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Introduction

Hybrid systems define a common mathematical framework for combining con-
tinuous and discrete processes, like the case of processes defined by differential
equations and by transition relations, respectively. Electrical circuits with both
analog and digital components, models of impacts, computing devices running
real-time applications, are all examples of processes defined by a combination of
differential equations and transition relations. Thus, they can be modeled and
studied as hybrid systems.

Hybrid systems have been studied in the last twenty years both by the com-
puter science community and by the control community, and a lot of different
definitions and results have been developed. Common to all of these definitions
is the mathematical characterization of the evolution and of the interaction of
continuous and discrete processes by way of the crucial notion of state. In this
thesis, we consider a quite general definition of hybrid systems that, to the best
of the knowledge of the candidate, subsumes classical definitions of a hybrid
system in both computer science and control theory. Based on this general defi-
nition of a hybrid system, we study two classical problems: stability problems of
control theory and verification problems of computer science, both generalized
to hybrid systems. Indeed, in the first part of the thesis, we propose Lyapunov-
like tools for the stability problem of a peculiar class of hybrid systems, and we
propose a specific temporal logic, and a method for rewriting the formulas of
this logic as fixpoint expressions, for the verification problem of hybrid systems.
The synthesis problem on hybrid systems, namely the problem of synthesizing a
hybrid system for achieving some predetermined goal, is a forward consequence
of the studies on analysis of hybrid systems. In the second part of the thesis,
we consider the framework of dynamical control systems, proposing non-hybrid
controllers on continuous systems with bounds on the inputs, and hybrid con-
trollers that, by virtue of their discrete dynamics, guarantee suitable properties
of the closed loop. Is worth mentioning that the combination of a classical con-
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tinuous process and of a hybrid controller results in a hybrid system that can
be studied with the analysis tools developed in the first part of the thesis.

The first chapter of this thesis is an introduction to hybrid systems. It is
based on the approach outlined in [61] for which several structural results has
been developed [63, 126, 127] and partially summarized in [62]. In these works,
a hybrid system is mainly defined by four components: a flow map, that defines
the continuous motion of the state (it is used to characterize the dynamics of
continuous processes); a jump map that defines the discrete motion of the state.
(it is used to characterize the transition relation of discrete processes); a flow
set, that defines the subset of the state space in which the continuous motion
of the state may occur ; a jump set, that defines the subset of the state space in
which the transitions of a discrete process may occur. Hybrid systems of this
kind are then compared with other approaches to hybrid systems in [68, 99]
and several notions like the concept of solution, dependence on initial states,
robustness are considered.

In the second chapter of this thesis, we study some stability problems [63] for
a specific class of hybrid systems named homogeneous hybrid systems [152]. We
address these problems by a Lyapunov-like approach and we propose sum-of-
squares algorithms [113] to characterize automatically the stability of a hybrid
system within the considered class. The contribution of Chapter 2 is in the def-
inition of local Lyapunov-like conditions for inferring global stability properties
(i.e. that apply to the whole state space) and in the definition of sum-of-squares
algorithms to automatically decide whether or not a hybrid system satisfies those
global stability properties. The results of the chapter have been partially de-
veloped during the visiting period at the CCDC of the University of California
Santa Barbara, US.

In Chapter 3 we continue to study hybrid systems by defining a temporal
logic [39] to express properties on hybrid systems. Temporal logics are frequently
used in computer science on discrete processes and on simple hybrid systems
[39] (e.g. automata equipped with clocks, to take into account the elapsing of
time). The contribution of Chapter 3 is in the definition of a new semantics for
TCTL, a branching temporal logic with constraints on time [73]. The proposed
semantics allows for a generalization of this logic to express properties of hybrid
systems when Zeno phenomena occur (namely when the motion of the state
has infinitely many jump in a bounded interval of time). Based on this new
semantics, we propose a method to reduce a formula to a fixpoint expression
[73]. We show also that the proposed semantics coincides with the semantics of
CTL [39] when a hybrid system is used to model a process that is only discrete.
The results of the chapter are partially based on the studies on modal logics
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developed during the visiting period at the LFCS of the University of Edinburgh,
Scotland, UK.

Synthesis problems are studied in Chapters 4 and 5. In Chapter 4 we consider
the case of continuous systems with bounds on input. For specific planar cases
we propose an approach that blends together linear and optimal controllers [11],
that guarantees time- or fuel-optimal performance when the state of the system
is far from the equilibrium, while it guarantees exponential stability when the
state is close to the equilibrium. For general closed loops with linear plants, we
propose controllers based on the anti-windup approach [58]. In particular, we
consider the case of magnitude and rate saturation at the input of the plant and
we design antiwindup controllers by solving BMI and LMI [24]. It is worth to
note that the approaches in Chapter 4 produce non-hybrid controllers, based on
the fact that no discrete transitions occur. The control authority is continuously
moved between two control devices, a global one and a local one, based on a
suitable relation that depends on the state of the system. These approaches can
be related to hybrid control techniques by relaxing the requirement on continuity
of the management of the control authority, introducing switching policies and
resets of the controllers state.

Hybrid techniques in control problems are considered in Chapter 5. In the
first part of the chapter we propose a technique for inducing passivity [130] on a
class on nonlinear systems. In particular, we stabilize a passive system through
the interconnection with a passive controller whose passivity is induced by re-
sets. In the second part of the chapter we propose a technique for breaking the
signals continuity in a feedback loop, namely the continuity of signals that bring
the plant output measurements to the controller input. We propose a sampling
mechanism based on intelligent sensors, that transmit the measurements sam-
ples based on a nonperiodic scheduling. Since the ultimate goal of the above
policies is to reduce the data rate, we call lazy these intelligent sensors, to re-
semble the fact that they are reluctant to transmit, and that they do so only
when it is required for preserving the stability of the closed-loop system.

The research activity carried out during the PhD studies of the candidate
produced the following publications in international journals and international
conferences:

– A family of global stabilizers for quasi-optimal control of planar linear
saturated systems.
F. Forni, S. Galeani, and L. Zaccarian,
IEEE Transaction on Automatic Control, 2010, to appear.
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– Gain-scheduled, model based anti-windup for LPV systems.
F. Forni and S. Galeani.
Technical communique, Automatica, 46(1):222-225, 2010.

– Passification of nonlinear controllers via suitable time-regular reset map.
F. Forni, D. Nešić, and L. Zaccarian.
Symposium on Nonlinear Control Systems (NOLCOS), August 2010.

– An almost anti-windup scheme for plants with magnitude, rate and cur-
vature saturation.
F. Forni, S. Galeani, and L. Zaccarian.
American Control Conference, June 2010.

– Model recovery anti-windup for plants with rate and magnitude saturation.
F. Forni, S. Galeani, and L. Zaccarian.
European Control Conference, August 2009.

A number of additional publications related to the most recent research work
are currently submitted and under review.



Contents

Introduction 5

Notation 13

1 The Hybrid Systems Framework 15
1.1 Hybrid Systems: Models and Solutions . . . . . . . . . . . . . . . 20
1.2 Relations to Other Models . . . . . . . . . . . . . . . . . . . . . . 26
1.3 Basic Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Stability of Homogeneous Systems 51
2.1 The Class of Hybrid Systems . . . . . . . . . . . . . . . . . . . . 54
2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.2 Sum of Squares Algorithm . . . . . . . . . . . . . . . . . . 58
2.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3 Overshoots and Instability . . . . . . . . . . . . . . . . . . . . . . 64
2.3.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.2 Sum of Squares Algorithms . . . . . . . . . . . . . . . . . 68
2.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.4 Notes on Sum of Squares Implementation . . . . . . . . . . . . . 77

3 Formal Verification of Hybrid Systems 81
3.1 A Model for Hybrid Systems . . . . . . . . . . . . . . . . . . . . 82
3.2 HTCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.1 HTCTL and CTL . . . . . . . . . . . . . . . . . . . . . . 90
3.3 Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9



10

3.4 From HTCTL Formulas to Fixpoints . . . . . . . . . . . . . . . . 98
3.4.1 The Extended Hybrid System . . . . . . . . . . . . . . . 99
3.4.2 From Time Intervals rop (ct, cj) to Time Intervals ≥(0,0) 102
3.4.3 From ∃ϕ1Uϕ2 and ∀ϕ1Uϕ2 to Fixpoints . . . . . . . . . . 104

3.5 The Verification Procedure . . . . . . . . . . . . . . . . . . . . . 109

4 Control of Constrained Systems 111
4.1 Globally Stabilizing Quasi-Optimal Control of Planar Saturated

Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.1.1 A Family of State Feedback Stabilizers . . . . . . . . . . . 113
4.1.2 Parameter Selections for Quasi Time-Optimal Responses . 117
4.1.3 Parameter Selections for Quasi Fuel-Optimal Responses . 122
4.1.4 Simulation Examples . . . . . . . . . . . . . . . . . . . . . 125

4.2 Model Recovery Anti-Windup for Rate and Magnitude Saturated
Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 129
4.2.2 Plant-Order Anti-Windup Solution . . . . . . . . . . . . . 132
4.2.3 Extended Anti-Windup Solution . . . . . . . . . . . . . . 135
4.2.4 Simulation Example . . . . . . . . . . . . . . . . . . . . . 139

5 Case Studies of Hybrid Control Systems 143
5.1 Passification of Controllers via Time-Regular Reset Map . . . . . 146

5.1.1 A Class of Nonlinear Reset Controllers . . . . . . . . . . . 147
5.1.2 Passivity of the Reset Controller . . . . . . . . . . . . . . 150
5.1.3 Application to Feedback Systems . . . . . . . . . . . . . . 151
5.1.4 Simulation Example . . . . . . . . . . . . . . . . . . . . . 154

5.2 Control over Network: Lazy Sensors . . . . . . . . . . . . . . . . 158
5.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 160
5.2.2 State feedback: synchronous approach . . . . . . . . . . . 162
5.2.3 State feedback, asynchronous approach . . . . . . . . . . 166
5.2.4 Output feedback approach . . . . . . . . . . . . . . . . . . 170
5.2.5 Simulation example . . . . . . . . . . . . . . . . . . . . . 172

6 Proofs 175
6.1 Proof of the Results in Chapter 1 . . . . . . . . . . . . . . . . . . 175

6.1.1 Proof of Theorem 1.5. . . . . . . . . . . . . . . . . . . . . 175
6.2 Proof of the Results in Chapter 2 . . . . . . . . . . . . . . . . . . 176

6.2.1 Proof of Claim 2.1. . . . . . . . . . . . . . . . . . . . . . . 176
6.2.2 Stability Proofs . . . . . . . . . . . . . . . . . . . . . . . . 178



11

6.2.3 Overshoots and Instability Proofs. . . . . . . . . . . . . . 188
6.3 Proof of the Results in Chapter 3 . . . . . . . . . . . . . . . . . . 193

6.3.1 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . 193
6.3.2 Proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . 194
6.3.3 Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . . . 195
6.3.4 Proof of Proposition 3.5. . . . . . . . . . . . . . . . . . . . 196
6.3.5 Proof of Proposition 3.6 . . . . . . . . . . . . . . . . . . . 197
6.3.6 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . 199
6.3.7 Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . 200

6.4 Proof of the Results in Chapter 4 . . . . . . . . . . . . . . . . . . 205
6.4.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . 205
6.4.2 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . 209
6.4.3 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . 213
6.4.4 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . 213

6.5 Proof of the Results in Chapter 5 . . . . . . . . . . . . . . . . . . 218
6.5.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . 218
6.5.2 Proofs of Theorems 5.2 and 5.3. . . . . . . . . . . . . . . 220
6.5.3 Proof of Theorem 5.4. . . . . . . . . . . . . . . . . . . . . 222
6.5.4 Proof of Theorem 5.5. . . . . . . . . . . . . . . . . . . . . 223



12



Notation

– R denotes the set of real numbers. Z denotes the set of integer numbers.
For any given a ∈ R, R≥a denotes the set of real numbers greater than or
equal to a and R>a denotes the set of real numbers strictly greater than
a. Analogously for Z≥a and Z>a. We will use Z≥0 to denote Z≥0.

– Euclidean norm of a vector and the corresponding induced matrix norm
are denoted by | · |. For a vector x ∈ R

p, |x|∞ = max{|xi|, i = 1, . . . , p},
where xi is the ith component of x. The L2 norm of a signal is denoted
by ‖ · ‖2. The L∞ norm of a signal is denoted by ‖ · ‖∞.

– Given a set S ⊆ R
n and a vector x ∈ R

n, for some n ∈ Z≥0, |x|S =
infy∈S |x− y|.

– Given a square matrix X , He(X) = X +XT .

– Given a vector x ∈ R
n, for some n ∈ Z≥0, diag(x) denotes diagonal matrix

having the entries of x on the main diagonal. xT denotes the transpose
vector of x.

– Given two vectors x, y ∈ R
n, for some n ∈ Z≥0, 〈x, y〉 = xT y.

– A function α : R≥0 → R≥0 is said to belong to class K if it is strictly
increasing and α(0) = 0; it is said to belong to class K∞ if a = +∞
and limr→+∞ α(r) = +∞. A function β : R≥0 × R≥0 → R≥0 is said to
belong to class KL if for each t, s ∈ R≥0 (i) β(·, t) is non decreasing and
limt→0 β(s, t) = 0, and (ii) β(s, ·) is non increasing and lims→∞ β(s, t) = 0.
A function is γ : R≥0 ×R≥0 × R≥0 → R≥0 is said to belong to class KLL
if for each r ≥ 0, γ(·, ·, r) and γ(·, r, ·) are KL functions.

– B(x, a) denotes the ball of radius a ∈ R>0 centered in x ∈ R
n, that is,

B(x, a) = {y : |x− y| ≤ a}. B(a) or aB denote B(0, a). B denotes B(0, 1).

13
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– Given a set S, S denotes the closure of S (namely the union of S with its
boundary) and co(S) denotes the closed convex hull of S.

– Given two sets S1 and S2, S1 × S2 = {(s1, s2) | s1 ∈ S1 and s2 ∈ S2}.

– Given two sets S1 and S2, subsets of R
n, S1 + S2 = {s | s = s1 +

s2 for some s1 ∈ S1 and s2 ∈ S2}.

– Given two sets S1 and S2, S1 \ S2 = {s | s ∈ S1 and s /∈ S2}.

– For a given set S, 2S denotes the set of all subset of S.

– For any given sets S1 and S2, a set-valued mapping M from S1 to S2,
denoted M : S1 ⇉ S2, maps each element of S1 to a subset of S2.
• The domain of M is the set: domM = {x ∈ S1 |M(x) 6= ∅}.
• The range of M is the set: rngM = {y ∈ S2 | ∃x ∈ S1, y ∈M(x)}.
• The graph of M is the set: gphM = {(x, y) ∈ S1 × S2 | y ∈M(x)}.
We denote that set-valued mapping M also as M : S1 → 2S2 .

– For any given mapping M : S → S, and for any given element s of S, we
write M i(s) to denote i applications of M to s, that is, M0(s) = s and
M i+1(s) = M(M i(s)).

– For any given set S, an ω-chain in 2S is a set {Si |Si ⊆ S and i ∈ Z≥0}
such that either ∀i ∈ Z≥0, Si ⊆ Si+1, or ∀i ∈ Z≥0, Si ⊇ Si+1.

– For any given expression E[s] constraining the variable s ranging over a
given set S, we denote by λs.E[s] the function that maps each value s of
S to E[s]. For a function λs.E[s] and for a variable t, λs.E[s]t = E[t].

– Given a linearly ordered set I under the relation ≤, consider a sequence
of sets {Si}i∈I . ∪i≤jSi’s denotes the union of sets Si’s with i ≤ j. ∪iSi

denotes the union of all sets Si’s. Analogously for the intersections ∩i≤jSi

∩iSi .

– For any given set S and any given mapping M : 2S → 2S , we denote
the least fixpoint of M as µZ.M(Z) =

⋂{Z |M(Z) ⊆ Z}. Similarly, we
denote the greatest fixpoint of M as νZ.M(Z) =

⋃{Z |M(Z) ⊇ Z}.

– In the fixpoint expression E = µX.ϕ, ϕ is said to be the scope of µX.. We
say that the fixpoint µX. in the fixpoint expression E = µX.ϕ binds the
variable X . Analogously for E = νX.ϕ.



Chapter 1

The Hybrid Systems

Framework

A hybrid system is a dynamical process whose dynamics can be reduced neither
to a continuous motion nor to a discrete sequence of transitions An example of
these systems is given by the interaction of a computer program and a robot,
when a computer program is used to control the movement of the robot. In that
case, the dynamics of the robot is continuous, that is, it can be described by
equations of classical mechanics, while the behavior of the computer program is
a discrete process based on suitable transitions between memory configurations,
and those transitions are determined by the instructions of the program. Several
new phenomena arise from the interaction of discrete and continuous processes
and they must be considered during the analysis of the complete system, as well
as during the synthesis of each part. Usually these phenomena do not occur or
are unimportant for the characterization of the behavior of a purely continuous
process or of a discrete process. For example, on the computer-robot case, the
time between a request to the computer program and a possible answer must
respect some time-constraints, due to the fact that during the computation time
the robot is still in motion. This real-time requirement on the program, namely
the ability to answer in a predetermined amount of time, is usually not a re-
quired feature on computer programs. Similar new phenomena occur also on the
side of the robot. The motion of the robot satisfies a given differential equation,
until some event occurs. For example, an electronic bumper may become aware
of the presence of an obstacle near the robot, producing an interrupt to the

15



16 CHAPTER 1. THE HYBRID SYSTEMS FRAMEWORK

computer program. In that case, the continuous motion of the robot is instan-
taneously modified by the computer program decision, that could force a fast
safety-reaction either by a discontinuous variation of the inputs to the robot, or
by enforcing a completely different equation of motion (i.e. a safety-brake).

Complex dynamics not reducible to classical continuous or discrete processes
can be found also on much simpler examples. Consider the case of the fan of an
electronic temperature control system. Suppose that the fan has two operative
conditions: on - with a given steady speed, and off - with the zero speed. The
dynamics of the fan depends in a non-continuous way on the particular switch
event. It is also not discrete, by the fact that the variation of the speed of the
fun is not instantaneous. Then, a model that takes into account startup and
shutdown time intervals of the fan, namely the time interval that the fan needs
to reach its steady-speed, when a switch from off to on occurs, and the time to
reach the zero speed, when a switch from on to off occurs, would be necessarily
a hybrid system.

Processes with variable dynamics, processes that involve logical variables or
some logical reasoning, electronic circuits with digital and analog components,
mechanical systems defined on dramatically different time-scales, like the case of
mechanical systems with impacts, are all processes that cannot be characterized
by relying either on a continuous model, like differential equations, or on a dis-
crete model, like transitions relations. Hybrid systems provide a mathematical
framework to characterize those kinds of processes. A mathematical definition
of a hybrid system will be presented in the next section. Now we present some
simple examples of hybrid systems that combine continuous dynamics and dis-
crete transitions.

Example 1.1 Consider the relay hysteresis defined as ẋ = H(x) + u, where
x ∈ R, ∆ ∈ R>0, and H(x) = 1 for each x < −∆, while H(x) = −1 for each
x > ∆. When −∆ ≤ x ≤ ∆, the value of H(x) depends on the history of x, as
represented in Figure 1.1.

A model for the relay hysteresis can be constructed by adding a new variable
q for taking into account the history of x. Indeed, the motion of x satisfies the
following differential equations.

– ẋ = 1 + u and x ≤ ∆ and q = 1,

– ẋ = −1 + u and x ≥ −∆ and q = −1.

Then, the transition relation on q can be defined as follows:

– q jumps from q = 1 to q = −1 and x ≥ ∆,
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∆−∆

1

−1

x

H(x)

Figure 1.1: Relay type hysteresis

– q jumps from q = −1 to q = 1 and x ≤ −∆.

We assume that the continuous motion of x satisfies both the differential equa-
tions and the conditions on the right-hand side of the equations, at the same
time. Analogously for the motion of q. For example, suppose that x ≤ ∆, u = 0
and q = 1. Then, the value of x grows until x = ∆. From x = ∆ a discrete
transition occurs, that is, q jumps from q = 1 to q = −1, and the value of x
begins to decrease. An interesting case is x < −∆ and q = −1. None of the
differential equations has a right-hand side compatible with this initial states.
In this case, no continuous motion of x is possible. Nevertheless, a transition
from q = −1 to q = 1 is indeed compatible, therefore a jump takes place.

Example 1.2 The motion of a ball in a circular pool table of radius r can be
described by the following differential equation, where the position of the ball
is defined by the variables x1 and y1, and the velocity of the ball is defined by
the variables x2 and y2.





ẋ1 = x2

ẋ2 = 0
ẏ1 = y2
ẏ2 = 0

x2
1 + y2

1 ≤ r2 (1.1)

The motion of the ball satisfies the differential equations above, provided that
the ball remains inside the pool table, as defined by the inequality x2

1+y
2
1 ≤ r2 on

the right-hand side of Equation (1.1). When the ball hits the border of the pool
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table, defined by the equation x2
1 + y2

1 = r2, its motion must be instantaneously
modified to take into account the occurrence of an impact.

An impact is modeled by the following transition relation, where the sup-
script + denotes the values of the position and of the velocity of the ball after
the impact. αx and αy are functions in R

4 → R, that define the new value of
the velocity after the impact.





ẋ+
1 = x1

ẋ+
2 = αx(x1, x2, y1, y2)
ẏ+
1 = y1
ẏ+
2 = αy(x1, x2, y1, y2)

x2
1 + y2

1 = r2 . (1.2)

Analogously to the continuous dynamics, the motion of the ball satisfies the
transition relation above, provided that the conditions on the right-hand side
of transition relation are verified. The impact of the ball to the border of the
pool does not change the ball position x1, y1, but it instantaneously modifies
the ball velocity x2, y2, as defined by αx and αy. See Figure 1.2.

n

r x1

y1

Figure 1.2: A circular pool table

Example 1.3 From [46, Page 37], a simplified model of a manual transmission
can be defined as follows.






ẋ1 = x2

ẋ2 =
−ax2 + u

1 + v

(1.3)
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where v ∈ {1, 2, 3, 4, 5} is the gear shift position and u is the acceleration. a is a
parameter of the system. The differential equation above is parameterized with
respect to v, that is, there are five different differential equations each of which
related to a specific gear shift position. Note that, for this case, a transition
relation for v is not defined and we assume that v is driven by some external
events.

Example 1.4 In the classical racetrack between Achilles and the tortoise, Achilles
runs 10 times faster than the tortoise, while the tortoise begins its run with some
distance a0 ahead of Achilles. The race begins and, when Achilles reaches the
starting point of the tortoise, a0, the tortoise has moved to another point, say
a1 > a0. Then, Achilles runs to that new point a1 but, at that time, the tortoise
has already moved to another point, say a2 > a1. This situation would repeat
infinitely many times.

A model for the Achilles-tortoise racetrack can be defined by the following
equations. Denote xT , xA and xP respectively the current position of the tor-
toise, the current position of Achilles and the previous position of the tortoise.
Then, using the notation adopted in Example (1.2),






ẋT = 1
ẋA = 10
ẋP = 0

xA ≤ xP






x+
T = xT

x+
A = xA

x+
P = xT

xA = xP

(1.4)

Both Achilles and the tortoise move at constant speed, satisfying the differential
equations above, while xP remains constant, preserving the value of position of
the tortoise, stored in xP . This continuous motion must satisfy the condition on
the right-hand side of the differential equation, that is, the position of Achilles
must be lower then the value stored in xP for all time. Note that the lack of
constraints on the position of the tortoise, in the right-hand side of the differen-
tial equations, means that the motion of the tortoise must satisfy the differential
equation only.

The transition relation defines the discrete motion of xP . When the condi-
tion on the right-hand side of the transition relation above is satisfied, a jump
occurs and the value of xP is updated to the current position of the tortoise,
satisfying the transition relation.

By looking at Figure 1.3, from any initial state for which the tortoise has
some advantage on Achilles, that is, xT > xA and xP = xT , the hybrid system
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produces a motion of the state in which there are infinitely many transitions in
a bounded interval of time. This behavior is usually called Zeno phenomenon.

xA(t)

xP (t)

xT (t)

t

xT

xA

xP

Figure 1.3: Achilles-tortoise racetrack.

1.1 Hybrid Systems: Models and Solutions

As we have indicated through several examples in the previous section, hybrid
phenomena arise from the interaction of two different kinds of processes, (i) the
processes that live in a continuous-time world, like a dynamical system defined
by a differential equation, and (ii) the processes that live in a discrete-time
world, like the case of a computing system whose computation depends on a
specific transition relation. Hybrid systems can be considered as a framework
for modeling that continuous and discrete processes together with their inter-
action, so that hybrid phenomena can be described and studied in a common
mathematical framework.

The description of continuous and discrete processes as well as the character-
ization of their interaction can be developed in several ways [42, 46, 62, 68, 99,
100, 110]. In what follows we consider a notion of a hybrid system in which the
description and the interaction of continuous and discrete processes are modeled
towards the central notion of state, inherited from automata and from continu-
ous dynamical systems as well. In general, the current configuration of a hybrid
system is stored in the state and the dynamic behavior of the system (namely
the motion of the state) is fully determined by suitable functions and relations
that depend on state. A solution to a hybrid system, that is, the motion of the
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state of the hybrid system, is both continuous (flow intervals) and discontinu-
ous (jumps): flow intervals and jumps satisfy specific differential inclusions and
transitions relations that depend on the state, and their interleaving is defined
by specific relations on the state.

By following [61, 62, 63], we consider a model of a hybrid system defined as
follows.

Definition 1.1 A hybrid system is a 5-tuple H = (O,C,D, F,G) where, for
some n ∈ Z≥0, O is an open subset of R

n, C and D are subset of R
n denoted as

flow set and jump set and F : O ⇉ R
n and G : O ⇉ O are set-valued mappings

denoted as flow map and jump map.

Hybrid systems can be represented as follows

H :

{
ẋ ∈ F (x) x ∈ C ∩O
x+∈ G(x) x ∈ D ∩O (1.5)

The upper part of (1.5) defines the continuous dynamics of the hybrid system.
The motion of the state must satisfy both the differential inclusion on the left-
hand side, and the relation on the right-hand side, that is, the state moves in
accordance with the flow map and it must remains within the flow set, for all
times. Analogously, the lower part of (1.5) defines the discrete dynamics of the
hybrid system. Indeed, the state moves in accordance with the jump map, in
the left-hand side, provided that it satisfies the relation on the right-hand side,
that is, a jump occurs when the state belongs to the jump set. Note that we
will use ẋ = F (x) instead of ẋ ∈ F (x) whenever F is a single-valued mapping.
Analogously for G.

A convenient parameterization for the sequence of jumps and flow intervals
that characterize the motion of the state relies on a generalized notion of time,
called hybrid time. The hybrid time is defined by two parameters (t, j) ∈ R≥0×
Z≥0. t ∈ R≥0 can be interpreted as the usual time variable of continuous
process and j ∈ Z≥0 can be interpreted as the usual counter variable of discrete
processes. As usual, we denote the value of the state x of a hybrid system H
(1.5) at time (t, j) as x(t, j).

We define the hybrid time in Definition 1.2 below, following [63]. Similar
notions can be found in [42, Definition 2.1] and in [99, Definition II.2]. It is
worth mentioning that parameterizing the motion of the state by the hybrid
time allows for the use of several powerful tools of set-valued analysis on hybrid
systems. For example, graphical convergence of sets can be conveniently applied
to discontinuous solutions of hybrid systems, to characterize convergence of
sequences of solutions to some given limit solution.
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Definition 1.2 A subset S of R≥0 × Z≥0 is a compact hybrid time domain if

S =
J−1⋃

j=0

([tj , tj+1] × {j}) (1.6)

where 0 = t0 ≤ t1 ≤ · · · ≤ tJ . S is a hybrid time domain if for all (T, J) ∈
R≥0 × Z≥0

S ∩ ([0, T ]× {0, 1, . . . , J}) (1.7)

is a compact hybrid time domain.

Equivalently, a subset S of R≥0 ×Z≥0 is a hybrid time domain if it is the union
of a finite or infinite sequence of intervals [tj , tj+1] × {j}. If the sequence is
finite, say of J ∈ Z≥0 intervals, then the J-th interval is possibly of the form
[tJ−1, tJ ) × {J − 1} with tJ = +∞. An example of hybrid time is in Figure
1.4. Note that the usual ordering (t, j) ≤ (t′, j′) if t ≤ t′ and j ≤ j′ induces a
total ordering on each hybrid time domain, given by (t, j) ≤ (t′, j′) if and only
if t+ j ≤ t′ + j′.

t

j

(t0,0) (t1,0)

(t1,1) (t2,1)

(t2,2)=(t3,2)

(t3,3) (t4,3)

(t4,4) (t5,4)

(t5,5)

Figure 1.4: An example of hybrid time. Filled circles denote the border of each
interval and characterize the occurrence of a jump.

Several different characterizations of the motion of the state of a hybrid
system can be found in literature and several different words like execution,
solution, trajectory are used to denote the motion of the state of a hybrid
system. In what follows we use the word solution and we consider the definition
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of solution to a hybrid system given in [63]. A comparison between different
concepts of solution to a hybrid system can be found in [127].

Definition 1.3 A hybrid arc x is a map x : domx→ R
n such that

1. domx is a hybrid time domain, and

2. for each j, the function t 7→ x(t, j) is a locally absolutely continuous
function on the interval Ij = {t : (t, j) ∈ domx}.

Definition 1.4 A hybrid arc x : domx→ R
n is a solution to the hybrid system

H if x(0, 0) ∈ O and

1. for each j ∈ Z≥0 such that Ij has a nonempty interior,

ẋ(t, j) ∈ F (x(t, j)) for almost all t ∈ Ij
x(t, j) ∈ C for all t ∈ [min Ij , sup Ij)

(1.8)

2. for each (t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j + 1) ∈ G(x(t, j))
x(t, j) ∈ D

(1.9)

where we used “almost all” for denoting the one-dimensional Lebesgue measure
on domx ∩ (R≥0 × {j}).

The relationship between hybrid time domains and solutions to a hybrid
system is more complicated than the usual relationship between solutions to
differential equations and time. Usually, for a hybrid arc x, domx is not men-
tioned explicitly but it is always assumed to be defined exactly as the set of
points (t, j) for which a given hybrid arc is defined. In fact, a possible alter-
native interpretation of a hybrid arc, say x, is to consider it as a set-valued
mapping x : R≥0 × Z≥0 ⇉ R

n, that maps each R≥0 × Z≥0 either to a single
value of R

n or to the empty set. In that case, what we called domx would be
the subset of R≥0×Z≥0 of points (t, j) for which x(t, j) is nonempty. Intuitively,
a hybrid arc carries its own hybrid domain, namely, the subset of R≥0 ×Z≥0 on
which it is defined. An example of a solution graph is in Figure 1.5.

In general, a solution stays in O, it flows satisfying ẋ ∈ F (x) when it is in
C, and it jumps satisfying x+ ∈ G(x) when it is in D. Note that C and D may
overlap. In that case, a solution x to H either flows or jumps, nondeterministi-
cally. Nondeterminism of solutions to hybrid systems also occur when flow and
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t

j

x

t1 t2 t3 t4

1

2

3

4

Figure 1.5: A possible solution x to a hybrid system H
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jump sets do not overlap. In fact, from a given initial state, a differential equa-
tion with continuous right-hand sides have at least one solution and, to have
unicity of solution, further conditions must be considered, like Lipschitzianity.
An example is given by a hybrid system of equation

H :

{
ẋ = x

1
3 x ∈ R

x+ = 0 x ∈ ∅ (1.10)

Then, both the hybrid arcs ξ1 and ξ2 defined by ξ1(t, 0) = (2t
3 )

3
2 and ξ2(t, 0) = 0,

for all t ∈ R≥0, are solutions to the hybrid system above, from the initial state
0, [87, Section 3.1]. Nondeterminism of solutions is also related to the use of
set-valued mappings. For example, consider the following hybrid system

H :

{
ẋ ∈ [−1, 1] x ∈ R

x+ ∈ R x ∈ ∅ (1.11)

Then, each hybrid arc ξ defined by ξ(t, 0) ∈ [x0 − t, x0 + t], for all t ∈ R≥0, is
a solution to the hybrid system from the initial state x0 ∈ R. An example of a
solution to a given hybrid system is represented in Figure1.6.

O

C

D

ξ(0, 0)
ξ(t1, 0)

ξ(t1, 1)

ξ(t1, 2)

ξ(t1, 3)

ξ(t2, 3)

Figure 1.6: A possible solution x to a hybrid system H

In what follows we refer to the following types of solutions.
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Definition 1.5 A solution x to a hybrid system H is called
• nontrivial, if domx has at least two points;
• complete, if domx is unbounded, that is, it does not exist a compact set
K ⊂ R≥0 × Z≥0 such that domx is a subset of K;
• Zeno, if domx is complete and supt domx <∞;
• maximal, if it cannot be extended, that is, it does not exist a solution y to
H such that domx is a proper subset of dom y and y(t, j) = x(t, j) for each
(t, j) ∈ domx.
• discrete, if there are no flow intervals.
• continuous, if there are no jumps.

Using the notion of solution to a hybrid system, we can define the set of
reachable states from a given set X ⊆ O.

Definition 1.6 Consider a hybrid system H. A state x is reachable from x0

if there exists a solution ξ to H such that ξ(0, 0) = x0 and ξ(T, J) = x for
some (T, J) in dom ξ. A solution ξ to H reaches a point x if there exists a
(T, J) ∈ dom ξ such that ξ(T, J) = x. The set of reachable states of H from a
set X ⊆ O is defined as

Reach(X) = {x | ∃x0 ∈ X, ∃ξ solution to H such that

ξ(0, 0) = x0 and ∃(T, J) ∈ dom ξ, ξ(T, J) = x} (1.12)

1.2 Relations to Other Models

Several different definitions of a hybrid system can be found in literature.
Among others, [68] present a definition of a hybrid system, called hybrid au-
tomata, that as been widely accepted and used, with minor modifications, by
the computer science community. A similar definition of a hybrid system can
be found in [99]. This definition is widely used by the control community. The
definition in [68, 99] is based on the following data.

1. Q is a finite set of nodes

2. X is a finite set of continuous variables, each of them ranging over R.

3. dom : Q ⇉ R
n maps each q ∈ Q to a subset of R

n. For each q ∈ Q,
dom(q) defines the set in which the system must flow.
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4. flow : Q × R
n ⇉ R

n is the flow map of the hybrid system. In [99], for
each q ∈ Q, flow(q, ·) is a single-valued mapping denoted by fq(·). In [68],
for each q ∈ Q and x ∈ R

n, flow is a particular predicate on x and ẋ that
denotes a subset of R

n.

5. E ⊆ Q×Q is a set of edges that defines the transitions between modalities.

6. guard : E ⇉ R
n maps each edge to a subset or R

n. For each e ∈ E,
guard(e) defines the set from which a jump may occur.

7. reset : E × R
n ⇉ R

n nondeterministically maps each transition E and
each point x ∈ R

n to a point y ∈ R
n. reset(e, x) defines the possible values

of the state after a jump.

Hybrid systems in [68, 99] are usually represented by nodes and arcs, following
the classical representation of finite automata [81]. An example is given in
Figure 1.7. Usually, the dom and the flow functions are represented inside a
node or linked to a node, the guard functions enable a jump and are placed at
the beginning of an edge, and the reset functions defines the value of the state
after a jump, and are usually placed at the end of an edge.

x ∈ dom(q1) x ∈ dom(q2)
ẋ ∈ flow(q1, x)

x+
∈ reset(e, x)x ∈ guard(e)

ẋ ∈ flow(q2, x)

q1 q2

Figure 1.7: Example of a edge e = (q1, q2) that connects two modes of a hybrid
system in [68, 99].

Solutions to these hybrid systems are usually named executions and are
quite similar, with minor differences, to the notion of solution in Definition 1.4.
An execution ξ is a sequence of continuous functions xi ∈ Ii → R

n, where
Ii ⊆ R≥0 and i ∈ Z≥0. For each i, xi maps t ∈ Ii ⊆ R≥0 to xi(t) and it
characterizes the continuous motion of the state of the system. Indeed, for each
i, a function xi is associated to a mode qi ∈ Q and it satisfies the differential
inclusion ẋi(t) ∈ flow(qi, xi(t)), provided that xi(t) belongs to dom(qi) for all
t ∈ Ii, until a jump occurs. For each i ∈ Z≥0, if xi enters guard(e), that is, for
some t ∈ R≥0 and some q ∈ Q, xi(t) ∈ guard(qi, q), then a jump may occur. If
xi enters guard(e) and no further continuous motion of the state is allowed by



28 CHAPTER 1. THE HYBRID SYSTEMS FRAMEWORK

dom(qi), then a jump must occur. When a jump occurs, the mode qi ∈ Q is
updated to a new mode qi+1 ∈ Q and a reset occurs on ξ, satisfying reset .

These hybrid systems, say H = (Q,X,E, dom,flow , guard , reset), can be
rewritten to hybrid systems in Definition 1.1, say H = (Rn+1, C,D, F,G), where
n is the dimension of the state x ∈ X , as follows:

– C =
⋃

q∈Q dom(q) × {q};

– D =
⋃

q∈Q

⋃
(q,q′)∈E guard(q, q′) × {q};

– F (x, q) = flow (q, x) × {0} ;

– G(x, q) =
⋃

{q′ | x∈guard(q,q′)} reset((q, q′), x) × {q′}.

Then, by considering (x, q) ∈ R
n × R the state vector of H, it follows that

H :






˙[
x
q

]
∈ F (x, q) (x, q) ∈ C

[
x
q

]+
∈ G(x, q) (x, q) ∈ D

(1.13)

Example 1.5 Consider the hybrid systemH = (Q,X,E, dom, flow, guard, reset)
represented in Figure 1.8, whose data are

Q = {q1, q2}, E = {q1, q2} and X = {x}, where x ∈ R,

dom(q1) = [0, 1] and dom(q2) = [0, 2],

flow(q1, x) = 1 and flow(q2, x) = −1,

guard(q1, q2) = 1 and guard(q2, q1) = 0,

reset(q1, q2, x) = reset(q2, q1, x) = x.

x+
=

xx
= 1

q1 q2

q1 :







x ∈ [0, 1]
ẋ = 1

q2 :







x ∈ [0, 2]

ẋ = −1x+
=

x x
= 0

Figure 1.8: Representation by graphs of the hybrid system in Example 1.5

Then, by encoding q1 with 1 and q2 with 0, we can rewrite H as a hybrid system
H = (R2, C,D, F,G), where
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C = [0, 1]× {1} ∪ [0, 2]×{0},
D = {(1, 1), (0, 0)},

F =

{ [
1 0

]T
if (x, q) ∈ [0, 1]× {1}[

−1 0
]T

if (x, q) ∈ [0, 2]× {0}

G =

{ [
x 0

]T
if (x, q) ∈ [0, 1]× {1}[

x 1
]T

if (x, q) ∈ [0, 2]× {0}
that is

H :






˙[
x
q

]
∈
[

1
0

]
q +

[
−1
0

]
(1 − q) (x, q)∈ [0, 1] × {1} ∪ [0, 2]×{0}

[
x
q

]+
∈
[

x
mod (q + 1, 2)

]
(x, q) ∈ {(1, 1), (0, 0)}

(1.14)

An execution is parameterized with respect to a hybrid time trajectory1

[99]. A hybrid time trajectory can be easily associated to the notion of hybrid
time domain of a solution, in Definition 1.2, where more importance is given
to the information on jump instants, stored in the variable j. In fact, a hybrid
time trajectory of an execution is a sequence of intervals Ii = [ti, t

′
i], i ∈ Z≥0,

characterized by the fact that t′i = ti+1 and such that the last interval IN ,
N ∈ Z≥0, when it exists, can be of the form IN = [tN ,∞). Basically, hybrid
time trajectories can be considered as the projection of hybrid time domains to
the t axis. Moreover, executions ξ to a hybrid system of the form in [99] are
usually assumed CADLAG - continue a droit, limite a gauche:

– the left limit to the point of discontinuity t′i of a CADLAG solution ξ is
different from the value of the execution ξ at that point, say ξ(t′i);

– the right limit to the point of discontinuity t′i of a CADLAG solution ξ
coincides with ξ(t′i).

Indeed, suppose that for some i ∈ Z≥0 an execution ξ is defined by two function
xi and xi+1, defined on the intervals Ii = [ti, t

′
i] and Ii+1 = [ti+1, t

′
i+1], with

t′i = ti+1. Then, limt→t′−i
ξ(t) = limt→t′−i

xi(t) 6= ξ(t′i), while limt→t′+i
ξ(t) =

limt→t′+i
xi+1(t) = xi+1(t

′
i) = xi+1(ti+1) = ξ(ti+1) It follows that ξ satisfies the

differential equation ξ̇(t) ∈ flow (qi, ξ(t)) for each t ∈ [inf(Ii), sup(Ii)), leaving

1The relation between an execution and a hybrid time trajectory is similar to the relation
between a solution and its hybrid time domain for hybrid systems in Definition 1.1
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the time t′i = ti+1 unused and ready for the initial point ξ(ti+1) = xi+1(ti+1)
of the solution xi+1 associated to the next interval Ii+1. Each execution can be
easily associated to hybrid arc in Definition 1.3, and the intricacies of the use of
CADLAG functions can be ruled out by using the hybrid time in Definition 1.2.
In fact, for the same execution ξ, index i and functions xi and xi+1 considered
above, we can define a hybrid arc ξ such that

– ξ(t, i) = ξ(t) for ti ≤ t < t′i;

– ξ(t′i, i) = limt→t′−i
ξ(t);

– ξ(t, i+ 1) = ξ(t), for ti+1 ≤ t < t′i+1.

Thus, ξ(t, i) = xi(t), for ti ≤ t ≤ t′i, and ξ(t, i+1) = xi+1(t), for ti+1 ≤ t ≤ t′i+1.

1.3 Basic Conditions

Although hybrid systems (1.5) are defined as the juxtaposition of a continu-
ous dynamics and of a discrete dynamics, several new phenomena arise from
the interaction of these different kinds of dynamics, and it is not immediate to
generalize results on continuous and discrete systems to hybrid systems. For
example, non-unicity of solutions from a given initial state is avoided on con-
tinuous systems by enforcing some mild conditions on the right-hand side of
differential equations while, on hybrid systems, the possibility of C ∩ D 6= ∅
inherently entails it.

One important feature on hybrid systems (1.5) is their fragility to small
state-perturbations. New solutions, completely unrelated to the solutions of
the nominal system, can appear on a perturbed hybrid system, no matter how
small the perturbation magnitude is. Moreover, solutions can fail to exists. This
is related to the lack of sequential compactness of the space of solutions to a
hybrid system (namely when the limits of sequences of solutions are themselves
solutions), that has effects also on the continuity of solutions with respect to
the initial state, on the possibility of numerically simulate solutions to hybrid
systems and, in general, it is one of the obstacles to the generalization of classical
results of nonlinear systems to hybrid systems.

Following [125, Chapter 3], we can define an admissible state perturbation
as follows.

Definition 1.7 A mapping e is an admissible state perturbation if dom e is a
hybrid time domain and, for each j ∈ Z≥0, the function λt.e(t, j) is measurable
on dom e ∩ (R≥0 × {j}),
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Then, a hybrid system H = (O,C,D, F,G) with a state perturbation e, denoted
by He, can be defined as

H :

{
ẋ ∈ F (x+ e) x+ e ∈ C ∩O
x+∈ G(x+ e) x+ e ∈ D ∩O. (1.15)

The concept of solution to He is quite similar to concept of solution to H in
Definition 1.4.

Definition 1.8 [125, Definition 3.2] A hybrid arc x : domx→ R
n is a solution

to the hybrid system He with admissible state perturbation e, if

– domx = dom e,

– x(0, 0) + e(0, 0) ∈ C ∪D,

– for all (t, j) ∈ domx, x(t, j) + e(t, j) ∈ O, and

1. for each j ∈ Z≥0 such that Ij = {t : (t, j) ∈ domx} has a nonempty
interior,

ẋ(t, j) ∈ F (x(t, j) + e(t, j)) for almost all t ∈ Ij
x(t, j) + e(t, j) ∈ C for all t ∈ [min Ij , sup Ij);

(1.16)

2. for each (t, j) ∈ domx such that (t, j + 1) ∈ domx,

x(t, j + 1) ∈ G(x(t, j) + e(t, j))
x(t, j) + e(t, j) ∈ D.

(1.17)

To see the differences between solutions to H and solutions to He, let us
consider the following example.

Example 1.6 [Effect of small state-perturbations]
Consider a hybrid system with state vector x = [x1 x2 ]T ∈ R

2 defined by

H =





ẋ =

[
0 −π

2
π
2 0

]
x x ∈ C

x+ =

[
0 − 1

2
√

2

0 1
2
√

2

]
x x ∈ D

(1.18)

where D = {x |x1 = 0} and C = R
2 \ D. The unique solution to the system

H, from x0 = [1, 0]T , rotates counterclockwise for 1 unit of time, until it hits
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the set D. From there, it jumps to [− 1
2 ,

1
2 ]T , decreasing its norm by a factor

2 and rotating counterclockwise of π
4 . Then, this dynamics is repeated, alter-

nating flow intervals and jumps. Note that at each jump the norm of the state
vector decreases and, during flows, it remains constant. Therefore, the system
converges to the point in 0.

Consider now the set T = {(1+2k, 0) | k ∈ Z≥0} and consider a perturbation
e defined as e(t, j) = [ε, 0]T for each (t, j) ∈ T , for some ε > 0, and 0 otherwise.
From Definition 1.8, the unique solution xe to the perturbed system He, from
x0 = [1, 0]T , coincides with x until x hits D. Then, x jumps while xe(1, 0) +
e(1, 0) /∈ D, that is, xe does not jump. Moreover, looking at the time instants
at which e is not zero, it turns out that xe never jumps. See Figure 1.9.

x(0,0) = xe(0,0)

x(1,0) = xe(1,0)

x(1,1)

x(2,1)

x(2,2)

xe(t, 0), t > 1

Figure 1.9: Solutions x and xe to the nominal hybrid system H and to the
perturbed hybrid system He, respectively.

The solution xe is quite different from x. Indeed, it is different from each
solution to H, with initial state in the neighborhood of x0 = [1, 0]T , and this
is independent from the particular magnitude ε > 0 of the perturbation. Note
that such a situation would not occur if the set C was closed. In that case, a
solution that flows only would appear also in H and xe would remain close to
this solution, at least for an interval of time that depends on the perturbation
magnitude.
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By considering an intuitive notion of convergence of a solution ξ to a point
x defined as lim(t,j)∈dom ξ, (t+j)→∞ ξ(t, j) = x, this example shows also that con-
vergence of a solution to a point can be easily disrupted by arbitrarily small
state-perturbations. This has effects also on stability properties of hybrid sys-
tems. In fact, intuitively from usual stability concepts on nonlinear systems, we
can see that a possible result on asymptotic stability of the point 0 would be
not robust to some arbitrarily small state-perturbations.

We will not go into details of robustness problems but interesting references
on this topic, on hybrid systems, are [61, 63, 125, 127]. The main contribution
of these articles is in the definition of a set of minimal conditions on the data
of a hybrid system, called basic conditions, to get rid of phenomena showed
above. More precisely, the satisfaction of the basic conditions guarantees that
a properly defined limit of a sequence of solutions, generated by perturbations
that decrease in magnitude, would be itself a solution to the nominal hybrid
system. Indeed, a hybrid system H that satisfies the basic conditions exhibits a
sort of regularity of solutions that leads to several important results. For these
kind of systems, sequential compactness of the space of solutions holds, [63,
Theorem 4.4], there is outer semicontinuous dependence of solutions on initial
states, [62, Theorem 5], and it is possible to directly relate the solutions to H
with the solutions to state-perturbed hybrid systems Hδ, constructed from H
by a suitable state-perturbation of magnitude δ, [62, Theorem 8].

In [61, 62, 63, 125, 127] that arguments are developed in an exhaustive and
clear way, and several example are presented. In what follows, we simply present
the basic conditions, pointing out the goodness of working with regular hybrid
systems, namely, hybrid systems that satisfy the basic conditions.

Definition 1.9 A regular hybrid systems H = (O,C,D, F,G) satisfies the fol-
lowing basic conditions :

(i) O ⊆ R
n is an open set

(ii) C ⊆ R
n and D ⊆ R

n are relatively closed sets in O.

(iii) F : O ⇉ R
n is an outer semicontinuous set-valued mapping, locally

bounded on O and, for each x ∈ C, F (x) is nonempty and convex.

(iv) G : O ⇉ O is an outer semicontinuous set-valued mapping, locally bounded
and, for each x ∈ D, G(x) is nonempty.

The sets C and D are relatively closed in O if D = O ∩D and C = O ∩C. F is
outer semicontinuous if for all x ∈ O and all sequences xi → x, yi ∈ F (xi) such
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that yi → y, we have that y ∈ F (x). F is locally bounded if for any compact set
K ⊆ O, there exists a radius m > 0 such that F (K) = {F (x) |x ∈ K} ⊆ B(m).
Analogously for G.

Remark 1.1 The outer semicontinuity of F can be studied by considering its
graph. F is outer semicontinuous in O if and only if gphF = {(x, y) |x ∈ O, y ∈
R

n, y ∈ F (x)} is relatively closed in O × R
n. Analogously for G. See [123,

Theorem 5.7] and [63, Page 578].

In the following example we compare a hybrid system H that does not satisfy
the basic conditions and a hybrid system H, closely related to H, that satisfies
them.

Example 1.7 [Existence of solutions]
Consider a hybrid system H = (O,C,D, F,G) where O = C = D = R, G(x) =
∅, and for x ∈ R, F is defined as follows

F (x) =

{
−1 if x ≥ 0

1 if x < 0
(1.19)

A solution x to H from x0 = m, m ∈ R>0 is defined by the following expression:
for each t ∈ [0,m], x(t, 0) = x0 − t. Then, at time m, we have that x(t, 0) = 0.
From that point, the solution cannot be continued. In fact, F (0) = −1 but
F (−ε) = 1, for any arbitrarily small ε > 0. Indeed, there is no solution y to H
from the point 0.

Consider now the same system but with the continuous dynamics replaced
by the following set-valued mapping F , that satisfies the basic conditions:

F (x) =






−1 if x > 0
[−1, 1] if x = 0

1 if x < 0
(1.20)

In such a case, 0 ∈ F (0) therefore the solution x from x0 = m, m ∈ R>0, can
be defined as x(t, 0) = x0 − t for each t ∈ [0,m], and x(t, 0) = 0 for each t ≥ m.
For the same reason, for each t ≥ 0, y(t, 0) = 0 is a solution to H from 0.

Problems on solutions to differential equation with discontinuous right-hand
side, like (1.19), are usual in sliding mode control. To overcome issues on solu-
tions, one can approximate the equation ẋ = F (x) by ẋ = −sat(x

ǫ ), that has a
continuous right-hand side and is close to (1.19) for ǫ > 0 sufficiently small. In
fact, imperfections in switching devices and delays would force solutions that
suffer from chattering, and ẋ = −sat(x

ǫ ) characterizes well that phenomena. See
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[87, Section 14.1]. Note that F (x) can be considered as the limit function that
arises from −sat(x

ǫ ) when ǫ converges to 0.

Remark 1.2 It is worth mentioning that by working on ẋ = −sat(x
ǫ ) instead

of ẋ = F (x) we are implicitly assuming that solutions to ẋ = −sat(x
ǫ ) and to

ẋ = F (x) are close (w.r.t. a pointwise distance between solutions) when some
imperfections in switching or delays occur. Roughly speaking, this is based on
the intuition that close equations have close solutions and on the intuition that
solutions from close initial conditions are close. This intuition, which is correct
for nonlinear systems, cannot be generalized easily to hybrid systems, as shown
in Example 1.6.

With the basic conditions satisfied, we can characterize the following result
on existence of solutions.

Definition 1.10 The tangent cone to C at x ∈ C, denoted by TC(x), is the set
of all v ∈ R

n for which there exists a sequence αi → 0, with αi ∈ R>0 for each
i ∈ Z≥0, and a sequence of vectors vi → v, with vi ∈ R

n for each i ∈ Z≥0, such
that, for all i ∈ Z≥0, x+ αivi ∈ C.

Proposition 1.1 [63, Proposition 2.4] Consider a hybrid system H (1.5) that
satisfies the basic conditions. If x0 ∈ D or

(VC) x0 ∈ C and there exists a neighborhood U of x0 such that, for all x′ ∈
U ∩ C, TC(x′) ∩ F (x′) 6= ∅,

then there exists a solution x to H with x(0, 0) = x0 and domx 6= (0, 0).
If (VC) holds for all x0 in C \D, then for any maximal solution x at least

one of the following statements is true:

(i) x is complete;

(ii) x eventually leaves every compact subset of O, that is, for any compact
K ⊆ O, there exists (T, J) ∈ domx such that ∀(t, j) ∈ domx such that
t+ j > T + J , x(t, j) /∈ K;

(iii) for some (T, J) ∈ domx, (T, J) 6= (0, 0), we have x(T, J) 6= C ∪D.

Case (iii) does not occur if

(VD) for all x0 ∈ D, G(x0) ⊆ C ∪D.
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Condition “x0 in D” guarantees that a jump from x0 can occur. In a similar
way, Condition (VC) guarantees that the system can flow for a possibly small
interval of time. In fact, Condition (VC) requires that the derivative of the
system, that is, the instantaneous motion of the state, is compatible with the
constraints that the set C induces on the motion of the state. Then, a solution
from x0 has either a domain with at least two values (0, 0), (0, 1), defined by
a possible jump (x0 in D), or a domain defined by a small interval [0, t] ×
{0}, that take into account a possible flow (Condition (VC)). Moreover, under
the hypothesis that (VC) is true for each point x0 of C, Conclusions (i)-(iii)
characterize each possible solution to the hybrid system H. (i) refers to solutions
with unbounded domains. This case parallels the usual behavior of solutions to
continuous systems ẋ = f(x) under the assumption of global Lipschitzianity of
f(x). Note that, on hybrid systems, unboundedness of the domain can occur
also on the j direction: for discrete solutions and Zeno solutions. Conclusion
(ii) takes into account unbounded solutions, namely, solutions that escapes any
compact subset of O (note that O can be R

n). This is an effect of the fact
that C and D are relatively closed in O. If C and D are closed sets, (ii) does
not occur. Conclusion (iii) refers to the case of solutions that leaves the sets C
and D. From the definition of solution to a hybrid system, a solution can leave
C∪D only by a jump. Therefore, if Condition (VD) holds, Conclusion (iii) does
not occur.

Proposition 1.1 underlines two important results. It defines some local con-
ditions on a point x0 that guarantee the existence of nontrivial solutions from
that point x0, and it defines a set of global conditions that guarantee that each
maximal solution is complete, or it is unbounded, that is, it moves to the border
of O, or it escapes C ∪D by a jump. (when (VD) does not hold).

By Proposition 1.1 we have some conditions on regular hybrid systems that
guarantee the existence of a solution from a given initial state, say x0. In what
follows we go beyond the characterization of the existence of a solution to a hy-
brid system, by studying the relation between solutions and small perturbations
of the initial state. Indeed, we study the effects on solutions to a hybrid system
when we add a small perturbation ε to the initial state x0, that is, we study
the dependence of solutions from the initial state x0 + ε, for ε that goes to zero.
Moreover, we consider the case of a sequence of solutions to H that converges
to some set-valued mapping x : domx ⇉ R

n, for some properly defined con-
vergence notion on solutions, and we try to understand if this limit set-valued
mapping is itself a solution to H. Useful mathematical tools for studying these
problems involve topics like sets-convergence and set-valued mappings. A very
interesting reference on these subjects is [123, Chapters 4 and 5]. Then, using
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these tools, we can properly characterize notions of convergence of solutions to
a limit hybrid arc, and of closeness of a solution to another.

