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Abstract

Modern electronic devices comes from a double evolution. On one hand the minia-
turization techniques have reduced the traditional devices to the microscopical scales.
Such approach is called top-down. On the other hand, the researching in multidisci-
plinary fields has created novel devices, natively nanostructured. Carbon nanotubes,
nanowire and quantum dots are examples of such devices, designed following an
approach called bottom-up.

These two evolutive lines are converging in strongly heterogeneous devices, whose
features are due to both micro and macroscopical elements. Hence, there is the need
of CADs to employ models acting at different scales in the same simulation. Such
a model is called multiscale model. Multiscale models involve several fields, ranging
from fluid dynamics to electronic transport.

In this work we deal with heating and heat dissipation in a multiscale domain. In
particular, we investigate the Joule’s effect at the macro, meso and nanoscales.

We start to compute the self-heating effect by modeling the electron-phonon in-
teraction at the Born Approximation level. The heating of a molecule under bias is
computed by means of an effective temperature. The transport of heat and charge is
calculated within the Non Equilibrium Green’s Function (NEGF) approach whereas
the ground state is obtained within the Density Functional Tight Binding (DFTB)
method. We apply the method on different molecular systems.

The Boltzmann Tranport Equation (BTE) for phonons is used as mesoscale model
of heat dissipation. At the macroscale, the temperature map is obtained at the dif-
fusive level with the Fourier model. Both the BTE based model and the Fourier
model have been implemented within the Finite Element Method (FEM). We perform
a Fourier/BTE multiscale simulation of a GaN quantum dot embedded in a AlGaN
nanocolumn.

All the three models have been implemented in TiberCAD, the multiscale simula-
tor of optoelectronic devices developed by the OLAB research group at the University
of Rome “Tor Vergata”.



Riassunto

I moderni dispositivi elettronici sono frutto di una doppia evoluzione. Da un lato le
tecniche di miniaturizzazione hanno spinto le dimensioni dei dispositivi tradizionali
fino alle scale nanometriche. Questo approccio è il cosiddetto top-down. Dall’altro
lato, la ricerca multisciplinare ha dato vita a nuove categorie di dispositivi, nativa-
mente nanostrutturati. I nanotubi di carbonio, nanowire e quantum dot sono esempio
di questo approccio, denominato bottom-up.

Questi due percorsi stanno convergendo in dispositivi che sono fortemente etero-
genei, le cui feature sono dovute ad effetti sia dei suoi elementi micro che macro.
C’è quindi la necessità di CADs capaci di impiegare modelli relativi a diverse scale
nella stessa simulazione. Tali modelli sono denominati modelli multiscala. I modelli
multiscala coinvolgono differenti aree di studio, dalla fluidodinamica al trasporto
elettronico.

In questo lavoro trattiamo il riscaldamento e dissipazione di calore alle scale
macro, meso e nano.

L’effetto Joule alle nanoscale è calcolato considerando l’interazione elettrone−fonone
nell’approssimazione di Born. Il riscaldamento di una molecola, sotto l’azione di un
bias, è calcolato mediante l’introduzione di una temperatura efficace. Il trasporto
di carica e del calore sono ottenuti mediante le funzioni di Green di non-equilibrio
(NEGF) mentre lo stato fondamentale è calcolato con il metodo Density Functional
Tight Binding (DFTB). Come esempio, considereremo diversi sistemi molecolari.

Per quanto riguarda la dissipazione del calore a livello mesoscopico, impieghiamo
un modello basato sull’equazione del trasporto di Boltzmann (BTE). A livello macro-
scopico, la mappa di temperatura è ottenuta mediante il modello di Fourier. Sia il
modello basato su BTE che il modello Fourier sono stati implementati secondo il
metodo agli elementi finiti (FEM). Infine, è stata eseguita una simulazione multiscala
Fourier/BTE di un quantum dot di GaN inserito in una nanocolonna di AlGaN.

Tutti e tre i modelli sono stati implementati in TIBERCAD, il simulatore multiscala di
dispositivi optoelettronici sviluppato dal gruppo di ricerca OLAB all’universitá di Roma “Tor
Vergata”.



Chapter 1

Introduction

Electro-thermal simulations deal with charge and heat carriers transport. In particular, it’s
possible to decompose the system in the electrons, holes and phonons subsystems. They have
different dynamics and, given a characteristic lengthscale and timescale, the transport regime
could be different for each of them. Interaction between charge carriers and phonons cause
the Joule’s effect. During their dissipative transport, electrons and holes lose energy which is
stored and dissipated by phonons.

This work is mainly involved in heating and heat dissipation at different regimes. Fur-
thermore, effort is devoted to couple heat transport models operating at different scales. We
apply the developed models to realistic devices.

1.1 Heat transport regimes

In the 1848 Fourier discovered the phenomenological law, bearing his name, of the heat
transport. He found that the thermal flux flowing through a wall subjected to a difference of
temperature is given by

J = −κ∇T (1.1)

where κ is the thermal conductivity.
The key assumption of the Fourier model is based on the local thermodynamic equilib-

rium. As a consequence, phonons out coming from a scattering are assumed to have the
equilibrium distribution according to the local temperature. This regime, called macroscale
regime, holds roughly for characteristic length greater than 10 γ.

The local equilibrium assumption merely fails whenever the device length becomes com-
parable to the phonon mean free path. To give an estimation of the phonons mean free path
we may start from the expression of the lattice thermal conductivity

κ =
1
3

v2
gτC (1.2)

For Silicon it is about κ = 142.3 W/mK. The sound velocity is vg = 6400m/s whereas the heat
capacity is C = 1.66106 J/m3K at 300 K. Inverting Eq. 1.2 the relaxation time is τ = 3κ

C v2
g

=
6.28 ps. The phonon mean free path is, therefore, Λ = vg τ ≈ 40 nm.



2 1 Introduction

In order to capture the size effects in modern devices a novel approach is necessary. The
step forward was the employment of the Boltzmann Transport Equation (BTE) for phonons.
Several versions, mainly based on the relaxation time approximation, have been implemented.
This regime is what is generally recognized as the mesoscale regime.

Although BTE based models are able to capture thermal effects that the Fourier model
does not, there still exist devices which need of a more sophisticated approach. This is the
case of molecular electronics or carbon nanotubes bases devices. Their short dimensions
make the quantum wave effects predominant and a quantum mechanical approach becomes
necessary. Quantum effects such as interference and tunneling may appear whenever the
characteristic length of the device is comparable with dominant phonon wavelength which
can can be estimated by the expression

λ =
ΘD a

T
=

vgh̄
2.82 kB T

(1.3)

where ΩD is the Debye frequency and a is the interatomic spacing. At 4 K the dominant
phonon wavelength of Silicon is about 27 nm and, therefore, becomes comparable with the
device length. At the short scale, as for the electron case, the thermal conductance is quan-
tized and assumes the expression

G0 =
π2k2

BT
3 h

(1.4)

This regime is the nanoscale regime. A review on heat transport regime can be found in
Raf. [1]. As in this work we deal with steady state system we do not pay attention to the
timescale related regimes.

1.2 The need of a multiscale simulation

Devices of interest lie between the macro and mesoscale. More precisely, we may have physics
effects related to different scales in the same device. Let us give some examples.

In 2006 Muller et al proposed a quantum dot based LASER (see Fig. 1.1). Although the
device belongs to the macroscale regime, what determines the main features are the quantum
dots which lie in the mesoscale regime. The crucial point here is: on one hand one wants
to get all the important details, on the other hand it’s necessary to keep reasonable low the
computational cost. A possible way to match theses different needs at the same time could
be a multiscale approach. The aim of a multiscale scheme is coupling different regimes in
the same simulation. In the LASER shown in Fig. 1.1 a possibility could be to compute
the quantum charge in the dot and give it back to the Poisson equation which provides the
electrostatic potential along all over the device.

Another example is represented by the carbon nanotube (CNT) based transistor shown in
Fig. 1.2. In order to get a proper treatment of the electrical current and the heat dissipation
in the CNT a quantum mechanical approach is necessary. However, the rest of the device
still obeys to the macroscopic laws. A multiscale approach might be to calculate the quantum
transport only along the CNT and then match it with the diffusive flux computed at the
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Figure 1.1: Quantum dot based MESA

Figure 1.2: Carbon nanotubes based transistor

contacts. The domain partitioning as well as the matching criterium label the multiscale
approach.

Clearly, as almost every physic subjects, the understanding of the heat transport phenom-
ena has followed a top down approach, i.e. it started from the most macroscopical law to
arrive to the transport at the nanoscale. The nature behaves exactly as the opposite way, i.e.
it uses small pieces to build the macroscopical object, visible to human eye. The next three
chapter will describe the heat transport model following the nature approach. This descrip-
tion involves the Chapter 2,3 and 4. The fifth chapter will be devoted to the description of
TIBERCAD, the platform used to code the models described in this work. In the sixth chap-
ter we will apply the developed models to realistic devices. Conclusion and final remark
conclude the work.



Chapter 2

Thermal balance at the nanoscale

2.1 Introduction

As the dimension of the system approaches the wavelength of phonons a proper treatment of
heat transport needs to be based on a quantum mechanical approach. The system considered
in this work comprises a molecule interposed between two contacts (see Fig. 2.1). We as-

Figure 2.1: Atomistic system

sume the contact to be at thermodynamic equilibrium while the voltage drops only along the
molecule. The energy is stored in the molecule by means of vibrons, i.e. localized phonons
whose equilibrium population is given by the Bose-Einstein distribution

n(T0) =
1

e
h̄ω

kBT0 − 1
(2.1)

where h̄ω is the vibron energy and kB is the Boltzmann constant. When a bias is applied to the
system the electrons and phonons interact with each other exchanging energy. As emission of
a vibron is more probable than absorption, the net effect is the heating of the molecule. The
phonon distribution departs from the Bose-Einstein distribution. Non equilibrium vibrons
can interact with themselves via anharmonic interaction or may decay in phonons of the
contacts. In this work, we neglect the first effect whereas the vibron-phonon interactions,
which represent the dissipation via conduction, is computed by first principles. In the next
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paragraphs we will describe the balance equation and will provide the derivation of terms
related to the heating and the heat dissipation.

2.2 The energy balance

The vibron dynamics is described by a rate equation that balances the quanta emitted and
absorbed via electron-vibron interactions,

Re
q = (Nq + 1)Eq − Nq Aq, (2.2)

and the vibrons dissipated via vibron-to-phonon decays [2] into the contact reservoirs,

Rd
q = ∑

α

Jα
q (Nq − nq(Tα)). (2.3)

In Eqs. (2.2)-(2.3), α runs over the contact index (L and R contacts in this case), q is the
mode label, Nq is the non-equilibrium phonon population, nq(Tα) is the equilibrium phonon
population at temperature Tα, Jα

q are the decay rates of molecular vibrons into the phonon
reservoir of contact α. The terms Aq and Eq represents the absorption and emission rates,
respectively. The steady state solution is obtained by imposing Re

q = Rd
q = Rq, resulting in

the non-equilibrium vibron population,

Nq =
Rq
Jq

+
∑α Jα

q nq (Tα)
Jq

(2.4)

=
∑α Jα

q nq(Tα) + Eq

Jq + Aq − Eq
,

whereas the net emission rate of quanta is given by

Rq = ∑
α

Jα
q

Eq
[
nq(Tα) + 1

]
− Aqnq(Tα)

Jq + Aq − Eq
. (2.5)

In Eqs. (2.4)-(2.5) the terms Jq represent the total phonon decay rates, i.e. Jq = ∑α Jα
q . From

the previous expression it should be noted that when there is no dissipation (Jq = 0), the
condition Rq = 0 must be fulfilled. this implies that the heat must be absorbed by the
electrons themselves. The phonon-phonon decays give rise to a heat flux going out from the
α-contact that can be written as

Pα
q = h̄ωq Jα

q
[
Nq − nq(Tα)

]
, (2.6)

which, by using Eq. (2.4), becomes

Pα
q =

Jα
q h̄ωq ∑β Jβ

q
[
nq

(
Tβ

)
− nq (Tα)

]
Jq

+
h̄ωqRq Jα

q

Jq
(2.7)
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The first term in Eq. (2.7) represents the heat flux driven by the gradients of temperature
between contacts; the second contribution is the power dissipated by the Joule’s effect.

This expression (2.4) is particularly instructive, since it allows to carry several limit results.
For instance in the limit of very fast phonon relaxation to the reservoirs (Jq = ∞), we find
Nq = nq(T0). This is an expected result, since it simply means that the coupling is so strong
that thermal equilibrium is immediately restored, no matter how fast phonons are emitted in
the system. In the opposite limit of no relaxation (Jq = 0), phonon absorption by the electrons
must balance their emission, leading to

Nq =
Eq

Aq − Eq
. (2.8)

Remarkably, this expression is independent on the electron-phonon coupling γq, since Eq and
Aq are both proportional to γ2

q . This can be understood since changes in γq modify both
the absorption and emission probabilities, leaving the steady state number of phonon, Nq,
unchanged.

We also note that a stationary solution is not always guaranteed and generally does not
exist whenever Nq < 0. From Eq. (2.4) we get the system stability condition for Jq + Aq > Eq.
The simple interpretation of this is that Jq + Aq expresses the rate of phonon damping while
Eq the rate of phonon creation (It is not actually easy to get an simple interpretation of Eq,
since the emission is proportional to Nq + 1). Stability is possible only when the damping
rate overcomes the emission rate. Whenever these to quantities become close, the steady state
number of phonons turns out very large.

Since at steady state the amount of power emitted in the molecule must balance the power
dissipated to the reservoirs, a simple (though sometimes not so intuitive) concept can be
outlined. For slow dissipations the power emitted is essentially limited by the dissipation
rate, Jq. The power emitted must be small and tend to zero as Jq → 0. In the opposite limit of
fast dissipation, the power emitted reaches a maximum, only limited by the electron-phonon
coupling and by the inelastic tunneling probability, both contained in Eq and Aq.

