and 4.29 that present three scatterplots 
concerning the distribution of the profiles of CDRD with respect to the vertical moisture flux at 
50 mb AGL,  the vertical wind velocity at 700 mb (Omega), and the rain rate. Particularly, fig. 
4.28 shows, in the panel on the left, the scatterplot of the vertical wind velocity at 700 mb 
(Omega) and the rain rate (the log of occurrences of profiles in CDRD is shown). 
In the panel, the range of this tag in the detailed area of figure 4.27 (top right panel) is also 
specified. In the panel on the right of figure 4.28, a similar scatterplot for the vertical moisture 
flux at 50 mb AGL is shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4.24 – Case study over Lazio, November 4, 2008, 16.18 UTC. Average (see the text for 
more details) surface rain rates (mm/h) measured by the Polar 55C radar (top left) and 
estimated by the Bayesian algorithm (CRD version) (top right). Bottom panel: scatterplot of 
satellite rainfall retrievals of top-right panel vs. corresponding radar measurements of top-left 
panel.  
 
 
It is evident in the figure that both the ranges include the area with highest occurrences (red 
area) in the database. It follows that the examined event is well represented in the CDRD.  
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Fig. 4.25  – Case study over Lazio, November 4, 2008, 16.18 UTC. Values of the vertical 
moisture flux at 50 mb AGL (g*m-2*s-1) (left panel), and vertical wind velocity at 700 mb 
(Omega) (Pa/s) (right panel). The circles show the area analyzed in the comparison with radar 
measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.26 - Case study over Lazio, November 4, 2008, 16.18 UTC.  Values of the convective 
available potential energy (CAPE) (J/kg) (left panel), and freezing level (m) (right panel). The 
circles show the area analyzed in the comparison with radar measurements. 
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Figure 4.27 – Details of the values of  tags vertical moisture flux at 50 mb AGL (g*m-2*s-1) (top 
left panel), vertical wind velocity at 700 mb (Omega) (Pa/s) (top right panel), and freezing level 
(m) (bottom panel) in the circled areas of figures 4.25 and 4.26. 
 
 
Moreover, the figure points out that the range of vertical wind velocity at 700 mb (Omega) 
allows a more narrow selection in the database.  
This fact is confirmed by figure 4.29 which shows the scatterplot of vertical moisture flux at 50 
mb AGL (vertical axis) and  vertical wind velocity at 700 mb (Omega) (horizontal axis). The 
different selectivity is evident in the figure. Regarding the freezing level, it shows very small 
changes over the observed area (fig. 4.27, bottom panel). As mentioned in section 4.2.1, it can 
give an effective contribution to a preliminary selection of profiles in the database. For this 
reason it has been coupled with the other tags in all the tests carried out in this case study. A 
check on its effect on the selection procedure of CDRD profiles has shown a reduction of about 
50% of the mean number of profiles selected, for a pixel. 
In the following figures 4.30 – 4.32 the effects of the use of tags on surface rain rate and 
relative Bayesian variance are shown.   
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Fig. 4.28 – Scatterplot of vertical wind velocity at 700 mb (Omega) (Pa/s) and rain rate (mm/h) 
(left panel), and of vertical moisture flux at 50 mb AGL (g*m-2*s-1) and rain rate (mm/h) (right 
panel). On the vertical axes the rectangles show the ranges of the two tags in the selected areas 
of fig. 4.5.15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
Fig. 4.29 – Scatterplot of vertical moisture flux at 50 mb AGL (g*m-2*s-1) (vertical axis) and 
vertical wind velocity at 700 mb (Omega) (Pa/s) (horizontal axis) for the profiles of CDRD. 
The common logarithm is used for the occurrences. The rectangle shows the ranges of the two 
tags in the selected area of fig. 4.5.15. 
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Figure 4.30 presents the scatterplots of rain rate values (left panel), and relative Bayesian 
variance values (right panel) without tags (horizontal axis) and with the use of the two tags  
freezing level and vertical wind velocity at 700 mb (Omega) (vertical axis). The effect of these 
tags, and substantially of Omega, is evident on both rain rate and variance. Rain rate values are 
slightly reduced, and the variance values are reduced in a more evident way.  This result 
confirms the previous comments concerning the correct operation of this tag.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.30 – Case study over Lazio, November 4, 2008, 16.18 UTC.  Scatterplots of rain rate 
values (mm/h) (left panel), and relative variance values (mm/h) (right panel), without tags 
(horizontal axis) and with the use of the tags  freezing level and vertical wind velocity at 700 
mb (Omega) (vertical axis). 
 