Consider a sequence of points {xi}i∈Z≥0
of R

n. We write xi → x whenever
x is the limit of the sequence of xi, as i goes to ∞. Consider a sequence of sets
{Si}i∈Z≥0

of subset of R
n. We write {Sik

}ik∈N⊆Z≥0
⊆ {Si}i∈Z≥0

to denote the
infinite subsequence {Sik

}ik∈N⊆Z≥0
of the sequence of sets {Si}i∈Z≥0

. We write
{xi}i∈Z≥0

∈ {Si}i∈Z≥0
to denote a sequence of points {xi}i∈Z≥0

constructed by
taking a point xi from each set Si of the sequences of sets {Si}i∈Z≥0

. Then, from
[123, Definitions 4.1 and 5.32], we can characterize the following convergence
concepts.

Definition 1.11 Consider a sequence of sets {Si}i∈Z≥0
.

The inner limit of {Si}i∈Z≥0
is

lim inf
i→∞

Si = {x |∃{xi}i∈Z≥0
∈ {Si}i∈Z≥0

, xi → x}. (1.21)

The outer limit of {Si}i∈Z≥0
is

lim sup
i→∞

Si =

= {x |∃{Sik
}ik∈N⊆Z≥0

⊆{Si}i∈Z≥0
, ∃{xik

}i∈N⊆Z≥0
∈{Sik

}ik∈N⊆Z≥0
, xik

→ x}.
(1.22)

A sequence of sets {Si}i∈Z≥0
converges to a set S, denoted by Si → S, if

S = lim infi→∞ Si = lim supi→∞ Si.

Definition 1.12 Consider a sequence of set-valued mappings {Fi}i∈Z≥0
where

each mapping Fi belongs to R
m ⇉ R

n, m,n ∈ Z≥0. The sequence {Fi}i∈Z≥0

converges graphically to the set-valued mapping F , denoted by Fi
g→ F , if

gphFi → gphF .

Remark 1.3 For a given sequence of mappings {Fi}i∈Z≥0
, if the graphical limit

exists, the limit set-valued mapping F is defined as the set of pairs (x, y), i.e.
y ∈ F (x), for which there exist two sequences {xi}i∈Z≥0

∈ {domFi}i∈Z≥0
and

{yi}i∈Z≥0
∈ {Fi(xi)}i∈Z≥0

, such that xi → x and yi → y.
Note that graphical limit and pointwise limit of sequences of set-valued map-

pings {Fi}i∈Z≥0
differ. Indeed, for each x ∈ R

m, the pointwise limit F of

these {Fi}i∈Z≥0
, denoted by Fi

p→ F , can be defined as the set F (x) such that
Fi(x) → F (x). Intuitively, the construction of the graphical limit uses a differ-
ent xi for each Fi, with xi → x, while the construction of the pointwise limit
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uses a fixed x. Graphical convergence is more convenient than pointwise con-
vergence for studying sequences of functions with different domains, as in the
case of sequences of hybrid arcs.

Set convergence can be used to study the convergence of a sequence of do-
mains of hybrid arcs, and graphical convergence of set-valued mappings can be
used to study the convergence of a sequence of hybrid arcs. Then, we can char-
acterize the following result on sequential compactness of the space of solutions.

Definition 1.13 A sequence of hybrid arcs xi : domxi → R
n, i ∈ Z≥0 is locally

eventually bounded with respect to O if for any m > 0 there exists i0 > 0 and a
compact set K ⊆ O such that for all i > i0, all (t, j) ∈ domxi with t+ j < m,
xi(t, j) ∈ K.

Theorem 1.1 [63, Theorem 4.4 and Lemma 4.3] Consider a hybrid system H,
(1.5), satisfying the basic conditions. Let xi : domxi → R

n, i ∈ Z≥0, be locally
eventually bounded with respect to O sequence of solutions to H.

– Then, there exists a subsequence of xi’s graphically converging to a solution
x of H.

– Moreover, if {xi}i∈Z≥0
converges graphically to some set-valued mapping

x : R≥0 × Z≥0 → R
n, then x is a solution to H.

By Theorem 1.1, if a sequence of solutions to a hybrid system H graphically
converges to some hybrid arc, then this hybrid arc is itself a solution to H. A
different version of Theorem 1.1, for a slightly simpler class of hybrid systems,
can be found in [62, Theorem 4] . Let us consider the following example.

Example 1.8 Consider a hybrid system with state x = [x1 x2 ]T and defined
by

H =






ẋ =

[
1
0

]
x ∈ {x |x2 > 0}

x+ =

[
−1
−1

]
x ∈ {x |x2 ≤ 0},

(1.23)

and consider an initial state
[

0 1
i

]T
, parameterized with respect to i ∈ Z>0.

Define a sequence hybrid arc {xi}i∈Z≥0,i>0 as follows: for each t ≥ 0 and each

i ∈ Z>0, xi(t, 0) =
[
t 1

i

]T
. Then, xi is a solution to H from the initial state

[
0 1

i

]T
, for each i ∈ Z>0.
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The sequence {xi}i∈Z≥0,i>0 converges graphically to the hybrid arc x defined

as x(t, 0) =
[
t 0

]T
, for each t ∈ R≥0, but x is not a solution to H. In fact,

the unique solution from the initial state x0 =
[

0 0
]T

jumps to the point
[
−1 −1

]T
. See Figure 1.10. Note that the set C is open, therefore H does

x1

x2

x3
x4
.

.

.

Figure 1.10: Example of possible solutions x to the system H of Example 1.8.

not satisfy the basic conditions and the space of solutions is not, in general,
sequentially compact.

Let us regularize the hybrid system in (1.23) by considering a flow set defined
by C instead of C, that is, {x |x2 ≥ 0}. With a closed flow set, the hybrid system
satisfies the basic conditions. As expected in this case, the hybrid arc x is a
solution to the regularized hybrid system.

Continuous dependence on initial states is related to the sequential compact-
ness of the space of the solutions. Example 1.8 shows well the lack of continuity
of solutions with respect to the initial states for hybrid systems that do not sat-

isfy the basic assumption. In fact, the solution x from x0 =
[

0 0
]T

jumps

to
[
−1 −1

]T
, while the solutions from

[
0 ε

]T
, ε > 0 flow only, growing

unbounded. Therefore, for any ε > 0, the solutions from the initial state x0 + ε
differ from the solutions from the initial state x0.

To state formally the result on continuity of solutions with respect to ini-
tial states, for regular hybrid systems, we need to define a concept of distance
between solutions. The following concept of (T, J, ε)-closeness of solutions is
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related to the concept of graphical convergence defined above and allows to
compare solutions that jump at different time instants, that is, to compare
hybrid arcs with different domains.

Definition 1.14 [63, Page 579], Hybrid arcs x : domx→ R
n and y : dom y →

R
n are (T, J, ε)-closeness of hybrid arcs if

(i) for all (t, j) ∈ domx with t ≤ T and j ≤ J , there exists s such that
(s, j) ∈ dom y, |t− s| < ε, and |x(t, j) − y(s, j)| < ε;

(ii) for all (t, j) ∈ dom y with t ≤ T and j ≤ J , there exists s such that
(s, j) ∈ domx, |t− s| < ε, and |y(t, j) − x(s, j)| < ε.

Remark 1.4 From [62, Page 46], an equivalent concept is the (T, ε)-closeness
of solutions. Intuitively, in this case, we require that the solutions remain ε-close
for each t+ j ≤ T .

By using the concept of (T, J, ε)-closeness, we can easily compare solutions with
different domains, as in the case of solutions with not-synchronized jumps. Con-
sider Figure 1.11, in which we represent only the t component of the domain
of the hybrid arcs x and y. The hybrid arc y is converging (graphically) to x
but a pointwise analysis would fail to recognize it. In fact, consider the point
a. In a pointwise analysis, this point of y would be compared to the point b
of x, and the distance between a and b does not decrease for y converging to
x (it grows!), until y and x overlap. When they overlap the distance between
a and b becomes instantaneously 0. Fortunately, x and y are (T, J, ε) − close.
In fact, there exists a point c of x that belongs to a ball centered in y and of
radius smaller than ε. This is the most important feature of the concept of
(T, J, ε)-closeness, that is, the possibility of comparing points of solutions that
are ε-close also in time.

Note that the concept of (T, J, ε)-closeness has a strong relation with the
concept of graphical convergence, as stated in the following lemma.

Lemma 1.1 [63, Lemma 4.5]
Consider a sequence of hybrid arcs xi : domx → R that is locally eventually
bounded, and a hybrid arc x : domx → R

n. The sequence {xi}i∈Z≥0
converges

graphically to x if and only if, for all (T, J) ∈ R≥0×Z≥0, and ε > 0, there exists
io ∈ Z≥0 such that, for all i > i0, the hybrid arcs x and xi are (T, J, ε)-close.

Using the concept of (T, J, ε)-closeness of solutions we can finally characterize
the dependence of solutions to initial states.
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(T,J)

y

a

b
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Figure 1.11: Two hybrid arcs (T, J, ε)-close.

Definition 1.15 A hybrid system H is forward complete at x0 if every maximal
solution to H from x0 is complete.

Theorem 1.2 [63, Corollary 4.8] Consider a hybrid system H satisfying the
basic conditions. Suppose that H is forward complete at every x0 ∈ K, for some
compact set K. For any ε > 0 and (T, J) ∈ R≥0 ×Z≥0 there exists a δ > 0 with
the following property: for any maximal solution xδ from K + B(δ), there exists
a solution x to H with x(0, 0) ∈ K such that xδ and x are (T, J, ε)-close.

By Theorem 1.2, two solutions to a hybrid system H from close initial states
will remain close in the future, at least for a given interval of time. Moreover,
for any given (T, J), we can always find a sufficiently small perturbation to the
initial state that guarantees that the distance between two solutions is less then
ε, for each (t, j) ≤ (T, J).

Graphical convergence and (T, J, ε)-closeness of solutions can be used also
to state the following result on the relation between Zeno solutions and discrete
solutions.

Definition 1.16 A set of solutions X is uniformly non-Zeno if there exists
T > 0 and J ∈ Z≥0 so that, for each solution x ∈ X if (t, j), (t′, j′) ∈ domx,
then |t− t′| ≤ T implies |j − j′| ≤ J .
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Definition 1.17 A set K is forward invariant if each maximal solution x orig-
inating in K is such that ∀(t, j) ∈ domx, x(t, j) ∈ K.

Theorem 1.3 [63, Corollary 4.9] Consider a hybrid system H satisfying the
basic conditions. Let K ⊆ O be a compact set that is forward invariant. Then,
either the set of maximal solutions is uniformly non-Zeno, or there exists a
complete solution x with domx = 0 × Z≥0 starting in K.

Theorem 1.3 underline an important fact on the dynamics of hybrid systems,
that relates Zeno solutions to discrete solution. Indeed, if a hybrid system H
exhibits some Zeno solutions than such a system has also discrete solutions.

Remark 1.5 Results in Theorem 1.2 and in 1.3 can be found in [62, Theorem 5
and Proposition 6], for a slightly simpler class of hybrid systems. Both Theorems
1.2 and 1.3 are corollaries of Theorem 1.1.

We conclude this section by considering again the problem of state pertur-
bations. A general approach for analyzing hybrid systems under state perturba-
tion is to consider constant perturbation levels and to prove, for small enough
perturbations, that properties of interest are preserved.

Definition 1.18 [Perturbed hybrid system]
Consider a hybrid system H = (O,C,D, F,G) and consider a continuous func-
tion σ : O → R≥0 such that, for all x ∈ O, {x}+σ(x)B ⊂ O. Then, for δ ∈ (0, 1),
the perturbed hybrid system Hδσ = (O,Cδσ , Dδσ, Fδσ, Gδσ) as follows.

– Cδσ = {x ∈ O |
(
{x} + δσ(x)B

)
∩ C 6= ∅}

– Dδσ = {x ∈ O |
(
{x} + δσ(x)B

)
∩D 6= ∅}

– Fδσ : O ⇉ R
n such that

Fδσ(x) = co{f | y ∈ {x} + δσ(x)B, f ∈ F (y) + δσ(x)}

– Gδσ : O ⇉ R
n such that

Gδ(x) = {g | y ∈ {x} + δσ(y)B, f ∈ F (y) + δσ(x)}

Solutions to Hδ can be interpreted as the solutions that appear in the hybrid
system H when parameter variations, uncertainties in the model, measurement
noise in control systems, or external disturbance occur. Note that, if H is a
regular hybrid system, Cδσ and Dδσ in Hδσ converge as sets to C and D in H,
as δ goes to 0, and Fδσ and Gδσ in Hδσ graphically converge to F and G in H,
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as δ goes to zero. Otherwise, if H does not satisfy the basic conditions, then
(O,Cδσ , Dδσ, Fδσ, Gδσ) of Hδσ converge to a system H which satisfies the basic
conditions. For an example, see F in Example 1.7. In this case, we say that H
is the regularization of H.

The following result, from [63, Theorem 5.1] and from [62, Theorem 8],
relates solutions to Hδσ with solutions to H, for δ converging to 0.

Theorem 1.4 Consider a hybrid system H that satisfies the basic conditions.
Let xδ : domxδ → O be a solution to the hybrid system Hδσ. Consider a se-
quence {δi}i∈Z≥0

converging to 0 as i goes to ∞ and suppose that a sequence
{xδi

}i∈Z≥0
is locally eventually bounded with respect to O and converges graph-

ically to a set-valued mapping x. Then, x is a solution to H.

From Theorem 1.4, small state-perturbations on a regular hybrid systems pro-
duces solutions that are close, in a graphical sense, to the solutions of the un-
perturbed system. For instance, in Example 1.7 we replaced F (x) with −sat(x

ǫ )
and we claimed that, under the hypothesis of uncertainties in the model, solu-
tions to ẋ = F (x) would be similar to the solutions to ẋ = −sat(x

ǫ ), for small
enough ǫ > 0. Then, in Remark 1.2, we claimed that that approach cannot be
generalized to hybrid systems. Now, by Theorem 1.4, regular hybrid systems
exhibit a specific property of continuity with respect to small perturbations,
that allows us to extend to regular hybrid system the approach of Example 1.7.

Example 1.9 Consider the hybrid system H = (O,C,D, F,G) of Example 1.6.
That hybrid system does not satisfy the basic conditions and, as expected, an
arbitrarily small perturbation produces new solutions completely unrelated to
the solutions of the unperturbed system. For that example, consider now a
flow set defined by the closure of C. The hybrid system H = (O,C,D, F,G),
satisfies the basic conditions. Then an arbitrarily small perturbation e still
produces solutions that rotates without converging but, by Theorem 1.4, they
are close in a graphical sense to the solutions to the unperturbed system H,
that rotates without converging. Moreover, the distance between solutions to
the perturbed systems and solutions to the unperturbed system depends on the
perturbation magnitude.

Remark 1.6 It is worth mentioning that robustness issues are related also to
the problem of the simulation of a hybrid system. Classical numerical methods
can be used to study the solutions to a differential equations but they intro-
duce approximation errors due to numerical approximations. These errors can
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be reduced in magnitude by considering smaller simulations steps but they can
never be eliminated. Therefore, if basic conditions do not hold, the use of nu-
merical methods for the study of the dynamical behavior of a hybrid system
may introduce new solutions (arising from the approximation errors of numer-
ical computation) that are not solutions to the hybrid system. Fortunately,
hybrid systems that satisfy the basic conditions guarantee that a small enough
state-perturbation produces small effects on solutions. It follows that, under
the basic conditions, classical numerical methods on hybrid systems produces
approximated solutions that are close in graphical sense to some solution to the
hybrid system. See [129].

1.4 Stability

Stability theory for hybrid systems parallels classical stability theory of continu-
ous dynamical systems, with some differences related to the following problems.

1. Concepts of stability and convergence of solutions to a given set must
take into account the case of solutions with bounded domains, that is,
maximal solutions that are not complete. This issue does not occur on
classical stability theory for which, under mild conditions on the systems
data, solutions are defined for all times.

2. Consider the case of a hybrid system whose state x = [ ηT q ]T collects
informations on the operating condition q of the system and informations
on the continuous motion η of the system (see Section 1.2). In such a case,
q does not converge to any specific value, ranging over over a finite set
of integers. Intuitively, classical asymptotic stability would require that
also q converges to some qe. It follows that stability concepts on isolated
points do not suits well on systems with logical modes.

The first problem can be addressed by considering two different notions of
stability: (i) stability concepts that do not depend on completeness of solutions
and (ii) stability concepts that take into account only complete solutions. The
second problem can be addressed by developing a stability theory based on the
central notion of set instead of a theory based on isolated points. It turns out
that for a stability theory based on sets and such that solutions with bounded
and unbound domains are considered together, allows to generalize classical
Lyapunov theory to hybrid systems.

By following [62, 126],



45

Definition 1.19 Consider a hybrid system H = (O,C,D, F,G) and a compact
set A ⊆ O, then

– A is stable for H if for each ε > 0 there exists δ > 0 such that any solution
x to H with |x(0, 0)|A ≤ δ satisfies |x(t, j)|A ≤ ε for all (t, j) ∈ domx.

– A is pre-attractive for H if there exists δ > 0 such that any solution x
to H with |x(0, 0)|A ≤ δ is bounded and for any complete solution x(t, j)
converges to A, that is, |x(t, j)|A → 0, as t+ j → ∞, where (t, j) ∈ domx.
A is attractive if each solution from |x(0, 0)|A ≤ δ is also complete.

– A is pre-asymptotically stable if it is both stable and pre-attractive. A is
asymptotically stable if it is stable and attractive.

– The basin of pre-attraction BA is the set of points in O from which each
solution is bounded, and the complete solutions converge to A. BA is the
basic of attraction if is the basin of pre-attraction and each solution from
BA is complete.

– By assuming O\(C∪D) ⊆ BA, if the basin of pre-attraction BA = O then
A is globally pre-asymptotically stable. In this case we will say that H is
globally pre-asymptotically stable. H is globally asymptotically stable if it
is globally pre-asymptotically stable and each solution to H is complete.

– A is unstable if it is not stable.

Remark 1.7 In general, the prefix pre is dropped from the properties above
when each solution that satisfies the conditions of the property is also a complete
solution. In this sense, the notion of stability should be denoted as pre-stability.
We preferred to call it stability following the usual approach in literature [62].
Note that attractivity implies pre-attractivity and asymptotic stability implies
pre-asymptotic stability.

Stability of sets can be used to exclude some element of state vector from
the stability analysis. This case may occur when hybrid systems characterize
processes whose behavior depends on particular operating conditions or modes.
For example, the gear-shift of a car or a mobile robot that reacts to possible
interrupts generated by its sensors.

Example 1.10 Consider a process that switches between to operative modes
each second, that is, ẋ = f1(x) if ∃k, 2k ≤ t ≤ 2k + 1 and ẋ = f2(x) if
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∃k, 2k + 1 ≤ t ≤ 2k + 2, where x ∈ R
n for some n ∈ Z≥0, and suppose we are

interested in the asymptotic stability of the point xe. We can characterize this
process by the following hybrid system. The state of the system is in R

n+2 and

H =





˙

x
q
τ


 =



F (q, x)

0
1






x
q
τ


 ∈ C




x
q
τ




+

=




x

2 − mod(q + 1, 2)
0








x
q
τ



 ∈ D

(1.24)

where C = {[xT q τ ]T | 0 ≤ τ ≤ 1 and 0 ≤ q ≤ 2}, D = {[xT q τ ]T | τ ≥
1 and 0 ≤ q ≤ 2},

F (q, x) =






f1(x) if q = 1
f2(x) if q = 2

0 otherwise
(1.25)

The analysis of stability of the point xe of the switching process can be developed
by analyzing the stability of the set

A = {xe} × [0, 1]× [0, 2] (1.26)

of H. For any given initial state in C∪D = R
n×R≥0×[0, 2] the system lets time

pass for at most one second and then it jumps resetting τ to zero and changing
q either from 1 to 2 or from 2 to 1. During the flows period, τ grows as the
time, while the motion of the state x satisfies the dynamics given by F (q, x).
See Figure 1.12. Thus, if the set A is asymptotically stable, then the switching
process converges to xe.

Pre-stability concepts relate classical stability concepts to solutions with
bounded domains. Indeed, the pre-asymptotic stability of a set enforces the
classical convergence argument only on complete solutions to hybrid systems,
without requiring any convergence of solutions with bounded domains, for which
it is only required a classical δ, ε boundedness. It follows that, for example, a
hybrid system H can be stable despite the fact that its continuous dynamics is
defined by a linear system whose eigenvalues are positive. In fact, it could be the
case that the flow set forces each solution to H to have a bounded domain. In
Figure 1.13 we represent the case of a planar hybrid system H whose continuous
dynamics produces solutions that rotate and grow, and whose discrete dynamics
produces solutions that converges to xe. The point xe is pre-asymptotically
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0

1

τ (t, j)

1

2

q(t, j)

x(t, j)

(t,j)∈ [0,1]×{0} (t,j)∈ [1,2]×{1} (t,j)∈ [2,3]×{2}

Figure 1.12: A possible solution to H in Example 1.10.

stable. In fact, initial states closer to xe produce solutions that are closer to xe.
Moreover, each solution is bounded and complete solutions converge to xe.

The stability of a compact set A of a hybrid system H = (O,C,D, F,G)
can be analyzed by using Lyapunov-like tools. Following [62, 126], a function
V : O → R is a Lyapunov-function candidate for (H,A) if

(i) V is continuous and positive definite in (C ∪D) \ A ⊆ O and

(ii) V is continuously differentiable in a neighborhood of C subset of O, and

(iii) limx→A,x∈O∩(C∪D) V (x) = 0.

Remark 1.8 Point (ii) can be relaxed by requiring V locally Lipschitz. In that
case, generalized directional derivative and generalized gradient in the sense of
Clarke must be used [40]. See [126].

The interpretation and the use of Lyapunov functions candidates on hybrid sys-
tems parallels the classical approach on continuous systems. In fact, conditions
on function V above generalize classical Lyapunov functions candidates in the
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ε

δ

xe

C

D

Figure 1.13: Possible solutions to the hybrid system H whose point xe is pre-
asymptotically stable.

following directions: (i) solutions to a hybrid system must stay within C∪D\A
or they have a bounded domain. Therefore, continuity and nonegativity of V
can be restricted to C ∪D \ A; (ii) differentiability (local Lipschitzianity) of V
is required only in a neighborhood of the flow set, where V and the continuous
part of solutions to hybrid systems are used together; finally, (iii) V is zero on
the whole set A following the set based approach of the definitions of stability.

As usual, the characterization of stability properties by Lyapunov-like tools is
related to the analysis of the increment of the function V along a solution x to H.
With this aim, let us define t(j) = inf{t | (t, j) ∈ dom ξ} and j(t) = inf{j | (t, j) ∈
dom ξ}. Let x(t, j) be a solution to a hybrid system H and let (t, j), (t, j) ∈
domx such that (t, j) ≤ (t, j). Then, the increment of V (x(t, j)) − V (x(t, j)) is
given by the following equation.

V (x(t, j))−V (x(t, j)) =

∫ t

t

d

dt
V (x(t, j(t)))dt+

j∑

j=j+1

[V (x(t, j))−V (x(t(j), j−1))]

(1.27)
It is worth mentioning that by defining the increment of V as the sum of a
continuous increment, the integral, and of a discrete increment, the sum, we
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can take into account the increment induced on V by any kind of solution, re-
gardless of the particular jumping or flowing behavior of the solution. Note that
the discrete increment is zero for solutions that flow only, and the continuous
increment is zero for solutions that jump only.

We can now present the following theorem, that summarizes the results in
[62, Theorem 20], [126, Theorem 7.6 and Corollary 7.7] and [125, Theorem 4.2
and Theorem 4.13]. For completeness of the exposition, we present the proof in
Section 6.1.

Theorem 1.5 Consider the hybrid system H = (O,C,D, F,G) satisfying the
basic conditions 2.1 and consider a compact set A ⊆ O. Suppose that there
exists a Lyapunov-function candidate V for (H,A) and define two functions
uC : C → R and uD : D → R such that

uC(x) = max
f∈F (x)

〈∇V (x), f〉 for x ∈ C ∩O

uD(x) = max
g∈G(x)

V (g) − V (x) for x ∈ D ∩O.

Then, consider a neighborhood U of A
– A is stable if
uC(x) ≤ 0 for each x ∈ C ∩ U and uD(x) ≤ 0 for each x ∈ D ∩ U ;

– A is pre-asymptotically stable if
A is stable and uC < 0 in (C \ A) ∩ U and uD < 0 in (D \ A) ∩ U ;

Theorem 1.5 encompasses classical Lyapunov theorems for continuous sys-
tems. Consider a hybrid system H = (Rn,Rn, ∅, f, ∅) where f : R

n → R
n

characterizes some nonlinear continuous dynamics. Then, Theorem 1.5 applied
on a set A = {xe} requires that V is a positive and continuously differentiable
function, zero at zero, and such that the directional derivative 〈∇V (x), f(x)〉
is less then or equal to zero for each x in a neighborhood of the point xe = 0.
Then, xe is a locally stable point [87, Theorem 4.1].

Remark 1.9 Conditions on functions uC and uD can be directly related to
the increment of the function V along a solution x, in Equation (1.27). With
the intuitive interpretation of Lyapunov functions as energy functions, negative
values for uC(x) and for uD(x) force V (x(t, j)) to be lower than V (x(t, j)), that
is, they guarantee that the energy of the solution is decreasing.

A slightly different version of Theorem 1.5 can be used to study global pre-
asymptotic stability of sets. Following [62], consider a hybrid system H =
(O,C,D, F,G) and a compact set H. Suppose that
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– either C ∪D is a compact set,

– or the sublevel sets of V |O∩(C∪D), defined by {x ∈ O∩(C ∪D) |V (x) ≤ c}
with c ∈ R≥0, are compact.

Then, A is globally pre-asymptotically stable if A is stable
and uC < 0 in (C \ A) ∩O and uD < 0 in (D \ A) ∩O.

Indeed, the compactness of C ∪D or the compactness of sublevels sets of V ,
force each solution to be bounded, therefore to converge to A, based on the fact
that uC(x) is negative for x ∈ C and uD(x) is negative for x ∈ D.

A lot of general results on stability of hybrid systems can be found in lit-
erature. Generalizations of global Lyapunov-like conditions for stability, KLL-
stability, invariance principle, robustness of stability and converse Lyapunov
theorems, can be found in [27, 30, 31, 32, 45, 62, 63, 64, 99, 125, 126].

Further analysis of stability theory is out of the scope of this introduction to
hybrid systems. Stability topics will be considered again in the next chapter, for
a class of homogeneneous hybrid systems. In particular, we will present a set
of local Lyapunov-like conditions for inferring global pre-asymptotic stability
of systems. Then, we will prove that these conditions are mild, namely, that
each globally pre-asymptotically stable system must satisfy them, and we will
propose a sum of squares algorithm for deciding whether or not a given hybrid
system is stable. Following a similar approach, we will define several conditions
for studying instability and overshoots of solutions of such a class of hybrid
system.



Chapter 2

Stability for a Class of

Homogeneous Hybrid

Systems by Local Lyapunov

Analysis

Consider a class of hybrid systems H = (Rn, C,D, F,G), n ∈ Z≥0, whose data
satisfy the following conditions. For any given λ ∈ R>0

– for each x ∈ C, λx ∈ C;

– for each x ∈ D, λx ∈ D;

– for each x ∈ C and each f ∈ F (x), λf ∈ F (λx);

– for each x ∈ D and each g ∈ G(x), λg ∈ G(λx).

These systems can be considered as a particular subset of the class of homoge-
neous hybrid systems [153], namely hybrid systems that are homogeneous with
respect to a specific generalized notion of dilation [151, 152]. We do not in-
troduce the notions of dilation and of homogeneity of a hybrid system with
respect to a given dilation, but interesting results on stability, robust stability,
and converse results are summarized in [153].

In what follows, we present a method to study properties of stability of the
point xe = 0 for systems that satisfy the conditions above. We present also

51
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results on overshoots of solutions for such kinds of systems, namely when the
norm of the solution ξ at some time instant exceeds the norm of the initial state
of ξ. The chapter is organized as follows: in Section 2.1 we define the class
of hybrid systems considered. Main theoretical results on stability, a sum of
squares algorithm and an example are developed in Section 2.2. Theoretical
results on overshoots of solutions and on instability properties are developed in
Section 2.3. Further comments on sum of squares implementation are presented
in Section 2.4.

In Section 2.2 we propose a local Lyapunov-like approach to the study of sta-
bility properties of such a class of hybrid systems. We define a set of Lyapunov-
like conditions whose satisfaction, in a suitable subset of the state space, guar-
antees global pre-asymptotic stability of the point xe = 0 of the system. We also
show that these conditions are mild, that is, they are verified by any given hy-
brid system whose point xe is pre-asymptotically stable. Based on that results,
we define a sum of squares algorithm [113], that constructs a suitable function
to automatically satisfies such conditions.

The use of sum of squares algorithms in control and, in particular, the use of
sum of squares algorithms to construct Lyapunov functions, is well developed.
See for example [111, 120, 141, 143]. Sum of squares formulations have been
used in [12, 84, 112, 119] on arbitrary switching systems, on switched systems
and on hybrid automata. In that works, the system dynamics is usually defined
by polynomial functions ẋ = fi(x), or by affine functions ẋ = Aix + ai, for
i ∈ {1, . . . , N}, each of them enabled in a subset of the state-space [84, 112, 119]
or enabled by a particular updating rule based on the state value [12]. The
stability analysis in [12, 84, 119] is developed for a part of the state that never
jumps. Systems in [112] allow resets of the state, provided that no solutions
are Zeno or discrete. Stability is characterized by constructing continuous and
piecewise continuous Lyapunov functions.

The functions constructed by our algorithm satisfy usual Lyapunov condi-
tions for pre-asymptotic stability [62] but only in a suitable subset of the state
space. Then, for the class of systems considered, it is possible to generalize
those “local” Lyapunov functions to the whole space, guaranteeing global pre-
asymptotic stability. Our approach can be used on systems with Zeno and
discrete solutions and produces smooth functions, that may exhibit non-convex
level sets in the subset of the state space in which they resemble to classical
Lyapunov functions. It follows that our method can be applied on global pre-
asymptotically stable systems for which a convex Lyapunov function does not
exist, see [23]. Finally, based on recent results on homogeneous approximations
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of hybrid systems [64], our method can be used on a properly defined homo-
geneization of general hybrid systems to infer local pre-asymptotic stability of
the point xe = 0 of that systems.

Within the considered class of hybrid system, in Section 2.3 we study the
behavior of hybrid solutions in the neighboorhod of the point xe = 0. We
analyze the following cases.

1. Solutions that do not satisfy the classical (δ, ε) argument of stability con-
cepts, that is, solutions ξ for which there exists an ε ∈ R>0 and a set
U ⊂ R

n, xe ∈ U , such that for each δ ∈ R>0, if ξ(0, 0) ∈ U ∩ δB then, for
some (T, J) ∈ dom ξ, ξ(T, J) /∈ εB, no matter how small δ is.

2. Solutions that grow unbounded from a suitable subset of the state-space,
that is, solutions ξ such that for any given ε ∈ R>0, there exists a set
U ⊂ R

n, xe ∈ U , such that for each δ ∈ R>0 if ξ(0, 0) ∈ U ∩ δB then, for
some (T, J) ∈ dom ξ, ξ(T, J) /∈ εB, no matter how big ε is.

3. Solutions that grow by a factor ρ, that is, solutions ξ for which there
exists a set U ⊂ R

n and a ρ ∈ R>1, such that if ξ(0, 0) in U then then
|ξ(T, J)| > ρ|ξ(0, 0)|. Such behavior is denoted as overshoot.

Point 1 is analyzed by proposing a Chetaev-like theorem [87, Theorem 4.3] gen-
eralized to the hybrid systems framework. Points 2 and 3 are addressed following
a Lyapunov-like approach, by defining a set of conditions whose satisfaction, in
a suitable subset of the state-space, guarantees 2 or 3. Based on these results,
we propose two sum of squares algorithms that construct a suitable function to
automatically satisfy those conditions. Note that the point xe = 0 of a given
hybrid system is unstable if some solution either satisfies point 1 or satisfies
point 2. Point 3 can be related to the shape of a possible Lyapunov function.

A study of solutions behavior with sum of squares, not related to stability
problems, can be found in [118], where safety problems are taken into account
(namely problems in which solutions must not enter a given subset of the state
space or they must reach some particular subset of the state space). A similar
approach based on approximations of solutions with polyhedra is proposed in
[36] Here we propose an approach to study the solutions to a hybrid system in
the neighborhood of the point xe = 0. Based on this analysis, if some solution
either satisfies 1 or satisfies 2 then the point xe = 0 is unstable. Intuitively, 3 is
related to the properties of convergence of solutions to the point xe..

Finally, a correlation between the results of Sections 2.2 and 2.3 is proposed
at the end of Section 2.3 and some remarks on possible problems of sum of
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square implementation is in Section 2.4.

2.1 The Class of Hybrid Systems

We consider a particular class of hybrid systems in which flow set and jump
set are defined as the union of closed polyhedral cones, and flow map and jump
map are defined, respectively, as the convex hull and the union of several linear
vector fields. Indeed, let i be an index number in Z≥0, and let R(i) be a closed
set defined as follows

R(i) =





x |




m
(i)
1

. . .

m
(i)

r(i)


 x ≥ 0





(2.1)

where r(i) belongs to Z≥0 and m
(i)
j ∈ R

1×n is a row vector, for each j =

1, . . . , r(i). Then, C and D can be defined as

C =
⋃

i∈IC

R(i) D =
⋃

i∈ID

R(i) (2.2)

where IC , ID are disjoint and finite index sets. Note that C and D can overlap.
Note also that it is possible to have C ∪D 6= R

n.
In a similar way, consider set-valued mappings Fi : R

n ⇉ R
n, for i ∈ IC ,

and Gi : R
n ⇉ R

n, for i ∈ ID, defined as follows. For each i ∈ IC , Fi(x) is a
convex and closed set defined by

Fi(x) =

{
co{f | f = Fikx for k = 1 . . . rF } if x ∈ R(i)

∅ otherwise
(2.3)

where Fik ∈ R
n×n and rF ∈ Z≥0. For each i ∈ ID, Gi(x) is a set defined by

Gi(x) =

{
{g | g = Gikx for k = 1 . . . rG} if x ∈ R(i)

∅ otherwise
(2.4)

where Gik ∈ R
n×n and rG ∈ Z≥0. Then, flow and jump mappings, F : R

n ⇉ R
n

and G : R
n ⇉ R

n, can be defined as

F (x) = co
⋃

i∈IC

Fi(x) G(x) =
⋃

i∈ID

Gi(x) (2.5)
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Note that F (x) reduces to Fi(x) when x belongs only to one cone R(i), for some
i ∈ IC . The same holds for G(x).

Hybrid systems of the form (1.5),(2.1)-(2.5) satisfy the basic conditions, as
stated in the following Claim.

Claim 2.1 A hybrid system H of Equations (1.5),(2.1)-(2.5) satisfies the basic
conditions (Definition 1.9).

Proof. See Appendix 6.2.1 �

Remark 2.1 Switched linear systems with state dependent switching policies,
[94, Sections 3.3 and 3.4], can be characterized within the family of hybrid
systems considered above. For example, consider the system

ẋ = Aix if x ∈ Ci, i = 1, . . . , N.

where N ∈ Z≥0 and, for each i = 1, . . . , N , Ai ∈ R
n×n and Ci is a conic subset

of R
n. Such systems can be easily defined within the class of hybrid systems

considered above, by defining Fi(x) = Aix if x ∈ Ci and Fi(x) = ∅ otherwise,
for each i = 1, . . . , N . In such a case, D = ∅. Moreover, switched linear systems
under arbitrary switching policies, [94, Section 2.1.4], can be written as hybrid
systems (1.5),(2.1)-(2.5), based on a single differential inclusion of the form
(2.3), defined by the convex hull of the linear vector fields of the switched linear
system, and C = R

n.

2.2 Stability

2.2.1 Main Results

In what follows we show some results on stability of the point xe = 0 of hybrid
systems of Equations (1.5),(2.1)-(2.5). Indeed, we study the stability of the set
A = {xe} by following a Lyapunov-like approach, namely, by using a suitable
selected function V that satisfies a defined set of conditions. Then, we present
an algorithm to effectively construct that function V .

Global pre-asymptotic stability of a hybrid system of Equations (1.5),(2.1)-
(2.5) can be inferred from a “local” analysis of the system by finding a function
V : R

n → R that respects some specific properties on the set {x | c ≤ |x| ≤ ρc},
where c ∈ R≥0 and ρ ∈ R>1. The “local” satisfaction of those properties
will guarantee global pre-asymptotic stability of the system, as stated in the
following theorem.



56 CHAPTER 2. STABILITY OF HOMOGENEOUS SYSTEMS

Definition 2.1 A function ϑ : R
n → R is said to be homogeneous of degree k

if for some k ∈ Z≥0 and for all x ∈ R
n and all λ ∈ R≥0, ϑ(λx) = λkϑ(x),

Theorem 2.1 For a hybrid system H of Equations (1.5),(2.1)-(2.5), suppose
that there exist a function V : R

n → R≥0 and constants c ∈ R≥0 and ρ ∈ R>1

such that,

– for each x in {x | c ≤ |x| ≤ ρc},

1. V (x) ≥ 0 x ∈ C ∪D;

2. 〈∇V (x), f〉 < 0 x ∈ C, ∀f ∈ F (x);

3. V (g) − V (x) < 0 x ∈ D, ∀g ∈ G(x);

– there exist ℓ1, ℓ2 ∈ R>0, ℓ1 < ℓ2,

(4) max|x|=c V (x) ≤ ℓ1 and min|x|=ρc V (x) ≥ ℓ2;

(5) if x ∈ D ∩ {x | c ≤ |x| ≤ ρc} ∩ {x |V (x) ≤ ℓ2} and g ∈ G(x) then
|g| ≤ ρc;

(6) if x ∈ D ∩ {x | |x| ≤ c} and ∀g ∈ G(x) then g /∈ {x |V (x) > ℓ1, c ≤
|x| ≤ ρc};

– the restriction of V to {x | c ≤ |x| ≤ ρc} ∩ (C ∪D) is a smooth function.

Then, for any given constant k ∈ R>0, there exists a function V : R
n → R≥0

and some constants a2 ≥ a1 > 0, µ > 0, 0 < ν < 1 in R such that V is a
homogeneous function, smooth in R

n \ {0}, and

a1|x|k ≤ V (x) ≤ a2|x|k ∀x ∈ C ∪D〈
∇V (x), f

〉
≤ −µV (x) ∀x ∈ C, ∀f ∈ F (x)

V (g) ≤ νV (x) ∀x ∈ D, ∀g ∈ G(x)

(2.6)

Proof. The proof follows the line of reasoning of the proof of [153, Theorem 2].
A function V is constructed by integration as suggested in [124], and we prove
that V is a smooth and homogeneous Lyapunov function that satisfies (2.6).
See Appendix 6.2.2, for details. �

The meaning of Conditions (1)-(6) of the theorem can be explained by con-
sidering Figure 2.1, in which we summarize the case of a planar hybrid system
for which conditions (1)-(6) are satisfied. In general, Conditions (1)-(3) can be
interpreted as usual Lyapunov conditions for pre-asymptotic stability but, in
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this case, each inequality must be satisfied only for c ≤ |x| ≤ ρc. For extend-
ing those Lyapunov-like but “local” properties in Conditions (1)-(3), to global
properties in (2.6), we need some extra-conditions on function V (x) and on
the dynamics of the system. With this aim, ℓ1 < ℓ2 and Condition (4) force
V (x) to be smaller at |x| = c than at |x| = ρc, guaranteeing the existence of
two level sets of V (x) that surround the origin, both contained in the annulus
{x | c ≤ |x| ≤ ρc}. This is represented in Figure 2.1 by the closed curves with
labels ℓ1 and ℓ2. By looking at the figure, Condition (5) ensures that no jumps
from a state within the set enclosed by ℓ2 can bring the state out of ρc. In a
similar way, Condition (6) establishes that no jumps are allowed from a point
inside the circle of radius c, say x, to a point, say g, such that V (g) > ℓ1.

x2

x1

C

D

C

D

ℓ1

ℓ2

c ρc

Figure 2.1: A function V that satisfies the conditions of Theorem 2.1 for a
planar hybrid system.

Note that the conditions in Theorem 2.1 are quite mild, as stated in the
following theorem.

Theorem 2.2 For a a hybrid system H of Equations (1.5),(2.1)-(2.5), if the
point xe = 0 is globally pre-asymptotically stable, then there exists a smooth
function V : R

n → R that satisfies Conditions (1)-(6) of Theorem 2.1, for some
c ∈ R≥0 and ρ ∈ R>1.
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Proof. By the converse result in [32, Theorem 3.14], for any global pre-asymptotically
stable hybrid system H, there exists a smooth Lyapunov function V that satis-
fies Theorem 1.5. V satisfies also the conditions of Theorem 2.1, for some given
c ∈ R≥0 and ρ ∈ R>1. See the appendix, section 6.2.2, for details. �

By Theorem 2.1, the global stability of a hybrid system of Equations (1.5),(2.1)-
(2.5) can be deduced by a local analysis of the system, i.e. by finding a suitable
function that works as a Lyapunov function in c ≤ |x| ≤ ρc and satisfies some
other requirements. In what follows we propose a sum of squares algorithm,
[113, 143], for constructing a function V that satisfies the conditions of Theo-
rem 2.1. Therefore, by looking at (2.6) in Theorem 2.1, if this algorithm succeeds
in the construction of V for a hybrid system H, then the point xe of H is global
pre-asymptotically stable.

Remark 2.2 Following [64], for a general hybrid system H, (1.5), that satisfies
the basic conditions, local pre-asymptotic stability of the point xe = 0 can be
deduced from the pre-asymptotic stability of the point xe = 0 of a suitable
approximation HL of H. Therefore, Theorem 2.1 can be used to infer local
pre-asymptotic stability of the point xe of general hybrid systems H whose
approximations HL is definable within the class of hybrid systems of Equations
(1.5),(2.1)-(2.5). Indeed, following [64, Theorem 3.16], Theorem 2.1 can be
applied to homogeneous approximations HL of hybrid systems H based on a
dilation M(λ) = λI ([64, Definition 3.7]), such that (i) the tangent cones TC(xe)
and TD(xe) are polyhedral cones ([64, Definition 3.9]) and (ii) the set-valued
mappings coFM,0 and GM,0 are definable as combinations of a finite number of
linear vectors field ([64, Definition 3.13]).

2.2.2 Sum of Squares Algorithm

In this section we present an algorithm for finding a function V that satisfies
the conditions of Theorem 2.1 for hybrid systems of Equations (1.5), (2.1)-(2.5).
The general idea is to construct a set of polynomial inequalities that imply the
conditions of the theorem. Then, a solution to such a set of inequalities is
computed by (i) relaxing each inequality to a sum of squares decomposition,
and by (ii) using a semidefinite program solver for seeking a solution to the
whole sum of squares decomposition problem. Of course, some conservativeness
is introduced [120, 113]. Algorithm 1 works as follows.

(i) The input of the algorithm is filled by the data of the hybrid system H
and by the parameters ε, c, ρ, d1 and d2, as stated in INPUT.
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(ii) A set of inequalities is then constructed, parameterized on H and on
ε, c, ρ, d1 and d2, as stated in CONSTRAINTS. It should be noted that

(iii) A solution is computed by relaxing the satisfiability problem of the whole
set of inequalities to a sum of squares decomposition problem. A semidef-
inite program solver runs over this problem.

(iv) If the solver finds a solution, the set of inequalities is feasible and the
algorithm ends positively, as stated in OUTPUT.

For the description of the algorithm the following definitions are needed.

Definition 2.2 Let ε1, ε2 ∈ R≥0 be two constants and let ∆1(ε1, ε2, ·) : R
n → R

be a map defined with respect to ε1 and ε2 as follows

∆1(ε1, ε2, x) = −(|x|2 − ε21)(|x|2 − ε22) (2.7)

Definition 2.3 For any given i ∈ IC ∪ ID, the function ∆
(i)
2 (x) : R

n → R is
defined as follows

∆
(i)
2 (x) =

=

r(i)∑

j=1

pj(x)m
(i)
j x+

r(i)∑

j=1

r(i)∑

k=j+1

pjk(x)m
(i)
j xm

(i)
k x +

+

r(i)∑

j=1

r(i)∑

k=j+1

r(i)∑

h=k+1

pjkh(x)m
(i)
j xm

(i)
k xm

(i)
h x+ . . . +

+ p1,2,...,r(x)m1xm2x · . . . ·mr(i)x

(2.8)

where, for any given combination of indices j,k,. . . , pj , pjk, . . . denote functions
in R

n → R≥0, defined by polynomials of a given degree. We refer to the whole
set of polynomials pj , pjk, . . . by using the name of slack polynomials.

∆1(ε1, ε2, x) is positive for ε1 ≤ |x| ≤ ε2, and is strictly negative otherwise.

For each i ∈ IC ∪ ID, ∆
(i)
2 (x) is positive for each x in R(i) while it is possibly

negative if x /∈ R(i), based on the particular configuration of slack polynomials.
In the following algorithm, ∆1 and ∆2 are used for relaxing the conditions on V
to hold only in a subset of R

n. A planar example of subset of R
n with positive

∆1 and ∆2 is in Figure 2.2.
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∆
(i)
2 (x) ≥ 0

∆1(ε1, ε2, x) ≥ 0

ε1 ε2 x1

x2

∆1(ε1, ε2, x) ≥ 0

∆
(i)
2 (x) ≥ 0

∆1(ε1, ε2, x)<0

∆
(i)
2 (x) < 0
possibly

∆1(ε1, ε2, x) < 0

R(i)

∆
(i)
2 (x) < 0
possibly

Figure 2.2: Subsets of the state-space related to the sign of ∆1 and ∆2.

Algorithm 1

INPUT:

Data 〈F,G,C,D〉 of the hybrid system H;
constants ε, c, ρ ∈ R>0, satisfying ε≪ c and ρ > 1;
constants d1, d2 ∈ Z≥0, satisfying d1 ≥ d2.

OUTPUT:
Feasibility of the sum of squares problem.

VARIABLES:

Scalar variables ǫ, ℓ1, ℓ2;

polynomials V (x), s4(x), s5(x), s
(i)
1 (x), for each i ∈ IC ∪ ID, s

(ik)
2 (x), for each

i ∈ IC and each k = 1, . . . , rF , s
(ik)
3 (x), s

(ik)
6 (x), s

(ik)
7 (x), s

(ik)
8 (x), s

(ik)
9 (x), for

each i in ID and each k = 1, . . . , rG, and all the slack polynomials.

CONSTRAINTS:

V (x) is a polynomial of degree d2. ǫ is a scalar variable.
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• ∀i ∈ IC ∪ ID, s
(i)
1 (x) is a polynomial of degree d1 and

V (x) − ∆
(i)
2 (x) − s

(i)
1 (x)∆1(c, ρc, x) ≥ 0

s
(i)
1 (x) ≥ 0

(2.9)

• ∀i ∈ IC , ∀k ∈ {1 . . . , rF }, s(ik)
2 (x) is a polynomial of degree d1 and

−∇V (x)TFikx− ∆
(i)
2 (x) − s

(ik)
2 (x)∆1(c, ρc, x) > 0

s
(ik)
2 (x) ≥ 0

(2.10)

• ∀i ∈ ID, ∀k ∈ {1 . . . , rG}, s(ik)
3 (x) is a polynomial of degree d1 and

V (x) −V (Gikx)− ∆
(i)
2 (x) − s

(ik)
3 (x)∆1(c, ρc, x) > 0

s
(ik)
3 (x) ≥ 0

(2.11)

• s4(x) and s5(x) are polynomials of degree d1, ℓ1 and ℓ2 are scalar variables
and

ℓ1 − V (x) − s4(x)∆1(c, c+ ε, x) ≥ 0

V (x) − ℓ2 − s5(x)∆1(ρc− ε, ρc, x) ≥ 0

ℓ2 − ℓ1 > 0

s4(x), s5(x), ℓ1, ℓ2 ≥ 0

(2.12)

• ∀i ∈ ID, ∀k ∈ {1 . . . , rG}, s(ik)
6 (x), s

(ik)
7 (x), s

(ik)
8 (x) and s

(ik)
9 (x) are polyno-

mials of degree d1, ℓ1, ℓ2 are scalar variables and

V (x) − ℓ2 − s
(ik)
6 (x)(x′GT

ikGikx− ρ2c2)+

−∆
(i)
2 (x) − s

(ik)
7 (x)∆1(c, ρc, x) ≥ 0

ℓ1 − V (Gikx) − s
(ik)
8 (x)(c2 − xTx) − ∆

(i)
2 (x)+

−s(ik)
9 (x)∆1(c, ρc,Gikx) ≥ 0

s
(ik)
6 (x), s

(ik)
7 (x), s

(ik)
8 (x), s

(ik)
9 (x) ≥ 0

(2.13)

• For each use of ∆
(i)
2 (x) in (2.9)-(2.11) and (2.13) a new fresh set of slack

polynomials must be used. Moreover for each slack polynomial, say p(x), a new
inequality p(x) ≥ 0 is added.
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Remark 2.3 The last bullet of Algorithm 1 requires a new set of slack poly-

nomials for each use of ∆
(i)
2 (x). For example, the slack polynomials of ∆

(i)
2 (x)

used in an inequality that involves Gik1 in (2.11) must not be confused with

slack polynomials of ∆
(i)
2 (x) used in an inequality that involves Gik2 in (2.11),

with k1 6= k2.

Each inequality of Algorithm 1 is constructed by considering two goals: the
first part of the left-hand side of each inequality is used to enforce some con-
straint on V so that V satisfies the conditions of Theorem 2.1; the second part

of the left-hand side of each inequality uses ∆1 and ∆
(i)
2 , for i ∈ IC ∪ ID, to

guarantee that V satisfies some constraints only in a subset of R
n, leaving V

basically unconstrained in the rest of the space.
Consider now to run Algorithm 1 for some given hybrid system H, and to

find a feasible solution.
• By (2.9), V (x) is a non-negative function in (C ∪D) ∩ {x | c ≤ |x| ≤ ρc}.
• Inequalities (2.10) and (2.11) guarantee that (i) the directional derivative of
V (x), 〈∇V (x), f〉, is negative for each x in the set C ∩ {x | c ≤ |x| ≤ ρc} and
each f ∈ F (x), and (ii) the increment of V (x), V (g)−V (x), is negative for each
x in the set D ∩ {x | c ≤ |x| ≤ ρc} and each g ∈ G(x).
• The first inequality of (2.12) implies maxc≤|x|≤c+ε V (x) ≤ ℓ1. The second
inequality of (2.12) implies minρc−ε≤|x|≤ρc V (x) ≥ ℓ2. Note that ℓ1 < ℓ2 by the
third inequality.
• The first inequality of (2.13) guarantees that a hybrid arc of H cannot escape
the set {x | |x| ≤ ρc} by a jump from D∩{x | c ≤ |x| ≤ ρc}∩{x |V (x) ≤ ℓ2}. The
second inequality of (2.13) guarantees that a hybrid arc of H cannot jump to
{x |V (x) > ℓ1} ∩ {x | c ≤ |x| ≤ ρc} from the set {x | |x| ≤ c}.
It follows that a feasible solution to the set of constraints produces a func-
tion V that satisfies the conditions of Theorem 2.1, as stated in the following
proposition.

Proposition 2.1 For any given hybrid system H defined by Equations (1.5),(2.1)-
(2.5), if the set of inequalities of Algorithm 1 has a feasible solution for some
parameters c ∈ R≥0 and ρ ∈ R, ρ > 1, then the function V constructed by
Algorithm 1 satisfies the conditions of Theorem 2.1 with the same c and ρ.

Proof. See the appendix, section 6.2.2. �

Remark 2.4 Despite the number of indices i, j, k used during the description
of Algorithm 1, in practical cases the algorithm is much more simple. For
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example, the switched systems in [94, Sections 3.3 and 3.4] require a single
matrix Fi for each cone R(i). Therefore k = 1 in (2.10). Note also that for
a hybrid system with C ∪ D = R

n, we can replace the conditions of the form
(2.9), where i ∈ IC ∪ ID, with a single condition V (x) − s1(x)∆1(c, ρc, x) ≥ 0,
s1(x) ≥ 0.

Remark 2.5 V (x) must be positive only in the set (C∪D)∩{x, | c ≤ |x| ≤ ρc},
for some c and some ρ given as input of Algorithm 1. In the rest of the space,
V (x) is basically unconstrained. This kind of “local” requirement introduces
some extra-degree of freedom during the construction of V (x), due to the fact
that V (x) must be positive only in a subset of R

n. This allows the solver to find
a polynomial V (x) that can be non-positive near the origin and non-positive far
from the origin, i.e. with low order terms and high order terms not necessarily
positive. The effect of this “local” requirement is to allow for the construction
of functions V (x) with not necessarily convex level sets. In fact, it could be the
case that hybrid systems characterized by (1.5),(2.1)-(2.5) do not admit convex
Lyapunov functions, as shown in [23]. Therefore the possibility of constructing
a “local” Lyapunov functions with non-convex level-set is important.

2.2.3 Example

We use Algorithm 1 for studying the stability of a hybrid system H of Equation
(1.5),(2.1)-(2.5) defined by the following quantities:

C = C1 ∪ C2 where C1 = {x |M1x ≥ 0}, C2 = {x |M2x ≥ 0}, and D =
{x |M3x ≥ 0}.

F (x) =





F1x if x ∈ C1 \ C2

co{F1x, F2x} if x ∈ C1 ∩ C2

F2x if x ∈ C2 \ C1

G(x) = Gx if x ∈ D.

(2.14)

where F1 =

[
1
2 −1
1 1

2

]
, F2 =

[
− 1

2 −1
1 − 1

2

]
, G=

[
e

1
10 0

0 e−
1
10

]
,

M1 =

[
1 1

200
1 2

]
, M2 =

[
−1 − 2

]
, M3 =

[
−1 − 1

200
1 2

]
.

Some level sets of the function V (x) constructed by Algorithm 1 for c = 0.5
and ρ = 4.4 are summarized in Figure 2.3. Note that part of the dynamics of
H can be considered as an adaptation to the hybrid system framework of [23,
Section 3].
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D

C2

C1

Figure 2.3: Some level sets of V (x), Algorithm 1, Example 2.2.3.

2.3 Overshoots and Instability

2.3.1 Main Results

Both Theorem 2.1 and Algorithm 1 are parameterized by the constants c and ρ.
Such constants are used to define a particular subset of R

n and are connected
to the solutions of the hybrid system. In fact, by Theorem 2.1, if the point xe

of the system is unstable then c and ρ cannot be found. Moreover, consider
a hybrid system H with an asymptotically stable point xe and suppose that,
for some c and ρ, there exists a solution x to H such that |x(0, 0)| = c and
|x(t, j)| > ρc, for some (t, j) ∈ domx. For that case, we cannot find a function
V that satisfies the conditions of Theorem 2.1, i.e. the set of inequalities of
Algorithm 1 would be infeasible (intuitively, such a hybrid arc would cross any
level set contained in c ≤ |x| ≤ ρc).
We take into account these cases by showing results on instability of the point
xe = 0 of H and results on “overshoots” of solutions to H, namely, the behavior
of a solution ξ to move from |ξ(0, 0)| = c to |ξ(t, j)| < ρc, with c ∈ R>0 and
ρ ∈ R>1, and for some (t, j) ∈ dom ξ. Theorem 2.3 and Corollary 2.1 below
summarize the results on instability while the overshoots problem is addressed
in Theorem 2.4.

The following theorem is a generalization of Chetaev Theorem [87, Theorem
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4.3] to hybrid systems of Equations (1.5),(2.1)-(2.5). Then, it can be used to
characterize unstable points and it is related to Case 1 of the introduction.

Theorem 2.3 (Chetaev-like theorem) Consider a hybrid system H of Equations
(1.5),(2.1)-(2.5) Let V : R

n → R be a continuously differentiable function in
C ∪ D such that V (0) = 0 and V (x) > 0 for some x ∈ C ∪ D with arbitrarily
small |x|. Choose r ∈ R>0 and define U = {x ∈ C ∪ D |V (x) > 0, |x| ≤ r}.
Suppose

1. 〈∇V (x), f〉 > 0 ∀x ∈ C ∩ U, ∀f ∈ F (x);

2. V (g) − V (x) > 0 ∀x ∈ D ∩ U, ∀g ∈ G(x);

3. Each maximal solution ξ to H with initial state ξ(0, 0) ∈ U is complete.

Then xe = 0 is unstable.

