
University of Rome Tor Vergata

Dottorato di Ricerca in Sistemi e Tecnologie

per lo spazio XXII ciclo

Reconfigurable digital architecture for
high speed Digital Signal Processing

Relatore Dottorando

Prof. Gian Carlo Crdarilli Luca Di Nunzio

Anno Accademico 2009/2010

Alla mia famiglia e a Marta

Ringraziamenti

Desidero ringraziare ed esprimere la mia riconoscenza nei confronti di tutte le persone

con le quali ho lavorato in questi magnifici tre anni di Dottorato (Professori, Ricer-

catori, Dottorandi e Studenti). I miei piú sentiti ringraziamenti vanno al Prof Gian

Carlo Cardarilli che mi ha dato la possibilitá di vivere questa fantastica esperienza.

2

Abstract

Low cost microprocessors and DSPs are optimized to perform arithmetic and logic

operations on data having a fixed size, typically 16,32 or 64 bit. On the other hand,

their efficiency decreases when data shorter respect than their native wordlength

are processed (more clock cycles per operation are required). Recently different

solutions have been proposed to overcome this problem. Among those, the ones

based on a main processor with a Reconfigurable Unit used as hardware accelerator

are the most interesting in terms of performance and flexibility. Typically those

architectures are similar to very small FPGA; they consist in arrays of Look-Up

Tables (LUTs) interconnected by pass transistors networks.

This work proposes a new Reconfigurable Accelerator called ADAPTO (Adder-

based Dynamic Architecture for Processing Tailored Operators). The main different

between ADAPTO and the others Reconfigurable Units proposed in literature is the

reduced hardware complexity in terms of silicon area. This feature give the possibil-

ity to integrate ADAPTO in embedded low cost microprocessors and DSPs (Digital

Signal Processors), in fact, for these kind of processors, the area occupation and

therefore the cost is a very critical aspect. The ADAPTO Unit supports both hard-

ware reconfiguration and instruction execution in the same processor clock cycle.

These goals have been obtained with the multicontext approach using a reconfig-

urable unit based on full adders, instead LUTs. As discussed in this work this choice

allows to the multicontext technique a reduced wasting of hardware resources.

3

Contents

1 Reconfigurable Computing 10

1.1 Parallel computing vs Serial computing 10

1.2 Reconfigurable systems . 11

1.2.1 Field-Programmable Gate Array FPGA 11

1.2.2 Reconfiguration strategies . 13

2 State of the art 18

2.1 Reconfigurable Architecture as hardware accelerators 18

2.2 PRISC . 20

2.3 The Chimaera Unit . 21

2.4 A solution for the hardware wasting 24

3 The ADAPTO Reconfigurable Functional Unit 29

3.1 ADAPTO architecture . 29

3.1.1 Logic Block . 30

3.1.2 Interconnect . 33

3.1.3 Context Memories . 36

3.2 The ADAPTO IC design . 37

3.2.1 Delay . 38

3.2.2 Setup Time and Hold Time 38

4

3.2.3 Input Capacitances . 39

3.2.4 Power Consumption . 39

3.2.5 Logic Block . 40

3.2.6 Full adder . 42

3.2.7 ADAPTO . 43

3.3 ADAPTO IC main features . 43

3.3.1 Delay time . 43

3.3.2 Power consumption . 44

3.3.3 Area occupation . 44

4 ADAPTO applications 55

4.1 Modular algebra . 55

4.1.1 Modular Addition . 55

4.1.2 Montgomery Multiplication Algorthitm 59

4.2 The AES algorithm . 63

4.2.1 ADAPTO implementation . 66

4.2.2 GF (28) constant multiplication in ADAPTO 66

4.2.3 ADAPTO implementation of Mixcolumn 67

4.2.4 ADAPTO implementation of InvMixcolumn 69

5 ADAPTO in Leon 2 processor 73

5.1 LEON-2 processor . 74

5.2 Experimental results . 75

5.2.1 Bit reversal permutation . 76

5.2.2 MPEG-2 encoding . 77

5.2.3 GRP instruction . 79

5.2.4 Endian coversion . 79

5

6 Future works 82

6.1 The NIOS II processor . 82

6.1.1 Custom Logic Custom Instructions 83

6.1.2 ADAPTO integration . 86

6

Introduction

The use of reconfigurable units for speeding-up algorithm implementation is a very

interesting solution for high-performance DSP systems [1]. In fact, the literature

shows that even simple algorithms can lead to a significant reduction of the per-

formance also in efficient and expensive processors. Normally, these algorithms are

characterized by very special operations, operating at bit level or on very short

wordlengths. These operations don’t completely exploit the processor resources. In

fact in the processors are present very fast computation elements operating on data

whose wordlength is characteristic for the selected processor.

The above drawbacks can be solved in different way. A possible solution is based

on the introduction of special operators with reduced wordlength that are able to

perform specific class of operations (see for example 8-bit addition used in [3]). A

more general solution can make use of a Reconfigurable Unit (RU). This unit can be

reconfigured in order to execute any required operation working at bit level or with

short wordlengths. In general, processing performance of conventional embedded

processors and DSP degrades when the implemented algorithm requires a big amount

of short data operations; a fixed size datapath is not the most efficient hardware to

compute these operations. Applications that require short data manipulation are

for example the bit reversal that reverse bits order in a data (usually the index of an

array), the bit packing/unpacking operations in which different sub-words coming

from different words are concatenated to create a new word.

7

To solve this problem several solutions have been proposed in the literature, both

software [4] and hardware [1]. Among the hardware solutions the most interesting

ones in terms of flexibility and performance are the Reconfigurable Functional Units

(RFUs). Usually these architectures are similar to small FPGAs (array of LUTs and

pass-transistor interconnect) connected in parallel with the ALU in the datapath of

the processor.

A RFU is a tightly coupled integrated hardware accelerator used by a standard

processor to speed-up the computation of particular operations. An RFU can be

considered an hardware Instruction Set Architecture (ISA) expansion. Normal op-

erations are performed by the ALU meanwhile non standard operations are executed

by the RFU. More details about the RFUs are shown in Chapter 2. Two techniques

can be used to reconfigure the RFU: bitstream reloading and multicontext approach.

The first one is slow in terms of reconfiguration time because the bitstream reload

requires several clock cycles [1],[2]. On the other hand, the multicontext approach

(consisting in N replicas of the basic structure, where N is the number of contexts)

offer faster reconfiguration time but it is more expensive in terms of silicon area.

In order to overcome these limitations in this work a new architecture called

ADAPTO (Adder-based Dynamic Architecture for Processing Tailored Operators),

has been proposed.

In the first part of our research we identified the algorithms to accelerate, then we

use the results of this research in order to identify the basic hardware structure of our

architecture. In this stage we assumed that the arithmetic unit of microprocessors

hosts all the arithmetic functions optimized for the native wordlength. The main

requirements for of the proposed RFU are:

• High flexibility (in order to be easily reconfigured for different operations,

including the boolean ones).

8

• High reconfiguration speed, for resource reuse without the stalling of the pro-

cessor during the program execution.

• Low cost in terms of silicon area and power

After this identification we started with the ADAPTO architecture design. The

ADAPTO architecture is a Reconfigurable array composed by reconfigurable el-

ements, that perform both logical and arithmetic operations, and programmable

interconnections composed by pass transistors devices. ADAPTO is composed by

three alternated stripes of full adder based Logic Blocks (LBs) and interconnection

networks based on pass transistors devices. The ADAPTO architecture has been

developed to speed-up sub-word arithmetic operations and/or bit manipulation that

are often used in Digital Signal Processng algorithms. It can be used to accelerate

simple bits manipulation operations, static bit packing and unpacking but also more

complex operations as modular additions, Montgomery Multiplication and opera-

tions in the Galois Field Galois Field are widely used in a large set of applications

starting from cryptography [20], error detection and correction codes [21], digital

signal processing [22].

9

Chapter 1

Reconfigurable Computing

In this chapter a brief overview about Reconfigurable Systems is done. The main

features of the actual FPGA (Field Programmable Gate Array) architectures are

described and the main reconfiguration strategies are illustrated. More details can

be found in [13] and in [16].

1.1 Parallel computing vs Serial computing

There are two primary methods in traditional computing for the execution of algo-

rithms [13]. The first is to use an Application Specific Integrated Circuit, or ASIC,

to perform the operations in hardware. Because these ASICs are designed specifi-

cally to perform a given computation, they are very fast and efficient when executing

the exact computation for which they were designed. However, after fabrication the

circuit cannot be altered. Microprocessors are a far more flexible solution. Pro-

cessors execute a set of instructions to perform a computation. By changing the

software instructions, the functionality of the system is altered without changing

the hardware. However, the downside of this flexibility is that the performance suf-

fers, and is far below that of an ASIC. The processor must read each instruction

10

CHAPTER 1. Reconfigurable Computing

from memory, determine its meaning, and only then execute it. This results in a

high execution overhead for each individual operation. Reconfigurable computing is

intended to fill the gap between hardware and software, achieving potentially much

higher performance than software, while maintaining a higher level of flexibility than

hardware.

1.2 Reconfigurable systems

1.2.1 Field-Programmable Gate Array FPGA

Around the beginning of the 1980s, it became apparent that there was a gap in the

digital IC continuum. At one end, there were programmable devices like SPLDs

and CPLDs, which were highly configurable and had fast design and modification

times, but which could not support large or complex functions. At the other end of

the spectrum were ASICs [16]. These could support extremely large and complex

functions, but they were painfully expensive and time-consuming to design. Further-

more, once a design had been implemented as an ASIC it was effectively frozen in

silicon. In order to solve this problem, Xilinx [12] introduced a new class of Recon-

figurable integrated circuit called FPGA which they made available in 1984. The

actual FPGA are arrays of reconfigurable block interconnected by reconfigurable

interconnection Fig 1.1.

The reconfigurable blocks are usually composed by LUTs, registers and multi-

plexer. in Fig 1.2 is shown a simple LUT based Logic Block, the LUT perform

the logical operations and the output multiplexes select the registered or the not

registered output.

The LUTs are typically SRAM based and are configured storing in the SRAM cell

of the LUT the truth table of the desired boolean function as show in Fig 1.3. Each

11

CHAPTER 1. Reconfigurable Computing

Fig. 1.1: FPGA architecture

LB output pin can connect to any of the wiring segments in the channels adjacent

to it. In addition to the local interconnect, there would also be global (high-speed)

interconnection paths that could transport signals across the chip without having

to go through multiple local switching elements (Fig. 1.4). The device also include

primary I/O pins and pads. All of the sequential elements inside an FPGA as the

registers configured to act as flip-flops inside the programmable LBs need to be

driven by a clock signal.

The clock signals comes typically into the FPGA via a special clock input pin, and

is then routed through the device and connected to the appropriate registers. Actual

FPGA are more complex respect than the simple architecture above described they

can integrate Block Ram, microprocessors, embedded multipliers, embedded adders,

12

CHAPTER 1. Reconfigurable Computing

Fig. 1.2: LUT based Logic Block (LB)

DSPs and PLL to manage the clock signal. More informations about the FPGA

world can be found in in [16].