 
 
Figure 4.31 presents the scatterplots as in the previous figure, but using the two tags  freezing 
level and   vertical moisture flux at 50 mb AGL. The effect is different from the previous figure. 
As expected from the analysis of images in figures 4.28 and 4.29, the vertical moisture flux at 
50 mb AGL does not give a specific contribution to the retrieved values. There is an evident 
high spread of rain rate values; there is, however, also a reduction of the relative Bayesian 
variance.  
Figure 4.32 shows the combined effect of the three tags freezing level, vertical moisture flux at 
50 mb AGL and vertical wind velocity at 700 mb (Omega). The result is the combination of the 
effects presented in previous figures 4.30 and 4.31.  A reduction of the rain rate values 
emerges, less evident than in figure 4.30, with an increased spread, and a still manifest 
reduction of relative Bayesian variance.  
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Fig. 4.31 – Case study over Lazio, November 4, 2008, 16.18 UTC.  Scatterplot of rain rate 
values (mm/h) (left panel), and relative variance values (mm/h) (right panel), without tags 
(horizontal axis) and with the use of the tags  freezing level and  vertical moisture flux at 50 mb 
AGL (vertical axis). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.32 –  Case study over Lazio, November 4, 2008, 16.18 UTC.  Scatterplot of rain rate 
values (mm/h) (left panel), and relative variance values (mm/h) (right panel), without tags 
(horizontal axis) and with the use of the tags  freezing level,  vertical wind velocity at 700 mb 
(Omega), and vertical moisture flux at 50 mb AGL (vertical axis). 
 



 126

After all, based on these scatterplots, the addition of the vertical moisture flux at 50 mb AGL, 
has not given a favourable contribution to the retrieval procedure. 
 
Figure 4.33 points out the effect of tags on the number of profiles selected from the CDRD 
database. In the figure the mean number of profiles selected, for a pixel, is shown when tags 
are not used, and when one (freezing level) or two (adding vertical moisture flux at 50 mb 
AGL) or three tags (adding vertical wind velocity at 700 mb (Omega) are used. The relevant 
effect on the  screening of profiles produced by the freezing level (reduction of 50%) is clear in 
the figure. Altogether, the three tags cause a reduction of about 70% in the selection of profiles.  
 
Figure 4.34 shows the comparison of the retrieval using two tags (freezing level and vertical 
wind velocity at 700 mb (Omega) with the radar, in a similar fashion as the previous figure 
4.24. Only these two tags are used on the basis of the analysis presented in the previous part of 
this section. The better agreement with the radar measurements is clear in the figure.  
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Fig. 4.33 – Case study over Lazio, November 4, 2008, 16.18 UTC. Decrease in the mean 
number of profiles, for a pixel, selected from the CDRD database  using successively one tag 
(freezing level), two tags (adding the vertical moisture flux at 50 mb AGL), or three tags 
(adding vertical wind velocity at 700 mb (Omega)). 
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Fig. 4.34 - Case study over Lazio, November 4, 2008, 16.18 UTC. Same as figure 4.5.12, but 
using the tags  freezing level, and vertical wind velocity at 700 mb (Omega) in the retrieval 
procedure (see text for more details).              . 
 
 
 
The over estimation of previous retrieval is almost entirely removed and the spread of the data 
is significantly reduced. The angular coefficient of the fit (m fit parameter) has decreased from 
1.1567 to 0.9849; the sum of squares due to error (sse index) has decreased from about 1507 to 
about 1008. The other statistical indexes confirm, similarly, the improvement in the retrieval. 
 
In the end, the results of this case study confirm the possible improvement of the satellite 
retrieval by means of the CDRD approach. 
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4.4.3 Case study over the Rome area (July 2, 2009) 
This case study concerns a heavy storm that hit the Lazio region, and particularly the area 
around the city of Rome, on 2 July 2009.  
During the last days of June 2009, a cold pool descended from central Europe to the Balkans 
producing a cyclonic circulation over Eastern Europe. Consequently, an eastern flux developed 
over Italy carrying relatively cold air in the middle-level atmosphere.  
More specifically, a cold tongue at 850 mb developed over the Balkans on June 29, that 
generated, two days later, a strong cold advection over Italy (fig. 4.35). In addition, the summer 
solar irradiation triggered strong and diffuse convection along the Apennine mountain chain. 
As a result, thunderclouds were carried toward the south-west by upper level winds, as shown 
in the Meteosat Second Generation (MSG) images of Figure 4.36. In the left panel, the High-
Resolution Visible (HRV) image presents the situation at 11:00 UTC. On the right panel, the 
lighting activity as detected by the ZEUS network during the last 15 minutes is shown. The red 
circle in the right panel indicates the Rome area observed by the CNR ISAC Polar 55C radar.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.35 – Synoptic scale evolution of the case study. Left panel: temperature at 850 mbar 
level at 00 UTC on 29th of June. Right panel: thermal advection at 750 mbar at 00 UTC of 2nd 
of July. The cold tongue has moved over Italy carried by eastern winds. 
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Fig. 4.36 - High-Resolution-Visible (HRV) MSG images of the Italian region on 02 July 2009, 
11:00 UTC (left) and 16:15 UTC (right) with superimposed contours of lightning activity as 
detected by the ZEUS network during the last 15 minutes. The red circle in the right panel 
indicates the Rome area observed by the CNR ISAC Polar 55C radar 
 
 
Figure 4.37 shows the rainfall map over the Rome area at 16:15 UTC, as measured by the Polar 
55C radar, indicating the presence of a heavy storm over Rome. 
There is a “head” of very high values of rainfall rates corresponding to the head of a well 
structured convective system. With the aid of the cloud resolving model UV-NMS, we have 
analyzed at CNR ISAC the structure of the storm. Figure 4.38 shows the result of the 
simulation We recognized a self-sustaining  mesoscale system linked to a strong gust front. In 
the panel on the left, the mature stage of the event simulated by the Mesoscale Model, viewed 
from S-W, is presented. The cloud field (grey) and low level wind arrows are shown. There is a 
clear line of shear with strong convergence. The gust front moves west, forcing the lift of moist 
air carried by the sea breeze (westerly flow). The panel on the right presents the thermal field 
at ground level with winds and updraft (solid surfaces) viewed from S-E.  
In conclusion, it was a very strong and well structured convective system; very heavy rainfall 
and hail were observed over Rome, with hailstones of big dimensions (some centimeters). 
 