Proof. By using completeness of solutions, the proof of Theorem 2.3 can be
developed by following the proof of [87, Theorem 4.3]. See Appendix 6.2.3 for
details. �

Remark 2.6 If C ∪ D = R
n then each maximal solution to H is a complete

solution to H or it escapes in finite time from any compact set. In such a case,
condition (3) of Theorem 2.3 is not needed. Note also that Theorem 2.3 can be
used on general hybrid systems of Equation (1.5) that satisfy the conditions of
Claim 2.1.

The following theorem can be used to study “overshoots” of solutions to
hybrid systems of Equations (1.5),(2.1)-(2.5). The theorem is parameterized
with respect to c and ρ and it guarantees the existence of at least one solution
ξ to H such that c ≤ |ξ(0, 0)| ≤ c+ ε, with ε small, and |ξ(T, J)| ≥ ρc, for some
(T, J) ∈ dom ξ. Theorem 2.4 is related to Case 3 of the introduction of this
chapter.

Theorem 2.4 Consider a hybrid system H of Equations (1.5),(2.1)-(2.5). Let
V : R

n → R be a continuously differentiable function such that for some ℓ ∈ R>0

and c ∈ R≥0,

1. max|x|=c V (x) ≤ ℓ;

2. there exist ε ∈ R>0 and x ∈ C ∪D such that |x| = c+ ε and V (x) > ℓ

Choose ρ ∈ R>1 and define U = {x ∈ C ∪D |V (x) > ℓ, c ≤ |x| ≤ ρc}. Suppose
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(3) 〈∇V (x), f〉 > 0 ∀x ∈ C ∩ U, ∀f ∈ F (x);

(4) V (g) − V (x) > 0 ∀x ∈ D ∩ U, ∀g ∈ G(x);

(5) |g| > c ∀x ∈ D ∩ U, ∀g ∈ G(x);

(6) Each maximal solution ξ to H with initial state ξ(0, 0) ∈ U is complete.

Then, for each λ ∈ R>0, there exists a solution ξ to H such that if |ξ(0, 0)| =
λ(c+ ε) then |ξ(T, J)| ≥ λρc, for some (T, J) ∈ dom ξ.

Proof. See Appendix 6.2.3 �
The meaning of the conditions of the theorem above can be explained by

looking at Figure 2.4. In Figure 2.4 we consider the case of a planar hybrid
system for which the conditions of Theorem 2.4 are satisfied. Conditions (1)
and (2) guarantee that the level set ℓ of V is close to the circle of radius c, while
conditions (3)-(6) guarantee that no solution can stay forever in the intersection
of the grey shaded set of Figure 2.4 with c ≤ |x| ≤ ρc.

x2

x1

C

D

C

D

ℓ1

ℓ2

cρc

V ≥ ℓ

ξ

Figure 2.4: A function V that satisfies the conditions of Theorem 2.4, for a
planar hybrid system.

By adding a simple condition to Theorem 2.4 it is possible to characterize
the instability of the point xe = 0, as stated in the following corollary. The key
point of that condition is that it guarantees that {x | |x| = ρc} ⊆ {x |V (x) > ℓ}.
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Thus, it is possible to show that there exists a solution that grows unbounded.
Corollary 2.1 is related to Case 2 of the introduction.

Corollary 2.1 Under the hypothesis of Theorem 2.4, if the conditions (1)-(5)
hold and the following condition is satisfied

(7) min|x|=ρc V (x) > ℓ,

then xe = 0 is unstable.

Proof. See section 6.2.3 �

Remark 2.7 It is important to mention that Theorems 2.3 and 2.4 are conser-
vative. In fact, both overshoots of solutions to a hybrid system H and instability
properties of the point xe = 0 of H are the results of the “behavior” of one so-
lution to H only, while Theorems 2.3 and Theorem 2.4 requires a particular
“behavior” for an entire set of solutions.

Remark 2.8 Theorem 2.4 and Corollary 2.1 still work when Condition (1) is
replaced by max|x|≤c V (x) ≤ ℓ and Condition (5) is deleted. The proof of this
fact can be developed by following an argument similar to the one in Section
6.2.3. In fact, by max|x|≤c V (x) ≤ ℓ, each jump from x ∈ U to some g ∈ G(x)
with |g| < c would fall in {x |V (x) ≤ ℓ}, that is forbidden by Condition (3) of
Theorem 2.4.

The properties on overshoots and instability are clearly related to the sta-
bility results of Section 2.2. A straightforward example is given by Theorem 2.3
and Theorem 2.1, whose conditions cannot be satisfied at the same time. The
following theorem characterizes some relationships among Theorems 2.1, 2.3,
2.4 and Corollary 2.1. We add a subscript to c and ρ to avoid confusion among
constants of different theorems and corollaries. For example, c(T2.1) denotes the
value of the constant c of Theorem 2.1 while ρ(C2.1) denotes the value of ρ used
in Corollary 2.1.

Theorem 2.5 Consider a hybrid system H of Equations (1.5),(2.1)-(2.5) and
suppose C ∪D = R

n. Then,

1. if Theorem 2.3 holds then ∀c(T2.1) > 0, ∀ρ(T2.1) > 1 Theorem 2.1 cannot
be satisfied;

2. if ∃c(T2.1) > 0, ∃ρ(T2.1) > 1 such that Theorem 2.1 holds then Theorem
2.3 cannot be satisfied;
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3. if ∃c(C2.1) > 0, ∃ρ(C2.1) > 1 such that Corollary 2.1 holds then ∀c(T2.1) >
0, ∀ρ(T2.1) > 1 Theorem 2.1 cannot be satisfied;

4. if ∃c(T2.1) > 0, ∃ρ(T2.1) > 1 such that Theorem 2.1 holds then ∀c(C2.1) >
0, ∀ρ(C2.1) > 1 Corollary 2.1 cannot be satisfied;

5. if ∃c(T2.4) > 0, ∃ρ(T2.4) > 1 such that Theorem 2.4 holds then ∀c(T2.1) >
0, ∀ρ(T2.1) < ρ(T2.4), Theorem 2.1 cannot be satisfied;

6. if ∃c(T2.1) > 0, ∃ρ(T2.1) > 1 such that Theorem 2.1 holds and each maximal
solution ξ to H is complete, then ∀c(T2.4) > 0, ∀ρ(T2.4) > ρ(T2.1) Theorem
2.4 cannot be satisfied.

Proof. See Section 6.2.3. �

2.3.2 Sum of Squares Algorithms

Under the assumption C ∪D = R
n, we can use the following algorithms to find

functions V that satisfy the conditions of Theorem 2.4. Then, we will use one
of those algorithms to construct functions V that satisfy also the conditions of
Corollary 2.1.

Algorithm 2 is defined by a set of inequalities parameterized by the param-
eters: (case, k1, k2). A solution to the set of inequalities is then computed by
relaxing the satisfaction problem of such inequalities to a sum of squares decom-
position problem. Then, if a solution is found, the algorithm ends. Otherwise,
the algorithm runs on a new set of inequalities, constructed on a different selec-
tion of (case, k1, k2), until each possible case of (case, k1, k2) has been considered.
In fact, by using a parameterization with (case, k1, k2), a non-convex search
problem is reduced to several convex problems, suitable for sum-of-squares im-
plementation. Therefore, by running Algorithm 2 several times, each time on a
different set of parameters, we explore a non-convex search-space, searching for
a function V that fullfills the conditions of Theorem 2.4. At each run:

(i) the input of the algorithm is filled by the data of the hybrid system H, by
some parameters ε, c, ρ, d1 and d2, and by a selection of (case, k1, k2), as
stated in section INPUT.

(ii) A set of inequalities is then constructed, as stated in section CONSTRAINTS.
Each inequality uses the variables defined in VARIABLES.
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(iii) A semidefinite program solver runs over the set of inequalities. A so-
lution is computed by relaxing the feasibility problem of the whole set
of inequalities to a sum of squares decomposition problem. The sum of
squares decomposition problem is then solved by using a semidefinite pro-
gram solver.

(iv) If the solver finds a solution, then the set of constraints is feasible and
algorithm 2 has a positive output, as stated in OUTPUT.

The description of Algorithm 2 is based on the quantities in Definitions 2.2
and 2.3 and on a polynomial q(x) defined as follows.

Definition 2.4 Let Q be a symmetric matrix in R
n×n, defined as follows.

Q =



q11 . . . q1n

...
. . .

...
qn1 . . . qnn


 (2.15)

Let q(x) be a polynomial defined as follows.

q(x) =
[
q01 . . . q0n

]
x+ x′Qx (2.16)

where q0i belongs to R, for each i ∈ {1, . . . , n}.

By suitable conditions on the elements of Q and on the elements of [q01 . . . q0n],
q(x) can be used as a function of x that is positive in some subset of R

n. In
particular, the parameterization (case, k1, k2) defines some specific conditions
on Q and on [q01 . . . q0n] so that q(x) is necessarily greater than zero in some
subset of R

n. For example, consider a planar space and assume that q11+q22 > 0
and q12 = 0. Then, q(x) = q01x1 + q02x2 + q11x

2
1 + q22x

2
2 is positive in a conic

subset of R
2. A numerical example is summarized in Figure 2.5.

Algorithm 2

INPUT:

Data 〈F,G,C,D〉 of the hybrid system H;
constants ε, c, ρ ∈ R>0, with ε≪ c and ρ > 1;
constants d1, d2 ∈ Z≥0, case ∈ {1, 2, 3} and, if case 6= 1, k1 ∈ {1, . . . n},
k2 ∈ {k1+1, . . . , n}.
OUTPUT:
Feasibility of the sum of squares problem.
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x1 − x2 ≥ 0

x
2

1
− 0.5x

2

2
≥ 0

1

√
2 x1

x2

x
2

1
− 0.5x

2

2
≥ 0

Figure 2.5: Suppose that q(x) = x1 − x2 + x2
1 − 0.5x2

2, then the intersection of
{x |x1 − x2 ≥ 0} with {x |x2

1 − 0.5x2
2 ≥ 0} is a conic subset of {x | q(x) ≥ 0}.

VARIABLES:

Scalars ℓ;

polynomials V (x), s
(ik)
1 (x), for each i in IC and k ∈ {1, . . . , rF }, s(ik)

2 (x) for

each i in ID and k ∈ {1, . . . , rG}, s3(x), s4(x), and s
(i)
5 (x), s

(i)
6 (x), for each i in

ID, and all the slack polynomials.

CONSTRAINTS:

Let V (x) be a polynomial of degree d2. Let ǫ be a scalar variable.

• ∀i ∈ IC , ∀k ∈ {1, . . . , rF }, let s
(ik)
1 (x) be a polynomial of degree d1

∂V

∂x
(x)Fikx− ∆

(i)
2 (x) − s

(ik)
1 (x)∆1(c, ρc, x) > 0

s
(ik)
1 (x) ≥ 0

(2.17)

• ∀i ∈ ID, ∀k ∈ {1, . . . , rG}, let s
(ik)
2 (x) be a polynomial of degree d1

V (Gikx) − V (x) − ∆
(i)
2 (x) − s

(ik)
2 (x)∆1(c, ρc, x) > 0

s
(ik)
2 (x) ≥ 0

(2.18)

• Assume c + 3ε < ρc. Let s3(x), s4(x), s
(ik)
5 (x) and s

(ik)
6 (x) be polynomials
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of degree d1

ℓ− V (x) − s3(x)∆1(c, c+ ε, x) ≥ 0

V (x) − ℓ− s4(x)∆1(c+ 2ε, c+ 3ε, x) − q(x) ≥ 0

ℓ ≥ 0

s3(x), s4(x) ≥ 0

∀i ∈ ID, ∀k ∈ {1, . . . , rG},
ℓ−V (x)− s

(ik)
5 (x)(c2 − x′G′

ikGikx) − ∆
(i)
2 (x)+

−s(ik)
6 (x)∆1(c, ρc, x) ≥ 0

s
(ik)
5 (x), s

(ik)
6 (x) ≥ 0

(2.19)

• q(x) satisfies the following inequalities:

if case = 1
∑n

i=1 qii > 0

if case = 2

{
∀i ∈ {1 . . . , n} , qii ≤ 0

2qk1k2 + qk1k1 + qk2k2 > 0

if case = 3

{
∀i ∈ {1 . . . , n} , qii ≤ 0

−2qk1k2 + qk1k1 + qk2k2 > 0

(2.20)

• Each use of cone(i)(x) in inequalities (2.17),(2.18) and (2.19) requires a new
fresh set of slack polynomials. Moreover for each slack polynomial, say p(x), a
new constraint p(x) ≥ 0 is added.

Analogously to Algorithm 1, each inequality of Algorithm 2 can be divided
into two parts: the first part defines some constraints on V while the second
part uses ∆1, ∆2 and q to guarantee the satisfaction of such constraints only in
a specific subset of R

n. Suppose now to run Algorithm 2 and to find a feasible
solution to the set of inequalities constructed by Algorithm 2, for some hybrid
system H and for some selection of parameters case, k1 and k2. The set of
inequalities of Algorithm 2 guarantees the following properties.
• By (2.17) and (2.18), the derivative of V (x) is positive, for each x ∈ C and
each f ∈ F (x) such that c ≤ |x| ≤ ρc. The difference V (g) − V (x) is positive,
for each x ∈ D and each g ∈ G(x) such that c ≤ |x| ≤ ρc.
• By (2.20), q(x) is not a non-positive function. To see this, note that if Q
is not negative semi-definite, then there exists a conic subset of R

n such that
q(x) > 0. And so, each inequality in (2.20) breaks a necessary condition for
negative semi-definiteness of Q.
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• The first inequality of (2.19) guarantees that V (x) ≤ ℓ for each c ≤ |x| ≤ c+ε.
The second inequality of (2.19) guarantees that V (x) > ℓ for some c+2ε ≤ |x| ≤
c+ 3ε. Then, V (x) = ℓ in at least one point of c+ ε ≤ |x| ≤ c+ 2ε.
• If the system H jumps from a state x in {x | c ≤ |x| ≤ ρc} to a state g
in {x | |x| ≤ c}, then the next to the last inequality of (2.19) guarantees that
V (x) ≤ ℓ. Therefore, the system cannot jump from the set {x |V (x) > ℓ} ∩
{c ≤ |x| ≤ ρc} to the set {x | |x| < c}.
It follows that a feasible solution to the set of constraints above produces a
function V that satisfies the conditions of Theorem 2.4.

Proposition 2.2 For any given hybrid system H defined by Equations (1.5),(2.1)-
(2.5), with C ∪D = R

n, if the set of inequalities of Algorithm 2 has a feasible
solution for some parameters c ∈ R>0, ρ ∈ R, ρ > 1 and (case, k1, k2), then the
function V constructed by Algorithm 2 satisfies the conditions of Theorem 2.4,
with the same c and ρ.

Proof. See Appendix 6.2.3. �
The following modification to Algorithm 2 guarantees that the function V (x)

is greater than a costant ℓ > ℓ for each point x such that |x| = ρc, as required
by Corollary 2.1. Replace the second inequality of (2.19) with

V (x) − ℓ− s7(x)∆1(ρc− ε, ρc, x) ≥ 0

ℓ > ℓ

s7(x) ≥ 0

(2.21)

and delete (2.20). Then, the following proposition hold.

Proposition 2.3 For any given hybrid system H defined by Equations (1.5),(2.1)-
(2.5), with C ∪D = R

n if the modified set of inequalities of Algorithm 2 has a
feasible solution for some parameters c ∈ R≥0, ρ ∈ R, ρ > 1 and (case, k1, k2),
then the function V constructed by the modified version of Algorithm 2 satisfies
Corollary 2.1, with the same c and ρ.

Proof. See Appendix 6.2.3. �

Remark 2.9 According to Remark 2.8, Algorithm 2 still works if we replace
ℓ−V (x)−s3(x)∆1(c, c+ε, x) ≥ 0 in (2.19) with ℓ−V (x)−s3(x)((c+ε)2−xTx) ≥
0 and we delete the fifth inequality in (2.19). Note that this approach forces the
function V to be lower than ℓ for |x| ≤ c, while Algorithm 2 leaves V basically
unconstrained near the origin. In fact, the fifth inequality in (2.19) enforces a
condition on V only if some jump g ∈ G(x), |g| ≤ c from c ≤ |x| ≤ ρc occurs.
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By (2.17), (2.18), Algorithm 2 searches for a function V whose directional
derivative and increment are both positive in c ≤ |x| ≤ ρc. According to
Theorem 2.4, these conditions on V can be relaxed by requiring that both the
directional derivative and the increment of V are positive only in a suitable
subset of R

n. Algorithm 3 takes into account this problem by defining a set
of inequalities parameterized by two triples of parameters: (casea , k1, k2) and
(caseb , k3, k4). Analogously to Algorithm 2, the problem of finding a solution
to the set of inequalities is relaxed to a sum of squares decomposition problem,
so that, a semidefinite program solver can be used to find a solution. Also
Algorithm 3 runs on each possible selection of (casea , k1, k2) and (caseb , k3, k4)
until a solution is found.

The description of Algorithm 3 is based on Definitions 2.2 and 2.3 and on
polynomials qa(x) and qb(x) defined as follows. Note that qa(x) and qb(x) have
the same structure of q(x) in Definition 2.4.

Definition 2.5 Let Qa, Qb be two symmetric matrices in R
n×n, defined as

follows.

Qi =



qi11 . . . qi1n

...
. . .

...
qin1 . . . qinn


 (2.22)

where i ∈ {a, b}. The polynomials qa(x) and qb(x) are defined as follows.

qa(x) =
[
qa01 . . . qa0n

]
x+ x′Qax

qb(x) =
[
qb01 . . . qb0n

]
x+ x′Qbx

(2.23)

where qa0i
, qb0i

belong to R, for each i ∈ {1, . . . , n}.

Algorithm 3

INPUT:

Data 〈F,G,C,D〉 of the hybrid system H;
constants ε, c, ρ ∈ R>0, with ε≪ c and ρ > 1;
constants d1, d2 ∈ Z≥0, casea , caseb ∈ {1, 2, 3} and, if casea 6= 1, k1 ∈ {1, . . . n},
k2 ∈ {k1+1, . . . , n}, and if caseb 6= 1, k3 ∈ {1, . . . n}, k4 ∈ {k3+1, . . . , n}.
OUTPUT:
Feasibility of the sum of squares problem.

VARIABLES:

Scalars ℓ1, ℓ2;
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polynomials V (x), s
(ik)
1 (x), for each i ∈ IC and k ∈ {1, . . . , rF }, s(ik)

2 (x) for each

i ∈ ID and k ∈ {1, . . . , rG}, s3(x), s4(x), s5(x), s(ik)
6 (x) and s

(ik)
7 (x) for each

i ∈ ID and k ∈ {1, . . . , rG}, and all the slack polynomials.

CONSTRAINTS:

Let V (x) be a polynomial of degree d2. Let ǫ be a scalar variable.

• ∀i ∈ IC , ∀k ∈ {1, . . . , rF }, let s
(ik)
1 (x) be a polynomial of degree d1

∂V

∂x
(x)Fikx− qa(x) − ∆

(i)
2 (x) − s

(ik)
1 (x)∆1(c, ρc, x) > 0

s
(ik)
1 (x) ≥ 0

(2.24)

• ∀i ∈ ID, ∀k ∈ {1, . . . , rG}, let s
(ik)
2 (x) be a polynomial of degree d1

V (Gikx) − V (x) − qa(x) − ∆
(i)
2 (x)+

−s(ik)
2 (x)∆1(c, ρc, x) > 0

s
(ik)
2 (x) ≥ 0

(2.25)

• Assume c+ 3ε < ρc. Let s3(x), s4(x), s5(x), s
(ik)
6 (x) and s

(ik)
7 (x) be polyno-

mials of degree d1

ℓ1 − V (x) − s3(x)∆1(c, c+ ε, x) ≥ 0

V (x) − ℓ1 − s4(x)∆1(c+ 2ε, c+ 3ε, x) − qb(x) ≥ 0

ℓ2 − V (x) − s5(x)∆1(c, ρc, x) + qa(x) ≥ 0

ℓ1 > ℓ2 ≥ 0

s3(x), s4(x), s5(x) ≥ 0

∀i ∈ ID, ∀k ∈ {1, . . . , rG},
ℓ1−V (x)− s

(ik)
6 (x)(c2 − x′G′

ikGikx) − ∆
(i)
2 (x)+

−s(ik)
7 (x)∆1(c, ρc, x) ≥ 0

s
(ik)
6 (x), s

(ik)
7 (x) ≥ 0

(2.26)

• qa(x) satisfies the following inequalities:

if casea = 1
∑n

i=1 qaii
> 0

if casea = 2

{ ∀i ∈ {1 . . . , n} , qaii
≤ 0

2qak1k2
+ qak1k1

+ qak2k2
> 0

if casea = 3

{ ∀i ∈ {1 . . . , n} , qaii
≤ 0

−2qak1k2
+ qak1k1

+ qak2k2
> 0

(2.27)
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• qb(x) satisfies the following inequalities:

if caseb = 1
∑n

i=1 qbii
> 0

if caseb = 2

{
∀i ∈ {1 . . . , n} , qbii

≤ 0
2qbk3k4

+ qbk3k3
+ qbk4k4

> 0

if caseb = 3

{
∀i ∈ {1 . . . , n} , qbii

≤ 0
−2qbk3k4

+ qbk3k3
+ qbk4k4

> 0

(2.28)

• Each use of cone(i)(x) in inequalities (2.24),(2.25) and (2.26) requires a new
fresh set of slack polynomials. Moreover for each slack polynomial, say p(x), a
new constraint p(x) ≥ 0 is added.

To satisfy the conditions of Theorem 2.4, the directional derivative and the
increment of V must be positive in the set (C∪D)∩U , namely the set {x |V (x) >
ℓ, x ∈ C ∪D}. These goals are achieved by using the inequalities in (2.24) and
in (2.25), together with the third inequality of (2.26). Intuitively, for each
c ≤ |x| ≤ ρc, we have that the directional derivative and the increment of V are
positive in the set {x | qa(x) ≥ 0}. At the same time, we have that qa(x) ≤ 0
implies V < ℓ. It follows that, if V (x) ≥ ℓ then qa(x) > 0, that is, the directional
derivative and the increment of V are positive in a subset of R

n that includes
{x |V (x) ≥ ℓ, c ≤ |x| ≤ ρc}, as required by Theorem 2.4. See Figure 2.6 for a
graphical interpretation of inequalities of Algorithm 3, in a planar case.

A formal argument on (2.24),(2.25), on the third inequality of (2.26), and on
the use of the remaining inequalities is developed in the proof of the following
proposition.

Proposition 2.4 For any given hybrid system H defined by Equations (1.5),(2.1)-
(2.5), with C ∪D = R

n, if the set of inequalities of Algorithm 3 has a feasible
solution for some parameters c ∈ R>0, ρ ∈ R, ρ > 1 and some (casea , k1, k2),
(caseb , k3, k4), then the function V constructed by Algorithm 3 satisfies the con-
ditions of Theorem 2.4, with the same c and ρ.

Proof. See Appendix 6.2.3. �

2.3.3 Example

Let us consider the following hybrid system

H =






ẋ =

[
0 1
−1 λr

]
x x ∈ C

x+ =

[
0 1

2
0 0

]
x x ∈ D

(2.29)
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V (x) ≥ ℓ

cρc x1

x2

qb(x)>0

qa(x)>0

Figure 2.6: An interpretation of inequalities of Algorithm 3. The directional
derivative and the increment of V are both positive in the subset {x | qa(x) ≥ 0}

.

where λr ∈ R is a parameter and C and D are defined as follows

C =

{
x |
[

−1 0
0 1

]
x ≥ 0 or

[
1 0
0 −1

]
x ≥ 0

}

D =

{
x |
[

1 0
0 1

]
x ≥ 0 or

[
−1 0
0 −1

]
x ≥ 0

}
.

(2.30)

We increase λr progressively so that the continuous dynamics of the hybrid sys-
tem is characterized (i) by an asymptotic stable system, (ii) by a stable system
and (iii) by an unstable system. For c = 0.5 and ρ = 4, the set of inequalities
of Algorithm 1 has a feasible solution. Some level sets of the functions V (x)
constructed by Algorithm 1 are shown in Figure 2.7. A possible solution to H
is illustrated in Figure 2.7(f).

On the same system, We use Algorithm 2 to estimate the overshoot of H.
Indeed, we study H for increasing values of λr and for each λr we run several
times Algorithm 2 (for c = 0.5 and d2 = 10) looking for the greatest values of ρ
for which the set of constraints are still feasible. Some level sets of the function
V (x) constructed by Algorithm 2 are shown in Figure 2.8.

The same study is repeated with Algorithm 3. Results are shown in Figure
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2.9.

(a) λr =−1, degree of V =6 (b) λr =−0.5, degree of V =6 (c) λr =0, degree of V =6

(d) λr =0.5, degree of V =6 (e) λr =1, degree of V =6 (f) λr =1, a hybrid arc of the
system.

Figure 2.7: Functions V constructed by Algorithm 1, Example 2.3.3

2.4 Notes on Sum of Squares Implementation

The results in Theorem 2.5 cannot be directly extended to the algorithms. In
fact, each algorithm satisfies a set of conditions that is more conservative than
the set of conditions of the theorem that the algorithm is based on.

The problem of finding a solution to the set of inequalities of each algorithm
is addressed by replacing each inequality with a sum-of-squares decomposition.
In fact, the left-hand side of each inequality involving polynomials is a polyno-
mial, say p(x). It follows that the inequalities p(x) ≥ 0 can be replaced by p(x)
is a sum-of-squares . Note that each strict inequality of the form p(x) > 0 can
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(a) λr = 0.5, ρ = 1.3 (b) λr = 1, ρ = 1.7

(c) λr = 2, ρ = 2.3 (d) λr = 4, ρ = 3.2

Figure 2.8: Level sets greater or equal than ℓ of the function V (x) constructed by
algorithm 2, Example 2.3.3. Note that the system is globally pre-asymptotically
stable for λr = 0.5 and for λr = 1 while it is unstable for λr = 2 and for λr = 4.

be transformed to a non-strict inequality of the form p(x)−ǫxTx ≥ 0, with ǫ > 0
variable of the problem and this step is needed to write the set of inequality as
a sum of squares decomposition problem.

From a computational point of view, finding a sum-of-squares decomposition
is much easier than using a general algorithm for finding a solution to the
inequality constraints. At the same time, it could be the case that a solution
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(a) λr = 0.5, ρ = 1.3 (b) λr = 1, ρ = 1.7

(c) λr = 2, ρ = 2.1 (d) λr = 4, ρ = 2.9

Figure 2.9: Level sets greater or equal than ℓ1 of the function V (x) constructed
by Algorithm 3, Example 2.3.3. The system is globally pre-asymptotically stable
for λr = 0.5 and for λr = 1 while it is unstable for λr = 2 and for λr = 4.

to the inequality constraints exists while the sum of squares decomposition fails
to exist. Moreover, even though (i) polynomial inequalities constructed by each
algorithm are linear with respect to the set of variables and (ii) a sum of squares
decomposition problem can be solved in polynomial time, the computational
complexity of finding a solution to the set of inequalities grows rapidly with the
dimension of the state-space of H, with the degree of the free polynomials used
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in the set of inequalities, with the number of disjoint cones of C ∪D, and with
the number of matrices Fik, Gik.

It is important to underline that a sum-of-squares decomposition is satisfied
within the limits of the numerical computation, therefore it cannot be exact.
Fortunately, we are not interested in an exact decomposition. What we really
need is that, despite the numerical approximation errors of the construction of
the sum of square decomposition, the constructed polynomials are still a feasible
solution to the set of inequalities. By following [98], this goal can be achieved
by considering a perturbed polynomial with a perturbation magnitude that de-
pends on the numerical approximations errors of the decomposition (residuals).
By the fact that a sum-of-squares problem can be formulated as an equivalent
SDP problem and then solved by a SDP solver, we can use [98, Theorem 4] to
guarantee that the approximate solution to the sum of squares decomposition
problem is a feasible solution for the set of inequalities. For instance, suppose
that we want to find a polynomial p(x) such that p(x) ≥ 0. Then,

– we relax the problem to find p(x) such that p(x) is a sum-of-squares ;

– the data of the SDP formulation are the matrices A and b;

– the solution is P ∈ R
M×M , for some M ∈ Z≥0;

– p(x) can be written as v(x)′Pv(x), where v(x) is a base of monomials.

By [98, Theorem 4], if

λmin(P ) ≥M‖ A(P ) − b ‖∞ (2.31)

then v(x)′Pv(x) is non-negative, i.e. the satisfaction of each inequality is certi-
fied. Note that (2.31) can be used as a termination condition for the algorithms.

Finally, each algorithm and the test condition in (2.31) can be implemented
and solved by using packages like YALMIP [97], and SeDuMi [138].



Chapter 3

Formal Verification of

Hybrid Systems

In Chapters 2 we presented some results on stability, overshoot, and instability
of a particular family of hybrid systems. Then, we constructed some sum of
squares algorithms that effectively use that results to characterize the stability
of that particular family of hybrid systems. In this chapter we continue to work
on the analysis of hybrid systems by defining (i) a formalized language to express
classes of properties on these systems and (ii) a method for deciding whether
or not the system satisfies the properties of interest, in case they are decidable.
We will consider the following verification problem: given a hybrid system H, a
state x of H, and a formula ϕ, establish whether or not the state x of H satisfies
the property ϕ, denoted H, x � ϕ.

In Chapter 2 we studied a particular verification problem: the stability prob-
lem. We considered a system H and a set A and we proposed some procedures
(the algorithms) to answer to the question: is the set A asymptotically stable
for H? Here we define a specific temporal logic [22, 39], to express properties
like “if A happens then B happens within 5 units of time”, or “A holds for every
time instant of the solutions”, and we propose a verification method to decide, if
at all possible, whether or not a hybrid system and a state satisfy the property
expressed by a specific temporal logic formula.

There are two main approaches to the verification problem on hybrid sys-
tems. One is the model checking approach in which the set of states that satisfy
a given formula is computed by successive approximations [39]. Examples of the

81
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model checking approach on particular classes of hybrid systems can be found in
[2, 54, 66]. The other approach is the deductive verification approach in which
a set of transformation rules is applied to the formula that express the prop-
erty of interest. The result is, in general, a proof tree whose leaves establishes
whether or not a given state satisfies the property [25, 26]. This approach has
been applied to real-time systems in [72] and to general hybrid systems in [44].
Notable works are [115, 116].

Formal verification is usually based on the following abstract components.

– A language to describe a class of processes of interest. In our case the
language is the one of hybrid systems, where we take take into account
the interaction of continuous and discrete processes.

– A language to express a class of properties of interest. In our case we
use a slightly modified version of Timed Computation Tree Logic TCTL
[13], denoted as HTCTL, Hybrid Time Computation Tree Logic. Although
HTCTL has the same syntax of TCTL, its semantics is based on solutions
to hybrid systems.

– A verification procedure to decide, if at all possible, whether or not a given
state of a process satisfies a given property. In this chapter we show a
method to reduce the verification problem of HTCTL to the membership
problem on a set denoted by a fixpoint expression. Such a method follows
the approach of [73], and generalizes that approach to a broader class of
systems and to a broader class of solutions. Then, either a model checking
approach [73], or a deductive approach [26], can be used on the fixpoint
expression to decide whether or not a given state of a process belongs to
the set denoted by the fixpoint expression.

3.1 A Model for Hybrid Systems

By following [1, 5, 73], we define a branching time logic similar to CTL for un-
timed systems and similar to TCTL for timed systems [13]. The HTCTL has
the same sintax of TCTL, but a different semantics. In particular, the semantics
of HTCTL is defined by using the notion of a solution to a hybrid system (Defi-
nition 1.4), instead of the usual approach based on transition systems or Kripke
structures [13] and [39, Chapters 2 and 3]. Therefore, we need to characterize
some properties of the solutions to a hybrid system before presenting the logic
and defining its semantics
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In the following definition we consider two important properties on sets of
solutions to a hybrid system H: suffix-closure and fusion-closure. We follow the
approach of [73, Definition 2.3], by considering the solutions to a hybrid system
instead of the real-time trajectories of [73, Definition 2.2].

Definition 3.1 A set Π of solutions to a hybrid system H of Equation 1.5 is
defined as Π ⊆ {ξ | ξ is a solution to H}.

Definition 3.2 A set Π of solutions to a given hybrid system H is

1. suffix-closed if for all solutions x ∈ Π and for each state x(t, j), there
exists a solution y ∈ Π such that if (τ, i) ∈ domx and τ + i ≥ t + j then
y(τ − t, i− j) = x(τ, i).

2. fusion-closed if for all solutions x, y ∈ Π and all states x(t, j) and y(τ, i)
if x(t, j) = y(τ, i) then the hybrid arc z(t, j) constructed as

{
z(t, j) = x(t, j) if t+ j ≤ tx + jx
z(t, j) = y(ty + t− tx, jy + j − jx) if t+ j ≥ tx + jx

(3.1)

is in Π.

Closure properties of sets of solutions of Definition 3.2 are related to the well-
known fact that solutions to hybrid systems of Equation (1.5) are completely
determined by the current state of the system, i.e. no informations on previous
states is needed. Indeed, consider a hybrid system H and a solution x to H.
Define a hybrid arc y so that y(0, 0) = x(tx, jx) for some given (tx, jx) ∈ domx
and y(ty, jy) = x(tx + ty, jx + jy) for each (tx + ty, jx + jy) ∈ domx and ty ≥ 0,
jy ≥ 0. Then, y is a solution to H from the initial state x(tx, jx). It follows
that the set of all solutions to a hybrid system H, {ξ | ξ is a solution to H}, is
necessarily a suffix-closed set of solutions. Of course, a subset Π of the whole set
of solutions can be not suffix-closed. By following a similar argument, consider
two solutions x and y to H and suppose x(tx, jx) = y(ty, jy) for some (tx, jx) ∈
domx and (ty, jy) ∈ dom y. Then, because of the dependence on the initial state,
we can construct a solution z to H with initial state z(0, 0) = x(tx, jx) = y(ty, jy)
that follows either x or y from this initial state. Then, the set of all solutions
to a hybrid system H is necessarily fusion-closed. As before, a subset Π of the
whole set of solutions can be not fusion-closed.

Lemma 3.1 For any given hybrid system H, the set of all solutions to H is
suffix-closed and fusion-closed.
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The following definition take into account [73, Definition 2.4] together with
the notions of hybrid time and of solution to a hybrid system. The notions of
model and premodel of Definition 3.3 will be used in Section 3.2 to define the
semantics of the temporal logic.

Definition 3.3 For any given hybrid system H, a premodel is a set of solutions
to H that is suffix-closed and fusion-closed. A model is a premodel whose
solutions are complete (Definition 1.5).

It is worth mentioning that our definition of a model takes into account
Zeno and discrete solutions, and it is different from the notion proposed in [73],
in which sets of solutions with Zeno and discrete solutions are not models (by
the fact that they contains solutions that are not divergent, see [73, Definition
2.2]). The notion of a model proposed in Definition 3.3 preserves the symmetry
between continuous solutions and discrete solutions to a hybrid system. Indeed,
the hybrid time in Definition 1.2 uses a variable for taking into account the
number of jumps within a solution, and it uses a variable to take into account the
elapsing of time, during flow intervals. Therefore, it seemed natural to consider
discrete and continuous solutions symmetrically and include both of them in a
model for hybrid systems. (In [73] continuous solutions lead to divergent paths
and a set of solutions that contains continuous solutions can be a model for the
hybrid system, while discrete solutions produce non-divergent paths and a set
of solutions that contains discrete solutions cannot be a model for the hybrid
system). Note that a Zeno solution has an unbounded domain, that is, it is a
complete solution, thus a set that contains Zeno solutions can be a model.

Remark 3.1 The notion of complete solutions in Definition 1.5 is related to
[73, Definition 2.2] and Definitions 3.2 and 3.3 are related to [73, Definitions 2.3
and 2.4]. Our definitions are based on the notion of hybrid time in Definition
1.2, that differs from the dense-time model used in [1, 5, 73]. This leads to the
following differences between our definitions and the relative definitions in [73]:

– the notion of a model of a hybrid system in Definition 3.3 generalizes [73,
Definition 2.4], by considering also Zeno solutions and discrete solutions;

– complete solutions in Definition 1.5 can be compared to divergent paths
of [73, Definition 2.2]. Then, each divergent path of [73, Definition 2.2]
can be considered as a complete solution to H while the contrary does
not hold. In fact, Zeno solutions and discrete solutions to H are complete
solutions but not divergent paths.
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These differences between divergent paths and complete solutions lead to a
different notion of a model of a hybrid system. Thus, sets of solutions that
contains Zeno and discrete solutions can be considered as models for a hybrid
system only for the notion of model in Definition 3.3. Note that, although in
[73] the authors call real-time system what we call here a model, Definition 3.3
and [73, Definition 2.4] are similar.

3.2 HTCTL

In this section we present the HTCTL, a branching time logic quite similar to
TCTL of [1, 13, 73]. The H at the beginning of the HTCTL tells the reader that
HTCTL is a version of TCTL that uses the notion of hybrid time (see Definition
1.2). We consider a syntax of the HTCTL that coincides with the syntax of
TCTL, defined in [1, 13], and we give a semantics for the HTCTL based on the
notions of hybrid time (Definition 1.2) and model of a hybrid system (Definition
3.3). Then, we compare the semantics of TCTL [13, 73] to that of HTCTL.

Path operators of TCTL in [1, 13] are parameterized with time-intervals
denoted by rop c, where rop ∈ {<,≤,=,≥, >} and c ∈ Z≥0. We follow a
similar approach, using hybrid time intervals on path operators. We denote
these intervals as rop (ct, cj), where rop ∈{<,≤,=,≥, >} and (ct, cj) ∈ R≥0 ×
Z≥0, and (t, j) satisfies rop (ct, cj) iff t rop ct and j rop cj .

Definition 3.4 [Syntax of HTCTL]
Let P be a set of atomic propositions. A formula ϕ of Hybrid Time Computation
Tree Logic is inductively defined from the set of atomic propositions as follows:

ϕ ≡ p | ¬ϕ |ϕ1 ∨ ϕ2 | ∃ϕ1U rop (ct,cj)ϕ2 | ∀ϕ1U rop (ct,cj)ϕ2 (3.2)

where p ∈ P and rop (ct, cj) is a hybrid time interval.

In what follows we will denote the symbols ∃ and ∀ as quantifiers on solutions or,
for short, quantifiers, and the symbol U as path operator. For semplicity, we will
sometimes use the name of time interval for a hybrid time interval rop (ct, cj).

To define the semantics of HTCTL we need an interpretation for the atomic
propositions, that is, for a hybrid system H = (O,C,D, F,G) with state-space
of dimension n, a function that maps each atomic proposition to a subset of R

n.

Definition 3.5 Consider a hybrid system H = (O,C,D, F,G) with state-space
of dimension n ∈ Z≥0. Consider a set P of atomic propositions and a premodel
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M of H. The function J·KM : P → 2R
n

maps each atomic propositions p ∈ P to
the characteristic set JpKM ⊆ R

n of p of states in which p holds.

Note that, in general, JpKM is an infinite set of states and a language is needed to
symbolically denote that set of states. For example, using the language of linear
inequalities to denote subset of R

n, n ∈ Z≥0, consider a hybrid system H with
state vector x = [x1 x2 . . . xn]T and consider an atomic proposition p. Then,
an atomic proposition p can be mapped to JpKM = {x |x1 + x2 + · · ·+ xn ≥ 0}.

By using the saturation function on atomic propositions, we can now give
the definition of the HTCTL semantics, as follows. It is worth mentioning that
the HTCTL semantics is defined similarly to [13, 73], but it is based on the
model notion given in Definition 3.3.

Definition 3.6 [Semantics of HTCTL]
For any given n ∈ Z≥0, consider a premodel M , a set P of atomic propositions,
a function J·KM : P → 2R

n

, that maps each p ∈ P to its characteristic set JpKM ,
and a state x ∈ R

n. The meaning of a formula ϕ of HTCTL is inductively
defined as follows

M,x � p iff x ∈ JpKM

M,x � ¬ϕ iff M,x 6� ϕ
M, x � ϕ1 ∨ ϕ2 iff M,x � ϕ1 or M,x � ϕ2;

M,x � ∃ϕ1U rop (ct,cj)ϕ2 iff ∃ξ ∈M , with ξ(0, 0) = x, such that

– ∃(T, J) ∈ dom ξ, such that (T, J) rop (ct, cj) and M, ξ(T, J) � ϕ2,
and ∀(t, j) ∈ dom ξ, if (t, j) ≤ (T, J) then M, ξ(t, j) � ϕ1 ∨ ϕ2.

M,x � ∀ϕ1U rop (ct,cj)ϕ2 iff ∀ξ ∈M , with ξ(0, 0) = x,

– ∃(T, J) ∈ dom ξ such that (T, J) rop (ct, cj) and M, ξ(T, J) � ϕ2, and
∀(t, j) ∈ dom ξ, if (t, j) ≤ (T, J) then M, ξ(t, j) � ϕ1 ∨ ϕ2.

Intuitively, a state x and a premodel M satisfy ∃ϕ1U rop (ct,cj)ϕ2, that is,
M,x � ∃ϕ1U rop (ct,cj)ϕ2, if for at least one solution ξ from x there is a time
(T, J) such that M, ξ(T, J) � ϕ2 and for all (t, j) ≤ (T, J), M, ξ(t, j) � ϕ1∨ϕ2.
The meaning of ∀ϕ1U rop (ct,cj)ϕ2 is similar, but it requires that the relation
between ϕ1 and ϕ2 is enforced on each solution ξ from x. An example is given
in Figure 5.6.

Note that ∃ϕ1U rop (ct,cj)ϕ2 and ∀ϕ1U rop (ct,cj)ϕ2 can be divided in two parts:
a path operator and a quantifier on solutions. Indeed,
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(i) the path operator can be interpreted as a quantification on time instants of
the solution. Without the quantifier on solutions, ϕ1U rop (ct,cj)ϕ2 defines
a particular relation between ϕ1 and ϕ2, on a given solution ξ ∈M . When
a solution ξ satisfies this particular relation between ϕ1 and ϕ2, that is,

– for some (T, J) rop (ct, cj), M, ξ(T, J) � ϕ2 and

– for all (t, j) ≤ (T, J), M, ξ(t, j) � ϕ1 ∨ ϕ2,

we say that ξ satisfies the semantics of ϕ1U rop (ct,cj)ϕ2;

(ii) the quantifier on solutions defines when either some solution in M , or each
solution in M , must satisfy the semantics of ϕ1U rop (ct,cj).

ϕ2

ϕ1

x

ξ1

ξ2

ξ3

Figure 3.1: We represent three solutions from the initial state x. Flow intervals
are represented by a continuous line. Jumps are represented by a dashed line.
The characteristic sets of the HTCTL formulas ϕ1 and ϕ2 are represented by
the grey shaded shapes of the figure. x satisfies ∃ϕ1U≥(0,0)ϕ2 by the fact that
ξ1 and ξ3 satisfies the semantics of ϕ1U≥(0,0)ϕ2, therefore at least one solution
from x satisfies the semantics of ϕ1U≥(0,0)ϕ2. x does not satisfy ∀ϕ1U≥(0,0)ϕ2

by the fact that ξ2 does not satisfies the semantics of ϕ1U≥(0,0)ϕ2. Therefore,
not each solution from x satisfies the semantics of ϕ1U≥(0,0)ϕ2.

The definition of the HTCTL semantics is based on a set P of atomic propo-
sitions and on a particular premodel M . In general, the meaning of a HTCTL
formulas is defined on each set of solutions to H which is suffix and fusion closed.
Note that the set of all solutions to a hybrid system is a premodel and we can
replace M with H whenever the set of all solutions to H is considered. Note also
that if each solution to H is complete, the set of all solutions to H is a model.
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Denote by Ψ the set of all HTCTL formulas and consider a hybrid system H
with state dimension n ∈ Z≥0. Following the semantics defined above, we can
define the semantic function J·KM : Ψ → 2R

n

, that maps each HTCTL formula
to a subset of R

n. Note that the semantic function below overload the function
that maps atomic propositions to their characteristic sets.

Definition 3.7 Let M be a model and let Ψ be the set of all HTCTL formulas.
The semantic function J·KM : Ψ → 2R

n

maps each formula ϕ ∈ Ψ to JϕKM =
{x |M,x � ϕ}.

Example 3.1 Consider a hybrid system H = (R2, C,D, F,G) defined by the
following equation. We use x to denote the state.

{
ẋ = [ 1 1 ]T x ∈ {x | |x| ≤ 1}
x+ = 1

2x x ∈ {x | |x| ≥ 1} (3.3)

Consider a premodel M defined by the set of all complete solutions ξ to H and
define a set of atomic propositions P = {p0, p1, true} such that Jp0KM = {x | 0 ≤
|x| ≤ 1}, Jp1KM = {x | |x| = 1} and JtrueKM = R

2. For that premodelM , a state
x satisfies the formula ϕ ≡ p0 ∨ ∀true U≥(0,0)p1, that is, M,x � ϕ, if x ∈ Jp0KM

or for each solutions ξ to H with ξ(0, 0) = x, there exists a (T, J) ∈ dom ξ,
(T, J) ≥ (0, 0), such that ξ(T, J) ∈ Jp1KM . Therefore, ϕ is satisfied by states x
such that 0 ≤ |x| ≤ 1 and such that there exists a solution ξ with ξ(0, 0) = x
and |ξ(T, J)| = 1, for some (T, J) ∈ dom ξ.

Now, consider a solution ξ to H such that |ξ(0, 0)| ≤ 1. ξ has an initial state
within the flow set, therefore it satisfies ξ(t, 0) = t + ξ(0, 0) for all 0 ≤ t ≤ T ,
where T ∈ R≥0 is such that T + ξ(0, 0) ∈ {x | |x| = 1}. It follows that each state
x within the flow set satisfies ∀true U≥(0,0)p1. Now consider a solution ξ with
initial state |ξ(0, 0)| > 1. ξ satisfies ξ(0, j+ 1) = 1

2ξ(0, j), for each j ∈ Z≥0 such
that 0 ≤ j ≤ J , where J is the time instant at which |ξ(0, J)| < 1 (ξ enters
the flow set in a finite number of jumps). From there, ξ flows and, for some
T ∈ R≥0, ξ(T, J) ∈ Jp1KM . It follows that each state of H satisfies ϕ. In Figure
3.2 we have represented two possible solutions of the hybrid system (3.3).

Note that if we replace ϕ by ϕ′ ≡ p0 ∨ ∀true U≤(10,2)p1, then the a state x
such that x = |5| does not satisfy ϕ′. Indeed, each solution ξ from x needs three
jumps to reaches the ball of radius 1, that is, there exists a J ≥ 3 such that
|ξ(0, J)| < 1 and does not exist a J ≤ 2 for which |ξ(0, J)| < 1. From there, ξ
flows to |x| = 1, that is, ξ(T, J) ∈ Jp1KM for some T ≥ 0. Constraints on the U
operator, however, requires at most two jumps.
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x1

x2

ξ1

ξ2

Figure 3.2: We represent two possible solutions ξ1 and ξ2 of the hybrid system
(3.3), respectively from x1 and x2. Both solutions satisfy ∃ϕ1U≥(0,0)ϕ2. Note
that the jumps are represented by a dashed line. Each jump moves the state
from a point v ∈ R

2 to 1
2v. The flows are represented by continuous lines. The

gray shaded circle represent Jp0KM .

Remark 3.2 We could consider different kinds of hybrid time intervals. For
example, a possible interval I subset of R≥0×Z≥0 can be defined as [t, t]×{j, j+
1, . . . , j + n}, for some t, t ∈ R≥0 and j, n ∈ Z≥0. The semantics of HTCTL
given in Definition 3.6 can be restated on these hybrid intervals. We decided to
consider simpler hybrid time intervals for reasons of simplicity.

Note that the operator U of HTCTL has a semantics that differs from the
usual semantics of the operator U of CTL. For instance, consider a solution ξ to
H, and a formula ϕ1U rop (ct,cj)ϕ2. In HTCTL, this formula requires that ξ(T, J)
satisfies ϕ2, for some (T, J) ∈ dom ξ, such that (T, J) rop (ct, cj), and it requires
that for each (t, j) ∈ dom ξ, (t, j) ≤ (T, J), ξ(t, j) satisfies ϕ1 ∨ϕ2. Instead, the
CTL semantics for U requires that ξ(T, J) satisfies ϕ2, for some (T, J) ∈ dom ξ,
such that (T, J) rop (ct, cj), but, for each (t, j) ∈ dom ξ, it requires that ξ(t, j)
satisfies ϕ1 only. The semantics of the operator U in HTCTL follows [13, 73]
and can be justified by the following example.

Example 3.2 Consider a solution ξ : dom ξ → R to a hybrid system H that,
for all t ∈ R≥0, satisfies ξ(t, 0) = 0 + t. Consider two atomic proposition p1 and
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p2 such that Jp1KM = {x ∈ R | 0 ≤ x ≤ 1} and Jp2KM = {x ∈ R | 1 ≤ x ≤ 2}.
ξ satisfies the HTCTL semantics of p1U≥(1.5,0)p2 if ξ(T, 0) ∈ Jp2KM for some
T ≥ 1.5 and ξ(t, 0) ∈ Jp1KM ∪ Jp2KM for each t ≤ T . With T = 1.5, we
have that ξ satisfies the semantics of p1U≥(1.5,0)p2. Now consider the CTL
semantics of the operator U . It requires that ξ(t, 0) ∈ Jp1KM for each t ≤ T .
However, ξ(t, 0) /∈ Jp1KM for each t ∈ (1, 1.5] therefore ξ does not satisfy the
CTL semantics of p1U≥(1.5,0)p2.

It is worth mentioning that ξ satisfies both the HTCTL and the CTL se-
mantics of p1U≥(0,0)p2 in Example 3.2. This is a general result and is related to
the fact that in CTL the semantics of p1U≥(0,0)p2 is equivalent to the semantics
of (p1 ∨ p2)U≥(0,0)p2.

By following [13], we can define some induced HTCLT operators as follows.

Definition 3.8 The propositional logic operators ∧, →, true can be constructed
in the usual way, that is, for any given formulas ϕ1, ϕ2, ϕ1∧ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2),
ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, and true ≡ ϕ1 → ϕ1. Then,

∃© ϕ ≡ ∃ true U=(0,1)ϕ

∀© ϕ ≡ ∀ true U=(0,1)ϕ

∃F rop (ct,cj)ϕ ≡ ∃ true U rop (ct,cj)ϕ

∀F rop (ct,cj)ϕ ≡ ∀ true U rop (ct,cj)ϕ

∃G rop (ct,cj)ϕ ≡ ¬∀F rop (ct,cj)¬ϕ

∀G rop (ct,cj)ϕ ≡ ¬∃F rop (ct,cj)¬ϕ

Finally, we avoid to mention explicitely rop (ct, cj) on operators U , F and G
whenever it coincides with ≥ (0, 0).

3.2.1 HTCTL and CTL

In this section we study the relationship between HTCTL and CTL. We use
a hybrid system to model a discrete process and we compare the semantics of
HTCTL formulas, interpreted on this specific hybrid system, with the semantics
of CTL formulas, interpreted with the usual semantics given by the Kripke
structure [39] that abstract the discrete process. It turns out that, for this
specific case, a suitable subset of HTCTL formulas has the same expressivity of
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CTL formulas, that is, for each state x and for each HTCTL formula ϕHTCTL,
if x satisfies ϕHTCTL, then there is a CTL formula ϕCTL such that x satisfies
ϕCTL, and viceversa.

Note that several discrete processes can be modeled as hybrid systems. An
example is the case of finite automata [81, 114] that can be easily rewritten to
hybrid systems.

Example 3.3 Let A = (Q,Σ, q0, F, δ) be a finite automaton, where:

– Q is a finite set of states,

– Σ is a finite alphabet,

– q0 is an element of Q, called the initial state,

– F ⊆ Q is the set of final states, and

– δ is a total function, called the transition function from Q× Σ to Q.

Usually, labeled multigraph are used to represent finite automaton. The states of
the automaton are represented as nodes of the multigraph, while the transition
function of the automaton is represented as labeled edges of the multigraph.
Indeed, for every states q1, q2 ∈ Q and for every symbol v ∈ Σ, if δ(q1, v) = q2
then there exists an edge from node q1 to node q2 with label v. An example is
given in Figure 3.3.

0 1 2

0
1

1

0

0

1

Figure 3.3: A finite automaton which accepts the empty string ε and the binary
numerals denoting natural numbers divisible by 3. For example, the string 110
that denotes the number 6 is accepted, [114, Page 28].

For any given word w whose symbols are in Σ, a finite automaton starts
from the initial state q0 and reads the word from left to right, one character in
Sigma at time. The reading oa character determines the change of the state
according to an updating rule defined by the transition function δ. Indeed, for
each i ∈ Z≥0, qi+1 = δ(qi, si), where si ∈ Σ is the ith symbol of the word w. A
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word is accepted by a finite automaton if the last state qn reached when reading
the last character is a final state.

It is possible to model the a finite automaton A as a hybrid system H of the
form (R2, ∅,R2, ∅, G), as follows. Consider a state vector x ∈ R

2 whose compo-
nents are x = [xp xn ]T , and define an injection code : Q → Z≥0 that maps
each state q ∈ Q to an integer number N ∈ Z≥0. Without lost of generality, we
assume code(q0) = 0. Then,

[
xp

xn

]+
∈
⋃

s∈Σ

{xn} × {code(δ(s, code−1(xn)))} (3.4)

We consider also an output function y = h(x) that does not modify the dynamics
of the system, and it is used to produce a state based output. The output
function is defined by

{
s if code−1(xn) = δ(code−1(xp), s)
ε otherwise

(3.5)

Consider now a solution ξ(0, 0) = [ 0 0 ]T . For some s ∈ Σ, ξ(0, 1) is the vector
[ code(δ(q0, s)) 0 ]T . h(ξ(0, 1)) = s while h(ξ(0, 0)) = ε. From (3.4) and (3.5),
each solution to H from [ 0 0 ]T can be associated to a sequence of states of the
automaton, and each sequence of states of the automaton can be associated to
a solution to H starting from [ 0 0 ]T . It follows that, by h, each word generated
by H is a word accepted by A. Note that the emptiness problem on automata,
that is, the problem of deciding whether or not an automaton accepts at leastone
word, is equivalent to the problem of deciding whether or not Reach([ 0 0 ]T ) is
empty.

The procedure to rewrite an automaton to a hybrid system is general and
it can be applied to any discrete process defined by a transition relation that
depends on the state. In general, those discrete processes can be modeled as
hybrid systems of the form H = (O, ∅, D, ∅, G) where the flow set C is empty,
so that no flow intervals occur. In that case, solutions to H are sequences of
jumps and we are interested in comparing the semantics of HTCTL formulas,
when models with only discrete solutions are considered, and the semantics of
CTL formulas.

Considering the semantics of CTL given in [13, 39] and based on infinite
paths, we can define the following notion of path from a solution ξ to a hybrid
system H.
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Definition 3.9 Consider a model M that contains only discrete solutions. An
infinite path π from a solution ξ ∈M is a ω-sequence of states

π = 〈ξ(0, 0), ξ(0, 1), . . . ξ(0, n), . . . 〉 (3.6)

A set ΠM of paths from a model M is the set

ΠM = {π |π is an infinite path from a solution ξ ∈M} (3.7)

For any i ∈ Z≥0, we denote by π(i) the ith element of a path π, that is,
π(i) = ξ(0, i)1.

With the notion of a path, we can briefly recall syntax and semantics of CTL.

Definition 3.10 Let P be a set of atomic propositions. A formula ϕ of Com-
putation Tree Logic is inductively defined from the set of atomic propositions
as follows:

ϕ ≡ p | ¬ϕ |ϕ1 ∨ ϕ2 | ∃ϕ1Uϕ2 | ∀ϕ1Uϕ2 (3.8)

For a given hybrid system H with state denoted by x, and for a given model M ,
define a set ΠM of paths from M . Then, for a given state x of H, the semantics
of a CTL formula ϕ can be defined as follows

ΠM , x � p iff x ∈ JpKM

ΠM , x � ¬ϕ iff ΠM , x 6� ϕ

ΠM , x � ϕ1 ∨ ϕ2 iff ΠM , x � ϕ1 or ΠM , x � ϕ2;

ΠM , x � ∃ϕ1Uϕ2 iff there exists a path π ∈ ΠM with π(0) = x, such that

– ∃J ∈ Z≥0 such that ΠM , π(J) � ϕ2, and ∀j ≤ J , ΠM , π(j) � ϕ1.