Fig. 1.3: LUT implementation of boolean expression

1.2.2 Reconfiguration strategies

There are a few different configuration memory styles that can be used with recon-

figurable systems.

13

CHAPTER 1. Reconfigurable Computing

Fig. 1.4: FPGA programmable interconnect

A single context device Fig. 1.5 is a serially programmed chip that requires

a complete reconfiguration in order to change any of the programming bits. Most

commercial FPGAs are of this variety. To implement runtime reconfiguration on this

type of device, configurations must be grouped into full contexts, and the complete

contexts are swapped in and out of the hardware as needed.

Fig. 1.5: Single context

A multi-context [14], [15] device Fig. 1.6 has multiple layers of programming

14

CHAPTER 1. Reconfigurable Computing

bits, where each layer can be active at a different point in time. An advantage of

the multi-context FPGA over a single-context architecture is that it allows for an

extremely fast context switch (on the order of nanoseconds), whereas the single-

context may take milliseconds or more to reprogram. The multi-context design does

allow for background loading, permitting one context to be configuring while another

is in execution. Each context of a multi-context device can be viewed as a separate

single-context device. In Fig. 1.7 is shown a 4 input 4 context LUT; the output

multiplexer select the right context. The main disadvantage of this approach are:

• The large area occupation, the reconfigurable array has to be replicated for

every context.

• The power consumption [14].

Fig. 1.6: Multi context

Devices that can be selectively programmed without a complete reconfiguration

are called partially reconfigurable Fig. 1.8. The partially reconfigurable FPGA is

also more suited to run-time reconfiguration than the single-context, because small

15

CHAPTER 1. Reconfigurable Computing

Fig. 1.7: 4 input N context LUT

areas of the array can be modified without requiring that the entire logic array be

reprogrammed. This allows configurations which occupy only a part of the total area

to be configured onto the array without removing all of the configurations already

present. Furthermore, individual configurations can be selectively modified based

on run-time conditions, such as changing registered constant values or a constant

coefficient multiplier structure over time. These small reconfigurations require much

less time than a full-chip reconfiguration due to the reduced data traffic.

For all of these run-time reconfigurable architectures, there are also a number of

compilation issues that are not encountered in systems that only configure at the

beginning of an application. Compilers must consider the run-time reconfigurability

when generating the different circuit mappings, not only to be aware of the increase

in time-multiplexed capacity, but also to schedule reconfigurations so as to minimize

the configuration overhead. This is in order to ensure that the overhead of the

reconfiguration does not eclipse the benefit gained by hardware acceleration. Stalling

16

CHAPTER 1. Reconfigurable Computing

Fig. 1.8: Partial programming

execution of either the host processor or the reconfigurable hardware because of

configuration is clearly undesirable. In some cases over 98% of execution time can

be spent in reconfiguration. Therefore, fast configuration is an important area of

research for run-time reconfigurable systems.

17

Chapter 2

State of the art

2.1 Reconfigurable Architecture as hardware ac-

celerators

The requirement of increasing performances in processor system has motivated the

development of special hardware units for the acceleration of the most time con-

suming operations. In order to reuse the same acceleration hardware in different

operations, frequently these units use a reconfigurable structure. In this mixed ar-

chitecture (based on a Processor core and a Reconfigurable Unit) the computing

elements can interact in different ways. The specific interaction depends on the rela-

tive position and interfacing between the processor core and the reconfigurable unit.

Generally, a tighter coupling leads to a smaller communication overhead and is suit-

able to accelerate micro-operations. On the other hand, a looser coupling requires

a coarser granularity of operations to be implemented on the reconfigurable unit,

in order to reduce the data transfer. Couplings can be classified into the following

three main categories:

1. Reconfigurable Functional Unit (RFU)

18

CHAPTER 2. State of the art

The Reconfigurable Unit is integrated in the core of the processor as any

other Functional Unit. This solution implies the extension of ISA (Instruction

Set Architecture). The processor core fetches and decodes instructions and

issues the instructions to the corresponding units. This approach allows a

very fast interaction between the core and the RU but in general, if an RFU

interface is not present in the processor, it require a core redesign. RFUs

as other Functional Unit use the core Register File to write and read data.

Typically for RFU exist two types of operations: instructions that start the

RFU reconfigurations and instructions that execute the operations.

2. Coprocessor

Coprocessors are very similar to RFU but the Reconfigurable Unit is placed

outside the core, it’s connected to the processor by a coprocessor interface that

avoids the core redesign. As for the RFU the use of a coprocessor implies the

ISA extension but different to RFU in addition to the Reconfiguration and

Execution operations there is a data transfer operation between the Core and

the Reconfigurable Unit. Coprocessors cannot read data from the core Register

File, often they have an own Register File.

3. Attached processing unit

The Reconfigurable Unit is placed outside the processor using a BUS and there

is not any ISA extension. The data transfer between the processor and the

Reconfigurable Unit is slower respect the previous solutions.

The above mentioned integration techniques are shown in fig 2.1.

Among these three solutions the RFU is surely the most efficient in terms of

acceleration. By using this approach, the best execution speed is obtained by recon-

figuring the RFU as fast as possible. In this way the RFU can execute the selected

operations as soon as they are scheduled.

19

CHAPTER 2. State of the art

Fig. 2.1: Possible integrations between processor and reconfigurable unit

2.2 PRISC

The PRISC architecture explores a novel way to incorporate hardware-programmable

resources into a processor microarchitecture to improve the performance of general-

purpose applications [1] [2]. In the PRISC architecture, the hardware-programmable

resources is inserted directly to the CPU datapath as a RFUs. Tipically, the im-

plementation of a particular function in a RFU is significantly slower’ than the

implementation of the same function in a highly-customized functional unit. As

such, PFUs are added in parallel with the existing functional units so that they

augment (not replace or replicate) the existing datapath functionality (Fig. 2.2).

The RFU has two input ports where it accepts operands and a single output port

for the result.

This reconfigurable array is composed by alternating layers of two basic compo-

nents: interconnection matrices and logic evaluation units. Each possible intercon-

nection point in the interconnection matrix is implemented with a CMOS nchannel

transistor. By appropriately setting the value in the memory cell, we can connect or

disconnect the two lines. Each logic evaluation unit implements a hardware truth

20

CHAPTER 2. State of the art

Fig. 2.2: The PRISC architecture

table, called a Look-Up Table (LUT). Each LUT memory cell in a PFU is address-

able, and in fact, all of the PFU memory cells can be viewed as a large SRAM

which is loaded by using the PFU Paddr and Pdata ports. Programming a PFU to

implement a particular function then consists of loading the appropriate values into

the interconnection matrix memory cells and the LUT memory cells. The PRISC

architecture consist 3 alternating layers of interconnect and LUTs requires 30.528

transistors for a 32 bit datapath. The Reconfigurable Array is a single context

(Chapter 1.2.2) architecture and require about 500 clock cycles to be reconfigured.

It implies that, in order to avoid this waste of time, it is a good solution use more

than one Reconfigurable Array in parallel. In this way the obtained architecture can

be see as a multicontext array.

2.3 The Chimaera Unit

The Chiamera architecture integrates a small and fast LUT based RFU into the

pipeline of a superscalar processor [7].The Chimaera system treats the reconfigurable

logic not as a fixed resource, but instead as a cache for RFU instructions. Those

21

CHAPTER 2. State of the art

instructions that have recently been executed, or that we can otherwise predict

might be needed soon, are kept in the reconfigurable logic. If another instruction

is required, it is brought into the RFU, overwriting one or more of the currently

loaded instructions. In this way, the system uses partial run time reconfiguration

techniques to manage the reconfigurable logic.The chimaera architecture is shown

in Fig 2.3. The main component of the system is the Reconfigurable Array, which

consists of FPGA like logic designed to support high performance computations. It

is here that all RFU instructions will actually be executed. This array gets its inputs

directly from the host processors register file.

Fig. 2.3: The CHIMAERA reconfigurable Unit

Next to the array is a set of Content Addressable Memory locations, one per

row in the Reconfigurable Array, which determine which of the loaded instructions

are completed. The CAMs look at the next instruction in the instruction stream

and determine if the instruction is an RFUOP, and if so whether it is currently

loaded. If the value in the CAM matches the RFUOP ID, the value from that row

in the Reconfigurable Array is written onto the result bus, and thus sent back to

22

CHAPTER 2. State of the art

Fig. 2.4: The CHIMAERA reconfigurable array

the register file. If the instruction corresponding to the RFUOP ID is not present,

the Caching/Prefetch control logic stalls the processor, and loads the proper RFU

instruction from memory into the Reconfigurable Array. The caching logic also de-

termines which parts of the Reconfigurable Array are overwritten by the instruction

being loaded, and attempts to retain those RFU instructions most likely to be needed

in the near future. Reconfiguration is done on a per-row basis, with one or more

rows making up a given RFU instruction.

The Reconfigurable Array itself is shown in Fig.2.4 and. This architecture has

been inspired by the Triptych FPGA [8] and [9]

The reconfigurable logic is broken into rows of logic cells between routing chan-

nels. Within that row, there is one cell per bit in the processorâĂŹs memory word,

so for a 32-bit processor there are 32 cells per row. All cells in a given column I

have access to the Ith bit of registers R0- R8, allowing it to access any two of these

bits. Thus, a cell in the rightmost (0th) column in the reconfigurable array can read

23

CHAPTER 2. State of the art

any two least significant bits from registers R0 through R8. Which register(s) a cell

accesses is determined by its configuration, and different cells within the array can

choose which registers to access independently.

The Chimaera approach maps several context in different part of the reconfig-

urable array in order to avoid reconfiguration time. In this way there is a very fast

context switching but there is a waste of hardware: the entire architecture is never

used.

2.4 A solution for the hardware wasting

The main problem in using a RFU based on LUTs is related to the impossibility

to reload the configuration memory in a very short time. In fact, the use of LUTs

implies the reloading of all the configuration bits, making it incompatible with a run-

time reconfiguration. Similar problem arises for the reconfiguration of interconnect,

but in this case it is possible to find simple solutions for reducing the bit amount.

For this reason, every time the RFU need to perform an operation, the following

steps must be performed:

1. Stopping of the program execution,

2. Loading of the configuration bits in the LUTs,

3. Execute the operation.

In order to increase the reconfiguration speed different strategies can be used:

1. Map several contexts in different parts of reconfigurable LUT array [7].

2. Use partial reconfiguration of LUTs in more complex structures (for instance

the pipeline reconfiguration used by Piperench [10]).

24

CHAPTER 2. State of the art

3. Use a multicontext approach.

4. Replace the LUTs with another element characterized by a simpler and faster

reconfiguration procedure.

The main drawback of the first three solutions is the great hardware complexity

and power consumption. Only a small part of the computational units (LUTs) are

used during the execution of an Instruction. For example, in the second solution

the partial reconfiguration does not allow the complete exploitation of the available

resources (those involved in the reconfiguration phase).

Moreover, the reconfiguration policy could limit the algorithms that can be im-

plemented. In particular, the architecture proposed in [10] is based on processing

stripes and the pipeline reconfiguration is carried out on a subset of stripes. Conse-

quently, during the RFU computation this subset is not available for the processing.

