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Abstract

This report provides the structure of a policy minimizing a long term, average, expected,
backlog/inventory cost for a fluid model, single machine, single product manufacturing system
subject to a failure/repair Markov process, where the failure rate is a piecewise constant
function of the production rate. This policy generalizes previous results and confirms several
conjectures reported in the literature, providing an interesting insight into the problem.

1 Introduction

A large literature deals with the problem of failure prone manufacturing systems. A complete
analytical solution has been given in [1] for a single machine characterized by a homogeneous
Markov failure/repair process. In this case the control minimizing a long term average expected
cost penalizing both surplus and backlog is the hedging point policy, according to which the machine
is operated at full rate until the inventory level hits a non-negative hedging level (or safety stock)
Z, which is then maintained until the next failure event occurs.

The problem becomes much more involved if the failure rate depends on the production rate. In
[3] it has been proved that the hedging point policy remains optimal if and only if the dependence
of the failure rate on the production rate is affine and it was conjectured for more general cases,
e.g. when this dependence is quadratic, that as the inventory level approaches a “hedging level”, it
may be beneficial to decrease the production rate to gain in reliability. This conjecture was actually
confirmed by the numerical results reported in [4].

An analytical increment in this direction, still confirming the conjecture in [3], was presented in
[5] (an extended version of [5] is available in [6]), where it was considered a machine characterized
by two failure rates: one for low and one for high production rates. In this report we generalize this
problem by considering a machine with N different failure rates: more specifically, the failure rate
is assumed to depend on the production rate through an increasing, piecewise constant function.
This makes the proof of optimality much more involved with respect to the one given in [5] since it
is not possible in this case to derive in closed form several parameters characterizing the optimal
control.

The optimal policy, which is a multi-level, decreasing, piecewise constant, feedback function
of the backlog/inventory level, allows to obtain the following interesting insight: the production
rates providing the maximum expected long run buffer increment are convenient when the back-
log/inventory level is far from the safety stock, while the production rates guaranteeing the maxi-
mum expected up times are better when approaching the safety stock. The shape of the optimal
policy strongly depends on the convexity properties of the failure rate function, confirming also in
this case the numerical findings of [4] and the analytical results of [3].

2 Notation and problem formulation

Let x(t) denote the buffer content at time t, with x(t) > 0 representing an inventory surplus and
x(t) < 0 a backlog of −x(t). Let d be the constant demand rate to be met. Then the buffer level
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x(t) at time t satisfies the following dynamical equation:

ẋ = u(t) − d (1)

where the production rate u(t) = 0 if at time t the machine is in the down state (also referred to
as state 0), and u(t) ∈ [0, µ] if at time t the machine is in the up state (also referred to as state 1).
We assume a Markov failure/repair process: the repair rate qup is constant while the failure rate
qd(u) depends on the production rate u as follows:

qd(u) :=















q1 u ≤ U1

q2 u ∈ (U1, U2]
. . .
qN u ∈ (UN−1, UN ]

(2)

where 0 < q1 < q2 < . . . < qN and 0 < U1 < U2 < . . . < UN =: µ. The piecewise constant function
in (2) may result from the discrete approximation of a continuous function, for example of the type
considered in [3]:

Qd(u) = auβ + b, (3)

with a, b and β non-negative constants. The state of the machine at time t will be denoted by s(t),
hence s(t) ∈ {0, 1} for all t. The scheduling problem considered in this report is the determination
of the optimal control u∗(t) minimizing the long-term average expected cost

J = lim sup
T→∞

1

T
E

[

∫ T

0

g[x(t)]dt

]

, (4)

where g(x) = cpx
+ + cmx−, with x− = max{0,−x}, x+ = max{0, x}, cp and cm non-negative

constants. We are interested only in admissible control laws, i.e. in non anticipative policies such
that for all t ≥ 0, 0 ≤ u(t) ≤ µ · s(t) (see e.g. [7] for more details on this). If the machine is
operated at rate u ∈ [0, µ], the average production rate at steady state is u qup/(qup + qd(u)). The
following feasibility Assumption will be considered, that there exists at least one Ui such that the
demand may be met in the average operating the machine at Ui. If this assumption were not
satisfied, any rate u ∈ [0, µ] would be unfeasible and the backlog, under any policy, would increase
with no bound over time.

Assumption 1 Consider the N -level failure rate function qd(u) reported in (2) and let

∆i := Uiqup − d(qup + qi). (5)

Then, it will be assumed that ∆i > 0 for at least one i ∈ {1, . . . , N}.

If, for some i, ∆i > 0, then also Ui > d. So, for each i, the following quantity often used in the
sequel, is positive if Ui is feasible (i.e. if ∆i > 0):

αi :=
∆i

d(Ui − d)
(6)

3 The structure of the optimal policy

The optimal policy for the considered problem has the following structure:

u(x) :=































0 x > Xℓ

d x = Xℓ

Uiℓ
x ∈ [Xℓ+1, Xℓ)

Uiℓ+1
x ∈ [Xℓ+2, Xℓ+1)

. . .
UiL

x < XL

(7)
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with 1 ≤ ℓ ≤ L ≤ N and S := {ik}k=ℓ,...,L, 1 ≤ iℓ < iℓ+1 < . . . < iL ≤ N , the sequence of integers
derived with the procedure reported in Algorithm 1 below (the reason behind the fact that the
first element of S is denoted by ℓ and not by 1 will be explained below). Notice that Z := Xℓ in
(7) is the hedging level, i.e. the safety stock to be maintained by the system, while all the Xi’s,
for i > ℓ, are only thresholds where the production rate changes.

The procedure to derive the sequence S appearing in (7), reported in Algorithm 1, requires the
definition of the following positive quantities:

φij =
qj − qi

Uj − Ui

(8)

for 1 ≤ i < j ≤ N . Also, we need to define, for any j, l ∈ {1, . . . , N},

∆Uj,l := (qup + ql)Uj − (qup + qj)Ul. (9)

The intuition behind these quantities and the structure in (7) will be given in Section 3.1. We first
give the procedure for the computation of the sequence S = {ik}k=ℓ,...,L.

Algorithm 1 Generate at first the following sequence S ′ = {ik}k=1,...,L′ of indexes:

ik =

{

1 k = 1
arg minj>ik−1

φik−1,j k = 2, . . . , L′ (10)

where L′ ≤ N is the first index for which iL′ = N . Then the sequence S is given by the elements
{iℓ, iℓ+1, . . . , iL} of S ′, where iℓ is the first index such that Uiℓ

> d (under Assumption 1 it can be
shown that such an iℓ is always comprised in S ′) and L ≥ ℓ is the first index (if any) for which it
happens that ∆UiL,iL+1

≥ 0, while L = L′ if ∆Uik,ik+1
< 0 for all k = ℓ, . . . , L′ − 1.

When using a policy in the class reported in (7), the cost index in (4) is a function of the levels
Xk’s, i.e. J = J(Xℓ, . . . , XL) and we will denote by X∗

k , the optimal value of Xk, and by J∗ the
corresponding optimal cost, i.e.:

J∗ = J(X∗
ℓ , . . . , X∗

L) = min
Xℓ≥...≥XL

J(Xℓ, . . . , XL).

The optimal value of the Xk’s can be numerically derived (e.g. through a gradient descent method)
using the analytical expression of J(Xℓ, . . . , XL), for some given Xℓ ≥ . . . ≥ XL, reported in
Appendix 7.1. It must be remarked that the optimal hedging level Z∗ = X∗

ℓ can not be negative,
as shown in Appendix 7.1.

3.1 General observations and some particular cases.

The optimal policy in (7) operates the machine by selecting for each buffer level the production
rate providing the best trade off between expected long run buffer increment and expected uptime,
giving more importance to the former when the inventory level is far from Z∗ and to the latter
when approaching the safety stock. This is formally established by the following lemma which
provides also an explanation to the necessity of introducing the quantities ∆Uj,l in (9) (see also
Remark 1).

Lemma 1 Consider S and the corresponding sequence of production rates {Uik
}k=ℓ,...,L. Then

the expected uptimes and the expected long run buffer increments associated with the {Uik
} are

respectively decreasing and increasing with k.

Proof. First of all notice that S is an increasing sequence of indexes (i.e. ik+1 > ik for all k). Now,
the expected uptime associated with Uik

is 1/qik
while the expected buffer increment associated

with Uik
over a long time interval of duration T is (Eik

− d)T , where, for any h ∈ {1, . . . , N},

Eh :=
qupUh

qup + qh

(11)
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is the average expected (or effective) long run production rate if the machine is operated at rate Uh.
Since qik

is increasing with k, the expected uptimes are decreasing with k. As for the expected long
run buffer increment, notice that the sequence S comprises all elements such that ∆Uik,ik+1

< 0.
Now, the condition ∆Uik,ik+1

< 0 is equivalent to the condition Eik
< Eik+1

, that is, to the
condition (Eik

− d)T < (Eik+1
− d)T , which is what has to be proved. �

Remark 1 The quantities ∆Uj,l play an important role in the search of the optimal policy: actually
∆Uj,l tells us if the average expected long run buffer increment associated with Uj is larger than
the one associated with Ul. Notice also that if j > l, i.e., if Uj > Ul, not necessarily Ej > El, so
∆Uj,l, with j > l, may have any sign.

The result established in Lemma 1 confirms the conjecture reported in [3] where it is remarked
how the optimal policy decreases the production rate approaching the hedging level to gain in
reliability. Actually Lemma 1 says something more: when approaching the hedging level, the
optimal policy, to gain in reliability, decreases not simply the production rate but the effective
production rate.