The molecular heating is described in terms of an effective temperature Tm which is found
by the equivalence between the total vibrational energy, U, given by the non-equilibrium
population Nq with the energy obtained imposing an equilibrium Bose-Einstein population
at temperature Tm,

U = ∑
q

h̄ωqNq = ∑
q

h̄ωq

exp( h̄ωq
kBTm

)− 1
. (2.9)

The molecular temperature should not be interpreted as a thermodynamic quantity but can be
regarded as a parameter mapping the vibrational energy of the molecule. This is established
by the monotonic dependence between U and Tm expressed by Eq. (2.9). The advantage of
using Tm is that it does not depend on the size of the system and coincides with the rigorous
concept of temperature in the thermodynamical limit.
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2.3 Heating

We briefly report the essential result of the theory of quantum transport with incoherent
electron-vibron scattering presented in Ref. [3,4]. The electron-phonon coupling Hamiltonian
is written in the form

Hel−ph = ∑
q,µ,ν

γ
q
µνc+

µ cν

[
a+

q + aq

]
, (2.10)

by making use of the standard relationships between the position operator and the cre-
ation/annihilation phonon operators, a+

q and aq, and where c+
µ and cν are, respectively, the

creation and annihilation operators of one electron in the atomic basis. The coupling matrices,

γα
µν =

√
h̄

2ωq Mq
∑
α

[
∂Hµν

∂Rα
−∑

σ,λ

∂Sµσ

∂Rα
S−1

σλ Hλν −∑
σ,λ

HµλS−1
λσ

∂Sσν

∂Rα

]
eq

α, (2.11)

contain the atomic masses Mq, the mode frequencies ωq, and the normal modes of vibration
eq

α. The non-orthogonality of the atomic basis set is reflected by the presence of a non-diagonal
overlap matrix Sµν and its derivative with respect to the ionic positions Rα.
The electron-phonon interaction is treated within perturbation theory of the non-equilibrium
Green’s function formalism and the current through the junction is computed using the Meir-
Wingreen formula [5],

I =
2e
h

∫ +∞

−∞
Tr [Σ<

L (ω)G>(ω)− Σ>
L (ω)G<(ω)] dω, (2.12)

where Σ<(>)
L represents the injection rate of electrons (holes) from the left contact of the device,

while G<(>) is the electron (hole) correlation function, obtained from the kinetic equations [6,
7]

G<(>)(ω) = Gr(ω)Σ<(>)(ω)Ga(ω), (2.13)

and Gr(a) are the retarded (advanced) Green’s functions given by the usual expression

Gr(a)(ω) =
[
ωS− H − Σr(a)

]−1
. (2.14)

Where the single electron Hamiltonian H is obtained within the Density-Functional Tight-
Binding (DFTB) method [8]. The lesser and greater self-energies (SE) are given by the sum of
three terms,

Σ<(>)(ω) = Σ<(>)
L (ω) + Σ<(>)

R (ω) + Σ<(>)
ph (ω). (2.15)

The current expressed by Eq. (2.12) contains both a coherent and an incoherent component.
The coherent component arises from Σ<(>)

L (ω) and Σ<(>)
R (ω), whereas the incoherent compo-

nent is associated to Σ<(>)
ph (ω), describing scattering processes caused by electron-phonon in-

teractions. The electron-phonon self-energy can be evaluated with diagrammatic techniques.
The self-consistent Born approximation (SCBA) is expressed by

Σ<(>)
ph (ω) = i ∑

q

∫ +∞

−∞

dω′

2π
γqG<(>)(ω−ω′)γqD<(>)

q (ω′), (2.16)
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where D<(>)
q are the correlation functions related to the vibrational modes,

D<
0,q(ω) = −2πi

[
(Nq + 1)δ(ω + ωq) + Nqδ(ω−ωq)

]
D>

0,q(ω) = −2πi
[
(Nq + 1)δ(ω−ωq) + Nqδ(ω + ωq)

]
, (2.17)

assumed as Einstein oscillators, i.e. the vibron lifetimes are neglected in the phonon propa-
gator. Inserting (2.17) into (2.16) it is possible to derive an explicit formula for the electron-
phonon self-energy,

Σ<
ph = ∑

q
NqγqG<(E−ωq)γq + (Nq + 1)γqG<(E + ωq)γq

Σ>
ph = ∑

q
NqγqG>(E + ωq)γq + (Nq + 1)γqG>(E−ωq)γq. (2.18)

The self-consistency in Eq. (2.16) is implied by the use of a renormalized Green’s function,
G<, whereas the first order Born approximation is obtained when the unrenormalized (zero-
th order) Green’s function is used to evaluate the electron-phonon self-energy. Using the
relationship ImΣr

ph = 1/2(Σ>
ph − Σ<

ph) it is possible to compute Σr
ph that modifies the electron

propagator in (2.14). As we are mainly interested in the electron lifetime and we restrict to
weak electron-phonon coupling, the real part of Σr

ph that is responsible for a polaronic shift
is neglected. Consistently, we also neglect the first order Hartree diagram, which gives a
contribution to the real part only.

Let us see how get the expressions for Aq and Eq appearing in (2.2). In order to calculate
Rq, first we introduce the net power emitted into the junction, which is given by the net rate
of energy transferred to the molecule and that can be calculated using [9]

W =
2
h

∫ +∞

−∞
ω

[
Σ<

ph(ω)G>(ω)− Σ>
ph(ω)G<(ω)

]
dω. (2.19)

We notice that the electron-phonon self-energy (2.18) is expressed as a linear superposition of
individual mode contributions. Inserting Eq. (2.18) into (2.19) and exploiting this linearity, it
is possible to write the net power emitted in each vibrational mode,

Wq =
2
h

∫ +∞

−∞
iq(ω)ωdω, (2.20)

where iq(ω), given by

iq(ω) = Tr
[
Σ<

q (ω)G>(ω)− Σ>
q (ω)G<(ω)

]
, (2.21)

is interpreted as the current at a virtual contact, having the role of breaking the wavefunction
phase and change the electronic energy (see Fig. 2.2) [10].

Current conservation requires that the net current at the virtual contact must vanish, i.e.,

Iq =
∫ +∞

−∞
iq(ω)dω = 0. (2.22)
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Figure 2.2: SDiagram showing the in- and out-scattering electron in and out from the
electrodes and the virtual phase-breaking contact.

The net rate of phonon emission into the junction required by Eq. (2.4) can be defined as the
ratio between the power dissipated in each mode and the mode energy, Rq = Wq/h̄ωq.

The computation of Eq. (2.20) requires some care in order to avoid numerical inaccura-
cies. The delicate issue involved in such integration is the necessary condition of current
conservation that relays on a cancellation of terms in Eq. (2.21). In order to fulfill current
conservation a rather fine grid becomes necessary, although computationally very expensive.
A much better strategy is to split Eq. (2.21) into the current out-coming (o) and in-coming (i)
the virtual contact, respectively given by the first and the second term of Eq. (2.21). Collecting
all terms proportional to Nq and Nq + 1, each of these contributions can be further divided
into absorption (A) and emission (E) components, respectively. Using this procedure, the net
current at the virtual contact can be written as

Iq =
∫ +∞

−∞
Tr

[
iE
q,o(ω) + iA

q,o(ω)− iE
q,i(ω)− iA

q,i(ω)
]

dω, (2.23)

where the emission and absorption terms are

iE
q,o(ω) = (Nq + 1)Tr

[
γqG<(ω + ωq)γqG>(ω)

]
,

iE
q,i(ω) = (Nq + 1)Tr

[
γqG>(ω−ωq)γqG<(ω)

]
, (2.24)

iA
q,o(ω) = NqTr

[
γqG<(ω−ωq)γqG>(ω)

]
,

iA
q,i(ω) = NqTr

[
γqG>(ω + ωq)γqG<(ω)

]
. (2.25)

Using the invariance of the Trace under cyclic permutation and changing integration variable
it is easy to prove the identities

iE
q,o(ω) = iE

q,i(ω + ωq), (2.26)

iA
q,o(ω) = iA

q,i(ω−ωq). (2.27)
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These expressions, inserted back into (2.20), can be used to show that

Wq =
2
h

h̄ωq

∫ [
iE
q,o(ω)− iA

q,o(ω)
]

dω. (2.28)

This final result allows a much easier computation of the emitted power because it does
not rely on the subtle cancellation of terms hidden in Eq. (2.23). Current conservation is
guaranteed by construction, as it can be easily shown by inserting the identities (2.26) and
(2.27) into (2.23). The result is a numerically reliable expression using a coarser integration
grid.

The technical details of our implementation are given in the Appendix. Finally we observe
that reduction of this heavy computational step allows to perform calculations which needs
to include the full energetic dependency of the Green’s functions, avoiding the simplifying
assumptions made in Ref. [11].

If we compare Eq. (2.31) with Eq. (2.2) we get the expressions for Aq and Eq

Aq =
2
h

∫
Tr

[
γqG<(E− h̄ωq)γqG>(E)

]
dE, (2.29)

Eq =
2
h

∫
Tr[γqG<(E + h̄ωq)γqG>(E)]dE. (2.30)

Let us validate these expressions at the equilibrium condition. Hereafter, we assume that
the phonon decay rates are equal for the two contacts, i.e. Jα

q = Jq/2. Furthermore, the two
contacts are maintained at the same temperature T0. Under this assumption the net rate of
phonon emission and their non-equilibrium population can be written as

Rq =
Jq

Jq + Aq − Eq

[
(nq + 1)Eq − nq Aq

]
(2.31)

Nq = nq(T0) +
Rq

Jq
(2.32)

At V = 0 the system reaches thermodynamic equilibrium and Rq = 0 (and, consequently,
Nq = nq(T0)) which leads to the equilibrium conditions, Aq = Eqeh̄ωq/kbT0 .

It is straightforward to show that this condition is satisfied thanks to the general relation-
ship G<(E) = −eE/kbT0 G>(E) at V = 0, applied to the Eqs. (2.29) and (2.30). The contrary, the
relationship Aq = Eqeh̄ωq/kbT0 is not valid under general bias conditions.

2.4 Heat dissipation

The atomic vibrations of the open structure are treated in the usual way [12–15] by decoupling
the Hamiltonian as a superposition of normal modes of vibration. The modes and frequencies
for the whole structure are obtained solving the eigenvalue system

∑
j
Hije

p
j = ∑

j
Mije

p
j ω2

p, (2.33)
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where ep
j are the normal modes, Mij and Hij are the mass and Hessian matrices, respectively.

The Hessian matrix is defined using the Hellmann-Feynmann theorem as

Hα,β =
∂2E

∂Rα∂Rβ
, (2.34)

where E is the total energy of the system. The practical problem posed by Eq. (2.33) is
that the contacts are semi-infinite and consequently the matrices Hij and Mij are of infinite
dimension.

In order to treat the open boundary conditions on the bulk side of the contacts we use the
Green’s function formalism. The treatment is analogous to the electronic Green’s functions,
usully defined in quantum transport problems [9]. We start by defining the Green’s function
corresponding to Eq. (2.33) and by partitioning the system into molecule and contact blocks.
For instance, restricting to the left contact only, the following equation can be written for the
Green’s function[

MMω2 −HM HM,L
HL,M MLω2 −HL

] [
Gr

M Gr
M,L

Gr
M,L Gr

L

]
=

[
I 0
0 I

]
. (2.35)

The matrix blocks are obtained from the computation of the Hessian of the whole system.
The label M and L stand for the molecular and left contact blocks, respectively. In practice, a
particular treatment has to be used for the contact as the calculation of the Hessian must be
performed on a finite system. Our strategy is to compute the Hessian for a truncated system
that includes a sufficiently large portion of the contacts. In each contact we can identify a
surface and a bulk, comprising two principal layers (PL), which are chosen in order to satisfy
the condition that the Hessian matrix appears block-tridiagonal, i.e. the elastic coupling
does not extend beyond nearest neighbor PLs. Hydrogen saturation or a buffer layer can be
included to terminate the cutted edge at the bulk sides of each contact. The diagonal blocks
of the Hessian corresponding to the PLs and the coupling blocks between PLs are replicated
an infinite number of times, corresponding to the definition of an ideal bulk. The converged
is ensured by increasing the PL size. The Green’s function is defined in the usual form,

Gr(ω2) =
1

MMω2 −HM + Πr
R(ω2) + Πr

L(ω2)
, (2.36)

where the self-energies Πr
L,R(ω2) exactly map the infinite left and right contacts into the finite

portion of the molecular sub-system. Atomic units (h̄=1) are used throughout. In the Green’s
function (2.36) we keep the explicit dependency on ω2, as expressed in the corresponding
eigensystem (2.33). This self-energies are obtained from Eq. (2.35) as

Πr
L(ω2) = HM,Lgr

L(ω2)HL,M, (2.37)

where gr
L represents the surface Green’s function of the left semi-infinite contact, defined as

gr
L(ω2) =

1
MLω2 −HL

. (2.38)
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This can be computed using recursive algorithms from the knowledge of the PL blocks de-
fined above. The local phonon density of states (LDOS) projected on the molecule can be
computed from Gr(ω2) by means of the expression,

ρ(ω2) = − 1
π

Tr
{

Im
[
Gr(ω2)

]}
. (2.39)

Also this quantity is expressed in terms of ω2. The connection with the usual DOS can be
recovered using the functional derivative

ρ(ω) =
∂N
∂ω

= 2ωρ(ω2) = −2ω

π
Tr

{
Im

[
Gr(ω2)

]}
. (2.40)

The frequencies and modes of the molecule interacting with the contacts can be obtained
by solving the eigensystem

∑
j

[
HM,ij + Πij

(
ω2)] φ

q
j = ∑

j
ω2

q Mijφ
q
j . (2.41)

In principle this equation can give exact eigenvectors, φq, and frequencies, ωq, but it is rather
impractical to solve because of the nonlinear terms given by the complex self-energies. For
this reason it is often useful to take a first order expansion of (2.41), which approximates the
exact eigenvectors of the coupled system with those of the uncoupled molecule, eq, satisfying
the equation

∑
j
HM,ije

q
j = ∑

j
MM,ije

q
j ω2

q , (2.42)

whereas the mode frequencies are given by

ω̄q
2 = ω2

q +Zq ∑
ij

eq
i Re

[
Πr

ij(ω2
q)

]
eq

j , (2.43)

where

Zq =

1−∑
ij

eq
i

∂Re
[
Πij(ω2)

]
∂ω2

∣∣∣∣∣
ω=ωq

eq
j

−1

. (2.44)

In practice this approximation gives new, renormalized, frequencies and associated broaden-
ing, reflecting the interaction with an open system. The mode broadening is related to the
imaginary part of the self-energy by

Γq = ∑
ij

eq
i Im

[
Πr

ij(ω2
q)

]
eq

j . (2.45)

The connection between broadening and phonon decay rate can be obtained starting from the
usual representation of the Green’s function on the basis of the eigenmodes,

G̃q(ω) =
1

ω2 − ω̄2
q − iΓq

∼=
1

2ω̄q(ω− ω̄q)− iΓq
, (2.46)



2.5 Analytical model 13

and the spectral density in terms of the Green’s function

ρ̃(ω) = −
2ω̄q

π ∑
q

Im
[
G̃q(ω)

] ∼= − 1
π ∑

q

Γq
2ω̄q(

ω− ω̄q
)2 +

(
Γq

2ω̄q

)2 (2.47)

which leads, using the relationship τ−1 = −2Im [Σ] between lifetime and self-energy, to the
identification Jq = − Γq

ω̄q
as the phonon decay rate.