Moreover, only pipelined applications can be efficiently executed using this approach

[11]. These characteristics reduce the performance and the flexibility of the struc-

ture, reducing the overall efficiency.

To solve this problem we coupled the third and the fourth solution. The Architec-

ture presented in this work usa a multicontext approach but logical and arithmetic

operations are not performed by LUTs. The LUT is very useful if maximum flexibil-

ity is required, it assures the maximum reconfiguration level through the reloading

of the reconfiguration stream. RFU using multi-context approach can be used to

perform more than one operation after the reconfiguration. LUT is not very efficient

in the case of multi-context architecture. In this case each context is stored in a

different LUT and context switching corresponds to select the output of a differ-

ent LUT. This technique introduce a resource wasting because every Lut has to be

replied for every context incrementing the cost in terms of silicon area.

25

CHAPTER 2. State of the art

To reduce the resource wasting, we can use a different approach based on a

reconfigurable cell, whose configuration is stored in a local memory. These two

different approaches are shown in Fig. 2.5. and 2.6..

Fig. 2.5: Multicontext LUT

If we analyze the performance results coming from different algorithm implemen-

tations, we observe that the most important operators responsible for performance

reduction in conventional microprocessor and DSP are:

• Additions and subtractions on sub-words.

• Special operators, as the minimum and maximum selection.

• Logical operators (OR, AND, ...) operated at individual bit level.

• Bit interleaving (special cases are bit shifting and bit selection)

A possible methodology for the design of reconfigurable cell can be based on the

following steps.

26

CHAPTER 2. State of the art

Fig. 2.6: Resource sharing

1. Select the most complex bit-level operation to perform and use its implemen-

tation as first attempt of reconfigurable cell.

2. Verify if all the other operations required can be obtained from this cell through

reconfiguration and selection of input and output bits.

3. If the above point is not verified, modify the cell in order to cover the missing

operators.

In our case, the most complex operation corresponds to the 1-bit full addition

(including carry in and carry out for cell cascade). Consequently the optimum

reconfigurable cell (in terms of area) is the full-adder. In order to confirm this

choice we have to demonstrate that each of the operators in the list can be obtained

by a suitable configuration of the full-adder. Forcing one or two pin of the full-adder

cell to 1 or 0 it can be easily configured to perform the following operations:

• one bit addition

• logical NOT

27

CHAPTER 2. State of the art

• logical PASS

• 2 input AND

• 2 input OR

• 2 and xor

• 3 input xor

• 3 Majority function

These operations are the required ones for our intention, for this reason we decide

to use the full-adder as computational element in the ADAPTO architecture.

More detailed informations about the hardware archiecture of the ADAPTO unit

are shown in 3.

28

Chapter 3

The ADAPTO Reconfigurable

Functional Unit

In this Chapter the ADAPTO Reconfigurable Functional Unit is described. In sec-

tion 3.1 the description of the architecture will be done meanwhile in 3.2 a brief

description of the principal circuit composinng ADAPTO will be given. A detailed

description of all the subcircuit composing ADAPTO is in 3.2.

3.1 ADAPTO architecture

The ADAPTO (Adder-based Dynamic Architecture for Processing Tailored Opera-

tors) RFU is a multicontext reconfigurable architecture composed by three stripes

of reconfigurable circuits called Logic Block (LB) and three stripe of reconfigurable

interconnect. Each LB stripe is connected with the stripe below using one stripe

stripe of programmable interconnect as shown in Fig. 3.1. ADAPTO has three

32-bit input and one 32-bit output for the data and an additional N-bit input for

the context selection (the 16 context implemented version of ADAPTO requires a 4

bit input for this purpose). In order to reduce the number of transistors ans conse-

29

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

quently the silicon area, data can flow only from the up to the button of the array

without the possibility of any feedback.

Fig. 3.1: The ADAPTO architecture

3.1.1 Logic Block

As mentioned in Chapter .2 in order to reduce the reconfiguration’s time of the RFU

and the resource wasting we choose to utilize a different computational unit with

respect the conventional LUT. We shown that the full adder can be easily configured

for performing the following operations: one bit addition, NOT and PASS, 2 input

AND, 2 input OR, 2 input XOR, 3 input XOR and 3 Majority. The different

functions can be selected by forcing one or more input pins of the FA to a fixed

value. For instance, a 2 input AND is obtained by putting the CIN input to 0 and

30

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

taking as output the COUT pin. Clearly, this structure is less flexible than one based

on LUTs, but on the other side its reconfiguration is fast because it requires to change

few configuration bits. Another advantage of this solution is the lower number of

MOSFETs required for its implementation respect than the LUT approach.

Fig. 3.2: The ADAPTO Logic Block

The basic computational element of the new architecture, shown in Fig. 3.2,

is the LB (Logic Block). It is based on two multiplexers, a selector (realized by a

multiplexer with a suitable coding of selection bits) and a full adder. The input

and the output multiplexer together with the selector are used for programming

purposes.

In particular inputs S0, S1, S2, and P are used to select the operation to be

performed and the operands (Fig. 3.3), these configuration bits are stored in the

context memory (see Fig. 3.4). The signal CO is directly connected to the signal

Cout of the previous LB. If a zero carry is required (for example in the case of the

31

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.3: Full adder’s table of truth

Fig. 3.4: A multicontext ROW

LSB of a multi-bit adder) 0 input is selected by the configuration bits S0 and S1. In

Fig. 3.1.1 are shown all the operations an ADAPTO’s LB can perform.

A LUT based implementation of the LB is surely more flexible respect than the

proposed one; using LUT it is possible realize more boolean fucntions as illustred

in Chapter 2.4. A LUT based LB able to perform the one bit addition with the

result and the carry out generation is show in Fig. 3.5 . This circuit require about

200 transistors for the implementation, but if we consider a 16 context LB the total

amount of transistor is about 3000. On the other way the 16 context full adder

32

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

P S0 S1 S2 Operation

- 0 0 - SUM

0 0 1 1 2 AND

0 0 1 0 2 XOR

1 0 1 1 2 OR

1 0 1 0 2 XOR’

- 1 0 0 3 XOR

- 1 0 1 3 MAJORITY

1 1 1 0 3 NOT

0 1 1 0 3 PASS

Table 3.1: Full adder’s operations

based LB proposed as computational unit for the ADAPTO architecture require

631 transistors.

The ADAPTO’s carry chain uses a direct interconnect (linking adjacent LBs) for

the speeding-up of the carry propagation in multibit adders (Fig. 3.4)

3.1.2 Interconnect

Interconnect network is based on pass-transistor devices and it’s used for link purpose

and shift operations with 1 or 0 insertion. All the output coming from the previous

stripe’s LBs must have the possibility to be connected to every input of every LB

of the next stripe. It’s clear that in order to have a multicontext interconnect

we have to connect the gate of every pass transistor to a multicontext memory.

Let’s consider an intercennect stripe having 32 LB with 3 inputs and 1 output,

a complete interconnect structure requires for each output 3 ∗ 32 pass transistor

and, consequently, 3 ∗ 32 ∗ N configuration bits (where N is the number of the

33

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.5: LUT based LB

contexts). Using the above strategy, a multicontext interconnection between two

rows of the array needs 3 ∗ 32 ∗ (32 + 1) ∗N = 3168 ∗N configuration bits, where the

1 value is added in order to consider the additional wire utilized for 0/1 insertion

operation. Observing that an LB input must be connected to a single LB output of

the previous row, it’s possible to reduce considerably the number of reconfiguration

bit using binary coding, as showed in Fig. 3.6. In this structure the selection of one

of the (32 + 1) outputs coming from the previous row is performed by a decoder

addressed by the output of the context memory (reducing the amount of data that

must be stored). This solution is shown in Fig. 3.7

Every interconnect stripe has a different size. The first one is the most complex

because, in addition to the 32 output coming from the first LB stripe, there are the

32 signal coming from the third input operand. Moreover, we have to consider that

for each of the three stripes of interconnect there are two additional wires directly

connected to 1 and 0 used for constant additions and shift with 1 or 0 insertion.

34

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.6: Interconnect network

Fig. 3.7: Interconnect reduction

The total number of wires for the first level of interconnect is 32 + 32 + 2 = 66. The

decoders used for the interconnect reduction have 66 outputs and 7 configuration

bits. Because the inputs of the second level of LB are 332 = 96 96 decoders are

required and the number of pass transistors required is 9666 = 6336

In the second interconnect level there are the 32 outputs coming from the second

35

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

LB stripe plus the two wires linked to 1 and 0. For this reason the decoders have

34 outputs and 6 inputs.The inputs of the following LB stripe are 96 so there are 98

decodes and 9634 = 3264 pass-transistors. Finally in the third interconnect level,

similar to the second there are the 32 output coming from the previous LB stripes,

the two lines for the 1 and the 0 but all these signals can be linked only to the 32

bit of the results so we have only 32 decoders instead of 96. The number of pass

transistors is 3296 = 1088.

3.1.3 Context Memories

The ADAPTO architecture proposed in this work is a 16 context reconfigurable

array. This means that ADAPTO, at every processor clock cycle can select one

between 16 prestored configurations. In order to write the Context Memories a 32

bus is used. This bus is connected to all the memories in the architecture. To use

in a efficient way the 32 bit of the bus we exploit that all the memories has size

16xN where N is the number of bit of the stored word. For this reason is useful

write in two memories simultaneously. The first 16 bits of the bis are stored in the

even memories meanwhile the second 16 bit are stored in the odd ones as shown in

Fig 3.8. In order to manage the write operation, the generation of a control signal

is required.or this purpose it is implemented a chain of D flip flop configured as

shift register. The output of every flip flop is linked to the N th line 16 bit of every

memories couple (one even and one odd) as shown in Fig. 3.9. The writing operation

begin putting a 1 in the flip flop chain configured as shifter register. For each of

the three stripes composing the architecture the LB memories are written before

and the interconnect memories after starting from left to right The total memory

capacity is 6144 + 23040 = 29184bit. Writing 32 bit at every clock cycle, 912 clock

cycles are required. The implemented ADAPTO unit works at 100 MHz so for the

36

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

reconfiguration 9.12 µs are required.

Fig. 3.8: Context memories Bus

Fig. 3.9: Context Memories configuration

3.2 The ADAPTO IC design

In this section the integrated circuit layout development is be described. In order to

realize the entire architecture we start implementing a stadard cell library composed

by simple elements (inverters, adders, decoders...) suitable to implement more elab-

orated circuits. The library is realized used the TSMC0.18 m technology, for the

implementation the following software are been used:

1. Cadence pspice for the pre layout simulation.

37

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

2. Cadence Virtuoso for the layout realization.

3. Cadence Spectre for the post layout simulation.

The simulations are performed using 1.8 V for the Voltage and 27C for the

temperature. The extrapolated parameters by the simulation are reported in the

following. More informations about the complete standard cell librery developed for

the ADAPTO design can be found in [17]

3.2.1 Delay

Propagation delay is the time required by a signal to propagate through a gate or

net. Propagation delay of a gate or cell is the time it takes for a signal at the input

pin to affect the output signal at output pin.