ΠM , x � ∀ϕ1Uϕ2 iff for all paths π ∈ ΠM with π(0) = x,

– ∃J ∈ Z≥0 such that ΠM , π(J) � ϕ2, and ∀j ≤ J , ΠM , π(j) � ϕ1.

We can now state the main result of this section. To avoid confusion, for
a model M , a state x, and a HTCTL formula ϕ, we denote the satisfiability
relation of HTCTL as M,x �HTCTL ϕ. For a set ΠM of paths, a state x and a
CTL formula ϕ, we denote the satisfiability relation of CTL as ΠM , x �CTL ψ.

1Note that each solution ξ in a model M has an unbounded domain. Therefore, each
solution ξ to M allows for the construction of an infinite path.
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Theorem 3.1 Consider a hybrid system H, a model M of discrete solutions to
H, and a set ΠM of paths from M . Consider a set of atomic proposition P and
the subset of HTCTL formulas defined inductively by the following syntax:

ϕ ≡ p | ¬ϕ |ϕ1 ∨ ϕ2 | ∃ϕ1Uϕ2 | ∀ϕ1Uϕ2 (3.9)

where p belongs to P . Then, for each formula ϕ expressed using the syntax in
(3.9),

M,x �HTCTL ϕ iff ΠM , x �CTL ϕ (3.10)

Proof. Note that the subset of formulas of HTCTL defined by (3.9) and the set
of formulas of CTL have the same syntax. M is a model, therefore each solution
is complete, that is, from each solution ξ to H we can construct an infinite path
from ξ. Then, the result follows by induction on the syntax rules, comparing the
CTL semantics interpreted over paths from solutions ξ ∈ M , and the HTCTL
semantics interpreted over solutions ξ ∈ M . Note that, in CTL, ∃ϕ1Uϕ2 is
equivalent to ∃(ϕ1 ∨ϕ2)Uϕ2, and ∀ϕ1Uϕ2 is equivalent to ∀(ϕ1 ∨ϕ2)Uϕ2. Note
also that usual CTL operators ∃F , ∀F , ∃G, ∀G, ∃©, ∀© can be defined by
using operators in (3.9) as specified in Definition 3.8. �

3.3 Abstractions

By looking at the inductive definition of syntax and semantics of HTCTL, it
is possible to see one of the main advantage of using formalized languages to
express properties of hybrid systems: the possibility of inferring the truth of
a formula by a compositional evaluation of the truth of its subformulas. For
example, consider a hybrid system H and a given state x of H, and suppose
that ϕ is the formula ϕ ≡ ϕ1 ∧∃Fϕ2, based on subformulas ϕ1 and ∃Fϕ2. The
problem of deciding whether or not x satisfies ϕ in a given model M , that is
M,x � ϕ, can be addressed by deciding the truth of each subformula ϕ1 and
∃Fϕ2 and composing those truth values according to the semantics of ∧. Thus,
iterative evaluation with base case on atomic propositions, and composition of
such evaluations, characterize a general approach to the solution of the decision
problem M,x � ϕ.

HTCTL formulas involve two different kinds of quantifiers: one which quan-
tifies on the time instants of a solution and which quantifies on the solution of
a given set of solutions to a hybrid system. Therefore, an iterative procedure
to evaluate the truth of a formula must deal with them. We do so asl follows.
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We define two functions between states of H, whose iterated application cap-
ture the motion of the state given by the solutions to H. Then, we use that
functions to evaluate the truth of formulas that involve operators like U , G and
F . Indeed, for any given hybrid system H = (O,C,D, F,G), we consider two
functions δf : 2O ×O → 2O and δb : 2O ×O → 2O such that

(i) δf maps each state x to the set X of states that are reachable either by a
continuous flow from x or by a jump from x (forward), that is, intuitively,
δf maps x to the set of points y such that there exists a solution ξ to
H and a time (t, j) ∈ dom ξ such that x = ξ(0, 0) and y = ξ(t, j),with
(t, j) ∈ R≥0 × 0 or (t, j) = (0, 1);

(ii) δb maps each state x to the set X of states from which it is possible to
reach x by a continuous flow or by a jump (backward), that is, intuitively,
δb maps x to the set of points y such that there exists a solution ξ to
H and a time (t, j) ∈ dom ξ such that y = ξ(0, 0) and x = ξ(t, j), with
(t, j) ∈ R≥0 × 0 or (t, j) = (0, 1).

Definition 3.11 Consider a hybrid system H = (O,C,D, F,G). The functions
δf : 2O × O → 2O and δb : 2O ×O → 2O, respectively map each set S ⊆ O and
each x ∈ O to the set δf (S, x) and to the set δb(S, x) defined as follows:

δf (S, x) = {y | ∃ξ solution to H with ξ(0, 0) = x ∈ S and,

either (0, 1) ∈ dom ξ, ξ(0, 1) = y ∈ S

or ∃(t, 0) ∈ dom ξ, ξ(t, 0) = y and ∀0 ≤ τ ≤ t, ξ(τ, 0) ∈ S}
δb(S, x) = {y | ∃ξ solution to H with ξ(0, 0) = y ∈ S and,

either (0, 1) ∈ dom ξ, ξ(0, 1) = x ∈ S

or ∃(t, 0) ∈ dom ξ, ξ(t, 0) = x and ∀0 ≤ τ ≤ t, ξ(τ, 0) ∈ S}

The first argument S of δf and δb can be interpreted as a parameter used to
enforce some conditions on the set of solutions ξ considered during the evaluation
of δf and δb. Indeed, from the definition of δf and δb, a solution ξ to H must
stay within the set S, that is, for some (t, j) ∈ R≥0 × {0} or (t, j) = (0, 1),
if x = ξ(0, 0) and y = ξ(t, j) then, for all (τ, i) ∈ dom ξ and (τ, i) ≤ (t, j),
ξ(τ, i) ∈ S. An example is represented in Figure 3.4.
We can generlize δf (S, x) and δb(S, x) to set domains as follows.

Definition 3.12 Consider a hybrid system H = (O,C,D, F,G) and two sets
S,X ⊆ O. The functions δ∗f : 2O ×2O → 2O and δ∗b : 2O ×2O → 2O respectively
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S

x1

x2

δf(S, x)

δb(S, x)

x

Figure 3.4: A possible representation for δf (S, x) and δb(S, x) for a system with
state x ∈ R

2. The set S is represented by a dashed line. δf (S, x) and δb(S, x)
are represented by gray shaded shapes.

map each S,X ⊆ O to the set δ∗f (S,X) and to a set δ∗b (S,X), defined as follows.

δ∗f (S,X) =
⋃

x∈X

δf (S, x)

δ∗b (S,X) =
⋃

x∈X

δb(S, x)

We denote the argument S of δ∗f and δ∗b the parameterization of δ∗f and δ∗b .

Consider a parameterization S ⊆ O, then δ∗f maps a set X ⊆ O to a set
Y ⊆ O defined by the set of states y reachable, either by a continuous flow
or by a jump, by some solution ξ to H with ξ(0, 0) = x ∈ X , provided that if
y = ξ(t, j), for some (t, j) ∈ dom ξ, then for each (τ, i) ∈ dom ξ and (t, i) ≤ (t, j),
ξ(t, i) stays within the set S. Similarily for δ∗b .

From a theoretical point of view, δ∗f and δ∗b define an important connection
between solutions to a hybrid system H and states of H: a set of solutions can
be studied by iterated application of those functions on sets of states. There-
fore, the approach to the analysis of a hybrid system based on the study of its
solutions can be replaced by an approach that works by iterated applications of
functions δ∗f and δ∗b to subsets of O. For example, by fusion and suffix closure of
solutions to H, in Definition 3.2, for a given hybrid system H and a given set X
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of states, it is possible to use δ∗f to generate the set of reachable states from X
(Definition 1.6). To see this, (i) we characterize some important features of δ∗f
and δ∗b , (ii) we define a specific iterated application of these functions on X , and
(iii) we show that the iterated application of δ∗f constructs the set Reach(X),
of Definition 1.6. Note that the characterization of Reach(X) by functions on
sets will involve only δ∗f . δ∗b will be extensively used in the next section to give
a fixpoint characterization of HTCTL formulas.

With the following proposition, we show that δ∗f and δ∗b are monotonic and
∪-continuous. Note that ∩-continuity does not hold. See Section 6.3.1 for the
proofs.

Proposition 3.1 Consider a hybrid system H = (O,C,D, F,G), a parameter-
ization set S ⊆ O, and two sets X0, X1 ⊆ O,

if X0 ⊆ X1 then δ∗f (S,X0) ⊆ δ∗f (S,X1) and δ∗b (S,X0) ⊆ δ∗b (S,X1). (3.11)

Moreover, for any given ω-chain X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ . . . of subsets of O,

δ∗f(S,∪iXi) = ∪iδ
∗
f (S,Xi) and δ∗b (S,∪iXi) = ∪iδ

∗
b (S,Xi). (3.12)

The iterated application of δ∗f to a given set X0, computes the set of states
reachable by solutions to H that start from X0. This is a general result, sum-
marized in the following proposition, whose proof is in Section 6.3.2.

Proposition 3.2 Consider a hybrid system H = (O,C,D, F,G) and a set X0 ⊆
C ∪D.

Reach(X0) = µX.X0 ∪ δ∗f (O,X) (3.13)

By monotonicity of δ∗f in Proposition 3.1, the least fixpoint exists, [7, The-
orem 1.2.8], and can be computed by iterated application of δ∗f , [7, Theorem
1.2.11]. See also [144]. Moreover, as stated in the following propostion, the
iteration for computing the least fixpoint is not greater than ω, [7, Theorem
1.2.14]. The proof of Proposition 3.3 is in Section 6.3.32.

Proposition 3.3 Consider a hybrid system H and a set X0 ⊆ O.

Reach(X0) =
⋃

i∈ω

(
λX.

(
δ∗f (O,X)

))i
X0 (3.14)

2We recall that λX.δ∗
f
(O, X) denotes the function in 2O → 2O that maps each X ⊆ O to

the set δ∗
f
(O, X) ⊆ O.
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The problem of Turing-computability of δ∗f and δ∗b , has been addressed for
several classes of hybrid systems in recent years, [5, 6, 10, 54, 69, 71, 91, 93,
103, 117, 150]. In this thesis we assume δ∗f and δ∗b as Turing-computable. The
existence of an algorithm to compute δ∗f (S,X) and δ∗b (S,X), for a hybrid system
H = (O,C,D, F,G) and for given S,X ∈ O, depends on the particular class of
hybrid systems considered and on the shape of S and X . In fact, the definition
of δ∗f and δ∗b is based on solutions ξ to H. Therefore, two main issues may occur:

– A solution ξ to H cannot be defined by a mathematical expression (i.e. as
a composition of polynomials, exponentials, trigonometric functions, and
so on).

– A solution ξ to H has a mathematical expression but the existentially
quantified formula in the definition of δf and of δb cannot be transformed
to a formula without quantifiers, that is, it belongs to a theory that does
not admit quantifier elimination.

In both cases, the definition of δ∗f and of δ∗b cannot be used to compute those
functions. Then, approximated computation of δ∗f and of δ∗b , namely the com-
putation of a set Y ⊆ O such that, for any given S,X ∈ O,

– Y over-approximates δ∗f (S,X), that is, Y ⊇ δ∗f (S,X), and

– Y under-approximates δ∗f (S,X), that is, Y ⊆ δ∗f (S,X),

and analogously for δ∗b , are usually considered when issues on Turing-computability
of δ∗f and δ∗b occur. However, when approximated computation are introduced,
the verification problem must be restricted to, a subset of the formulas of the
logic, [8, 9, 37, 38, 47, 48, 70, 92].

3.4 From HTCTL Formulas to Fixpoints

In the previous section we presented two monotonic functions, δ∗f and δ∗b , whose
iterated application can be used to study the solutions to a hybrid system. In
this section we use that functions to evaluate when a state x satisfies a given
HTCTL formula ϕ. The main idea is to reduce a formula to a fixpoint expression
based on δ∗b . Indeed, we propose a procedure that, for a given hybrid system H,
inductively reduces a HTCTL formula ϕ to a fixpoint expression E such that
the following equivalence holds: let M be the model defined by the set of all
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complete solutions to H, let x be a state of H and let |E| be the subset of O
denoted by the fixpoint expression E, then

M,x � ϕ iff x ∈ |E| (3.15)

We present that procedure in three steps:

– We propose the notion of extended hybrid system whose solutions are de-
fined in a way so that that they take into account explictely the hybrid
time. The extended hybrid system is defined in Section 3.4.1.

– We propose a procedure for reducing HTCTL formulas based on general
hybrid time intervals, to HTCTL formulas based on a normalized form of
hybrid time intervals. This procedure uses the notion of extended hybrid
system and is presented in Section 3.4.2.

– Finally, we propose a procedure for reducing HTCTL formulas based on
normalized hybrid time intervals to fixpoint expressions. This procedure
is presented in Section 3.4.3.

It is worth mentioning that δ∗f and δ∗b are defined with respect to the set
of all solutions to a given hybrid system H. Then, when a HTCTL formula
is reduced to a fixpoint expression, based on δ∗b , we consider a semantics for
that formula that is based on a premodel that coincides with the whole set of
solutions to H. In order to consider a different model or premodelM of solutions
to H, the definitions of δb and δf must be restated as follows: the quantification
∃ξ solution to H, in their definitions must be replaced by ∃ξ solution to M .
Then, with that new definitions, the whole construction presented below for a
model defined by the set of all solutions to H can be extended to the case of a
generic model M of solutions to H.

In what follows, for any given hybrid system H, we write H, x � ϕ instead
of M,x � ϕ, to underline the fact that we are considering premodels M that
coincide with the whole set of solutions to H.

3.4.1 The Extended Hybrid System

Let us consider the HTCTL formula ϕ ≡ ∃ϕ1U rop (ct,cj)ϕ2. Let us also consider
a hybrid system H = (O,C,D, F,G) and suppose that the state x of H is a
vector of dimension n ∈ Z≥0. Then, following Definition 3.6, for a given hybrid
system H, a state x satisfies the formula ϕ, that is, H, x � ϕ, if there exists a
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solution ξ to H such that

ξ(0, 0) = x, (T, J) rop (ct, cj), ξ(T, J) � ϕ2 and

∀(t, j) ∈ dom ξ, if (t, j) ≤ (T, J) then ξ(t, j) � ϕ1 ∨ ϕ2.
(3.16)

The definition of H, x � ϕ exhibits conditions on solutions ξ to H that involve
(i) state constraints, namely conditions on states reached by a solution ξ at
some specific time instants, and (ii) time constraints, namely conditions on time
instants at which some specific state must be reached. Note that the definition
of of H, x � ∀ϕ1U rop (ct,cj)ϕ2 can be decomposed in a similar way.

Following [73], by a suitable construction of a new hybrid system from H,
denoted extended hybrid system, we can define an equivalent definition of H, x �
ϕ that uses only state constraints. This is the first step to reduce ϕ to a fixpoint
expression.

Definition 3.13 Consider a hybrid system H = (O,C,D, F,G) where the
state x is vector of dimension n ∈ Z≥0. The extended hybrid system Hext =
(Oext , Cext , Dext , Fext , Gext) from H can be constructed as follows. Sets Oext ,
Cext and Dext are defined as follows:

– Oext = O × R≥0 × R≥0

– Cext = C × R≥0 × R≥0

– Dext = D × R≥0 × R≥0

For each xext = [xT t j ]T ∈ Oext , where x ∈ O, t ∈ R≥0 and j ∈ R≥0, the
set-valued mappings Fext : Oext ⇉ R

n+2 and Gext : Oext ⇉ Oext are defined as
follows:

– Fext(xext ) =




F (x)

1
0





– Gext(xext) =



G(x)
t

j + 1



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Then, Hext can be represented as follows:

Hext :





˙

x
t
j


 ∈



F (x)

1
0






x
t
j


 ∈ (C ∩O) × R≥0 × R≥0




x
t
j




+

∈




G(x)
t

j + 1








x
t
j



 ∈ (D ∩O) × R≥0 × R≥0

(3.17)

Consider a solution η to Hext from the initial state [xT 0 0 ]T , x ∈ O, and
write η as [ ηT

x ηt ηj ]T where ηx, ηt and ηj take into account the elements of the
solution η relative to x, t and j, respectively. Then, the components ηt and ηj

of η satisfy the following equations

– ∀(t, j) ∈ dom η, ηt(t, j) = t,

– ∀(t, j) ∈ dom η, ηj(t, j) = j.

From a different initial state than [xT 0 0 ]T , x ∈ O, those relationships between
ηt, ηj and the hybrid time (t, j) is lost. Nevertheless, a solution η to Hext from
an initial state [xT αt αj ]T , with x ∈ O, αt ∈ R≥0 and αj ∈ R≥0, satisfies the
following relations:

– ∀(t, j) ∈ dom η, ηt(t, j) = αt + t,

– ∀(t, j) ∈ dom η, ηj(t, j) = αj + j.

We also have the following proposition on the relationship between the ηx

component of a solution η to Hext and the solutions ξ to H. From (3.17), the
ηx component of the solutions η to Hext from the initial state [xT 0 0 ], x ∈ O
coincides with some solution ξ to H from x, and viceversa, as stated in the
following

Proposition 3.4 Consider a hybrid system H, with state vector x, and consider
the extended hybrid system Hext from H, with state vector xext = [xT t j ]T .
Then,

– for any x ∈ O and any solution η = [ ηT
x ηt ηj ]T to Hext from the initial

state xext = [xT 0 0 ]T , there exists a solution ξ to H from the initial
state x such that

dom η = dom ξ and

∀(t, j) ∈ dom η, ηx(t, j) = ξ(t, j), ηt(t, j) = t, ηj(t, j) = j;
(3.18)



102 CHAPTER 3. FORMAL VERIFICATION OF HYBRID SYSTEMS

– for any x ∈ O and any solution ξ to H from the initial state x, there
exists a solution η = [ ηT

x ηt ηj ]T to Hext from the initial state xext =
[xT 0 0 ]T , such that (3.18) holds.

Proof. This proposition is a direct consequence of the following facts: (i) both
flow and jump dynamics of the component x of xext in Hext are defined by the
same set-valued mappings of the flow and jump dynamics of H, (ii) flow and
jump sets of Hext restricted to the component x of xext are the flow and jump
sets of H, and (iii) the dynamics of the t and j components of xext in Hext do
not have effects on the dynamics of the x component of xext in Hext and, by the
definition of Cext and Dext , Hext jumps if and only if H jumps and Hext flows
if and only if H flows. �

From Proposition 3.4, we have that the first component ηx of a solution
η = [ ηT

x ηt ηj ]T to the extended hybrid system Hext from H is a hybrid arc
that coincides with one solution ξ to H, that is, dom η = dom ξ and forall(t, j) ∈
dom η, ηx(t, j) = ξ(t, j). (and viceversa). Moreover, the second and the third
component ηt and ηj store the hybrid time. In this sense, we say that the hybrid
time is embedded in the solution η.

3.4.2 From Time Intervals rop (ct, cj) to Time Intervals

≥(0,0)

In this section we propose a procedure to normalize the hybrid times intervals
of HTCTL formulas. We claim that, for any given hybrid system H, and any
state x of H, the definition of H, x � ϕ, based on state and time constraints on
solutions ξ to H, can be stated by using only state constraints on solutions η to
Hext .

Proposition 3.5 Consider a hybrid system H with state vector x and consider
the extended hybrid system Hext from H with state vector xext = [xT t j ]T .
Consider also the HTCTL formulas ∃ϕ1U rop (ct,cj)ϕ2 and ∀ϕ1U rop (ct,cj)ϕ2.
Then,

H, x � ∃ϕ1U rop (ct,cj)ϕ2 iff Hext ,



x
0
0


 � ∃ϕ3Uϕ4

H, x � ∀ϕ1U rop (ct,cj)ϕ2 iff Hext ,



x
0
0


 � ∀ϕ3Uϕ4

(3.19)
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where ϕ3 = ϕ1 ∨ ϕ2 and ϕ4 = ϕ2 ∧ t rop ct ∧ j rop cj

Proof. See Section 6.3.4. �
Proposition 3.5 can be justified by looking to a single solution ξ to H that

satisfies the semantics of ϕ1U rop (ct,cj)ϕ2. Let ξ be a solution to H such that
ξ(0, 0) = x, H, ξ(T, J) � ϕ2 for (T, J) rop (ct, cj), (T, J) ∈ dom ξ, and H, ξ(t, j) �
ϕ1 ∨ ϕ2 for each (t, j) ≤ (T, J). Then, from Proposition 3.4, there exists a

solution η =
[
ηT

x ηt ηj

]T
to Hext from

[
xT 0 0

]T
such that ηx coincides

with ξ, that is, dom η = dom ξ and ∀(t, j) ∈ dom η, ηx(t, j) = ξ(t, j). It follows
that H, ηx(T, J) satisfies ϕ2, ηt(T, J) = T rop ct and ηj = J rop cj , that is,
Hext , η(T, J) � ϕ4. Moreover, for each (t, j) ≤ (T, J), there are no conditions
on ηt(t, j) and ηj(t, j) while ηx(t, j) = ξ(t, j). Therefore, for each (t, j) ≤ (T, J),
Hext, η � ϕ3.

Remark 3.3 Note that the results in Proposition 3.4 can be restricted to sub-
sets of solutions ξ to H that define a premodel MH to H. In that case, the
premodel MHext

would define the set of solution η to Hext such that, for each
solution ξ of MH, there exist a solution η ∈ Hext , such that dom η = dom ξ
and ∀(t, j) ∈ dom η, ηx(t, j) = ξ(t, j) and ηt(0, 0) = 0 and ηj(0, 0) = 0, and
viceversa.

From Proposition 3.5, conditions on time instants and conditions on states
in a given HTCTL formula can be re-casted to a HTCTL formula that uses
only state conditions. Indeed, from a theoretical point of view, the differences
between time conditions and state conditions are just syntactical, based on the
fact that conditions on the time parameterization of solutions can be stated as
conditions on the state of solutions to an extended hybrid system that embed
the hybrid time.

Proposition 3.5 has also a practical application for the reduction of a HTCTL
formula to a fixpoint expression. Fixpoint expressions will be defined by con-
sidering variables ranging over subsets of the state-space, therefore a necessarily
step for reducing a HTCTL formula ϕ to a fixpoint expression is to rewrite
ϕ to an equivalent formula that involves only state constraints. In this sense,
Proposition 3.5 define a procedure to reduce a HTCTL formula to an equivalent
HTCTL formula (based on the notion of extended hybrid system) that involves
only state constraints. Then, following [73, Section 5], the reduction of any
given HTCTL formula ϕ to a fixpoint expression can be finally performed by
defining a procedure that reduce HTCTL formulas ∃ϕ3Uϕ4 and ∀ϕ3Uϕ4 to a
fixpoint expression.
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3.4.3 From ∃ϕ1Uϕ2 and ∀ϕ1Uϕ2 to Fixpoints

For any given hybrid system H, a procedure to reduce a HTCTL formula to
a fixpoint expression relies on a suitable use of extended hybrid systems from
H and on the reduction of HTCTL formulas ∃ϕ1Uϕ2 and ∀ϕ1Uϕ2, to fixpoint
expressions.

In this section, for any given hybrid system H = (O,C,D, F,G), we propose
a procedure for reducing a HTCTL formula of the form ∃ϕ1Uϕ2 to a fixpoint
expression E and we claim that the verification problem H, x � ∃ϕ1Uϕ2 is
equivalent to the membership problem x ∈ |E|, where |E| is the subset of O
denoted by E. We follow a similar approach for H, x � ∀ϕ1Uϕ2.

Note that we do not distinguish here between a hybrid system H and an
extended hybrid systems Hext from H, by the fact that the reduction procedure
and the equivalence between verification problem and membership problem ap-
ply on both H, x � ∃ϕ1Uϕ2 and Hext, xext � ∃ϕ1Uϕ2, where x is the state vector
of H and xext is the state vector of Hext. Analogously for ∀ϕ1Uϕ2

For simplicity of the notation, in this section we use the following definitions.

– a solution ξ stays in a set S if ∀(t, j) ∈ dom ξ, ξ(t, j) ∈ S;

– a solution ξ stays initially in a set S if ∀(t, j) ∈ dom ξ such that (t, j) ∈
R≥0 × {0} or (t, j) ∈ {(0, 0), (0, 1)}, ξ(t, j) ∈ S;

– a solution ξ reaches the set S, if for some (t, j) ∈ dom ξ, ξ(t, j) ∈ S3;

– a solution ξ reaches initially the set S, if for some (t, j) ∈ dom ξ such that
(t, j) ∈ R≥0 × {0} or (t, j) ∈ {(0, 0), (0, 1)}, ξ(t, j) ∈ S.

Following [39, Chapter 6] and [73, Section 5] we can state the following
result.

Proposition 3.6 Consider a hybrid system H and two HTCTL formulas ϕ1

and ϕ2. Then,

H, x � ∃ϕ1Uϕ2 iff x ∈ µX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X) (3.20)

Proof. See Section 6.3.5 �
Proposition 3.6 can be explained by considering the function f = λX.Jϕ2KH∪

δ∗b (Jϕ1 ∨ ϕ2KH, X), At each application, f explores backward the solutions ξ that
stay in Jϕ1 ∨ ϕ2KH and that reach Jϕ2KH in a given number of flow intervals and

3This notion is recalled from Definition 1.6.
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jumps. For instance, f(∅) = Jϕ2KH; f2(∅) computes the set of states x from
which there is a solution ξ that stays initially in Jϕ1 ∨ ϕ2KH and reaches initially
Jϕ2KH. Generalizing this approach, for any n ∈ ω, fn(∅) computes the set of
states from which a solution ξ stays in Jϕ1 ∨ ϕ2KH and reaches Jϕ2KH in at most
n ∈ Z≥0 flow intervals or jumps. Therefore, at each application, f finds new
initial states of solutions that satisfy the semantics of Jϕ1Uϕ2KH.

Reducing ϕ ≡ ∀ϕ1Uϕ2 to a fixpoint expression is much more complicated.
To see this, consider a state x of a given hybrid system H and suppose that
it satisfies ϕ, that is, each solution ξ to H from x satisfies the semantics of
ϕ1Uϕ2. For simplicity, we suppose that for some x /∈ Jϕ2KH there exists only
one solution ξ to H with ξ(0, 0) = x such that

– ∃(T, 0) ∈ dom ξ such that ξ(T, 0) ∈ Jϕ2KH and

– ∀(t, 0) ∈ dom ξ, (t, 0) ≤ (T, 0), ξ(t, 0) ∈ Jϕ1KH

However, using δ∗b , we have that x ∈ δ∗b ({x}), moreover x ∈ δ∗b ({x})i, for each
i ∈ ω. Therefore, despite H, x � ϕ, δ∗b generates, for example, a sequence of
states of the following form

x = ξ(0, 0) → ξ(0, 0) → ξ(0, 0) → ξ(0, 0) → ξ(0, 0) → . . . (3.21)

That sequence of states denotes a hybrid arc that (i) it is not a solution to H,
and (ii) it does not satisfy the semantics of ϕ1Uϕ2. Unfortunately, by using δ∗b ,
that sequence of states cannot be distinguished from a solution to H. It follows
that δ∗b may introduce new solutions/hybrid arcs from x that possibly do not
satisfy the semantics of ϕ1Uϕ2.

This is a side effect of using iteratively δ∗b instead of performing a direct
analysis of solutions to H, and it is at the base of the problems of computing
∀ϕ1Uϕ2 as a fixpoint. These problems do not occur for ∃ϕ1Uϕ2 for which we
need that at least one solution satisfies the semantics of ϕ1Uϕ2.

Following [73, Section 5.3], we reduce ϕ ≡ ∀ϕ1Uϕ2 to a fixpoint expression,
by the following steps:

– A new function δ
∗
b is defined (Definition 3.14). It is quite similar to δ∗b but

it is based on a universal quantification on solutions ξ to H.

– In Lemma 3.2, ϕ is reduced to a fixpoint expression based on δ
∗
b .

– The notion of finite variability of a set is defined (Definition 3.15). Finite
variability plays a fundamental role in the proof of the equivalence be-
tween the set computed by δ

∗
b and the set denoted by a suitable fixpoint

expression that involves δ∗b .
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– Lemma 3.3 presents a method to reduce the definition of δ
∗
b to a fixpoint

expression based on δ∗b .

– Proposition 3.7 finally defines a procedure to reduce ∀ϕ1Uϕ2 to a fixpoint
expression.

Definition 3.14 Consider a hybrid system H. The function δ
∗
b : (R≥0 ∪∞) ×

2O × 2O → 2O, parameterized with respect to c ∈ R≥0 and S ∈ O, maps each

set X ∈ O to the set δ
∗
b(c, S,X), defined as follows

δ
∗
b(c, S,X) = {x | ∀ξ solution to H with ξ(0, 0) = x,

either (0, 1) ∈ dom ξ, ξ(0, 1) ∈ X and x ∈ S ∪X,
or ∃(t,0)∈dom ξ, t ≤ c, ξ(t,0)∈X and ∀0 ≤τ≤ t, ξ(τ,0)∈S∪X}

δ
∗
b(∞, S,X) and δ∗b (S,X) differ for the quantification on solutions to H. While
x ∈ δ∗b (S,X) if there exists at least one solution ξ to H from x that satisfies a

given property, say P , x ∈ δ
∗
b(∞, S,X) if each solution to H from x satisfies

P . It follows that x ∈ δ
∗
b(∞, S,X) implies x ∈ δ∗b (S,X), provided that x is the

initial state of at least one solution to H. The role of c in δ
∗
b(c, S,X) is to give

a bound on the length of flows intervals during the computation of δ
∗
b (c, S,X),

that is, each solution ξ to H must reach x by a bounded interval of flow, whose
time length is shorter than c, or by one jump to x.

δ
∗
b is used in the following lemma to reduce the HTCTL formula ∀ϕ1Uϕ2 to

a fixpoint expression. The role of δ
∗
b can be shown by the following example.

Consider a constant c ∈ R≥0∪{∞} and consider a state x ∈ δ
∗
b(c, Jϕ1KH, Jϕ2KH).

Then, each solution ξ to H starting from x reaches ϕ2 by one jump or within
an interval of continuous flows shorter than c, and it remains inside the set
Jϕ1KH ∪ Jϕ2KH = Jϕ1 ∨ ϕ2KH. Therefore, x would belong to J∀ϕ1Uϕ2KH.

Note that, for any given costant c and set S ⊆ O, λX.δ
∗
b(c, S,X) is monotonic

and ∪-continuous (the proof of this fact is analogous to that of Proposition 3.1,
for δ∗b ).

Lemma 3.2 Consider a hybrid system H and two HTCTL formulas ϕ1 and ϕ2.
Suppose that each solution to H is complete. Then, for any given c ∈ R≥0∪{∞},

H, x � ∀ϕ1Uϕ2 iff x ∈ µX.Jϕ2KH ∪ δ∗b (c, Jϕ1 ∨ ϕ2KH, X) (3.22)

Proof. See Section 6.3.6 �
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By virtue of the boundedness of the flows intervals, it will be possible to
replace δ

∗
b by a suitable iterative application of δ∗b , provided that X is finitely

variable for the solutions to H.

Definition 3.15 Consider a hybrid system H, a solution ξ to H, a set M of
solutions to H and a set X ⊆ O. Denote with Ij the maximal subset of R≥0

such that Ij × {j} ∈ dom ξ. Then,

– X is finitely variable for ξ if
∃τ ∈ R>0, ∀j ∈ {j | (t, j) ∈ dom ξ}, Ij can be divided in subintervals of
length τ , say {Iτ

j , I
2τ
j , . . . , Inτ

j }, n ∈ ω, Ij ⊆ ⋃k I
kτ
j , such that ∀1 ≤ k ≤ n,

(i) either (gph ξ ∩ Ikτ
j × {j} ×O) ⊆ X ,

(ii) or gph ξ ∩ Ikτ
j × {j} ∩X = ∅

– X is finitely variable for a set M of solutions to H if X is finitely variable
for each solution ξ that belongs to M .

Finite variability is an important property for the correctness of the results of
the next Lemma. Intuitively, it enforces regularity on the flow dynamics of
solutions ξ to H, so that, for a small quantity τ of time, the solution ξ remains
inside or outside of X for at least τ units of time. For example, by looking
at Figure 3.5, X is finitely variable for the solution ξ2. In fact, ξ2 crosses the
border of X infinitely many times by jumping, and the flow intervals decreases
in length after each jump. But each flow interval is entirely confined either inside
or outside X , therefore we can find a τ for which ξ considered on subintervals
of length at most τ is either completely inside of X or completely outside of X .
Nevertheless, the solution ξ1 flows across the border at X for each flow interval,
and each flow interval shrinks after each jump. Then, we cannot find a small
τ for which the solution ξ considered on a piece of length at most τ of each
flow interval, is entirely confined either inside or outside of X , that is, X is not
finitely variable for ξ1.

Example 3.4 Consider a hybrid system H and a continuous solution ξ to H
with initial state ξ(0, 0) = 0 and such that, for each t ∈ R≥0, it satisfies the
following equation.

{
ξ(t, 0) ∈ X if t = 1

n , for some n ∈ ω,
ξ(t, 0) /∈ X otherwise

(3.23)
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ξ1

ξ2

X

Figure 3.5: A representation of two solutions to a given hybrid system H. The
set X is represented by the gray shaded shape of the figure. X is not finitely
variable for ξ1 but it is finitely variable for ξ2.

Then, X is not finitely variable for ξ. In fact, for any given τ ∈ R>0, and any
given partition of pieces Ikτ

0 , k ∈ ω, of length τ , points (i) and (ii) of Definition
3.15 are not satisfied. To see this, take the first piece Iτ

0 , then there exist
t1, t2 ∈ Iτ

0 for which ξ(t1, 0) /∈ X and ξ(t2, 0) ∈ X , no matter how small τ is.

Using the finite variability property, we can reduce the definition of δ
∗
b to a

fixpoint expression on δ∗b , as stated in the following lemma.

Lemma 3.3 Consider a hybrid system H = (O,C,D, F,G) with state dimen-
sion n. Suppose that each solution to H is complete (Definition 1.5). For any
given sets S,X ⊆ O and constant c ∈ R>0, if X is finitely variable for each
solution ξ to H then the set of states computed by δ

∗
b(c, S,X) coincides with the

set of states computed by the following fixpoint equation on states of the extended
hybrid system Hext = (Oext , Cext , Dext , Fext , Gext ) from H:

δ
∗
b (c, S,X) = R

n \ {x |



x
0
0


 ∈ µZ.q(c, S,X) ∪ δ∗b ((Rn \X) × R

2, Z)} (3.24)

where

q(c, S,X) =
(
(Rn \ (S ∪X)) × R

2 ∩ J(t ≤ c ∧ j = 0) ∨ (t = 0 ∧ j ≤ 1)KHext

)
∪

∪ J(t > c ∧ j = 0) ∨ (t = 0 ∧ j > 1)KHext
.

(3.25)
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Proof. See Section 6.3.7 �
The following proposition collects all the results in previous lemmas. There-

fore, Proposition 3.7 presents a procedure to reduce the formula ∀ϕ1Uϕ2 to a
fixpoint expression.

Proposition 3.7 Consider a hybrid system H = (O,C,D, F,G) and suppose
that each solution to H is complete. Consider two HTCTL formulas ϕ1 and ϕ2

Then,

H, x � ∀ϕ1Uϕ2 iff x ∈ µX.Jϕ2KH ∪ δ∗b(c, Jϕ1 ∨ ϕ2KH, X) (3.26)

where, under the hypothesis that the fixpoint in (3.26) is finitely variable for

each solution ξ to H, for any given c > 0, δ
∗
b(c, Jϕ1 ∨ ϕ2KH, X) is

R
n \ {x |




x
0
0



 ∈ µZ.q(c, Jϕ1 ∨ ϕ2KH, X) ∪ δ∗b ((Rn \X) × R
2, Z)} (3.27)

where the variable Z ranges over the state-space Oext of the extended hybrid
system Hext = (Oext , Cext , Dext , Fext , Gext) from H, and q(c, Jϕ1 ∨ ϕ2KH, X) is

(
(Rn \ (Jϕ1 ∨ ϕ2KH ∪X)) × R

2 ∩ J(t ≤ c ∧ j = 0) ∨ (t = 0 ∧ j ≤ 1)KHext

)
∪

∪ J(t > c ∧ j = 0) ∨ (t = 0 ∧ j > 1)KHext
.

(3.28)

Note that the intricacies of reducing a formula to a fixpoint expression occur
only for formulas involving ∀ϕ1Uϕ2. Usual safety properties like reachability
can be expressed by formulas that involve only ∃ϕ1Uϕ2. In those cases, following
Proposition 3.6, this properties can be easily written as fixpoint equations.

3.5 The Verification Procedure

Definitions 3.5 and 3.8, Propositions 3.5, 3.6 suggest a possible verification pro-
cedure for HTCTL formulas on hybrid systems whose solutions are complete.
Such a procedure is based on the progressive reduction of formulas to fixpoint
expressions, and it requires that for each equation constructed by following
Proposition 3.7, the external fixpoint (namely, the fixpoint that is the one most
on the left of a fixpoint expression) is finitely variable for any solution to H.

It is worth mentioning that such a fixpoint characterization of HTCTL for-
mulas relies on the δ∗b function and, in general, this function is not computable
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on hybrid systems. Nevertheless, there are classes of systems for which δ∗b is
computable. Timed automata [4] and linear hybrid automata [74] are examples
of simple classes of hybrid systems for which δ∗b is computable. In this case, we
can use the procedure above to rewrite each formula to a fixpoint expression.
Then, the set of states denoted by fixpoint expression can be computed by it-
erative computation of the fixpoint approximants, until the fixpoint is found.
This approach has been studied in [3, 5, 73] and, for hybrid systems with simple
dynamics, several tools are available for computing δ∗b (see [135]). Note that, in
that a case, finite variability is also required on each approximant of the exter-
nal fixpoint of the fixpoint expression constructed by Proposition 3.7. Note also
that negation and union of HTCTL can be reduced to union and complemen-
tation of sets. Therefore, each HTCTL formula is reduced to the union and the
complemenetation of several fixpoint, each of them denoted by a fixpoint ex-
pressions. Then, each fixpoint expression is defined by at most two nested least
fixpoints. That structure guarantees that the iterative computation of fixpoint
approximants can be simplified, as shown in [7, Sections 1.2.3 and 1.3].

A different approach based on the fixpoint characterization of formulas is
the local model checking of [25, 26]. Instead of computing the fixpoint by suc-
cessive approximations, that method applies several rewriting rules on fixpoint
expressions, based on the system dynamics. The result is a proof tree whose
configuration says whether or not a given state x satisfies the formula. Note
that, within the hybrid systems framework, tableaux methods in [25, 26] can be
considered as a structured approach to the construction of a proof for properties
of hybrid systems.

Finally, it is important to underline that the verification problem on hybrid
systems is in general not decidable. In fact, for any given two counter machine
M (which is powerful as a Turing machine), it is possible to construct a simple
hybrid system H, that encodes the computation of M . Therefore, reachability
on hybrid systems is not decidable [71, Section 4]. Following [71, Theorem 4.1],
we have the following

Theorem 3.2 Let L1, L2 be two constants in R, with L1 6= L2. Then, there
exists a hybrid system H with a state vector x = [x1 x2 ]T ∈ R

2, whose contin-
uous solutions satisfy the dynamics ẋ1 = L1 and ẋ2 = L2, and such that the
reachability problem for H is undecidable.



Chapter 4

Some Synthesis Problems

on Constrained Systems

In the previous chapters we proposed some results on analysis of hybrid systems.
We considered stability problems and we proposed some sum of squares algo-
rithms to decide whether or not a system satisfies some given stability property.
Then, we considered a temporal logic similar to CTL to express properties of
interest, and we generalized the approach of [73] to deal with Zeno and discrete
solutions. Here and in Chapter 5 we consider problems related to the synthesis
of controllers in the classical framework of dynamical control systems.

In this chapter we consider the case of continuous processes with bounds on
the inputs, and we propose controllers based on anti-windup [58] and controllers
that, on a specific planar case, blend together linear and optimal control laws
[53]. It is important to point out that those approaches produce non-hybrid
controllers (they do not have any discrete transition) that blend together two
control devices, one for global performance, like global asymptotic stability or
optimal convergence, and another one for local performance, like exponential
decay rate and robustness of the stabilization. The control authority is continu-
ously moved from a control device to the other, based on a suitable relation that
depends on the state of the system and on the particular features of the input
signals. Thus, by relaxing the requirement on continuity of the management
of control authority, it is possible to introduce switching policies and resets of
the controllers state, so that hybrid phenomena occur. This approaches are
not pursued here but they could be of interest for future works. Some cases

111
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of hybrid control systems, namely when hybrid controllers are used to control
continuous processes, will be presented in Chapter 5.

4.1 Globally Stabilizing Quasi-Optimal Control

of Planar Saturated Linear Systems

Planar systems with input saturation have been long studied in the control
literature, perhaps because they are often used as a starting point for more
general theories, or because of the evident advantages arising from constraining
trajectories on a plane, where several results can be employed (see, e.g., [87,
Chapter 2]). Moreover, for experimental purposes, planar models are already
sufficient to characterize the main dynamic behavior of a wide family of plants,
so that high performance control laws arising from studies on planar systems
might become very effective in several applications (see, e.g., the case studies
mentioned in [122] or the application in [60]). Clearly, in light of saturation,
when addressing the design of high performance controllers for these systems it
becomes evident that one seeks for solutions of the time-optimal (or bang-bang)
type, so that the control input authority is fully exploited most of the time.

While there are several valuable studies on time-optimal control of nonlinear
planar systems (see the pioneering paper [140] as well as the later work in [28]
and references therein), we focus here the attention on linear saturated systems.
For this class of systems, as well as for linear saturated systems in general,
global asymptotic stabilization can only be achieved if the plant poles are in
the closed left half plane [131, 136]. The corresponding class is called ANCBI,
asymptotically null-controllable with bounded inputs. For non ANCBI planar
linear systems the null controllability region is bounded in the exponentially
unstable direction [52, 139].

Taking a closer look at the class of ANCBI systems is quite interesting.
While linear systems with poles in the open left half plane can be globally expo-
nentially stabilized by bounded inputs (this is evident, because they already are
exponentially stable with zero input), linear ANCBI systems with at least one
pole on the imaginary axis can only be globally asymptotically stabilized and
performance becomes a key issue when designing (linear or nonlinear) global
stabilizers. Note that a triple integrator cannot be globally asymptotically sta-
bilized by a linear saturated feedback law [55].

Clearly, when looking at planar systems, this limitation does not apply. (in-
deed, as an example, linear saturated feedback is always stabilizing for a double
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integrator as long as it stabilizes the plant without saturation [49, Example
4.4]). Most of the existing literature for these systems actually applies to the
double integrator case, which is probably the most critical selection among all
the planar ANCBI systems. A complete overview of several recent approaches
and a careful study of how they deal with practical implementation problems
can be found in [122]. External stability properties of the double integrator with
saturated linear feedback (in particular, Lp, L2 and ISS stability, respectively)
have also been addressed in [82, 85, 133]. Finally, some general approaches can
be applied, as a special case, to the control of the saturated double integrator
(see, e.g., [105, 101]).

We propose a family of static nonlinear controllers for ANCBI planar linear
systems. The novelty of the approach stands in recognizing that when looking at
plants with poles close to the imaginary axis (a perfect example being the double
integrator) linear saturated state feedback typically leads to poor performance
if the parameters are not suitably adjusted for different signal levels. However,
these systems are always found in practical control design (think about DC
motors controlling a position via the action of a torque or any system where
the acceleration is a control input and the position is the measurement output)
and the literature seems to lack of a high performance design methodology that
overcomes the evident limitations of a linear saturated feedback by way of a
nonlinear design. The key idea in the selection of our nonlinear control laws
is to guarantee a closed-loop response which is extremely close to being (time
or fuel) optimal, while preserving the nice robustness properties of a Lipschitz
state-feedback law. Moreover, whenever useful, the control laws can be designed
in such a way that locally they behave like a prescribed linear state feedback
law.

In Section 4.1.1 we introduce a family of state feedback stabilizers parameter-
ized by a nonlinear function which needs to satisfy a simple gradient condition.
In Section 4.1.2 we discuss useful selections of this parameter leading to quasi-
optimal responses for certain classes of systems. In Section 4.2.4 we provide
several examples illustrating the advantages of the proposed stabilizers. The
proof of the main theorem is in Section 6.4.

4.1.1 A Family of State Feedback Stabilizers

Consider the following linear planar saturated system:

ẋ1 = x2

ẋ2 = −a1x1 − a2x2 + satM (u)
(4.1)
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where satM (·) is the symmetric scalar saturation function with saturation limits
±M and u is the control input. For the plant (4.1), we will make the following
standing assumption.

Assumption 4.1 The linear plant (4.1) is globally stabilizable from u.

Remark 4.1 Based on results on global stabilizability of linear systems from
bounded inputs [131, 136], Assumption 4.1 holds if and only if plant (4.1) is not
exponentially unstable. This, in turns, is equivalent to requiring that a1 ≥ 0
and a2 ≥ 0 because of the companion form of the state-space representation.

Given the linear saturated plant (4.1) we will study the design of a (nonlinear
in general) static state feedback stabilizer:

u = −kβ(x), (4.2)

where k is a positive constant and β(·) is a suitable nonlinear function.

We will give several recipes for the static controller (4.2), geared toward
the achievement of almost time-optimal and (possibly) fuel-optimal responses.
Moreover, we will allow in several cases to enforce an arbitrary local linear
behavior on the tail of the closed-loop responses (namely in a suitable neigh-
borhood of the origin). To this aim, it is useful to formally define here the
set of functions β(·) which are guaranteed to induce desirable stability and
convergence properties on the closed-loop, as formally stated in the following
assumption and theorem.

Assumption 4.2 The function β(·) : R
2 → R in (4.2) is a locally Lipschitz

function satisfying β(0) = 0 and the following

1. there exists a class K function η(·) : R≥0 → R≥0 such that 1

– if x1 ≥ 0 and x2 ≥ 0, then β(x) ≥ η(|x|);
– if x1 ≤ 0 and x2 ≤ 0, then β(x) ≤ −η(|x|);

2. ∂
∂x2

β(x) ≥ 0 a.e in R
2 and there exists an open set A such that 0 ∈ A and

such that ∂
∂x2

β(x) > 0 a.e. in A.

1A class K function is zero at zero and strictly increasing.
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Theorem 4.1 Given the plant (4.1), if the control law (4.2) satisfies Assump-
tion 4.2 and is such that

k > inf
s>0

M

η(s)
= lim

s→+∞
M

η(s)
, (4.3)

then the following holds:

1. all trajectories of the closed-loop (4.1), (4.2) converge to the origin.

2. moreover if β(·) is differentiable at the origin and

∂

∂x1
β(0) > −a1,

∂

∂x2
β(0) > −a2, (4.4)

then the origin is a locally exponentially stable and globally asymptotically
stable equilibrium point.

Proof. See Section 6.4 �

Remark 4.2 (Interpretations of Assumption 4.2) The intuitive meaning of As-
sumption 4.2 is that the state feedback (4.2) should preserve the equilibrium at
the origin (namely β(0) = 0) and that β is strictly positive on the first and third
closed quadrants take away the origin (item 1). Note that this last property is
stated in terms of a class K function to simplify the statement of the fact that
when β grows unbounded in those quadrants (namely this class K function is
also K∞) any positive k guarantees stability because in (4.3) the right hand
side becomes zero (see the following Remark 4.4). Finally, the constraint on the
derivative of β with respect to x2 at item 2 provides a sufficient condition to
guarantee that the β does not induce new equilibria nor limit cycles. The pecu-
liar requirement on the set A (namely that it is open and its closure contains the
origin) is motivated by the fact that for any (arbitrarily small) neighborhood
of the origin, we need the strict inequality to hold in a set of positive measure,
contained in that neighborhood (see the proof of the theorem for details).

As a last observation, the requirements on β in Assumption 4.2 are fairly
general and allow to incorporate in β quasi optimal properties in a wide range
of situations (see the cases discussed in the next Section 4.1.2).

Remark 4.3 (On global exponential stability) If the plant (4.1) is exponen-
tially stable (i.e., both a1 and a2 are strictly positive), then under the condi-
tions at item 2 of Theorem 4.1 (which in this case reduce to ∂

∂x1
β(0) > −a1
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because of item 2 of Assumption 4.2), global exponential stability of the closed-
loop can actually be proven. This is because each trajectory can be bounded
by a uniform exponential bound in a first compact time interval outside a large
enough ball (this comes from the boundedness of the control input and the GES
property of the plant), a uniform exponential bound on the tail of the trajectory
inside a small enough ball (this comes from LES) and a uniform bound in the
remaining donut applying to a compact time interval. These three bounds can
be combined to construct a uniform exponential bound that holds globally.

Remark 4.4 (On the lower bound on the gain k) Whenever the function η(·)
belongs to K∞ (namely it is of class K and lims→+∞ β(s) = +∞), the lower
bound on k enforced by (4.3) corresponds to zero. This means that if the
function β(·) is unbounded in the first and third quadrant (namely it goes to
infinity as x goes to infinity along any direction with x1x2 ≥ 0), then the
corresponding stabilizer can be scaled by any constant (arbitrarily small) gain.
In the opposite case (if β(·) is bounded in some unbounded direction in the first
and third quadrant), then (4.3) enforces a lower bound on k corresponding to
requiring that for large enough values of x in those quadrants, the control law
(4.2) exceeds the saturation limits.

Remark 4.5 (Robustness properties from Lipschitz continuity) Note that en-
suring that the proposed controller is locally Lipschitz guarantees useful ro-
bustness properties on the nonlinear closed-loop. As a matter of fact, if the
conditions of item 2 of Theorem 4.1 are satisfied, so that GAS holds, then the
results in [148, Theorem 2] guarantee that 1) there exists a smooth converse
Lyapunov function for the closed-loop system and, as a consequence, 2) the
global asymptotic stability property is robust in the sense that the system can
tolerate a suitable perturbation of the dynamics via inner (namely, measurement
errors) and outer (namely, actuation errors) inflations (see, [148, Definition 8]
for details).

It seems important to explain why this type of robustness holds here, even
though it is well known that, in general, for ANCBI systems the closed-loop
cannot tolerate arbitrarily small perturbations of the system matrix A in (4.1)
that make a1 or a2 strictly positive (as a matter of fact in that case the plant be-
comes exponentially unstable which cannot be globally asymptotically stabilized
from a bounded input). The reason for this is that when selecting the inflation
function in [148, Definition 8], this function is indeed constrained to be nonzero
everywhere except for the origin. However, it is allowed to decrease and become
arbitrarily small for arbitrarily large values of x, so that the bounded input still
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has enough authority to compensate for this perturbation. This fact is quite
interesting because (thanks to the results in [148]) it allows us to use robust-
ness properties even for ANCBI systems by ruling out the problems at infinity
(typically one is interested in robustness properties for signals of reasonable size
and is not so worried about arbitrarily large ones).

Remark 4.6 (Linear saturated feedback stabilizers) Note that a trivial selec-
tion of the function β(·) which satisfies Assumption 4.2 is linear state feedback
of the form β(x) = −α1x1 − α2x2, with α1 > 0 and α2 > 0. This type of
feedback has been studied in many papers (e.g. [52] and references therein
[49, 50, 85, 122, 133]) where several stability (both internal and external) prop-
erties are established. For our case, Theorem 4.1 ensures global asymptotic (and
local exponential) stability of the origin using such feedbacks. However, it is well
known that the performance obtained with these linear feedback laws cannot
be desirable for all ranges of signals (namely parameter selections that lead to
good small signal performance, also lead to undesirable large signal transients,
and vice-versa). Therefore, the nonlinear selections that we’ll propose next for
β will provide improved closed-loop performance.

4.1.2 Parameter Selections for Quasi Time-Optimal Re-

sponses

We briefly recall here some facts about time-optimal control laws for linear sys-
tems [11, Chapters 6 and 7]. For simplicity of the exposition, all the statements
are formalized for the planar ANCBI case, therefore conditions must be added
to generalize them to state space of higher dimension.

Time-Optimal Feedback Laws

Time-optimal inputs for linear plants with bounded inputs are bang-bang, that
is, they can only assume the maximum and minimum allowed values, and can be
expressed as a state feedback defined in terms of a suitable switching surface.
The switching surface can usually be expressed either in the form {x : x1 +
α(x2) = 0}, in which case the corresponding feedback law is

u = −Msgn (x1 + α(x2)) , (4.5)

or in the form {x : x2 + ᾱ(x1) = 0}, in which case the corresponding feedback
law is

u = −Msgn (x2 + ᾱ(x1)) . (4.6)
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For example, for a double integrator with control input bounded between ±M
the optimal feedback is given by

u = −Msgn

(
x1 +

1

2M
x2|x2|

)
, (4.7)

and in this case the function α(·) in (4.5) is locally Lipschitz, strictly increasing
and such that

sα(s) > 0, ∀s 6= 0, (4.8)

i.e. α(·) lies strictly in the first and third quadrant (note that this implies
α(0) = 0 so that the equilibrium at the origin is preserved). For a harmonic
oscillator (a1 = ω2, a2 = 0) with control input bounded between ±M the
optimal feedback is given by

u = −Msgn (x2 + ᾱ(x1)) , (4.9a)

ᾱ(x1) =
M

ω
sgn (x1)

√

1 −
(
ω2

M
x1 − 2

⌊
ω2

2M
x1

⌋
− 1

)2

, (4.9b)

where ⌊s⌋ denotes the integer part of s (i.e. the integer h which is closest to s
and such that |h| ≤ |s|), and in this case the function ᾱ(·) in (4.6) is such that

sᾱ(s) ≥ 0, ∀s, (4.10)

i.e. ᾱ(·) lies in the closed first and third quadrant (see Figure 4.1). Note that ᾱ(·)
is neither monotonically increasing nor locally Lipschitz (the Lipschitz property

does not hold at x2 = 0, x1 =
2M

ω2
h, h ∈ Z).

Quasi Time-Optimal, Locally Linear Lipschitz Feedback

As pointed out before, the advantage of having a locally Lipschitz (instead of
a discontinuous, bang-bang) feedback consists in better robustness to noise and
disturbances (see Remark 4.5); moreover, in a neighborhood of the origin it is
desirable to have a linear control law in order to have at least local exponential
stability.