The method implemented is essentially a Fermi Golden Rule, including first-order one
phonon to one phonon decay processes, but obviously neglects a large number of other
mechanisms that may take place when the direct decay is forbidden. High frequency modes,
characteristic of molecular vibrations, generally lay well beyond the vibrational bandwidth
of the bulk reservoirs and cannot decay other than via one-to-many phonon channels [16,17].
Some of these effects can be taken into account introducing effective phonon densities for
the contact modes [18]. This, for instance, allows the correct prediction of the temperature
dependency of many-phonons decay rates. However, quantitative predictions of one-to-many
phonons decay rates require the calculation of the coupling constants related, for instance, to
anharmonic potentials which is not explicitly treated in this work. Other decay mechanisms
may also be represented by vibrational coupling with the surrounding molecules and gener-
ally depend on the environment, or with multistep processes involving relaxations to lower
energy modes via anharmonic couplings. Radiative decays may also play an important role.

2.5 Analytical model

It is useful to write the explicit expressions for Eq and Aq that can be obtained to lowest order
of perturbation theory, assuming TL = TR = 0 and neglecting the self-energy in the vibron
propagators. We introduce the notations

Aα,β
q = 2

h̄

∫
Tr[γqS∗α(E− h̄ωq)γqSβ(E)] (2.48)

Θ(E− µβ)Θ(µα − E + h̄ωq)dE,

Eα,β
q = 2

h̄

∫
Tr[γqS∗α(E + h̄ωq)γqSβ(E)] (2.49)

Θ(E− µβ)Θ(µα − E− h̄ωq)dE,

where the integration domain runs over the whole real axis, Θ(x) is the Heaviside step func-
tion and µα is the electrochemical potential of contact α. Finally, the spectral density matrix
for the α−contact is given by

Sα(E) = Gr(E)Γα(E)Ga(E), (2.50)

where Γα is the imaginary part of the self-energy of contact α. In Eqs. (2.48) and (2.49)
the labels α and β refer to incoherent processes in which an electron enters the molecule
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from contact α and is scattered into contact β after absorption or emission of one vibrational
quantum. The total absorption and emission can be expressed as Aq = ∑α,β∈L,R Aα,β

q and

Eq = ∑α,β∈L,R Eα,β
q , respectively. Higher order diagrams involve more vibrons as well as

virtual absorption/emission processes, but for the sake of simplicity we present a qualitative
analysis of the numerical calculations only considering the dominant first order terms. As
the terms Aq and Eq depend non-linearly on Nq, the non-equilibrium population is computed
with a self-consistent loop. For details about the Green’s function method refer to Ref. [9].
With the definition Tαβ

q = 2
h̄ Tr

[
γqS̃∗αγqS̃β

]
we find explicit expression for Eα,β

q and Aα,β
q within

the Born Approximation

Aα,β
q = n(η)ηTαβ

q Θ(η)eη/KbT0 (2.51)

Eα,β
q = n(η)ηTαβ

q Θ(η) (2.52)

where η = h̄ωq − µα + µβ. It’s easy to show that Aα,β
q = Eα,β

q eη/KbT0 . For zero bias we have
η = h̄ωq and we recover the equilibrium condition. Furthermore, if TLR

q = TRL
q , twe can use

the following relationship, which holds even for non-bias

∑
α,β

(Aα,β
q − Eα,β

q ) = h̄ωq ∑
α,β

Tαβ
q = h̄ωqTq (2.53)

where Tq = ∑α,β Tαβ
q . The equality (2.53) turns Eq. (2.31) into

Rq =
Jq

Jq + h̄ωqTq

[
Eq − n(h̄ωq)h̄ωqTq)

]
(2.54)

Based on the analytic equations derived above, we can analyze the dependence of the power
dissipated and local temperature in molecular bridges for different choices of the relevant
parameters characterizing the junction. In the calculations that follow we assume TLL =
TLR = TRL = TRR, valid in the case of two identical metallic contacts. For Semiconducting
contacts TLL = TRR ≈ 0 because back-scattering with phonon absorptions is suppressed by
the presence of the energy gap. TLR represent a dimensionless parameter directly related to
the phonon emission and absorption rates.

The attention is focused on the molecular temperature as a function of applied bias. In
Fig. 2.3 the local temperature, Tmol , is plotted as a function of V for two different choices of the
phonon energy (12 meV and 120 meV). A large sensitivity is found on the crucial parameter
Jq and, as expected, higher temperatures are reached for lower Jq. We observe that the local
temperature increases for higher mode frequencies and the temperature gradient between
contacts and molecule decreases as the reservoir temperature increases. The first mechanism
can be understood considering that keeping an identical electron-phonon coupling and dissi-
pation rate, the system reaches the same number of steady state phonons, implying a larger
local temperature. The second effect happens because for higher temperatures emission and
absorption rate tend to balance, decreasing the net rate of phonon emission. We also observe
that in the limit eV/h̄ωq � 1 the molecular temperature becomes linear with bias, whereas
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Figure 2.3: Molecular temperature vs bias for different parameters. Solid lines are for
T0 = 10 K, dashed lines for T0 = 300 K. The two groups of three curves correspond to
ωq =12 meV and ωq =120 meV, Jq = 1 · 1012Hz, 2 · 1012Hz, 3 · 1012Hz and TLR = 10−3.
Generally Tmol decreases as Jq rises.

the dependence is quadratic for low biases. This behavior can be easily recovered by inspec-
tion of Eq. (2.51) which, for large Nq, turns linear in V.

Fig. 2.3 reveals a sharp increase on the local temperature for biases larger than the mode
frequency because emission assisted tunneling take place. When more modes are involved
different steps at different characteristic frequencies may be expected, as shown in Fig. 2.4.

More phenomenological argumentations [19, 20] to calculate molecular temperatures un-
der bias are based on the balance between the power emitted, assumed proportional to V2

as in ohmic conductors, with the power dissipated into the contacts, assumed to behave as
σT4 like in the thermodynamic limit. This leads to a dependence of the junction temperature
as V

1
2 . In the present model the balance of power emitted and dissipated is microscopically

defined mode by mode through the rate Eq. (2.4). In the limit of a continuous distribution of
modes the power dissipated in the contacts can be written as

Wdiss = ∑
q

h̄ωq JqNq =
∫

dωρ(ω)J(ω)
1

eβh̄ω − 1
, (2.55)

where ρ(ω) is the phonon density of states. In Eq. (2.55) we assume that phonons population
can be approximated by the Bose-Einstein distribution. The density of states of the acoustic
phonon bands behaves as ρ(ω) = c for one-dimensional systems and as ρ(ω) = cω2 for
three dimensional systems. Assuming a slow frequency dependent J, in the first case the
dissipated power is proportional to T2, whereas in the second case it is proportional to T4,
recovering the expected behavior of macroscopic systems. On the other hand, the dependence
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Figure 2.4: Molecular temperature vs bias for increasing number of modes uniformly
distributed in the range 0 < ωq < 120 meV, Jq = 1× 1012Hz and TLR = 10−3.

Figure 2.5: Molecular temperature vs bias for different distributions of molecular modes.
The dashed line corresponds to a distribution ρ ∝ ω2 with a Debeye cut-off ωD = 5.74kT.
The dotted line corresponds to a constant distribution with identical cut-off. The solid
lines correspond to one mode only, of energies ωq = ωD/2 (lower) and ωq = 2ωD/3
(higher), respectively. The other parameters are Jq = 8 · 10−5kT/h and TLR = 10−7.
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of the power emitted in the molecule, as expressed by ∑q Rqh̄ωq, is quadratic in V for low
biases but becomes linear for large applied biases, irrespective of the number of vibrational
modes or their distribution. This trends, contrasting the ohmic behavior, is an effect of the
present model, which assumes that the incoherent current is just a small perturbation of the
dominating coherent component and justifying that only one-phonon processes are taken into
account. In this regime the power emitted behaves as ∼ h̄ωq Iinc ∼ h̄ωqV. In order to recover
the ohmic limit, it should be necessary to consider a system much longer than the electron
mean free path, such that coherent tunneling is suppressed and propagation is possible only
via multiple phonon emissions, releasing all the energy provided by the applied bias. It is
worth noting that in the coherent regime the excess energy provided by the bias is released
at the collecting contact and is still proportional to V2 (assuming I ∝ V).

On the light of the discussion above, we deduce that, under the assumption of partially
coherent tunneling, the molecular temperature should behave as Tmol ∼ V2 for low biases
turning into Tmol ∼ V in case that only one or few vibrational modes absorb electron energy.
Different trends like Tmol ∼ V1/2 or Tmol ∼ V1/4 are expected when many modes absorb
similar amount of energy and their distribution is one-dimensional (first case) or bulk-like
(second case). These different behaviors are shown in Fig. 2.5 in terms of dimensionless
quantities. The mode distribution assumes a Debeye cut-off frequency, ωD = 5.74kT, which
at room temperature corresponds to 1200cm−1, typical of many molecules.

For Semiconducting contacts TLL = TRR ≈ 0 because back-scattering with phonon absorp-
tions is suppressed by the presence of the energy gap. A discussion connecting this terms
with phonon decay into electron-hole pairs is given in the Appendix. If we consider only the
direct emission and absorption contributions we have

Rq =
JqTLR

q

Jq + h̄ωqTLR
q

Γq(V) (2.56)

where
Γq(V) = n(h̄ωq + eV)(h̄ωq + eV)− n(h̄ωq)(h̄ωq) (2.57)

Since most of the heat is carried trough low energy phonons which correspond to highest Jq
we get a simple formule for the heat dissipates (or emitted)

Pq = h̄ωqTLR
q Γq(V) (2.58)

Although Eq. (2.58) is not able to capture some interesting effects such as the heating due
to resonances, it may estimate the order of magnitude of the power dissipated. Further
investigation is needed to study the validity and limitations of this model.

2.6 Effect of resonant levels

The results of the previous section are valid in the limit when the energy dependence of the
transmission function can be neglected. In this section we show the effect of considering a
case where such assumption cannot be considered valid, such as for instance when a molec-
ular level enters the tunneling energy window. In this case resonant tunneling and phonon
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Figure 2.6: Tmol vs V for a system with a sharp resonating level located at energy ε1
above the Fermi level for V = 0. The steps correspond to the biases that leads to a sharp
enhancement of phonon emission due to assisted tunneling. The solid line is obtained
assuming one mode, the dashed line assuming two modes.

assisted emission can take place, changing the qualitative behavior of Tmol vs V. The molec-
ular resonance is modeled as a single peak, located off resonance at V = 0, at an energy
ε1 above the Fermi level. Two identical metallic contacts are assumed in this model whose
results are shown in Fig. 2.6. As the bias increases up to V = 2ε1 the molecular resonance
is brought into the tunneling window (a linear potential drop is assumed) where both co-
herent and incoherent transport are strongly enhanced, leading to a sharp increase of local
temperature. A plateau follows, since the incoherent current levels up. A second rise appears
when the bias matches the energy eV = 2(h̄ωq + ε1), corresponding to a second channel for
transport assisted by phonon emission. When more modes are present, more features are
expected, as seen in Fig. 2.6. Clearly for a continuous distribution of modes these features
smear out, leaving a broadened step near V = 2ε1.

This example shows that the electronic density of states can introduce a richness of fea-
tures in the molecular temperature as a function of bias. From this discussion we have skip
the possibility of semiconducting contacts whose energy gap introduces other characteristic
features such as NDR and negative differential heating whenever the tunneling resonances
slip below the band edge.



Chapter 3

Thermal balance at the mesoscale

3.1 The Boltzmann Transport Equation for phonons

Whenever the system size is much larger than the wavelength of phonons we may adopt a
classical approach for heat transport.