Fig. 3.10: gate delay time

For any gate, the propagation delay is measured between 50% of input transi-

tion to the corresponding 50% of output transition (Fig. 3.10). The delay time is

calculated considering the load variation and both the high->low transition and the

low->high one are estimated. The delay time is expressed in ns and in function of

the unitary inverter realized with the same technology.

3.2.2 Setup Time and Hold Time

The following defition are defined only for sequential systems. Setup time Fig. 3.11

is the time relative to a clock event during which the data input to a latch or flip-flop

38

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

must remain stable in order to guarantee that the latched data is correct. Hold time

Fig. 3.12 is the time following a clock event during which the data input to a latch

or flip-flop must remain stable in order to guarantee that the latched data is correct.

Fig. 3.11: Setup time

Fig. 3.12: Hold time

3.2.3 Input Capacitances

The input Capacitances affects the delay time of digital circuit. This important

parameter has been estimated using linear fitting method.

3.2.4 Power Consumption

The power consumption in a digital circuit depends from the following parameters:

• Clock Frequency. As shown in Chapter. 3.3.1 the ADAPTO unit can work

until 100 MHz.

• Activity Coefficient. This factor represent the probability that the output

of a digital circuit has a transition on the clock raising edge. We estimate the

39

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Power consumption assuming an Activity Coefficient of 100%

3.2.5 Logic Block

The Logic Block (LB) symbol is shown in 3.13, it has eight one bit inputs, four for

the operands and for for configuration bits. The configurations bits are stored in

context memories.

The data input are D1 D2 and D3 meanwhile configuration inputs are S0 S1

S2 and P. The LB circuit, as mentioned in the previous section is composed by the

following subsystems: a 3 INPUT Mux, a Selector, a FUll Adder and a 2 input Mux.

(see Fig. 3.14) The output Y is buffered by an inverter used in order to load the

following interconnections meanwhile the output Cout is linked to the Cin of the

adiacent LB for the carry propagation. The implemented layuot is shown in 3.15.

Fig. 3.13: The LB symbol

Tables 3.2.5, 3.2.5 show the LB performance in terms of area, capacity, delay

time and power consuption, all the information are extrapolated using the above

mentioned softwares. In Fig. 3.16 and 3.17 are shown the simulation results of the

delay time for the COUT and Y pins.

40

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

name length weigth

LB 9.99 50.22

Table 3.2: LB size, dimension are expressed in micron

Pin name Capacity (fF)

P 7.454

S0 10.24

S1 10.12

S2 24.48

D1 2.781

D2 3.114

D3 2.559

C0 4.45

Table 3.3: LB Pin capacity

Pin name delay delay respect inveter C=0

YLH(PS) 1205 35, 78

YHL(PS) 1366 56, 52

CoutLH(PS) 586 18.31

CoutHL(PS) 601 26.13

Table 3.4: LB delay

Consumption Consumption on real load static

Power 36,55µ W 703.6 pW

Table 3.5: LB power consumption

41

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.14: The LB schematic

3.2.6 Full adder

As described in Chapter 2 the ADAPTO computational element is the full adder

that, properly configured, can be used to perform both logical and boolean opera-

tions. The Full Adder used for ADAPTO is presented in [18], it is a pass transistors

architecture and it is shown in in Fig. 3.18. The realized layout is show in Fig. 3.19

and the mains features are in Tab. 3.2.6, Tab. 3.2.6, Tab. 3.2.6 and Tab. 3.2.6.

name length weigth

LB 9.99 17.1

Table 3.6: Full Addee size, dimension are expressed in micron

Pin name Capacity (fF)

A 2.562

B 2.781

CIN 2.339

Table 3.7: FA Pin capacity

42

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Pin name C = 0 C = 5 C = 12.5 C = 25 C = 75 C = 150 tdinv

SUMLH(ps) 166 207 272 329 532 868 5.187

SUMLH(ps) 399 441 490 562 802 1139 17.34

CoutLH(ps) 233 261 298 357 584 921 7.27

CoutHL(ps) 154 195 241 305 556 864 6.695

Table 3.8: FA delay

C = 0 C = 5 C = 12.5 C = 25 C = 75 C = 150 static

Power µW 8.888 10.16 12.01 14.91 25.34 40.86 2559.9pW

Table 3.9: FA Power consumption

3.2.7 ADAPTO

The floorplan of the ADAPTO IC is shown in Fig.3.20. The input data D1 and

D2 enter directly in the first LB layer meanwhile the third operand D3 enter in the

first stripe of interconnect. The architecture has additional ports for the output

the context selection the clock and the reconfiguration. In Fig. 3.21 is shown the

ADAPTO layout meanwhile Fig.3.22 underline the main blocks of the architecture.

3.3 ADAPTO IC main features

In this section the main features of the ADAPTO IC are shown. Such features are

in terms of delay, power consumption and area occupation

3.3.1 Delay time

The delay time of the propose architecture is the sum of two contributions

• Context switch time.The time required to a prestored configuration to another.

• Computational time The time required for the propagation of data from the

43

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

input to the output of ADAPTO.

tCONFIG = 976 ps

tCOMP = 8.906 ns

tDtot = tCONFIG + tCOMP = 9.882 ns

This delay implies a maximum frequency about 100 MHz that is compatible with

the frequency of actual embedded processors. Better performance can be obtained

using a more scaled technology.

3.3.2 Power consumption

The power consumption of ADAPTO has been estimated from the power consump-

tion of the single elements of the implemented standard cell composing the architec-

ture. [17]. In the following are shown the static and dynamic power consumption:

PS= 15.587 µW

PD=1.593 W

These data are estimated from simulation in which the outputs activities of every

block has been assumed 100%, this implies that the real power consumption can be

lower of a 30% 40%. Simulations are performed at 100MHz.

Form the power estimation the static and dynamic currents are extrapolated:

IStot = PStot / VDD = 8.659 µA

IDtot = PDtot / VDD = 0.885 A

3.3.3 Area occupation

The number of transistors of the ADAPTO architecture can be estimated considering

all the component that composed the system:

• Logic Blocks

44

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

• LB Context Memory

• Interconnect (pass transistor)

• Interconnect Decoder

• Context Memories Interconnect

• Memory decoders

• FLip FLop chain

• Clock tree

• additional inverters used as buffers

The total number of transistors is:

NTTOT = NLB + NMemLB + NIC + NDecIC + NMemIC + NDecAdd +NFFChain +

NCLK + NBuff = 96 x 79 + 96 x 552 + (96 x 66 + 128 x 34) + (96 x 432 + 128 x

258) + (96 x 942 + 128 x 812) + 6 x 120 + 912 x 16 + 36 + 1280 = 356756

This number match with the one obtained by the LVS check performed on the

global layout of the entire integrated circuit. In the following are shown more details

about number of transistors partition:

• LB= 7584

• Interconnect (decoder + pass transistor)= 85184

• Context memory LB : 53352

• Context memory interconnect: 194728

• Flip-flop chain + CLK tree= 14628

45

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

The 69.5% of the transistors is used for the Context Memories implementation.

The total area occupation (WxH) is 5.606 x 2.086 mm fot a total area of 11.694

mm2.

46

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.15: The LB layout

47

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.16: LB delay time of the Cout pin

48

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.17: LB delay time of the Y pin

49

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.18: Full Adder circuit

50

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.19: Full Adder layout

51

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.20: ADAPTO acrhitecture

52

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.21: ADAPTO Layout

53

CHAPTER 3. The ADAPTO Reconfigurable Functional Unit

Fig. 3.22: ADAPTO Layout main blocks

54

Chapter 4

ADAPTO applications

4.1 Modular algebra

4.1.1 Modular Addition

Usually modular addition is defined between operands that are in the range [0 . . .M−

1] and obviously the result belongs to the same range. A simple way to perform this

operation is to add X and Y and if the result is greater than M , M is subtracted

from the result of the sum. This approach is illustrated below

Algorithm 1: Modular Addition

Input: M , X < M , Y < M

Output: (X + Y) mod M .

1: R← X + Y

2: if R ≥M then

3: R← R−M

4: end if

5: RETURN R

This algorithm can be implemented both in software and in hardware. A typical

55

CHAPTER 4. ADAPTO applications

hardware implementation is reported in Fig. 4.1.

Fig. 4.1: Modulo M adder

In the hardware implementation the two values S1 = X+Y and S2 = X+Y −M

are computed and the MUX selects between S1 and S2 depending on the value of

Cout. In fact, Cout is the carry of S2 = X + Y −M and therefore it is equal to 1

only if X + Y −M < 0. This condition corresponds to select S1 if X + Y < M , S2

otherwise. The if condition in Algorithm 1 correspond to the MUX in the hardware

implementation shown in Fig. 4.1. Modular addition by using ADAPTO can be

implemented in the following way. The first slice computes S1 = X + Y . The

second slice computes S2 = S1−M . It must be noticed that M is a constant value

and therefore it is given as input to the adder by programming the first interconnect

slice in order to provide −M as the second input. The input corresponding to −M is

the binary representation of 2n+1−M , where n is the number of bits used to represent

M . These two stages are identical to the adders presented in fig. 4.1. In the third

stage the adder should select S1 and S2 as a function of Cout. Unfortunately,

ADAPTO can not send to the third slice of adders both the results of the first and

the second stage (S1 and S2) and therefore the MUX in fig. 4.1 cannot be directly

56

CHAPTER 4. ADAPTO applications

implemented. To supersede this limitation the third slice is programmed to perform

the following operation:

if Cout = 1 then

R← S2 +M

else

R← S2

end if

In this way the final result is R = X + Y − M if X + Y ≥ M , otherwise

R = (X + Y − M) + M = X + Y . Now we take the binary representation of

M = mn−1 . . .m0 and compute the bitwise AND between the bits of M and Cout

obtaining CM = Cout · mn−1 . . . Cout · m0. The conditional operation described

before can be performed by the third stage of ADAPTO as R ← S2 + CM . M is

constant and therefore the operand CM correspond to give as second input of the

i FA Cout if mi = 1, zero if mi = 0. In Fig. 4.2 the configuration of ADAPTO

performing the modular addition is presented.

The adder performs addition modulo 45 (101101 in binary). The first stage is a

standard adder. The second stage is an adder with a constant input (−M). We can

see that in this stage the COut of the second stage is presented as input of the third

stage by using a FA of the second stage as a routing element. In fact, ADAPTO

do not allows to directly provide as output both the carry and the output of the

FA, but only one of the two outputs. So, the COut is given as input by the next

FA with an+1 = 0 and bn+1 = 0 and the result of the addition is taken as output.

In this way COut has been routed to the next stage. The use of a logic resource

as a routing element is widely used in FPGA, in which the LUT is configured as

pass-though, to save routing resources or to form a shortest path between to points

of the FPGA. In our case the use of the FA is mandatory to route both the sum

57

CHAPTER 4. ADAPTO applications

Fig. 4.2: Configuration of ADAPTO performing the modular addition

and the carry of a FA to the next stage. Instead, a modification of the interconnect

matrix of the architecture of ADAPTO will require a doubling in the number of

transistor needed to route both the outputs. The third stage is a standard adder

that has as inputs S2, i.e. the result of the second stage, and CM . The final result is

therefore the modular addition between the two inputs. We notice that the 32 bits

width of ADAPTO allows performing different one modular additions in parallel. In

particular a modulo that can be represented with n bits requires n + 2 columns of

ADAPTO. One bit more than n allows the two complement representation of −M ,

while the other bit is lost for the FA used as pass-through. For example ADAPTO

can be configured to implement four different modulo additions with moduli of 6

bits or three modular additions with two 9 bits moduli and one 8 bit modulus.