Notice that, if the optimal feedback law has the form (4.5), and α(·) is a
strictly increasing Lipschitz function, then the function β(x1, x2) = x1 + α(x2)
satisfies Assumption 4.2 and then using this β(x1, x2) in (4.2) yields a Lips-
chitz controller ensuring global convergence according to Theorem 4.1 (this is
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ω2

M
x1

ω
M

x2

+2 +4 +6

-2-4-6

x2 = −ᾱ(x1)

x2 = −ᾱε(x1)

x2 = −sgn (x1) min

{

|ᾱε(x1)|, k
2
−4a1

4k
|x1|

}

x2 = −sgn (x1) min

{

ζ,
k
2
−4a1

4k
|x1|

}

Figure 4.1: The normalized time-optimal switching curve for the harmonic os-
cillator and its approximations: x2 = −ᾱ(x1) (black), x2 = −ᾱε(x1) (red).

the case for the time-optimal control of the double integrator, see (4.7) and the
subsequent comments). However, in a neighborhood of the origin, the above
selection of β(x1, x2) can lead to a nonlinear feedback inducing a highly oscilla-
tory behavior (this can be shown in a double integrator example); hence, it is
advisable to introduce a local linear feedback inducing a critically damped local
response (i.e. in the neighborhood of the origin where the control input arising
from this linear feedback is inside the saturation limits, the closed loop has two
coincident negative eigenvalues). The Lipschitz nonlinear control law and the
local linear one can be blended by choosing β(x1, x2) as2

β(x1, x2) = x1 + sgn (x2)max

{
|α(x2)|,

2√
k
|x2|
}
, (4.11)

so that (4.2) becomes:

u = −k
(
x1 + sgn (x2)max

{
|α(x2)|,

2√
k
|x2|
})

. (4.12)

Note that satM (u) with u given by (4.12) and the time-optimal feedback (4.5)
coincide everywhere except for a stripe around the curve x1 + α(x2) = 0 hav-
ing width 2

k in the x1 direction; hence, by increasing k, the above feedback

2For simplicity, we omit the dependence on k of β(x1, x2) in (4.11); the role of this depen-
dence is clear from (4.12).
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can be made arbitrarily close to the optimal one (at the price of monotoni-
cally increasing the locally Lipschitz constants around the switching region –
indeed increasing k one becomes closer and closer to the discontinuous law). In
particular, for the case of the double integrator (4.12) becomes

u = −k
(
x1 + x2 max

{ |x2|
2
,

2√
k

})
. (4.13)

Wholly similar comments hold if the optimal feedback law has the form
(4.6), and the selection β(x1, x2) = x2 + ᾱ(x1) is made, provided that α(·) is
a Lipschitz function contained in the first and third quadrant and such that
lim inf |s|→+∞ |ᾱ(s)| > 0 (this condition is weaker than requiring ᾱ(·) to be
strictly increasing). Now, in order to highlight an additional possible obstruction
and its solution, consider again the optimal feedback (4.9) for the harmonic
oscillator. Although the just stated condition on ᾱ(·) is weaker than the one
required before, it is clear that the function ᾱ(x1) considered in the time-optimal
feedback law (4.9) for the harmonic oscillator does not respect this condition: in

fact, ᾱ(x1) is zero for x1 =
2M

ω2
h, h ∈ Z (hence lim inf |x1|→+∞ |ᾱ(x1)| = 0) and

is not Lipschitz at the same points (see Figure 4.1). However, both problems
can be overcome by a blending which is slightly more general than the one in
(4.12), where in addition to introduce a linear behavior in a neighborhood of
the origin, the general time optimal switching curve x2 + ᾱ(x1) = 0 is modified
as x2 + ᾱε(x1) = 0, where

ᾱε(x1) = sgn (x1)max {|ᾱ(x1)|, ε} , (4.14)

in order to exclude a neighborhood of each point where the Lipschitz property is
violated (see Figure 4.1). The overall arising formula for the harmonic oscillator
is

u = −k
(
x2 + sgn (x1)min

{
|ᾱε(x1)|,

k2 − 4a1

4k
|x1|
})

, (4.15)

where ε is a sufficiently small positive constant (in particular, ε ∈
(
0, M

ω

)
) and

ᾱ(x1) is given by (4.9b). It is easy to see that, as was the case with (4.12),
also (4.15) is quasi-optimal, in the sense that satM (u) with u given by (4.15)
and the time-optimal feedback (4.9) coincide except on a stripe around the
curve x2 + ᾱ(x1) = 0 having width proportional to k−1 in the x2 direction;
hence, by increasing k, the above feedback can be made arbitrarily close to
the optimal one (at the price of monotonically increasing the associated local
Lipschitz constants, as also commented above for the double integrator case).
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Comparing the feedback law (4.15) for the harmonic oscillator and the law (4.13)
for the double integrator, it is evident that the implementation of (4.15) is more
complex than the implementation of (4.13); however, replacing (4.15) by the
following expression

u = −k
(
x2 + sgn (x1)min

{
ζ,
k2 − 4a1

4k
|x1|
})

, (4.16)

(where for the harmonic oscillator a typical choice of the parameters would be
k > 2ω and ζ = M

(
1
ω − 1

k

)
) leads to a much simpler law which also guarantees

global attractiveness of the origin (due to Theorem 4.1), and better global per-
formance than any linear stabilizing law (this is easily seen by comparing the
regions where the two kinds of feedbacks differ from the time-optimal feedback
law).

Remark 4.7 (Quasi-optimality, and performance-simplicity trade-off) The above
discussion has highlighted that the proposed approach leads to quasi-optimal
control laws, since it allows to recover the optimal control feedback on all R

2

apart from a small stripe around the curve β(x) = 0 whose width is a decreasing
function of k, converging to a set of measure zero when k goes to infinity.

Another useful feature of the approach is that it allows for a trade-off between
optimality and simple implementation. In fact (again, cfr classic books as [11]),
the exact switching surfaces can be rather complex, and for ease of implemen-
tation it can be desirable to choose a simpler curve as the set where β(x) = 0;
as long as the β(x) associated to this simpler curve satisfies the requirements
in Assumption 4.2, the above approach guarantees global asymptotic and local
exponential stability of the origin.

Of course, if an approximate simpler switching surface is used, the subset of
R

2 where the control law is really optimal will depend both on the approximation
and on k, and in general will not converge to a set of measure zero when k goes
to infinity (so that quasi optimality is lost, although only at the degree specified
by the choice of the simpler suboptimal switching curve); at the same time, the
approach is flexible enough to allow for rather general curves (e.g. far beyond
globally stabilizing linear ones that in general lead to very poor performance for
large enough initial states).

Remark 4.8 (Robust convergence and nominal performance) It is perhaps use-
ful to stress that the proposed approach leads to robust global asymptotic stabi-
lization, in the sense that, as far as the considered system is in the form (4.1)
(namely, it has relative degree 2 from u to x1, or, stated otherwise, the first
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equation preserves the kinematic nature ẋ1 = x2, so that x1 can be interpreted
as position and x2 as velocity), the proposed control law will still guarantee
global asymptotic stabilization, even if the values of a1 ≥ 0, a2 ≥ 0 are not the
nominal values considered during the design stage; moreover, quasi-optimality
will be achieved if those parameters have (or if they are very close to) their nom-
inal values, and the function β(x1, x2) and the parameter k have been chosen
in order to recover the optimal feedback law.

Remark 4.9 (Step reference tracking and regulation) When at least one of the
two eigenvalues of the plant (4.1) is zero (i.e. whenever a1 = 0), the optimal
feedback law for regulating the state to zero also provides the optimal feedback
law for tracking the step reference r(t) = r̄, ∀t ≥ 0, provided that β(x1, x2)
is replaced by β(x1 − r̄, x2). In fact, via the change of variables x̄1 = x1 − r̄,
x̄2 = x2, the above tracking problem is easily seen to be equivalent to the
problem of regulating to zero the new state x̄1, x̄2, since ˙̄x1 = x̄2 and ˙̄x2 =
−a2x̄2 − satM (kβ(x̄1, x̄2)) (which has exactly the same form encountered in the
regulation problem). On the other hand, for a1 6= 0 an additional constant term
a1r̄ would appear in the ˙̄x2 equation, thus preventing the regulating control law
from being optimal for the tracking problem.

4.1.3 Parameter Selections for Quasi Fuel-Optimal Re-

sponses

We briefly recall here some facts about fuel-optimal control laws for linear sys-
tems [11, Chapters 6 and 8]. As before, for simplicity of the exposition, all the
statements are formalized for the planar ANCBI case, therefore conditions must
be added to generalize them to state space of higher dimension.

Fuel-Optimal Feedback Laws

When the objective is to minimize fuel consumption, it can be shown that
optimal solutions do not exist in relevant cases (there exist open regions in the
state space such that given an initial state in such a region and any control
input ensuring convergence to the origin from that state, it is possible to find a
different control input achieving convergence with less fuel, although in a longer
time). In order to avoid such situations, it is necessary to bound the maximum
allowed transfer time: hence, if Tm(x0) is the transfer time for x0 when the
time-optimal input is used,
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– fixed response time fuel-optimal inputs guarantee that, for a given a pos-
itive value T̄ , the transfer from x0 is achieved with minimum fuel expen-
diture in at most T̄ time units if Tm(x0) ≤ T̄ (i.e. if x0 is close to the
origin) or in Tm(x0) time units otherwise;

– bounded response time fuel-optimal inputs guarantee that, for a given a
positive value γ > 1, the transfer from x0 is achieved with minimum fuel
expenditure in at most γTm(x0) time units.

Similarly to time-optimal inputs, (fixed or bounded response time) fuel-optimal
inputs for linear time invariant systems are bang-off-bang (i.e. can only as-
sume the maximum and minimum allowed values, plus the zero value), and
can be expressed as a state feedback defined in terms of a suitable switching
surface; for example, for a double integrator with control input bounded be-
tween ±M the switching surfaces in the bounded response time case are given
by
{
x : x1 + 1

2M x2|x2| = 0
}

and
{
x : x1 +

mγ

M x2|x2| = 0
}
, where mγ is given by

(8-213) in [11, Sec. 8.7], namely

mγ =
γ

2γ − 2
√
γ(γ − 1) − 1

− 1

2

and the optimal feedback is given by

u =






−sgn
(
x1 +

mγ

M x2|x2|
)

if x1(x1 +
mγ

M x2|x2|) ≥ 0

−sgn
(
x1 + 1

2M x2|x2|
)

if x1(x1 + 1
2M x2|x2|) ≤ 0

0 otherwise

Quasi Fuel-Optimal, Locally Linear Lipschitz Feedback

The key ideas are similar to those expressed in Section 4.1.2; for brevity, the
discussion will be limited to the case when the switching surfaces of interest can
be expressed as {x : x1 + α(x2) = 0}, {x : x1 + α̃(x2) = 0} with α(s) and α̃(s)
two strictly increasing Lipschitz functions lying in the first and third quadrant
and such that

sα̃(s) ≥ sα(s) > 0, ∀s 6= 0;

this is the case for the fuel optimal (with either bounded or fixed response time)
solution for the double integrator or plants having one null eigenvalue and one
negative eigenvalue.

Defining the following functions:

α̂(s) := max{α̃(s), α(s)}, α̌(s) := min{α̃(s), α(s)},
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and using the same blending approach already used and motivated in the first
part of Section 4.1.2, the proposed control law is

u =






−k
(
x1 + sgn (x2) max

{
|α̌(x2)|, 2√

k
|x2|
})

if x ∈ R1,

−k
(
x1 + sgn (x2) max

{
|α̂(x2)|, 2√

k
|x2|
})

if x ∈ R2,

0 otherwise,

(4.17)

where

R1 =

{
x : x1 + sgn (x2) max

{
|α̌(x2)|,

2√
k
|x2|
}

≥ 0

}
, (4.18a)

R2 =

{
x : x1 + sgn (x2) max

{
|α̂(x2)|,

2√
k
|x2|
}

≤ 0

}
. (4.18b)

Notice that (4.17) can also be written as

u = −kmin

{
x1 + sgn (x2)max

{
|α̌(x2)|,

2√
k
|x2|
}
,

max

{
x1 + sgn (x2)max

{
|α̂(x2)|,

2√
k
|x2|
}
, 0

}}
,

With the obvious substitutions, remarks analogous to those in Section 4.1.2
apply here too. In particular for the double integrator, (4.17) becomes

u =





−k
(
x1 + x2 max

{∣∣min
{mγ

M x2,
x2

2M

}∣∣ , 2√
k

})
,

if x ∈ R1

−k
(
x1 + x2 max

{∣∣max
{mγ

M x2,
x2

2M

}∣∣ , 2√
k

})
,

if x ∈ R2,

0, otherwise,

(4.19)

and (4.18) in turn become

R1 =

{
x : x1 + x2 max

{∣∣∣min
{mγ

M
x2,

x2

2M

}∣∣∣ ,
2√
k

}
≥ 0

}
, (4.20a)

R2 =

{
x : x1 + x2 max

{∣∣∣max
{mγ

M
x2,

x2

2M

}∣∣∣ ,
2√
k

}
≤ 0

}
. (4.20b)
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4.1.4 Simulation Examples

Double Integrator

The constant reference tracking problem for a double integrator plant with sat-
urated input can be solved by a bang-bang time-optimal strategy. By blending
the bang-bang feedback control strategy with a stabilizing linear feedback, it
is possible to almost recover the time-optimal behavior for large error signals
and to avoid problems near the equilibrium due to noise and disturbances, at
the same time. Assuming a symmetric saturation with limit M = 1, the quasi-
optimal control proposed is (4.13) and the simulations results are in fig. 4.2
where different curves corresponding to different selections of k are reported and
compared to the time-optimal one to show how the response becomes closer and
closer to the optimal one.
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Figure 4.2: M = 1, quasi time-optimal strategy.

Note that the parameter k can be used to select the level of approximation
of the optimal response: increasing k induces a better recovery of the optimal
response and the use of a more aggressive linear control law. The selection of the
constant 2√

k
inside the max function imposes a critically damped (two coincident

poles) linear closed-loop near the equilibrium, i.e. where the linear feedback law
is used and the input signal is not saturated. Note that the proposed control
satisfies Assumption 4.2, therefore by our main theorem it guarantees global
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asymptotic stability, with some loss of optimality, for any parameter variation
that preserves the kinematic relation ẋ1 = x2 (see Remark 4.8).

A similar approach can be used to perform a quasi fuel-optimal control
strategy. The control law (4.19), (4.20) blends the fuel-optimal strategy for
high error levels, with a linear feedback law near the origin. Choosing mγ ≈
11.66 forces the closed loop system with fuel-optimal strategy to converges to
the equilibrium in a time no longer than two times the optimal one (γ = 2).
The resulting responses are in fig. 4.3 where different curves corresponding to
different selections of k are reported and compared to the fuel optimal one,
similar to the previous case.
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Figure 4.3: M = 1, γ = 2, quasi fuel-optimal strategy.

Pure Oscillator

As a last example we consider the stabilization problem for a pure oscillator of
the form

ẋ1 = x2

ẋ2 = −ω2x1 − sat(u),

which can be solved by the quasi time-optimal control law (4.15), (4.9b).
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Figure 4.4: M = 1, ω = 2, quasi time-optimal strategy.

Note that when the first argument inside min works, it guarantees (locally)
a critically damped feedback linear system. The optimal ᾱ(·) in (4.9b) cannot
be used as second argument of the min function because it doesn’t satisfy the
condition required at item 1 of Assumption 4.2 (it is zero for arbitrary large
values of x1 on the x2 = 0 axis, and it is not Lipschitz at the same points).
By selecting ε as a very small constant, the time-optimal response can be al-
most recovered with large values of k. Fig. 4.4 shows simulation results with
increasing values of k and compares them to the time-optimal response.

4.2 Model Recovery Anti-Windup for Rate and

Magnitude Saturated Plants

Input saturation is a relevant problem in any high performance control system
where lightweight structures and/or full exploitance of the available input power
is required. Indeed, these phenomena can be neglected whenever it is possible
to oversize the actuators so that during normal operation the saturation limits
are never reached by the controller command. Much research has been carried
out in the past years to characterize and address the problem of magnitude and
rate saturation. This arises whenever the actuator under consideration imposes
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constraints not only on the size of the requested input effort, but also on the
variation of that request. This type of problem has been most studied in the
aerospace context where it has been shown to be relevant [20, 21, 29, 134], but
it also arises in plasma control systems in Tokamaks [132]. As with magnitude-
only saturation, rate and magnitude saturation can be addressed by designing a
controller which directly accounts for the limitations (see, e.g., the approaches in
[16, 17, 65, 79, 80, 86] and references therein), or by adding some modifications
to an existing small signal controller, which achieves a desirable performance as
long as the saturation limits are not exceeded.

Anti-windup compensation schemes have been historically addressed in the
magnitude-only saturation context, where two main approaches have been pro-
posed to solve the problem: Direct Linear Anti-Windup for linear control sys-
tems [78] and Model Recovery Anti-Windup (MRAW), also called “L2 anti-
windup”, see [147] and also [59, 162]). In the recent literature, a number of anti-
windup results considered the case of rate and magnitude saturation and, for
the MRAW approach, some of them use a LMI-based design. These approaches
mostly arise from selecting a suitable characterization of the rate+magnitude
saturation nonlinearity, for which the LMI-based approach can be extended and
successfully applied. For example, in the anti-windup solution of [21, 121], a
dynamic actuator model suitable for flight control applications has been used,
which incorporates both magnitude and rate saturation.

Here we propose two constructive solutions to the rate+magnitude anti-
windup problem when cast into the Model Recovery Anti-Windup framework
of [162, 147]. The first solution arising from treating the magnitude and rate
saturation altogether as a single nonlinearity, establishing key input/output
properties of this nonlinearity and performing the anti-windup action by way
of a possibly linear solutions whose design can be carried out by solving a
set of Bilinear Matrix Inequalities (BMIs) depending on the plant parameters.
This solution leads to global results with exponentially stable plants, semiglobal
results with ANCBI plants (namely plants globally stabilizable by nonlinear
feedbacks) and local results in all other cases (namely regional results with
guaranteed regions of attraction). In the second solution that we propose, which
was preliminarily sketched in [160], the saturation is separated out into the
two (magnitude and rate) components and a scheme accounting for the two
phenomena separately is proposed, with extra states added to the anti-windup
compensator. Also in this second case, the design method hinges upon the
selection of a possibly nonlinear stabilizer for which we propose a linear design
leading to global results with exponentially stable plants and local results in
all other cases. As in the previous solution, we give an optimality-based design
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to maximize the domain of attraction. In this case, the design uses convex
Linear Matrix Inequalities (LMIs), thus becoming more numerically attractive
then the previous BMI solution. On the other hand, semiglobal results with
ANCBI plants cannot be guaranteed here, thus making this second solution less
appealing for polynomially unstable plants. In both approaches, a generalized
sector condition [43, 77] is used to characterize the saturation, in order to reduce
the conservativeness of the design.

We comparatively discuss the two techniques on a simulation example, which
highlights that the first approach leads to tighter bounds on the achievable per-
formance, in spite of the fact that it relies on non-convex design tools.

Notation used in this section
The placeholder satMR(·) denotes the rate and magnitude saturation phenomenon;
in particular, for any s(·) : R → R

m, the expression µ = satMR(s) is a shortcut
to say that µ is the unique solution of the following discontinuous dynamics:

µ̇(t) = diag(R)sign(satM (s(t)) − µ(t)), (4.21)

where satM (·) is the decentralized magnitude saturation with saturation lim-
its M := [M1, . . . ,Mm], sign(·) is the decentralized sign function 3 and R :=
[R1, . . . , Rm] is the vector containing the rate saturation limits. Moreover,
dzM (s) := s−satM (s) denotes the decentralized deadzone. The symbols satηMR(·)
or satMRη(·) will be used to denote a rate and magnitude saturation rescaled
by the factor η ∈ [0, 1], namely such that its levels are given by ηM and ηR.

4.2.1 Problem Definition

Consider the following linear plant

ẋ = Ax+Buu+Bdd, (4.22a)

y = Cyx+Dyuu+Dydd, (4.22b)

z = Czx+Dzuu+Dzdd, (4.22c)

where x ∈ R
n is the plant state, u ∈ R

m is the plant control input, y is the
measurement output, z is the performance output and d is a disturbance input.
We assume that plant (4.22) is stabilizable from u.

3An exact description of the discontinuous dynamics (4.21) would require the use of set
valued maps and differential inclusions. However to keep the discussion simple we will abuse
notation here and assume that the sign(·) function in (4.21), when evaluated at zero, returns
the correct value to guarantee existence and uniqueness of solutions (see [158, Lemma B.1,
p. 145]).
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Assumption 4.3 The pair (A,Bu) is stabilizable.

Following the standard anti-windup approach, we assume that a controller
has been already designed for plant (4.22). We make very few assumptions on
the structure of the controller that can be described by the following nonlinear
dynamic equations:

ẋc = f(xc, uc, r), yc = g(xc, uc, r) (4.23)

where xc is the controller state, uc is its measurement input and r is an external
reference signal. To guarantee existence and uniqueness of solutions, we assume
that both f and g are locally Lipschitz functions.

The following assumption entails the necessary property that the closed-
loop between plant (4.22) and controller (4.23) is well behaved in the absence
of saturation, namely with the following “unconstrained” interconnection:

uc = y, u = yc. (4.24)

Assumption 4.4 The closed-loop between plant (4.22) and controller (4.23)
via the interconnection (4.24) is well posed and forward complete.

We address the so-called anti-windup augmentation problem for the inter-
connection (4.22), (4.23), (4.24) when rate and magnitude saturation affects
the control input of the plant. In particular, we address and solve the problems
arising when interconnecting plant (4.22) and controller (4.23) via the following
saturated interconnection

uc = y, u = satMR(yc). (4.25)

In light of the negative effects that can be often experienced in the saturated
closed-loop (4.22), (4.23), (4.21), we address the following anti-windup augmen-
tation problem. For compact notation, given external signals r(·) and d(·) and
initial states for the plant (4.22) and the controller (4.23) the response of the
unconstrained closed loop (given by (4.22), (4.23) and (4.24)) will be denoted
by a hat ·̂ over the variable of interest (e.g. ûc and x̂, respectively, for the input
to the controller and the state of the plant in the unconstrained closed loop),
whereas the response of the anti-windup closed loop (given by (4.22), (4.23) and
the anti-windup dynamics with suitable interconnection conditions) to the same
external signals and initial states (and suitable initial states for the anti-windup
compensator) will be denoted by a bar ·̄ over the variable of interest (e.g. ūc

and x̄, respectively, for the input to the controller and the state of the plant in
the anti-windup closed loop).
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Problem 4.1 Given the plant-controller pair (4.22), (4.23) and the magnitude
and rate saturation in (4.21), design a dynamic compensator which only uses
measurements from the controller signals and injects modifications at the con-
troller input and output and whose interconnection to the plant-controller pair
(4.22), (4.23) guarantees (at least one of) the following properties:

1. (global anti-windup) for any scalar ε ∈ (0, 1) and for any pair (r(·), d(·))
such that dzM(1−ε)(û) ∈ L2 and dzR(1−ε)( ˙̂u) ∈ L2, there exists a class K∞
function γ(·) such that

‖z̄ − ẑ‖2 < γ

(∥∥∥∥
[
dzM(1−ε)(û)

dzR(1−ε)( ˙̂u)

] ∥∥∥∥
2

)
; (4.26)

2. (local anti-windup) there exists ρ > 0 and a class K function γ(·) such that
inequality (4.26) holds for any scalar ε ∈ (0, 1), for any initial state such
that ‖(x̂(0), x̂c(0))‖ < ρ and for any pair (r(·), d(·)) such that ‖dzM(1−ε)(û)‖2 <

ρ and ‖dzR(1−ε)( ˙̂u)‖2 < ρ;

3. (regional anti-windup with exponential recovery) for any scalar ε ∈ (0, 1)
and for any pair (r(·), d(·)) such that dzM(1−ε)(û) and dzR(1−ε)( ˙̂u) have
compact support4 [0, T ], if the state of the anti-windup compensator for
t = T belongs to a suitable region R (possibly depending on ŷc(T )), then
z̄(t) − ẑ(t) converges to zero exponentially fast with convergence rate γ

Remark 4.10 Note that we don’t ask for any stability or convergence property
in Assumption 4.4. Although guaranteed by essentially any reasonable choice of
the given controller (4.23), these properties are actually not required to state our
main results that are expressed in terms of the deviation of the actual response
from the unconstrained one. Clearly, saturation will impose some limits on the
trackable responses, i.e. on the unconstrained responses that can actually be
recovered by the anti-windup closed loop system; in particular, in order to be
trackable a response must leave enough room (quantified by ε in Problem 4.1)
for the action of the anti-windup compensator, and this is the reason why the
only responses considered in Problem 4.1 are the responses such that, for some
ε ∈ (0, 1), it holds that dzM(1−ε)(û) ∈ L2, dzR(1−ε)( ˙̂u) ∈ L2, and not simply the

responses such that dzM (û) ∈ L2, dzR( ˙̂u) ∈ L2.

The difference between the requirements in item 1 and 2 of Problem 4.1 lies
in the fact that the performance degradation in the anti-windup closed loop

4A function f(·) has support [0, T ] if f(t) = 0 for t 6∈ [0, T ].
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with respect to the unconstrained closed loop (as measured by the L2 norm of
the difference between the corresponding performance outputs) is guaranteed
to be bounded for any response such that ‖dzM(1−ε)(û)‖2 and ‖dzR(1−ε)( ˙̂u)‖2

are finite in item 1, whereas in item 2 it is guaranteed to be bounded only if
‖dzM(1−ε)(û)‖2, ‖dzR(1−ε)( ˙̂u)‖2 and the initial states are sufficiently small. It
will be shown in this section that it is possible to come up with solutions of
either form 1) or 2) of the problem, at the price of sacrificing the performance
achievable on responses such that ‖dzM(1−ε)(û)‖2 and ‖dzR(1−ε)( ˙̂u)‖2 are small
(in the global case), or at the price of not being able to guarantee the recovery
of the unconstrained responses such that ‖dzM(1−ε)(û)‖2 and ‖dzR(1−ε)( ˙̂u)‖2

are not sufficiently small (in the local case). Hence, in order to identify more
desirable solutions (achieving a trade-off between the merits and the pitfalls of
the “easy” solutions cited above) item 3 of Problem 4.1 is introduced, where
an explicit quantification is given of both the guaranteed (exponential) conver-
gence rate and of the size of the region of the state space of the anti-windup
compensator where such a convergence rate is achieved. The reason for giving
this third formulation in terms of a region in state space instead of in terms of a
bound ρ on ‖dzM(1−ε)(û)‖2 and ‖dzR(1−ε)( ˙̂u)‖2 (as in the second formulation)
is that in this way unnecessary restrictions are avoided and then the definition
applies to a larger set of unconstrained responses.

4.2.2 Plant-Order Anti-Windup Solution

A first solution that we propose to Problem 4.1 is carried out along the same lines
as those in [146, 15, 14], where a dynamical system reproducing the dynamics of
the plant (4.22) from the control input u to the measurement output y is inserted
in the closed-loop to generate the mismatch between the actual plant behavior
and the virtual behavior in the absence of saturation. In particular, this system,
called “anti-windup compensator” corresponds to the following dynamics:

ẋaw = Axaw +Bu(u− yc) (4.27a)

yaw = Cyxaw +Dyu(u− yc) (4.27b)

zaw = Czxaw +Dzu(u− yc), (4.27c)

The anti-windup compensator (4.27) is to be connected to the plant (4.22) and
the controller (4.23) via the following anti-windup interconnection equations:

uc = y − yaw, u = satMR(satMR(1−ε)(yc) + v1), (4.28)

where the signal v1 is a degree of freedom left by the compensation scheme
to guarantee that the actual plant response converges to the virtual response
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corresponding to the absence of the saturation effects. A block diagram of the
overall anti-windup scheme is represented in Figure 4.5.

Figure 4.5: Block diagram of the plant-order anti-windup solution.

The following theorem, whose proof is reported in Section 6.4.2, establishes
a few results on suitable designs for the stabilizing signal v1 in (4.28), each of
them having certain advantages and disadvantages as illustrated after the proof
of the theorem.

Theorem 4.2 Consider the anti-windup closed-loop (4.22), (4.23), (4.27), (4.28).
Under Assumptions 4.3 and 4.4, the following holds:

1. If A is Hurwitz, then the selection v1 = 0 solves the global anti-windup
problem in Problem 4.1.

2. Selecting v1 as any stabilizing linear state feedback for ẋaw = Axaw +Buv1
solves the local anti-windup problem in Problem 4.1.

3. Selecting v1 = Kxaw, where K is any feasible solution to the following
BMI problem in the variables P = PT > 0, K, H, γ > 0, 1

α > 0, UM > 0
diagonal

1

α
I > P (4.29a)

0 > He

[
P (A+ γI +BuK) −PBu

UM (K −H) −UM

]
(4.29b)

0 ≤
[

ε2R2
iP ⋆

[K(A+BuK)]i 1

]
, i = 1, . . .m, (4.29c)

0 ≤
[
ε2M2

i P ⋆
[H ]i 1

]
, i = 1, . . .m, (4.29d)
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(where ⋆ denotes symmetrical terms and [Z]i denotes the i-th row of the
matrix Z) solves the local anti-windup and the regional anti-windup with
exponential recovery problems in Problem 4.1 with exponential bound γ in
the guaranteed region B (α), namely a ball of size α.

Each of the solutions proposed in Theorem 4.2 deserves some discussion.
The solution at item 1 corresponds to a generalization of the so-called IMC
anti-windup solution (which is a very well known anti-windup solution applying
to the magnitude saturation case – see e.g., [89]). In particular, this solution
corresponds to relying on the exponentially decaying modes of the plant (whose
matrix A is Hurwitz) and is also well known for its global exponential stability
guarantees in spite of poor performance when used for lightly damped plants
(this is because the solution itself relies on the intrinsic exponential decay given
by the plant).

The solution at item 2 corresponds to a very practical approach to the prob-
lem, wherein the saturation effects are completely disregarded in the design of
v1. Since the saturation acts like an identity for small enough signals, any such
a solution will guarantee the local statement in Problem 4.1, however there’s no
guarantee on the size of the region from which the unconstrained performance
can be recovered by the compensated system. The advantages of this solution
are simplicity and local performance. The main disadvantage is the lack of sta-
bility guarantees for large signals. This solution was adopted in the application
study carried out in [146].

The last solution at item 3 tries to overcome the limitations of the previous
two approaches by enforcing a guaranteed exponential decay of the performance
output mismatch z̄ − ẑ while ensuring that this bound holds in a guaranteed
region. The trade off in the BMIs (4.29) is between γ (associated with the
decaying exponential bound) and α (associated with the size of the guaranteed
region). A last comment pertains to the BMI nature of the conditions (4.29),
which makes them not straightforward to solve in general. In Section 4.2.4
we discuss a case study where using the branch-and-bound solver bmibnb in
YALMIP [97] and the commercial package PENBMI [88] it is possible to derive
a solution. Regarding the solution at item 3 of Theorem 4.2, the constraints
(4.29) are typically solved in one of the following two ways: either a desired decay
rate γ̄ is fixed and the BMIs are solved with γ = γ̄ with the goal of maximizing α,
so that the associated guaranteed region is maximized, or a desired guaranteed
region size ᾱ is fixed and the BMIs are solved with α = ᾱ with the goal of
maximizing γ, so that the associated decay rate is maximized. In this last case,
an appealing feature is that as long as the plant is not exponentially unstable
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(thus also including the polynomially unstable case), the BMI constraints are
semiglobal, namely they are feasible for any arbitrarily large ᾱ thereby giving
constructive solutions for any arbitrarily large guaranteed region. This fact is
formalized in the next statement (the proof is in Section 6.4.3). Note that this
is as good as one can get because exponentially unstable plants are known to
have bounded controllability regions [136] and linear stabilizers are known to
be insufficient to globally stabilize certain polynomially unstable plants with
bounded inputs [55].

Proposition 4.1 If the matrix A only has eigenvalues in the closed left half
plane, then given any fixed α > 0, the LMIs (4.29) in the variables P = PT > 0,
K, γ > 0, UM > 0 diagonal are feasible.

4.2.3 Extended Anti-Windup Solution

In this section we propose an alternative solution to Problem 4.1 which uses,
within the MRAW framework, a recently proposed alternative method to rep-
resent rate and magnitude saturation in anti-windup schemes (see the recent
paper [57]). The core idea behind this approach is to assume that it is possi-
ble 5 to compute the derivative of the controller output yc in (4.23) and impose
the rate saturation directly on this signal, so that the arising dynamics is not
discontinuous and the magnitude and rate saturation limits are still satisfied.
To this aim, we define an extended anti-windup compensator (extended because
as compared to the previous solution in (4.27), this compensator has a larger
number of states) having the following form:

ẋaw = Axaw +Bu(u− yc) (4.30a)

δ̇ = satR(yc,dot + v1) (4.30b)

yaw = Cyxaw +Dyu(u − yc) (4.30c)

zaw = Czxaw +Dzu(u− yc), (4.30d)

where v1 is a stabilizing signal to be designed, similar to the previous section
and yc,dot is a signal reproducing as accurately as possible the derivative of
the controller output yc. The extended anti-windup compensator (4.30) should
be interconnected to the plant-controller pair (4.22), (4.23) via the following

5This assumption is always satisfied if the controller is strictly proper. Nevertheless, if
the controller is not strictly proper then approximate implementations are possible (see the
following Remark 4.11).
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anti-windup interconnection:

uc = y − yaw, u = satM (δ). (4.31)

A block diagram of the overall anti-windup scheme is represented in Figure 4.6.

Figure 4.6: Block diagram of the extended anti-windup solution.

The following theorem, whose proof is reported in Section 6.4.4, establishes
a few results on suitable designs for the stabilizing signal v1 in (4.30), each of
them having certain advantages and disadvantages as illustrated after the proof
of the theorem.

Theorem 4.3 Consider the anti-windup closed-loop (4.22), (4.23), (4.30), (4.31).
Under Assumptions 4.3 and 4.4, the following holds:

1. If A is Hurwitz, then for any diagonal Kδ > 0, the selection v1 = −Kδ(δ−
yc) solves the global anti-windup problem in Problem 4.1.

2. Selecting v1 = Kaw

[ xaw

δ−yc

]
, where Kaw is any stabilizing linear state feed-

back for

ẋaw = Axaw +Buδaw (4.32a)

δ̇aw = Kaw

[ xaw

δaw

]
(4.32b)

solves the local anti-windup problem in Problem 4.1.

3. Consider any feasible solution from the following generalized eigenvalue
problem in the variables Q = QT > 0, X, γ > 0, α > 0, WM > 0
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diagonal:

αI < Q (4.33a)

0 > He




[
A+ γIn Bu

]
Q −BuWM[

0 γIm
0 Im

]
Q+

[
0 Im

−Im 0

]
X

0
−WM


 (4.33b)

0 ≤
[
ε2SiQ [X ]Ti
[X ]i 1

]
, i = 1, . . . , 2m, (4.33c)

where Si = Mi and Sm+i = Ri for all i = 1, . . . ,m. Then, the following
LMIs in the variables Kx, Kδ, kmax, WR > 0 diagonal are feasible:

0>He




[
A+ γIn Bu

Kx Kδ + γIm

]
Q

−BuWM 0
0 −WR[

0 Im
Kx Kδ

]
Q+

[
0 Im

−Im 0

]
X

−WM 0
0 −WR


 (4.34a)

0 ≤
[
kmaxI [Kx Kδ]
⋆ kmaxI

]
. (4.34b)

Moreover, selecting v1 = [Kx Kδ]
[ xaw

δ−yc

]
, where Kx and Kδ arise from

any solution to (4.34), solves the local and the exponential anti-windup
problems in Problem 4.1 with exponential bound γ in the guaranteed region
B (α).

4. If A is Hurwitz, consider any solution to the generalized eigenvalue prob-
lem (4.33b) with X = 0, in the variables Q = QT > 0, γ > 0, WM > 0
diagonal. Then, with that solution, the LMIs (4.34) with X = 0 in the
variables Kx, Kδ, kmax, WR > 0 diagonal are feasible. Moreover, se-
lecting v1 = [Kx Kδ]

[ xaw

δ−yc

]
, where Kx and Kδ arise from any solution to

(4.34), solves the global and the exponential anti-windup problems in Prob-
lem 4.1 with exponential bound γ with guaranteed region corresponding to
the whole space.

The solution at item 1 parallels the solution at item 1 of Theorem 4.2 as
some generalization of the IMC anti-windup scheme (see [89]). Indeed, in this
solution only the δ subsystem in the dynamics (4.32) is stabilized by the feedback
function and the rest of the state (namely, xaw) will converge to zero following
the decay rate of A (see the proof of the theorem for details). Due to this
reason, this solution only applies to exponentially stable plants and behaves in
unacceptable ways when the plant dynamics is lightly damped.
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The solution at item 2 parallels the solution at item 2 of Theorem 4.2 and has
the same advantages/disadvantages discussed after the proof of Theorem 4.2.
This solution was adopted for its simplicity in [159].

Similarly, the solution at item 3 parallels the solution at item 3 of Theo-
rem 4.2 even though the trade off between α and γ is carried out here by way
of convex (or, quasi convex) constraints, so that global optima can always be
determined. This is a strong advantage of this second approach versus the one
of Section 4.2.2.

Finally, the solution at item 4 arises from the possibility of transforming the
regional constraints at the previous item into global ones, so that anti-windup
with global exponential performance can be determined. Unfortunately, this
solution only applies to exponentially stable plants, as imposing X = 0 in the
constraints (4.33) makes them infeasible whenever A is not Hurwitz.

Regarding the solution at item 3 of Theorem 4.3, the constraints (4.33) are
typically solved in one of the following two ways: either a desired decay rate
γ̄ is fixed and the LMIs arising from fixing γ = γ̄ are solved with the goal
of maximizing α, so that the associated guaranteed region is maximized, or a
desired guaranteed region size ᾱ is fixed and the constraints arising from fixing
α = ᾱ are solved maximizing γ via a generalized eigenvalue problem, so that
the associated decay rate is maximized.

As compared to the constraints given in Theorem 4.2 in section 4.2.2, the ad-
vantage of the formulation in Theorem 4.3 is that the constraints are convex (or
quasi-convex because of the gevp) and can be efficiently solved by determining
the globally optimal solution using commercial solvers such as the Matlab LMI
Toolbox [56] (there wasn’t such a guarantee with the BMIs of Theorem 4.2).
Another advantage of this approach is that when the plant is exponentially sta-
ble the results in item 4 provide a global solution to the problem of maximizing
the exponential convergence rate. On the other hand, a drawback of the ap-
proach proposed here is that semiglobal results cannot be established for plants
having poles in the closed left half plane. In other words no parallel statement
to that in Proposition 4.1 can be proven6.

Remark 4.11 One of the main difficulties in implementing the anti-windup
scheme proposed in this section is that the signal yc,dot, i.e. the derivative of
the controller output yc, must be generated to be used in (4.30). If a strictly
proper controller is used, such a derivative can be explicitly and easily computed;

6The main reason for this limitation stands in the nature of the dynamics (6.59), which
shows internal saturations unlike the parallel dynamics (6.50) which only have input satura-
tions.
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otherwise, a viable alternative route, provided that Dyu = 0 in (4.22b), consists
in filtering yc by F (s) = 1

1+τds [1 s]T in order to produce [ȳc ˙̄yc]
T and

replacing yc by ȳc in the anti-windup scheme above (with the advantage that
˙̄yc is explicitly available). If this approach is taken, the proposed anti-windup
scheme will recover the response of the modified unconstrained closed loop (with
yc replaced by ȳc) instead of the response of the original unconstrained closed
loop; but this also guarantees that the original response is essentially recovered,
since it is possible to show that the modified and the original unconstrained
closed loop responses can be made arbitrarily close if a sufficiently small τd
is chosen. Note that the condition Dyu = 0 in (4.22b) (which is sufficient
to ensure that the closed loop including the small time constant τd is stable
provided that the closed loop before the introduction of τd is such) can always
be enforced by a preliminary loop transformations, redefining y = Cyx+Dydd
in (4.22b) and uc = y+Dyuyc in (4.24) (the arising algebraic loop is well-posed
by Assumption 4.4). This strategy is adopted in our example in Section 4.2.4,
where the controller is not strictly proper.

Remark 4.12 To improve the transient performance induced by the anti-windup
closed-loop, it is possible to modify the anti-windup scheme by using saturated
versions of yc and yc,dot, namely replacing (4.30b) by

δ̇ = satR(satR(1−ε)(yc,dot) + v1) (4.35)

and by choosing signal v1 as a feedback signal from
[

xaw

δ−satM(1−ε)(yc)

]
, rather than

[ xaw

δ−yc

]
(a similar idea was adopted in [105]). Then it can be proved (details

are omitted for brevity) that all the stated closed-loop properties are preserved
and the transient performance of the anti-windup law is improved because the
peaks in yc and yc,dot are trimmed out.

4.2.4 Simulation Example

Consider the short-period longitudinal dynamics of the VISTA/MATV F-16 at
Mach 0.2 and altitude 10000 feet (corresponding to a dynamic pressure value of
40.8 psf) at a trim angle of attack of 28 degrees, described locally by a second
order plant as in (4.22) with two states corresponding to the angle of attack and
the pitch rate, respectively, and two inputs corresponding to the deviations of the
elevator deflection and of the pitch thrust vectoring from the trim condition (see
[146] for details). As in [146], the controller (4.23) is nonlinear and corresponds
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to a daisy chained allocation of the inputs, driven by a reference signal for the
angle of attack.

We design two anti-windup compensators for this example. The first one
corresponds to the construction at item 3 of Theorem 4.2, where we select
α = 0.001 and obtain a guaranteed regional performance of γ = 3.7849 by
solving the BMIs with the software YALMIP [97] and the commercial package
PENBMI [88]. The corresponding simulations are represented by bold curves in
Figure 4.7, where they are compared to the unconstrained response (solid), to
the saturated response (dotted) and to the response using the construction in
[146] (dashed), which can be seen as using the approach at item 2 of Theorem 4.2
(see [146] for details). The anti-windup design guarantees fast and desirable
recovery of the unconstrained trajectory.
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Figure 4.7: Comparison between different responses when referring to Theo-
rem 4.2.

The second construction is the one at item 3 of Theorem 4.3, where we se-
lect α = 0.001 so that the same guaranteed region is obtained. The arising
guaranteed regional performance is γ = 2.4537 obtained by solving the LMIs
with the software YALMIP [97] and the commercial package Matlab LMI Tool-
box [56]. Note that this performance is worse than the one obtained with the
previous approach. To construct the signal yc,dot, we rely on Remark 4.11 by
selecting τd = 0.1 because the controller isn’t strictly proper. Moreover, to



141

improve the transient performance we insert the extra saturation suggested in
Remark 4.12. The corresponding simulations are represented by bold curves in
Figure 4.8, where they are compared to the unconstrained response (solid), to
the saturated response (dotted) and to the response using the construction in
[146] (dashed). Once again, the anti-windup design guarantees fast and desir-
able recovery of the unconstrained trajectory. Note however that, in spite of
the worse guaranteed performance level, the unconstrained response recovery is
slightly more desirable than the previous case. This probably derives from the
conservativeness of the performance bounds.
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Figure 4.8: Comparison between different responses when referring to Theo-
rem 4.3.

Finally, in Figure 4.9 we show the two curves arising from the trade off be-
tween α and γ for our two constructions with guaranteed exponential decay
rate. In the figure, the region on the bottom left of the curve is the feasibility
region and the region on the top right is the infeasibility region. Note that,
quite interestingly, for this example the first construction appears to achieve
a better performance than the second one. This fact is compensated by the
converse properties in terms of computational burden, indeed the BMIs asso-
ciated with the first approach are solved suboptimally by the PENBMI solver
[88] which requires significant computational effort and is extremely sensitive to
numerical problems. The LMIs associated with the second approach, instead,
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are efficiently solved using MATLAB’s LMI toolbox [56] and are guaranteed to
always provide the optimal solution.
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Chapter 5

Case Studies of Hybrid

Control Systems

In recent years, much attention has been given to the design problem of control
systems in the hybrid context [30, 62, 95, 107, 108, 128], namely when the
closed-loop dynamics obeys either a continuous law imposing a constraint on
the derivative of the solution, when it belongs to the so-called flow set, and/or
a discrete law imposing a constraint on the jumps that the solution undertakes
when it belongs to the so-called jump set.

A theoretical motivation for considering hybrid controllers is related to the
existence of continuous/discontinuous control laws for steering the state of a
system to zero. In the survey work [137], such a problem is considered for
systems of the form ẋ = f(x, u). Following [137], the open-loop property of
null-asymptotic controllability requires that for each ε > 0 there exists a δ > 0
such that, for each |x0| < δ there is some measurable, locally essentially bounded
control u : [0,∞) → R

m, where m is the dimension of the input, such that the
trajectory x(·) of the system, resulting from the initial state x0 and the input
u satisfies

x(t), u(t) → 0 as t→ ∞ and ∀t > 0, |x(t)| + |u(t)| < ε. (5.1)

The first condition is a classical convergence property while the second condition
is a classical boundedness property, closely related to the concept of stability.
When such conditions is verified for each x0 ∈ R

n, we have global asymptotic
controllability.

143
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For scalar cases, global asymptotic controllability means that for each x we
can find an input u such that xf(x, u) < 0 (that can be restricted to small x for
local asymptotic controllability). Consider the set O of pairs (x, u) that satisfies
that condition:

O = {(x, u) |xf(x, u) < 0}. (5.2)

Then, following [137], global asymptotic controllability implies that the projec-
tion of O on the x variable, that is, Ox = {x | ∃u, xf(x, u) < 0}, is equal to
R \ {0}. Intuitively, Ox = R \ {0} guarantees that for each initial state there
exists some u to steer the state to 0.

Consider now the system

ẋ = x
[
(u− 1)2 + 1 − x

] [
x− 2 + (u + 1)2

]
(5.3)

Then, the set O depends on [(u− 1)2 + 1− x][x− 2 + (u+ 1)2] < 0, represented
by the blank part of Figure 5.1. The shaded part refers to [(u− 1)2 +1−x][x−
2 + (u + 1)2] ≥ 0. For the system (5.3), Ox = R \ {0}, therefore the system
is globally asymptotically controllable, but a continuous feedback control law
u = k(x), k : R → R, does not exist. Nevertheless, a discontinuous feedback law
may exists. Therefore, hybrid systems are a suitable framework to model the
effects of a discontinuous control law on the closed loop dynamics. Moreover,
such discontinuous law can be the result of a complex decision process that may
involve, for example, the use of logic variables, resets phenomena or reactions
to some events from the environment. Then, the decision process can be con-
veniently modeled within the hybrid systems framework, leading to the design
of hybrid controllers, namely controllers whose behavior is defined by a suitable
hybrid system. This is why the mathematical tools developed for hybrid sys-
tems, and partially showed in previous chapters, can be used for the analysis of
closed loop systems.

In what follows we propose two hybrid approaches within the classical frame-
work of dynamical control systems. In Section 5.1 we propose a class of passive
controllers whose passivity is induced by a suitable reset strategy. The approach
that we follow is to rewrite both the continuous dynamics of the controller and
the reset strategy as a hybrid system with inputs. Then, by studying the solu-
tions to such a hybrid system, it turns out that continuous systems possibly not
passive, or possibly not stable, can be transformed to a passive system by resets.
Note that hybrid systems with inputs are closely related to the autonomous hy-
brid systems of previous chapters, but a slightly different notion of solution
must be developed to take into account input signals. In Section 5.1, we do not
develop a complete theory of hybrid systems with inputs (see e.g. [30]) and we
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Figure 5.1: For some initial states, there is no continuous feedback control law
that steers the state of the system (5.3) to zero. x is on the horizontal axis, u
is on the vertical axis.



146 CHAPTER 5. CASE STUDIES OF HYBRID CONTROL SYSTEMS

write each definition in a form that works specifically for the problem that we
are considering. In Section 5.2, we propose a technique to break the signals con-
tinuity in a feedback loop, by defining specific policies that decide when samples
of such signals must be transmitted to the controller. We propose a centralized
policy and a decentralized policy, each of them based on the state of the control
system. The first one forces a synchronized update of the measurements vector
while the second one allows for an asynchronous update of the measurements
vector.

5.1 Passification of Controllers via Time-Regular

Reset Map

In this section we consider a class of hybrid control systems characterized by
continuous-time plants controlled by a hybrid controller, namely a hybrid closed-
loop where the jumps only affect the controller states. Within this class of
systems, a relevant example consists in the reset control systems first introduced
in [41], where a jump linear system (the “Clegg integrator”) generalizing a linear
integrator was proposed. This generalization was then further developed in [76]
where it was extended to first order linear filters, and therein called First Order
Reset Elements (FORE). FORE received much attention in recent years and
have been proven to overcome some intrinsic limitations of linear controller [18].
Moreover, by relying on Lyapunov approaches, suitable analysis and synthesis
tools for the stability of a class of reset systems generalizing control systems with
FORE have been proposed in [19, 109] and references therein. Moreover, in the
recent paper [34] the L2 stability of reset control systems has been addressed
in the passivity context, by showing interesting properties of the reset system
under the assumption that the continuous-time part of the reset controller is
passive before resets and that a suitable non-increase condition is satisfied by
the storage function at jumps. In [34] it was also shown by a simulation example
that resets do help closed-loop performance in passivity-based closed-loops.

In this section we further develop over the ideas of [34] by using a specific
temporally regularized reset strategy for the reset controller. The reset strategy
generalizes the new interpretation of FOREs and Clegg integrators proposed in
[109, 161] and references therein. We show that, with the proposed reset strat-
egy, passification is possible for any continuous-time underlying dynamics under
some sector growth assumption on the right hand side of the continuous-time
dynamics of the controller. The obtained passivity property is characterized by
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an excess of output passivity and a lack of input passivity whose size can be
made arbitrarily small by suitably adjusting the reset rule. As an example, the
proposed reset strategy allows to establish a passivity property for any FORE,
including those characterized by an exponentially unstable pole, while the re-
sults in [34] only allow to establish passivity of FOREs with stable poles. This
increased potential of the reset rule proposed here is illustrated on a nonlinear
simulation example.

5.1.1 A Class of Nonlinear Reset Controllers

Consider the following nonlinear controller mapping the input v to the output
u,

ẋc = f(xc) + g(xc, v)
u = h(xc),

(5.4)

where u ∈ R
q, v ∈ R

q, so that the controller is square and where the following
regularity assumption is satisfied by the right hand side.

Assumption 5.1 The functions f(·) and h(·) are continuous and sector bounded,
namely there exist two constants Lf and Lh such that for all xc, |f(xc)| ≤ Lf |x|
and |h(xc)| ≤ Lh|xc|.

Moreover, g(·, ·) is continuous in both its arguments and uniformly sector
bounded in the second argument, namely there exists a constant Lg such that
for all xc and all v, |g(xc, v)| ≤ Lg|v|.

We propose a hybrid modification of the controller (5.4) aimed at making it
passive from v to u, regardless of the properties of the original dynamics in (5.4).
In particular, the modified controller follows the continuous-time dynamics of
(5.4) at times when the input/output pair belongs to a certain subset of the
input/output space. When the input/output pair exits that subset, the state of
the controller is reset to zero, intuitively re-initializing the controller within the
set where it is allowed to flow.

To avoid Zeno solutions, we also embed the hybrid modification with a tem-
poral regularization clock, imposing that the controller cannot be reset to zero
before ρ times after the previous reset (see also [83, 109]).
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u

vǫ2ǫ1

ψ(u, v) ≥ 0
ψ(u, v) ≤ 0

flow allowed
jump possible

ψ(u, v) ≥ 0
flow allowed

jump possible

ψ(u, v) ≤ 0

1

1

Figure 5.2: Input/output space of the controller (5.5) and subsets where
ψ(u, v) R 0. The blank area defines the set of pairs (u, v) for which the oc-
currence of a jump is possible provided that the condition τ ≥ ρ is satisfied
(time regularization).

The proposed hybrid controller is given by

{
ẋc = f(xc) + g(xc, v)
τ̇ = 1

if τ ≤ ρ or ψ(u, v) ≥ 0
{
x+

c = 0
τ+ = 0

if τ ≥ ρ and ψ(u, v) ≤ 0

u = h(xc)

(5.5a)

where ψ(u, v) is defined as

ψ(u, v) = (u + ǫ1v)
T (v − ǫ2u) (5.5b)

and ǫ1 and ǫ2 are some (typically small) non-negative scalars. As usual in the
hybrid system framework, we call C the set {(xc, τ, v) : τ ≤ ρ or ψ(h(xc), v) ≥
0} and D the set {(xc, τ, v) : τ ≥ ρ and ψ(h(xc), v) ≤ 0}.

The rationale behind the reset controller (5.4) is illustrated in Figure 5.2
where the input/output space of (5.5) is represented for the case q = 1. In
the figure, the shaded region corresponds to the set ψ(u, v) ≥ 0 where the
system always flows, regardless of the value of τ . Instead, in the remaining
region, where ψ(u, v) ≤ 0, the system will jump provided that τ ≥ ρ. Note
also that when ǫ1 = ǫ2 = 0, the shaded region reduces to the first and third
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quadrant, resembling the resetting rule characterized for the first order reset
element (FORE) in [161, 109]. When the reset occurs, since h(0) = 0, the u
component of the input/output pair will jump at zero thus resulting in a vertical
jump to the horizontal axis. Moreover, ǫ1 and ǫ2 allow to have extra degrees of
freedom in the resetting rule. In particular, the goal of ǫ1 is to guarantee that
the reset rule maps the new input/output pair in the interior of the shaded set
whenever v 6= 0. Instead, as it will be clear next, the goal of ǫ2 is to modify
the resetting rule to obtain some strict output passivity for the reset controller
(5.5).

Controller (5.5) will be dealt with in this section following the framework
of [63, 62, 30]. In particular, by Assumption 5.1, controller (5.5) satisfies the
hybrid basic conditions (see, e.g., [30]), which ensure desirable regularity prop-
erties of the solutions, such as existence, and robustness to arbitrarily small
perturbations (see [62] for details).

The motion of the state ξ of the hybrid system (5.5), depends on the input
signal v, so that both ξ and v must be defined on hybrid time domain. By
following [30], we call hybrid signal each function defined on a hybrid time
domain. A hybrid signal v : dom v → V is a hybrid input if v(·, j) is Lebesgue
measurable and locally essentially bounded for each j. A hybrid signal ξ :
dom ξ → R

n × R≥0 is a hybrid arc if ξ(·, j) is locally absolutely continuous, for
each j. With the basic conditions satisfied, a hybrid arc ξ = (ξx, ξτ ) and a hybrid
input v is a solution pair (ξ, v) to the hybrid system (5.5) if dom ξ = dom v,
(ξ(0, 0), v(0, 0)) ∈ C ∪D, and
s.1 for all j ∈ Z≥0 and almost all t such that (t, j) ∈ dom ξ,

(ξ(t, j), v(t, j)) ∈ C

ξ̇x(t, j) = f(ξx(t, j)) + g(ξx(t, j), v(t, j));

ξ̇τ (t, j) = 1;

(5.6)

s.2 for all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ,

(ξ(t, j), v(t, j)) ∈ D

ξx(t, j + 1) = 0;

ξτ (t, j + 1) = 0;

(5.7)

We say that a set of solutions pairs (ξ, v) is uniformly non-Zeno if there exists
T ∈ R>0 and J ∈ Z>0 such that, for any given (t, j), (t′, j′) ∈ dom ξ, if |t−t′| ≤ T
then |j− j′| ≤ J , that is, in any time period of length T , no more than J jumps
can occur. Note that multiple instantaneous jumps are still possible, [63].
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Note that any continuous-time signal v : R≥0 → R
q can be rewritten as

hybrid signal with domain E, for any given hybrid domain E. In fact, suppose
that E =

⋃
[tj , tj+1] × {j} is an hybrid time domain. Then, we can define a

hybrid signal v lifted from v on E as follows: v(t, j) = v(t) for each (t, j) ∈ E.
Conversely, suppose that (ξ, v) is a solution pair to the hybrid system (5.5).
Then, the output signal u = h(ξx) is a hybrid signal and domu = dom ξ. From
u we can construct an continuous-time signal u : R≥0 → R

q projected from u on
R≥0 as follows: u(t) = u(t, j) for each (t, j) ∈ domu such that (t, j+1) /∈ domu,
and u(t) = u(t, j + 1) otherwise.

We denote by ‖v‖p the Lp gain of a continuous-time signal v. The Lp gain of
a hybrid signal v, related to the continuous part of its domain, will be denoted

by ‖v‖c,p =
(∑J

j=0

∫ tj+1

tj
|v(t, j)|pdt

)1/p

. Note that for any continuous-time

signal v projected from a hybrid signal v on R≥0, we have that ‖v‖q = ‖v‖c,p.
Conversely, for any hybrid signal v lifted from a continuous-time signal v on a
given hybrid time domain E, we have that ‖v‖c,p = ‖v‖p.

Finally, the following lemma characterizes regularity of the solutions to (5.5).

Lemma 5.1 Under Assumption 5.1, all the solutions to (5.5) are uniformly
non-Zeno. Moreover, for each Lp integrable input signal v, a solution pair (ξ, v)
where v is the hybrid input signal lifted from v on dom ξ, is a complete solution
pair.

Proof. For a solution pair (ξ, v), define tj = min{t | (t, j)∈dom ξ}. By the defi-
nition of C and D given after (5.5), given any solution pair (ξ, v) = ((ξx, ξτ ), v)
of (5.5), tj − tj−1 ≥ ρ for all (t, j) ∈ dom(x), j ≥ 2. This implies that the
uniformly non-Zeno definition in [63] (see also [42]) is satisfied with T = ρ and
J = 2.