Figure 4.39 and 4.40 show the brightness temperatures at 85 and 37 GHz, horizontal and 
vertical polarization, obtained from SSM/I radiometer onboard satellite DMSP F-15, on the 
same day at 16:15 UTC. In both figures 4.37 and 4.39, the heavy storm over the Rome area is 
quite evident. The corresponding retrieval results of the BAMPR algorithm are shown in 
figures 4.41 and 4.42. 
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Fig. 4.37 - Rainfall rates measured on 2 July 2009 at 16:15 UTC by the CNR-ISAC C-band 
polarimetric Doppler radar Polar 55C – note that the Rome area is represented by the red circle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.38 – Model simulation of the event. Left panel: cloud field (grey) and low level wind 
arrows. The blue area shows the land. Right panel: thermal field, low level winds and updrafts 
(solid). 
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The CRD version of the database is used, i.e. the one without dynamical tags.  Figure 4.41 
shows the surface rain rate and points out the high values of rain rate (up to about 20-25 mm/h) 
over Rome area. 
 
Figure 4.42 shows, in the left panel the number of profiles of CRD, for each pixel, contributing 
to the retrieval (common logarithm); in the right panel the relative variance (Bayesian variance 
to rain rate ratio) (mm/h). For each pixel a large number of profiles from the CRD database is 
selected for the Bayesian retrieval. A greater number of profiles are selected for low rain rates, 
depending on the structure of CRD that has a profile majority corresponding to low rain rate 
values. As a consequence, the retrieval uncertainty, as measured by the relative Bayesian 
variance, may be as large as the retrieved rain rate, thus calling for a more constrained retrieval 
(such as in the CDRD approach). 
 
Figure 4.43 compares the satellite retrievals over Rome area with the corresponding radar 
measurements of figure 4.37. Note that to this end, it is found convenient to reduce radar 
measurements and satellite retrievals to a common resolution. A smoothing procedure (3x3 
filter) has then been applied to the data. Evidently, there is a good agreement both in terms of 
precipitation path and rain rate values, even though BAMPR retrieval slightly under estimates 
the rain rate. Note, however, that while the fit of the scatterplot is close to the bisector, there is 
a high spread of the data. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.39 – Case study Rome, 2 July 2009, 16:15 UTC. Microwave brightness temperatures (K) 
at 85 Ghz  (H and V) as measured by the SSM/I radiometer onboard the DMSP F-15 satellite 
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Fig. 4.40 – Case study Rome, 2 July 2009, 16:15 UTC. Microwave brightness temperatures (K) 
at 37 GHz  (H and V) as measured by the SSM/I radiometer onboard the DMSP F-15 satellite 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             
 
 
 
 
 
 
 
Fig. 4.41 - Case study Rome, 2 July 2009, h 16:15 (DMSP F-15): Surface rain rate (mm/h) 
obtained by BAMPR algorithm (CRD version). 
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Fig. 4.42 - Case study Rome, 2 July 2009, h 16:15 (DMSP F-15). Outputs of BAMPR 
algorithm: the panel on the left shows the number of profiles of CRD that contributed to the 
retrieval (common logarithm). The panel on the right shows the Bayesian variance to rain rate 
ratio (mm/h). 
 
 
 
In order to check the performance of the CDRD version of the retrieval algorithm, a new 
retrieval has been performed for this case study using the dynamical tags.  Also for this case 
study the tags selected for a preliminary analysis are: vertical moisture flux at 50 mb AGL, 
vertical wind velocity at 700 mb (Omega), the Convective Available Potential Energy (CAPE) 
in addition to the freezing level. As pointed out in the previous analysis of the event, using the 
UV-NMS model, the lift of moist air and the vertical winds were relevant components of the 
convective system analyzed. The use of CAPE is aimed at inspecting the level of instability at 
the time of the measurements. Freezing level can represent, as already specified, a more 
general tag, that can contribute to a more correct  selection of CDRD profiles. 
 
The following figures, 4.44 and 4.45, show the values of these tags during the event. The 
circles in the figures delimitate the area selected for the comparison with radar.  
 
From both panels in figure 4.44, changes of tag values corresponding to the disturbance are 
evident. In figure 4.45, values of CAPE in the Rome area are quite low (1000-1400 J/kg) as a 
consequence of the gradual conversion of the potential energy into kinetic energy during the 
evolution of the event. A large area of reduced values of freezing level over the central Italy is 
evident in the right panel of this figure. 
 
These variations of tag values are presented in a more detailed way in figure 4.46, which 
concerns only the circled areas of previous figures 4.44 and 4.45. In the figure, the values of 
the vertical moisture flux at 50 mb AGL (top left panel), the vertical wind velocity at 700 mb 
(Omega) (top right panel) and freezing level (bottom panel) are shown. The CAPE is not 
presented in the figure. 
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Fig. 4.43 – Average (see the text for more details) surface rain rates (mm/h) measured by the 
Polar 55C radar (top left) and estimated by the BAMPR algorithm (top right) for the case study 
of 2 July 2009, 16;15 UTC. Bottom panel: scatterplot of satellite rainfall retrievals of top-right 
panel vs. corresponding radar measurements of top-left panel, with some statistic indexes.  
 