Another interesting observation concerns a major difference arising in the optimal policy be-
tween the case the failure rate qd(u) is a convex function of the production rate and the case it is
affine or concave. This major difference was actually highlighted, based on a numerical investiga-
tion, in [4]. This difference is confirmed by our derivation. As a matter of fact, if the considered
failure rate function qd(u) is convex (i.e. φi,i+1 < φi+1,i+2 for all i = 1, . . . , N − 2 - this hap-
pens if discretizing a convex function like the one in (3) when β > 1), the procedure above gives
L′ = N , S ′ = {1, 2, . . . , N} and in general L ≤ L′, depending on the steepness of the function
qd(u). This aligns with the numerical results of [4] where it was observed how, in the convex
case, the production rate is smoothly decreased when approaching the safety stock. If Qd(u) is
affine, any discretization would provide φi,i+1 = φi+1,i+2 for all i = 1, . . . , N − 2. The results of
this report align then with the analytical findings of [3] according to which, in the affine case, the
optimal policy is the hedging point policy. In fact, in this case, we obtain L′ = 2, S ′ = {1, N}
and, if U1 < d, ℓ = L = 2 and S = {N}, which corresponds to the hedging point policy since
the production rate is sharply reduced from the maximum production rate UN to 0. Finally, if
the qd(u) is concave (i.e. φi,i+1 > φi+1,i+2 for all i = 1, . . . , N − 2 - this happens if discretizing
a Qd(u) in (3) when β < 1), we still obtain L′ = 2, S ′ = {1, N} and, if U1 < d, ℓ = L = 2 and
S = {N}. This seems to correspond, as in the affine case, to a hedging point policy. However
now the obtained policy does not satisfy the conditions of optimality of Theorem 2 (see Remark
2). This also aligns with the numerical findings of [4], where it was conjectured that the optimal
policy in the concave case is only asymptotic, and consists of a hedging point policy where the
safety stock is maintained through an infinite switching of the production rate between 0 and µ.

4 Proof of optimality

As in [5], we use the following result to assess the optimality of (7) (with optimal levels Xi’s).
Its proof, under certain regularity and stability conditions imposed on the control (actually met,
under Assumption 1, by any policy in the class (7)) is essentially like the one given in [1].

Theorem 1 (Verification Theorem) If there exist a constant J∗ and two continuously differentiable
functions V (x, 0) and V (x, 1), |V (x, i)| ≤ c1x

2 + c2 for some constants c1 and c2 (i = 0, 1), such
that a control u(x) satisfies the following HJB equations:

min
u∈[0, µ]

{

(u − d)
dV (x, 1)

dx
+ qd(u)[V (x, 0) − V (x, 1)]

}

= J∗ − g(x), (12)

d
dV (x, 0)

dx
+ qup[V (x, 0) − V (x, 1)] = g(x) − J∗, (13)

then u(x) is optimal and J∗ is the corresponding optimal cost.

The following result states that, under Assumption 1, if some additional condition is met, the
policy given in (7) (with suitable levels Xi’s) is optimal.
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Theorem 2 If Assumption 1 is satisfied together with one of the following two conditions:

i) Ui > d for all i, or

ii) there exists ij−1, ij , ij+1 ∈ S ′ such that Uij
= d and

qij+1
−qij

Uij+1
−Uij

=
qij

−qij−1

Uij
−Uij−1

,

the optimal policy has the structure reported in (7).

Remark 2 Condition (i) in the theorem agrees with the result reported in [5] for N = 2 and also
with the classical solution of the problem with a constant failure rate function qd(u) = qd, solved
in [1]. Condition (ii) allows to explain several (analytical and numerical) results reported in the
literature. In particular Condition (ii) is met if the considered qd(u) comes from the discretization
of an affine failure rate function Qd(u) (if Ui = d is selected in the discretization), which allows to
understand the optimality of the hedging point policy for affine failure rate functions, as also proved
in [3]. If Qd(u) is convex, it is always possible to meet Condition (ii) as the discretization step goes
to zero around the value u = d. This would match with the numerical results reported in [4]. If
the continuous failure rate function Qd(u) is concave, there is no way of satisfying Condition (ii)
if U1 < d, and this would confirm the discussion in [4] where it was conjectured that an optimal
feedback control does not exist in the concave case. Considering Condition (ii), and not simply
that there exists ij ∈ S ′ such that Uij

= d, allows to prove the continuity of Vx(x, 1) needed in
the Verification Theorem (see Appendix 7.3): this is identical to the reason reported in [8] for
not including d in the capacity set of the machine (Assumption A5 in [8]). The last equality in
Condition (ii) ensures in fact that d can be optimal only on a point and not over a finite interval
(even if this interval would be a transient set).

To prove the theorem we need the following two lemmas. Lemma 2 states that the segments
(−∞, φi1i2), (φi1i2 , φi2i3), . . ., (φiL′

−1iL′
,∞), provide a partition of the real axis. In Lemma 3, it is

proved that, if some ik ∈ S ′ is more efficient than the next element ik+1 ∈ S ′ (i.e. ∆Uik,ik+1
> 0)

then this holds for all subsequent elements of S ′.

Lemma 2 Let qd(u) as defined in (2), φij as in (8) and consider the sequence S ′ = {i1, . . . , iL′},
defined in Section 3. Then this sequence is such that:

ik = arg min
j<ik+1

(

−φj,ik+1

)

(14)

for all k = 1, . . . , L′ − 1, hence:

mk+1 := min
j<ik+1

(

−φj,ik+1

)

= −φik,ik+1
= max

j>ik

(−φik,j) =: Mk (15)

for all k = 1, . . . , L′ − 1, and the intervals:

(−∞,mL′ ], [ML′−1,mL′−1], [ML′−2,mL′−2], . . . , [M1,∞)

provide a partition of the real axis and, for all j 6∈ S ′,

min
i<j

(−φi,j) < max
i>j

(−φj,i) . (16)

Proof. The proof follows directly by observing that the sequence S ′ defines the convex envelop of
the function qd(u). More details are given in Appendix 7.6. �

Lemma 3 Let ik ∈ S ′, with k ≤ L′ − 2. Then ∆Uik,ik+1
≥ 0 implies ∆Uik+1,ik+2

> 0.

Proof. From the definition of φij , it is possible to write:

qik+2
= qik+1

+ φik+1,ik+2
(Uik+2

− Uik+1
). (17)

Substituting in the definition of ∆Uik+1,ik+2
we obtain:

∆Uik+1,ik+2
= (Uik+2

− Uik+1
)
[

φik+1,ik+2
Uik+1

− (qup + qik+1
)
]

(18)
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Similarly, it holds:
∆Uik,ik+1

= (Uik+1
− Uik

)
[

φik,ik+1
Uik

− (qup + qik
)
]

(19)

Since we have that ∆Uik,ik+1
≥ 0, the previous equation implies:

[

φik,ik+1
Uik

− (qup + qik
)
]

≥ 0 (20)

Applying the definition used in (17) at k + 1, we obtain:

qik+1
= qik

+ φik,ik+1
(Uik+1

− Uik
) (21)

which, substituted in (18), gives:

∆Uik+1,ik+2
= (Uik+2

− Uik+1
)
[

φik+1,ik+2
Uik+1

− qup − qik
− φik,ik+1

Uik+1
+ φik,ik+1

Uik

]

(22)

Using (20), (22) becomes:

∆Uik+1,ik+2
≥ (Uik+2

− Uik+1
)
[

φik+1,ik+2
− φik,ik+1

]

Uik+1
(23)

which is positive, being φik+1,ik+2
> φik,ik+1

. In fact, by definition, φik,ik+1
< φik,j for all j > ik,

in particular
φik,ik+1

< φik,ik+2
(24)

Similarly, φik+1,ik+2
> φj,ik+2

for all j < ik+2, hence

φik+1,ik+2
> φik,ik+2

(25)

From (24) and (25), it follows φik+1,ik+2
> φik,ik+1

. �

Proof of Theorem 2. Let v(x, 0) and v(x, 1) denote the differential costs associated with the
optimal policy starting from x(0) = x with a down and with an up machine respectively (see e.g.
[10] for a definition of these functions, also reported in Appendix 7.5). Following the procedure
in Appendix H of [9], it is possible to show that V (x, 0) := v(x, 0) + c and V (x, 1) := v(x, 1) + c
(where c is any constant) satisfy (12)-(13) at least in the viscosity sense. Take for simplicity c = 0:
V (x, i) will then represent from now on the differential costs associated with the optimal policy.
Now, V (x, 0) is continuously differentiable for all x while V (x, 1) may be not differentiable only
on the switching levels, i.e. where the control is discontinuous (see e.g. [10], Section IV or [2],
ch. 9.3). It will be shown below however that either under Condition (i) or (ii) of the theorem,
V (x, 1) is differentiable also on the switching levels. This will imply that V (x, 0) and V (x, 1) are
a classical (C1) solution to (12) and (13). Let:

Vx(x, 1) :=
dV (x, 1)

dx
, H(x) := V (x, 0) − V (x, 1).

We first prove that the differential cost starting with a down machine is larger than the differ-
ential cost starting with an up machine, i.e. H(x) > 0 for all x. This is obtained directly from
the HJB equations (12) and (13) (considered in the classical sense between the switching levels)

which allow to prove that for all x where V (x, 1) is differentiable Hx(x) := dH
dx

≥ −
qup+qd(0)

d
H(x).

In addition, from (13), using the quadratic lower bound on V (x, 0) established in Appendix 7.5, it
is possible to show that there exists a sequence xk, with xk → −∞ as k → ∞, where H(xk) > 0.
These two results imply that H(x) > 0 for all x. More details are reported in Appendix 7.2.

We then proceed by showing that V (x, 1) is continuously differentiable also on the switching
levels. This is performed (under Condition (i) or (ii) of the theorem) by using a procedure similar
to the one adopted for the same purpose in [9], ch. 3.3. The details are given in Appendix 7.3.