By C ∪ D = R
n × R≥0 × V , dom ξ is bounded only if ξ blows up in finite

time. Looking at the dynamics of the system in (5.5a), by Assumption 5.1,
|ẋc| ≤ |f(xc) + g(xc, v)| ≤ Lf |xc| + Lg|v| and |τ̇ | = 1. Therefore, if |v| is Lp

integrable, |ξ| is bounded in any given compact subset of R≥0 × Z≥0. �

5.1.2 Passivity of the Reset Controller

The following theorem shows that the hybrid controller (5.5) is almost passive
with a shortage of input passivity proportional to the temporal regularization
constant ρ plus ǫ1. Moreover, the slight modification of the function ψ(·, ·)
enforced by ǫ2 induces some excess of output passivity.
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Theorem 5.1 Consider the hybrid controller (5.5) satisfying Assumption 5.1.
Define

ε1 :=
ǫ1

1 − ǫ1ǫ2
, ε2 :=

ǫ2
1 − ǫ1ǫ2

k(ρ) = ρLhLg max{1, ρeLfρ}

k(ρ) = k(ρ)(1 + ε2k(ρ))

(5.8)

Given a L2 integrable input signal v ∈ R≥0 → V and a solution pair (ξ, v) to
(5.5), with v lifted from v on dom ξ, then

∫ ∞

0

u(t)T v(t)dt ≥ −
(
ε1 + k(ρ)

)
‖v(·)‖2

2 + ε2‖u(·)‖2
2 (5.9)

where the output signal u ∈ R≥0 → R
q is projected from the hybrid output signal

u : domu→ R
q corresponding to the solution pair (ξ, v).

Proof. See Section 6.5.1. �

Remark 5.1 Note that Theorem 5.1 establishes the passivity of (5.5) based on
the norm ‖ · ‖c,2, namely only taking into account the continuous-time nature
of the hybrid solutions. This type of passivity concept is relevant because of
Lemma 5.1 and, moreover, allows to rely on standard passivity results [130] to
conclude properties of the closed loop between (5.5) and a plant, as detailed in
Section 5.1.3.

Remark 5.2 It is important to underline that the passive behavior of the hy-
brid controller (5.5) is strongly related to the definition of the jump and flow
sets D and C, more than to the dynamic equations of the controller. Roughly
speaking, the passive behavior of the controller can be considered as an effect of
the definition of ψ(u, v), that forces a particular shape of the sets C and D. Fol-
lowing this intuition, while ψ(u, v) constrains C and D to induce passivity, time
regularization adds some extra constraint on C and D possibly destroying part
of this passivity property. This results in a shortage of passivity parameterized
with ρ.

5.1.3 Application to Feedback Systems

In this section we use the passivity theorem [130] to establish useful stability
properties of the reset controller (5.5) interconnected to any passive nonlinear
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plant: 1

ẋp = fp(xp, u+ d)
y = hp(x, u + d),

(5.10)

via the negative feedback interconnection v = w − y, where w is an external
signal. In (5.10), d is an additive disturbance acting at the plant input. The
following statement directly follows from the properties of (5.5) established in
Theorem 5.1.

Proposition 5.1 Consider the hybrid controller (5.5) satisfying Assumption 5.1
in feedback interconnection v = w − y with the plant (5.10).

For any ǫ1 ≥ 0, ǫ2 > 0 and ρ > 0, given ε1 and k(ρ) as in (5.9), if the plant
is output strictly passive with excess of output passivity δP > ε1 + k(ρ), then
the closed-loop system (5.5), (5.10) with v = w− y is finite-gain L2 stable from
(w, d) to (u, v).

In Proposition 5.1 we require a specific excess of output passivity from the
plant because we assume that the controller requires implementation with cer-
tain prescribed selections of ǫ1 and ρ. In the case where it is possible to reduce
arbitrarily these two parameters, it is possible to relax the requirements of
Proposition 5.1 as follows:

Proposition 5.2 Consider the hybrid controller (5.5) satisfying Assumption 5.1
in feedback interconnection v = −y with the plant (5.10).

If the plant (5.10) is output strictly passive, then for any ǫ2 > 0, there exist
small enough positive numbers ǫ∗1 and ρ∗ such that for all ǫ1 ≤ ǫ∗1 and all ρ ≤ ρ∗,
the closed-loop system (5.5), (5.10) with v = w− y is finite-gain L2 stable from
(w, d) to (u, v).

Proof. The proposition is a straightforward consequence of Proposition 5.1
noting that for a fixed ǫ2, the lack of output passivity established in Theorem 5.1
decreases monotonically to zero as ǫ1 and ρ go to zero. Then it is always possible
to reduce the two parameters to match the passivity condition in [130]. �

Both Propositions 5.1 and 5.2 either require an explicit bound on the excess
of output passivity of the plant or constrain the controller parameters ǫ1 and ρ to
be small enough. An alternative solution to this is to add an extra feedforward
loop to the reset controller (5.5), following the derivations in [87, page 233], to
guarantee that the arising reset system is very strictly passive, namely it is both
input strictly passive and output strictly passive. To this aim, we modify the

1See also [34] for a similar application of the passivity theorem to reset controllers.
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+
CH

+

ǫ3

ĈH

Figure 5.3: The very strictly passive version (5.11) of the reset controller (CH
corresponds to (5.5)).

output equation of (5.5) by adding the feedforward term ǫ3v, as represented in
Figure 5.3. The corresponding reset controller can then be written as:

{
ẋc = f(xc) + g(xc, v)
τ̇ = 1

if τ ≤ ρ or ψ̂(û, v) ≥ 0
{
x+

c = 0
τ+ = 0

if τ ≥ ρ and ψ̂(û, v) ≤ 0

û = h(xc) + ǫ3v

(5.11a)

where ψ̂(û, v) is defined as

ψ̂(û, v) = ((û + (ǫ1 − ǫ3)v)
T ((1 + ǫ2ǫ3)v − ǫ2û) (5.11b)

and ǫ3 > 0 is suitably selected as specified below. When using the modified
reset controller (5.11), the following result holds.

Proposition 5.3 Consider the hybrid controller (5.11) satisfying Assumption 5.1
in feedback interconnection v = w − y with a passive plant (5.10).

For any ǫ1 ≥ 0, ǫ2 > 0 and ρ > 0, given ε1 and k(ρ) as in (5.9), if ǫ3 >
ε1 +k(ρ), then the closed-loop system (5.11), (5.10) with v = w−y is finite-gain
L2 stable from (w, d) to (u, v).

Proof. Define a new output û = u + ǫ3v and denote by û the output signal
projected from û on R≥0. Then, from (5.9), we have that

∫ ∞

0

û(t)T v(t) dt ≥ ǫ2

∫ ∞

0

uTu dt +
(
ǫ3−ε1−k(ρ)

)∫ ∞

0

vT v dt

≥ 1

1+2ǫ2ǫ3

(
ǫ2

∫ ∞

0

û
T
û dt +

(
ǫ3−ε1−k(ρ)

)∫ ∞

0

vT v dt

)
.
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It follows that ∫ ∞

0

û(t)T v(t) dt ≥ η1‖û‖2
2 + η2‖v‖2

2 (5.12)

with η1 = ǫ2
1+2ǫ2ǫ3

> 0 and η2 = ǫ3−ε1−k(ρ)
1+2ǫ2ǫ3

> 0.
Replace now the output u of the controller (5.5) with û = u+ ǫ3v = h(xc)+

ǫ3v. Then, ψ̂(û, v) is obtained by substituting u = û − ǫ3v in the expression of
ψ(u, v) of Equation (5.5b). By the passivity theorem in [130], Proposition 5.3
follows. �

Remark 5.3 The results in this section can be seen as a generalization of the
results on full reset compensators in [34], where passivity techniques are used
to establish finite gain L2 stability of the closed-loop between passive nonlinear
plants and reset controllers. When focusing on linear reset controllers such as
Clegg integrators [41] and First Order Reset Elements (FORE) [76, 19], the
novelty of Theorem 5.1 as compared to the results in [34] is that those results
establish passivity of FORE whose underlying linear dynamics is already passive
(namely FORE with stable poles). Conversely, our results of Theorem 5.1 apply
regardless of what the underlying dynamics of the controller is. Therefore, for
example, any FORE with arbitrarily large unstable poles would still become
passive using the flow and jump sets characterized in (5.5). Note however that,
as compared to the approach in [34], we are using a different selection of the
flow and jump sets. In the example section we illustrate the use of unstable
FOREs within (5.5).

5.1.4 Simulation Example

We consider a planar two-link rigid robot manipulator in Figure 5.4, as mod-
eled in [104]. Denoting by q ∈ R

2 the two joint positions and by q̇ ∈ R
2 the

corresponding velocities, the manipulator is modeled as

D(q)q̈ + C(q, q̇)q̇ + h(q) = up (5.13)

where D(q) is the inertia matrix, C(q, q̇)q̇ comprises the centrifugal and Coriolis
terms, h(q) is the gravitational vector, and up represents the external torques
applied to the two rotational joints of the robot. In Figure 5.4, m1 and m2

represent the links masses, a1 and a2 represent the links lengths, l1 and l2
represent the distances of the center of mass of each link from the preceding
joint, and I1 and I2 represent the rotational inertias at the two joints. The
numerical values of the parameters are listed in the table of Figure 5.4. Denoting
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D(q) =

[
d11 d12

d12 d22

]
, C(q, q̇) =

[
c11 c12
c21 0

]
, and h(q) =

[
h1 h2

]T
, we get:

d11 = I1 +m1l
2
2 + I2 +m2(a

2
1 + l22 + 2a1l2 cos(q2)),

d12 = I2 +m2(l
2
2 + a1l2 cos(q2)),

d22 = I2 +m2l
2
2,

c11 = −m2a1l2 sin(q2)q̇2,
c12 = −m2a1l2 sin(q2)(q̇1 + q̇2),
c21 = m2a1l2 sin(q2)q̇1,
h1 = g(m1l1 +m2a1) cos(q1) + gm2l2 cos(q1 + q2), h2 = gm2l2 cos(q1 + q2).

q1

q2

m1, I1

m2, I2

g

l2

l1

a2

a1

z

x

Link li [m] mi [kg] Ii [kgm2] ai [m]
1 0.5 6 0.2 1
2 0.25 5 0.1 0.5

Figure 5.4: The robot example and its parameters.

Given a reference signal r ∈ R
2 representing the desired joint position, fol-

lowing a standard passivity based approach, it is possible to close a first control
loop around the robot (5.13) to induce the equilibrium point (q, q̇) = (r, 0) while
guaranteeing passivity from a suitable input u to the joint velocity output q̇, as
shown in Figure 5.5. In particular, define V (q, r) =

kp

2 (q − r)T (q − r), where
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h(q)−∂V (q,r)
∂q

u û

q

q̇

Robot
−

+

ĈH

P

r

kH

up

Figure 5.5: Control loop of the two-links robot.

the scalar kp > 0 is a weight parameter on the position error, and choose

up = −∂V (q, r)

∂q
+ h(q) + u. (5.14)

Then, the interconnection (5.13), (5.14) corresponds to

D(q)q̈ + C(q, q̇)q̇ +
∂V (q, r)

∂q
= u (5.15)

and, following similar steps to those in [51], it can be shown to be passive from u
to q̇. In particular, use the storage function E = 1

2 q̇
TD(q)q̇+V (q, r) to conclude

Ė =q̇TD(q)q̈ +
1

2
q̇T Ḋ(q)q̇ + kp(q − r)T q̇

=q̇Tu+ q̇T

(
1

2
Ḋ(q) − C(q, q̇)

)
q̇

=q̇Tu

(5.16)

where the second equality follows from (5.15) and the third equality follows from
the well known fact that zT (Ḋ(q) − 2C(q, q̇))z = 0, for all z ∈ R

2.

For the outer loop, we rely on the very strictly passive controller (5.11) where
the dynamics in (5.11a) is selected as a pair of decentralized First Order Reset
Elements, namely denoting xc = [xc1 xc2]

T , we select f(xc) = [λ1xc1 λ2xc2]
T
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Figure 5.6: Simulations results. Stable FORE and no resets (dash-dotted),
stable FORE with resets (dashed) and unstable FORE with resets (solid).

and g(xc, q̇) = q̇. Moreover, as shown in Figure 5.5, we choose u = kHû, where
kH is a positive constant.

By Proposition 5.3, the closed loop system (5.13), (5.14), (5.11a) with u =
kHû is finite-gain L2 stable. Figure 5.6 compares several simulation results for
this closed-loop using the constant reference signal r = [10 6]T and the following
values of the parameters: kp = 100, kH = 100 and ρ = 0.1. First, we select
stable FORE poles (λ1, λ2) = (−2,−1) so that the closed-loop stability can be
concluded also using the results in [34]. For this case, when no resets occur, the
position output (namely q) and plant input (namely u) responses correspond
to the dash-dotted curves in Figure 5.6. That response is converging because
the system without resets is passive due to the stability of the FORE poles.
When introducing resets, the response becomes the dashed curves in the figure,
where it can be appreciated that a single reset occurring around t = 0.8 s
significantly improves the closed-loop response. A last simulation is carried out
by selecting an unstable FORE with (λ1, λ2) = (2, 1). In this case the speed
of convergence of the second joint is faster at the price of a reduction of the
speed of convergence of the first joint. Note also that the dwell time imposed by
the temporal regularization is never active for this specific simulation, as each
jump occurs after more than ρ = 0.1 seconds from the previous jump. We don’t
include a simulation with the unstable FORE without resets because this leads
to diverging trajectories.
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5.2 Control over Network: Lazy Sensors

In recent years, much attention has been devoted to the study of networked
control systems. The interest in this class of control systems is motivated by
the increased computational capability required by control and estimation algo-
rithms in addition to the presence of emerging control applications wherein the
systems to be controlled are spread over a wide territory or are technologically
built in such a way that several subcomponents of the control system com-
municate over a shared and low capacity network (see, e.g., the recent surveys
[157, 75] and references therein). While networked control systems denote many
different situations where a network is in some sense involved in the transmis-
sion of the control signals, a case of interest is that when the network is used as
a communication channel between the plant with its sensing/actuating devices
and the device hosting the control algorithm. This specific context is studied,
e.g., in [33, 35, 102, 106, 142, 155, 156].

A typical way to represent and suitably write the dynamics of systems acting
on networks is to use the hybrid systems notation. For example in [33, 106],
Lyapunov-like tools are used to model ISS properties of network control systems
and the MATI - maximum allowable transfer interval, to preserve asymptotic
stability.

In this section we consider a linear control system that consists of a controller
that uses the output of a given plant and produces a suitable input to asymp-
totically stabilize the whole closed-loop system. Usually, the measured output
y of the plant is connected to the input of the controller u, so that the signal y
is continuously transmitted to the controller. Here we break this continuity by
considering a not necessarily periodic sample and hold approach. In particular,
we suppose that the wire from the measured output y to the controller input
u is replaced by a network, that is, each measurement is sampled and routed
to the controller input. Then, we define an updating policy for sending such
measurements samples, based on the current state of the system and on the
error between the value of the output y and the value of the samples sent to
the controller. The devices performing this scheduling policy are called “lazy
sensors” to resemble the fact that their goal is to avoid transmitting too often,
so to keep low the network load. The structure of the considered system is
represented in Figure 5.7.

Each lazy sensor is able to perform some computation on the measured
plant output and, possibly, on extra input signals. Then, each sensor decides
whether or not to send a sampled measurement to the input of the controller.
The contribution of this section consists in casting the above problem using the
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Figure 5.7: A closed-loop SN over a network using lazy sensors.

framework in [62] and proposing a number of measurement transmission (or up-
date) policies which depend on the state of the plant and on the measurement
error through a suitable Lyapunov-like function. Then, we show that the pro-
posed transmission policies preserve the closed-loop stability. In particular, we
propose the following three solutions, suitable for different practical contexts:

– a synchronous updating policy where each sensor is aware of the condi-
tions of the other sensors so that the samples update is a global decision.
Specifically, the sensors send a new sample all together when some suitable
condition occur;

– an asynchronous updating policy where each sensor knows its own mea-
surement error and the state of the plant. Then, it decides autonomously
whether or not to send a new sample to the controller;

– a synchronous updating policy based on the measurement errors and the
output signal of the plant, by using an observer to reconstruct the state,
assuming that it is not available for measurement.

Since the ultimate goal of the above policies is to use the network as little as
possible, we call lazy these intelligent sensors, to resemble the fact that they are
reluctant to transmit and that they do so only when it is strictly necessary, w.r.t.
the satisfaction of a suitable Lyapunov-like condition, to preserve closed-loop
stability. A possible implementation context could be that of a CAN network
where the shared information is broadcast on the network by the controller
node, which has highest priority over the other nodes. Then, the other nodes
could correspond to the lazy sensors, each of them equipped with an onboard
intelligence deciding whether or not to transmit over the network.
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The approach developed in this section can be seen as a constructive solution
along the general lines of [33, 106], where Lyapunov tools and the hybrid frame-
work of [62] are used as well to address networked control systems. Our work can
also be associated with the many interesting results in [35, 102, 142, 155] and
references therein. Here, differently from [142, 155], we only take into account
linear systems by proposing updating rules that do not necessarily force each
sample to be updated to the current measure of the output. Moreover, asyn-
chronous updating policies and output based updating policies studied here are
not taken into account in [142, 155].

This section is structured as follows. In Section 5.2.1 we introduce the prob-
lem data and in the following Sections 5.2.2, 5.2.3, 5.2.4 we discuss the three
approaches outlined above. In Section 5.2.5 we give a simulation example and
proofs are given in the appendix.

5.2.1 Problem statement

Consider a nominal closed-loop system, S, composed by a linear controller C,
with input uc and output yc, and by a linear plant P , with input up and output
yp. The controller drives the plant by the connection up = yc and the output
of the plant, yp, is connected to the input uc of the controller (feedback signal).
In what follows we denote with P the cascade of the the controller C and of the
plant P , through the connection up = yc. P can be represented as follows

{
ẋ = Ax +Bu
y = Hx

(5.17)

where we assume u = uc and y = yp. Thus, the nominal closed loop system S
is constructed by connecting (5.17) through

u = y. (5.18)

Then, the closed-loop system S of Equations (5.17),(5.18) can be characterized
as follows. {

ẋ = (A+BH)x
y = Hx

(5.19)

and we consider the following standing assumption

Assumption 5.2 The nominal closed-loop system S is exponentially stable.

Consider now to replace the direct feedback interconnection (5.18) with a
non-continuous communication policy u = N (y) between the output y and the
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input u. N can be considered a sample and hold network of digital sensor
devices, that brings each sensor measurement of y to the input u of the con-
troller. The networked closed-loop system SN , namely the closed-loop system
of (5.17) through the interconnection u = N (y), combines together the continu-
ous dynamics of the plant-controller cascade P and the discrete behavior of the
network of digital sensor devices N . Thus, it can be conveniently characterized
within the hybrid systems framework.

In particular, we can write a hybrid model for the networked closed-loop
system SN . It is characterized by three main components: (i) the continuous
dynamics of the cascade P of controllers and plant; (ii) the dynamics of the
sample-and-hold device, namely the mechanism that holds a sensors sample
until a new one occur; (iii) the updating policy, that decides when a new sample
of the measured output y must be submitted to the controllers. Then, a possible
model for SN is

{
ẋ = Ax+Bξ

ξ̇ = 0
(x, ξ) ∈ C (5.20a)

{
x+ = x
ξ+ = g(x, ξ)

(x, ξ) ∈ D (5.20b)

y = Hx (5.20c)

Consider the continuous dynamics in (5.20a): x takes into account the dy-
namics of the plant-controller cascade, while ξ is the value that is currently
enforced at the input of the controller. The dynamics of ξ takes into account
the sample-and-hold behavior of the network, whose derivative must be zero
(it “holds”). Moreover, the dynamics of P is now driven by ξ, replacing the
connection u = y with u = N (y), that is, with u = ξ. The set C in which the
system may flow is a design parameter, that is, it will be used to define the
updating policy of the measurement samples. Consider the discrete dynamics
in (5.20b): We model the updating mechanism of a measurement sample to
the controller input as a jump. Therefore, during a jump, the state x of P is
not modified, while the state ξ of the network is modified in accordance with
a suitable updating policy, whose behavior depends on the function g and on
sets C and D. Intuitively, a measurement is updated to a new value given by g
when some suitable condition on x and ξ is satisfied, that is, when (x, ξ) ∈ D.
For now, we do not make any assumption on g. The structure of g, as well as its
values, depend on the particular feedback that we consider and will be defined
in the next sections.
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Remark 5.4 In this work, we consider a very simple model for the network
N . In fact, we consider N as a general discrete process that routes each sensor
measurement to an output point. Usually, this operation introduces time-delays
and quantizations of signals. Moreover, the amount of data routed by the net-
work is limited by the physical data-rate bounds of the network. In our model
we do not take into account time-delays and quantization problems, assuming
that each measurement is instantaneously routed to the controller. Instead, we
consider an updating policy that guarantees a low data-rate on the network.

5.2.2 State feedback: synchronous approach

Consider the networked closed-loop system SN in Equation (5.20) and the co-
ordinate transformation e = ξ − y, related to the error between the measured
output and its samples, induced by the sample and hold mechanism of the
network. The system can be written as follows.

{
ẋ = A11x+A12e

ė = A21x+A22e
(x, e) ∈ C (5.21a)

{
x+ = x
e+ = g(x, e)

(x, e) ∈ D (5.21b)

y = Hx (5.21c)

where A11 = (A + BH), A12 = B, A21 = −H(A + BH) and A22 = −HB.
g(x, e), C and D characterize the updating policy and their definition is the
goal of this work. They will be defined by the design method proposed below.
In general, g is a function in R

n × R
q → R

q satisfying g(0, 0) = 0.

Remark 5.5 Suppose that g(x, e), C and D have been constructed by a suit-
able design method. Then, g(x, ξ), C and D of (5.20) can be defined from
g(x, e), C and D as follows.

– Suppose C = {(x, e) | r(x, e)} where r is a given relation on x and e.
Then, C = {(x, ξ) | r(x, ξ − Hx)}, which is equivalent to defining a set
C parameterized by the current output y, namely {(x, ξ) | r(x, ξ − y)}.
Analogously for D.

– g(x, ξ) = Hx+ g(x, ξ −Hx). An equivalent characterization for g, based
on the current output y, is y + g(x, ξ − y).
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The first transformation is straightforward. To see the second one, note that
e+ = ξ+ − y+ = g(x, e + y) − y+ = g(x, e + y) − Hx+ = −Hx + g(x, e + y).
Then, the result follows by solving g(x, ξ −Hx) = −Hx+ g(x, ξ).

Remark 5.6 It is worth to mention that (5.21a) and (5.21c) can now be com-
pared to the dynamics of (5.19), by adding the effect of the error e = ξ−y to the
right-hand side of (5.19). Moreover, from Assumption 5.2, there exists a sym-
metric and positive definite matrix P11 such that the function V11(x) = 1

2x
TP11x

decreases along the trajectories of (5.19), that is 〈∇V11(x), A11x〉 ≤ −xTQx, for
any given symmetric and positive definite matrix Q.

In what follows we work with the model (5.21), and we define a possible up-
dating policy for the lazy sensors that decides when the measurements samples
must be routed to the controller input, so that the stability of the networked
closed -loop systems is preserved. Indeed, we propose a Lyapunov-like char-
acterization of the updating policy, that is, we find a policy whose routing
events are defined with respect to a suitable Lyapunov function, so that the
point (x, e) = (0, 0) is asymptotically stable. Consider the following Lyapunov-
function candidate

V (x, e) =
1

2

[
x
e

]T [
P11 P12

PT
12 P22

] [
x
e

]
(5.22)

where P =

[
P11 P12

PT
12 P22

]
is symmetric and positive definite.

Then, by denoting by F (x, e) the right-hand side of (5.21a), the directional
derivative 〈∇V (x,e), F (x,e)〉 of V is less than or equal to

− xTQx+ xTR11x+ xTR12e+ eTR22e (5.23)

where Q is a symmetric and positive definite matrix, still to be selected, and

R11 = P12A21

R12 = P11A12 + P12A22 +A
T

11P12 +A
T

21P22

R22 =PT
12A12 + P22A22

(5.24)

Note that the existence of Q is guaranteed by Assumption 5.2 (See Remark
5.6). By denoting by G(x, e) the right-hand side of (5.21b), the increment
V (G(x, e)) − V (x, e) of V is

xP12(g(x, e) − e) +
1

2
g(x, e)TP22g(x, e) −

1

2
eTP22e. (5.25)
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Define now

C =
{
(x, e) |〈∇V (x,e), F (x,e)〉 ≤ −ε|x|2

}
(5.26a)

D =
{
(x, e) |〈∇V (x,e), F (x,e)〉 ≥ −ε|x|2

}
(5.26b)

where ε and Q are chosen so that

Q−R11 − εI > 0. (5.27)

Then, the following theorems hold (the proofs are in Appendix 6.5.2).

Theorem 5.2 Let C and D be defined as in (5.26). Under Assumption 5.2,
for each continuous function g such that

(1) V (G(x, e)) − V (x, e) ≤ 0 for all (x, e) ∈ D,

(2) (x, g(x, e)) /∈ D \ {(0, 0)} for all (x, e) ∈ D,

the origin of the system SN of equations (5.21) is globally pre-asymptotically
stable (GpAS).

Theorem 5.3 Let C and D be defined as in (5.26) and α be a class K function.
Under Assumption 5.2, for each continuous function g such that

(1) V (G(x, e)) − V (x, e) ≤ −α(|e|) for all (x, e) ∈ D,

the origin of the system SN of equations (5.21) is globally pre-asymptotically
stable.

Remark 5.7 Note that the existence of an updating policy for the lazy sensors
is guaranteed by Assumption 5.2. In fact, the closed-loop system (5.17), (5.18)
is exponentially stable, therefore it is robust with respect to small error signals e
that vanish with x. Consider now (5.21). The dynamics of e is linear, therefore
there exists a sufficiently small τ such that an updating policy that routes a
new measurement sample (e = 0) with an intersample time not greater than τ
would preserve the stability of the closed-loop system.

Remark 5.8 Note that the asymptotic stabilization of the point (x, e) = (0, 0)
can be relaxed to the asymptotic stabilization of the set A = {(x, e) |x = 0,−c ≤
|e|∞ ≤ c}, for some given c, c ∈ R≥0. In fact, if A is globally pre-asymptotically
stable, then the state of P is driven to zero as in (5.19). In such a case, we
are relaxing the stabilization problem by requiring only a bounded error (e.g. a
periodic non zero error). Note that stabilizing A instead of 0 would not affect
the output of the system.
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A possible construction for C and D

By using the exponential stability property of the nominal closed-loop system,
a solution to the stabilization problem of the networked closed-loop system can
be constructed as follows. A candidate Lyapunov function V can be defined as

V =
1

2

[
x
e

]T [
P11 0
0 P22

] [
x
e

]
(5.28)

where P11 and P22 are positive definite matrices and P11 satisfies

A
T

11P11 + P11A11 ≤ −Q (5.29)

with Q symmetric positive definite matrix. Therefore, C and D can be defined

as in equations (5.26), with R11 = 0, R12 = P11A12+A
T

21P22 and R22 = P22A22.
By resetting the error to zero whenever a jump occurs, that is, by defining

g(x, e) = 0 for all x and all e, we fullfill the requirements of both Theorems 5.2
and 5.3. Indeed,

V (G(x, e)) − V (x, e) = −1

2
eTP22e (5.30)

which satisfies condition (1) of both Theorem 5.2 and of Theorem 5.3. Moreover,
by resetting the error to zero we have that

−xTQx+ xTR11x+ xTR12e+ eTR22e = xT(R11−Q)x

< −εxTx,
(5.31)

which, by (5.27), brings the state to the interior of C, fullfilling condition (2) of
Theorem 5.2.

It is important to note that this possible construction can be an effective
model of the updating policy only if the state of the plant P is known. In
fact, a data is updated only if the state of the plant P and the error e = ξ − y
characterize a configuration that do not belongs to C. From a constructive point
of view, we need sensors that evaluate the inequality in (5.26) and, based on such
an evaluation, decide whether or not to update the data. Such a configuration
is illustrated in Figure 5.8. Note that resetting e to zero is equivalent to reseting
ξ to y.

Remark 5.9 The data-rate in the network is related to the definition of C
and D. In fact, longer flow intervals for SN guarantee lower data-rate on the
network. For example, by choosing P22 so that σ(P22) is small, we are giving
less consideration to the error e. This naive selection of P22 increases the length
of the flow interval, therefore the jump rate decreases.
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P̂

N Policy

y

x

ξ

Figure 5.8: A possible configuration of the networked closed loop system SN .

5.2.3 State feedback, asynchronous approach

The characterization of C, D and g(x, e) of the previous section is based on
the knowledge of the full state vector of the plant P and of the complete error
e = ξ − y. Such architecture needs that the sensors take into account the state
x and the error e and decide whether or not to update the whole vector of
(measured) output to the input vector of P .

In this section we propose an asynchronous updating policy in which each
sensor decides autonomously its own update time. For instance, the knowledge
of each sensor is limited to the state x of P and to its own error, say ei, given
by ei = ξi − yi, where ξi and yi are the ith components of ξ and y, respectively.
Each sensor i decides to update ξi by taking into account the state vector x and
the error ei only. No shared knowledge of the state of others sensors, say j 6= i,
is allowed.

Consider the hybrid system SN in (5.21). The asynchronous behavior of each
sensor and the effect of such a behavior on the dynamics of the whole system
can be modeled by the following definition of C, D and g(x, e):

– C and D as the intersection and union of sets Ci and Di. For any given
i ∈ {1, . . . , q}, Ci or Di are subsets of R

n×R whose elements are the pairs
(x, ei), where ei is the ith component of e;

– define g ∈ R
n × R

q → R
q as the vector [ g1(x, e1), . . . , gq(x, eq) ]T where

each gi, i ∈ {1, . . . , q}, is a function in R
n × R → R.

Let us consider a candidate Lyapunov function V as in (5.22). Equations (5.23)
and (5.25) characterize the directional derivative and the increment of V . For
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each i ∈ {1, . . . , q}, define now

Ci = {(x, ei) | − αix
TQx+ αix

TR11x

+K1|x||ei| +K2e
2
i ≤ −αiε|x|2 }

Di = {(x, ei) | − αix
TQx+ αix

TR11x

+K1|x||ei| +K2e
2
i ≥ −αiε|x|2 }

(5.32)

where

– for each i ∈ {1, . . . , q}, αi ∈ R>0 and
∑q

i=1 αi = 1,

– K1 = max|x|=1,|e|=1 |xTR12e|,

– K2 = max|e|=1 |eTR22e|,

– Q and ε satisfy (5.27).

Then, we can define C and D as follows.

C = {(x, e) | for each 1 ≤ i ≤ q, (x, ei) ∈ Ci} (5.33a)

D = {(x, e) | there exists 1 ≤ i ≤ q, (x, ei) ∈ Di} (5.33b)

Remark 5.10 Note that D in (5.33b) is the closed complement of C in (5.33a).
This fact and the definition of D imply that a jump occurs when at least one
combination of ei and x, i ∈ {1, . . . , q}, satisfies the condition in Di.

The asynchronous behavior of the sensors is then guaranteed by assuming that
each function gi, i ∈ {1, . . . , q}, coincides with the identity function that maps
ei to ei, for (x, ei) /∈ Di. In fact, suppose that a jump is enabled by the ith
sensor only, that is, (x, ei) ∈ Di. Then the ith sensor sends a new sample based
on the value given by gi(x, ei), while the behavior of all the other sensors, say
j 6= i, is given by gj(x, ej) = ej, that is, their value is not modified.

To state the main result of this section, in Theorem 5.4, we need the following
technical definition.

Definition 5.1 For each i ∈ {1, . . . , q}, gi ∈ R
n × R

q → R
q is a function such

that

– gi(x, ei) = ei if (x, ei) /∈ Di;
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– the restriction of gi on Di is a continuous function.

Then, we say that g ∈ R
n×R

q → R
q defined by g(x, e) = [ g1(x, e1), . . . , gq(x, eq) ]T

is asynchronous.

Theorem 5.4 Let C and D be defined as in (5.33) and α a K function. Under
Assumption 5.2, for each asynchronous function g, if for each (x, e) ∈ D

(1) V (G(x, e)) − V (x, e) < 0 if e 6= 0,

then the origin of system SN (5.21) is globally pre-asymptotically stable.

Proof. See Appendix 6.5.3. �

A possible construction for C and D

A solution to the stabilization problem of the networked closed loop system can
be constructed as follows. Consider a candidate Lyapunov function V defined
as

V =
1

2

[
x
e

]T [
P11 0
0 P22

] [
x
e

]
(5.34)

where P11 and P22 are positive definite matrices, P11 satisfies

A
T

11P11 + P11A11 ≤ −xTQx (5.35)

for some given positive definite and symmetric Q, and

P22 = diag{P (1)
22 , . . . , P

(q)
22 }. (5.36)

The sets C and D can be defined as in equation (5.33) with

Ci =
{
(x, ei) | −αix

TQx+K1|x||ei| +K2e
2
i ≤−αiε|x|2

}

Di =
{
(x, ei) | −αix

TQx+K1|x||ei| +K2e
2
i ≥−αiε|x|2

} (5.37)

where K1 and K2 satisfy

K1 = max
|x|=1,|e|=1

|xT (P11A12 +A
T

21P22)e|

K2 = max
|e|=1

|eTP22A22e|
(5.38)
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By defining g(x, e) as follows

g(x, e) =




v1
v2
...
vq


 where

{
vi = 0 if (x, ei) ∈ Di

vi = ei otherwise
(5.39)

we fullfill the requirements of Theorem 5.4. Indeed, g has an asynchronous
structure because the reset of vi to zero depends on x and ei only, for each
i = 1, . . . , q. Moreover,

V (G(x, e)) − V (x, e) =
1

2
(g(x, e)TP22g(x, e) − eTP22e)

=
1

2

q∑

i=1

P
(i)
22 (v2

i − e2i ).
(5.40)

Since g is applied only if the state (x, e) is in D, it follows that there exists at
least one j ∈ {1 . . . , q} such that vj = 0. Therefore,

V (G(x, e)) − V (x, e) ≤ −1

2
P

(j)
22 e

2
j (5.41)

for some j ∈ {1, . . . , q}. This satisfies condition (1) of Theorem 5.4.
From a constructive point of view we need q sensors. Each sensor, say i,

evaluates the inequality in (5.32), that depends only on the measured output yi

and on the state x. Based on such an evaluation, the sensor decides whether or
not to update the sample ξi, namely whether or not to transmit its measurement.
Such a configuration is illustrated in Figure 5.9. Note that resetting ei to zero
is equivalent to reset ξi to yi.

Remark 5.11 Note that αi can be used to increase the update-rate of a sensor
with respect to the others. Indeed, a greater αi allows for a larger error bound,
therefore the update-rate decreases. Note also that each αi can be modified at
runtime. As long as

∑q
i=0 αi = 1, the stability is preserved.

Remark 5.12 In general, if g(x, e) does not depend on the state, that is, its
definition does not use x to define the value of g(x, e), then we can reduce the
quantity of information sent to the sensors. In fact, for each i ∈ {1, . . . , q}, both
Ci and Di can be redefined by using only ei (i.e. ξi) and the following two
signals s1 = xT (−Q+R11)x and s2 = |x|.
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P̂

N

x

ξ1

ξq

yq

y1

Policy

Policy

yi

Figure 5.9: A possible asynchronous configuration of the networked closed loop
system SN

5.2.4 Output feedback approach

Consider the nominal closed-loop system of equations (5.17) and (5.18) and
assume now that the state of controller x of the C and of the plant P can only
be reconstructed from the output measurements. Despite the lack of information
on the state, the approach of Section 5.2.2 can still be used by considering a
suitable estimate of the state. We need the following assumption.

Assumption 5.3 The pair (A,H) in (5.17) is detectable.

The introduction of a classical continuous-time observer of the state in the
networked closed-loop system SN leads to the following model





ẋ=Ax+Bξ

ξ̇=0
˙̂x=Ax̂+Bξ + L(y −Hx̂)

(x̂, ξ) ∈ C or∣∣∣∣
[

x̂
ξ−Hx̂

]∣∣∣∣ ≤ ρ
(5.42a)






x+ = x
ξ+ = g(x̂, ξ)
x̂+ = x̂

(x̂, ξ) ∈ D and∣∣∣∣
[

x̂
ξ−Hx̂

]∣∣∣∣ ≥ ρ
(5.42b)

y = Hx (5.42c)

where L is the observer matrix in R
n×q and g is a function in R

q×R
n×R

q → R
q

with q dimension of the output y of P. C and D are subsets of R
n and ρ ∈ R≥0.

Note that the flow and jump sets of (5.42) can be considered as the combination

of the flow and jump sets of (5.20) with a new condition

∣∣∣∣
[

x̂
ξ−Hx̂

]∣∣∣∣ ≥ ρ. This

condition guarantees that if the estimate x̂ and the sampling error ξ −Hx̂ are
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small enough (than ρ), then the system continues to flow without updating the
value of the samples.

We can use the coordinate transformation x̂, e = ξ −Hx̂ and η = x − x̂ to
rewrite (5.42) as follows:






˙̂x = A11x̂+A12e+ LHη
ė = A21x̂+A22e−HLHη
η̇ = (A− LH)η

(x̂, e) ∈ C or∣∣∣∣
[
x̂
e

]∣∣∣∣ ≤ ρ
(5.43a)





x̂+ = x̂
e+ = g(x̂, e)
η+ = η

(x̂, e) ∈ D and∣∣∣∣
[
x̂
e

]∣∣∣∣ ≥ ρ
(5.43b)

y = Hx̂+Hη (5.43c)

where A11, A12, A21, A22 are defined as in Section 5.2.2. To extend the results
of Section 5.2.2, C and D are defined as in (5.26), and g(x̂, e) = M [ x̂T eT ]T ,
where M is a matrix of dimensions q × (n + q). Then, the following theorem
holds.

Theorem 5.5 (Global practical asymptotic stability) Suppose that the con-
ditions of Theorem 5.2 or of Theorem 5.3 are satisfied with the state x replaced
by the estimation x̂ and with g(x̂, e) = M [ x̂T eT ]T , where M is a matrix of di-
mension q× (n+ q). Suppose that the gain-matrix L of the observer guarantees
that eig(A− LH) is hurwitz.

Then, there exists a γ ∈ R>0 such that for any given ρ in (5.43), there
exists a set A ⊆ γρB ⊂ R

n+q, such that A × {0} ⊂ R
n+q × R

n is globally
pre-asymptotically stable.

Proof. See Appendix 6.5.4. �

Corollary 5.1 If the conditions of Theorem 5.5 are satisfied, then each solution
(x, ξ, x̂) to (5.42) is such that x̂ converges to x and (x, ξ − y) converges to a ball
of radius γρB.

Proof. Note that the union of the flow set and of the jump set of (5.43) coincides
with the whole state-space R

n × R
q × R

n. Thus, from any given initial state,
each maximal solution is a complete solution. The coordinate transformation
(x, ξ, x̂) → (x̂, e, η) is invertible, therefore the convergence of η of (5.43) to 0
implies that x̂ converges to x. Thus, the convergence of (x̂, e) to γρB implies
(x, ξ −Hx) converges to γρB. �
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Remark 5.13 g, C and D of (5.42) can be constructed from g, C and D as
follows.

– Suppose C = {(x̂, e) | r(x̂, e)} where r is a given relation on x̂ and e. Then,
C = {(x̂, ξ) | r(x̂, ξ −Hx̂)}. For D is the same.

– g(x̂, ξ) = Hx̂ + g(x̂, ξ −Hx̂). In fact, e+ = ξ+ −Hx̂+ = g(x̂, ξ) −Hx̂ =
g(x̂, ξ −Hx̂), where the last equality follows from (5.43b).

Remark 5.14 The result of Theorem 5.5 extends to the asynchronous case in
Section 5.2.3 but it requires that the output x̂ of the observer is shared among
the sensors, thus breaking the decentralized structure of that approach.

5.2.5 Simulation example

We consider the following exponentially unstable linear plant P defined as fol-
lows

P =





ẋp =

[
1 1
0 1

]
xp +

[
1 0
0 1

]
up

yp =

[
1 0
0 1

]
xp.

(5.44)

The nominal closed-loop system is constructed by connecting the plant P to the
following LQR static controller C.

yc =

[
−2.1961 −0.7545
−0.7545 −2.7146

]
uc. (5.45)

through the interconnection up = yc and uc = yp. With this controller the
nominal closed-loop system is exponentially stable.

In the networked closed-loop system, the interconnection uc = yp is replaced
by uc = ξ where ξ is the vector of samples of the measured output that the
controller is currently using. The vector of samples ξ is updated by following
the policy defined in section 5.2.2. Four simulations tests with different values
of the parameters are reported in Figure 5.10.

Consider now the closed-loop system given by equation (5.44) and (5.45).
In this example we use the asynchronous policy of section 5.2.3, The results are
illustrated in Figure 5.11, where six different parameters values are used. Note
that each sensor i updates the measured output sample ξi without any kind of
synchronization with the other sensors. Moreover, by choosing different α1 and
α2, we force one sensor to allow for a larger error bound on ei = ξi − yi before
forcing an update. Therefore, one sensor will reset its state ξi more frequently
than the other.
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Figure 5.10: Input and output of SN in the synchronous case, for different
choices of P22. The thin line in each figure is the output of the nominal closed
loop.
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(f) P22 = 10I, α1 = 0.1, α2 =
0.9

Figure 5.11: Input and output of SN in the asynchronous case, for different
choices of P22. The thin line in each figure is the output of the nominal closed-
loop system. Extra parameters common to all cases are parameters are Q = 10I
and ε = 0.01.



Chapter 6

Proofs

6.1 Proof of the Results in Chapter 1

6.1.1 Proof of Theorem 1.5.

Proof. Under the assumption of the Theorem 1.5, there exists ǫ small enough
such that (A + 2ǫB) ⊆ U . Then, there exists a rǫ such that,

if V (x) < rǫ and x ∈ (A + 2ǫB) ∩ (C ∪D) then

x ∈ (A + ǫB) ∩ (C ∪D) and G(x) ⊆ (A + 2ǫB) ∩ (C ∪D).
(6.1)

In fact, by continuity of V , there exists r′ε > 0 such that V (x) < r′′ǫ and
x ∈ (A + 2ǫB) ∩ (C ∪ D) imply x ∈ (A + ǫB) ∩ (C ∪ D). Note now that
uD(x) ≤ 0 for each x ∈ A ∩ D and V is positive definite in C ∪ D. It follows
that G(A∩ (C ∪D)) ⊆ A∩ (C ∪D). Moreover, G is outer semicontinuous and
locally bounded, therefore, there is a γ > 0 such that G(A+γB) ⊆ A+ǫB, [123,
Proposition 5.12]. As before, V is positive definite, then there exists r′′ǫ > 0 such
that V (x) < r′′ǫ and x ∈ (A + 2ǫB) ∩ (C ∪D) implies x ∈ (A + γB) ∩ (C ∪D),
that is, G(x) ⊆ (A + ǫB) ∩ (C ∪D). It follows that implication (6.1) is true for
rǫ = min{r′ǫ, r′′ǫ }.

Consider now the set

N = {x ∈ (A + ǫB) ∩ (C ∪D) |V (x) ≤ rǫ} (6.2)

Then, N is strictly forward invariant for H, that is, for each solution ξ to H
from a point x ∈ N , rng x ⊆ N . In fact, for each x ∈ N , consider a solution

175
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ξ to H from x. If (0, 1) ∈ dom ξ then, by (6.1), ξ(0, 0) = x and ξ(1, 0) ∈ N .
If [0, T ] × {0} ⊆ dom ξ, by uC(x) ≤ 0 for x ∈ C ∩ U and (6.1), for each
t ∈ [0, T ], V (ξ(t, 0)) ≤ V (x). Then, by (6.1), for each t ∈ [0, T ] we have
ξ(t, 0) ∈ (A + εB) ∩ (C ∪D) and V (ξ(t, 0)). Therefore, ξ(t, 0) ∈ N , that is, N
is forward invariant.

Finally, by continuity of V , given any small ǫ > 0, pick rǫ so that (6.1) holds.
Then, we can find δ ∈ (0, ε) such that if x ∈ A + δB, then V (x) ≤ rǫ. Then, by
forward invariance of N , each solution ξ to H from some point in A + δB is so
that rng ξ ⊆ A + ǫB. Thus, A is stable.

If uc(x) < 0 for each x ∈ (C \A) ∈ U and uc(x) < 0 for each x ∈ (D\A) ∈ U
then, by [126, Theorem 4.7] complete solutions must converge to A.

�

6.2 Proof of the Results in Chapter 2

6.2.1 Proof of Claim 2.1.

By (2.1), R(i) is a closed cone for each i ∈ IC and each i ∈ ID. Point (i) follows
from (2.2), by the fact that C and D are defined as finite union of closed sets.

The outer semicontinuity of F in (ii) can be shown by developing a proof
for the outer semicontinuity of Fi, for each i ∈ IC . The proof is developed by
showing that for all x ∈ R(i), and for all sequences xj → x, yj ∈ Fi(xj) such
that yj → y, we have y ∈ Fi(x). Then, outer semicontinuity of F can be devel-
oped with a similar approach.
Consider i ∈ IC and a mapping Fi defined in (2.3). Such a definition is equiva-
lent to

Fi(x) =

{
f | f =

rF∑

k=1

λkFikx and

rF∑

k=1

λk = 1

}
(6.3)

where λk ≥ 0, for each k = 1 . . . , rF . Suppose that a sequence xj converges to x,
that is xj → x, and suppose that there exist yj ∈ Fi(xj) such that yj → y. Then,

by (2.3), there exist λj
1, . . . , λ

j
rF

,
∑rF

k=1 λ
j
k = 1, such that yj =

∑rF

k=1 λ
j
kFikxj ,

from which
∑rF

k=1 λ
j
kFikxj → y.

Such a relation, the fact that xj → x, and the fact that R(i) is closed, imply

that there exists λ1, . . . , λrF
,
∑rF

k=1 λk = 1, such that λj
k → λk, for each k =

1, . . . , rF , and
∑rF

k=1 λkFikx = y.
In fact, suppose that

∑rF

k=1 λkFikx = y but y /∈ Fi(x). R
(i) is a closed set, so x ∈

R(i) and Fi is defined on x. Therefore, by (2.3), we have that y /∈ Fi(x) implies
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∑rF

k=1 λk 6= 1. This means that there exists a neighborhood of λ1, . . . , λrF
such

that, for some J , ∀j ≥ J ,
∑rF

k=1 λ
j
k 6= 1. that contradicts the assumption of

yj ∈ Fi(xj), for each j.
Consider now F . The analysis of outer semicontinuity of F differs from the
analysis of Fi only for sequences xj → x whose tail periodically visits two or
more cones Ci. In such a case, xj ∈ ⋃i∈I Ci, where I ⊆ IC . By the fact that
the finite union of closed set is closed, x ∈ ⋃i∈I Ci and, precisely, x ∈ ⋂i∈I Ci.
It follows that, for each j, we can write yj as the convex combination of vectors
Fikxj , where i belongs to I and k = 1, . . . , rF . By the fact x ∈ ⋂i∈I Ci is a
closed set, it follows that F (x) is defined on x and coincides with the convex
combination of matrices Fik, for i ∈ I and k = 1, . . . , rF . Therefore, by an
argument similar to the one used for Fi, we have that y ∈ F (x).

Fi(x) is defined by the convex hull of bounded vectors Fikx therefore it is
a compact set. F (x) is defined by the convex hull of Fi(x), from which it is a
compact set too. For each compact set K ⊂ C and each x ∈ K, it follows that
F (x) is locally bounded.

From (2.3) and (2.5), F (x) is nonempty in C. Convexity follows from the
application of the convex hull operator in 2.5.

Outer semicontinuity of G in (iii) follows from the outer semicontinuity of
Gi. For a given i ∈ ID, consider a sequence xi → x and yj ∈ Gi(xj) so that
yj → y. From (2.4) yj = Gikj

xj for some kj = 1, . . . , rG, therefore Gikj
xj → y,

for a suitable selection of indices kj . It follows that xj → x and yj → y imply
that Gikj

x converges to some Gikx, for some k = 1 . . . , rG.
In fact, without loss of generality, suppose that xj → x and yj → y and, for
xj sufficiently close to x, Gikj

alternates between two matrices: Gika
if j is

even and Gikb
if j is odd. Then, for xj sufficiently close to x, we have that

Gikj
xj → y only if both Gika

xj → y and Gikb
xj → y, respectively for j even

and j odd. This implies that, for j ∈ Z≥0, both Gika
xj → y and Gikb

xj → y as
j → ∞. From which, Gika

x = Gikb
x = y.

For i ∈ ID, the outer semicontinuity of Gi follows from the fact that R(i) is a
closed set and from the fact that Gi(x) is defined for each x ∈ R(i). Therefore,
for xj → x, y = Gikx ∈ Gi(x).
Note now that G differs from Gi only for sequences xj → x whose tail periodi-
cally visits two or more cones Di. In such a case, xj ∈ ⋃i∈I Di, where I ⊆ ID.
By the fact that the finite union of closed set is closed, x ∈ ⋃i∈I Di and, pre-
cisely, x ∈ ⋂i∈I Di. It follows that, for each j, we can choose a matrix Gijkj

with
ij ∈ I and kj = 1, . . . , rG so that yj = Gijkj

xj . By the fact that x ∈ ⋂i∈I Di

is a closed set, it follows that G(x) is defined on x and, by an argument similar
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to the one used above for Gi, it coincides with yj = Gikxj ∈ G(x), for some i
that belongs to I and k = 1, . . . , rG.

Local boundedness of G follows from the fact that, for each x ∈ D, G(x) is
the union of bounded vectors. From (2.4), for each i ∈ ID and each x ∈ R(i),
Gi(x) is defined. Therefore, G(x) is nonempty for each x ∈ D. �

6.2.2 Stability Proofs

Proof of Theorem 2.1.

Consider a smooth non-decreasing function σ : R → [0, 1] defined as follows

σ(s) =





0 if s ≤ ℓ1
s−ℓ1
ℓ2−ℓ1

if l1 ≤ s ≤ l2
1 if ℓ2 ≤ s

(6.4)

where l1, l2 ∈ R>0 and ℓ1 < l1 < l2 < ℓ2, and consider a smooth function
q : R

n → R≥0 defined as follows

q(x) =





qℓ1(x) |x| ≤ c or (c ≤ |x| ≤ ρc, V (x) ≤ ℓ1)
V (x) c ≤ |x| ≤ ρc, ℓ1 ≤ V (x) ≤ ℓ2
qℓ2(x) (c ≤ |x| ≤ ρc, V (x) ≥ ℓ2) or |x| ≥ ρc

(6.5)

where
(i) qℓ1 : R

n → R≥0 is a C∞ function with image in [0, ℓ1] that coincides with V
on the set {x ∈ R

n | c ≤ |x| ≤ ρc and V (x) = ℓ1} and on the set {x ∈ R
n | c ≤

|x| ≤ ρc and qℓ1(x) = ℓ1}; (ii) qℓ2 : R
n → R≥0 is a C∞ function with image in

[ℓ2,∞] that coincides with V on the set {x ∈ R
n | c ≤ |x| ≤ ρc and V (x) = ℓ2}

and on the set {x ∈ R
n | c ≤ |x| ≤ ρc and qℓ2(x) = ℓ2}; (iii) the junctions of qℓ1

with V and of qℓ2 with V are smooth.
Note that it is always possible to define qℓ1 and qℓ2 so that points (i)-(iii)

above are satisfied and

α1(|x|) ≤ q(x) ≤ α2(|x|) ∀x ∈ R
n (6.6)

holds, where α1 : R≥0 → R≥0 and α2 : R≥0 → R≥0 are K∞ functions. In
fact, q(x) coincides with V (x) for c ≤ |x| ≤ ρc and for positive values of V (x)
between ℓ1 and ℓ2. Because V (x) has a minimum and a maximum value in the
compact set c ≤ |x| ≤ ρc, it is always possible to find a lower bound function α1

of V and a upper bound function α2 of V in such a compact set. For the rest
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of the space, q coincides with qℓ1 or qℓ2 , therefore we can define such a function
for satisfying (6.6).

With the definitions given above, the function V : R
n → R≥0 can be con-

structed as

V (x) =

{ ∫∞
0

1
tk+1 σ(q(tx))dt if x ∈ R

n \ {0}
0 if x = 0

(6.7)

where k is a given constant greater than 0. We prove that such a function is a
smooth and homogeneous Lyapunov function for H. Note that with k > 0 the
integral in (6.7) converges, therefore V (x) is well defined.

Part 1: a1|x|k ≤ V (x) ≤ a2|x|k.
From the definition of V and from (6.6), it follows that

V (x) =

∫ ∞

0

1

tk+1
σ(q(tx))dt ≤

∫ ∞

0

1

tk+1
σ(α2(|tx|))dt

=

∫ ∞

0

1

tk+1
σ(α2(t|x|))dt =

∫ ∞

0

|x|k
sk+1

σ(α2(s))ds

= |x|k
∫ ∞

0

1

sk+1
σ(α2(s))ds = a2|x|k

(6.8)

where the first inequality holds because σ is a non-decreasing function, the third
equality holds by s = t|x|, and a2 =

∫∞
0

1
sk+1 σ(α2(s))ds is well-defined because

the integral converges for any K∞ function α2. In a similar way

V (x) =

∫ ∞

0

1

tk+1
σ(q(tx))dt ≥

∫ ∞

0

1

tk+1
σ(α1(|tx|))dt

=

∫ ∞

0

|x|k
sk+1

σ(α1(s))ds = a1|x|k
(6.9)

where a1 =
∫∞
0

1
sk+1σ(α1(s))ds.

Part 2: V is smooth.
Continuity can be proved as follows. Define t(x) = inf{t |σ(q(tx)) > 0} and
t(x) = sup{t |σ(q(tx)) < 1}. For any given ξ ∈ R

n and d ∈ R
n,

V (ξ) − V (ξ+d) =

∫ t(ξ)

t(ξ)

1

tk+1
σ(q(tξ))dt +

∫ ∞

t(ξ)

1

tk+1
dt +

−
∫ t(ξ+d)

t(ξ+d)

1

tk+1
σ(q(t(ξ + d)))dt −

∫ ∞

t(ξ+d)

1

tk+1
dt

(6.10)
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Note that q(tξ) can be replaced with V (tξ) in the first integral and q(t(ξ + d))
can be replaced with V (t(ξ+ d)) in the third integral. In fact, by the definition
of t(x), σ(q(tx)) > 0 only if tx satisfies both c ≤ |tx| ≤ ρc and ℓ1 < V (tx) < ℓ2.
It follows that t(x)x satisfies c ≤ |t(x)x| ≤ ρc and ℓ1 ≤ V (t(x)x) ≤ ℓ2. By
using the same argument, we can say that t(x)x satisfies c ≤ |t(x)x| ≤ ρc and
ℓ1 ≤ V (t(x)x) ≤ ℓ2. It follows that c ≤ |tx| ≤ ρc for each t ∈ [t(x), t(x)].
Finally, note that σ(q(tx)) = σ(V (tx)) for c ≤ |tx| ≤ ρc.

Case A: t(ξ) ≤ t(ξ + d) ≤ t(ξ) ≤ t(ξ + d)

V (ξ) − V (ξ + d) =

∫ t(ξ+d)

t(ξ)

h1 +

∫ t(ξ)

t(ξ+d)

h2 +

∫ t(ξ+d)

t(ξ)

h3 (6.11)

where

h1 =
1

tk+1
σ(V (tξ))dt

h2 =
1

tk+1
[σ(V (tξ)) − σ(V (t(ξ + d)))]dt

h3 =
1

tk+1
[1 − σ(V (t(ξ + d)))]dt

(6.12)

By considering that (i) σ(V (tξ)) ≤ 1, (ii) 1 − σ(V (t(ξ + d))) ≤ 1, (iii) for
any t ∈ [t(ξ + d), t(ξ)], there exists a function Kξ(|d|) : R≥0 → R≥0 such that
|σ(V (tξ))− σ(V (t(ξ + d)))| ≤ Kξ(|d|) and such that Kξ(|d|) → 0 as |d| → 0 (by
continuity of σ(V (tξ))−σ(V (t(ξ+d))) in the interval [t(ξ+d), t(ξ)] ), it follows
that

V (ξ) − V (ξ + d) ≤Mξ|t(ξ + d) − t(ξ)| +MξKξ(|d|)·
·|t(ξ) − t(ξ + d)| +Mξ|t(ξ + d) − t(ξ)| (6.13)

where Mξ = 1
(t(ξ))k+1 .