 
 
The details suggest that, in this strong and well structured convective system, the vertical 
moisture flux at 50 mb AGL and the vertical wind velocity at 700 mb (Omega) should play an 
important role in the retrieval procedure, allowing a more correct selection of profiles in the 
CDRD. This fact is confirmed by figures 4.47 and 4.48 that present three scatterplots 
concerning the distribution of the profiles of CDRD with respect to these tags and the rain rate. 
 
Particularly, fig. 4.47 shows, in the panel on the left, the scatterplot of the vertical wind 
velocity at 700 mb (Omega) and the rain rate (the log of occurrences of profiles in CDRD is 
shown).  
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Fig. 4.44 – Values of  vertical moisture flux at 50 mb AGL (g*m-2*s-1) (left panel), and vertical 
wind velocity at 700 mb (Omega) (Pa/s) (right panel), during the event of 2 July 2009  h 16:15. 
The circles show the area analyzed in the comparison with radar measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.45 - Values of the Convective Available Potential Energy (CAPE) (J/kg) (left panel), and 
freezing level (m) (right panel), during the event of 2 July 2009  h 16:15. The circles show the 
area analyzed in the comparison with radar measurements. 
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Figure 4.46 – Details of the values of  tags vertical moisture flux at 50 mb AGL (g*m-2*s-1) (top 
left panel), vertical wind velocity at 700 mb (Omega) (Pa/s) (top right panel), and freezing level 
(m) (bottom panel) in the circled areas of figures 4.44 and 4.45. 
 
 
 
In the panel, the range of this tag in the detailed area of figure 4.46 (top right panel) is also 
specified. In the panel on the right of figure 4.47 a similar scatterplot for the vertical moisture 
flux at 50 mb AGL is shown. 
 
It is evident in the figure that both the ranges include the area with highest occurrences (red 
area) in the database. This means that the examined event is well represented in the CDRD. 
Moreover, the figure points out that both the tags can allow a narrow selection in the database. 
This fact is confirmed by figure 4.48, that shows the scatterplot of vertical moisture flux at 50 
mb AGL (vertical axis) and  vertical wind velocity at 700 mb (Omega) (horizontal axis). In the 
figure the good selectivity of the two tags is evident. 
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Fig. 4.47 – Scatterplot of vertical wind velocity at 700 mb (Omega) (Pa/s) and rain rate (mm/h) 
(left panel), and of vertical moisture flux at 50 mb AGL (g*m-2*s-1)  and rain rate (mm/h) (right 
panel). On the vertical axes, the rectangles show the ranges of the two tags in the selected areas 
of fig. 4.46. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.48 – Scatterplot of vertical moisture flux at 50 mb AGL (g*m-2*s-1) (vertical axis) and 
vertical wind velocity at 700 mb (Omega) (Pa/s) (horizontal axis) for the profiles of CDRD. 
The common logarithm is used for the occurrences. The rectangle shows the ranges of the two 
tags in the selected area of fig. 4.46. 
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Also for this case study, the positive contribution of  freezing level has been tested in a 
preliminary rough selection of profiles in terms of season and latitude of the event.  
 
In the following figures 4.49 – 4.51 the effects of the use of tags on surface rain rate and 
relative Bayesian variance are shown.   
Figure 4.49 presents the scatterplots of rain rate values (left panel), and relative variance values 
(right panel) without tags (horizontal axis) and with the use of the tags  freezing level and 
vertical wind velocity at 700 mb (Omega) (vertical axis). With these tags, rain rate values are 
slightly reduced, and the relative variance values are reduced in a more evident way.  
Figure 4.50 presents the scatterplots as in the previous figure, but using the tags  freezing level 
and   vertical moisture flux at 50 mb AGL. The effect is different from the previous figure. 
Rain rate values are slightly increased, while variance values are reduced. 
 
Figure 4.51 shows the combined effect of the three tags freezing level, vertical moisture flux at 
50 mb AGL and Omega.  The use of the three tags produces a slight increase of the rain rate 
and an evident reduction of the relative variance.  
 
Figure 4.52 points out the effect of tags on the number of profiles selected from the CDRD 
database. In the figure the mean number of profiles selected for a pixel is shown when tags are 
not used, and when one (freezing level), two (adding vertical moisture flux at 50 mb AGL) or 
three tags (adding vertical wind velocity at 700 mb (Omega) are used. The figure clearly shows 
the relevant effect on the  screening of profiles produced by the freezing level (reduction of 
60%). Altogether, the three tags cause a reduction of about 80% in the selection of profiles.  
 
 
 

  
 
 
Fig. 4.49 – Case study Rome, 2 July 2009, h 16:15 (DMSP F-15).  Scatterplot of rain rate 
values (mm/h) (left panel), and relative variance values (mm/h) (right panel), without tags 
(horizontal axis) and with the use of the tags  freezing level and  vertical wind velocity at 700 
mb (Omega) (vertical axis).  
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Fig. 4.50 – Case study Rome, 2 July 2009, h 16:15 (DMSP F-15).  Scatterplot of rain rate 
values (mm/h) (left panel), and relative variance values (mm/h) (right panel) without tags 
(horizontal axis) and with the use of the tags  freezing level and  vertical moisture flux at 50 mb 
AGL (vertical axis).  
 