Finally, it is possible to prove that |V (x, i)|, i = 0, 1, are bounded as requested in the Verification
Theorem (i.e. |V (x, i)| ≤ c1x

2 + c2, i = 0, 1): this can be shown using a result in [8] according to
which if τ denotes the time necessary for going from any given state (x′, i) to another state (x, j)
(with x > x′) by working at a rate Uk > d, then τ is such that E[τ ℓ] ≤ ca + cb|x − x′|ℓ (where
ℓ = 1, 2, . . .). More details are given in Appendix 7.4.
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To conclude the proof, it must be shown that the policy u(x) satisfying the HJB equations (12)-
(13) (in the classical sense) with the aforementioned properties of the functions V (x, i) (quadrat-
ically bounded in modulus, C1, with H(x) > 0), is policy (7). Now, from (12), we immediately
have:

u∗(x) = arg min
u∈[0, µ]

[uVx(x, 1) + qd(u)H(x)] . (26)

Since H(x) > 0 for all x:

• u∗(x) = 0 if Vx(x, 1) > 0;

• u∗(x) = Ui for some i if Vx(x, 1) < 0;

• u∗(x) ∈ [0, U1] if Vx(x, 1) = 0.

Let Zg := inf{x : Vx(y, 1) < 0 ∀ y < x, Vx(x, 1) = 0 and there exists ǫ > 0 : Vx(y, 1) > 0∀ y ∈
(x, x + ǫ)} (this Zg exists thanks to the fact that V (x, 1) is continuously differentiable and goes to
infinity as |x| → ∞ as shown in Appendix 7.5). Based on (26), the region {x > Zg} is transient
(the optimal control is 0 over a non-zero interval (Zg, Zg + ǫ) and eventually the buffer will drop
below Zg). To complete the proof that policy in (7) is candidate to solve the HJB equations, we
need to further develop the second item above, that is, which Ui is optimal when x < Zg (where
Vx(x, 1) < 0). From (26) it can be seen that a rate Uk is optimal at x < Zg if and only if

Vx(x, 1)Uk + H(x)qk ≤ Vx(x, 1)Ui + H(x)qi

for all i, i.e. if and only if
Vx(x, 1) ≤ −H(x)φik (27)

for all i < k (where φik has been defined in (8)) and

Vx(x, 1) ≥ −H(x)φki (28)

for all i > k. Exploiting the fact that H(x) > 0 for all x, and introducing the function

T (x) :=
Vx(x, 1)

H(x)
,

the relations above will result in the following conditions:

• U1 is optimal at x if and only if

T (x) ≥ max
i>1

(−φ1i); (29)

• Uk, k = 2, . . . , N − 1 is optimal at x if and only if

min
i<k

(−φik) ≥ T (x) ≥ max
i>k

(−φki); (30)

• UN is optimal at x if and only if

T (x) ≤ min
i<N

(−φiN ). (31)

Fig. 1(a) helps to figure out what is happening. In the figure −φmk = mini<k(−φik) and −φkM =
maxi>k(−φki). According to (30), if mini<k(−φik) < maxi>k(−φki) for some k, Uk can never be
optimal.

It remains to show that (29)-(31) result in the sequence S defined in Section 3. This can
be proved as follows: thanks to Lemma 2, we know that the intervals [−φkM ,−φmk] provide a
partition of the real axis. So, to conclude the proof, it is enough to show, for all x ≤ Zg, the
following facts: 1) T (x) is a continuous and negative function, with T (Zg) = 0; 2) T (x) intersects
each mj , for j = 2, . . . , L′, at most once and, 3) the last element iL ∈ S is the first element in S ′

such that ∆UiL,iL+1
≥ 0.
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(a) (b)

Figure 1: A graphical representation of (30) (left) and the case of multiple intersections between
T (x) and a given mj (right)

1) Continuity and negativity of T (x), with T (Zg) = 0.

Since H(x) > 0 for all x, Vx(x, 1) < 0 for all x < Zg and Vx(Zg, 1) = 0, it immediately follows that
T (x) < 0 for all x < Zg and T (Zg) = 0. In addition, the continuous differentiability of V (x, 0) and
V (x, 1) implies that Vx(x, 1) and H(x) are continuous functions for all x. Hence T (x) is continuous
for all x.

2) Unique intersection of T (x) with the mj’s.

Now we show that T (x) can intersect a given mj , j = 2, . . . , L′, at most once. This is done by
contradiction. Assume that there are two (or more) intersections of T (x) with a given mj and, to
simplify notation, let ij = k and ij−1 = l, with mj = −φlk and Uk > Ul (see Fig. 1(b)). Notice
that this is the most general case being T (Zg) = 0 and T (x) < 0 for all x < Zg, hence T (x) is
certainly increasing in a neighbor on the left of Zg. So the first time (starting from Zg and going
left) we would observe the intersection of T (x) with a level mj already met, it must be of the type
reported in Fig. 1(b), where T (Xk1) = T (Xk2) = mj (see Appendix 7.7 for more details).

Now, due to the continuity of Vx(x, 1), from the HJB equation (12) at Xk1 and at Xk2 (i.e. from
dV (x,1)

dx

∣

∣

∣

x=X
−

ki

= dV (x,1)
dx

∣

∣

∣

x=X
+

ki

, i = 1, 2) we obtain:

H(Xk1
) = −

(J∗ − g(Xk1
))(Ul − Uk)

Bkl

(32)

and

H(Xk2
) = −

(J∗ − g(Xk2
))(Uk − Ul)

Blk

(33)

where Blk = qk(Ul −d)− ql(Uk −d). Notice that Bkl = −Blk, and that it can have any sign even if
Uk > Ul. Also, Bkl 6= 0 since H(x) is a continuous function, and at least one between J∗ − g(Xk2

)
and J∗ − g(Xk1

) must be different from 0. This depends on the fact that Xk1 < Xk2 < Zg and, as
shown afterwards, J∗ > g(Zg). So, to be J∗−g(Xk2

) = J∗−g(Xk1
) = 0 it must be Xk1 < Xk2 < 0.

But then it is not possible that −cmXk1 = −cmXk2 = J∗.

Now, the fact that Bkl = −Blk 6= 0, together with (32)-(33) and the fact that H(x) > 0 for all
x, implies that J∗ − g(Xk1

) and J∗ − g(Xk2
) have the same sign, positive if Bkl > 0 and negative

otherwise. Denote by Rs the set of all x ≤ Zg where the cost g(x) is smaller than J∗. Then we
have Rs = (xs, Zg), where xs < 0 is such that g(xs) = −cmxs ≡ J∗. In fact, as mentioned above,
from equation (12), with x = Zg, it follows that (thanks to the positivity of H(Zg)), J∗ > cpZg,
i.e., J∗ > g(x) for all x ∈ (0, Zg). For this reason Rs ends at Zg.
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Now, assume first that Bkl < 0 (later we will see the other case). This implies that Xk2 < xs (and
Xk1 < xs as well). A direct computation allows to show that

T ′
k1 := lim

x→X
−

k1

T ′(x) =
1

[H(Xk1)]2
N0 + N1H(Xk1)

d(Ul − d)
(34)

where N0 = Ul(J
∗ − g(Xk1))

2 and N1 = (J∗ − g(Xk1))∆l + cmd(Ul − d). From (34), using (32), it
is possible to obtain the following expression for the left derivative of T (x) as x → Xk1:

T ′
k1 =

Jk1

[H(Xk1)]2
Jk1∆Ukl + cmd(Uk − Ul)

dBkl

(35)

where Jk1 := J∗ − g(Xk1) is a negative quantity, being Xk1 < xs. Similarly, the left derivative of
T (x) as x → Xk2 can be expressed as:

T ′
k2 =

Jk2

[H(Xk2)]2
Jk2∆Ukl + cmd(Uk − Ul)

dBkl

(36)

where Jk2 := J∗ − g(Xk2), and 0 > Jk2 > Jk1, being Xk1 < Xk2 < xs. It must be T ′
k1 < 0 and

T ′
k2 > 0 (see Fig. 1(b)). Now, if ∆Ukl ≤ 0, it is clear that both T ′

k1 and T ′
k2 are positive, and

this would exclude the possibility of a double intersection. Assume then that ∆Ukl > 0 (notice
that ∆Ukl can take any sign even if Bkl < 0). In this case, as explained below (see item (3) and
Lemma 3), the last element of the optimal sequence is some Ui, with i ≥ k > l, so the function
T (x) should intersect again mj at some Xk0 < Xk1 with a positive left derivative T ′

k0 given by:

T ′
k0 =

Jk0

[H(Xk0)]2
Jk0∆Ukl + cmd(Uk − Ul)

dBkl

Now, Jk1 > Jk0, hence we have that if T ′
k1 is negative, negative must also be T ′

k0. Hence, the
possibility of a multiple intersection is excluded also in this case.

Assume now that Bkl > 0. From (32) and (33), it follows that Ik := (Xk1, Xk2) ⊂ Rs. In this
case, either Xk1 < 0 or Xk1 ≥ 0.

If Xk1 ≥ 0 (hence also Xk2 > 0), the expression of the left derivative of T (x) as x → Xk2 can be
expressed similarly to (36) and is given by:

T ′
k2 =

Jk2

[H(Xk2)]2
Jk2∆Ukl − cpd(Uk − Ul)

dBkl

. (37)

To have, as required, a positive T ′
k2, it must be ∆Ukl > 0 (being in this case Jk2 > 0 and Bkl > 0).

Since Jk2 < Jk1 in this case, it follows that Jk2∆Ukl < Jk1∆Ukl, that is, being

T ′
k1 =

Jk1

[H(Xk1)]2
Jk1∆Ukl − cpd(Uk − Ul)

dBkl

, (38)

also T ′
k1 should be positive, in contrast with the behavior assumed (see Fig. 1(b)).

If, on the other hand, Xk1 < 0, from (35), to have, as required, a negative T ′
k1, it should be

∆Ukl < 0. But then also T ′
k2 will be negative, both if Xk2 ≥ 0 (just consider (37)), both if Xk2 < 0

(being in this case Jk1 < Jk2, hence Jk2∆Ukl < Jk1∆Ukl and comparing (36) with (35)). Hence,
also if Bkl > 0, the possibility of a multiple intersection is excluded.