The behavior of a classical particle, under non-equilibrium conditions, can be obtained
by the balance between the total derivative of its distribution function f and the collision
operator Q[ f ], i.e.

d f (r, v, t)
dt

= ∂t f + (∂txi)∂xi f + (∂tvi) ∂vi f = Q[ f ] (3.1)

Eq. (3.1) is the Boltzmann Transport Equation (BTE) and its steady state formulation, within
the relaxation time approximation, is given by

vi∂xi f =
f0 − f

τ
(3.2)

where f0 is the equilibrium distribution and vi = (∂txi).
The BTE model can be applied to phonons by introducing the following transformation,

I(ω) = h̄ωD(ω) f (3.3)

where I stands for the energy intensity per unit of solid angle and volume and D(ω) is the
phonon density of states. If we further consider a heat source H̃, Eq. (3.2) becomes

∂xi(vi(ω)I) =
I0 − I
τ(ω)

+ H̃ (3.4)

where I0 is the equilibrium energy, which can be obtained by substituting the term f in
Eq. (3.3) with the Bose-Einstain distribution. Eq. (3.4) is called the phonon BTE and should
be solved accordingly with the phonon dispersion. In general, if the unit cell comprises q
atoms, there will be one longitudinal (LA) and two transverse (TA) acoustic branches, (q− 1)
longitudinal and 2(q− 1) transverse optical branches. The symmetry can produce degeneracy
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Figure 3.1: The Silicon phonon dispersion along the [001] direction.

of bands. For example, the Silicon phonon dispersion along the [001] direction is given in
Fig. (5.1) [21].

The relaxation time takes into account the phonon-phonon interaction as well as the
phonon-defect scattering. The phonon-phonon scattering can be either a normal (N) or umk-
lapp process (U). In the first case the momentum is conserved and the collision does not
reduce the thermal conductivity. In the U collision two phonons interact to form a third one
whose wave vector is outside the first Brillouin zone. In this case the direction of propagation
changes resulting in the reduction of thermal conductivity. The U processes are predominant
above room temperature [1] and make the thermal conductivity decrease linearly. At low
temperature the thermal conductivity drops because the heat capacity vanishes whereas the
maximum value is reached at room temperature. To model numerically this trend the full
phonon dispersion should be included in Eq. (3.2). In Fig. (3.2) a fit for the Silicon thermal
conductivity [22] with data from [23] is reported.
In order to reduce the computational effort in solving the phonon BTE several approxima-
tions have been proposed in literature. A first approximation is to group the two transversal
and the longitudinal optical phonons in one reservoir mode and consider only the longitudi-
nal acoustic phonon as propagating mode. Due to their low group velocity, optical phonons
do not contribute to the heat dissipation. The heat generation can be used as a source for
the reservoir mode. This model is called the semi-gray model [24] and has been applied for
the simulation of hotspots in MOSFET [25]. Another BTE based model splits the thermal
flux in two controbution: the diffusive and ballistic part. This method defines the so called
ballistic-diffusive equations [26].
The simplest model of the phonon BTE is obtained under the gray assumptions and it will
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Figure 3.2: Lattice thermal conductivity of Silicon. A comparison between exeperimental
[22] and numerical [23] data.

be the object of the next paragraph. A comparison of the BTE based heat transport models is
reported in Ref. [27].

3.2 The gray model

In this work we adopt a simple BTE model which relies on the following assumptions: (i)
collisions experienced by phonons are described via a relaxation time, which does not depend
on the phonon energy (gray assumption). (ii) All phonons are considered to have the same
group velocity, equal to the first sound velocity. Hereafter, we will refer to this model as the
gray model.

Under the above assumptions Eq. (3.4) becomes

vgsi∂xi I =
I0 − I

τ
+ H̃ (3.5)

where vg is the group velocity. The thermal flux is computed as

Ji =
∫

4π
IvgsidΩ (3.6)

If we integrate both sides of Eq. (3.5) over the solid angle we have

∂xi Ji =
∫

4π

I0 − I
τ

dΩ + H (3.7)
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where we have assumed that the versor s is divergence free and vg is constant. Furthermore
we have considered an isotropic heat source H̃ = 4πH. Under the condition

I0 =
1

4π

∫
4π

IdΩ (3.8)

Eq. (3.7) becomes the continuity equation for the thermal flux. Eq. (3.8) is used in this work to
achieve energy conservation. Eq. (3.5) is formally equivalent to the Energy Radiative Transfer
(ERT) equation which is well suited for thermal radiation modeling. In ERT model, condition
(3.8) is called radiative equilibrium. According to this analogy Eq. (3.5) is also named as the
Energy Phonon Radiative Transfer (EPRT) equation.

Neglecting the full phonon dispersion may introduce unpredicting results in the temper-
ature map [28]. However, the implementation of the gray model is part of a larger project,
focused on the multiscale scheme rather on the detailed treatment of phonon transport.

Dirichlet boundary conditions impose the incoming phonon energy (with respect the sim-
ulation domain) to the desired value. Thermal insulating boundary condition can be applied
by considering either specular or diffusive interfaces. The details about applying boundary
condition on the gray model can be found in [29] As I0 depends on the solution itself a self-
consistent loop is needed.
In order to stabilize the numerical computation, we recast Eqs. (3.5)-(3.8) by a change of
variable T̃ = 4π

C I + T0 into

Λsi∂xi T̃ = T − T̃ +
τ

C
H (3.9)

T =
1

4π

∫
4π

T̃dΩ (3.10)

The heat flux expressions becomes

Ji =
Cvg

4π

∫
4π

T̃visidΩ (3.11)

where we used the relationship Λ = vgτ.
The first guess of the equilibrium energy density is a crucial point to speed up the con-
vergence. We found that if we first perform a Fourier simulation and take the resulting
equilibrium energy as the first energy guess, convergence can be reached within few steps.
The overall algorithm is summarized in Fig. 3.3.

3.3 Angular discretization

The gray model requires the discretization of the solid angle. Eq. (3.9) should be solved for
each slice of solid angle, namely∫

∆Ωk

Λsk
i ∂xi T̃dΩ =

∫
∆Ωk

(T − T̃)dΩ +
τ

C

∫
∆Ωk

HdΩ (3.12)
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Figure 3.3: The algorithm of the gray model.

where, according to Fig. 3.4, the versor sk is

sk =

sin(θk) sin(φk)
sin(θk) cos(φk)

cos(θk)

 (3.13)

Eq. (3.9) can be written as

ΛSk
i ∂xi T̃ + T̃∆Ωk =

( τ

C
H + T

)
∆Ωk (3.14)

where

∆Ωk =
∫ φk+

∆φ
2

φk−
∆φ
2

∫ θk+ ∆θ
2

θk− ∆θ
2

sin(θ)dθdφ = 2 sin(θ) sin(0.5∆θ)∆φ (3.15)

and

Sk =
∫ φk+

∆φ
2

φk−
∆φ
2

∫ θk+ ∆θ
2

θk− ∆θ
2

skdθdφ

sin(φk) ∗ sin(0.5∆φ) [∆θ − cos(2θk) sin(∆θ)]
cos(φk) ∗ sin(0.5∆φ) [∆θ − cos(2θk) sin(∆θ)]

0.5∆θ sin(2θk) sin(∆φ)

 (3.16)

After some algebraic manipulation of Eq. (3.14) we obtain

γkSk
i ∂xi T̃ + T̃ =

τ

C
H + T (3.17)
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Figure 3.4: Spherical coordinates

where γk = Λ
∆Ωk

. Once the Eq. (3.17) is solved for each slice of solid angle we can compute T
as

T =
1

4π ∑
k

Tk∆Ωk (3.18)

where Tk = T̃(Ωk). In the same way, the thermal flux is computed as

Ji = vg ∑
k

TkSk
i (3.19)

Eqs. (3.17)-(3.18) have to be solved in a self-consistent way.

3.4 Spatial discretization

The Finite Element method has long been used in solving partial differential equations. Sev-
eral methods have been developed in order to improve the convergence and a stability for
a given problem and mesh type. The method used to solve Eq. (3.17) is the Discontinuous
Galerkin (DG). Contrary to standard FEM, a DG discretization provides a stable method in
solving first order differential equations on unstructured grids. The DG method was origi-
nally introduced for linear advection problems and, afterwards, extended to solve diffusion
problems. The DG has established itself as an alternative to the continuous FEM where the
latter does not work well. For details about the DG method see Ref. [30].

For a given direction Ωk we write Eq. (3.17) as

bi∂xi T̃ + T̃ = f x ∈ Ω (3.20)
T̃ = g x ∈ Γ−

b = γksk, f = τ
C H + T and Ω ⊂ Rd (d ≤ 3) is a bounded domain with boundary Γ. The inflow

boundary Γ− is defined as
Γ− = {x ∈ Γ : (bk · n) < 0} (3.21)
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where n is the outer normal on Γ.
Let us partition the domain Ω into elements Eh with h > 0. For each element we split its
boundary ∂E into the inflow and outflow part by (see Fig. 3.5):

∂E+ = {x ∈ ∂E : (s · n)(x) < 0}, (3.22)
∂E− = {x ∈ ∂E : (s · n)(x) > 0},

We associate to the element Eh the function space

Vh = {ϕ : ϕ is a bounded function on Ω and ϕ ∈ Pr(Eh)} (3.23)

where Pr(Eh) is the space of polynomials on K of degree at most r > 0. We further introduce

Figure 3.5: Partitioned domain

the following notation
ϕ−(x) = lim

ε→0−
φ(x + εb) (3.24)

ϕ+(x) = lim
ε→0+

φ(x + εb) (3.25)

Now, the DG method for Eq. (3.20) is defined as follows: For the element Eα, given T̃−h on
∂E−h , find T̃h ∈ Pr(Eh) such that∫

Eα

bi(∂xi T̃)ϕhdV −
∫

∂E−α
T̃+ϕ+

h binidS (3.26)∫
Eα

f ϕhdV −
∫

∂E−α
T̃−ϕ+

h binidS

Note that Eq. (3.26) is the standard FEM for Eq. (3.5) on the element Eh, with weak boundary
condition.
If b is divergence-free we can use the Green’s formula to show that∫

Eα

bi(∂xi T̃)ϕhdV =
∫

∂E−α
T̃+ϕ+

h binidS +
∫

Eα

T̃ϕhdV = (3.27)

+
∫

∂E+
α

T̃−ϕ−h sinidS−
∫

Eα

T̃si∂i ϕhdV



26 3 Thermal balance at the mesoscale

By inserting the expression (3.27) in Eq. (3.26) we have

−
∫

Eα

T̃(bi∂xi ϕh)dV +
∫

∂E+
α

T̃−ϕ−h (bini)dS +
∫

Eα

T̃ϕhdV = (3.28)∫
Eα

f ϕhdV −
∫

∂E−α
T̃−ϕ+

h (bini)dS

We chose zeroth-order polynomial functions such as

ϕh(x) =
{

1, if x ∈ Eh
0, elsewhere

(3.29)

With the function space (3.29), Eq. (3.28) becomes

∫
∂Eα

γkT̃−(bini)dS +
∫

Eα

T̃dV =
∫

Eα

f dV (3.30)

The expansion

T̃(x) = cβ ϕβ(x) (3.31)

allows Eq. (3.30) to be written in terms of a stiffness and load matrix

Aαβ = δαβ

[∫
∂E+

α

γk(bini)dS + Vα

]
+ (3.32)

+
∫

∂E−α ∩∂E+
β

γk(bini)dS (3.33)

Fα =
∫

Eα

f dV (3.34)

where Vα is the volume of the element Eα.
Finally, recalling that b = Λ

∆Ωk
Sk and f =

(
τ
C H + T

)
we have

Aαβ = δαβ

[
Λ

∆Ωk

∫
∂E+

α

(Sk
i ni)dS + Vα

]
+ (3.35)

+
Λ

∆Ωk

∫
∂E−α ∩∂E+

β

Sk
i nidS (3.36)

Fα =
∫

Eα

( τ

C
H + T

)
dV (3.37)
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3.5 Heat transport regime

The heat transport regime for a structure of length L can be identified by the Knudsen num-
ber, defined as Kn = Λ

L . It is a useful quantity which provides the device length in terms of
the phonon mean free path.
When the rod length is much smaller than the phonon mean free path, namely for a large
Knudsen number Kn = Λ

L >> 1 we are close to the ballistics regime. This case, in analogy
with the thermal radiation problem, is called the acoustically thin limit.
Conversely, whenever the phonon mean free path is much smaller than the device length, i.e.
Kn << 1, we approach the diffusive regime. This condition is called acoustics thick limit.
Let us start to investigate the acoustically thin limit for a planar structure of length L (See
Fig. 3.6) without any heat source. The plane ends with two walls maintained at two different
temperatures T(0) and T(L).

Figure 3.6: Planar domain.

We split the heat flux into two contributions

Λµ∂xi T̃
+ = T − T̃ 0 < µ < 1 (3.38)

Λµ∂xi T̃
− = T − T̃ −1 < µ < 0

and

T̃+(0) = TL (3.39)
T̃−(L) = TR

The formal solutions are [1]

T̃+(x, µ) = TLe−
x

Λµ +
1

Λµ

∫ x

0
T(ζ)e−

x−ζ
Λµ dζ (3.40)

T̃−(x, µ) = TRe
L−x
Λµ +

1
Λµ

∫ L

x
T(ζ)e−

x−ζ
Λµ dζ (3.41)
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In Eqs. (3.40)-(3.41) the first terms represent the intensity generated by the surfaces and at-
tenuated by the medium whereas the second terms are the internal contributions which are
attenuated, as well.