58

CHAPTER 4. ADAPTO applications

4.1.2 Montgomery Multiplication Algorthitm

In [19] Peter Montgomery proposed a method for avoiding expensive reductions

modulo M after multiplication modulo p. It uses the so-called Montgomery repre-

sentation for integers. The Montgomery representation of an integer a ∈ [0,M − 1]

is A · Z−1 mod M where Z > M such that gcd(Z,M) = 1. The Montgomery mul-

tiplication is defined as R = A ·B · Z−1 mod M and its computation is particularly

simple if Z = 2−n, where n is the number of bits needed to represent M .

The Montgomery representation does not give any computational advantage for

a single multiplication. Instead, when several multiplication are involved the Mont-

gomery gives an advantage due to the few computing resources needed to perform

Montgomery multiplication. Hence, Montgomery representation is useful in modular

exponentiation, operations performed on ECC etc. In these complex operations the

integers are firstly converted in the Montgomery representation, the computations

are performed in the Montgomery domain, finally the result is reconverted in the

traditional integer number representation.

The conversion between the traditional integer representation of a number A and

the Montgomery representation is the Montgomery multiplication between A and 1,

i.e.

R = A · 1 · Z−1 mod M = A · Z−1 mod M

Instead, the reverse conversion is the Montgomery multiplication between A and Z2,

i.e.

R = A · Z2 · Z−1 mod M = A · Z mod M

The algorithm that computes the Montgomery multiplication is (Algorthitm 2)

59

CHAPTER 4. ADAPTO applications

Algorithm 2: Montgomery Multiplication

Input: M , A < M , B < M , n

Output: A ·B · 2−n mod M .

1: R← 0

2: for (i = 0; i < n; i+ +) do

3: R← R +B · ai

4: if R is odd then

5: R← R +M

6: else

7: R← R

8: end if

9: R← R/2

10: end for

11: RETURN R

The core of the algorithm is represented by lines 3 to 9, i.e. the context of the for

loop. We will show how to configure the ADAPTO engine to perform the operations

inside the loop in one clock cycle. Similarly to the previous case, we rewrite the

algorithm in order to avoid the use of the if then construct. The new version of the

algorithm is illustrated below (Algorithm 3).

60

CHAPTER 4. ADAPTO applications

Algorithm 3: Montgomery Multiplication for ADAPTO

Input: M , A < M , B < M , n

Output: A ·B · 2−n mod M .

1: R← 0

2: for (i = 0; i < n; i+ +) do

3: S1← B · ai

4: S2← S1 +R

5: S3← S2 +M · S2[0]

6: R← S3/2

7: end for

8: RETURN R

Line 3 of the revised algorithm can be implemented by the first slice of ADAPTO

simply by configuring the FAs as an AND between the bits of the operand B and the

i bit of the operand A. The second slice of FAs uses the third input of ADAPTO in

order to accumulate the partial results of the Montgomery operation. In particular

the third input correspond to the partial result obtained at the end of the previous

loop cycle. The third slice of adders implements the conditional sum expressed by

lines 4-8 of Algorithm 2 in a way that is similar to the one used for the modular

addition. The addition is performed by masking a constant value (the modulo M)

with a bit corresponding to the control value of the conditional statement. In this

case this bit is the least significant bit of S2 and allows identifying if S2 is even

or odd. If S2 is odd M is added to S2, else S2 remains unchanged. Finally, the

interconnect matrix after the third adder slice implements the right shift of the

result S3, diving it by two. The output R of this operation is given to a register

in the register file that will be provided as the third input of ADAPTO at the next

iteration of the loop. At the end of the loop the result stored in R correspond to the

result of the Montgomery multiplication. In Fig. 4.3 the configuration of ADAPTO

61

CHAPTER 4. ADAPTO applications

performing the Montgomery multiplication is presented.

Fig. 4.3: ADAPTO performing a step of the MM

In Fig. 4.3 we can see the configuration of the first slice as an array of AND

gates that takes as inputs the operand B and the bit ai of the operand A. This slice

performs line 3 of Algorithm 3. The second slice performs line 4 of algorithm 3,

while the third slice performs the line 5 of Algorithm 3. We notice that, differently

from the modular addition, the M value is masked by the least significant bit of the

result of the previous slice (i.e. S2[0]). Finally, the last interconnect stage performs

the division by 2 shifting right its input.

62

CHAPTER 4. ADAPTO applications

4.2 The AES algorithm

Galois Field of the form GF (2n), that are commonly used in cryptographic opera-

tions, such as in the Rijndael AES algorithm [24], can be efficiently manipulated by

our ADAPTO architecture by several reasons:

• the basic computational element (the full adder) provide the XOR operation

that is widely used for implementation of GF (2n).

• constant multiplication in GF (2n) can be easily performed by using a suitable

logic and interconnection configuration as will be described in the paper.

• the word length of 32 bits of ADAPTO allows to perform 4 operations on the

field GF (28) in parallel.

The AES algorithm is designed to use only byte (8-bits) operations. The encryp-

tion of a data block is composed by an initial XOR step, several round transforma-

tions, and an final round different by the previous ones. In case of 128 bits block

size, the data are arranged as 16 bytes and are ordered in a matrix format as follows:

I =

A E I M

B F J N

C G K O

D H L P

(4.1)

The encryption of a 128 bits block size requires 9 rounds, composed by

four transformations:

1. SubBytes: a non-linear substitution step where each byte is replaced with

another according to a lookup table.

2. ShiftRows: a transposition step where each row of the state is shifted cyclically

a certain number of steps.

63

CHAPTER 4. ADAPTO applications

3. MixColumns: a mixing operation which operates on the columns of the state,

combining the four bytes in each column

4. AddRoundKey: the byte of the state is combined with the round key.

For the final step, the Mixcolumn transformation is not performed. For data

decryption, however, different transformations are used:

1. InvSubBytes: the inverse of SubBytes,

2. InvShiftRows: the inverse of ShiftRows,

3. InvMixColumns: the inverse of MixColumns,

4. AddRoundKey: similar to encryption

The software implementation of AES encryption/decryption operations can eas-

ily performs the SubBytes and InvSubBytes operations by storing in a memory the

corresponding lookup table.Since the SubBytes and InvSubBytes operations are per-

formed on a 8bit data, each lookup table requires 256 bytes of memory. Therefore

the software implementation of this operation is simple and efficient. In addition,

the ShiftRows and InvShiftRows operations are simply byte reordering, therefore

also this operation is very simple. Moreover, these operations can be merged with

SubBytes and InvSubBytes operations and therefore the impact of these operation

on the performance of the AES algorithm are negligible. Also the AddRoundKey is

a simple operation: it is a two inputs 32-bit XOR operation. The only operations to

be accelerated by an RFU are the couple MixColumns/InvMixColumns. Implement-

ing MixColumns on a ARM926EJ-S RISC we notice that for a column computation

are required about 50 assemby instruction. Therefore in the following we analyze in

detail the Mixcolumn/InvMixcolumn transformations in order to implement these

64

CHAPTER 4. ADAPTO applications

operation by using ADAPTO. The MixColumn transformation is a based on matrix

multiplication in GF (28).

The matrix I is multiplied by the following matrix:

M =

0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

(4.2)

Each matrix elements (expressed in an hexadecimal notation) correspond to a

polynomial of degree 7 in which the polynomial coefficients are the coefficient of the

binary representation (e.g. 0x0A = 0b00001010 = x3 +x). We remark that constant

multiplications are performed on GF (28) and use x8+x4+x3+x+1 as the generator

polynomial. For the InvMixcolumn transformation all columns are multiplied by the

inverse matrix of the one used in Mixcolumn:

M−1 =

0x0E 0x0B 0x0D 0x09

0x09 0x0E 0x0B 0x0D

0x0D 0x09 0x0E 0x0B

0x0B 0x0D 0x09 0x0E

(4.3)

The multiplications of the matrix elements of InvMixcolumn are harder than the

multiplications involved in Mixcolumn and therefore it is the more expensive task

of all the AES algorithm. In the next section we show how these operation are

implemented by using ADAPTO.

65

CHAPTER 4. ADAPTO applications

4.2.1 ADAPTO implementation

Data allocation strategy

The first step of the implementation of Mixcolumn and InvMixcolumn in ADAPTO

is to define where and how the 16 input bytes defined in equation (1) are stored in

the CPU registers. We decided to store the matrix by column, as presented in table

I.

Stored bytes

Register/part [31..24] [23..16] [15..8] [7..0]

R1 A B C D

R2 E F G H

R3 I J K L

R4 M N O P

Table 4.1: RF allocation of AES matrix

4.2.2 GF (28) constant multiplication in ADAPTO

In this subsection, GF (28) constant multiplication is illustrated (GF multiplication

corresponds to a conventional polynomial multiplication followed by a division by the

polynomial generator). In order to illustrate the use of ADAPTO, we consider the

following example. Take into account the multiplication of a generic 8-bit polynomial

P = p7 · x7 + p6 · x6 + p5 · x5 + p4 · x4 + p3 · x3 + p2 · x2 + p1 · x1 + p0 by the constant

polynomial (x+ 1), corresponding to the hexadecimal number 0x03. The operation

0x03 ·P in the GF gives 0x03·P = (p7 ·x7 +p6 ·x6 +p5 ·x5 +p4 ·x4 +p3 ·x3 +p2 ·x2 +p1 ·

x+p0)+(p6 ·x7 +p5 ·x6 +p4 ·x5 +p3 ·x4 +p2 ·x3 +p1 ·x2 +p0 ·x)+p7 ·(x4 +x3 +x+1).

Shortly we can write

66

CHAPTER 4. ADAPTO applications

0x03 ·P = P + (P << 1) + p7 · (x4 + x3 + x+ 1)

Figure 4.4 shows the ADAPTO implementation of the constant multiplication

by 0x03. The shift operations, as the left shift A << 1 required in the above

multiplication, are performed directly by the ADAPTO interconnection network.

Also a7 ·(x4+x3+x+1) can be implemented by the interconnection network. In fact,

let us call Z=z7z6z5z4z3z2z1z0 the byte representing the result of a7 ·(x4 +x3 +x+1).

We have z7 = z6 = z5 = z2 = 0 and z4 = z3 = z1 = z0 = a7. Therefore the

interconnect can compute Z by imposing some LB inputs to zero and connecting a7

to the remaining LBs. The stripe following the interconnection is configured as a

three input XOR, performing the required three additions on GF (28).

Any constant multiplications that can be translated in a bit rearrangement and

a sum of three terms can be performed with the above method. In our work any

constant multiplication is computed using the set of basic multiplications shown in

the Table II.

C Implementation C ∗ ·P

0x02 (P << 1) + p7 · (x4 + x3 + x+ 1).