3) Determination of the last element of S

To prove that the last element of S is the first L ≥ ℓ in S ′ such that ∆UiL,iL+1
≥ 0, we compute

T∞ := limx→−∞ T (x) and show that it is a finite quantity with T∞ ∈ [ML,mL].

As for the computation of T∞, we proceed as follows. Let Uk be the value of u(x) on a certain
interval Ik := (Xk1

, Xk2) (notice that this corresponds to have −φkM < T (x) < −φmk for all
x ∈ Ik, for some m < k < M , see Fig. 1(a)). The solutions V (x, 0) and V (x, 1) to the HJB
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equations in Ik can then be obtained and are reported in Appendix 7.8 (see expressions (62) and
(63)). Collecting the terms in (62) and (63), we obtain:

Vx(x, 1) = Agx + Bge
−αk(x−Xk2) + Cg (39)

and
H(x) = Ahx + Bhe−αk(x−Xk2) + Ch (40)

where Ag, Bg, Cg, Ah, Bh and Ch are suitable constants. Since |V (x, 0)| and |V (x, 1)| are bounded
by a quadratic function for all x (see Appendix 7.4), it is clear that Bg = 0 and Bh = 0 if we are
considering the most negative interval (i.e. the one with Xk1 = −∞). From this, it is possible to
see that:

T∞ := lim
x→−∞

T (x) = lim
x→−∞

Agx + Cg

Ahx + Ch

=
Ag

Ah

Substituting the analytical expression of Ag and Ah (which can be obtained from (62) and (63))
and simplifying, allows to show that:

T∞ =
Ag

Ah

= −
qup + qk

Uk

< 0. (41)

Let iR, R ≤ L′, be the last element of S’ used by the optimal policy and let for convenience
mL′+1 = −∞. It must be:

mR+1 ≤ T∞ < mR.

i.e., using the expression of T∞ in (41),

mR+1 ≤ −
qup + qiR

UiR

< mR.

From the expression of mR and mR+1 (see (15)), it is possible to show that this condition corre-
sponds to ∆UiR−1,iR

< 0 and ∆UiR,iR+1
≥ 0. Since, according to Lemma 3, ∆Uik,ik+1

≥ 0 implies
∆Uik+1,ik+2

> 0, this means that all the elements ik, with k < R, are such that ∆Uik,ik+1
< 0

while all the ik, with k > R, are such that ∆Uik,ik+1
> 0. This allows to conclude that, when

constructing the sequence S from S ′, we have to stop at L, which is in fact the first element of S ′

such that ∆UiL,iL+1
≥ 0.

Now, if Ui > d for all i (Condition (i) of Theorem 2) the proof is complete, with Z∗ := X∗
ℓ = Zg.

On the contrary, if Ui < d for some i (but Condition (ii) of Theorem 2 holds), we have proved so
far the optimality of a policy which uses some Uij

< d for x ∈ (Z∗, Zg). However, if in a given
region it is optimal to apply a control Ui < d, this region is transient and we have decided (for
simplicity of notation in (7)) to replace all these Ui with u = 0. This does not influence the steady
state average performance index considered in this report but only the transient behavior. �

5 Numerical Examples

5.1 Example 1

Consider a system with a qd(u) given by (2) with N = 5 and the parameters as follows: d = 1,
cm = 1000, cp = 1, qup = 0.5, qd := {q1, . . . , qN} = {0.002, 0.003, 0.008, 0.01, 0.02}, U :=
{U1, . . . , UN} = {5, 20, 25, 40, 50}. Since Ui > d for all i and all Ui’s are feasible, this example
meets Condition (i) of Theorem 2.

It is interesting to observe (see Fig. 2) how the point (U3, q3) is a non convex point of the
function qd(u), in the sense that −φ23 = mini<3 (−φi,3) < maxi>3 (−φ3,i) = −φ34, condition for
the absence of U3 in the optimal policy, according to Lemma 2.

As a matter of fact, the optimal sequence defined in Section 3 turns out to be in this case
S ′ = {U1, U2, U4, U5}, i.e., L′ = 4 and U3 6∈ S. Here we have U1 > d, ∆U1,2 = −7.5, ∆U2,4 = −9.9
and ∆U4,5 = −4.7: for this reason S ≡ S ′ with ℓ = 1 and L ≡ L′.

The optimal levels X∗
i , i = 1, . . . , L, numerically computed through a gradient descent method

applied starting from tentative levels (a possible initialization procedure which provides interesting
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Figure 2: The failure rate function qd(u) for the N = 5 level example of Section 5.1

results is sketched in Appendix 7.10) and using the expression of J(X1, . . . , XL) reported in (42)
of Appendix 7.1, are given by X∗ := {X∗

1 , . . . , X∗
L} = {2.81, 1.55, −0.02, −0.131} with a total

cost J∗ = 4.8.
Notice that the function J(X1, . . . , XL) is not convex as it is possible to verify considering the

plot of J(X1, . . . , XL) vs X1 with X2, . . . , XL fixed: the plot tends to become flat as X1 → −∞.
Nevertheless, in all the examples considered, the gradient method, started with several different
initial conditions randomly taken, successfully attained the optimal cost (as also observed in [4]).
This probably depends on a quasi-convexity property of J(X1, . . . , XL).

In any case, it is possible to verify that the levels obtained above are indeed optimal by using
the Verification Theorem (i.e. Theorem 1). In fact, with the numerical values of all the parameters
and of the optimal cost, it is possible to derive the explicit expression of the differential cost-to-go
functions V (x, i) (which turn out to be as requested continuous differentiable functions) and to
show that policy (7) with the thresholds just computed satisfies the HJB equations (12)-(13) and
meets all the conditions of the Verification Theorem. The details of this example are given in
Appendix 7.9.

5.2 Example 2

Consider now a system with a qd(u) given by (2) with N = 4 and the parameters as follows: d = 6,
cm = 10, cp = 1, qup = 0.2, qd := {q1, . . . , qN} = {0.05, 0.08, 0.09, 0.13}, U := {U1, . . . , UN} = {7,
8, 9, 10}.

Here only U3 and U4 are feasible, since ∆1 = −0.1 and ∆2 = −0.08 are negative. Again, since
Ui > d for all i and there are some feasible Ui, also this example meets Condition (i) of Theorem 2.
Applying Algorithm 1, we obtain S ′ = {1, 3, 4}, with L′ = 3. Since U1 > d and ∆U3,4 = 0.07 > 0,
S = {1, 3}, with ℓ = 1 and L = 2. There are then only two thresholds, which optimal value is
Z∗ = X∗

1 = 691.15 and X∗
2 = 630.26. The optimal cost is J∗ = 715.15. A procedure, similar to the

one reported in Appendix 7.9 for the example of Section 5.1, can be followed to show that also in
this case all the conditions of the Verification Theorem are met by the considered policy and that
the differential costs V (x, i) are convex.

5.3 Example 3

Consider now a system which meets Condition (ii) of Theorem 2, with N = 4 and the parameters
as follows: d = 10, cm = 1, cp = 1, qup = 1, qd := {q1, . . . , qN} = {0.05, 0.07, 0.09, 0.13}, U :=
{U1, . . . , UN} = {7, 10, 13, 15}. It is straightforward to verify that, as requested by Condition (ii)
of the theorem,

q3 − q2

U3 − U2
≡

q2 − q1

U2 − U1
= 0.0067.

11



Here only U3 and U4 are feasible, since ∆1 = −3.5 and ∆2 = −0.7 are negative. Applying
Algorithm 1, we obtain S ′ = {1, 2, 3, 4}, with L′ = 4. Since only U3 and U4 are larger than d and
∆U3,4 = −1.66 < 0, we have S = {3, 4}, with ℓ = 3 and L = 4.

The optimal thresholds are Z∗ = X∗
3 = 0 and X∗

4 = −1.51: the optimal policy is here JIT (Just
In Time), being Z∗ = 0. The optimal cost is J∗ = 2.98. A procedure, similar to the one reported
in Appendix 7.9 for the example of Section 5.1, can be followed to show that also in this case all the
conditions of the Verification Theorem are met by the considered policy and that the differential
costs V (x, i) are convex. In this case Vx(Z∗, 1) = −0.28 is not zero, since we are in Case (ii) of
Theorem 2, and Vx(x, 1) becomes 0 at Zg = 1.07. So the policy satisfying the Verification Theorem
would use U1 = 7 for x ∈ (X∗

3 , Zg) and u∗(x) = 0 only for x ≥ Zg. However, since the region
above Z∗ is transient and we are interested in an average, long term cost, the same performance
is achieved by setting u(x) = 0 for all x > Z∗ (as mentioned in the proof of Theorem 2).

5.4 Example 4

This example shows that the sufficient Conditions (i) and (ii) of Theorem 2 are not necessary for
the optimality of policy (7). In fact, even if the conditions of the theorem are not met in this case,
it is possible to show that policy (7) is optimal by directly applying the Verification Theorem.

Let d = 6, cm = 10, cp = 1, qup = 0.2, qd := {q1, . . . , qN} = {0.01, 0.02, 0.05, 0.08, 0.09, 0.13},
U := {U1, . . . , UN} = {4, 6, 7, 8, 9, 10}. Here only U5 and U6 are feasible. Applying Algorithm
1, we obtain S ′ = {1, 2, 5, 6}, with L′ = 4. We have U1 < d and U2 = d but Condition (ii) of
Theorem 2 is not satisfied:

q5 − q2

U5 − U2
= 0.0233 6= 0.005 =

q2 − q1

U2 − U1
.