Accordingly to Eq. (3.11), the heat flux is computed as

J(x) =
vgC
4π

2π
∫ 1

0

[
T+(x, µ)− T−(x, µ)

]
dµ = J1 + J2 (3.42)

where

J1 =
vgC

2
T(0)E3

( x
Λ

)
−

vgC
2

T(L)E3

(
L− x

Λ

)
(3.43)

J2 =
vgC
2Λ

∫ x

0
T(x)E2

(
x− ζ

Λ

)
dζ −

vgC
2Λ

∫ L

x
T(x)E2

(
x− ζ

Λ

)
dζ (3.44)

In Eq. (3.42) the azimutal and polar symmetries were used. The function

Em(x) =
∫ 1

0
µm−2e−

x
µ dµ (3.45)

is the mth−exponenetial integral.
The surface contributions are expected to be predominant and, therefore, the term J2 in

Eq. (3.43) can be neglected. Furthermore, we approximate x
Λ ≈ 0 and L−x

Λ ≈ 0 The heat flux
then becomes

J(x) = −
vgCL

4

(
T(0)− T(L)

L

)
(3.46)

where E3(0) = 1
2 is used.

The effective thermal conductivity is

kB =
vgCL

4
(3.47)

Hereafter, we will refer to KB as the ballistic thermal conductivity.
Now we treat the case when Kn << 1, namely, the acoustically thick limit. In thic case

we can neglect the term J1. We impose z = x−ζ
Λ and use the expansion I0(x) = I0(ζ) +

∂x I0(x)(x− ζ) = I0(ζ) + (∂x I0(x))zΛ. The term J2 is

J(x) = −
CvgΛ

2
Λ [∂xi T(x)]

[∫ x
Λ

0
E2(z)dz +

∫ x−L
Λ

0
E2(z)dz

]
(3.48)

We may assume that x
Λ ≈ ∞ and x−L

Λ ≈ ∞. Under these assumptions we have

J(x) = −
CvgΛ

3
Λ [∂xi T(x)] (3.49)

where
∫ ∞

0 E2(z)dz = 1
3 is used. The effective thermal conductivity is

kD =
vgCΛ

3
. (3.50)
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which consistent with the Kinetics result. We will refer to it as the diffusive thermal conductivity.
In the intermediate regime the effective thermal conductivity can be computed empirically as
the parallel κB in parallel with κD

k =
kBkD

kB + kD
(3.51)

In the following we will see whether Eq. (3.51) is a good approximation.

3.6 1-D numerical Solution

In this section we will solve numerically the gray model for a 1D system. Let us partition a
1D rod in M elements of length Lα where α = 1, 2...M. The left and the right ends have a
fixed temperature of T(0) and T(L), respectively.
Referring to the Eqs. (3.35)-(3.37), for a given direction k, we have

Aαβ =
[

vgτ cos(θk)
∆θk

+ Lα

]
δαβ −

vgτ cos(θk)
∆θk

δ(α−1)β (3.52)

Fα =
∫

Eα

( τ

C
H + T

)
dL (3.53)

The boundary conditions are fixed for the incoming flux into the domain.
Solving the system AαβCβ = Fα means solving

vgτ cos(θk)
∆θk

Tα − Tα−1

Lα
+ Tα =

1
Lα

∫
Eα

( τ

C
H + T

)
dL (3.54)

for each element α. The boundary value T0 depends on the direction of propagation

T0 =
{

T0, cos(θk) > 0
T(L), cos(θk) < 0

(3.55)

In Fig. 3.7 the quantity T∗ = T−T(0)
T(L)−T(0) is plotted for different Knudsen numbers. The nor-

malized position is x∗ = x
L . As one can see, the smaller the Knudsen number the bigger

is the jump in temperature at the boundaries. This behavior can be observed also between
boundaries of different materials and is interpreted as a Thermal Boundary Resistance (TBR).
This is due to different acoustic properties between materials. The TBR is present even in a
perfectly matched interface. It is often called the Kapitza resistance. TBR exists between two
dielectrics as well as between a dieletric and a metal. A review can be found in [31].
In Fig. 3.8 a comparison between the ballistic and diffusive thermal conductivities is pro-
vided. Unlike the diffusive conductivity, the ballistic thermal conductivity depends on the
device length. The two conductivities reach the same value when Kn = 1

2 . The green line is
the thermal conductivity computed as

k = − J
T(0)− T(L)

(3.56)

As one can expect its value approaches the diffusive and ballistic regime for extreme values
of the Knudsen number. The value of k as computed by Eq. (3.56) is pretty similar to that
computed by Eq. (3.51).
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Figure 3.7: Temperature profile at different Knudsen number.

3.7 Fourier/Gray Interface

The aim of a multiscale model is to couple different physical models in order to get an
accurate description without strongly increasing the computational effort. In principle, we
might perform the gray model over all the whole simulation domain but the discretization
of the solid angle and the non-linear term in the right hand side (see Eq.(3.10)) strongly
increase the computational cost. For this reason we compute the BTE only in the region
where it is needed (meso domain) and the Fourier model is adopted in the remaining part
of the device (macro domain)(see Fig. 3.9). Both models can communicate by means of their
boundary conditions. Hence, we adopt the bridge scheme. The temperature calculated with
the Fourier model serves as Dirichlet boundary conditions for the gray model. The thermal
flux computed by the gray model acts as Neumann boundary condition for the Fourier model
[32].

Whenever the gray domain is much larger than the phonon mean free path, the conver-
gence becomes very slow. Now we analyze the convergence behavior of this scheme. Let
us assume to have a rod of length 2L where the left side is maintained at a dimensionless
temperature T = 1. We split the domain in two subdomains with equal lenght. The Fourier
model is performed on the left subdomain whereas on the right subdomain we perform the
gray model. Let T(n)

I be the temperature on the Fourier/BTE interface at the nth-iteration
expressed as

T(n)
I = 1 +

J(n−1)
m

kM
L (3.57)

where J(n−1)
m is the thermal flux along the micro domain at the (n− 1)th step given by

J(n−1)
m = −κm

L
T(n−1)

I (3.58)

The values of J(n)
m and T(n)

I are show in Tab. (3.7)
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Figure 3.8: Lattice thermal conductivity at different Knudsen number.

Figure 3.9: Domain partitioning in a bridge scheme

n T(n)
I J(n)

m
0 1 − κm

L
1 1− γ − κm

L (1− γ)
2 1− γ + γ2 − κm

L

(
1− γ + γ2)

... ... ...
n ∑n

k=0 (−1)k γk − κm
L

[
∑n

k=0 (−1)k γk
]

where γ = κm
κM

.

Relying on the Leibniz criterium, the series ∑n
k=0 (−1)k γk converges only if γk is monotonic

decreasing and limk→∞ γk = 0. As km < kM (see Fig. 3.8), γ < 1 and the convergence
condition is satisfied.
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Figure 3.10: One dimensional multiscale domain

The convergence value is

TI = lim
n→∞

T(n)
I =

1
1 + km

kM

(3.59)

J = lim
n→∞

J(n)
m = − km

L
1

1 + km
kM

(3.60)

It’s straightforward to show that for a general TL and TR we have

TI = (TL + TR)
kM

km + kM
(3.61)

J = −TL − TR

2L
2kmkM

km + kM
(3.62)

For κm = κM = κ we recover the standard situation

TI =
TL + TR

2
(3.63)

J = −κ
TL − TR

2L
(3.64)

For small Knudsen number, i.e., κm ≈ κM (see Fig.3.8), the whole loop may require several
steps. A workaround of this problem is to solve first the Fourier model on the whole domain.
The resulting temperature profile is used to set the temperature at the interface and to provide
the initial guess of the equilibrium energy for the gray model.
The scheme is summarized in Fig. 3.11. The loop error is based on the equilibrium density
energy and the power balance.



3.7 Fourier/Gray Interface 33

Figure 3.11: The scheme for the gray model



Chapter 4

Thermal balance at the macroscale

4.1 Transport equation

Transport phenomena in continuous media are governed by irreversible thermodynamics.
In principle, for a system under non-equilibrium conditions we cannot use the relationship
related to the thermodynamics. However, for system not so far from the equilibrium con-
dition we may divide the domain in small subdomains where the physics regarding the
thermodynamic equilibrium still holds (see Fig. 4.1). More precisely, if (i) each subsystem is
at equilibrium indipendently of the other subsystems, (ii) interactions between neighboring
subsystems are weak, we have a local equilibrium [33]. Now we may apply what has been

Figure 4.1: Subdomains with different intensive variables.

already developed for systems in equilibrium conditions.
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For a small subdomain we apply the energy conservation law

dS = ∑
i

γidAi (4.1)

where Ai are the extensive variables and γi are the conjugate intensive variable. We recall
that, in thermodynamics, the extensive variables depend on the size of the system, i. e. the
number of particles, the internal energy etc.... Conversely, the intensive variables are related
to quantities which does not depend on the size of the system.

In order to get the entropy flux we divide both sides of Eq. (4.1) by a unit surface and time
and let the subdoomains tend to an infinitesimal region

Js
i = ∑

α

γi Jα
i (4.2)

The terms Jα
i are the flux of the extensive variables. The continuity equation for the entropy

flux in its steady state condition (hereafter we will consider only steady state conditions)
reads as

Stot = ∂xi J
s
i (4.3)

where

Stot = ∑
i

γi Ai (4.4)

is the total entropy production. To get Eq. (4.4) we used the relationship 4.1. Each flux
appearing in the right hand side of Eq. 4.3 must satisfy own continuity equation which read
as

∂xi J
s
i = ∑

α

Jα
i ∂xi γ

α (4.5)

The above equation assumes that there is no source of the extensive quantities, i.e. ∂xi J
α
i = 0

The terms Fff = ∇γα are called affinities.
So far we have set up the relationship between the entropy flux and the extensive variable

fluxes. But we have not mentioned how we may compute the latter, yet.
Let us assume that for a small gradient of the intensive variable γα there exist a flux of

the extensive variable Aα, linearly proportional to the related affinity Fff. In general we may
have a full coupling among all variables, i.e.

Jα
i = Lαβ

i j Fβ
j (4.6)

where Lαβ
i j are the transport coefficients. The Onsager theorem states that, in absence of a mag-

netic field, we have Lαβ
i j = Lβα

i j [34]. This relationship, called the Onsager reciprocal relationship,
will be used in the next paragraph in order to get the transport coefficients of interests.
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4.2 The transport coefficients

In a full electro-thermal simulation of a continuous media in the diffusive regime we have
three kind of particles: electrons, holes and phonons. The first two carry energy and mat-
ter, the second involves only transport of energy. The conjugate intensive variables can be
computed directly from the thermostatic theory [33]. In Tab. 4.2 the relative expressions are
reported.

Description γα Aα J
electrons energy 1

Tn
Un Jnu

holes energy 1
Tp

Up Jpu

lattice energy 1
TL

UL JLu

electrons concentration φn
Tn

n Jn

holes concentration φp
Tp

p Jp

In Tab. 4.2 Tn, φn and Jnu are the electron temperature, electro-chemical potential and en-
ergy flux, respectively. The p-labeled analogue quantities refer to holes. TL is the lattice
temperature and JLu the thermal flux carried by phonons.

At thermodynamic equilibrium φn = φp = const and Tn = Tp = TL = const.

Now we use the relationship (4.6) to build the transport equations


Jn
Jp
Jnu
Jpu
JLu

 =


L11 L12 L13 L14 L15
L12 L22 L23 L24 L25
L13 L23 L33 L34 L35
L14 L24 L33 L34 L45
L15 L25 L35 L45 L55

 ·



∇ (φn/Tn)
∇

(
φp/Tp

)
∇

(
1

Tn

)
∇

(
1

Tp

)
∇

(
1

TL

)


(4.7)

Generally speaking, we have fifteen coefficients. However, in our calculation we consider
only the coefficients L11, L13, L22, L33, L21, L24 and L55. We further assume the charge carrier
to be at thermal equilibrium with the lattice, i.e. Tn = Tp = TL = T. These coefficients may be
derived from the Boltzmann Equation as in [35] and are reported below (assuming isotropic
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material)

L11 = nµnT

L13 = −nµnT
(

ϕn

q
− PnT

)
L33 = κnT2 + nµnT

(
ϕn

q
− PnT

)2

L21 = pµpT

L23 = −pµpT
(

ϕp

q
− PpT

)
L44 = κpT2 + pµpT

(
ϕp

q
− PpT

)2

L55 = κLT2

where κn, κp and κL are the thermal conductivity of electrons, holes and lattice, respectively.
From kinetic theory they can be computed as

κL =
1
3

τv2
gC (4.8)

κn = µnq T L (4.9)

κp = µpq pT L (4.10)

where L = π2

3

(
kB
q

)2
= 2.44 10−8W ΩK−2 is the Lorenz number, τ is the relaxation time of

phonons, vg is the group velocity of phonons and C the lattice heat capacity. In Eq. (4.8), Pn
and Pp are the thermoelectric powers (or the Seebeck’s coefficients) given by

Pn =
kB

e

[
ln

(
n
Nc

)
− 5

2

]
(4.11)

Pp =
kB

e

[
ln

(
n

Nv

)
− 5

2

]
(4.12)

After some algebraic manipulation the expression for the fluxes are

Jn
i = µnn (∂xi ϕn + Pn∂xi T)

Jp
i = −µp p

(
∂xi ϕp + Pp∂xi T

)
Jun
i = −κn∂xi T − e PnT Jn

i

Jup
i = −κn∂xi T − e PpT Jp

i

JuL
i = −κL∂xi T

The continuity equations for the charge fluxes are

∂xi J
n
i = q R (4.13)
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∂xi J
p
i = −q R (4.14)

where R is the total electron-hole recombination.
The temperature map is obtained by balancing the heat generated with the heat dissipa-

tion. The steady state formulation of the continuity equation for the energy flux, in absence
of electromagnetic fields, reads as

∂xi

(
Jun
i + Jup

i + JuL
i − eφn Jn

i + eφp Jp
i

)
= 0 (4.15)

From Eq. (4.15) we obtain the heat balance equation

∂xi [κtot∂xi T] = H (4.16)

where κtot = κL + κn + κp and H is the total heat source given by

H = e∂xi [(φn + T Pn)Jn
i + (φp + T Pp)Jp

i ] = Hn
J + Hp

J + Hn
PT + Hp

PT + Hrec (4.17)

where

Hn
J =

ejn
i jn

i
nµn

Hp
J =

ejp
i jp

i
pµp

Hn
PT = −eT(jn

i ∂xi Pn)

Hp
PT = −eT(jp

i ∂xi Pp)
Hrec = R

[
φp − φn + T(Pn + Pp)

]
The Hn

J is the electron Joule’s heat and Hn
PT is the contribution due to Peltier and Thomson

effects. The former is due to spatial variations in the carrier density or changes of the ther-
moelectric power at material interfaces, the latter is assigned to the change of thermoelectric
power due to temperature variations. p-labeled quantities are related to holes. Hrec is the heat
generated by the non-radiative electron-hole recombination. We finally note that the thermal
conductivity of the carriers are usually some orders of magnitude lower with respect to the
lattice thermal conductivity and can therefore be neglected [36].