0x03 P + (P << 1) + p7 · (x4 + x3 + x+ 1)

0x04 (P << 2) + p7 · (x5 + x4 + x2 + x)+

+p6 · (x4 + x3 + x+ 1)

Table 4.2: Basic constant multiplications

4.2.3 ADAPTO implementation of Mixcolumn

Using the above results, in this subsection we describe the implementation on ADAPTO

of the multiplication of a row of M by a column of I. We suppose that each column

of I is stored in the RF, according to above discussed data allocation strategy. D1,

67

CHAPTER 4. ADAPTO applications

D2, D3 are the ADAPTO input operands coming from the RF, and R is the final

result that will be returned to the RF. Moreover α, β, and γ are the partial results

present at the output of the three LB stripes of ADAPTO.

As an example, we consider the multiplication of the first row of M by the first

column of I .

Algorithm 1 describes the implementation of this multiplication. The first stripe

of ADAPTO is configured as a pass-thru and connects directly A, B, C, D (output

α) to the first level of interconnect . The constant multiplications 0x02 · A, and

0x03 · B, with the sum C + D are computed by the interconnect and the second

LB stripe (output β). It must be noticed that this mixed operations require 24 LBs

configured as three inputs XOR, while the eight rightmost LBs are unused. In the

algorithm we represent these unused output as don’t care ’-’. Starting β, the last

LB stripe, configured as three input XOR, provides the final mod. 8 sum γ.

Algorithm 4: Multiplication 1st row of M by the 1st data column

Input: D1(A,B, C, D); D2=(-.-.-.-); D3=(-.-.-.-)

Output: R[7 : 0] = 0x02 ·A+ 0x03 ·B + C +D.

α← (A, B, C, D)

β ← (0x02 ·A, 0x03 ·B, C +D,−)

γ ← (−, −, −, 0x02 ·A+ 0x03 ·B + C +D)

RETURNR[7 : 0]← γ[7 : 0]

The product of the same column by a different row requires the reconfigura-

tion of ADAPTO. Therefore the entire MixColumn operation requires four different

ADAPTO contexts (of the 16 available in the current architecture). However, the

computation of the product of different columns by the same row is computed by

using the same context.

By using Algorithm 1 each row by column multiplication requires 1 ADAPTO

instruction. Consequently the whole MixColumn operation is computed in 16 assem-

68

CHAPTER 4. ADAPTO applications

bly instructions (corresponding to 16 clock cycles, since one clock cycle is required

for each ADAPTO context [5], [6]). In Fig. 4.4 we show the implementation of the

constant multiplication by 0x03 using a row of ADAPTO. This implementation has

been compared with a Mixcolumns software implementation present in the bench-

mark suite described in [25]. This function, compiled on a ARM926EJ-S RISC,

architecture requires about 200 assembly instructions. Thus the speed-up obtained

with ADAPTO is about 12.5x

4.2.4 ADAPTO implementation of InvMixcolumn

The InvMixColumn operation I×M−1 is more complex due to the structure of the

entries of the matrix M−1 (here I is different from that used in Mixcolumn). To

simplify the computation, the constant coefficient of multiplications are expressed in

terms of the elementary constants of Table II. Table III is shows the decomposition

of the multiplications by complex constants.

C Decomposition of C · P

0x08 0x02 · (0x04 · P)

0x09 0x08 · P + 0x01 · P

0x0B 0x08 · P + 0x03 · P

0x0C 0x03 · (0x04 · P)

0x0D 0x0C · P + 0x01 · P

0x0E 0x0C · P + 0x02 · P

Table 4.3: Decomposition of complex constants

The decomposition of Table III can require more contexts for the computation of

a constant multiplication. For example, the multiplication by 0x0E is performed in

two phases (corresponding to 2 ADAPTO contexts). For the multiplication of first

69

CHAPTER 4. ADAPTO applications

row of M−1 by the first column of data matrix I we decompose the computation it

in two terms

R = 0x0E · A+ 0x0B ·B + 0x0D · C + 0x09 ·D =

= (0x0C · A+ 0x08 ·B + 0x0C · C + 0x08 ·D)+

(0x02 · A+ 0x03 ·B + 0x01 · C + 0x01 ·D)

The result R is evaluated in two phases. In the first phase, the first partial

results are computed by ADAPTO as constant multiplications of A, B, C, D by

0x04, (corresponding to α) followed by four multiplications by 0x03 or 0x02 (γ

computation). These operations are implemented in the first ADAPTO context.

In the second phase the input D1 contains A, B, C, D, and the inputs D2 and D3

store the results of the previous phase. We use the ADAPTO inputs D1 and D2 to

compute 0x0C · C + C and 0x08 ·D +D. Instead D3 is used to input the previous

results to the input of the second stripe of LB. So we compute the three terms

0x0C ·A+0x02 ·A 0x03 ·B and 0x08 ·B+0x0D ·C+0x09 ·D. The third strip of the

ADAPTO sums (XOR) these three terms. The two phases are shown in Algorithm

2.

The two constants of Algorithm 2 are valid until the row of M−1 is unchanged.

When we go to another row the constants change and two other contexts must

be used. Consequently, the computation of the whole InvMixColumn in principle

requires 8 contexts. Some simplification can be carried out observing the properties

of the entries of M−1. For example, PHASE 1 can be shared between the first and

third rows, and between the second and the fourth rows. In fact the first and the

third rows have the common term (0x0C ·A+ 0x08 ·B+ 0x0C ·C+ 0x08 ·D), while

the second and the fourth rows have (0x08 ·A+0x0C ·B+0x08 ·C+0x0C ·D). This

property allows to reduce the number of contexts and number of time the contexts

must be reconfigured Therefore the computation of the complete output matrix

70

CHAPTER 4. ADAPTO applications

Fig. 4.4: Implementation of 0x03·B in ADAPTO

requires 16 runs of PHASE 2 and 8 runs PHASE 1, for a total of 24 ADAPTO

reconfigurations corresponding to 24 assembly instructions. On the other hand, the

software implementation of InvMixColumn requires again 200 instructions. So, a

speed-up of about 8.3x is obtained.

71

CHAPTER 4. ADAPTO applications

Algorithm 5: multiplication of a row of the matrix M−1 by a column

Input: D1(A,B, C, D); D2=(-,-,-,-); D3=(-,-,-,-)

Output: R[7 : 0] = 0x0E ·A+ 0x0B ·B + 0x0D · C + 0x09 ·D.

PHASE 1 (context 1)

α← (A, B, C, D)

β ← (0x04 ·A, 0x04 ·B, 0x04 · C, 0x04 ·D)

γ ← (0x0C ·A, 0x08 ·B, 0x0C · C, 0x08 ·D)

PHASE 2 (context 2)

D1← (A, B, C, D); D2← γ; D3← γ;

α← (A, B, 0x0D · C, 0x09 ·D)

β ← (0x0E ·A, 0x03 ·B, 0x08 ·B + 0x0D · C + 0x09 ·D,−)

γ ← (−,−,−, 0x0E ·A+ 0x0B ·B + 0x0D · C + 0x09 ·D)

72

Chapter 5

ADAPTO in Leon 2 processor

After the ADAPTO design and before starting with the IC realization, the ADAPTO

unit has been integrated in a soft processors in order to evaluate the speedup factor.

For our purpose we choose the open source LEON 2 soft processor. Unfortunately in-

tegrate ADAPTO as RFU in this processor is impossible without modify the VHDL

description of the microprocessor. However the Leon 2 processor provides a copro-

cessor interface suitable for general purpose coprocessor so the ADAPTO unit was

integrated as coprocessor. Using this strategy two considerations must be made:

• The coprocessor approach is slower in terms of acceleration respect than the

RFU approach as show in Chapter. 2

• In order to integrate ADAPTO on the LEON 2 coprocessor interface we have

to use only two of the three inputs.

Considered these issues we can say that the obtained experimental results are

worse than the potential ones. Additional informations can be found in [32].

73

CHAPTER 5. ADAPTO in Leon 2 processor

5.1 LEON-2 processor

The LOEN-2 processor used in our experiment is a VHDL model of a 32-bit processor

conforming to the IEEE-1754 (SPARC-V8) architecture. It is designed for embedded

applications and it is characterized by having separate instruction and data cache.

A block diagram of LEON-2 is shown in Fig.5.1.

Fig. 5.1: LEON-2 block diagram

The LEON-2 processor can be configured to provide a generic interface to a

special-purpose co-processor in wich we attach the ADAPTO unit. One co-processor

instruction can be started each cycle as long as there are no data dependencies. When

finished, the result is written back to the co-processor register file. As shown in

Fig.5.2, the LEON-2 architecture has two separated set of register file (configurable

up to 32) for processor integer unit (IU) and co-processor. In order to exchange data

between this two computational element an assembly ”load” instruction is required;

this means that at least three clock cycles are required for data exchange.

For our experiment we use a simplified version of ADAPTO having only two

input, becouse LEON 2 provide a two-input one-output co-processor interconnect as

74

CHAPTER 5. ADAPTO in Leon 2 processor

Fig. 5.2: Co-Processor interface

shown in Fig.5.2.

5.2 Experimental results

To test the ADAPTO-LEON-2 system performances we used TSIM2 Professional,

a LEON-2 simulator that allow to add a shared object (written in C language and

compiled with Bare Cross Compiler - BCC) that emulate ADAPTO behavior. So we

were able to simulate the system with and without the shared object and highlight

the differences in term of executed instructions number. There are various appli-

cations where is possible to verify algorithm acceleration, but we have chosen four

applications: Bit reversal, dist1 function for MPEG-2 encoding, GRP instruction,

big/little endian conversion. All source codes of our experiments was compiled with

follow BCC options:

sparc-elf-gcc -msoft-float -g -O2 -mv8 source.c -o file.exe

75

CHAPTER 5. ADAPTO in Leon 2 processor

The option -msoft-float indicates the absence in our simulation of a real Floating

Point Unit so it was emulated by the processor, while the option -mv8 indicates

that multiplications simulation occur with use of a real hardware multiplier based

on Sparc V8 architecture.

To avoid changing LEON-2 instruction set assembler (ISA), the ADAPTO in-

structions has been added by assembly commands. In particular in each experiment

there are load and store instructions to move data from LEON-2 register file to

co-processor (ADAPTO) register file and was created a cpopx macro which de-

fines the instruction carried out by ADAPTO. There are three arguments for cpopx

instruction which specify the two input operands, the single output and the code

representing the particular ADAPTO operation. Below, will be shown the results of

simulation.

5.2.1 Bit reversal permutation

Bit reversal is an operation that invert bit position representing an integer number

(see Fig. 5.3). It’s used especially in Fast Fourier Trasformate (FFT).

Fig. 5.3: Bit-reversal logic flow

To perform bit reversal we have chosen one of most used algorithm based on

76

CHAPTER 5. ADAPTO in Leon 2 processor

shift and boolean operations. The function C code is shown in Algorithm 6 and its

execution block diagram in 5.3.