 
 
 

  
 
 
 
Fig. 4.51 – Case study Rome, 2 July 2009, h 16:15 (DMSP F-15).  Scatterplot of rain rate 
values (mm/h) (left panel), and relative variance values (mm/h) (right panel), without tags 
(horizontal axis) and with the use of the tags  freezing level , vertical wind velocity at 700 mb 
(Omega), and vertical moisture flux at 50 mb AGL  (vertical axis).  
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Fig. 4.52  – Case study Rome, 2 July 2009, h 16:15 (DMSP F-15). Decrease in the mean 
number of profiles for a pixel selected from the CDRD database using successively one tag 
(freezing level), two tags (adding the vertical moisture flux at 50 mb AGL), or three tags 
(adding vertical wind velocity at 700 mb (Omega)). 
 
 
 
 
Figure 4.53 shows the comparison of the retrieval using three tags (freezing level, vertical 
moisture flux at 50 mb AGL and vertical wind velocity at 700 mb (Omega)) with the radar, in a 
similar fashion to figure 4.43. There is clearly a closer agreement with the radar measurements 
with respect to fig. 4.43. The underestimation of previous retrieval is attenuated and the spread 
of the data is significantly reduced. The angular coefficient of the fit (m fit parameter) has 
increased from 0.8029 to 0.9306, the sum of square due to error (sse index) has decreased from 
about 682 to about 598, and the square of the correlation (rsquare index) has increased from 
about 0.772 to about 0.838.. The other statistical indexes confirm, similarly, the improvement 
in retrieval. 
 
This result also confirms the positive effects of the tags on improving the screening of profiles, 
selecting the subset that really describes the analyzed event.   
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Fig. 4.53 – Case study Rome, 2 July 2009, h 16:15 (DMSP F-15). Same as figure 4.5.30 but 
using the tags  freezing level, vertical moisture flux at 50 mb AGL, and vertical wind velocity at 
700 mb  (Omega) in the retrieval procedure (see text for more details).               
 
 
 
 
4.4.4 POD and FAR 
The evaluation of retrieval accuracy has also been performed using the indexes POD 
(Probability Of Detection) and FAR (False-Alarm Index) (Dixon and Wiener 1993). The 
definition of these indexes is based on the table of figure 4.54, which compares, for each area 
examined, the results (rain rate) of the BAMPR retrieval and the radar measurements. For a 
given range of rain rate (for example 0-5 mm/h) there is a “success (a)” in the comparison if 
both the results are in this range. There is a “failure (c)” if only the radar result is in this range, 
while the retrieval is out. There is a “false alarm (b)” if only the retrieval is in this range, while 
the radar measurement is out. The indexes POD and FAR are then computed as follows 
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Fig. 4.54 – Table for the comparison of BAMPR retrievals with radar measurements, used for 
the POD and FAR computation. 
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where  na, nb and nc represent the numbers of “success”, “false alarm”, and “failure”, 
respectively. 
The following tables 4.2-4.5 show the values of POD and FAR obtained for the previously 
examined  case studies. Each table presents: the ranges of rain rate in the first row, the values 
of the indexes in the study without tags in the second row, and the corresponding values of the 
indexes using tags in the third row.  
The effect of the tags is evident in the tables; they increase the POD and reduce the FAR.    
 
 
 Tab. 4.2   November 4, 2009 – POD Index 
 

0-5 mm/h 5-10 mm/h 10-15 mm/h 15-20 mm/h 20-25 mm/h  
0.25 0.20 0.35 0.35 0.40 no tags 
0.25 0.50 0.60 0.70 0.60 with tags 

 
  
 Tab. 4.3   November 4, 2008 – FAR Index 
 

0-5 mm/h 5-10 mm/h 10-15 mm/h 15-20 mm/h 20-25 mm/h  
0.30 0.40 0.30 0.35 0.50 no tags 
0.26 0.25 0.20 0.15 0.40 with tags 
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 Tab. 4.4   July 2, 2009 – POD Index 
 

0-5 mm/h 5-10 mm/h 10-15 mm/h 15-20 mm/h  
0.40 0.40 0.45 0.65 no tags 
0.50 0.75 0.65 0.70 with tags 

 
 
 Tab. 4.5   July 2, 2009 – FAR Index 
 

0-5 mm/h 5-10 mm/h 10-15 mm/h 15-20 mm/h  
0.40 0.65 0.50 0.40 no tags 
0.20 0.40 0.30 0.30 with tags 

 
  
 
4.5  Comparison with the “NESDIS algorithm” of  NOAA 
In order to obtain a more complete evaluation of the results, a comparison between the CDRD 
algorithm and the operational algorithm of NOAA has been carried out. This algorithm, 
sometimes referred to as the “Ferraro algorithm” (Ferraro 1997), the “NESDIS algorithm” and 
the “FNMOC/EDR algorithm” (Fleet Numerical Meteorology and Oceanography Center, 
Environmental Data Record) is an 85 GHz scattering technique over land, and a combination 
85 GHz scattering and 19/37 GHz emission approach over ocean. It is empirically tuned with 
ground based radar data. The algorithm has been available for about ten years, and it still 
serves as a benchmark algorithm that more advanced, and physically based approaches seek to 
improve upon. Moreover it is still utilized in many  operational projects. 
 