Nevertheless, we will show that the Verification Theorem applies also in this case.
Since U1 < d, U2 = d and ∆U5,6 = 0.07 > 0, we have S = {5}, with ℓ = 3 and L = 3. The

optimal threshold is Z∗ = X∗
3 = 633.1 and the optimal cost is J∗ = 708.1. A procedure, similar to

the one reported in Appendix 7.9 for the example of Section 5.1, can be followed to show that also
in this case all the conditions of the Verification Theorem are met by the considered policy and
that the differential costs V (x, i) are convex. As in the example of Section 5.3, Vx(Z∗, 1) = −87.5
is not zero and Vx(x, 1) becomes 0 at Zg = 700.96. In this case, however, we have that the rate d
is optimal over an interval and not just on a point (i.e. the hedging level is an interval): this is a
consequence of the fact that the conditions of Theorem 2 are not met. So, the policy meeting all
the conditions of the Verification Theorem is:

u(x) :=















0 x ≥ Zg = 700.96
U1 x ∈ [676.5, 700.96)
d x ∈ [633.1, 676.5)
U5 x < Z∗ = 633.1

Since the transient part does not influence the optimal cost, removing this part from this policy,
results in (7), which is then optimal and is given by

u(x) :=







0 x > Z∗ = 633.1
d x = Z∗

U5 x < Z∗

5.5 Example 5

This example also shows that the sufficient Conditions (i) and (ii) of Theorem 2 are not necessary
for the optimality of policy (7). In fact, also in this case, even if the conditions of the theorem
are not met, it is possible to show that policy (7) is optimal by directly applying the Verification
Theorem. In this case we have all Ui ≥ d but Condition (i) of Theorem 2 is not met because
U1 = d. Such a situation will imply that the rate d is optimal over an interval and not just over a
point.
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The parameters here are like in Section 5.4, we only remove element (U1, q1), i.e.: d = 6, cm =
10, cp = 1, qup = 0.2, qd := {q1, . . . , qN} = {0.02, 0.05, 0.08, 0.09, 0.13}, U := {U1, . . . , UN} = {6,
7, 8, 9, 10}. So U1 = d and Conditions (i) and (ii) of the theorem are not satisfied. Nevertheless,
we will show that the Verification Theorem applies also in this case.

Here only U4 and U5 are feasible. Applying Algorithm 1, we obtain S ′ = {1, 4, 5}, with L′ = 3.
Since U1 = d and ∆U4,5 = 0.07 > 0, we have S = {4}, with ℓ = 2 and L = 2.

It is interesting to observe that the optimal threshold and the optimal cost are like in the
example of Section 5.4, i.e. Z∗ = X∗

2 = 633.1 and J∗ = 708.1: actually, the only difference
concerns the transient behavior, as shown subsequently.

We can apply again a procedure similar to the one reported in Appendix 7.9 for the example of
Section 5.1 to show that also in this case all the conditions of the Verification Theorem are met by
the considered policy and that the differential costs V (x, i) are convex. As in the example of Section
5.4, Vx(Z∗, 1) = −87.5 (the same value of Section 5.4) and Vx(x, 1) becomes 0 at Zg = 680.8. As
anticipated, also in this case we have that the rate d is optimal over an interval and not just on
a point: this is a consequence of the fact that the conditions of Theorem 2 are not met. In fact,
such conditions were requested to guarantee that the rate d could be optimal only over a point,
allowing to prove the differentiability of V (x, 1). This example, together with the one of Section
5.4, shows that the conditions of the theorem are not necessary for the differentiability of such
a function (hence to prove the optimality of the feedback law in (7)). However, even if these
conditions are not necessary for optimality, it seems that, if the Ui’s are not all larger than d, a
necessary condition for the existence of the optimal control is that the rate d must appear in S ′

(which implies that, if Ui are not all larger than d, the rate d must be present among the levels
Uk’s). The policy meeting all the conditions of the Verification Theorem is in this case:

u(x) :=







0 x ≥ Zg = 680.8
d x ∈ [633.1, 680.8)
U4 x < Z∗ = 633.1

Since the transient part does not influence the optimal cost, removing this part from this policy,
results in (7), which is also optimal and is given by

u(x) :=







0 x > Z∗ = 633.1
d x = Z∗

U4 x < Z∗

6 Conclusions

The problem of minimizing a long term average expected backlog/inventory cost for a manufactur-
ing system comprising a machine characterized by a Markovian, production dependent failure rate
process has been considered in this report. The dependence of the failure rate on the production
rate has been described through a piecewise function which can be thought of as the discrete ap-
proximation of a continuous failure rate function. The discretization step can be selected to obtain
the desired degree of approximation. The structure of the optimal policy has been given in the
report: even if under the discrete approximation considered, this policy confirms several analytical
findings and conjectures reported in the literature.

7 Appendix

7.1 Analytical expression of the probability density function and of the

total cost

Consider the piecewise constant feedback control given in (7) for some fixed (not necessarily opti-
mal) levels Xℓ, . . ., XL and let for convenience of notation XL+1 := −∞.

The expression of the steady state probability density function pXℓ...XL
(x) of the buffer level

corresponding to the application of this feedback policy can be derived as indicated below and the

13



cost in (4) can be evaluated as follows:

J(Xℓ . . . XL) =

∫ Z

−∞

g(x)pXℓ...XL
(x)dx + γ(Xℓ . . . XL)g(Z), (42)

where, as remarked above, we denote with Z the largest threshold Xℓ. In (42), γ(Xℓ . . . XL) is
the point mass probability in Z. Now, using the general procedure reported in [4], it is possible to

determine the expression of pXℓ...XL
(x) and of γ(Xℓ . . . XL). By denoting with p

(j)
XℓXℓ+1...XL

(x) the

steady state probability density function of the buffer level for x ∈ [Xj+1, Xj) (where u(x) = Uij
)

j = ℓ, ℓ + 1, . . . , L, we have (notice that, according to (7), Uij
> d for all j = ℓ, . . . , L):

p
(j)
XℓXℓ+1...XL

(x) = Kj

Uij

Uij
− d

eαij
(x−Xj), (43)

γ(Xℓ . . . XL) = Kℓ

d

qd(d)
(44)

where the constants Kj in (43) and (44) can be computed through the following recursive relation:

Kj = Kj−1e
αij−1

(Xj−Xj−1) (45)

for j = ℓ + 1, . . . , L, while Kℓ can be derived through the normalization condition:
∫ Z

−∞

pXℓXℓ+1...XL
(x)dx + γ(Xℓ . . . XL) = 1

obtaining

1

Kℓ

=
d

qd(d)
+

L
∑

j=ℓ

Uij

Uij
− d

F (j)
1 − eαij

(Xj+1−Xj)

αij

where F (ℓ) = 1 and F (j) = eαij−1
(Xj−Xj−1)F (j − 1) for j = ℓ + 1, . . . , L.

Using (42)-(44), it is quite straightforward but cumbersome for any selected Xi, i = ℓ, . . . , L,
to derive the cost J(Xℓ . . . XL). The optimal hedging level Z∗ = X∗

ℓ can not be negative: assume
by contradiction Z∗ < 0. Then, by shifting all the X∗

k of +δ (where δ > 0 is such that Z∗ + δ is
still non positive), we obtain from (42) a cost J = J∗ − cmδ < J∗, which contradicts that J∗ is
optimal.

7.2 Positivity of H(x) := V (x, 0) − V (x, 1)

Considering equation (12) with u = 0 at any x where V (x, 1) is differentiable gives

J∗ − g(x) ≤ −d Vx(x, 1) + qd(0)H(x).

Summing this equation to (13), we obtain

Hx(x) :=
dH

dx
≥ −

qup + qd(0)

d
H(x). (46)

Let Xa and Xb denote two neighboring switching levels and remember that, as mentioned in Section
4, V (x, 1) is differentiable for x ∈ (Xa, Xb) (since the control is constant, hence continuous, in
(Xa, Xb)). If we know that H(Xa) > 0, then (46) allows to conclude that also H(Xb) > 0. This
fact, together with the continuity of the differential costs (hence of H(x)), implies that if we know
that H(x0) > 0 for some x0, H(x) > 0 for all x ≥ x0 (i.e., even if between x0 and x there are some
switching levels).

Now, the differential costs V (x, i), i = 0, 1, go to infinity as |x| → ∞ (see Appendix 7.5).
Since V (x, 0) is continuously differentiable and goes to infinity as x → −∞, there must be at
least a decreasing sequence of xk (k = 0, 1, . . .) with xk → −∞ as k → ∞, where Vx(xk, 0) :=
dV (xk, 0)/dx < 0. Take x0 such that g(x0) > J∗, hence g(xk) > J∗ for all k. Then, from
(13), H(xk) must be positive for all k. The two properties (i.e. H(xk) > 0 for all k and dH

dx
≥

−
qup+qd(0)

d
H(x) for all x where V (x, 1) is differentiable) allow to conclude that H(x) > 0 for all x.

In fact, for any given x̄, there always exists a value xk in the sequence such that xk < x̄. The fact
that H(xk) > 0, implies, as mentioned, H(x) > 0 for all x > xk, i.e. H(x̄) > 0.
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7.3 Continuous differentiability of the differential cost V (x, 1) on the

switching levels

To show the continuity of Vx(x, 1) on the switching levels (i.e. where the control is discontinuous),
we proceed as follows. Let X be a switching level and assume Ui is optimal on a left neighborhood
of X and Uj on the right. If D−(X) denotes the left derivative of V (x, 1) at X (i.e. limx↑X Vx(x, 1))
and D+(X) the right derivative of V (x, 1) at X (i.e. limx↓X Vx(x, 1)), it is possible to write from
(12):

(Ui − d)D−(X) + qi H(X) = J∗ − g(X), (47)

and
(Uj − d)D+(X) + qjH(X) = J∗ − g(X). (48)

Also:
(Ui − d)D−(X) + qi H(X) ≤ (Uj − d)D−(X) + qj H(x), (49)

being Ui optimal on the left of X and, similarly

(Uj − d)D+(X) + qj H(X) ≤ (Ui − d)D+(X) + qi H(X). (50)

Combining (47), (48) and (50) allows to write:

(Ui − d)D−(X) ≤ (Ui − d)D+(X), (51)

Similarly, combining (47), (48) and (49):

(Uj − d)D+(X) ≤ (Uj − d)D−(X). (52)

If Ui − d and Uj − d have the same sign, (51) and (52) allow to conclude D+(X) ≡ D−(X). This
holds at all the switching levels except possibly if X is the hedging level where u∗(X) = d, Ui > d
and Uj < d. In this case, the proof of the differentiability follows a reasoning similar to the one
adopted for the same purpose in [9], ch. 3.3.