The analysis of this case can be concluded by showing that t(ξ + d) → t(ξ) and
t(ξ + d) → t(ξ) as |d| → 0. Indeed, |t(ξ + d) − t(ξ)| = | inf{t |σ(q(t(ξ + d))) >
0} − inf{t |σ(q(tξ)) > 0}|, and |t(ξ + d) − t(ξ)| = | sup{t |σ(q(t(ξ + d))) < 1} −
sup{t |σ(q(tξ)) < 1}|, that both shrink to zero as |d| → 0, by the continuity of
functions q and σ.

Case B: t(ξ) ≤ t(ξ) < t(ξ + d) ≤ t(ξ + d).
For |d| sufficiently small this case is impossible. For instance, suppose that
|d| → 0 and t(ξ+d) → t(ξ) but t(ξ) ≤ t(ξ) ≤ t(ξ+d). It follows |t(ξ)−t(ξ)| → 0.
This contradicts the fact that, by ℓ1 < ℓ2, |t(ξ) − t(ξ)| ≥ ε, for some ε > 0.
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Case C: t(ξ) ≤ t(ξ + d) ≤ t(ξ + d) ≤ t(ξ).

V (ξ) − V (ξ + d) =

∫ t(ξ+d)

t(ξ)

h1 +

∫ t(ξ+d)

t(ξ+d)

h2 +

∫ t(ξ)

t(ξ+d)

h3 (6.14)

where h1 and h2 have been defined in (6.12)

h4 =
1

tk+1
[σ(V (tξ)) − 1]dt (6.15)

We can write

V (ξ) − V (ξ+d) ≤Mξ|t(ξ+d) − t(ξ)| +MξKξ(|d|)·
· |t(ξ+d) − t(ξ+d)| +Mξ|t(ξ) − t(ξ+d)| (6.16)

where M(ξ) and Kξ(|d|) can be defined as in case A, but Kξ(|d|) is now a bound
for [σ(V (tξ))−σ(V (t(ξ+ d)))] in the interval [t(ξ+ d), t(ξ+ d)]. From here, the
argument coincides with case A.

Remaining cases can be analyzed as in A, B or C.

A similar path can be used for proving that V is differentiable for each
degree k of differentiation. In fact, σ(q(·)) is a smooth function and the integral
can be compute by subdividing the domain of integration in several parts, say
I1, I2, . . . , Iν , for some ν ∈ Z≥0, following the approach used for continuity.
Then, we can prove that for each i ∈ {1, . . . , ν}, the sub-domain of integration
Ii (a) converges to zero as |d| → 0 or (b) converges to a domain for which the
argument of the integral shrinks to 0 as |d| → 0.

Part 3: ∀x ∈ C, ∀f ∈ F (x),
〈
∇V (x), f

〉
≤ µV (x).

By Condition (2) of Theorem 2.1 we have that for each x ∈ C∩{x | c ≤ |x| ≤ ρc},
and for each f ∈ F (x), 〈∇V (x), f〉 is strictly negative. It follows that there exists
ε ∈ R>0 such that ∀x ∈ C ∩ {x | c ≤ |x| ≤ ρc} and ∀f ∈ F (x),

〈∇V (x), f〉 ≤ −ε max
c≤|x|≤ρc

V (x) ≤ −εV (x). (6.17)

Note that the existence of ε is guaranteed by the fact that V and ∇V are
bounded in C ∩ {x | c ≤ |x| ≤ ρc} and for each x in such a set F (x) is a closed



182 CHAPTER 6. PROOFS

and bounded set. By the fact that σ(q(·)) is a smooth function we can write

〈
∇V (x), f

〉
= ∇V (x)T f

=

∫ ∞

0

1

tk+1
σ′(q(tx))∇V (tx)T tf dt

=

∫ ∞

0

1

tk+1
σ′(q(tx)) 〈∇V (tx), tf〉 dt

≤ −ε
∫ ∞

0

1

tk+1
σ′(q(tx))V (tx)dt

(6.18)

where σ′(s) = ∂
∂sσ(s). ∇V (tx) replaces ∇q(tx) because σ′(q(x)) is zero for x

in {x | q(x) 6= V (x)}. The inequality can be explained as follows. (i) Suppose
that x belongs to the intersection of some cone, say

⋂
i∈Ix

Ci, where Ix ⊆ IC .
The intersection of cones is a cone, therefore if x ∈ ⋂i∈Ix

Ci then tx ∈ ⋂i∈Ix
Ci,

for each t ≥ 0. Moreover Ix = Itx. (ii) F (x) is the convex hull of matrices Fik

where k = 1, . . . , rF and i ∈ Ix. Therefore, f ∈ F (x) can be written as convex
combination of vectors Fikx where k = 1, . . . , rF and i ∈ Ix. It follows that tf
can be written as the convex combination of vectors tFikx, that is equal to the
convex combination of vectors Fiktx, for k = 1, . . . , rF and i ∈ Itx. By points
(i) and (ii), it follows that tf ∈ F (tx), for each t ≥ 0. Finally, tf ∈ F (tx)
and the fact that σ′(q(tx)) is zero for tx /∈ {x | c ≤ |tx| ≤ ρc}, allow to replace
〈∇V (tx), tf〉 with −εV (tx).

From (6.18), we can write

〈
∇V (x), f

〉
≤ −ε

∫ ∞

0

1

tk+1
σ′(q(tx))q(tx)dt

≤ −ε
∫ ∞

0

1

tk+1
σ′(α1(|tx|))α1(|tx|)dt

= −ε|x|k
∫ ∞

0

1

sk+1
σ′(α1(s))α1(s)ds

(6.19)

where the second inequality follows from α1(|x|)) ≤ q(x), for each x, and the last
expression is the results of the substitution s = t|x|. From (6.8), V (x) ≤ a2|x|k,
that is 1

a2
V (x) ≤ |x|k. It follows that

〈
∇V (x), f

〉
≤ − ε

a2
V (x)

∫ ∞

0

1

sk+1
σ′(α1(s))α1(s)ds

≤ −µV (x)

(6.20)
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where µ = ε
a2

∫∞
0

1
sk+1σ

′(α1(s))α1(s)ds. Note that such an integral converges
by the fact that σ′ is non zero only for ℓ1 ≤ α1(s) ≤ ℓ2.

Part 4: ∀x ∈ D, ∀g ∈ G(x), V (g) ≤ νV (x).

Let us consider x ∈ ⋂i∈Ix
Di where Ix ⊆ ID. Analogously to the previous case,

x ∈ ⋂i∈Ix
Di implies tx ∈ ⋂i∈Ix

Di, for each t ≥ 0. Note that Ix = Itx and note
also that, for x ∈ ⋂i∈Ix

Di, i ∈ Ix, we have that g ∈ G(x) if and only if g = Gikx
for some k = 1, . . . , rG and some i ∈ Ix. Moreover, tg = tGikx = Giktx, for any
t ≥ 0, for some k = 1, . . . , rG and some i ∈ Ix. It follows that g ∈ G(x) implies
tg ∈ G(tx).

V (g) − V (x) =

∫ ∞

0

1

tk+1
σ(q(tg))dt −

∫ ∞

0

1

tk+1
σ(q(tx))dt

=

∫ ∞

0

1

tk+1

(
σ(q(tg)) − σ(q(tx))

)
dt ≤ 0

(6.21)

Last inequality can be explained by considering that, for x ∈ D and t ≥ 0,
σ(q(tg)) − σ(q(tx)) ≤ 0. In fact,

(i) by Condition (3) of the theorem, if c ≤ |tx| ≤ ρc and c ≤ |tg| ≤ ρc then
V (tg) − V (tx) < 0. Therefore σ(q(tg)) − σ(q(tx)) ≤ 0;

(ii) if c ≤ |tx| ≤ ρc and |tg| ≤ c then σ(q(tg)) = 0. Then σ(q(tg))−σ(q(tx)) =
−σ(q(tx)) ≤ 0;

(iii) if c ≤ |tx| ≤ ρc and |tg| ≥ ρc then σ(q(tg)) = 1. By Condition (5) of the
theorem, q(tx) ≥ ℓ2 then σ(q(tx)) = 1. It follows that σ(q(tg))−σ(q(tx) =
0;

(iv) if |tx| ≥ ρc then σ(q(tx)) = 1. Because σ(q(tg)) ≤ 1, it follows that
σ(q(tg)) − σ(q(tx)) ≤ 0;

(v) if |tx| ≤ c and |tg| ≤ ρc then σ(q(tx)) = 0. By Condition (6), q(tg) ≤ ℓ1,
therefore σ(q(tg)) = 0. Then σ(q(tg)) − σ(q(tx)) = 0;

(vi) suppose |tx| ≤ c and |tg| > ρc. Then, there exists t < t such that |tx| ≤ c
and |tg| = ρc. In such a case V (tg) ≥ ℓ2 > ℓ1. It follows that we found
a point x = tx such that |x| ≤ c and g ∈ G(x) satisfies g ∈ {x |V (x) >
ℓ1 and c ≤ |x| ≤ ρc}. This contradicts Condition (6) of the theorem.

Note also that, for any given x ∈ D ∩ {x | c ≤ |x| ≤ ρc}, V (g) − V (x) is strictly
negative. Then, by (6.4) and (6.5), for each x ∈ D such that q(x) ∈ [l1, l2], we
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have that q(x) = V (x) ≥ l1 and either q(g) = V (g) < q(x) or q(g) ≤ ℓ1. It
follows that q(g) < q(x). Moreover, there exists a constant ε ∈ [0, 1) ⊆ R such
that

q(g) ≤ εq(x) ∀x ∈ D, q(x) ∈ [l1, l2], ∀g ∈ G(x) (6.22)

In fact, {x |x ∈ D, q(x) ∈ [l1, l2]} is a compact set and g is defined as g = Gikx
where i takes values in a finite index set Ix and k = 1, . . . , rG, therefore we can
find a small ε > 0 such that q(g)− εq(x) ≤ 0, for each x ∈ D, q(x) ∈ [l1, l2], and
each g ∈ G(x).

From equation (6.4), for any given constant s ∈ [l1, l2] and any given constant
ε ∈ [0, 1) we have that σ(εs) < σ(s). This is straightforward for each s ∈ (l1, l2]
while, for s = l1, it follows from the fact that the function is smooth, therefore
the right-derivative of σ(s) = 1

ℓ2−ℓ1
on s = l1 must be equal to the left-derivative,

and from the fact that σ is non-decreasing. Finally, we can say that for any
given ε ∈ [0, 1), there exists ε ∈ [0, 1) ⊆ R such that

σ(εs) ≤ εσ(s) ∀s ∈ [l1, l2] (6.23)

By using (6.22) and (6.23), for any given x ∈ D, and for any given t1, t2 ∈ R≥0

so that q(tx) ∈ [l1, l2] for each t ∈ [t1, t2], we have

V (g) =

∫ ∞

0

1

tk+1
σ(q(tg))dt =

∫ t1

0

hg +

∫ t2

t1

hg +

∫ ∞

t2

hg

=

∫ t1

0

hg +

∫ t2

t1

1

tk+1
σ(εq(tx))dt +

∫ ∞

t2

hg

≤
∫ t1

0

hg + ε

∫ t2

t1

1

tk+1
σ(q(tx))dt +

∫ ∞

t2

hg

≤
∫ t1

0

hx + ε

∫ t2

t1

hx +

∫ ∞

t2

hx

(6.24)

where hg = 1
tk+1σ(q(tg))dt and hx = 1

tk+1 σ(q(tx))dt. Note that last inequality
follows from σ(q(tg)) − σ(q(tx)) ≤ 0.

Consider now vectors η ∈ D such that |η| = 1. Define two constant s1η, s2η ∈
R≥0 as follows: s1η is the smallest value such that q(s1ηη) = l1 and s2η is the
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greatest value such that q(s2ηη) = l2, and define

I1η =

∫ s1η

0

1

sk+1
σ(α2(s))ds

I2η =

∫ s2η

s1η

1

sk+1
σ(α1(s))ds

I3η =

∫ ∞

s2η

1

sk+1
σ(α2(s))ds.

(6.25)

Choose νη ∈ [ε, 1) so that

(1 − νη)(I1η + I3η) − (νη − ε)I2η ≤ 0 (6.26)

For any given λ > 0, consider x = λη and take t1η =
s1η

|x| and t2η =
s2η

|x| . From

the definition of s1η and s2η we have that q(t1ηx) = l1 and q(t2ηx) = l2. Then

V (g) ≤
∫ t1η

0

+ ε

∫ t2η

t1η

+

∫ ∞

t2η

= νη

(∫ t1η

0

+

∫ t2η

t1η

+

∫ ∞

t2η

)
+

+ (1 − νη)

(∫ t1η

0

+

∫ ∞

t2η

)
− (νη − ε)

∫ t2η

t1η

=

= νηV (x) + (1 − νη)

(∫ t1η

0

+

∫ ∞

t2η

)
− (νη − ε)

∫ t2η

t1η

≤ νηV (x) + |x|k((1 − νη)(I1η +I3η) − (νη − ε)I2η)

≤ νηV (x)

(6.27)

where the argument of each integral is 1
tk+1σ(q(tx))dt. Note that the second

inequality can be obtained by using s = t|x| as variable of integration and by

using α2 instead of q inside the integrals
∫ t1
0 and

∫∞
t2

, and by using α1 instead

of q inside
∫ t2

t1
.

Finally, we need to show that there exists a ν ∈ [ε, 1) such that for each
|η| = 1 we have νη ≤ ν. With this aim, define S = {η ∈ R

n | |η| = 1} and define
three functions pi : S → R≥0 that map η ∈ S to Iiη, for i ∈ {1, 2, 3}. By the
continuity of q, α1 and α2, pi is continuous, for each i ∈ {1, 2, 3}. By the fact

that the inequality in (6.26) is satisfied by max{ε, I1η+εI2η+I3η

I1η+I2η+I3η
} ≤ νη < 1, we

can construct a function p4 : S → R≥0 defined as

p4(η) = max

{
ε,
p1(η) + εp2(η) + p3(η)

p1(η) + p2(η) + p3(η)

}
(6.28)
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where η belongs to S, so that νη = p4(η) satisfies (6.26) for each η ∈ S. Note
that p4(η) < 1 for each η in S. Moreover, p4 is a continuous on the compact
set S, therefore it has a maximum value v = max|η|=1 p4(η) < 1. Note that, for
each η ∈ S, νη = ν satisfies (6.26)

Part 5: Homogeneity.
Define s = λt

V (λx) =

∫ ∞

0

1

tk+1
σ(q(tλx))dt

=

∫ ∞

0

λk

sk+1
σ(q(sx))ds

= λkV (x)

(6.29)

�

Proof of Theorem 2.2.

By the converse result in [32, Theorem 3.14], for a a hybrid system H of Equa-
tions (1.5),(2.1)-(2.5), if the point xe = 0 is globally pre-asymptotically stable,
then there exists a smooth function V : R

n → R and α1, α2 ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|) ∀x ∈ R
n

〈∇V (x), f〉 ≤ −V (x) ∀x ∈ C, ∀f ∈ F (x)
V (g) ≤ e−1V (x) ∀x ∈ D, ∀g ∈ G(x)

(6.30)

(1,2,3) Conditions (1)-(3) of Theorem 2.1 are immediately satisfied.
(4) Choose a constant ℓ1 > 0 and define c = α−1

2 (ℓ1). Choose a constant ℓ2 > ℓ1
so that ρ = α−1

2 (ℓ2)/c is strictly greater then 1. It follows that max|x|=c V (x) ≤
α2(c) = ℓ1 and min|x|=ρc V (x) ≥ α1(ρc) = ℓ2. Condition (4) of Theorem 2.1
holds.
(5) Suppose now that there exists a x ∈ D∩{x | c ≤ |x| ≤ ρc}∩{x |V (x) ≤ ℓ2}
and a g ∈ G(x) such that |g| > ρc. Then, ℓ2 = α1(ρc) < α1(|g|) ≤ V (g).
Therefore V (g) > V (x), that contradicts (6.30). It follows that Condition (5)
of Theorem 2.1 holds.
(6) In a similar way, suppose that there exists a x ∈ D ∩ {x | |x| ≤ c} and
a g ∈ G(x) so that c ≤ |g| ≤ ρc and V (g) > ℓ1. Then, V (x) ≤ α2(c) = ℓ1.
Therefore V (g) − V (x) > 0, that contradicts (6.30). Condition (6) of Theorem
2.1 is satisfied. �
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Proof of Proposition 2.1.

V (x) is a polynomial function, so it is smooth.

(1) For each i ∈ IC∪ID, (2.9) can be written as V (x) ≥ ∆
(i)
2 (x)+s

(i)
1 (x)∆1(c, ρc, x).

∆1(c, ρc, x) ≥ 0 for c ≤ |x| ≤ ρc, ∆
(i)
2 (x) ≥ 0 for x ∈ R(i) and s

(i)
1 (x) ≥ 0 for each

x ∈ R
n. It follows that V (x) ≥ 0 in {x | c ≤ |x| ≤ ρc, x ∈ R(i)}. By i ∈ IC ∪ ID,

V (x) ≥ 0 in {x | c ≤ |x| ≤ ρc}∩(C∪D), i.e. Condition (1) of Theorem 2.1 holds.
(2) For each i ∈ IC and each k = 1, . . . , rF , (2.10) can be written as ∇V (x)Fikx <

−∆
(i)
2 (x)−s(ik)

2 (x)∆1(c, ρc, x). Therefore∇V (x)Fikx < 0 in {x | c ≤ |x| ≤ ρc, x ∈
R(i)}, for each i ∈ IC and k = 1, . . . , rF . Suppose now that x belongs to the
intersection of some sets R(i), for i ∈ I ⊆ IC . Then, for each f ∈ F (x) we can
write

〈∇V (x), f〉 = 〈∇V (x),
∑

i∈I,k=1,...,rF

λikFikx〉

=
∑

i∈I,k=1,...,rF

λik 〈∇V (x), Fikx〉
(6.31)

for some
∑

i∈I,k=1,...,rF
λik = 1. It follows that 〈∇V (x), f〉 < 0 in {x | c ≤ |x| ≤

ρc} ∩ C, i.e. Condition (2) of Theorem 2.1 holds.
(3) (2.11) implies Condition (3). To see this, an argument similar to the one
above on (2.10) can be used. No convex combination of vectors Gikx is needed
in this case, in fact g ∈ G(x) if and only if g ∈ Gikx for some i ∈ I ⊆ ID and
k = 1, . . . , rG.
(4) First inequality in (2.12) can be written as V (x) ≤ ℓ1−s4(x)∆1(c, c+ε, x),
that implies V (x) ≤ ℓ1 for x ∈ [c, c + ε]. It follows that max|x|=c V (x) ≤ ℓ1.
A similar argument can be used to show that the second inequality in (2.12)
guarantees min|x|=ρc V (x) ≥ ℓ2. Therefore, Condition (4) of Theorem 2.1 is
satisfied.
(5) For each i ∈ ID and each k = 1, . . . , rG, first inequality in (2.13) implies

V (x) − ℓ2 − s
(ik)
6 (x)(x′GT

ikGikx− ρ2c2) ≥ 0 for x in {x |x ∈ R(i), c ≤ |x| ≤ ρc}.
We can write such an inequality as s

(ik)
6 (x)(ρ2c2 − x′GT

ikGikx) ≥ ℓ2 − V (x),

and from s
(ik)
6 (x) ≥ 0, it follows that ρ2c2 − x′GT

ikGikx ≥ 0 for x in {x |x ∈
R(i), c ≤ |x| ≤ ρc, V (x) ≤ ℓ2}. Note that ρ2c2 − x′GT

ikGikx ≥ 0 is equivalent to
|Gikx| ≤ ρc, and such a relation hold for each i ∈ ID and each k = 1, . . . , rG,
whenever x belongs to {x |x ∈ R(i), c ≤ |x| ≤ ρc, V (x) ≤ ℓ2}. It follows that
|g| ≤ ρc for each x in {x |x ∈ D, c ≤ |x| ≤ ρc, V (x) ≤ ℓ2} and each g ∈ G(x),
i.e. Condition (5) of Theorem 2.1 is satisfied.
(6) For each i ∈ ID and each k = 1, . . . , rG, second inequality in (2.13) implies
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s
(ik)
8 (x)(c2 − xTx) ≤ ℓ1 − V (Gikx) − s

(ik)
9 (x)∆1(c, ρc,Gikx) for each x ∈ R(i).

By s
(ik)
8 (x) ≥ 0, we have that if V (Gikx) > ℓ1 and c ≤ |Gik| ≤ ρc then

(c2 − xTx) < 0, for each x ∈ R(i). Such implication holds for each i ∈ ID
and each k = 1, . . . , rG, therefore we can say that if V (g) > ℓ1 and c ≤ |g| ≤ ρc
then |c| < |x|, for each x ∈ D and each g ∈ G(x). By negation, we have that for
each x ∈ D and each g ∈ G(x), if |x| ≤ |c| then g /∈ {g |V (g) > ℓ1, c ≤ |g| ≤ ρc}.
Condition (6) of Theorem 2.1 holds. �

6.2.3 Overshoots and Instability Proofs.

Proof of Theorem 2.3.

From the assumptions of Theorem 2.3, we have that V (x) > 0 for some point x
arbitrarily close to 0. It follows that U is not empty and, by continuity of V (x)
in C ∪D, xe belongs to the border of U .
Let ξ be a solution to H with initial state ξ(0, 0) ∈ U . By conditions (1), (2)
and (3) of the theorem, ξ must leave U . In fact, suppose that V (ξ(0, 0)) = a, for
some a ∈ R>0. Then, by conditions (1) and (2) of the theorem, V (ξ(t, j)) ≥ a
for each (t, j) ∈ dom ξ, and the set {x ∈ U |V (x) ≥ a} is a compact subset of
U . By the compactness of such a set and Claim 2.1, we can say that there exist
γ1, γ2 ∈ R>0 such that 〈∇V (x), f〉 > γ1, for each x ∈ C∩{x ∈ U |V (x) ≥ a} and
each f ∈ F (x), and V (g)−V (x) > γ2, for each x ∈ D ∩ {x ∈ U |V (x) ≥ a} and
each g ∈ G(x). It follows that V (ξ(t, j)) ≥ a+γ1t+γ2j, for each (t, j) ∈ dom ξ.
Then, by condition (3) of the theorem and by the fact that V has a maximum
on {x ∈ U |V (x) ≥ a}, ξ cannot stay forever in such a compact set.
By (1) and (2) of the theorem, ξ cannot leave U by flowing across {x ∈
R

n |V (x) = 0} or by jumping to {x ∈ R
n |V (x) ≤ 0, |x| ≤ r}, therefore it leaves

U by flowing across {x ∈ U | |x| = r} or by jumping to {x ∈ C ∪ D | |x| > r}.
Because this happens for points x arbitrarily close to 0, the point xe = 0 is
unstable. �
The following lemma will be used in the proof of Theorem 2.4 and of Corollary
2.1

Lemma 6.1 Consider a hybrid system H of Equations (1.5),(2.1)-(2.5) and
suppose ξ is a solution to H. Then, for each λ ∈ R>0, λξ is a solution to H.

Proof. By (2.1), (2.2), for each (t, j) ∈ dom ξ, if ξ(t, j) ∈ ⋂i∈I R
(i), for some

I ⊆ ID or some I ⊆ IC , then λξ(t, j) ∈ ⋂i∈I R
(i). By this fact and by Equations

(2.3), (2.4) and (2.5), we can say that
- for each (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ, suppose ξ(t, j + 1) ∈
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G(ξ(t, j)). Then, λξ(t, j + 1) ∈ G(λξ(t, j));
- for each t, t ∈ R≥0 such that [t, t] × {j} ⊆ dom ξ. if ξ̇(t, j) ∈ F (ξ(t, j)), for

almost all t ∈ [t, t], then λξ̇(t, j) ∈ F (λξ(t, j)), for almost all t ∈ [t, t].
It follows that λξ is a solution to H. �

Proof of Theorem 2.4.

By the continuity of V and from assumptions (1) and (2) of Theorem 2.4,
we have that U is not empty and V (x) = ℓ Let ξ be a solution to H with
initial state ξ(0, 0) ∈ U . Conditions (3)-(6) of Theorem 2.4 guarantee that
ξ must leave U in finite time (this can be shown by following the argument
of the proof of Theorem 2.3). Consider a solution ξ to H with initial state
ξ(0, 0) ∈ U . By Condition (3), such a solution cannot leave U by flowing
across {x ∈ R

n |V (x) = ℓ}, by Condition (4), it cannot leave U by jumping
to {x ∈ R

n |V (x) ≤ ℓ, c ≤ |x| ≤ ρc} and, by Condition (6), ξ cannot jump to
{x ∈ R

n | |x| ≤ c}. It follows that ξ leaves U by flowing across {x ∈ R
n | |x| = ρc}

or by jumping to {x ∈ R
n | |x| ≥ ρc}.

Consider now a solution ξ to H with initial state ξ(0, 0) ∈ U and, by (2),
|ξ(0, 0)| = c+ ε. Such a solution leaves U in finite time, that is, |ξ(T, J)| ≥ ρc,
for some (T, J) ∈ dom ξ. Therefore, by Lemma 6.1, the result of the theorem
follows. �

Proof of Corollary 2.1.

As stated in Theorem 2.4, each solution ξ to H leaves U in finite time. Note
that, by Condition (7), each point x ∈ C ∪D with |x| = ρc belongs to U . This
implies that the set U surrounds the origin, therefore if a solution ξ leaves U ,
it cannot go back to the set {x |x ∈ (C ∪D), x ≤ ρc} any more.
By the continuity of V and by Conditions (1) and (7), we can find two constants
ℓ1, ℓ2 ∈ R such that min|x|=ρc V (x) = ℓ2, ℓ < ℓ1 < ℓ2 and the set U1 = {x ∈
C∪D |V (x) = ℓ1, |x| ≤ ρc} surrounds th origin. It follows that (i) by continuity
of V and by Conditions (1) and (7), U1 is a subset of U , so that solutions
ξ to H with ξ(0, 0) ∈ U1 escapes U in finite time by flowing or jumping to
{x ∈ R

n | |x| ≥ ρc}, and (ii) by Conditions (3)-(6) and by Lemma 6.1 we can
use pieces of solutions to H from U1 to {x ∈ R

n | |x| ≥ ρc} to construct a solution
ξ to H that grows unbounded. Indeed, inductively, consider a solution ξi to H
with initial state ξi(0, 0) ∈ U1, where i is a positive integer (an index). Such a
solution enters the set {x ∈ R

n | |x| ≥ ρc} in finite time, say (ti, ji) ∈ dom ξi.
The point ξi(ti, ji) ∈ {x ∈ R

n | |x| ≥ ρc} can be scaled so that λiξi(ti, ji) ∈ U1,
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for some λi ∈ R>0. Then, consider a solution ξi+1 to H with initial state
ξi+1(ti+1, ji+1) = λiξi(ti, ji). Also such a solution enters the set {x ∈ R

n | |x| ≥
ρc} in finite time. Therefore, by using solutions ξi with i ≥ 0 we can inductively
define an unbounded solution ξ as follows.
Base case:

ξ(0, 0) = ξ0(0, 0)

ξ(t, j) = ξ0(t, j) ∀(t, j) ∈ dom ξ0, (t, j) ≤ (t0, j0);

Inductive case: for each i > 0

ξ(t+

(i−1)∑

k=0

tk, j +

(i−1)∑

k=0

jk) =
1

λi
ξi(t, j),

∀(t, j) ∈ dom ξi, (t+

(i−1)∑

k=0

tk, j +

(i−1)∑

k=0

jk) ≤ (ti, ji).

ξ grows unbounded by the fact that each solution ξi begins from a U1 that is
a proper subset of {x ∈ R

n | |x| < ρc} and enters {x ∈ R
n | |x| ≥ ρc} in finite

time. Instability of xe follows from Lemma 6.1. �

Proof of Theorem 2.5

Point (1)-(4) of Theorem 2.5 follow from the fact that Theorem 2.1 is a sufficient
condition to the asymptotic stability of the point xe = 0 and Theorem 2.3 and
Corollary 2.1 are sufficient conditions to the instability of xe = 0.

Point (5) of Theorem 2.5 can be proved as follows. By Theorem 2.4, there
exists at least one solution ξ to H such that (i) |ξ(0, 0)| = c(T2.4) + ε and (ii) ξ
escapes the set U = {x ∈ C ∪ D| |x| ≤ ρ(T2.4)c(T2.4)} in finite time. Suppose
now that conditions Theorem 2.1 are satisfied with c(T2.1) = c(T2.4) + ε and
ρ(T2.1) > 1 such that ρ(T2.1)c(T2.1) ≤ ρ(T2.4)c(T2.4). Define ℓ1 of Theorem 2.1
as ℓ1 = max|x|=c(T2.1)

V(T2.1)(x), for some function V(T2.1) used in Theorem 2.1.
By conditions (2) and (3) of Theorem 2.1, V(T2.1)(ξ(t, j)) < V(T2.1)(ξ(0, 0)) for
each (t, j) ∈ dom ξ such that c(T2.4) + ε ≤ |ξ(t, j)| ≤ ρ(T2.4)c(T2.4). Two cases
are possible:
(i) ξ flows through {x ∈ R

n | |x| = ρ(T2.4)c(T2.4)}, then min|x|=ρc V (x) < ℓ1 that
contradicts Condition (4) of Theorem 2.1, i.e. min|x|=ρc V (x) ≥ ℓ2 > ℓ1, or
(ii) ξ jumps to {x ∈ R

n | |x| ≥ ρ(T2.4)c(T2.4)} that contradicts Condition (5)
Theorem 2.1.
By Lemma 6.1, we can use the argument above with c(T2.1) > 0, ρ(T2.1) > 1
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such that: c(T2.1) = λ(c(T2.4) + ε), and ρ(T2.1)c(T2.1) ≤ λc(T2.4)ρ(T2.4), for any

given λ > 0 and any ε > 0 sufficiently small. Therefore ρ(T2.1) ≤ λc(T2.4)ρ(T 2.4)

λ(c(T2.4)+ε) =
c(T2.4)ρ(T 2.4)

c(T2.4)+ε . Finally, ε can be taken sufficiently small but strictly greater then

zero, therefore 1 < ρ(T2.1) < ρ(T2.4).
Point (6) of Theorem 2.5 can be proved as follows. By Condition (4) of Theo-

rem 2.1 we have max|x|=c(T2.1)
V(T2.1)(x) ≤ ℓ1 and min|x|=ρ(T2.1)c(T2.1)

V(T2.1)(x) ≥
ℓ2, for some function V(T2.1) that satisfies Theorem 2.1, and some constants
c(T2.1), ρ(T2.1), ℓ1 < ℓ2.
By Conditions (2),(3) and (6) of Theorem 2.1, each solution ξ to H with ini-
tial state ξ(0, 0) ∈ S1 , {x ∈ C ∪ D | c(T2.1) ≤ |x| ≤ ρ(T2.1)c(T2.1), V (|x|) ≤
ℓ2} does not enter the set S2{x ∈ C ∪ D | |x| > ρ(T2.1)c(T2.1)}. Because
max|x|=c(T2.1)

V(T2.1)(x) ≤ ℓ1 < ℓ2, we have that each point |x| = c(T2.1) be-
longs to S1, therefore each solution ξ to H with |ξ(0, 0)| = c(T2.1) does not enter
S2.
For some ε > 0 sufficiently small, define c(T2.4)+ε = c(T2.1) and ρ(T2.4) > 1 such
that ρ(T2.4)c(T2.4) > ρ(T2.1)c(T2.1). By the result above on solutions from S1 to
S2, we can say that no solutions ξ to H with initial state |ξ(0, 0)| = c(T2.4) + ε
enter the set {x ∈ C ∪D | |x| > ρ(T2.4)c(T2.4)}, that is, Theorem 2.4 cannot be
applied with this c(T2.4) and ρ(T2.4).
By Lemma 6.1, for any given λ > 0 and any ε > 0 sufficiently small, we
can use the argument above with c(T2.4) > 0 and ρ(T2.4) > 1 such that:
c(T2.4) + ε = λc(T2.1) and ρ(T2.4)c(T2.4) > λc(T2.1)ρ(T2.1). Therefore, ρ(T2.4) >
λc(T 2.1)ρ(T2.1)

c(T2.4)
>

λc(T 2.1)ρ(T2.1)

λc(T2.1)−ε . Finally, ε can be taken sufficiently small but

strictly greater then zero, therefore ρ(T2.4) > ρ(T2.1). �

Proof of Proposition 2.2

V is a polynomial, therefore it is continuously differentiable.
(1) First inequality of (2.19) can be rewritten as ℓ−V (x) ≥ s3(x)∆1(c, c+ε, x).
Therefore, ℓ − V (x) ≥ 0 for each c ≤ |x| ≤ c + ε, that implies Condition (1) of
Theorem 2.4.
(2) Rewrite the second inequality of (2.19) as V (x) − ℓ ≥ s4(x)∆1(c+ 2ε, c+
3ε, x) + q(x), then V (x) − ℓ ≥ 0 for c + 2ε ≤ |x| ≤ c + 3ε and q(x) ≥ 0. By
(2.20), q(x) is non-negative in a conic subset of R

n, therefore V (x) − ℓ ≥ 0 in
a subset of c + 2ε ≤ |x| ≤ c + 3ε, as required by Condition (2) of Theorem
2.4. In fact, denote ε(Alg.2) and ε(Thm.2.4) respectively the constants ε of Algo-
rithm 2 and of Theorem 2.4, then V satisfies Condition (2) of Theorem 2.4 with
ε(Thm.2.4) ≥ 2ε(Alg.2)
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(3,4) (2.17) and (2.24) imply conditions (3) and (4) of Theorem 2.4, respec-
tively.

(5) The fifth inequality of (2.19) can be interpreted as ℓ−V (x) ≥ s
(ik)
5 (x)(c2 −

x′G′
ikGikx) for each x ∈ R(i) and c ≤ |x| ≤ ρc, where i ∈ ID. Therefore

ℓ−V (x) ≥ 0 if c− g ≥ 0, for each x ∈ R(i), c ≤ |x| ≤ ρc and each g ∈ G(x). By
negation, if V (x) > ℓ then c − g < 0, for each x ∈ R(i), c ≤ |x| ≤ ρc and each
g ∈ G(x), as required by Condition (5) of Theorem 2.4.
(6) Condition (6) is implied by C ∪ D = R

n and the fact that no solutions ξ
to H of Equations (1.5),(2.1)-(2.5) can blow up in finite time. �

Proof of Proposition 2.3

Inequality (2.21) can be written as V (x) ≥ ℓ+s7(x)∆1(ρc−ε, ρc, x) from which
V (x) ≥ ℓ > ℓ, for each ρc − ε ≤ |x| ≤ ρc. Therefore, min|x|=ρc V (x) ≥ ℓ > ℓ,
that satisfies Condition (6) of Corollary 2.1. �

Proof of Proposition 2.4

Define ℓ = ℓ1 and note that, by (2.27) and (2.28), qa(x) and qb(x) are positive
in some conic subset of R

n.
(1,2) First inequality of (2.26) can be written as ℓ1 − V (x) ≥ 0, for c ≤ |x| ≤
c + ε, that implies Condition (1) of Theorem 2.4. Second inequality of (2.26)
guarantees that V (x) − ℓ1 ≥ qb(x), for c + 2ε ≤ |x| ≤ c + 3ε, that implies
V (x) ≥ ℓ1 for some x such that qb(x) ≥ 0 and c + 2ε ≤ |x| ≤ c + 3ε. By
continuity of V , there exists a point x c ≤ |x| ≤ c+ 2ε with V (x) = ℓ1 = ℓ, as
required by Condition (2) of Theorem 2.4.
(3,4) (2.24) and (2.25) guarantee 〈∇V (x), f〉 > qa(x) for each x ∈ C such that
c ≤ |x| ≤ ρc and each f ∈ F (x), and V (g) − V (x) > qa(x) for each x ∈ D
such that c ≤ |x| ≤ ρc and each g ∈ G(x). Third inequality in (2.26) enforces
the constraint V (x) − ℓ2 ≤ qa(x) for each c ≤ |x| ≤ ρc, that is, if qa(x) ≤ 0
then V (x) ≤ ℓ2 < ℓ, for c ≤ |x| ≤ ρc. It follows that, for each c ≤ |x| ≤ ρc,
(i) V (x) > ℓ implies qa(x) > 0, that is, (ii) 〈∇V (x), f〉 > 0 for each x such that
V (x) > ℓ and each f ∈ F (x), and (iii) V (g) − V (x) > 0 for each x such that
V (x) > ℓ and each g ∈ g(x). It follows that Conditions (3) and (4) of Theorem
2.4 are satisfied.
(5,6) By an argument similar to points (5) and (6) of section 6.2.3, conditions
(5) and (6) of Theorem 2.4 respectively follow from the next to the last inequality
of (2.26) and from the fact C ∪D = R

n. �
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6.3 Proof of the Results in Chapter 3

6.3.1 Proof of Proposition 3.1

Monotonicity:
Consider a state y ∈ δ∗f (S,X0). From the definition of δ∗f , y ∈ δf (S, x) for some
x ∈ X0 ⊆ X1. Then, y ∈ δ∗f(S,X1). A similar argument can be repeated for δ∗b .

∪-continuity:

y ∈ δ∗f (S,∪iXi) ≡ y ∈ δ∗f(S, {x | ∃i, x ∈ Xi})
≡ y ∈

⋃

∃i, x∈Xi

δf (S, x)

≡ ∃i, ∃x ∈ Xi, y ∈ δf(S, x)

≡ ∃i, y ∈ δ∗f (S,Xi)

≡ y ∈ ∪iδ
∗
f(S,Xi).

(6.32)

A similar argument can be repeated for δ∗b . �
It is worth mentioning that ∩-continuity holds only for ω-chains of closed

subset of O.

Lemma 6.2 For any given ω-chain X0 ⊇ X1 ⊇ · · · ⊇ Xn ⊇ . . . of closed
subsets of O,

δ∗f(S,∩iXi) = ∩iδ
∗
f (S,Xi) and δ∗b (S,∩iXi) = ∩iδ

∗
b (S,Xi). (6.33)

Proof. (6.33) can be proved as follows.

y ∈ δ∗f(S,∩iXi) ≡ y ∈ δ∗f (S, {x | ∀i, x ∈ Xi})
≡ y ∈

⋃

∀i, x∈Xi

δf (S, x)

≡ y ∈ {δf (S, x) | ∃x, ∀i, x ∈ Xi}
≡ y ∈ {δf (S, x) | ∀i, ∃x, x ∈ Xi}
≡ ∀i, y ∈ δ∗f (S,Xi)

≡ y ∈ ∩iδ
∗
f (S,Xi).

(6.34)

where the fourth equivalence holds by the fact that for each convergent sequence
{xi} → x, x belongs to each set Xi. In fact, each Xi is closed and, for each
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i, Xi ⊇ Xi+1, therefore, x can be seen as the limit point of the sequence {xi}.
Consider now the set Xi, and take the subsequence {xj}j≥i,j∈ω ⊆ {xi}i∈ω.
{xj}j≥i converges to x and for each j ≥ i, xj belongs to Xi. Then x ∈ Xi by
the fact that Xi is closed. It follows that each sequence {xi} whose elements
satisfies ∀i, xi ∈ Xi, that is, {xi} is a witness of ∀i, ∃x, x ∈ Xi, converges to a
point x that belongs to each set Xi, that is, x is a witness of the predicate. The
converse is straightforward. A similar argument can be repeated for δ∗b . �

Note that, by monotonicity of δ∗f , ∪iδ
∗
f (S,Xi) ⊆ δ∗f (S,∪iXi) and ∩iδ

∗
f (S,Xi) ⊇

δ∗f (S,∩iXi), [7, Proposition 1.2.5]. The same holds for δ∗b .

6.3.2 Proof of Proposition 3.2

Reach(X0) ⊆ X0 ∪ δ∗f (O,Reach(X0)):
Suppose x ∈ Reach(X0) then, either x ∈ X0 or x /∈ X0. In this second case,
there exists a solution ξ to H such that ξ(0, 0) ∈ X0 and ξ(T, J) = x for
some (T, J) ∈ dom ξ. Moreover, ∀(t, j) ∈ dom ξ, ξ(t, j) belongs to Reach(X0).
The, the solution ξ reaches x either by jumping or by flowing. In the first
case, (T, J), (T, J − 1) ∈ dom ξ. Define ξ such that ξ(0, 0) = ξ(T, J − 1) and
ξ(0, 1) = ξ(T, J) = x. Then, ξ is a solution to H and ξ(0, 0) ∈ Reach(X0). From
the definition of δ∗f , it follows that x ∈ δ∗f (O,Reach(X0)). In the second case,

consider an interval [T0, T ] × {j} ⊆ dom ξ and define ξ(t, 0) = ξ(T0 + t, j) for
t ∈ [0, T − T0]. Then, ξ is a solution to H, ξ(0, 0) belongs to Reach(X0) and
ξ(T − T0, 0) = x. From the definition of δ∗f , x ∈ δ∗f (O,Reach(X0)).

Reach(X0) ⊇ X0 ∪ δ∗f (O,Reach(X0)):
Suppose x ∈ X0 ∪ δ∗f (O,Reach(X0)). If x ∈ X0 then x ∈ Reach(X0). If x ∈
δ∗f (O,Reach(X0)), from the definition of δ∗f , there exists a solution ξ1 to H such
that ξ1(0, 0) ∈ Reach(X0) and either (iA) ξ1(t, 0) = x for some (t, 0) ∈ dom ξ1,
or (iiA) ξ1(0, 1) = x for (0, 1) ∈ dom ξ1. From the definition of Reach(X0),
there exists a solution ξ2 to H such that ξ2(0, 0) ∈ X0 and ξ2(T, J) = ξ1(0, 0)
for some (T, J) in dom ξ2. Define now a hybrid arc ξ as follows: ξ(t, j) = ξ2(t, j),
for (t, j) ∈ dom ξ2 and t + j ≤ T + J , and either (iB) ξ(T + t, J) = ξ1(t, 0) or
(iiB) ξ(T, J + 1) = ξ1(0, 1), where we use (iB) if (iA) holds and (iiB) if (iiA)
holds. Then, ξ is a solution to H and either (iC) ξ(T + t, J) = x, for some
(T + t, J) ∈ dom ξ or (iiC) ξ(T, J + 1) = x. It follows that x ∈ Reach(X0).

Reach(X0) is the least fixpoint:
Consider the function λX.X0 ∪ δ∗f (O,X) : 2O → 2O, that maps each X ⊆ O
to X0 ∪ δ∗f(O,X). By monotonicity of δ∗f (O,X), λX.X0 ∪ δ∗f (O,X) is mono-
tonic, then the least fixpoint of the equation X = X0 ∪ δ∗f (O,X) exists and
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is unique, [7, Theorem 1.2.8], and can be computed by iterative application
of λX.X0 ∪ δ∗f (O,X) from the emptyset, [7, Theorem 1.2.11]. See also [144].

Indeed, µX.X0 ∪ δ∗f (X) =
⋃

i∈λ

(
λX.(X0 ∪ δ∗f (O,X))

)(i)∅, where λ is a suffi-
ciently large ordinal. We prove that Reach(X0) is the least fixpoint of X =
X0 ∪ δ∗f(O,X), by induction on the time-length of solutions ξ to H.
For a given solution ξ to H define ti = inf{t | (t, i) ∈ dom ξ}. Then,

– Base:
(
λX.(X0 ∪ δ∗f (O,X))

)
∅ = X0 and ξ(0, 0) ∈ X0.

– Induction: suppose that ∀j ≤ i, ∀(t, j) ∈ dom ξ, if t + j ≤ ti + i then

ξ(t, j) ∈
(
λX.(X0 ∪ δ∗f (O,X))

)(j+1)∅. It follows that,

1. if (ti, i+1) ∈ dom ξ, then ξ(ti, i+1) ∈ δf (O, ξ(ti, i)) ⊆ δ∗f (O, {ξ(ti, i)}) ⊆
δ∗f ((λX.(X0 ∪ δ∗f (O,X)))(i+1)∅) ⊆ (λX.(X0 ∪ δ∗f (O,X)))(i+2)∅;

2. if the interval [ti, ti + τ ] × {i} ⊆ dom ξ, then ∀0 ≤ τ ≤ ti+1 − ti,
ξ(ti + τ, i) ∈ δf (O, ξ(ti, i)) ⊆ δ∗f (O, {ξ(ti, i)}) ⊆ δ∗f (O, (λX.(X0 ∪
δ∗f (O,X)))(i+1)∅) ⊆ (λX.(X0 ∪ δ∗f (O,X)))(i+2)∅.

By induction, for each solution ξ to H with initial state in X0 and for any given
(t, i) ∈ dom ξ, t + i ≤ ti + i, ξ(t, i) ∈ (λX.(X0 ∪ δ∗f (O,X)))(i+1)∅. It follows

that Reach(X0) ⊆
⋃

i∈λ(λX.(X0 ∪ δ∗f (O,X)))(i)∅. But Reach(X0) is a fixpoint,
therefore it must be the least fixpoint. �

6.3.3 Proof of Proposition 3.3

Consider the function λX.δ∗f (O,X) : 2O → 2O that maps each set X ⊆ O to
δ∗f (O,X). Monotonicity of δ∗f in Proposition 3.1 guarantees that λX.δ∗f (O,X)
is a monotonic function. It is also ∪-continuous, that is,

λX.δ∗f (O,X) (∪iXi) = ∪i

(
λX.δ∗f (O,X)Xi

)
(6.35)

for any given ω-chain X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ . . . of subsets of O. For instance,

λX.δ∗f (O,X) (∪iXi) = λX.δ∗f (O,X)(∪iXi)

= δ∗f (O,∪iXi)

= ∪iδ
∗
f (O,Xi)

= ∪i

(
λX.δ∗f (O,X)Xi

)
(6.36)

Finally note that X0 ∪ δ∗f (O, ∅) =
(
λX.δ∗f (O,X)

)(0)
X0 = X0.

Therefore, by [7, Proposition 1.2.13] the fixpoint is Reach(X0) and by [7,
Theorem 1.2.14], the induction ends at ω. �
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6.3.4 Proof of Proposition 3.5.

Consider a solution ξ to H with initial condition ξ(0, 0) = x that satisfies the
semantics of U rop (ct,cj)ϕ2, that is,

(1) ∃(T, J) ∈ dom ξ, (T, J) rop (ct, cj), H, ξ(T, J) � ϕ2, and

(2) ∀(t, j) ∈ dom ξ, (t, j) ≤ (T, J), H, ξ(t, j) � ϕ1 ∨ ϕ2.

By Proposition 3.4, there exists a solution η =
[
ηT

x ηt ηj

]T
to Hext from

xext =
[
xT 0 0

]T
, such that dom η = dom ξ and for each (t, j) ∈ dom η,

ηx(t, j) = ξ(t, j). Then,

(1) ∃(T, J) ∈ dom η, (T, J) rop (ct, cj), Hext , η(T, J) � ϕ4. In fact, ηx = ξ
therefore exists a (T, J) ∈ dom η, (T, J) rop (ct, cj), such that ηx(T, J)
satisfies ϕ2. By Proposition 3.4, ηt(T, J) = T therefore ηt(T, J) rop ct,
ηj(T, J) = J therefore ηj(T, J) rop cj . Moreover,

(2) ∀(t, j) ∈ dom η, (t, j) ≤ (T, J), Hext , η(t, j) � ϕ3. In fact, for such (t, j),
ϕ3 does not define any conditions on ηt(t, j) and on ηj(t, j), while ηx(t, j) =
ξ(t, j) therefore it satisfies ϕ1 ∨ ϕ2.

It follows that a solution η to Hext with initial state η(0, 0) =
[
xT 0 0

]T

satisfies the semantics of ϕ3Uϕ4.

Consider now a solution η =
[
ηT

x ηt ηj

]T
to Hext with initial state

xext =
[
xT 0 0

]T
that satisfies the semantics of ϕ3Uϕ4, that is,

(1) ∃(T, J) ∈ dom η, (T, J) ≥ (0, 0), Hext , η(T, J) � ϕ4, and

(2) ∀(t, j) ∈ dom η, (t, j) ≤ (T, J), Hext , η(t, j) � ϕ3.

By Proposition 3.4, there exists a solution ξ to H from x such that dom ξ =
dom η and for each (t, j) ∈ dom ξ, ξ(t, j) = ηx(t, j). Then

(1) ∃(T, J) ∈ dom ξ such that (T, J) rop (ct, cj) and H, ξ(T, J) � ϕ2. In fact,
ξ = ηx therefore there exists a (T, J) ∈ dom ξ such that ξ(T, J) = ηx(T, J)
satisfies ϕ2, T = ηt(T, J) rop ct and J = ηj(T, J) rop cj . Moreover,

(2) ∀(t, j) ∈ dom ξ, (t, j) ≤ (T, J), H, ξ � ϕ1 ∨ ϕ2. In fact, for such (t, j),
ξ(t, j) = ηx(t, j) and ηx(t, j) satisfies ϕ1 ∨ ϕ2.
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It follows that a solution ξ to H with initial state ξ(0, 0) = x satisfies the
semantics of ϕ1U rop (ct,cj)ϕ2.

The equivalences in (3.19) follow from the one to one correspondence between
solutions to H from initial state x ∈ O and solutions to Hext from initial state[
xT 0 0

]T ∈ Oext , in Proposition 3.4. �

6.3.5 Proof of Proposition 3.6

J∃ϕ1Uϕ2KH ⊆ Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, J∃ϕ1Uϕ2KH).

Suppose that x ∈ J∃ϕ1Uϕ2KH then, either x ∈ Jϕ2KH or x /∈ Jϕ2KH. In this
second case, there exists a solution ξ to H with initial state ξ(0, 0) = x ∈ Jϕ1KH
that satisfies the semantics of ϕ1Uϕ2. Then ξ(0, 0) = x ∈ Jϕ1 ∨ ϕ2KH and, from
the definition of δ∗b , x ∈ δ∗b (Jϕ1 ∨ ϕ2KH, J∃ϕ1Uϕ2KH).

J∃ϕ1Uϕ2KH ⊇ Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, J∃ϕ1Uϕ2KH).

If x ∈ Jϕ2KH, then x ∈ J∃ϕ1Uϕ2KH. Suppose x ∈ δ∗b (Jϕ1 ∨ ϕ2KH, J∃ϕ1Uϕ2KH).
Then, from the semantics of δ∗b , there exists a solution ξ1 to H such that
ξ1(0, 0) = x ∈ Jϕ1 ∨ ϕ2KH and

– either (0, 1) ∈ dom ξ1, ξ1(0, 1) ∈ J∃ϕ1Uϕ2KH,

– or, for some value t ∈ R>0 such that [0, t] × {0} ∈ dom ξ1, ξ1(t, 0) ∈
J∃ϕ1Uϕ2KH, and ∀0 ≤ τ ≤ t, ξ1(τ, 0) ∈ J∃ϕ1 ∨ ϕ2KH.

Moreover, from the semantics of ϕ1Uϕ2, there exists a solution ξ2 to H that
begins either from the point ξ1(0, 1) or from the point ξ1(t, 0), that remains in
Jϕ1 ∨ ϕ2KH until it enters Jϕ2KH.

Consider now the hybrid arc ξ that coincides with solution ξ1, until ξ1 reaches
either the state ξ1(0, 1) or the state ξ1(t, 0) and, from that point, ξ coincides
with ξ2. Then, ξ is a solution to H with initial state ξ(0, 0) = x that satisfies
the semantics of ϕ1Uϕ2. It follows that x ∈ J∃ϕ1Uϕ2KH.

J∃ϕ1Uϕ2KH is the least fixpoint.

For any given x ∈ J∃ϕ1Uϕ2KH, suppose x ∈
(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)i∅
for some i ∈ ω. Then J∃ϕ1Uϕ2KH ⊆ ⋃

i∈ω

(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)i∅.
where the induction ends at ω by the fact that λX.Jϕ2KH∪δ∗b (Jϕ1 ∨ ϕ2KH, X) is
∪-continuous. But J∃ϕ1Uϕ2KH is a fixpoint, then it would be the least fixpoint.

Consider now x ∈ J∃ϕ1Uϕ2KH and consider the solution ξ to H from ξ(0, 0) =
x that satisfies the dynamics of ϕ1Uϕ2, that is,
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– ξ(T, J) ∈ Jϕ2KH for some (T, J) ∈ dom ξ,

– ξ(t, j) ∈ Jϕ1 ∨ ϕ2KH for all ∀(t, j) ∈ dom ξ, (t, j) ≤ (T, J).

Define also tj = inf{t | (t, j) ∈ dom ξ}.
Let us call yn = ξ(T, J), where n is an index in ω. From the semantics of

ϕ1Uϕ2,

yn ∈ Jϕ2KH ⊆ Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, ∅)
⊆
(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)
∅.

(6.37)

By computing δ∗b (Jϕ1 ∨ ϕ2KH, {yn}), one of the following two cases occurs:

(i) either ξ(T, J − 1) ∈ δ∗b (Jϕ1 ∨ ϕ2KH, {yn}),
(ii) or ξ(tJ , J) ∈ δ∗b (Jϕ1 ∨ ϕ2KH, {yn}).

Let us call yn−1 = ξ(T, J−1) if case (i) occurs and yn−1 = ξ(tJ , J) otherwise.
Then,

yn−1 ∈ δ∗b (Jϕ1 ∨ ϕ2KH, {yn}) ⊆ Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, Jϕ2KH)

⊆
(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)
Jϕ2KH

⊆
(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)2∅
(6.38)

By computing δ∗b (Jϕ1 ∨ ϕ2KH, {yn−1}), one of the following two cases occurs:

(i) either ξ(tJ−1, J − 1) ∈ δ∗b (Jϕ1 ∨ ϕ2KH, {yn}),
(ii) or ξ(tJ , J − 1) ∈ δ∗b (Jϕ1 ∨ ϕ2KH, {yn}).

By defining yn−2 = ξ(tJ−1, J − 1) if case (i) occurs and yn−2 = ξ(tJ , J − 1)
otherwise, we can use the same argument above to show that yn−2 belongs to(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)3∅.
In general, consider yn−m = ξ(t, j) for some (t, j) ∈ dom ξ, wherem < n, and

suppose yn−m ∈
(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)m+1∅. Then, define yn−(m+1)

either as ξ(tj , j), if (tj , j) ∈ dom ξ, or as ξ(t, j − 1)}, otherwise. From the
definition of δ∗b , we have that

{yn−(m+1)} ⊆ δ∗b (Jϕ1 ∨ ϕ2KH, {yn−m})
⊆ Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, {yn−m})
⊆ Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH

(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)m+1∅)
⊆
(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)m+2∅.
(6.39)
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Note that we explore backward the solution ξ by taking into account, at each
step, either the beginning (tj , j) of a flow interval [tj , t] × {j} ∈ dom ξ, or the
initial time j − 1 of a jump whose time domain is (tj , j − 1), (tj , j) ∈ dom ξ.
By the fact that ξ(T, J) belongs to Jϕ2KH for some finite (T, J) ∈ dom ξ, the
alternation of jumps and flows on ξ is finite and the number of jumps and of
flows intervals is lower than 2J + 1. Therefore, the backward exploration of ξ
is well-founded, requires no more that 2J + 1 steps and ends when ξ(0, 0) = x

is reached. It follows that, x ∈
(
λX.Jϕ2KH ∪ δ∗b (Jϕ1 ∨ ϕ2KH, X)

)n+1
, for some

n ∈ ω. �

6.3.6 Proof of Lemma 3.2

Each solution to H is complete therefore each solution to H as an unbounded
time domain, that is, each maximal solution to H is complete and the set of
complete solutions to H is a model.