4.5.1 The “NESDIS algorithm” 
The NOAA rain rate estimate is substantially based on two algorithms: an 85 GHz scattering-
based algorithm (over land and ocean) and a 19/37 GHz emission-based algorithm (over 
ocean). The 85 GHz scattering-based algorithm uses the Scattering Index (SI) developed by 
Grody (1991) and described in chapter 2 (section 2.5) and chapter 3 (section 3.2.2). Two 
different Scattering Indexes are used for land (see formula (3.3.28)) and for ocean (formula 
3.3.25). A value of SI greater than 10 K is considered as a good global indicator of rain. The 
following relationships are then used to calculate the rain rate (R)   
 
                            Land          9468.100513.0 LSIR ⋅=       (see  chapter 2, formula (2.48)) 
                            Ocean         0343.200188.0 OSIR ⋅=  
where R is in mm/h.  
Over ocean, an additional emission-based algorithm (the liquid water path – LWP) is used. The 
expressions utilized are (see Chapter 3, Section 3.2.2.1) 
                    
                       LWP19V = -2.70[ln(290 - Tb19V ) -  2.84 – 0.40 ln(290 – Tb22V )]           
                       LWP37V = -1.15[ln(290 – Tb37V ) -  2.99 – 0.32 ln(290 – Tb22V )].      
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The rain is assumed present if either LWP19V > 0.60 kg m−2 or if  LWP37V > 0.20  kg m−2. A 
rain rate is then retrieved using the relationship (Ferraro and Marks 1995) 
 
                                                  R = 0.001707 (100 LWP)1.7359     
 
where LWP value represents either the LWP19V  or the  LWP37V  value. 
Since the resulting rain rates  (land and ocean) increase exponentially for higher SI values, R 
above 35 mm/h is set to 35 mm/h. However, it remains a tendency to overestimate, over land, 
in heavy rain events. 
 
 
4.5.2  The comparison 
To carry on the comparison, the events previously analyzed in sections 4.4.2 and 4.4.3 have 
been studied using the NOAA algorithm. 
The results are shown in figures 4.55 and 4.56. In the figures, radar measurements and the 
satellite retrievals (CDRD and NOAA) are reduced to a common resolution of 25 km (NESDIS 
algorithm resolution). 
 
Fig. 4.55, concerning the event of November 4, 2008 over Lazio, shows the rain rate (mm/h) as 
it results from CDRD estimate (top left), from NESDIS estimate (top right), and from radar 
(CNR-ISAC C-band polarimetric Doppler radar Polar 55C) measurements (bottom).  
The close agreement between the CDRD and radar results is confirmed in the figure. The 
NESDIS algorithm shows some gaps in the detection of  rain rate over coast and an 
overestimation over the heavy rain area.  
 
While the overestimation is an expected result due to the expression used (2.48) to estimate the 
rain rate, as already underlined in section 4.5.1, the gaps at low rain rate values can be 
attributed to the particular processing procedure  utilized by the NESDIS algorithm (Ferraro 
1997, Ferraro et al. 1998) for pixels over coasts. In fact this algorithm analyses a 5x5 grid of 
SSM/I A-scan observations surrounding the pixel for which the retrieval is performed. Any 
coastline or land identified in this grid is classified as land. In other words, the NESDIS simply 
uses the ” land algorithm” over the coast and near coast FOVs. It follows that the sensitivity to 
emission-type rain is lost along the coast, and an underestimation of rain rate is then possible. 
 
Figure 4.56, concerning the event over Rome on 2 July 2009, shows similar results to the 
previous figure. That is, it points out a close agreement between CDRD estimation of rain rate 
and radar measurements, and an overestimation of the NESDIS algorithm. 
 
The following figures 4.57 and 4.58 present the scatterplots of CDRD and NESDIS rainfall 
retrievals vs. corresponding radar measurements. In the figures, radar measurements and 
CDRD retrievals have been reduced to the resolution of NESDIS retrieval (about 25 km).  
Figure 4.57 refers to the event over Lazio on 4 November 2008, and figure 4.58 to the event 
over Rome on 2 July 2009.  
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Fig.  4.55 - Case study over Lazio, November 4, 2008, 16.18 UTC. Surface rain rate values 
(mm/h) obtained using the CDRD algorithm (top left), NOAA (top right) algorithm, and radar 
(CNR ISAC) measurements (bottom). 
 
 
 
In each figure, the left panel concerns the comparison of radar measurements with CDRD 
estimated rain rate, and the right panel concerns the comparison of radar measurements with 
NESDIS estimated rain rate. 
 