Since Ui > d, equation (51) implies D−(X) ≤ D+(X). If V (x, 1) is not C1 at X, (12) should
be intended (as mentioned in Section 4) in the viscosity sense, i.e., since D−(X) ≤ D+(X):

min
u∈[0, µ]

{(u − d)r + qd(u)H(X)} ≤ J∗ − g(X), (53)

for all r ∈ Dsub(X), where Dsub(X) denotes the set of all subdifferentials of V (x, 1) at X (see e.g.
[9], Appendix F, for a definition of Dsub(X)) and is given in this case by [D−(X), D+(X)]. To
simplify the notation, let

S(r) := min
u∈[0, µ]

{(u − d)r + qd(u)H(X)} .

With this notation, equation (53) becomes:

S(r) ≤ J∗ − g(X) (54)

for all r ∈ Dsub(X). For r = D−(X) and for r = D+(X), according to (47) and (48), we have:

S(D−(X)) = J∗ − g(X), S(D+(X)) = J∗ − g(X) (55)

Now, the function S(r) is concave. In fact, for any α ∈ (0, 1):

S(αr1 + (1 − α)r2) = min
u∈[0, µ]

{(u − d)(αr1 + (1 − α)r2) + qd(u)H(X)}

= min
u∈[0, µ]

{α [(u − d)r1 + qd(u)H(X)]

+ (1 − α) [(u − d)r2 + qd(u)H(X)]}

≥ min
u∈[0, µ]

{α [(u − d)r1 + qd(u)H(X)]}

+ min
u∈[0, µ]

{(1 − α) [(u − d)r2 + qd(u)H(X)]}

= αS(r1) + (1 − α)S(r2).
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Since Dsub(X) = [D−(X), D+(X)], any r ∈ Dsub(X) can be obtained as the convex combination
of D−(X) and D+(X). In view of the concavity of S(r) and of (55),

S(r) ≥ J∗ − g(X) (56)

for all r ∈ Dsub(X). Comparing (54) with (56) implies that S(r) is constant on Dsub(X). Now,
since Ui is optimal for r = D−(X) and Uj is optimal for r = D+(X), if Dsub(X) was not a
singleton, in view of Conditions (i) or (ii) of Theorem 2, at least one of the following situations
occurs: a) there exists an r0 > D−(X) such that Ui is optimal for r ∈ [D−(X), r0], b) there exists
an r0 < D+(X) such that Uj is optimal for r ∈ [r0, D

+(X)], c) there exists Uk ∈ S between the
elements Ui and Uj , Uk 6= d and a finite interval [ra, rb] ⊂ [D−(X), D+(X)] such that Uk is optimal
for r ∈ [ra, rb] (this could occur e.g. under Condition (i) of the Theorem if Ui was not U1 but some
Uk > U1). In each of these three situations, S(r) should be constant over a finite interval, e.g., in
the first situation, S(r) = (Ui − d)r + qiH(X) should give the same value for all r ∈ [D−(X), r0]
(and similarly in the other two cases). This is clearly not possible and implies that Dsub(X) is a
singleton, i.e. D−(X) = D+(X), and d is optimal at X (this would correspond under Condition
(i) of Theorem 2 to Ui = U1 and Uj = 0 and, under Condition (ii), to Ui = Uij+1

, Uij
= d and

Uj = Uij−1
).

7.4 Quadratic bound on the modulus of the differential costs V (x, 0) and

V (x, 1)

Let xn ∈ ℜ be a large amount of backlog such that for all x ≤ xn < 0 the optimal action is to
select a production rate larger than d (this xn exists otherwise the optimal cost would be infinite,
while it is simple to define policies providing a finite cost - see also [2], ch. 9.3). Similarly, let
xp ∈ ℜ be a large amount of surplus such that for all x ≥ xp > 0 the optimal action is to select a
0 production rate.

Now, due to the continuity of V (x, i) for all x and i = 0, 1 (which derives from the fact that
V (x, i) is a viscosity solution to (12)-(13), as mentioned in Section 4), V (x, i) is bounded over this
finite interval [xn, xp], i.e.

|V (x, i)| ≤ K (57)

for all x ∈ [xn, xp], i = 0, 1.
Consider now any initial state (x, i), with x < xn and let τ denote the time necessary to reach

the inventory xn from x under the optimal control (i.e. the time necessary to go from the state
(x, i) to (xn, ·) under the optimal control). Then, if Ex,i is the expectation taken assuming that
x(0) = x, s(0) = i and that the optimal control is applied, it is possible to write:

|V (x, i)| :=

∣

∣

∣

∣

∣

lim
T→∞

Ex,i

[

∫ T

0

(g[x(t)] − J∗) dt

]∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

lim
T→∞

Ex,i

[

∫ τ

0

(g[x(t)] − J∗) dt +

∫ T

τ

(g[x(t)] − J∗) dt

]∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

Ex,i

[
∫ τ

0

(g[x(t)] − J∗) dt

]
∣

∣

∣

∣

+

∣

∣

∣

∣

∣

lim
T→∞

Ex,i

[

∫ T

τ

(g[x(t)] − J∗) dt

]
∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

Ex,i

[
∫ τ

0

(g[x(t)] − J∗) dt

]∣

∣

∣

∣

+ K

≤ Ex,i

[
∫ τ

0

(g[x(t)] + J∗) dt

]

+ K.

Now, 0 ≤ g(x) ≤ C|x| (where C = max{cp, cm}), and |x(t)| ≤ |x| + (µ + d)t. So we can write:

|V (x, i)| ≤ (C|x| + J∗)Ex,i[τ ] + C(µ + d)Ex,i[τ
2/2]) + K. (58)

Based on a result of [8] (Lemma 7.1 of [8], properly adapted to our case), we have E[τ ℓ] ≤
ca +cb|x−xn|

ℓ (where ℓ = 1, 2, . . .). Substituting this in (58) allows to obtain the quadratic bound
on the |V (x, i)|. The case x > xp is straightforward being in this case everything deterministic and
τ = (x − xp)/d, which still gives a quadratic bound on |V (x, i)|.
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7.5 Quadratic lower bound on the differential costs V (x, 0) and V (x, 1)

We show that the differential costs V (x, 0) and V (x, 1) are also bounded from below by a quadratic
function, that is, V (x, i) ≥ c3x

2 + c4, i = 0, 1, for some constants c3 > 0 and c4 (and so go to
infinity as |x| → ∞). This can be proved with a procedure similar to the one used in Appendix
7.4. So, consider now xn < 0 and xp > 0 such that g(xn) > J∗ and g(xp) > J∗. Then we have,
as above, for the continuity of V (x, i), i = 0, 1, that V (x, i) ≥ G for some constant G (possibly
negative) for all x ∈ [2xn, 2xp].

Consider now any initial state (x, i), with x < 2xn and let τ denote the time necessary to reach
the level x/2 from x under the optimal control (i.e. the time necessary to go from the state (x, i) to
(x/2, ·) under the optimal control). Then, if Ex,i is the expectation taken assuming that x(0) = x,
s(0) = i and that the optimal control is applied, it is possible to write:

V (x, i) := lim
T→∞

Ex,i

[

∫ T

0

(g[x(t)] − J∗) dt

]

= lim
T→∞

Ex,i

[

∫ τ

0

(g[x(t)] − J∗) dt +

∫ T

τ

(g[x(t)] − J∗) dt

]

= Ex,i

[
∫ τ

0

(g[x(t)] − J∗) dt

]

+ lim
T→∞

Ex,i

[

∫ T

τ

(g[x(t)] − J∗) dt

]

≥ Ex,i

[
∫ τ

0

(g[x(t)] − J∗) dt

]

+ G.

The last inequality holds both if x/2 ≥ 2xn (since V (x, i) ≥ G in [2xn, 2xp]), both if x/2 < 2xn

(since in this case the contribution of the integral between τ and the time to reach 2xn is positive,
being in this interval g[x(t)] > J∗, and a smaller quantity is obtained by neglecting it). Now, for
all t ∈ [0, τ ], g[x(t)] = −cmx(t), and x(t) ≤ x/2. So we can write:

V (x, i) ≥ Ex,i

[
∫ τ

0

(

−cm

x

2
− J∗

)

dt

]

+ G = (−cm

x

2
− J∗)Ex,i[τ ] + G.

Now, since x/2 < xn, −cmx/2 > J∗, i.e. −cmx/2 − J∗ > 0. In addition, for all realizations,
τ ≥ −x/(2(µ − d)) > 0 (being x < 2xn < 0) and hence Ex,i[τ ] ≥ −x/(2(µ − d)). Substituting this
in the equation above allows to obtain:

V (x, i) ≥ (cm

x

2
+ J∗)

x

2(µ − d)
+ G ≥ c3x

2 + c4

for suitable constants c3 > 0 and c4. The case x > 2xp is similar and allows to obtain the same
quadratic lower bound on the V (x, i). This lower bound, together with the upper bound determined
in Appendix 7.4, allows to conclude that V (x, i), i = 0, 1, goes to infinity when |x| → ∞ as a
quadratic function.