Algorithm 6: Source code used for bit reversal implementation without

ADAPTO
[fontsize=\relsize{-0.5}]

unsigned char shift(unsigned char x){

x = (x & 0x0f) <<4 | (x & 0xf0) >> 4;

x = (x & 0x33) <<2 | (x & 0xcc) >> 2;

x = (x & 0x55) <<1 | (x & 0xaa) >> 1;

return x;}

To compute Algorithm 6 LEON-2 without ADAPTO uses 15 instructions instead

with ADAPTO the instructions used are only 3: a ’ld’ instruction to load the value

in co-processor register file, a co-processor instruction (’cpopx’)to cumpute the bit

reversal operation and a ’st’ instruction to store the result in LEON-2 register file.

5.2.2 MPEG-2 encoding

MPEG2 encoding is a part of MediaBench benchmark suite, this benchmark regards

compression and video processing. About 89% of the execution time for MPEG2

encoding is spent for the computation of dist1 function. So, we decided to consider

this function for our acceletarion experiments. The Algortihm 7 show C code for

dist1 encoding implementation. LEON-2 processor to computes one step cycle uses

32 instructions instead the same algorithm with use of ADAPTO is computed with

19 instructions.

In this case, we need two ’ld’ instructions (see Algorithm 8) because the two

input operands representing the firsts values of two arrays.

77

CHAPTER 5. ADAPTO in Leon 2 processor

Algorithm 7: Source code used for dist1 function without ADAPTO

[fontsize=\relsize{-0.5}]

for(temp=0; temp < (lenght- 1); temp++){

v = p1[temp] + p1[temp+1] + 1;

v = v >> 1;

v = v- p2[temp];

if(v >= 0)

s += v;

else

s -= v;}

return (s);

Algorithm 8: Source code used for dist1 function with ADAPTO

[fontsize=\relsize{-0.5}]

for(temp=0; temp < (lenght- 1); temp++){

k = p1[temp] + p1[temp+1];

z = p2[temp];

asm("ld %0, %%c00" : : "m" (k));

asm("ld %0, %%c01" : : "m" (z));

asm(cpopx("0x12", "0x0", "0x1", "0x2"));

asm("st %%c02, [%0]" : "=g" (v));}

78

CHAPTER 5. ADAPTO in Leon 2 processor

5.2.3 GRP instruction

GRP (see [28],[29] and [30]) is a primitive bit permutation instruction that gathers

to the right the data bits selected by 1 s in a mask (r3), and to the left those

selected by 0s in the same mask (see Fig. 5.4). An arbitrary bit permutations can

be accomplished by a sequence of at most log2(n) of these grp instructions, where n

is the word-size of the processor (32 bit in LEON-2 case).

Fig. 5.4: GRP bit permutationt

The C code used to compute this instruction is shown in algorithm 9.

To execute this code, LEON-2 processor uses 34 assembly instructions, instead

with ADAPTO the instructions used are only 4 how shown in Algorithm 10.

So, with ADAPTO it’s possible to compute a generic bits permutation only with

4 instructions than log2(n) used by LEON-2 or most general purpose processors.

5.2.4 Endian coversion

The endianess is the byte ordering used to represent data flow. In our case we

cosidered the conversion between big and little endian, that is very used in teleco-

munications field. The conversion is symmetrical, i.e. it’s used the same C function

to convert from little to big endian and vice versa. The C code used for the conver-

sion is shown Algorithm 11

79

CHAPTER 5. ADAPTO in Leon 2 processor

Algorithm 9: C-code of grp instruction without ADAPTO

[fontsize=\relsize{-1}]

int grp(int mask, int reg_in, int reg_out,

int tmp1, int tmp2, int num_bit){

while (tmp1 < num_bit)

{if(((mask >> tmp1) & 1) == 1)

{reg_out=reg_out | (((reg_in >> tmp1) &1)<<tmp2);

tmp1++; tmp2++;}

else {tmp1++;}}

tmp1 = 0;

while (tmp1 < num_bit)

{if(((mask >> tmp1) & 1) == 0)

reg_out=reg_out | (((reg_in >> tmp1) &1)<<tmp2);

tmp1++; tmp2++;}

else {tmp1++;}}

return (reg_out);}

Algorithm 10: Assembly code for grp instruction with ADAPTO

[fontsize=\relsize{-0.5}]

asm("ld %0, %%c00" : : "m" ((int)mask_new));

asm("ld %0, %%c01" : : "m" ((int)reg_in_new));

asm(cpopx("0x11", "0x0", "0x1", "0x2"));

asm("st %%c02, %0" : "=m" (*y));

80

CHAPTER 5. ADAPTO in Leon 2 processor

Algorithm 11: C code used by LEON-2 for endian conversion

[fontsize=\relsize{-0.5}]

unsigned long End_Conv(unsigned long data)

return (((data>>24)& 0x000000FF) |

((data>>8) & 0x0000FF00) |

((data<<8) & 0x00FF0000) |

((data<<24)& 0xFF000000));

To execute a conversion of a 32 bit word data LEON-2 processor uses 12 assembly

instructions, while the use of ADAPTO increases significantly the performances

because the same conversion is computed only with 3 instructions.

81

Chapter 6

Future works

In Chapter.5 the experimental results about the integration of the ADAPTO unit in

the LEON 2 processor have been shown. As discussed in this chapter, the LEON 2

processor does not support the integration of a RFU so the ADAPO unit has been

integrated as coprocessor (see 1) using the LEON 2 coprocessor interface. In order

to overcome this aspect actually we are working on the integration of the ADAPTO

Unit in the NIOS II soft processor. We choose this microprocessor because it has a

very interesting feature called ”Custom Logic” (Chapter 6.1.1). This feature permit

the integration of a RFU without the microprocessor redesign because a custom

operator in parallel with the ALU is supported.

6.1 The NIOS II processor

The NIOS-II embedded processor [36] is a general-purpose RISC processor core

produced by Altera. The main features of NIOS-II are:

• Full 32-bit instruction set, data path and address space

• 32 general-purpose registers

• Optional shadow registers sets

82

CHAPTER 6. Future works

• Single-instruction 32 x 32 multiply and divide unit producing a 32-bit result

• Dedicated instructions for computing 64-bit and 128-bit product of multipli-

cation

• Floating point instructions for single precision floating point operations

• Single instruction barrel shifter

• Hardware assisted debug module enabling processor start, stop step and trace

under control of the Nios-II software development tools

• Optional memory management unit (MMU) to support operating systems re-

quiring MMUs

• Software development environment based on the GNU C/C++ tool chain and

the Nios-II Software Build Tools for Eclipse

• Instruction set architecture (ISA) compatible across all Nios-II processor sys-

tems

• Performance up to 250 DMIPS

A Nios-II processor (Fig. 6.1) system consists of a Nios-II processor core, a set

of on-chip peripherals, an on-chip memory and some interfaces to off-chip memory.

All these blocks are implemented on a single Altera device. The version of Nios-II

used in our experiments is 9.1, the last available in Altera′s library.

6.1.1 Custom Logic Custom Instructions

One of the most important feature of Nios-II processor is the possibility to add user-

dëıň ↪Aned Functional Units called Custom Logic [37]. Custom instructions allow the

possibilities to tailor the Nios-II processor core to meet the needs of a particular

83

CHAPTER 6. Future works

Fig. 6.1: NIOS II block diagram

application. In this way it is possible to accelerate time critical software algorithms

by implementing some steps into specialized hardware blocks. These blocks must

be created using either VHDL or Verilog language. Physically, the Custom Logic

blocks is placed inside the Nios-II processor in parallel to the ALU as shown in Fig.

6.2

The basic operation of Nios-II custom instruction logic is to receive input on the

dataa and/or datab port, and drive out the result on its result port. The Nios-II

processor supports different types of custom instructions. Fig. 5 lists the addi-

tional ports that accommodate different custom instruction types. Only the ports

used for the specific custom instruction implementation are required. To manage

Custom Logic, the Nios-II system also provides the Custom Instructions. For each

custom instruction, the Nios-II Integrated Development Environment (IDE) gener-

ates a macro in the system header file, system.h. These macro can be called using

84

CHAPTER 6. Future works

Fig. 6.2: NIOS II Custom Logic

the C-functions defined in main program. This is a big advantage, because the pro-

grammers don′t need to understand assembly language to use custom instruction.

Similar to native Nios-II instructions, custom instructions can take values from up

to two source registers and optionally writes back a result to a destination register.

The algorithm 1 shows an example of C-function based on a built-in macro.

/* opcode to select ADAPTO operation */

#define ADAPTO 0x2

/* adapto Butterfly user-defined functions */

#define ADAPTO(data1 data2,data3,op)

__builtin_custom_inii(ADAPTO,data1 data2,data3,op);

85

CHAPTER 6. Future works

6.1.2 ADAPTO integration

As discussed in Chapter 3, the ADAPTO architecture has three 32 inputs, however

the NIOS II “Custom Logic“ interface present two input bus. This problem can be

solved using a state register as shown in Fig. 6.3. In this way, if the third operand

is required (this operand is not used every time), an additional operation is required

to store the required value in the state register. Once the data has been stored

the three input function can be performed by ADAPTO. This strategy assures the

possibility to use all the three inputs but surely add a latency to the computation.

On the other hand this is the only solution possible to solve this problem if the

processor has not a three output Register File.

Fig. 6.3: Adapto integration in NIOS II

86

Conclusions

In this work a new Reconfigurable Functional Unit (RFU) is presented. This archi-

tecture can be used by embedded microprocessors to accelerate short data manip-

ulation. As discussed in Chapter 2, in order to have an adequate acceleration, fast

reconfiguration is a very critical aspect. Actual reconfigurable systems obtain this

feature using the multicontext approach. The actual multicontext reconfigurable

arrays are based on multicontext LUTs that required an area occupation directly

proportional to the context number. This solution can be used for very expensive

FPGA where the cost is not an important aspect but it cannot used for low cost

embedded world.

The integration of a very expensive multicontext architecture in a Low cost em-

bedded microprocessor would go in contrast with the low cost requirement. In order

to solve this problem in this work a new multicontex approach has been proposed;

our solution provide to use a different computational element respect the LUT. This

choice implies less flexibility respect than the conventional LUT but this lack can

be tolerated for a set of applications.

The proposed architecture can be used to speed up short data/bit level operations

based on boolean expression or short addition but also for packing/unpacking data.

Speeding up experiments was performed integrating the ADAPTO unit in the LEON

II processor. This soft processor doesn’t provide an RFU interface so we integrate

ADAPTO as coprocessor using the LEON 2 coprocessor interface. Nevertheless this

87

CHAPTER 6. Future works

limitation the experimental results show a considerable acceleration factor.

Actually we are working on the integration between ADAPTO and the NIOS 2

processor, this soft processor unlike the LEON 2 has a “Custom Logic“ interface that

allows an easy integration of an RFU (Chapter. 6).

Simultaneously the integration experiments, the ADAPTO IC layout was realized

using the TSMC0.18 m technology, The simulations are performed using 1.8 V

for the Voltage and 27C for the temperature. The ADAPTO IC has a maximum

frequency about 100 MHz, compatible with low cost embedded processors.