Both the figures confirm the results that already came out from previous analysis of figures 
4.55 and 4.56: there is a close agreement between radar and CDRD results, and some 
discrepancies between radar and NESDIS results, due to the overestimation and the gaps over 
coasts (case November 4, 2008). 
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Fig.  4.56 – Case study Rome, 2 July 2009, 16:15 UTC. Surface rain rate values (mm/h) 
obtained using the CDRD algorithm (top left), the NOAA (top right) algorithm, and the radar 
(CNR ISAC) measurements (bottom). 
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Fig. 4.57 – Case study over Lazio, November 4, 2008, 16.18 UTC. Scatterplot of rain rate 
(mm/h) of CDRD (left panel) and NESDIS (right panel) estimates vs. radar measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.58  – Case study Rome, 2 July 2009, 16:15 UTC. Scatterplot of rain rate (mm/h) of 
CDRD (left panel) and NESDIS (right panel) estimates vs. radar measurements. 
 

m fit = 0.98101
sum B res = 2.5907
sqr B res = 310.7682
sse = 310.0511
rsquare = 0.85968

m fit = 1.2888
sum B res = -59.5715
sqr B res = 2651.2474
sse = 2485.4794
rsquare = 0.56887 

m fit = 0.88313
sum B res = 2.1083
sqr B res = 197.686
sse = 185
rsquare = 0.79493

m fit = 2.9332
sum B res = -167.9062
sqr B res = 16158.1091
sse = 12686.9653
rsquare = 0.38517
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CONCLUSIONS 
 
In this thesis we have investigated some important issues regarding the retrieval of 
precipitation from satellite-based microwave measurements. 
Although microwave radiometry retrieval techniques for the estimation of rainfall have 
advanced considerably over the past years, further developments are still necessary and some 
aspects of these techniques are currently being investigated in research activities. 
 
The activity we have carried out in this thesis concerned first the implementation and the 
development of the complete BAMPR algorithm, based on the Bayesian estimation theory, for 
the SSM/I, SSMIS and AMSR-E data (brightness temperatures) processing. The algorithm is 
described in chapter 3, together with the screening procedures we have selected for the correct 
processing of pixels. In the chapter, the characteristics of the database used (Cloud Radiation 
Database), and some tests we have performed on it are also presented. 
The activity was then focused on the introduction of the “dynamical tags” in the retrieval 
procedure of BAMPR, to be combined with brightness temperatures. This development we 
have carried out on the algorithm is aimed at reducing the “ambiguity” or the “non-
uniqueness” of the database that is a severe limit for retrieval methodology. The new BAMPR 
algorithm and its utilization with three “dynamical tags” in two case studies over Lazio are 
presented in chapter 4. 
 
The main results of our studies are summarized in the following points: 
 
- We have studied in depth the “screening” problem, particularly over coasts, considering 

that rainfall retrieval over coasts is crucial for regions like Italy where a high portion of the 
region is considered to be “coastal”. Moreover, the retrieval presents real difficulties 
because of the presence of sea and land areas in the same footprint, but with different 
emission signatures. We have analyzed and tested many possible screening procedures and 
we have defined those that optimize the retrieval of BAMPR. The results are reported in 
chapter 3. 

 
- We have considered the problems of uncertainties in the retrieval procedure (forward-

inverse problems) and the “non-uniqueness” of the database (CRD). The consequence of 
these problems is that precipitation and hydrometeor profiles obtained as a result of the 
retrieval algorithm were, in some cases, unrepresentative of the dynamical and 
thermodynamical state of the atmosphere under observation. Then we have recognized the 
need to introduce further information (dynamical tags), both in the retrieval procedure and 
in the database, about the “synoptic situation” of the considered event. We have 
implemented a new BAMPR algorithm, including tags and brightness temperatures in the 
Bayesian estimation procedure, to be used with the new database (CDRD – Cloud 
Dynamics and Radiation Database). The results are reported in chapter 4. 

 
- We have tested the performance of the new algorithm in different studies (the results of two 

studies over Lazio are reported in chapter 4). The values of tags were obtained from the 
GFS of NOAA. In the tests only three tags were used (vertical wind velocity at 700 mb 
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(Omega),  vertical moisture flux at 50 mb AGL, and  freezing level), which were certainly 
related to the structure of the events considered in the studies. The use of tags raises, in 
fact, many difficulties related to their selection depending on various factors, such as the 
characteristics of the meteorological event, their processing, and their different possible 
simultaneous utilizations. To evaluate the performance of the new algorithm, the results of 
the case studies have been compared with simultaneous radar (CNR-ISAC Polar55 radar) 
measurements. The comparison has shown a positive effect of tags, in terms of 
enhancement of the agreement between the results (rain rate) of new BAMPR retrieval and 
radar measurements, and reduction of the variance of retrieved rain rates. 

 
- In order to further check the performance of the new BAMPR, we have compared the 

results of the case studies with those obtained using the “NESDIS algorithm” of NOAA 
(chapter 4). The check has confirmed the good results of new BAMPR, which resulted in a 
better agreement than NESDIS results, with radar measurements.  

 
The retrieval system we have developed in this thesis has been inserted among the deliverables 
of the international research projects described in chapter 1. For this reason the implementation 
of BAMPR has been subjected to specifications and standards defined in the projects. The 
system is now in the phase of validation with the contribution of other partners, and then it will 
be transferred to the users.  
 