4.3 Numerical technique

The aim of a numerical approach for solving a differential equation is to discretize the prob-
lem, which has infinitely many degrees of freedom, to produce a discrete problem which
has finitely many degrees of freedom. Compared to the finite difference method, the Finite
Element Method (FEM) is relatively recent. It was first introduced by Courant in 1943 and,
afterwards, has been further developed and used by physicists and mathematicians.

The advantages of FEM is the capability to easly handle general boundary conditions
and geometries. Furthermore, in many cases it’s possible to get an explicite expression for



4.3 Numerical technique 39

the error estimation. A short introduction to the FEM shall be given in the following (for
a detailed introduction and analysis see e.g. [30, 37–39]). A rigorous treatment of the finite
element method is bejond this work. Below is reported a briefly introduction. Let assume to
have a differential equation L[u] = f where L[u] is a linear differential operator and f is a
source term defined on the domain Ω.

Let us build the relative weak formulation∫
Ω
L[uβ]ϕαdV =

∫
Ω

f ϕαdV (4.18)

where ϕα ∈ U are the trial functions and U is some vector space called the finite element space.
We now expande the solution as u = cβ ϕβ where ϕα ∈ U are the base functions. We have
used the same space functions for both the trial and the base functions. This method is called
the Galerkin method. Eq, (4.19) becomes

cβ

∫
Ω
L[uβ]ϕαdV =

∫
Ω

f ϕαdV (4.19)

The discretization of the problem means to consider a non infinite space function U. That
way we are able to solve Eq. (4.19) by a simple matricial calculation Kαβ = Fα where K and F
are the stiffness matrix and the load vector, respectively, defined as

Kα,β =
∫

Ω
L[ϕβ] ϕαdV (4.20)

Fα =
∫

Ω
f ϕαdV (4.21)

A fondamental ingredient that label a FEM is the triangulation of the domain. A triangu-
lation Th is defined on Ω, i.e. Ω is subdivided into a finite number of subsets K ∈ Th.

The triangulation method as well as the finite element space must satisfy certain regularity
properties. In particular the elements have to be non-overlapping and cover the whole region.
Furthermore the space functions should have a support as small as possible in order to assures
that the finite element basis has near orthogonal properties, i.e. two basis functions have
only overlapping support when they are associated to neighboring nodes. Details about
triangulations can be found in Ref. [35].

Under the above conditions the integrals over the domain Ω can be easily decomposed
into a sum of integrals over the finite elements Kl

Kα,β = ∑
Kl∈Th

∫
Kl

L[ϕβ] ϕαdV (4.22)

Fα = ∑
Kl∈Th

∫
Kl

f ϕαdV (4.23)

and the near-orthogonality assures that only a small number of basis functions (usually only
the ones that are associated to a node of the element to integrate over) lead to non-vanishing
integrals.
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4.4 Discretization of the Fourier equation

Here we discretize the energy balance equation ∂xi κi j∂xj = H.
The basis functions, denoted by ψi(x), in this case are the piecewise linear functions{

ψi ∈ H1
∣∣∣ ψi(xj) = δij, supp{ψi} =

⋃
j

xi∈Kj

Kj ∈ Th

}
, (4.24)

i.e. they are continuous across the element boundaries and they are one at the node they are
associated with and zero on any other node. These functions, also called hat functions, are
illustrated in Fig. 4.2.

Figure 4.2: The basis functions of 1
st-order Lagrange elements in 1D and 2D (hat func-

tions).

The differential operator of the Energy balance equation (4.16) is L[u] = ∂xi κi j∂xj u whereas
the source term is simply f = H. The temperature is expanded as

T(x) = cβ ϕβ(x) (4.25)

Referring to Eq.( 4.20) the expressions for the stiffness matrix and the load vector are

Kα,β =
∫

∂Ω
ϕα(κi j∂xj T)NidS−

∫
Ωα

κi j∂xi T∂xi ϕαdV (4.26)

Fα =
∫

Ωα

HϕαdV (4.27)

The first term in the left hand side is the thermal flux normal to the surface of the element.
It can be used to impose Neumann boundary conditions, i.e.

−
∫

∂Ωα

ϕαPndS−
∫

Ωα

κi j∂xi T∂xi ϕαdV =
∫

Ωα

HϕαdV (4.28)
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where Pn is the imposed thermal flux, Thanks to the construction of the space functions
defined in (4.24) we may obtain the temperature simply as

T(xfi) = Cβ. (4.29)

where xfi is the coordinate associated to the node β.

4.5 1-D simulation

Here we provide an example of heat balancing in a 1D system. We consider a Si p-n diode of
a length of 1 mm. The doping in both sides is 1 1018. The ends of the diode are maintained
at a environment temperature (300 K). We first perform a sweep in the apply bias. Hereafter
all results refer to a bias of 1.2V. The band diagram is reported in Fig. (4.3). The device is
long enough to allow the contact to reach the thermodynamical equilibrium in a natural way.
Otherwise, the electric boundary conditions would force the equilibrium, indirectly imposing
an infinite electron-hole surface recombination.

The heat sources are reported in Fig. 4.4. As one can see, most of heat is produced in
the depletion region where the recombination take place. The Joule’s effect is higher in the
p-region (left-side) due to the lower mobility of holes. The temperature profile reach the
maximum value at the center (see Fig. 4.5) and matches the Dirichlet boundary conditions
at the ends of the diode. The whole calculation is validated by the power balance check
(Fig. 4.6).

Figure 4.3: Band diagram
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Figure 4.4: Heat sources

Figure 4.5: Temperature profile



4.5 1-D simulation 43

Figure 4.6: Power balance



Chapter 5

TiberCAD

5.1 The mission

TIBERCAD is the leading software of TiberLAB s.r.l. [40], the university spin-off involved in
the development of TCADs. The aim of TIBERCADis to couple different physical models, both
atomistic and continuous, in the same simulation. The software is fully modular and each
module performs a task (see Fig.5.4). The first release of TIBERCADcounts four modules: the
DriftDiffusion, ThermalBalance, Elasticity and EFA modules. A typical simulation flow chart
is as follows: first the Elasticity module calculates the internal stress due to either lattice
mismatch or external forces. Then, EFA module computes the band diagram according to the
strain map. The DriftDiffusion module calculates holes and electrons transport taking into
account the piezoelectric potential as well as the strain induced band bending. EFA and drift-
diffusion simulation can be coupled self-consistently in order to get the electrostatic potential
due to the quantum charge. Once the transport of charge carrier is computed, the heat
generated is taken as input by the ThermalBalance module which computes the temperature
profile by balancing the heat generated and the heat dissipated. This work is clearly focused
on the latter module.

Several modules are under development and will be mainly devoted to the atomistic
models such as empirical and semi-empirical Tight Binding models. These modules, includ-
ing also the Non-Equilibrium Green’s function formalism, allow to compute the tunneling
current wich can be taken as boundary condition for the continuous transport simulation. A
review on physical models of TiberCAD can be found in [41].

5.2 The multiscale approach

The multiscale schemes can be grouped in two categories: the bridge and the overlap method.
The bridge method, used in this work, is employed when models communicate with each
other via their boundary conditions (see Fig. 5.3(a)). In this case there is no overlap among
domains which are bounded exclusively through their contacts. This method has been used
in the computation of the gate tunneling current in high-k MOSFETs. The leakage current
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Figure 5.1: TiberCAD scheme

along the oxide is computed by the empirical tight binding method and rest of the device
is treated at the drift-diffusion level. The tunneling current acts as boundary condition for
the transverse transport of electrons in the channel. Details of this simulation can be found
in [42].

The overlap multiscale method is used whenever a model uses physical properties whose
value is computed by an another model (see Fig. 5.3(b)). The domains are, therefore, over-
lapped. This is the case when, for instance, the quantum charge in a quantum dot is used by
the drift-diffusion simulation to compute the electrical current. An example of this simulation
can be found in [43]. The aim of the ThermalBalance module is to handle the heating and the
heat dissipation as two separate problems. For a given module, TiberCAD allows to define
physical models over a restricted area. That way allows to handle heating and dissipation in
a very flexible manner. For example it is possible to define a constant heat source in a small
part of the simulation domain and include the heat generated by electron and hole transport
in another region. In the same way it is easy to associate each part of the device with different
heat transport models (see Fig. 5.4).
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Figure 5.2: TIBERCAD modules
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Figure 5.3: a) Bridge and b)Overlap multiscale schemes.
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Figure 5.4: Heat dissipation and heating model partition



Chapter 6

Applications

This chapter contains two parts. In the first part we report on calculation of heating and
dissipation of molecular systems. We mainly expose the results published in Ref. [2,4,44,45].
In the second part we report the results about a multiscale computation for a pyramidal GaN
quantum dot embedded in a AlGaN nanocolumn. The results are pretty similar to those for
the cubic quantum dot in the same system [32].

6.1 Styrene molecule

We consider the system shown in Fig. 6.1, comprising a Si(100) substrate, reconstructed
2x1, with an adsorbed styrene molecule in a bridge position and an Ag metal contact which
could model an STM tip. The position of the tip was chosen in order to obtain a relatively
large direct coupling between the tip and the π orbitals of the styrene which guarantees a
sufficiently high conductance. The Figure shows a unit cell of the system considered, but
periodic boundary conditions are imposed. The Si substrate is heavily p-doped in order to
make it conducting and the Fermi Level is assumed at the valence band edge. While electrons
cross the molecule, they interact with the molecular ionic vibrations from which they can be
inelastically scattered. The electron-phonon scattering within the leads is not considered in
this work.

In order to study the electron-vibron coupling we first relax very accurately the structure
(This is done under no applied bias). Then we compute the vibrations of the molecule con-
straining the Si and Ag atoms. The calculation is then repeated letting all atoms free to move.
This calculation allows to compute the coupling of the molecular modes with the Si substrate
and to compute the decay rate of such vibrations into the contacts.

This type of first-principle calculation applied to phonon decay is presented here for the
first time to our knowledge. The result of such calculation is shown in Figure 6.2, reporting in
the upper panel the superposition of the phonon density of states of the coupled system with
the uncoupled molecular frequencies shown as vertical dashed lines. The phonon DOS of the
Si substrate is shown as a gray area where the cut-off frequency of 500 cm−1 is clearly visible.
The modes within the Si bandwidth show a sizeable broadening due to the interaction with
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Figure 6.1: Cartoon showing a unit cell of the system with a styrene molecule adsorbed
on a Si(100) 2x1. Periodic boundary conditions are imposed on the structure

the contacts. As the frequency rises above the cut-off both broadening and frequency shift
become very small. The lower panel of Fig. 6.2 reports the decay rates, Jq, computed from
the broadening of each molecular mode. The model gives realistic results for those molec-
ular modes lying within the Si phonon bands, however they decrease fast as the molecular
frequencies go beyond this band.

On the light of the discussion made in section 2.4, decay rates as slow as 102 Hz are
rather unrealistic, therefore the lowest limit of decay of 106 Hz has been fixed in subsequent
calculations.

We find that the out of equilibrium phonon population is strongly bias dependent. At the
applied bias of 0.95 V, a molecular resonance (shown in Figure 6.5) enters the injection win-
dow, with the effect of strongly increasing the coherent and incoherent currents. On average
all vibrational modes are excited as the bias increases, although some of them are partic-
ularly favored, such as the lowest vibrational mode. This depends on the electron-phonon
couplings shown in Figure 6.3. First we project the electron-phonon coupling matrices, Mq,
on the molecular orbitals, ψi Since the tunneling process occurs via the MO resonances, these
matrix elements give an indication about which modes have larger el-ph interactions. We
observe that the lowest mode dominates over most molecular orbitals, and gives the largest
average coupling. The lowest vibrational mode, at the frequency of 10.55 cm−1, corresponds
to a rigid oscillation of the whole benzene ring, away and toward the Ag tip, leading to a
strong variation of the molecule-metal matrix elements and, therefore, to a large electron-
phonon coupling. This explains why the phonon emission mostly occurs into the lowest
energy mode, once the first resonant tunneling is hit. Fig. 6.4 reports the behavior of the
molecular temperature as a function of applied bias for two different contact temperatures.
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Figure 6.2: Upper. Phonon DOS of the coupled system Si-substrate + molecule and
uncoupled molecular modes (vertical lines). Lower. Phonon decay rates.

Figure 6.3: Average electron-phonon coupling for each mode.
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Figure 6.4: Molecular temperature as a function of bias for different contact tempera-
tures. Left, T0=0. Right T0=300 K. Dotted, dashed and solid lines correspond respectively
to lowest order, BA and SCBA.
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Figure 6.5: Total and coherent component of the current density in the energy window
relevant for integration.