7.6 Proof of Lemma 2

The proof can be performed by induction. The case N = 2 is trivial with S ′ = {1, 2} (i.e.
L′ = N = 2). Consider now also the case N = 3 since it is needed in the induction step. If
N = 3, either φ12 < φ23 (convex case), either φ12 > φ23 (concave case). In the first case the
ordered sequence of φjk is: −φ12 > −φ13 > −φ23 as it is immediate to verify and the sequence
S ′ = {1, 2, 3}, with L′ = N = 3 satisfies all the properties stated by the lemma, with M1 =
−φ12 ≡ m2, M2 ≡ m3 = −φ23. Similarly, in the second case, the ordered sequence1 of φjk is:
−φ23 > −φ13 > −φ12 and the sequence S ′ = {1, 3}, with L′ = 2 satisfies all the properties stated
by the lemma, with M1 = −φ13 ≡ m2 and mini<2 (−φi,2) < maxi>2 (−φ2,i).

1Notice that, with N = 3, −φ12 > −φ13 > −φ23 and −φ23 > −φ13 > −φ12 are the only two sequences which
can be observed among the φjk
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(a) (b)

(c) (d)

Figure 3: Possible intersections of T (x) with the mj ’s: the right-down plot in (d), where T (x)
intersects two (or more) times a level mj , is excluded from Theorem 2 of the paper

Assume now the result holds true up to N , and let S ′
N = {i1, . . . , iL′} be the sequence for the

N case. So S ′
N satisfies all the conditions in the lemma and in particular for all j 6∈ S ′

N , Condition
(16) holds.

Consider the N + 1 case by adding a couple (UN+1, qN+1) to the qd(u). Clearly, the minl<ik+1
(

−φl,ik+1

)

remains unchanged for all k = 1, . . . , L′ − 1 since we have added UN+1. So, consider
the maxl>ik

(−φik,l), k = 1, . . . , L′ − 1. Nothing changes until this maximum is satisfied as before
by ik+1 < N + 1. If for some iv this maximum is satisfied by N + 1 then, exploiting the property
expressed above (in the N = 3 case) that given any Uk1 < Uk2 < Uk3 the only possible sequences
are −φk1,k2

> −φk1,k3
> −φk2,k3

or −φk2,k3 > −φk1,k3 > −φk1,k2, it is possible to prove that:

N + 1 = arg max
l>ik

(−φik,l) , for all k ≥ v; (59)

−φik,N+1 > −φik−1,ik
, for all k ≥ v (60)

iv = arg min
i<N+1

(−φi,N+1) . (61)

This allows to verify that the sequence S ′
N+1 = {i1, i2, . . . , iv, N + 1} satisfies all the properties

stated in the Lemma: in fact the first v − 1 elements of S ′
N+1 clearly satisfy the Lemma for

the inductive assumption; as for the last two elements iv and N + 1, by definition of iv it is
arg maxl>iv

(−φiv,l) = N + 1 and, using (61), all the properties in the Lemma are verified for
iv and N + 1. Finally, by using (60), for all j = iv+1, iv+2, . . . , N (elements not belonging to
S ′

N+1) equation (16) holds, since the term on the left of (60) represents, according to (59), the
maxi>ik

(−φik,i) while the term on the right of (60) represents the minimum (thanks again to the
inductive assumption).

7.7 Unique intersection of T (x) with the mj’s

In this appendix we give more details to explain why the case of Figure 1(b) is the most general
case in the sense that, as mentioned above, “the first time (starting from Zg and going left) we
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would observe the intersection of T (x) with a level mj already met, it must be of the type reported
in Fig. 1(b)”.

First of all, notice that, as shown above in item (1) of the Proof of Theorem 2, T (x) is continuous,
T (Zg) = 0 and T (x) < 0 for all x < Zg. So, let us move from Zg toward −∞ and check the
intersections of T (x) with the mj ’s, j = 2, 3, . . . , L′, which, according to Lemma 2, are all negative
quantities and form a decreasing sequence, i.e. 0 > m2 > m3 > . . . (notice that, according to the
defined notation, see e.g. Lemma 2, the sequence of the mj starts with j = 2 but we may consider,
for completeness of notation, m1 = 0). If T (x) does not become negative enough and remains
above m2 for all x (see Fig. 3(a)), then u∗(x) = U1 for all x: in this case we do not have any
multiple intersection with the mj ’s.

If it intersects m2 at some point X2 (see Fig. 3(b)), the optimal control on the left of X2 becomes
Ui2 , where i2 denotes the second element of S ′ (i1 = 1) and u∗(x) = Uik

when T (x) ∈ (mk+1,mk),
k = 1, 2, . . . , L.

Let us continue to move toward −∞. There are two possibilities:

a) T (x) intersects only new (i.e. more negative) mi’s until it will remain in an interval (mL,
mL+1) for all x < XL (like in Fig. 3(c), notice in fact that, as shown in item (3) of the Proof
of Theorem 2, limx→−∞ T (x) is bounded);

b) T (x) returns to a level mj already met, as shown in Fig. 3(d).

In case (a) (see Fig. 3(c)) we do not have multiple intersections and this actually is the situation
proved in Theorem 2. In this theorem, in fact, it is proved that the intersections are like in Fig.
3(c), where L denotes the index of the last mi intersected, i.e. T (x) ∈ (mL,mL+1) for all x < XL

and we let mL+1 := −∞ in the case L ≡ L′.
In case (b) (see Fig. 3(d)), on the contrary, there are multiple intersections. If this occurs, then

the first time (starting from Zg and going toward −∞) we would observe a second intersection of
T (x) with some level mj , is as illustrated in Fig. 3(d), which in fact coincides with Fig. 1(b). This
situation can never happen, as proved in Theorem 2.

7.8 Solution to the HJB equations between the switching levels

Assume the optimal control u∗(x) = Uk over the interval I = (Xa, Xb) and assume for simplicity
that 0 6∈ I (otherwise the interval I should be partitioned into two sub-intervals (Xa, 0) and
(0, Xb)). Then the solution V (x, 0) and V (x, 1) to the HJB equations (12)-(13) with boundary
conditions V (Xb, 0) and V (Xb, 1) is given by:

V (x, 0) =
1

αk(Uk − d)

[

J∗(qk + qup)(x − Xb)

d
−

cx(qup + qk)(x2 − X2
b )

2d
−

−
J∗Ukqup(1 − e−αk(x−Xb))

αkd2
+

cxUkqup(αkx − 1 − (αkXb − 1)e−αk(x−Xb))

α2
kd2

]

+

+
qk

αk(Uk − d)

[(

qup(Uk − d)e−αk(x−Xb)

dqk

− 1

)

V (Xb, 0)+

+
qup(Uk − d)(1 − e−αk(x−Xb))

dqk

V (Xb, 1)

]

(62)

V (x, 1) =
1

αk(Uk − d)

[

J∗(qk + qup)(x − Xb)

d
−

cx(qup + qk)(x2 − X2
b )

2d
−

−
J∗Ukqk(1 − e−αk(x−Xb))

αkd(Uk − d)
+

cxUkqk(αkx − 1 − (αkXb − 1)e−αk(x−Xb))

α2
kd(Uk − d)

]

+

+
qk

αk(Uk − d)

[(

e−αk(x−Xb) − 1
)

V (Xb, 0)

+

(

qup(Uk − d)

dqk

− e−αk(x−Xb)

)

V (Xb, 1)

]

(63)

where cx = cp if Xa > 0 and cx = −cm if Xb < 0.
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(a) (b)

Figure 4: The plot of V (x, 1) (left) and of H(x) = V (x, 0) − V (x, 1) for x > Z∗ (right)

7.9 Details of the Example in Section 5.1

Consider the example of Section 5.1 with the optimal levels X∗
i ’s. In this section we want to show

how the policy u∗(x) in (7) with the levels X∗
i specified meets all the conditions of the Verification

Theorem.
First of all, we determine the solutions to the HJB equations associated with the considered

policy. This corresponds to solve (12) and (13) after removing the minimum from (12) and using
in (12) as u the u∗(x) of the considered policy. Assigning an arbitrary initial condition to V (x, 0)
for an arbitrary x (notice in fact that if V (x, i) solves the HJB equations, also V (x, i) + c, where
c is a constant is a solution of these equations), e.g. V (Z∗, 0) = 0, we have that, thanks to (12)
(with u∗(Z∗) = d): V (Z∗, 1) = (cpZ

∗ − J∗)/q1. Then we integrate the equations using as initial
conditions in each interval the final conditions of the other (or vice versa). The solutions V (x, i) are
continuous on the borders of the intervals (obviously by construction). Now we show that all the
conditions of the Verification Theorem are met, namely: that V (x, 0) and V (x, 1) are continuously
differentiable, that they satisfy with u∗(x) the HJB equations (12) and (13) (in particular, with
these functions, u∗(x) attains the minimum in (12)) and that they are quadratically bounded. We
also show that H(x) > 0 for all x and, even if this is not required in our analysis, that V (x, 0) and
V (x, 1) are convex.

Now, for x > Z∗ = 2.81, the solutions to the HJB equations associated to the considered policy
is given by:

V (x, 1) = −982.7 − 3.97e−0.5x+1.41 + 0.5x2 − 4.8x (64)

V (x, 0) = −982.7 + 992.3e−0.5x+1.41 + 0.5x2 − 4.8x (65)

The right derivative of V (x, 1) at x = Z∗ is

dV (x, 1)

dx

∣

∣

∣

∣

x=Z∗,+

= 0 (66)

and it is easy to verify that V (x, 0) and V (x, 1) are convex for x > Z∗ = 2.81: this is trivial for
V (x, 0). As for V (x, 1) we have, in this interval, V ′′(x, 1) = 1 − 4 e−0.5 x which is positive for all
x ≥ Z∗. For x ∈ (X∗

2 , Z∗) = (1.55, 2.81):

V (x, 1) = 1.21x − 999.66 − 0.126x2 + 1.01e−0.5x+1.4 (67)

V (x, 0) = 3.7x − 1016.7 − 0.126x2 + 1007.3e−0.5x+1.4 (68)
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(a) (b)

Figure 5: The plot of V (x, 1) (left) and of H(x) = V (x, 0) − V (x, 1) for x ∈ (X∗
2 , Z∗) (right)

The left derivative of V (x, 1) at x = Z∗, given by

dV (x, 1)

dx

∣

∣

∣

∣

x=Z∗,−

= 0,

is like the right derivative at Z∗ (see (66)), i.e. V (x, 1) is continuously differentiable at Z∗. In
addition, also for x ∈ (X∗

2 , Z∗), the two functions are convex. We have, in fact, in this interval,
V ′′(x, 1) = −0.252+1.024e−0.5 x which is positive for all x ∈ (X∗

2 , Z∗) and also implies the convexity
of V (x, 0) (since the coefficient of the exponential term in V (x, 0) is much larger than the coefficient
of the exponential term in V (x, 1)).