The results obtained in this thesis have proved the real effectiveness of the dynamical tags in 
reducing the “ambiguity” of the CRD. Further developments of the research can analyze the 
effect of the many different tags possible in different atmospheric environments, and can then 
give a more complete assessment of the potential contribution of tags. New tags, as for 
example the Convective Available Potential Energy (CAPE), the Positive Vorticity Advection 
(PVA) at 550 mb, Wind Shear at 300 mb, and Surface Height seem to be interesting in this 
direction. 
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ACRONYMS 
 
 
AMPR – Advanced Microwave Precipitation Radiometer 
AMSR-2 - Advanced Microwave Scanning Radiometer - 2 (on GCOM-W) 
AMSR-E – Advanced Microwave Sounding Radiometer - EOS 
AMSU - Advanced Microwave Sounding Unit (on NOAA and MetOp) 
AMSU-A/B  - Advanced Microwave Sounding Unit – A/B   
ASAR - Advanced Synthetic Aperture Radar (on Envisat) 
ASCAT - Advanced Scatterometer (on MetOp) 
ATMS  - Advanced Technology Microwave Sounder (on NPP and NPOESS) 
AVHRR - Advanced Very High Resolution Radiometer (on NOAA and MetOp) 
BAMPR – Bayesian Algorithm for Microwave-based Precipitation Retrieval 
BUFR - Binary Universal Form for the Representation of meteorological data 
CAPE – Convective Available Potential Energy (J/kg) 
CDRD – Cloud Dynamics and Radiation Database 
CIN – Convective Inhibition (J/kg) 
CMIS - Conical-scanning Microwave Imager/Sounder (on NPOESS starting from NPOESS-2) 
CNMCA - Centro Nazionale di Meteorologia e Climatologia Aeronautica (in Italy) 
CNR - Consiglio Nazionale delle Ricerche  
CRD – Cloud Radiation Database 
CrIS - Cross-track Infrared Sounder (on NPP and NPOESS) 
CRM – Cloud Resolving Model 
DMSP – Defense Meteorological Satellite Program 
DoD - Department of Defence (in the USA) 
DPR - Dual-frequency Precipitation Radar (on the GPM “core” satellite) 
ECMWF - European Centre for Medium-range Weather Forecasts 
EGPM – European Global Precipitation Mission 
Envisat - Environmental Satellite 
EOS – Earth Observing System 
ERS - European Remote-sensing Satellite (1 and 2) 
ESA - European Space Agency 
ESMR – Electrically  Scanning Microwave Radiometer 
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 
FAR – False Alarm Ratio 
FNMOC – Fleet Numerical Meteorology and Oceanographic Center 
FOV – Field of view 
GCOM-W Global Change Observation Mission - Water 
GEO - Geostationary Earth Orbit 
GFS – Global Forecasting System 
GIS - Geographical Information System  
GMI - GPM Microwave Imager (on the GPM “core” satellite) 
GNSS - Global Navigation Satellite System 
GPCP – Global Precipitation Climatology Project 
GPM - Global Precipitation Measurement mission 
GPROF – Goddard Profiling Algorithm 
GSCAT – Goddard Scattering Algorithm 
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HIRS - High-resolution Infrared Radiation Sounder (on NOAA and MetOp 1/2) 
H-SAF  - SAF on Support to Operational Hydrology and Water Management 
IASI  - Infrared Atmospheric Sounding Interferometer (on MetOp) 
IFOV – Instantaneous Field of View 
IR - Infra Red 
ISAC - Istituto di Scienze dell’Atmosfera e del Clima (of CNR) 
ISCCP – International Satellite Cloud Climatology Project 
LEO - Low Earth Orbit 
LIS - Lightning Imaging Sensor (on TRMM) 
LST - Local Solar Time (of a sunsynchronous orbit) 
MAP – Maximum A posteriori Probability 
MetOp  - Meteorological Operational satellite 
MHS - Microwave Humidity Sounder (on NOAA 18 and 19, and on MetOp) 
MMS – Minimum Mean Square 
MSG - Meteosat Second Generation 
MVIRI  - Meteosat Visible and Infra Red Imager (on Meteosat up to 7) 
MW - Micro Wave 
NASA – National Aeronautical and Space Administration 
NATO - North Atlantic Treaty Organization 
NCEP - NOAA National Centers for Environmental Prediction  
NEΔT - Noise Equivalent Differential Temperature 
NESDIS – National Environmental Satellite, Data and Information System 
NESR - Noise-Equivalent Spectral Radiance 
NMS – Non-hydrostatic Modelling System 
NOAA - National Oceanic and Atmospheric Administration (Agency and satellite) 
NPOESS - National Polar-orbiting Operational Environmental Satellite System 
NWP - Numerical Weather Prediction  
PCT – Polarization-Corrected Temperature 
PIP-2 – Precipitation Intercomparison Project 2 
Pixel - Picture element 
PM – Passive Microwave 
POD – Probability Of Detection 
PR - Precipitation Radar  
QPF - Quantitative Precipitation Forecast 
RTM – Radiative Transfer Model 
SAF - Satellite Application Facility 
SAR - Synthetic Aperture Radar 
SEVIRI - Spinning Enhanced Visible and Infra-Red Imager  
SMMR – Scanning Multichannel Microwave Radiometer 
SSM/I – Special Sensor Microwave/Imager 
SSMIS  - Special Sensor Microwave Imager/Sounder  
Tb or TB - Brightness Temperature 
TBB  -  Equivalent black body temperature 
TMI - TRMM Microwave Imager (on TRMM) 
TRMM – Tropical Rainfall Measuring Mission 
UTC - Universal Coordinated Time 
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UW NMS – University of Wisconsin – Non-hydrostatic Modeling System 
VIS - Visible 
VWSH – Vertical Speed Shear (1/s) 
WRCP – World Climate Research Program 
 
 
 
 
 
 
 