88

List of publications

1. G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, M. Re “Algorithm acceleration

on LEON-2 processor using a Reconfigurable Bit Manipulation Unit” 2010 8th

IEEE Workshop on Intelligent Solutions in Embedded Systems

2. G. C. Cardarilli,L. Di Nunzio, M. Re “Speed-Up of RISC Processor Compu-

tation Using ADAPTO” 2009 IEEE International Symposium on Circuits and

Systems

3. G. C. Cardarilli, L.Di Nunzio, M. Re “Arithmetic/Logic Blocks for Fine-

Grained Reconfigurable Units” 2009 IEEE International Symposium on Cir-

cuits and Systems

4. G. C. Cardarilli, L. Di Nunzio, M. Re“High Performance Reconfigurable blocks

for real-time reconfigurable unit (ADAPTO)” 2008 ReCoSoc

5. G. C. Cardarilli, L. Di Nunzio, M. Re “A full-adder based reconfigurable archi-

tecture for fine grain applications: ADAPTO” 2008 IEEE International Con-

ference on Electronics, Circuits, and Systems

6. G. C. Cardarilli, L. Di Nunzio, M. Re, A. Nannarelli “ADAPTO: Full-Adder

Based Reconfigurable Architecture for Bit Level” 2008 IEEE International

Symposium on Circuits and Systems

89

List of Figures

1.1 FPGA architecture . 12

1.2 LUT based Logic Block (LB) . 13

1.3 LUT implementation of boolean expression 13

1.4 FPGA programmable interconnect 14

1.5 Single context . 14

1.6 Multi context . 15

1.7 4 input N context LUT . 16

1.8 Partial programming . 17

2.1 Possible integrations between processor and reconfigurable unit 20

2.2 The PRISC architecture . 21

2.3 The CHIMAERA reconfigurable Unit 22

2.4 The CHIMAERA reconfigurable array 23

2.5 Multicontext LUT . 26

2.6 Resource sharing . 27

3.1 The ADAPTO architecture . 30

3.2 The ADAPTO Logic Block . 31

3.3 Full adder’s table of truth . 32

3.4 A multicontext ROW . 32

3.5 LUT based LB . 34

90

LIST OF FIGURES

3.6 Interconnect network . 35

3.7 Interconnect reduction . 35

3.8 Context memories Bus . 37

3.9 Context Memories configuration . 37

3.10 gate delay time . 38

3.11 Setup time . 39

3.12 Hold time . 39

3.13 The LB symbol . 40

3.14 The LB schematic . 42

3.15 The LB layout . 47

3.16 LB delay time of the Cout pin . 48

3.17 LB delay time of the Y pin . 49

3.18 Full Adder circuit . 50

3.19 Full Adder layout . 51

3.20 ADAPTO acrhitecture . 52

3.21 ADAPTO Layout . 53

3.22 ADAPTO Layout main blocks . 54

4.1 Modulo M adder . 56

4.2 Configuration of ADAPTO performing the modular addition 58

4.3 ADAPTO performing a step of the MM 62

4.4 Implementation of 0x03·B in ADAPTO 71

5.1 LEON-2 block diagram . 74

5.2 Co-Processor interface . 75

5.3 Bit-reversal logic flow . 76

5.4 GRP bit permutationt . 79

91

LIST OF FIGURES

6.1 NIOS II block diagram . 84

6.2 NIOS II Custom Logic . 85

6.3 Adapto integration in NIOS II . 86

92

List of Tables

3.1 Full adder’s operations . 33

3.2 LB size, dimension are expressed in micron 41

3.3 LB Pin capacity . 41

3.4 LB delay . 41

3.5 LB power consumption . 41

3.6 Full Addee size, dimension are expressed in micron 42

3.7 FA Pin capacity . 42

3.8 FA delay . 43

3.9 FA Power consumption . 43

4.1 RF allocation of AES matrix . 66

4.2 Basic constant multiplications . 67

4.3 Decomposition of complex constants 69

93

List of Algorithms

1 Modular Addition . 55

2 Montgomery Multiplication . 60

3 Montgomery Multiplication for ADAPTO 61

4 Multiplication 1st row of M by the 1st data column 68

5 multiplication of a row of the matrix M−1 by a column 72

6 Source code used for bit reversal implementation without ADAPTO . 77

7 Source code used for dist1 function without ADAPTO 78

8 Source code used for dist1 function with ADAPTO 78

9 C-code of grp instruction without ADAPTO 80

10 Assembly code for grp instruction with ADAPTO 80

11 C code used by LEON-2 for endian conversion 81

94

Bibliography

[1] M. D. Razdan, R. Smith, ”A high-performance microarchitecture with hardware

programmable functional units”, Proc. of MICRO-27, Nov. 1994, pp. 172-180

[2] M. D. Razdan, R. Brace, K. Smith, ”PRISC software acceleration techniques”,

Proc. IEEE 1994 Intl. Conf. on Computer Design: VLSI in Computer & Proces-

sors, pp. 145-149.

[3] Analog Devices Blackfin Processor http://www.analog.com/en/embedded-

processing-dsp/blackfin/content/blackfin core basics/fca.html

[4] Bengu Li, Rajiv Gupta, ”Bit Section Instruction Set Extension of ARM for Em-

bedded Applications”, nternational Conference on Compilers, Architecture, and

Synthesis of Embedded Systems (CASES) 2002

[5] Gian Carlo Cardarilli, Luca Di Nunzio, Marco Re, ”High Performance Reconfig-

urable blocks for real-time reconfigurable unit (ADAPTO)”, 2008 ReCoSoc.

[6] Gian Carlo Cardarilli, Luca Di Nunzio, Marco Re, ”A full-adder based reconfig-

urable architecture for fine grain applications: ADAPTO”, 2008 IEEE Interna-

tional Conference on Electronics, Circuits, and Systems

95

BIBLIOGRAPHY

[7] Scott Hauck, Thomas W. Fry, Matthew M. Hosler, Jeffrey P. Kao, ”The Chimaera

Reconfigurable Functional Unit”, IEEE Trans. on VLSI Systems Vol. 12, Issue 2,

Feb. 2004, pp. 206-217.

[8] G. Borriello, C. Ebeling, S. Hauck, S.Burns “The Triptych FPGA Architecture“,

IEEE Transactions on VLSI Systems, Vol. 3, No. 4, pp. 491-501, December, 1995.

[9] Data Book, San Jose, CA: Altera Corp.1995.

[10] Schmit, H. Whelihan, D. Tsai, A. Moe, M. Levine, B. Reed Taylor, R.

PipeRench: A virtualized programmable datapath in 0.18 micron technology ,

Custom Integrated Circuits Conference, 2002. Proceedings of the IEEE 2002.

[11] H. Schmit ”Incremental Reconfiguration for Pipelined Applications”, IEEE Sym-

posium on FPGAs for Custom Computing Machines.

[12] http://www.xilinx.com

[13] Scott Hauck Katherine Compton ”An Introduction to Reconfigurable Comput-

ing”, IEEE Computer, Apr, 2000.

[14] S. Trimberger. ”A time multiplexed FPGA”, FCCM 97 Proceedings, pages 22

28, 1997.

[15] W. Chong, S. Ogata, M. Hariyama and M. Kameyama ”Architecture of a Multi-

Context FPGA Using Reconfigurable Context Memory”, Proceedings of the 19th

IEEE International Parallel and Distributed Processing Symposium (IPDPS 05)

[16] Clive Maxfield ”The design warrior’s guide to FPGAs: devices, tools and flows”

[17] Christian Lenci ”CMos implementation of a Reconfigurable Funcional unit” in-

ternal report.

96

BIBLIOGRAPHY

[18] Ahmed M. Shams, Tarek K. Darwish, Magdy A. Bayoumi”Performance Analysis

of Low-Power 1-Bit CMOS Full Adder Cells”, IEEE transaction on very large scale

integration (VLSI) system, VOL. 10, NO. 1, febrary 2002

[19] P.L. Montgomery, ”Modular multiplication without trial division”, Mathematics

of Computation, vol. 44, no. 170, Apr. 1985, pp. 519-521.

[20] A.J. Menezes, and P.C. Van Oorschot, S.A.Vanstone, ”Handbook of applied

cryptography”, 1997, CRC press

[21] W.W. Peterson, and EJ Weldon, ”Error-correcting codes”, 1972, The MIT Press

[22] ED Di Claudio, F. Piazza, G. Orlandi, ”Fast combinatorial RNS processors for

DSP applications”, IEEE transactions on computers, vol. 44, no. 5, pages 624–

633,1995

[23] Gian Carlo Cardarilli, Luca Di Nunzio, Salvatore Pontarelli, Marco Re, Adelio

Salsano, “A Reconfigurable Functional Unit For Modular Operations”, submitted

to 2009 IEEE Reconfig

[24] Joan Daemen and Vincent Rijmen, ”The Design of Rijndael: AES - The Ad-

vanced Encryption Standard.” Springer-Verlag, 2002.

[25] M.. Guthaus, J. S. Ringenberg, D. Ernst,T. M. Austin, T. Mudge, R. B. Brown

”MiBench: A free, commercially representative embedded benchmark suite”

[26] S. Mamidi, E.R. Blem, M.J. Schulte, J. Glossner, D. Iancu, A. Iancu, M.

Moudgill, S. Jinturkar, ”Instruction set extensions for software defined radio on a

multithreaded processor”, ACM Proceedings of the 2005 international conference

on Compilers, architectures and synthesis for embedded systems, pages 266–273,

2005.

97

BIBLIOGRAPHY

[27] Ashruf, R. and Gaydadjiev, G. and Vassiliadis, S. and NL, D.E.T.T.U.D., “Re-

configurable implementation for the AES algorithm”, Proceedings of ProRISC

2002, the 13rd Annual Workshop on Circuits, Systems and Signal Processing

[28] Yedidya Hilewitz, Ruby B. Lee, Fast Bit Gather, Bit Scatter and Bit Permuta-

tion Instructions for Commodity Microprocessors Springer Science + Business

Media, LLC. Manufactured in The United States 2008

[29] Zhijie Shi, Ruby B. Lee, Bit Permutation Instructions for Accelerating Software

Cryptography Department of Electrical Engineering, Princeton University 2000

[30] Yedisya Hilewitz Zhijie Shi, Ruby B. Lee, Comparing Fast IMplementation of

Bit Permutation Instructions Annual Asilomar Conference on Signals ,Systems

and Computers.

[31] Gaisler web site:

http : //www.gaisler.com/

[32] R.Fazzolari ”Studio e realizzazione di un sistema integrato processore LEON-2

/ Bit Manipulation Unit riconfigurabile e analisi delle prestazion” internal report.

[33] Gian Carlo Cardarilli, Luca Di Nunzio, Marco Re, ”Arithmetic/Logic Blocks

for Fine-Grained Reconfigurable Units”, 2009 IEEE International Symposium on

Circuits and Systems

[34] M. Vesterbacka, ”A 14-transistor CMOS full adder with full voltageswing

nodes”, SiPS 99, IEEE Workshop on Signal Processing Systems, pp.713-722.

[35] A.A. Fayed, M.A.Bayoumi,”A low power 10-transistor full adder cell for embed-

ded architectures”, Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE Intl.

Symposium

98

BIBLIOGRAPHY

[36] Altera web site:

http : //www.altera.com/products/ip/processors/nios2/ni2− index.html

[37] ”Nios II Custom Instruction User Guide” ALTERA web site:

http : //www.altera.com/literature/ug/ug nios2 custom instruction.pdf

99