For x ∈ (0, X∗
2 ) = (0, 1.55):

V (x, 1) = 0.26x − 997.13 − 0.03x2 + 0.6e−0.5x+0.77 (69)

V (x, 0) = 2.36x − 1011.5 − 0.03x2 + 1886.7e−0.5x+0.77 (70)

It is:

dV (x, 1)

dx

∣

∣

∣

∣

x=X
∗,−
2

= −0.1248683095 (71)

dV (x, 1)

dx

∣

∣

∣

∣

x=X
∗,+
2

= −0.1243746466, (72)

i.e., V (x, 1) is differentiable at X∗
2 (the slight difference between the two values depends on the

numerical approximations, like the one regarding the optimal levels X∗
i ’s and the optimal cost

J∗). Also for x ∈ (0, X∗
2 ), the two functions are convex. We have, in fact, in this interval,

V ′′(x, 1) = −0.06 + 0.324e−0.5 x which is positive for all x ∈ (0, X∗
2 ) and also implies the convexity

of V (x, 0) (for the same reason mentioned above).
For x ∈ (X∗

3 , 0) = (−0.02, 0):

V (x, 1) = −0.41x − 995.8 + 26.5x2 − 0.04e−0.5x (73)

V (x, 0) = −2106.34x + 3207.3 + 26.5x2 − 124.6e−0.5x (74)

It is:

dV (x, 1)

dx

∣

∣

∣

∣

x=0−

= −0.3912172607 (75)

dV (x, 1)

dx

∣

∣

∣

∣

x=0+

= −0.3912172603 (76)

21



Figure 6: The plot of dV (x, 1)/dx · u + qd(u)H(x) for x = (X∗
2 + Z∗)/2 showing that it is correct

to take in the interval (X∗
2 , Z∗) u = U1 as the argument of the minimum in (12) (see also Figs.

7(a) and 7(b)).

(a) (b)

Figure 7: The plot of dV (x, 1)/dx ·u+qd(u)H(x) for x = X∗
2 (left) and for x = Z∗ (right), showing

that it is correct to take in the interval (X∗
2 , Z∗) u = U1 as argument of the minimum in (12) and

that on the left of X∗
2 it starts to become optimal u = U2 (left) and on the right of Z∗ the optimal

control starts to be u = 0 (right)
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(a) (b)

Figure 8: The plot of V (x, 1) (left) and of H(x) = V (x, 0) − V (x, 1) for x ∈ (0, X∗
2 ) (right)

Figure 9: The plot of dV (x, 1)/dx · u + qd(u)H(x) for x = 0 showing that it is correct to take in
the interval (0, X∗

2 ) u = U2 as minimum in (12)
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(a) (b)

Figure 10: The plot of V (x, 1) (left) and of H(x) = V (x, 0) − V (x, 1) for x ∈ (X∗
3 , 0) (right)

(a) (b)

Figure 11: The plot of dV (x, 1)/dx ·u+ qd(u)H(x) for x = 0 (left) and for x = X∗
3 (right), showing

that it is correct to take in the interval (X∗
3 , 0) u = U2 as minimum in (12), but U4 at X∗

3 starts
to be better (right). Notice also that U3 can never be optimal (right).
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(a) (b)

Figure 12: The plot of V (x, 1) (left) and of H(x) = V (x, 0) − V (x, 1) for x ∈ (X∗
4 , X∗

3 ) (right)

Figure 13: The plot of dV (x, 1)/dx · u + qd(u)H(x) for x = (X∗
4 + X∗

3 )/2 showing that it is correct
to take in the interval (x∗

4, X
∗
3 ) u = U4 as minimum in (12)
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(a) (b)

Figure 14: The plot of V (x, 1) (left) and of H(x) = V (x, 0) − V (x, 1) for x < X∗
4 (right)

(a) (b)

Figure 15: The plot of dV (x, 1)/dx · u + qd(u)H(x) for x = X∗
4 (left) and for x = −0.5 (right)

showing that it is correct to take u = U5 as minimum in (12) for x < X∗
4 . Notice again that at

X = X∗
4 (left), U4 is equivalent to U5.
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i.e., V (x, 1) is differentiable at 0. Also for x ∈ (X∗
3 , 0), the two functions are convex. We have,

in fact, in this interval, V ′′(x, 1) = 53 − 0.01e−0.5 x and V ′′(x, 0) = 53 − 31.15e−0.5 x which are
positive for all x ∈ (X∗

3 , 0).
For x ∈ (X∗

4 , X∗
3 ) = (−0.131,−0.02):

V (x, 1) = −0.93x − 995.8 + 13.1x2 − 0.01e−0.5x−0.01 (77)

V (x, 0) = −2053.26x + 3101.1 + 13.1x2 − 18.6e−0.5x−0.01 (78)

It is:

dV (x, 1)

dx

∣

∣

∣

∣

x=X
∗,−
3

= −1.445938477 (79)

dV (x, 1)

dx

∣

∣

∣

∣

x=X
∗,+
3

= −1.450301588 (80)

i.e., V (x, 1) is differentiable at X∗
3 . Also for x ∈ (X∗

4 , X∗
3 ), the two functions are convex. We have,

in fact, in this interval, V ′′(x, 1) = 26.2 − 0.0025e−0.5 x and V ′′(x, 0) = 26.2 − 4.6e−0.5 x which are
positive for all x ∈ (X∗

4 , X∗
3 ).

For x < X∗
4 = −0.131:

V (x, 1) = −1.57x − 995.9 + 10.62x2 + 0.00008e−0.5x (81)

V (x, 0) = −2044.1x + 3082.6 + 10.62x2 + 0.09e−0.5x (82)

It is:

dV (x, 1)

dx

∣

∣

∣

∣

x=X
∗,−
4

= −4.349402371 (83)

dV (x, 1)

dx

∣

∣

∣

∣

x=X
∗,+
4

= −4.350233541 (84)

i.e., V (x, 1) is differentiable at X∗
4 . Also for x < X∗

4 , the two functions are convex. We have, in
fact, in this interval, V ′′(x, 1) = V ′′(x, 0) = 21.24 > 0 (the small coefficients of the exponential
terms in (81) and (82) should be in fact intended as 0: they are different from 0 for the numerical
approximations on the X∗

i ’s and on J∗). Also, from the expressions of V (x, 0) and V (x, 1), it is
possible to see how they can be bounded (from above and from below) by a quadratic function.

In Figs. 4-15 it is possible to visualize the convexity of V (x, 1) (Figs. 4(a), 5(a), 8(a), 10(a),
12(a) and 14(a)), that H(x) > 0 for all x (Figs. 4(b), 5(b), 8(b), 10(b), 12(b) and 14(b)) and that
the considered policy achieves the minimum in (13) (Figs. 6, 7(a), 7(b), 9, 11(a), 11(b), 13, 15(a))
and 15(b)).

7.10 A way to initialize the value of the Xi’s in the gradient descent

method

In this section we present a procedure based on the N = 2 case of [5] to initialize the value of
the Xi’s in the gradient descent method mentioned in Section 5.1 which determines the optimal
thresholds X∗

i ’s. This procedure can be applied only if the Ui’s are all feasible (this is because the
results of [5] have been derived under this assumption).

In [5], for a N = 2 case, the optimal policy has been shown to have the same structure of (7),
i.e., using the notation U := U1 and µ := U2, is given by:

u(x) :=















0 x > Z
d x = Z
U x ∈ [X,Z)
µ x < X

(85)

The optimal values X∗ and Z∗ respectively of X and Z have been analytically derived in [5].
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The basic idea of the method is to determine the levels Xi’s by using the thresholds X∗ and
Z∗ which come from the application of the results presented in [5] to each pair (Uik

, Uik+1
), where

ik, ik+1 ∈ S. This is performed as follows.
For each ik, ik+1 ∈ S, apply the results of [5] with U = Uik

, µ = Uik+1
, qd2 = qik

and qd1 = qik+1

(the other parameters in [5] being as in this report). Let X∗ and Z∗ be the resulting optimal levels
and denote them by X∗

ik,ik+1
and Z∗

ik,ik+1
respectively.

Then, the initial value of the thresholds Xi’s in a gradient descent method can be selected as
follows:

Xk(0) = X∗
ik−1,ik

, k = ℓ + 1, . . . L, (86)

Xℓ(0) = Z∗
iℓ,iℓ+1

. (87)

This procedure, tested on several examples, provided really satisfactory results. For example,
considering again the N = 5 case of Section 5.1, the initialization procedure just described provides
a guess X(0) := {X1(0), . . . , XL(0)} = {2.8704, 1.606, −0.0207, −0.134} not far from the optimal
X∗ := {X∗

1 , . . . , X∗
L} = {2.81, 1.55, −0.02, −0.131} indicated in Section 5.1. This initialization

greatly reduced the execution time of the gradient search.
The initialization procedure can not be applied to the other examples of Section 5 since the

Ui’s are not all feasible there.
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