It is possible to appreciate the change in slope at the applied bias of 1.0 V. The figure reports
three different calculations obtained for the simplest lowest order calculation, not including
the electron-phonon self-energy renormalization of the electron propagator, the first order
correction, commonly known as first order Born approximation (BA) and the self-consistent
Born approximation (SCBA). Because of the small incoherent tunneling current, the inclusion
of higher orders bring only small corrections to the final result. The computed current den-
sity within the bias window at 2.0 V is shown in Figure 6.5, where it is possible to see the
resonance peak at -5.25 eV. The figure shows the total current and the coherent component.
The incoherent component (not shown) is about two orders of magnitude smaller, except at
the resonance, where it becomes comparable. The total tunneling current computed at 1.0 V
is 1.2 nA.

The molecular temperature sensibly depends on the tunneling current, which can be
changed by varying the tip-molecule distance. When this distance becomes approximately 2.0
the flowing current reaches 0.5 µA, leading to a very large temperature increase (≈ 1000 K).
Obviously the molecule is not likely to withstand such temperatures and may rather desorb.
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6.2 C10H12 and C10H10 molecules

The method has been applied to two systems (see Fig. 6.6) obtained by a sandwich of an
organic layer between two Si contacts. The contacts of both structures are identical and
made of hydrogenated Si(100), 2x1 reconstructed. The molecules are adsorbed on the surface
via Si-C covalent bonds. For the first system the molecule chosen is a C10H12 (structure A),
whereas C10H10 is used in the second structure (structure B). Periodic boundary conditions are
imposed on the structures shown. The total energy of the contact-molecule-contact system is

Figure 6.6: Test structures comprising two semi-infinite contacts of hydrogenated Si(100),
reconstructed 2x1 and an absorbed molecule in configuration A (C10H12) and in B is
(C10H10)

obtained through a local basis density functional scheme, where appropriate approximations
are considered in order to make the approach efficient for a large number of atoms [46]. These
include the use of an optimized minimal basis set and the neglect of three-center integrals.
Both the electronic and the repulsive potential, are expressed as a superposition of atomic
pair-potentials, obtained from ab-initio DFT reference calculations allowing extensive use of
look-up tables. The method is very successful in describing structural properties of materials
and their also gives accurate results for the mode frequencies.

We have seen how contacts induce a perturbation on the molecular modes and vibra-
tional frequencies. Additionally, we have obtained two approaches for the evaluation of the
projected DOS. The first method gives the exact DOS as obtained from the exact Green’s func-
tion of the open system defined in equation (2.40). In the second method the self-energies
are approximated by an energy independent shift and broadening, leading to the form of
equation (2.47). Since for Πr(ω2) → 0 the ρ̃(ω) → ρ(ω), for frequencies beyond the silicon
bandwidth both method give the same result. Figure 6.7 shows the comparison between
the exact and the approximated DOS up to the Si cutoff (500 cm−1). Obviously the simple
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Figure 6.7: Phonon DOS projected on the molecule. The dashed lines correspond to
the unperturbed molecular frequencies. The solid line is the lowest order approximated
DOS and the grey shaded area represents the exact DOS.

shi f t + bradening approximation sometimes is too crude and does not capture the richenss
of the exact result. However, it gives a first order approximation to the complex problem of
defining the vibrational lifetimes.

The phonon decay rates, Jq, of both structures are computed using Eq. (2.45) and shown
in Fig. 6.8. Qualitatively similar results are obtained, which strongly depend on the contact
DOS. Indeed, Jq is fast for the energy modes lying within the contact phonon bandwidth and
sharply decreases beyond, reaching very small values.
These decays are underestimated, as discussed in the previous section, because do not include
anharmonic corrections, that generate to one-to-many phonons decay channels.

The left and right contacts are identical and therefore the phonon bandwidths are the
same. The projected phonon DOS on the contact surface is shown in Fig. 6.9. This is obtained
from the surface Green’s function of equation (2.38). The frequency cutoff (ωD) is about 500

cm−1, appropriate for bulk Si. The peaks around 580 cm−1 and 2000 cm−1 are related to the
hydrogen passivation of the silicon surface.

Despite the difference in nature of the Si-C bonds between the two systems considered
(one bond for structure A and two bonds for structure B), there are no lare differences in the
decay rates. Due to the larger number of bonds to the surface, structure B is more rigid and
posses higher mode frequencies. For this reason the elastic coupling to the surface is slightly
more effective with respect to structure A, as seen in Figure 6.8.

The localization of the modes is another important parameter that governs the decay rates
on the two contacts. In general, even when the contacts are identical and the bonds of the
molecule to the surfaces are the same (as in our case) the decay rate of the molecular vibrons
in the two leads can differ significantly. Indeed, the decay rates depend on the localization
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Figure 6.8: Decay rates of molecular vibrons into contact phonons

Figure 6.9: Phonon DOS of the contacts
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of the vibrational modes. For instance, consider the vibrational mode of structure A at ωq ∼=
2900 cm−1. This is mainly localized on one side of the molecule, as shown in Fig. 6.10(a). As
a consequence, the decay rate into the right contact is much higher than the decay rate into
the left contact (JR

q >> JL
q ). In the opposite case, the mode at ωq ∼= 2907 cm−1 has a much

higher decay rate on the right contact, near which it is localized (see Fig. 6.10(b)). Eventually,
symmatric modes as for instance that at ωq ∼= 1300 cm−1 have an equal decay rate in the
two contacts (JR

q
∼= JL

q ) (see Fig. 6.10(c)). The systems analyzed in this paper posses almost

Figure 6.10: Mode localized near a) the left contact, b) the right contact and c) symmetric
on both contacts.

perfect inversion symmetry, therefore, for each mode localized near one contact there is an
almost degenerate mode localized near the other contact (degeneracy may be left because of
a small symmetry breaking due to the numerical geometry optimization). As a consequence
the heat release into the two contacts is the same. However, we can envisage that suitably
constructed asymmetric molecules may give strongly asymmetric decays, leading to voltage-
induced temperature gradients (Peltier effect) or heat rectifiers.

In the following we show the impact of the decay rates, Jq, on the molecular temperature.
Figure 6.11 shows the coherent tunneling for both structures, where it is possible to see
that Structure B is much better conducting than Structure A. The reason of this pronounced
difference is that in structure A the short chains of C2H2 represent insulating bridges which
are absent in structure B. The difference in coherent tunneling is also reflected in a difference
of incoherent tunneling and local heating between the two systems.

The steady-state temperature reached by the two structures under bias conditions is re-
ported in Figure 6.12 as a function of voltage. In this calculation the contact reservoirs are
assumed to be at an equilibrium temperature of T=0 K.

Structure B heats up much more than structure A. Furthermore, for structure B we find a
bias interval in which no stable steady state solutions are possible (within the approximations
used). In this bias window the molecule heats up considerably and it is not likely to be stable.
This phenomenon happens when the number of phonons emitted overcomes the number of
phonons dissipated into the contacts. From a mathematical point of view, the absence of a
steady state solution is indicated when negative values of some Nq are obtained.
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Figure 6.11: Tunneling

Figure 6.12: Local temperature reached by the molecules under bias. In structure B we
find a bias interval where no steady state solutions are found.
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Figure 6.13: (color online) (a) C60 fullerene molecule on Cu(110) surface. (b) The phonon
DOS of the perturbed molecule. The phonon DOS of the contact is shown in the back-
ground.

6.3 Fullerene molecule

In this we apply the formalism describe in second chapter to understand and discuss heating
and thermal stability of a C60 molecule sitting on a Cu(110) substrate in which a Cu STM tip
is used to drive a current through the junction [45]. The STM tip is modeled as a pyramid
of Cu atoms and is positioned at varying distances (Dtip) from the closest C atom of the
fullerene. The details of the the C60/Cu interface geometry, shown in Fig. 6.13a, can also be
found in [45]. The vibron decay rates, Jq are computed

The resulting dynamical matrix for this system, computed as Eq. (2.34) is partitioned
into contact and device regions and the decimation algorithm is applied to compute the self-
energy and the local density of states projected on the molecule. The latter is shown in
Fig. 6.13b. The same figure also shows the phonon spectrum of the Cu substrate as a shaded
area, in which the Debye cut-off frequency at about 300 cm−1 is quite evident. The values
of Jq, extracted from the peak broadenings, range between 1010 Hz and 1012 Hz for the low
energy modes, found within the Cu phonon bandwidth, and progressively decrease to as
low as 103 Hz for the highest frequency modes (∼= 1800 cm−1). These low decay rates are
probably strongly underestimated as anharmonic coupling and one-to-many phonon decays
may give a considerable contribution. However, to avoid to introduce artificial parameters,
in this work we neglect such effects.Furthermore, we will show in the following discussions
that already at moderate voltages the emission/absorption rates, Eq and Aq, can be quite
large for the high frequency modes, such that we expect Eq >> Jq and Aq >> Jq even
after higher order corrections are taken into account. As a consequence, Jq should not play
a significant role for these modes. We assume that there is no difference of temperature
between the two contacts, namely, TL = TR = T0 = 0 K which is close to STM experiments
carried at T = 4.2 K. In this case the contributions ELL

q , ERR
q and ERL

q vanish because of
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Figure 6.14: (color online)The dashed line is the electronic DOS.(a) Total current vs bias.
As expected, the resonance makes the current rises (b) Molecular temperature vs bias.
The lowering of the temperature across the resonance is due on the interplay between
the emission and absorption processes

the Heaviside functions, whereas ARL
q is non-zero only for eV < h̄ωq. The terms ELR

q and
ALR

q correspond to tunneling between the two contacts with corresponding emission and
absorption of phonons. The terms ALL

q and ARR
q correspond to electron reflections after

absorption of a phonon and we will refer to them as Atip
q and Asub

q , respectively, assuming
the substrate to the right ant the tip to the left. These terms correspond to phonon decays
via electron-hole (e-h) excitations in the contacts. We now assume that a bias, V, is applied
to the substrate, while the STM tip is grounded, i.e. µR = µL − eV. Under these conditions
the unoccupied levels are probed for positive voltages. We further assume that the molecular
levels are pinned with the substrate Fermi energy and the whole applied bias drops at the
molecule/tip interface. This is an extreme assumption, but it is supported by independent
self-consistent DFT/NEGF calculations. The voltage ranges from 0.0 to 2.0 V. As shown in
Fig. 6.14a the current steeply rises whenever a resonance enters in the injection window. The
molecular resonances, centered at energy E1 = 0.7 eV and E2 = 1.5 eV, will be referred as
LUMO and LUMO+1, respectively. Correspondingly, Fig. 6.14b shows that the temperature
rises because resonant phonon emission takes over. In the same Figure it is possible to observe
that just before reaching a resonance, the molecular temperature can even decrease. The effect
is especially visible for the LUMO+1. In the case of metal contacts this can be understood by
considering Eqs. (2.48) and (2.49), with the help of Fig. 6.15. The LUMO level entering the bias
window has energy EL and we consider, for simplicity, just one effective vibrational mode of
energy h̄ω < EL. The equilibrium Fermi energy is assumed at EF = 0. For increasing
voltages up to eV < EL − h̄ω the molecular temperature increases since the emission rate
prevail. As the molecular level approaches, for a bias in the range EL − h̄ω < eV < EL + h̄ω,
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Figure 6.15: (color online) (a) For 0 < eV < EL − h̄ω there is one resonant absorption
process via e-h pairs in the substrate and one absorption process via transmission. (b)
For EL − h̄ω < eV < EL + h̄ω there are three resonant absorption processes (one into e-h
pairs) and one resonant emission process. (c) For eV > EL + h̄ω there are two absorption
and two emission processes via transmission.

resonant absorption channels activate and can prevail over the emission, leading to a decrease
of temperature. For eV > EL + h̄ω two resonant emission processes become possible and the
term ELR rises, whereas Atip become no longer active because no states are available for
the reflected electrons. In this regime emission prevails over absorption and the molecule
heats up, resulting in the usual increase of temperature with applied bias. A further analysis
shows that in the intermediate cooling regime the high energy modes play a major role.
The first reason for this is that, thanks to their high energy, these excited modes contribute
considerably to the total vibrational energy of the molecule, which is therefore more sensitive
to a decrease of their population, Nq. The second reason is because, for energies higher than
the Debye frequency, the phonon-phonon decay rates becomes very small (see Fig. 6.13b)
and the vibron population becomes more sensitive to the absorption and emission processes,
depending only on the ratio Aq/Eq (Jq ≈ 0). The last reason is simply because for larger h̄ωq
the energy range in which absorption overcomes emission is wider, leading to a more visible
effect in terms of applied bias. Our calculations also show that the population of the high
energy modes decrease, whereas the population of the low energy modes keep increasing
with increasing bias. By observing Fig. 2, it should also be observed that when T0 = 0 there
are no excited quanta to absorb when the LUMO resonance approaches the bias window (as
in Fig 3a), resulting in a barely visible decrease of temperature. On the other hand, when
the second molecular level (e.g., LUMO+1) approaches the bias window, resonant absorption
give rise to a much more evident cooling effect, since phonons are removed from an already
excited vibronic population. A qualitatively similar effect was also computed in Ref [47] using
a model Hamiltonian.

We observe that in the cooling regime the power dissipated, as given by equation (2.7),
keep increasing since it is dominated by the values of Jq corresponding to the low frequency
modes, which heat up monotonically. In this regime internal energy and power dissipated
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Figure 6.16: (color online) (a) Temperature vs tip distance. The red line shows the tem-
perature trend taking into account all absorption processes. The blue line and the green
line neglects e-h formation into the substrate and the tip, respectively. The black line
corresponds to absorption via tunneling only. (b) Different relative contributions to the
total absorption rate via e-h in the tip, the substrate and via tunneling.

via phonon-phonon decays have opposite trends.
Phonon decays via e-h excitations in the metal contacts provide a crucial cooling mech-

anism. Indeed, thanks to this decay channel, the molecule can remain stable even at rela-
tively large voltages. To better emphasize this issue, we sweep the distance between tip and
molecule keeping the voltage fixed. Fig. 6.16 shows the results for a bias of 0.4 V. This
voltage is small, but larger than the higher vibrational energy of the molecule. Consequently
we can expect that all modes are excited by electron-phonon scattering. As long as the tip
is far from the molecule (tunneling region) the current is low and only Asub

q plays a relevant
role. The crucial point here is to note that in the absence of e-h excitations in the substrate the
molecule will easily brake. Indeed, when Asub

q is removed from Eq. (2.29), we find that Nq has
no longer physical solutions for Dtip ≥ 2.8 Å. In practice Nq diverges and we understand this
results as a thermal instability of the molecule. Furthermore, if we remove both the substrate
and the tip contributions and keep only the tunneling absorption mechanisms, the molecular
temperature would be much higher (black line).

As shown in Fig. 6.16 the stability of C60 on the metal substrate is guaranteed by the e-h
decays. Reducing the tip-molecule distance, the term Atip becomes large and we observe
two competing effects. On the one hand, as the tip approaches the molecule, the current
increases, leading to an increase of heating; on the other hand the tip increases absorption via
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e-h excitations, keeping the molecule cool. These competing effects produce the maximum at
Dtip = 2.8 Å shown in Fig. 6.16a.

Fig. 6.16b shows the relative magnitude of the absorption processes as a function of tip
distance. As expected, when the tip is close both tip and substrate contribute equally, whereas
when the tip is far e-h pairs can be excited in the substrate only.

The role of dissipation via phonon-phonon decays is only marginal in this system and
only effective for low energy modes. Although our lowest order treatment of the one phonon-
to-one phonon decay processes may considerably underestimate the decay rates Jq, this can
hardly reach the absorption rates necessary to keep the molecule stable, provided by Aq. The
average of the Asub

q is 1010 Hz and the average of Atip
q range from 1011 Hz when the tip is

at 2.0 Å to 107 Hz when the tip is at 4 Å. The values of Jq are several orders of magnitude
smaller.

A natural question that may arise is whether it is possible to cool a molecule below the
environment temperature. An inspection to Eq. (2.31) leads to the conclusion that cooling
effect below T0 may occur for Aq > Eqeh̄ωq/kbT0 . In fact, in this case we have Rq < 0, Nq <
nq(T0) and part of the energy given by the applied bias is used to cool the molecule, like in
a Peltier cell. Unfortunately this condition is not easily obtained for a normal molecule with
large vibrational energies, h̄ωq >> kT, with the consequence that the molecular temperature
is always greater than the environment temperature. The molecule can effectively cool to
lower temperatures only when it possesses vibrational modes of low energy, h̄ωq < kT. For
instance in the case of T = 300K it is sufficient to have h̄ωq ≈ kT/2 and Aq ≈ 2Eq to obtain
a phonon population lower than in equilibrium. Fundamental is also the role played by
the resonant energy levels of such a molecule, which in equilibrium should be positioned
at EL > EF + h̄ωq in order to activate the resonant absorption channel before the resonant
emission. These conditions could be met for instance by a system of heavy ions (like a CdTe
nanoparticle) placed in between Au contacts.

6.4 2D p-n Silicon junction

Here we will see a simple electro-thermal simulation of a 2D p-n Silicon LED. The diode is
a vertical structure (see Fig.6.17). Along the interface with the substrate we impose a ther-
mal surface resistance Rs = 0.5 K cm2 W−1. The device is surrounded by the air whose The
heat conduction through the environment is modeled by adding an air region all around the
diode. The boundary of the air region are fixed to T = 300 K. Furthermore, we rely on
the cylindrical symmetry with respect to the growth axis and consider only a 2D slice of the
system. In this way we simulate a 3D device by performing a 2D simulation (with much less
computational time). We compute the electric current by means of a drift-diffusion model,
performed for a range of applied bias. Then, the thermal map is computed by the Fourier
model at a bias of 1.2 V. The results are given back to he drift-diffusion simulation where all
quantities depending on temperature are changed accordingly. The drift-diffusion/Fourier
loop is performed self-consistently. In Fig. 6.18 the heat sources are reported. Clearly, the
Joule’s effect of electrons and holes is localized mainly in the p-region and n-region, respec-
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Figure 6.17: Mesh

tively. Most of heat is generated across the junction where electron and hole recombine. We
neglect the radiative recombination. The Peltier and Thomson effects are driven by the vari-
ation of the thermoelectric powers (see Fig. 6.19) . The self-consistent thermal map is shown
in Fig. 6.20. The maximum value is about Tmax = 362 K. The flux line underline the path of
the thermal flux, mainly dissipated by the substrate. In the next paragraph we will see an
example of the coupling of the Fourier model with a Boltzmann Transport Equation based
model.

6.5 Nanocolumn

The multiscale thermal model presented in the previous chapter has been applied on a simple
system consisting of a GaN quantum dot embedded in a 120 nm high Al0.2GaN column. The
quantum dot is pyramidal with a side of 5 nm and is surrounded by an intrinsic GaN buffer
layer (see Fig. 6.21). The AlGaN contacts are 1e19 doped.

In order to take into account strain induced by the lattice mismatch along the interface
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Figure 6.18: Heat sources
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Figure 6.19: Thermoelectric powers
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Figure 6.20: Temperature map
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with the substrate (assumed of AlGaN) we first perform a strain simulation. Details about
the implemented physical model is reported in [48]. The internal deformation develops a
piezoelectric field which influences the transport properties of the device. Nitride based
devices present also a spontaneous polarization, called pyroelectric polarization, due to the
asymmetry in the unit cell. The piezoelectric as well as the pyroelectric field act as an effective
charge source in the Poisson equation. The continuity equations for electrons and holes as
given in Eqs. (4.13)-(4.14), together the Poisson equation, compute the charge transport in the
device. As the nanocolumn is polarized directly it presents a diode-like characteristics shown
in Fig. 6.22. The thermal simulations are performed for both the gray and the Fourier models.
The solid angle is discretized in eighteen parts (six azimut and three elevation angles). Sounds
velocities and thermal conductivities of GaN and AlN are taken from Ref. [49]. In order to
be consistent with the diffusive limit, the thermal relaxation times are computed from the
relationship τ = 3κ/

(
v2

gC
)

The sound velocity of AlGaN is obtained by relying on the Virtual Crystal Approximation
(VCA) whereas the lattice thermal conductivity is taken from a detailed calculation provided
in Ref. [49]. The contacts are fixed to the environment temperature (300 K).

The temperature map obtained by the Fourier simulation is show in Fig. 6.23. The maxi-
mum temperature is about 330 K. The heat is mostly generated across the quantum dot and
it is dissipated by means of the contacts. The thermal flux is show in Fig. 6.24.

The temperature computed by the Gray model, performed over the whole domain, is
reported in Fig.6.25. The maximum temperature is about 355 K, much higher than the tem-
perature computed in the diffusive regime. This reveals that the phonon distribution is far
away from the local equilibrium. Furthermore, the gray model gives a strongly peaked tem-
perature across the quantum dot region, resulting in a more realistic temperature profile.

As one can see, Dirichlet boundary conditions imposed to the contacts are not perfectly
matched. This behavior is intrinsic of a BTE model and can be interpreted as a boundary
thermal resistance [1]. A direct comparison between the Fourier and the Gray model is show
in Fig.6.26.

Let us now consider the multiscale model.
We employ a bridge scheme. The simulation domain is splitted in two regions: the

mesodomain and the macro domain. The mesodomain includes the quantum dot and the
buffer region whereas the contacts belong to the macro domain. The partition of the simula-
tion domain is shown in Fig. 6.27.

As already explained in the fourth chapter, we first solve the Fourier simulation over the
whole domain. The resulting temperature map is used to fix the boundary temperature for
the Gray model and to set the initial guess for the equilibrium energy. Then, the Gray model
is computed over the mesodomain. The resulting thermal flux acts as boundary condition for
the Fourier simulation which is now computed only over the macrodomain. The loop stops
whenever the convergence (on the temperature map) is reached. The scheme has required
few steps.
The temperature profile, as shown in Fig. 6.28, is almost the same as that obtained by using
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the gray model performed over the whole domain.
In Fig. 6.29 the comparison between the full Gray and the multiscale model is provided.

We point out that the size of the mesodomain is a crucial point and it should be chosen
accordingly to several factors such as the Knudsen number, the lattice thermal conductivity
and the magnitude of the heat source.

A clear comparison between the full Fourier, full gray and the multiscale model is obtained
by a cut line along the growth axis (see Fig. 6.30). It is possible to note that the multiscale
scheme is able to capture the maximum temperature obtained by the full gray model and, in
the same time, to match the Dirichlet boundary condition at the contacts.
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Figure 6.21: The structure
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Figure 6.22: I-V characteristic
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Figure 6.23: Temperature map computed by the Fourier model
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Figure 6.24: Thermal flux computed by the Fourier model
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Figure 6.25: Temperature map computed by the gray model
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Figure 6.26: Comparison in the temperature map between the Fourier and the gray
model
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Figure 6.27: Domain partition
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Figure 6.28: Temperature map computed my the multiscale model
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Figure 6.29: Comparison in the temperature map between the gray and the multiscale
model
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Figure 6.30: Cut along the growth direction of the temperature maps
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Conclusion

In this work we have investigated heating and heat dissipation in several aspects. We inves-
tigated heat transport models ranging from the first principles model of the electron-phonon
interaction to the diffusive transport.

We reported on the effect of resonances on the thermal behavior of several molecular
systems. Thermal effects in fullerene, C10H12 and C10H10 molecules have been studied.

We analyzed in detail the interplay between molecular resonances, phonon absorption and
emission process. An effective molecular temperature was introduced mapping the internal
energy stored in the vibrational degrees of freedom.

In the styrene case we underlined the sharp heating across the resonances. In the C60 case
we found that (but the results are general), given a resonance with energy EL we have found
a cooling regime in the bias range EL − h̄ω < V < EL + h̄ω in which the non-equilibrium
vibronic population and the effective molecular temperature decreases. Furthermore, we
have computed the vibron decay rates due to electron-hole excitations in the substrate and in
the tip and we have outlined the importance of these contributions in keeping the molecule
stable. A tip-induced cooling effect was also discussed. Finally, we have investigated the
possibility to cool the molecule below the environment temperature.

For the C10H12 and C10H10 molecules we have mainly investigated the thermal instability
due to the the competition between the emission and the absorption of phonons.

Regarding the continuous models, we have developed a multiscale scheme with the ca-
pability to couple the Fourier and the Boltzmann Transport Equation in the same simulation.
The algorithm has been applied to a GaN quantum dot embedded in a AlGaN nanocolumn.

Temperature results of Fourier, gray and multiscale models have been compared. We
found out that the Fourier model underestimates the temperature across the quantum dot
and underlined the need of BTE based model. The maximum temperature, across the dot, is
about 330 K for the Fourier model, against 360 K of the BTE model. We further identified a
convenient choice of the initial guess of equilibrium energy density, which strongly speeds
up the loop convergence of the gray model. All the three models have been implemented
in TIBERCAD, the multiscale simulator of optoelectronic devices developed by the OLAB re-
search group at the University of Rome “Tor Vergata”.
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The self consistent born loop

The numerical simulator implements two nested self-consistent loops. The innermost loop
solves the SCBA, which requires the iterative calculations of several equations. We start by
assuming that the initial phonon self-energy is zero, Σ<,>

0 = 0, then we define the contact self
energies, which are stored on disk and reused at each iterations, since they do not change,

Σ<(>)
n (ω) = Σ<(>)

L (ω) + Σ<(>)
R (ω) + Σ<(>)

ph,n (ω). (A.1)

Then define the imaginary part of the electron-phonon self-energy,

Σr
ph,n(ω) =

1
2

[
Σ>

ph,n(ω)− Σ<
ph,n(ω)

]
, (A.2)

and the total self-energy,

Σr
n(ω) = Σr

L(ω) + Σr
R(ω) + Σr

ph,n(ω). (A.3)

This enables the computation of the system Green’s function,

Gr
n(ω) = [ωS− H − Σr

n(ω)]−1 . (A.4)

The correlation function is then solved from the kinetic equation,

G<(>)
n (ω) = Gr

n(ω)Σ<(>)
n (ω)Ga

n(ω). (A.5)

Finally, the electron-phonon scattering can be computed from

Σ<,>
ph,n+1 = NqγqG<,>

n (E∓ωq)γq + (Nq + 1)γqG<,>
n (E±ωq)γq. (A.6)

Equations (A.2)-(A.6) are iterated for n = 0, 1, ..., ∞. The loop can be stopped at any step
and G<(>)

n (ω), Σ<(>)
ph,n+1(ω) can be used to compute the phonon emission rate and current. It

may be observed that this scheme ensure current conservation since Σ<,>
ph are computed from

the same G<,> used in (2.21) to compute the virtual contact current and the emitted power
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(2.19). This trick can be used in programming efficiently a SCBA loop which guarantees a
correct calculation of the emitted power even when stopped after the first or a few steps. It is
worth noting that when the loop is stopped at the second iteration (n = 1) the virtual contact
current already contains terms of second order, whereas the current through the molecule
is accurate to first order approximation. In general the power emitted is accurate to order
n + 1, and the current flowing through the molecule is accurate to order n. In this way the
virtual contact current is guaranteed to vanish for any n, giving a correct result for the emitter
power and rate of phonon emission. The inconsistence disappears in the SCBA, but it is not
of great concern, since the calculation of phonon emission rate and current can be considered
independent.
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