[ J∀ϕ1Uϕ2KH ⊆ Jϕ2KH ∪ δ∗b(c, Jϕ1 ∨ ϕ2KH, J∀ϕ1Uϕ2KH) ]

Suppose x � ∀ϕ1Uϕ2 Then either x ∈ Jϕ2KH or x /∈ Jϕ2KH. For this second case,
Consider the whole set, say Ξ, of solutions ξ with initial condition in ξ(0, 0) = x:
Then,
∀ξ ∈ Ξ, ∃(t, j) ∈ ξ, ξ(t, j) ∈ Jϕ2KH, and
∀(τ, k) ≤ (t, j), if (τ, k) ∈ dom ξ then ξ(τ, k) ∈ Jϕ1 ∨ ϕ2KH
It follows that each of such a solution ξ ∈ Ξ can be divided in two parts and each
of such a part satisfies a well defined set of properties, as shown below. Consider
ξ ∈ Ξ and define two hybrid arc ξ1 and ξ2 as follows. Let t = max{t | (t, 0) ∈
dom ξ, t ≤ c}.

(i) If t 6= 0, then
∀τ ≤ t, ξ1(τ, 0) = ξ(τ, 0);
∀(τ, k) ≥ (t, 0) ξ2(τ − t, k) = ξ(τ, k)

(ii) If t = 0 then
ξ1(0, 0) = ξ(0, 0) and ξ1(0, 1) = ξ(0, 1) ;
∀(τ, k) ≥ (0, 1) ξ2(τ, k − 1) = ξ(τ, k)

In both cases ξ1 and ξ2 are solutions to H. Moreover, consider case (i). From
the assumption on x ∈ J∀ϕ1Uϕ2KH, it follows that

(ia) either ∃t ≤ t, y1 = ξ1(τ, 0) ∈ Jϕ2KH ⊆ J∀ϕ1Uϕ2KH, and ∀τ ≤ t, ξ1(τ, 0) ∈
Jϕ2 ∨ ϕ2KH;
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(ib) or y2 = ξ2(0, 0) ∈ J∀ϕ1Uϕ2KH, and ∀(t, 0) ∈ dom ξ1, ξ1(t, 0) ∈ Jϕ2 ∨ ϕ2KH.

For case (ii), it follows that

(iia) either y1 = ξ1(0, 1) ∈ Jϕ2KH ⊆ J∀ϕ1Uϕ2KH, and ξ1(0, 0) ∈ Jϕ2 ∨ ϕ2KH;

(iib) or y2 = ξ2(0, 0) ∈ J∀ϕ1Uϕ2KH, and ξ1(0, 0), ξ1(0, 1) ∈ Jϕ2 ∨ ϕ2KH.

Note that y2 ∈ J∀ϕ1Uϕ2KH can be justified by considering that for both (ib) y2 =
ξ(t, 0) and (iib) y2 = ξ(0, 1), the solution ξ did not reach Jϕ2KH yet. From the
assumption on x, each solution ξ ∈ Ξ from x satisfies the semantics of ϕ1Uϕ2.
Therefore, the solution ξ2 from y2 will necessarily reach Jϕ2KH, staying within
Jϕ2 ∨ ϕ2KH.

The analysis shown above can be successfully repeated on each solution ξ
in Ξ. Therefore, from x each solution ξ can be divided in two parts ξ1 and ξ2,
and the first part ξ1 is a solution to H from x that either flows for at most a c-
bounded interval of time, or jumps. In both cases ξ1 reaches J∀ϕ1Uϕ2KH staying

within the set Jϕ2 ∨ ϕ2KH. It follows that x ∈ δ
∗
b(c, Jϕ2 ∨ ϕ2KH, J∀ϕ1Uϕ2KH)

[ J∀ϕ1Uϕ2KH ⊇ Jϕ2KH ∪ δ∗b(c, Jϕ1 ∨ ϕ2KH, J∀ϕ1Uϕ2KH) ]

Take a state x ∈ Jϕ2KH ∪ δ∗b(c, Jϕ1 ∨ ϕ2KH, J∀ϕ1Uϕ2KH). Each solutions ξ to H
from x satisfies one of the following points.

– ξ(0, 0) ∈ Jϕ2KH;

– ∃(t, 0) ∈ domξ, t ≤ c, ξ(t, 0) ∈ J∀ϕ1Uϕ2KH, and ∀(τ, 0) ≤ (t, 0), ξ(t, 0) ∈
Jϕ1 ∨ ϕ2KH;

– (0, 1) ∈ domξ, ξ(0, 1) ∈ J∀ϕ1Uϕ2KH and ξ(0, 0) ∈ Jϕ1 ∨ ϕ2KH

Since this is true for each solution ξ to H from x, then x ∈ J∀ϕ1Uϕ2KH.

The proof that J∀ϕ1Uϕ2KH is the least fix point can developed by an analysis
similar to the one in Proof 6.3.5 (of Proposition 3.6).

6.3.7 Proof of Lemma 3.3

Each solution to H is complete therefore each solution to H as an unbounded
time domain, that is, each maximal solution to H is complete and the set of
complete solutions to H is a model.
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For any given set S,X ⊆ O and any constant c ∈ R>0, consider the definition
of δ

∗
b(c, S,X), that is,

δ
∗
b(c, S,X) = {x | ∀ξ solution to H with ξ(0, 0) = x,

either (0, 1) ∈ dom ξ, ξ(0, 1) ∈ X and x ∈ S ∪X,
or ∃(t,0)∈dom ξ, t ≤ c, ξ(t,0)∈X and ∀0 ≤τ≤ t, ξ(τ,0)∈S∪X}

Assume X finitely variable for each solution ξ to H. We claim that x /∈
δ
∗
b(c, S,X) if and only if x ∈ Q, where Q is defined as the union of the fol-

lowing four sets:

Q = A1 ∪A2 ∪B1 ∪B2

A1 = {x | ∃ξ solution to H, ξ(0,0)=x, ∃(0, j) ∈ dom ξ, j ≤ 1,

ξ(0, j) /∈ S∪X and ∀k ≤ j, ξ(0,k) /∈X}
A2 = {x | ∃ξ solution to H, ξ(0,0)=x, ∀(0, j) ∈ dom ξ, j ≤ 1, ξ(0, j) /∈ X}
B1 = {x | ∃ξ solution to H, ξ(0, 0) = x, ∃(t, 0) ∈ dom ξ, t ≤ c, such that

ξ(t, 0) /∈ S ∪X and ∀0 ≤ τ ≤ t, ξ(τ, 0) /∈ X}
B2 = {x | ∃ξ solution to H, ξ(0, 0)=x, ∀(t, 0)∈dom ξ, if t ≤ c then ξ(t, 0) /∈X}

(6.40)

[x ∈ Q then x /∈ δ
∗
b(c, S,X)]

Suppose x ∈ A1. Then, there exists a solution ξ to H with initial state ξ(0, 0) =

x /∈ X and ξ(0, 1) /∈ S ∪X . Therefore, ξ(0, 1) /∈ X that implies x /∈ δ
∗
b(c, S,X).

Suppose x ∈ A2. Then, there exists a solution ξ to H with initial state ξ(0, 0) =

x /∈ X and ξ(0, 1) /∈ X . Again, x /∈ δ
∗
b(c, S,X).

Suppose x ∈ B1, then there exists some (a, 0) ∈ dom ξ, (a, 0) ≤ (c, 0) such that
ξ(a, 0) /∈ S ∪X and ∀0 ≤ b ≤ a, ξ(b, 0) /∈ X . Then,

– suppose that for some t ∈ (a, c] (t, 0) ∈ dom ξ and ξ(t, 0) ∈ X . Then, the

definition of δ
∗
b(c, S,X) requires that ∀0 ≤ τ ≤ t, ξ(τ, 0) ∈ S ∪X . But for

a < t, ξ(a, 0) /∈ S ∪X .

– for any 0 ≤ t ≤ a, ξ(t, 0) /∈ X ;

It follows that x does not satisfy the requirements of the definition of δ
∗
b , there-

fore x does not belong to δ
∗
b(c, S,X). Finally, consider the case x ∈ B2. Then,

there exists a solution ξ to H such that for each (t, 0) ∈ domξ if t ≤ c then
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ξ(t, 0) /∈ X ( x ∈ B2). Therefore, from the definition of δ
∗
b(c, S,X), it cannot be

the case that x belongs to δ
∗
b(c, S,X).

[x /∈ δ
∗
b(c, S,X) then x ∈ Q]

Suppose x /∈ δ
∗
b(c, S,X). Then, there exists a solution ξ to H with initial state

ξ(0, 0) = x such that one of the following cases occurs:

(i) if ξ(0, 1) ∈ dom ξ, ξ(0, 1) ∈ X then x /∈ S ∪X ;

(ii) ∀(t, 0) ∈ dom ξ, if (t, 0) ≤ (c, 0) and ξ(t, 0) ∈ X then ∃(τ, 0) ≤ (t, 0),
ξ(τ, 0) /∈ S ∪X ;

(iii) ∀(t, 0) ∈ dom ξ, if (t, 0) ≤ (c, 0) then ξ(t, 0) /∈ X and ξ(t, 0) ∈ S

Case (i) is directly captured by A1 and A2. For instance, A1 captures the
solutions that begins with ξ(0, 0) /∈ S ∪ X , regardless to ξ(0, 1). A2 captures
the solutions ξ(0, 1) /∈ X and ξ(0, 0) ∈/∈ but ξ(0, 0) ∈ S, that A1 cannot catch.
For case (ii), define a = inf{t | ξ(t, 0) ∈ X}. Then, for each 0 ≤ t < a ξ(t, 0) /∈
X and either ξ(a, 0) ∈ X or, by finite variability assumption, there exists a
sufficiently small ε > 0 such that for each 0 < τ ≤ ε, ξ(a+ τ, 0) ∈ X .

– Consider the case ξ(a, 0) ∈ X . From (ii), there is (b, 0) < (a, 0) such that
ξ(b, 0) /∈ X ∪ S.

– Consider the case ξ(a + τ, 0) ∈ X , 0 < τ ≤ ε. From (ii), there is (b, 0) ≤
(a, 0) such that ξ(b, 0) /∈ X ∪ S.

– For both cases above, for each 0 ≤ t < a, ξ(t, 0) /∈ X .

It follows that ξ satisfies the conditions of the definition of B1.
Finally, case (iii) is captured by B2. Suppose that for each (t, 0) ∈ dom ξ, t ≤ c,
ξ(t, 0) /∈ X but ξ(t, 0) ∈ S. Then, ξ satisfies the the definition of B2.

[From Q to fixpoint ]

In what follows, we replace and and or connectives with ∧ and ∨.
We have shown above the equivalence between δ

∗
b(c, S,X) and R

n \ Q,
where Q is defined in Equation (6.40). Now, we use such a relation to rewrite

δ
∗
b(c, S,X) as a set of fixpoint expressions based on δ∗b (S,X). The definition

of Q uses several conditions on time variables. Therefore, we will use the the
extended hybrid system Hext from H (Section 3.4.2), to transform that time
constraints to state constraints.
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A1 = {x | ∃ξ solution to H, ξ(0,0)=x, ∃(0, j) ∈ dom ξ, j ≤ 1,

ξ(0, j) /∈ S∪X and ∀k ≤ j, ξ(0,k) /∈X}
= {x | ∃η solution to H, η(0,0)=

[
xT 0 0

]T
,

∃(T,J)∈dom η, η(T,J)∈(Rn \ (S ∪X)) × R
2 ∩ Jt = 0 ∧ j ≤ 1KHext

and ∀(τ, k) ≤ (T, J), η(τ,k)∈(Rn \X) × R
2}

= {x |
[
xT 0 0

]T∈ µZ.
(
(Rn \ (S ∪X)) × R

2 ∩ Jt = 0 ∧ j ≤ 1KHext

)
∪

∪ δ∗b ((Rn \X) × R
2, Z)}

A2 = {x | ∃ξ solution to H, ξ(0,0)=x, ∀(0, j) ∈ dom ξ, j ≤ 1, ξ(0, j) /∈ X}
= {x | ∃ξ solution to H, ξ(0,0)=x, ∃(0, j) ∈ dom ξ, j > 1,

ξ(0, j) ∈ O and ∀k ≤ j, ξ(0,k) /∈X}
= {x | ∃η solution to H, η(0,0)=

[
xT 0 0

]T
,

∃(T,J)∈dom η, η(T,J)∈Oext ∩ Jt = 0 ∧ j > 1KHext

and ∀(τ, k) ≤ (T, J), η(τ,k)∈(Rn \X) × R
2}

= {x |
[
xT 0 0

]T ∈ µZ.
(
Oext ∩ Jt = 0 ∧ j > 1KHext

)
∪

∪ δ∗b ((Rn \X) × R
2, Z)}

B1 = {x | ∃ξ solution to H, ξ(0, 0) = x, ∃(t, 0) ∈ dom ξ, t ≤ c,

ξ(t, 0) /∈ S ∪X and ∀0 ≤ τ ≤ t, ξ(τ, 0) /∈ X}
= {x | ∃η solution to Hext , η(0, 0) =

[
xT 0 0

]T
,

∃(T, J) ∈ dom η, η(T,J)∈(Rn \ (S ∪X)) × R
2 ∩ Jt ≤ c ∧ j=0KHext

and ∀(τ, k) ≤ (T, J), η(τ,k)∈(Rn \X) × R
2}

= {x |
[
xT 0 0

]T ∈ µZ.
(
(Rn \ (S ∪X)) × R

2 ∩ Jt ≤ c ∧ j = 0KHext

)
∪

∪ δ∗b ((Rn \X) × R
2, Z)}



204 CHAPTER 6. PROOFS

B2 = {x | ∃ξ solution to H, ξ(0, 0)=x, ∀(t, 0)∈dom ξ, if t ≤ c then ξ(t, 0) /∈X}
= {x | ∃ξ solution to H, ξ(0,0)=x, ∃(t, 0) ∈ dom ξ, t > c,

ξ(t, 0) ∈ O and ∀τ ≤ t, ξ(τ,0) /∈X}
= {x | ∃η solution to Hext , η(0, 0) =

[
xT 0 0

]T
,

∃(T, J) ∈ dom η, η(T,J)∈Oext ∩ Jt > c ∧ j=0KHext

and ∀(τ, k) ≤ (T, J), η(τ,k)∈(Rn \ (X)) × R
2}

= {x |
[
xT 0 0

]T ∈ µZ.
(
Oext ∩ Jt > c ∧ j = 0KHext

)
∪

∪ δ∗b ((Rn \X) × R
2, Z)}

Note that, for each set A1, A2, B1 and B2, the fixpoint in the last equivalence
can be justified by considering the definition of the formula ∃ϕ1Uϕ2 and by
looking at the equivalence in Equation (3.20),

The fixpoint characterization of δ
∗
b , with respect the extended hybrid system

Hext from H follows.

δ
∗
b(c, S,X) = R

n \ (A1 ∪A2 ∪B1 ∪B2)

= R
n \ {x |

[
xT 0 0

]T ∈ µZ.q(c, S,X) ∪ δ∗b ((Rn \X) × R
2, Z)}
(6.41)

where

q(c, S,X) =
(
(Rn \ (S ∪X)) × R

2 ∩ J(t ≤ c ∧ j = 0) ∨ (t = 0 ∧ j ≤ 1)KHext

)
∪

∪ J(t > c ∧ j = 0) ∨ (t = 0 ∧ j > 1)KHext
.

(6.42)

Note that each fixpoint characterization of A1, A2, B1 and B2 can be divided in
two parts. The left-part of each fixpoint involves a specific state predicate while
the right-part of each fixpoint computes δ∗b on ((Rn\X)×R

2, Z) ⊆ 2Oext×2Oext .
It follows that the union of A1, A2, B1 and B2 is equivalent to the union of each
left-part of their fixpoint characterization, that leads to q(c, S,X). �

Remark 6.1 [73, Page 30]. Finite variability is a key notion for the correctness
of the proof. To see this, consider Example 3.4, that is,

{
ξ(t, 0) ∈ X if t = 1

n , n ∈ ω,
ξ(t, 0) /∈ X otherwise

(6.43)
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Take S = Jx = 0K. Then, 0 /∈ δ
∗
b(S,X) but also 0 /∈ Q.

6.4 Proof of the Results in Chapter 4

6.4.1 Proof of Theorem 4.1

The main steps of the proof are the following. We first show in Section 6.4.1
that, for each initial states there exists a compact forward invariant set I(x0)
containing the origin where the trajectory is confined. Then we show in Sec-
tion 6.4.1 that the origin is the only equilibrium point in the set I(x0). Then,
to complete the proof of item 1, in Section 6.4.1 we show that there doesn’t
exist any periodic orbit in the set I(x0) so that, by [67, Theorem 18.1, page
66] (following a Bendixson-like approach), all trajectories necessarily converge
to the origin. Finally, in Section 6.4.1 we prove item 2 of the theorem.

Existence of the Forward Invariant Set I(x0)

Consider the following locally Lipschitz Lyapunov function:

V =






a1
x2

1

2
+
x2

2

2
+Mx1 if x1 ≥ 0

a1
x2

1

2
+
x2

2

2
−Mx1 if x1 ≤ 0.

Following the nonsmooth analysis in, e.g., [40] (indeed, V /∈ C1, so that we
cannot use gradients and derivatives in the usual sense), its generalized gradient
in x1 = 0 corresponds to the following set:

∇V0(x2) := co

{[
−M
x2

]
,

[
M
x2

]}

=

{[
(1 − 2α)M

x2

]
, α ∈ [0, 1]

}
,

and its generalized derivative along the system dynamics results in

V̇ ∈





−a2x
2
2 − x2(sat(kβ(x)) −M), if x1 > 0

−a2x
2
2 − x2(sat(kβ(x)) +M), if x1 < 0

∇V0(x2)
T

[
x2

−a2x2−sat(kβ(x))

]
, if x1 = 0,

(6.44)

where with a slight abuse of notation, ∇V0(x2)
Tw corresponds to the set {vTw, v ∈

∇V0(x2)}.
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Since k satisfies (4.3), then there exists s̄ > 0 such that k = M
η(s̄) > inf

s>0

M
η(s)

Therefore, by item 1 of Assumption 4.2 and since η(·) ∈ K,

|kβ(x)| ≥
∣∣∣∣
M

η(s̄)
η(|x|)

∣∣∣∣ ≥M, ∀|x| ≥ s̄, x1x2 ≥ 0. (6.45)

Therefore, the following bounded set

W := {x : |x| ≤ s̄} ∩ {x : x1x2 > 0} ⊂ B(0, s̄)

is characterized by the fact that any x outside W and in the (closed) first and
third quadrant will lead to (by (6.45)) |kβ(x)| ≥M , namely will cause the plant
input u to saturate.

Consider now the maximum of V (·) in W and at x0, namely v(x0) :=
max

x∈W∪{x0}
V (x), and choose the set I as the following sublevel set of V :

I(x0) := {x : V (x) ≤ v(x0)} ⊃ W
and note that by the radial unboundedness of V (·), the set I is necessarily
compact. Moreover, by definition of I(x0) and by item 1 of Assumption 4.2, the
input u is saturated for all x belonging to the (closed) first and third quadrants
(namely satisfying x1x2 ≥ 0) intersection with the closed complement of I(x0)
(denoted in the following by I(x0)c.

Then the following reasonings prove that V̇ ≤ 0 for all x ∈ I(x0)c, i.e. I(x0)
is a forward invariant set where the trajectory is confined (because x0 ∈ I(x0)
by definition):

– (2nd and 4th quadrants) if x1x2 ≤ 0, then kβ(x) could be any value,
therefore we only know that sat(kβ(x)) ∈ [−M,M ]. Based on this, the
three cases in (6.44) yield:

1. if x1 > 0, so that necessarily x2 ≤ 0, V̇ ≤ −x2(sat(kβ(x)) −M) =
−|x2||sat(kβ(x)) −M | ≤ 0 (both terms are negative);

2. if x1 < 0, so that necessarily x2 ≥ 0, V̇ ≤ −x2(sat(kβ(x)) +M) =
−|x2||sat(kβ(x)) +M | ≤ 0 (both terms are positive);

3. if x1 = 0, then, by definition of I(x0), sat(kβ(x)) ∈ {−M,M} for all
x ∈ I(x0)c ∩ {x1 = 0}. Moreover, also by item 1 of Assumption 4.2,
sat(kβ(x)) = M if x2 > 0 and sat(kβ(x)) = −M if x2 < 0. Therefore
the following bound holds:

V̇ ≤ max
α∈[0,1]

x2[(1 − 2α)M − sat(kβ(x))]

= |x2|M + |x2|(−M) = 0.
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– (1st and 3rd quadrants) if x1x2 > 0 and x ∈ I(x0)c ∩{x1 = 0}, once again
sat(kβ(x)) = M if x2 > 0 and sat(kβ(x)) = −M if x2 < 0, by definition
of I(x0) and by item 1 of Assumption 4.2. Then the first two cases in
(6.44) yield:

1. if x1 > 0, then V̇ ≤ −x2(sat(kβ(x)) −M) = 0

2. if x1 < 0, then V̇ ≤ −x2(sat(kβ(x)) +M) = 0.

Uniqueness of the Equilibrium Point

Since ẋ1 = x2 any equilibrium has to be on x2 = 0. By item 1 of Assumption 4.2
sat(kβ(x)) = 0 on the x1 axis if and only if x1 = 0, and has the same sign as
x1 otherwise. Hence on {x2 = 0}, ẋ2 = −a1x1 − sat(kβ(x)) 6= 0 if x1 6= 0. This
proves that x = 0 is the only equilibrium point.

Proof of Convergence Using Bendixson’s Criterion

Since the only equilibrium point is the origin, any trajectory not converging to
that point must converge to a periodic orbit contained in I(x0). Moreover, any
such a hypothetical periodic orbit must surround the origin because:

– no such an orbit can happen in a single quadrant, indeed the periodicity
of the orbit contradicts the property that in each quadrant ẋ1 = x2 is
monotone;

– the trajectory phase is decreasing on the coordinate axes as a matter of
fact (see, e.g., [87, §10.5]) the following results from writing the dynamics
in polar coordinates |x|2φ̇ = x2

2 − x1(−a1x1 − a2x2 − sat(kβ(x))), which
clearly implies that the phase φ increases on x1 = 0 and, by the property
of β(·) on the x2 = 0 axis, also implies that φ increases on x2 = 0.

Now, reasoning like in the proof of Bendixson criterion (see, e.g., [87, Lemma
2.2]), suppose by contradiction that there exists a periodic orbit γ including the
origin and let S be the surface surrounded by γ. Then

∫
γ
f2(x)dx1−f1(x)dx2 =

0, i.e. by Green’s theorem,
∫ ∫

S

(
∂f1
∂x1

+
∂f2
∂x2

)
dx1dx2 = 0. (6.46)

However, this identity cannot be possible under item 2 of Assumption 4.2 which
implies that any such an integral is necessarily strictly negative, as shown next
(see (6.48)).
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To suitably bound the integrand in (6.46), taking into account that sat(·)
and β(·) are locally Lipschitz functions, the following relations hold almost ev-
erywhere:

∂f1
∂x1

= 0

∂f2
∂x2

= −a2 −
∂

∂x2
sat(kβ(x))

=





−a2, if |kβ(x)| ≥M

−a2 − k
∂β(x)

∂x2
, if |kβ(x)| < M

therefore, for almost all x,

|kβ(x)| ≥M ⇒ ∂f1
∂x1

+
∂f2
∂x2

=−a2 ≤ 0

|kβ(x)| < M ⇒ ∂f1
∂x1

+
∂f2
∂x2

≤−a2 − k
∂β(x)

∂x2
≤ 0

(6.47)

Moreover, since the intersection of S with the set A (introduced in item 2 of
Assumption 4.2) is necessarily a set with positive measure, 1 then (6.47) and
item 2 of Assumption 4.2, together with the fact that a2 ≥ 0 by Assumption 4.1
(see also Remark 4.1), imply

∫ ∫

S

(
∂f1
∂x1

+
∂f2
∂x2

)
dx1dx2 < 0 (6.48)

which contradicts (6.46). Therefore, no periodic orbit γ exists. Since no periodic
trajectory exists in I(x0) and the origin is the only equilibrium point, by [67,
Theorem 18.1, page 66] (following a Bendixson-like approach), the trajectory
necessarily converges to the origin.

Proof of Item 2 of the Theorem

The two conditions at item 2 correspond to requiring strict positiveness of the
coefficients of the characteristic polynomial of the linearized system around the
origin. Therefore it is straightforward to conclude local exponential stability

1This is true because there exist points in A arbitrarily close to the origin and given any
point in A, one can find a small enough ball (which evidently has positive measure) around
that point completely contained in A.
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(LES) of the origin from those conditions. This, together with the global con-
vergence property proven above is sufficient (see, e.g., [149] or [90, pp. 68-72])
to prove global asymptotic and local exponential stability (GAS+LES). �

6.4.2 Proof of Theorem 4.2

The following lemma, which is a reformulation of [43, Lemma 1] (see also [77]),
will be useful for the proof of Theorem 4.2 and Theorem 4.3.

Lemma 6.3 Given any (magnitude) saturation function sat(·) : R
m → R

m,
define the deadzone function as dz(s) := s− sat(s). Then, for any v ∈ R

m and
any w ∈ R

m satisfying dz(w) = 0, the following bound holds:

dz(v)TU(dz(v) − v + w) ≤ 0,

where U is any positive definite diagonal matrix.

In the following Lemma we show a useful characteristic of the nonlinearity
satMR(·) described by (4.21)

Lemma 6.4 Given any pair of functions w1(·) : R → R
m, w2(·) : R → R

m and
any ǫ ∈ (0, 1), the following holds:

satMR(satMRǫ(w1) + satMR(1−ǫ)(w2)) = satMRǫ(w1) + satMR(1−ǫ)(w2). (6.49)

Moreover, (4.21) is L2 stable with finite gain not greater than
√

2, namely s ∈ L2

implies that ‖satMR(s)‖2 ≤
√

2‖s‖2.

Proof. Since decentralized saturations are considered, it is enough to prove the
case m = 1.
As for (6.49), since satMRǫ(w1) has magnitude and rate not exceeding Mǫ and
Rǫ, respectively, and similarly satMR(1−ǫ)(w2) has magnitude and rate not ex-
ceeding M(1 − ǫ) and R(1 − ǫ), respectively, the magnitude and rate of their
sum will not exceed M and R, respectively; hence, their sum will not be modi-
fied by satMR(·) since by [158, Lemma B.1, p. 145] if s : R → R

m is such that
|s(t)| ≤M and |ṡ(t)| ≤ R, ∀t ∈ R then satMR(s(t)) = s(t), ∀t ∈ R.
As for the bound ‖satMR(s)‖2 ≤

√
2‖s‖2 for s ∈ L2, let µ̇(t) = R sign(satM (s(t))−

µ(t)) and consider the storage function V (µ) = |µ|3
3 . It will now be shown

that V̇ (µ) < −µ2 + 2s2, from which the claim easily follows. Taking the time
derivative yields V̇ (µ) = −|µ|2sign(µ)Rsign(µ − satM (s)). If |µ| > |satM (s)|,



210 CHAPTER 6. PROOFS

then sign(µ − satM (s)) = sign(µ) and then V̇ (µ) = −|µ|2 ≤ −|µ|2 + 2|s|2.
On the other hand, if |µ| ≤ |satM (s)|, then V̇ (µ) ≤ |µ|2 ≤ −|µ|2 + 2|µ|2 ≤
−|µ|2 + 2|satM (s)|2 ≤ −|µ|2 + 2|s|2. �

The advantage in the interconnection between (4.22), (4.23) and (4.27) via
the equation (4.28) is illustrated by the following statement.

Lemma 6.5 For the closed-loop (4.22), (4.23), (4.27), (4.28) the following
holds.

1. If xaw(0) = 0, then 2 the controller state x̄c and output response ȳc co-
incides with the virtual response x̂c and ŷc produced by the unconstrained
closed-loop (4.22), (4.23), (4.24) from the same initial states and under
the action of the same external inputs r and d. Moreover, z̄aw = z̄ − ẑ.

2. If there exists a static feedback control law k(·) from xaw such that |k(xaw)|2 ≤
c|xaw|2 for some c > 0 and the following system

ẋaw = Axaw +BusatεMR(k(xaw)) +Buσ (6.50)

is locally (respectively, globally) L2 stable from σ to xaw, then the anti-
windup closed-loop (4.22), (4.23), (4.27), (4.28) with

v1 = satεMR(k(xaw)) (6.51)

is such that there exists a local (respectively, global) nonlinear L2 gain from[
dzM(1−ε)(û)

dzR(1−ε)( ˙̂u)

]
to z̄ − ẑ; namely as long as the unconstrained trajectory

does not spend infinite energy outside the (restricted) saturation limits,
then the actual output response z̄ converges in the L2 sense to the ideal
unconstrained output response ẑ

Proof. Item 1. The proof of this item is carried out along the usual lines with
the model recovery schemes (see also [147, 145, 162, 163, 14, 59] for similar
reasonings) so it is only sketched here. Writing the anti-windup closed-loop dy-
namics (4.22), (4.23), (4.27), (4.28) in the following coordinates: (xa, xc, xaw) =
(x − xaw, xc, xaw), the arising representation is in cascade form, where the
first subsystem comprising the states (xa, xc) coincides with the unconstrained
closed-loop dynamics (4.22), (4.23) and (4.24) and the second subsystem is
the anti-windup compensator (4.27), which is driven by the signal yc produced

2Similar to the results in [147], if xaw(0) 6= 0 then one experiences an extra transient at
startup, but the closed-loop properties remain unchanged.
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by the first subsystem. Due to this fact, the controller response coincides
with the unconstrained controller response, so that ȳc = ŷc = û. Moreover,
ẑ = za = z̄ − z̄aw.

Item 2. With the selection for u in (4.28) and with v1 as in (6.51), by Lemma
6.4 it is easily seen that:

u− yc = satMR(satMR(1−ε)(yc) + satMRε(v1)) − yc

= satMR(1−ε)(yc) + satMRε(v1) − yc

= dzMRε(yc) + satMRε(v1),

and then (4.27a) becomes (6.50) with σ = dzMR(1−ε)(ȳc) which is an L2 signal

if
[

dzM(1−ε)(û)

dzR(1−ε)( ˙̂u)

]
∈ L2.

Since ȳc = û and by item 1 of this lemma, z̄ − ẑ = z̄aw, then the result
follows from the L2 stability assumption on (6.50), the fact that

‖zaw‖2 ≤ |Cz | · ‖xaw‖2 + |Dzu| · ‖satMRε(k(xaw))‖2

the L2 stability of (4.21) and the fact that ‖k(xaw)‖2 ≤ c‖xaw‖2 since |k(xaw)| ≤
c|xaw|. �

Based on the preliminary statements in Lemma 6.5, it is possible to prove
Theorem 4.2 as follows.
Proof. Theorem 4.2.
Item 1. By Lemma 6.5, it is sufficient to prove that system (6.50) is globally L2

stable from σ to zaw. Since v1 = 0 and A is Hurwitz, then (6.50) corresponds
to a linear exponentially stable system under the action of an L2 disturbance.
Therefore the system has a global finite input/output L2 gain (see, e.g., [87,
Cor. 5.1]) and the result follows.

Item 2. Similar to the previous item, by relying on Lemma 6.5, we address
the local L2 stability of system (6.50). Since for small enough states xaw, the
stabilizing signal v1 remains below the saturation limits, then the origin of (6.50)
is locally exponentially stable. This implies local L2 stability from σ to zaw (see,
e.g., [87, Cor. 5.1]).

Item 3. Consider the Lyapunov function V = xT
awPxaw for system (6.50).

Applying a Schur complement (see, [24]) to (4.29c) and to (4.29d), we get,
respectively,

([K(A+BuK)]i)
T ([K(A+BuK)]i) ≤ ε2R2

iP,

[H ]Ti [H ]i ≤ ε2M2
i P,

(6.52)
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for i = 1, . . .m, which imply that in the set E(P, 1) := {xaw : V (xaw) ≤ 1} the
following bounds hold, respectively:

|εR−1K(A+BuK)xaw|∞ ≤ 1, (6.53a)

|εM−1Hxaw|∞ ≤ 1. (6.53b)

Using v1 = Kxaw, then for all xaw ∈ E(P, 1), the first condition in (6.53) implies
that satεR(v̇1) = v̇1, so that satεMR(v1) = satεM (v1). Moreover, the second
condition in (6.53) implies that satεM (Hxaw) = Hxaw and, by the generalized
sector condition in Lemma 6.3, we get for any positive definite diagonal matrix
UM :

dzεMR(Kxaw)TUM (dzεMR(Kxaw) − (K −H)xaw) ≤ 0, (6.54)

for all xaw ∈ E(P, 1).

Consider now the time derivative of V along the dynamics (6.50) with σ = 0.
Using (6.54) and defining q = dzεMR(Kxaw), we get for all xaw ∈ E(P, 1),

V̇ ≤ V̇ − 2qTUM (q − (K −H)xaw)

= xT
aw (He(P (A+BuK)xaw − 2PBuq)

− 2qTUM (q − (K −H)xaw)

=

[
xaw

q

]T

He

[
P (A+BuK) −PBu

UM (K −H) −UM

] [
xaw

q

]

< −2γxT
awPxaw = −2γV,

where we have used (4.29b) in the last step. Since by (4.29a), E(P, 1) ⊇ B(α),
then the bound above on V̇ implies that the origin of (6.50) is locally expo-
nentially stable with region of attraction including B(α). Similar to the proof
of item 2 local L2 stability of system (6.50) is guaranteed. Moreover, expo-
nential recovery trivially follows from the relation V̇ ≤ −2γV , which holds on
the invariant set E(P, 1) and implies that for xaw(0) in this set V (xaw(t)) ≤
e−2γtV (xaw(0)); denoting by λm and λM the minimum and maximum eigenval-

ues of the symmetric matrix P > 0, and taking into account that λm |xaw|22 ≤
V (xaw) ≤ λM |xaw|22 since V (xaw) = xT

awPxaw, the exponential decay of V

implies that |xaw(t)|2 ≤
√

λM

λm
e−γt |xaw(0)|2. �
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6.4.3 Proof of Proposition 4.1

Under Assumption 4.3, by [96, Lemma 2.7], for all ε1 > 0, there exists a unique
matrix P (ε1) > 0 that solves the equation

ATP (ε1) + P (ε1)A− P (ε1)BuB
T
u P (ε1) + ε1I = 0 (6.55)

Moreover, P (ε1) → 0 as ε1 → 0 and, by choosing K(ε1) = −BT
u P (ε1), we have

that A+BuK(ε1) is asymptotically stable for all ε1 > 0.
Consider (4.29a). For any given α, we can find ε1 small enough that guarantees
P (ε1) <

1
α .

Consider (4.29b). Take H(ε1) = K(ε1) and note that 2xTP (ε1)Buq ≤ 2ε22x
Tx+

2qT BT
u P (ε1)P (ε1)Bu

ǫ22
q. Then, consider (4.29b) multiplied on the right and on the

left by [x q]T , it follows that the right-hand side of (4.29b) is less then or equal
to

2xTQ1(ε1, ε2, γ)x+ 2qTQ2(ε1, ε2)q (6.56)

where Q1(ε1, ε2, γ) = P (ε1)A + P (ε1)BuK(ε1) + γI + ε22I and Q2(ε1, ε2) =
BT

u P (ε1)P (ε1)Bu

ǫ22
−UM By choosing γ and ε2 so that γ+ε22 < ε1, (6.55) guarantees

that Q1(ε1, ε2, γ) < 0. Moreover, by choosing UM >
BT

u P (ε1)P (ε1)Bu

ǫ22
we have

that Q2(ε1, ε2) < 0.
Finally, for each i, by applying the Schur complement to (4.29c), we have that
([K(ε1)(A + BuK(ε1))]i)

T ([K(ε1)(A + BuK(ε1))]i) ≤ ε2R2
iP (ε1) for a small

enough ε1. To see this, note that K(ε1) = −BT
u P (ε1) guarantees that the left-

hand side shrinks to zero faster than ε21 → 0, while P (ε1) goes to zero as ε1 → 0.
A similar argument can be used with (4.29d). �

6.4.4 Proof of Theorem 4.3

, The following Lemma will be used to prove Lemma 6.7.

Lemma 6.6 Given any pair v, y ∈ R and any ε ∈ (0, 1), there exists ǫ ∈ [ε, 2−ε]
such that the following holds:

satS(y + v) − y = satSǫ(v) + σ, (6.57)

where |σ| ≤ |2dzS(1−ε)(y)|

Proof. Let δ = 1 − ε. We have that

satS(y + v) − y = satS(satSδ(y) + v) − satSδ(y) + ω1 + ω2,
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with ω1 = satS(y + v) − satS(satSδ(y) + v) and ω2 = satSδ(y) − y. Hence
|ω1+ω2| ≤ |ω1|+|ω2| ≤ |dzSδ(y)| since |ω1| ≤ |satS(y+v)−satS(satSδ(y)+v)| ≤
|y+v−satSδ(y)−v| ≤ |dzSδ(y)| and |ω2| = |satSδ(y)−y| ≤ |dzSδ(y)|. Moreover,
there exists ǫ ∈ [ε, 2 − ε] such that

satS(satSδ(y) + v) − satSδ(y) = satSǫ(v) (6.58)

In fact, if |y| ≥ δ and yv ≥ 0 then (6.58) is satisfied by ǫ = ε and if |y| ≥ δ
and yv ≤ 0 then (6.58) is satisfied by ǫ = 2 − ε. It follows that for |y| < δ the
equation is satisfied by some ǫ ∈ (ε, 2 − ε). �

Similar to the case discussed in the previous section, the key properties of the
anti-windup scheme rely on the fact that the signal yaw keeps the controller well
behaved, while the action of the stabilizer v1 enforces the desired unconstrained
response recovery. This is formalized in the following lemma.

Lemma 6.7 For the closed-loop (4.22), (4.23), (4.30), (4.31) the following
holds.

1. If xaw(0) = 0 and δ(0) = yc(0), then 3 the controller state and output
response coincides with the virtual response produced by the unconstrained
closed-loop (4.22), (4.23), (4.24) from the same initial states and under
the action of the same external inputs r and d. Moreover, z̄aw = z̄ − ẑ.

2. If there exists a static feedback control law k(·) from
[ xaw

δaw

]
such that∣∣k(

[ xaw

δaw

]
)
∣∣
2
≤ c

∣∣[ xaw

δaw

]∣∣
2

for some c > 0 and for any function ǫ(·) : R →
R

m such that ε ≤ ǫi(t) for all t, i = 1, . . . ,m, the following system

ẋaw = Axaw +BusatMǫ(t)
(δaw) +BuσM , (6.59a)

δ̇aw = satRǫ(t)

(
k
([ xaw

δaw

]))
+ σR, (6.59b)

(withMǫ(t) := diag(M)ǫ(t)) is locally (respectively, globally) L2 stable from
(σM , σR) to (xaw, δaw), then the anti-windup closed-loop (4.22), (4.23),
(4.30), (4.31) with v1 = k

([ xaw

δ−yc

])
is such that there exists a local (re-

spectively, global) L2 gain from
[

dzM(1−ε)(û)

dzR(1−ε)( ˙̂u)

]
to z̄ − ẑ, namely as long

as the unconstrained trajectory does not spend infinite energy outside the
(restricted) saturation limits, then the actual output response z converges
in the L2 sense to the ideal unconstrained output response ẑ.

3As in [147], if the anti-windup compensation is initialized differently then one experiences
an extra transient at startup, but the closed-loop properties remain unchanged.



215

Proof. Item 1. The proof is a generalization of the proof of item 1 of Lemma 6.5.
The closed-loop dynamics in the coordinates (xa, xc, xaw, δ) = (x−xaw, xc, xaw, δ)
corresponds to a cascade representation where the first subsystem (whose state
is (xa, xc)) coincides with the unconstrained closed-loop dynamics (4.22), (4.23)
and (4.24) and the second subsystem is the anti-windup compensator (4.30),
which is driven by the two signals yc and yc,dot. Due to this fact, the con-
troller response coincides with the unconstrained controller response, so that
ȳc = ŷc = û. Moreover, ẑ = za = z̄ − z̄aw.

Item 2. Consider the dynamics (4.30) with the selection for u in (4.31), in
the coordinates (xaw, δaw) := (xaw, δ− yc) and with v1 = k

([ xaw

δ−yc

])
, namely in

the new coordinates v1 = k
([ xaw

δaw

])
:

ẋaw = Axaw +Bu(satM (ȳc + δaw) − ȳc) (6.60a)

δ̇aw = satR(ȳc,dot + v1) − ȳc,dot (6.60b)

zaw = Czxaw +Dzu(satM (yc + δaw) − yc) (6.60c)

By Lemma 6.6, (6.60) yields (6.59) with |σM | ≤ |2dzM(1−ε)(ȳc)|, |σR| ≤
|2dzR(1−ε)(ȳc,dot)|. Since ȳc = û and ȳc,dot = ˙̄yc = ˙̂u, and by item 1 of this
lemma, z̄ − ẑ = z̄aw, then the result follows from the L2 stability assumption
on (6.59), the fact that ‖zaw‖2 ≤ |Cz | · ‖xaw‖2 + |Dzu| · ‖satRε(k

([ xaw

δ−yc

])
)‖2,

and ‖k
([ xaw

δ−yc

])
‖2 ≤ c‖xaw‖2 since |k

([ xaw

δ−yc

])
| ≤ c|xaw|. �

Based on the preliminary statements in Lemmas 6.6 and 6.7, it is possible
to prove Theorem 4.3 as follows.

Proof. Theorem 4.3.
Item 1. By Lemma 6.7, it is sufficient to prove that system (6.59) with k

([ xaw

δ−yc

])
=

−Kδδaw is globally L2 stable from (σM , σR) to zaw. With that selection, the sec-
ond equation in (6.59) becomes δ̇aw = −satR(Kδδaw)+σR, which is well known
to have a global nonlinear gain from σR to δaw (a direct proof is obtained by a
trivial modification of the proof of item (iii) of [57, Lemma 1]). Then the first
equation in (6.59) is to an exponentially stable linear system driven by the two
L2 signals satM (δaw) and σM . Then xaw ∈ L2 and finally also zaw ∈ L2.

Item 2. Similar to the previous item, using Lemma 6.7, we address the
local L2 stability of system (6.59). Since for small enough states (xaw , δaw),
the stabilizing signal v1 remains below the saturation limits, then the origin
of (6.59) is locally exponentially stable. This implies local L2 stability from
(σM , σR) to zaw [87, Cor. 5.1].

Item 3. We first show that any solution to (4.33a), (4.33c), (4.34), guarantees
item 3. Then we show that any solution to (4.33) guarantees feasibility of (4.34).
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In the proof we actually disregard constraint (4.34b) because it is always feasible
for a large enough kmax (it will be used to determine numerically convenient
controller gains).

Consider the Lyapunov function V =
[ xaw

δaw

]T
P
[ xaw

δaw

]
for system (6.59),

where P = Q−1. Pre- and post- multiplying (4.33c) by the matrix [ P 0
0 1 ], we get

0 ≤
[
ε2SiP [H ]Ti
[H ]i 1

]
, i = 1, . . . , 2m, (6.61)

where H = XP . Using a Schur complement [24] on (6.61), we get [H ]Ti [H ]i ≤
ε2S2

i P, i = 1, . . . 2m, and then in E(P, 1) :=
{[ xaw

δaw

]
: V

([ xaw

δaw

])
≤ 1
}

it holds

that
∣∣εS−1H

[ xaw

δaw

]∣∣
∞ ≤ 1. The last inequality implies that for all

[ xaw

δaw

]
∈

E(P, 1), satεS

(
H
[ xaw

δaw

])
= H

[ xaw

δaw

]
and, by the generalized sector condition in

Lemma 6.3, for any positive definite diagonal matrix U :=
[

UM 0
0 UR

]
and for all[ xaw

δaw

]
∈ E(P, 1),

qTU

(
q −

([
0 Im
Kx Kδ

]
−H

)[
xaw

δaw

])
≤ 0, (6.62)

where q :=
[
dzT

M (δaw) dzT
R (Kxxaw +Kδδaw)

]T
.

Consider now the time derivative of V along the dynamics (6.59) with σM =
0 and σR = 0. Using (6.62), we get for all

[ xaw

δaw

]
∈ E(P, 1),

V̇ ≤ V̇ − 2qTU

(
q −

([
0 Im
Kx Kδ

]
+H

)[
xaw

δaw

])

=

[
xaw

δaw

]T

He

(
P

[
A B
Kx Kδ

])[
xaw

δaw

]

+ 2

[
xaw

δaw

]T

P

[
−B 0
0 −Im

]
q

− 2qTU

(
q −

([
0 Im
Kx Kδ

]
−H

)[
xaw

δaw

])

= wT He




P

[
A B
Kx Kδ

]
P

[
−B 0
0 −Im

]

U

([
0 Im
Kx Kδ

]
−H

)
−U


w

< −2γ

[
xaw

δaw

]T

P

[
xaw

δaw

]
= −2γV

([
xaw

δaw

])
,
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where w := [xT
aw δT

aw qT ]T and where the last step follows from (4.34a) after

pre- and post-multiplying by the matrix [ P 0
0 U ], with U =

[
WM 0

0 WR

]−1
(recall

that, by definition of H , XP = H).
Since by (4.33a), E(P, 1) ⊇ B(α), then the bound above on V̇ implies that the

origin of (6.59) is locally exponentially stable with region of attraction including
B(α). Similar to the proof of item 2 local L2 stability of system (6.59) is
guaranteed. Moreover, letting ξ :=

[ xaw

δaw

]
, exponential recovery follows from

V̇ ≤ −2γV , which holds on the invariant set E(P, 1) and implies that for ξ(0)
in this set V (ξ(t)) ≤ e−2γtV (ξ(0)); denoting by λm and λM the minimum and
maximum eigenvalues of the symmetric matrix P > 0, and taking into account
that λm|ξ|2 ≤ V (ξ) ≤ λM |ξ|2 since V (ξ) = ξTPξ, the exponential decay of V

implies that |ξ(t)| ≤
√

λM

λm
e−γt|ξ(0)|.

The proof of item 2 is completed by showing that any solution to (4.33)
guarantees feasibility of (4.34). Since (4.34b) is always feasible for a large enough
kmax, it is enough to show that any solution to (4.33) guarantees feasibility of
(4.34a). In particular, only (4.33b) will be necessary to this aim. To this aim,
it is useful to write (4.34a) as follows:

He(Φ0 + Y [Kx Kδ]Z
T ) < 0, (6.63)

where the matrices Φ0, Y and Z are easily derived from (4.34a). By the elimi-
nation lemma (see, e.g., [24, Sec. 2.6.2]) there exists a [Kx Kδ] satisfying (6.63)
if (and only if):

Y T
⊥ Φ0Y⊥ < 0, ZT

⊥Φ0Z⊥ < 0, (6.64)

where Y⊥ is an orthogonal complement of Y and Z⊥ is an orthogonal comple-
ment of Z. By choosing

Y⊥ =




In 0 0
0 Im 0
0 0 Im
0 −Im 0


 , Z⊥ =

[
0
I2m

]
,

after some computations (omitted due to space constraints) the second inequal-
ity in (6.64) becomes

[
WM 0

0 WR

]
> 0, which is always satisfied by assumption,

while the first inequality in (6.64) coincides with (4.33b).
Item 4. When X = 0 in (4.33), the reasonings of the previous item still

apply with the extra feature that the sector condition (6.62) is global (namely
it holds for all

[ xaw

δaw

]
). Hence, the results of the previous item hold globally. �
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6.5 Proof of the Results in Chapter 5

6.5.1 Proof of Theorem 5.1

Consider an input signal v : R≥0 → V such that ‖v‖2 is defined, and consider
a solution pair (ξ, v) = ((ξx, ξτ ), v) to the hybrid system (5.5), where v is the
hybrid signal lifted from v on dom ξ. By Lemma 5.1, dom v is unbounded.

Define the set T =
⋃

j [tj , tj + ρ] × {j} where for all j, tj is such that, for
each τ ∈ R>0, (tj − τ, j) /∈ dom ξ. Note that by time regularization, T ⊆ dom ξ
but T is not necessarily a hybrid time domain. It follows that ∀(t, j) ∈ dom ξ
such that (t, j) /∈ T we have ξτ (t, j) ≥ ρ, therefore

u(t, j)v(t, j) + ε1|v(t, j)|2 − ε2|u(t, j)|2 ≥ 0 (6.65)

where ε1 = ǫ1
1−ǫ1ǫ2

and ε2 = ǫ2
1−ǫ1ǫ2

. Therefore

∫ ∞

0

u(t)T v(t)dt =
∑

j

∫ tj+1

tj

u(t, j)T v(t, j)dt =

=
∑

j

(∫ tj+ρ

tj

u(t, j)T v(t, j)dt +

∫ tj+1

tj+ρ

u(t, j)T v(t, j)dt

)

≥
∑

j

(∫ tj+ρ

tj

u(t, j)T v(t, j)dt +

+

∫ tj+1

tj+ρ

−ε1|v(t, j)|2dt+

∫ tj+1

tj+ρ

ε2|u(t, j)|2dt
)

≥
∑

j

(∫ tj+ρ

tj

u(t, j)T v(t, j)dt− ε2|u(t, j)|2dt +

+

∫ tj+1

tj

−ε1|v(t, j)|2dt+

∫ tj+1

tj

ε2|u(t, j)|2dt
)
.

(6.66)

Consider now the continuous dynamics of xc in (5.5a). By Assumption 5.1, we
have

|ẋc| ≤ |f(xc) + g(xc, v)| ≤ Lf |xc| + Lg|v| (6.67)
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Then, for (t, j) ∈ [tj , tj + ρ] × {j} ⊆ T , we have

|u(t, j)| ≤ Lh

∫ t

tj

eLf (t−s)Lg|v(s, j)|ds

≤ Lh

∫ tj+ρ

tj

eLf(tj+ρ−s)Lg|v(s, j)|ds

≤ LhLg max{1, eLfρ}
∫ tj+ρ

tj

|v(s, j)|ds

(6.68)

Note that in (6.68) there is no dependence on the initial condition by the fact
that ξx(tj , j) = 0. It follows that

∫ tj+ρ

tj

|u(t, j)|2dt ≤
∫ tj+ρ

tj

L2
hL

2
g max{1, e2Lfρ}

(∫ tj+ρ

tj

|v(s, j)|ds
)2

dt

= ρL2
hL

2
g max{1, e2Lfρ}

(∫ tj+ρ

tj

|v(s, j)|ds
)2

dt

≤ ρ2L2
hL

2
g max{1, e2Lfρ}

∫ tj+ρ

tj

|v(s, j)|2ds

(6.69)

where we used Holder’s integral inequality [154, page 274] in the last step of
(6.69).

∫ tj+ρ

tj

u(t, j)T v(t, j)dt ≤ LhLg max{1, eLfρ}
(∫ tj+ρ

tj

|v(t, j)|dt
)2

≤ ρLhLg max{1, eLfρ}
∫ tj+ρ

tj

|v(t, j)|2dt
(6.70)

where, as above, the last inequality is obtained by using Holder’s integral in-
equality.

Define k(ρ) = ρLhLg max{1, ρeLfρ}. By (6.69), (6.70), we have that

∣∣∣∣∣

∫ tj+ρ

tj

u(t, j)T v(t, j)dt− ε2|u(t, j)|2dt
∣∣∣∣∣ ≤ k(ρ)(1 + ε2k(ρ))

∫ tj+ρ

tj

|v(t, j)|2dt

(6.71)
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Define now k(ρ) = k(ρ)(1 + ε2k(ρ)) then, from (6.66), we can say that

∫ ∞

0

u(t)T v(t)dt ≥
∑

j

(
−k(ρ)

∫ tj+ρ

tj

|v(t, j)|2dt +

+

∫ tj+1

tj

−ε1|v(t, j)|2dt+

∫ tj+1

tj

ε2|u(t, j)|2dt
)

≥ −
(
ε1 + k(ρ)

)∑

j

∫ tj+1

tj

|v(t, j)|2dt+
∑

j

∫ tj+1

tj

ε2|u(t, j)|2dt

= −
(
ε1 + k(ρ)

)
‖v(·)‖2

2 + ε2‖u(·)‖2
2

(6.72)

6.5.2 Proofs of Theorems 5.2 and 5.3.

System of equations (5.21), with C and D defined as in Section 5.2.2 or in
Section 5.2.3, and the function g continuous or asynchronous (Definition 5.1)
satisfies the basic assumptions of [62]. Therefore, the following result from [62]
can be used to prove Theorems 5.2, 5.3 and 5.4.

We denote with F (x, e) the right-hand side of (5.21a) and we denote with
G(x, e) the right-hand side of (5.21b).

Proposition 6.1 [62, Theorem 23]
For a system of equations (5.21), with C and D closed sets and g continuous or
asynchronous (Definition 5.1), if

〈∇V (x, e), F (x, e)〉 ≤ 0 for all x ∈ C \ {(0, 0)}
V (G(x, e)) − V (x, e) ≤ 0 for all x ∈ D \ {(0, 0)} (6.73)

then (x, e) = (0, 0) is stable. Moreover, if there exists a compact neighborhood K
of (x, e) = (0, 0) such that, for each µ > 0, no complete solutions to SN remain
in the set {(x, e) |V (x, e) = µ} ∩ K, then (x, e) = (0, 0) is pre-asymptotically
stable. Finally, (x, e) = (0, 0) is globally pre-asymptotically stable if K can be
arbitrarily large and the set {(x, e) |V (x, e) ≤ µ} is compact.

Proof. Theorem 5.2.
From the definition of C in (5.26a) and by condition (1) of the theorem,

〈∇V (x, e), F (x, e)〉 ≤ 0 for all (x, e) ∈ C

V (G(x, e)) − V (x, e) ≤ 0 for all (x, e) ∈ D.
(6.74)
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Moreover, (5.26) and condition (2) of the theorem guarantee that for each
(x, e) ∈ D, (x, g(x, e)) belongs to the interior of C or (x, g(x, e)) = (0, 0). For
the first case, it follows that there exists a compact interval, say [0, t], with
t ∈ R>0, in which the system can only flow.

Consider now a state (x, e) in C and such that V (x, e) = µ, for some µ ∈
R>0. By (5.26a), x 6= 0, then 〈∇V (x, e), F (x, e)〉 ≤ −ε|x|2. It follows that no
complete solutions to SN , from x 6= 0 remains in the set {(x, e) |V (x, e) = µ},
for any given µ > 0.

Suppose now (x, e) belongs to C but x = 0 and e 6= 0. By (5.21a), the
continuous dynamics of x is driven by ẋ = A12e. It follows that x(t) = 0 cannot
be a solution to SN in the interval t ∈ [0, t]. Therefore,

– if (x, e) is an interior point of C then there exist a time t ∈ [0, t] such that
x(t) 6= 0, from which 〈∇V (x(t), e(t)), F (x(t), e(t))〉 ≤ −ε|x(t)|2,

– if (x, e) is on the border of C two cases are possible: a jump occurs, that
forces the state of the system in the interior of C, or there exists a compact
interval [0, t] in which the system can flow. In such case, there exist a time
t ∈ [0, t] such that 〈∇V (x(t), e(t)), F (x(t), e(t))〉 ≤ −ε|x(t)|2.

It follows that, no complete solutions to SN , from x = 0 and e 6= 0 remains in
the set {(x, e) |V (x, e) = µ}, for any given µ > 0.

By Proposition 6.1, (x, e) = (0, 0) is global pre-asymptotically stable �

Proof. Theorem 5.3.
From (5.26a) and (1) of the theorem, (6.74) hold also for Theorem 5.3.

Suppose that (x, e) belongs to D and V (x, e) = µ, for some given µ > 0. By
(i), if e 6= 0 then V (G(x, e)) − V (x, e) ≤ −α(|e|) therefore no complete solutions
to SN , from e 6= 0 remains in the set {(x, e) |V (x, e) = µ}. Moreover, inequality
(5.27) guarantees that if x 6= 0 and e = 0 then (x, e) cannot belong to D. For
instance, let x 6= 0 and e = 0 then

−xTQx+ xTR11x+ xTR12e+ eTR22e =

= −xTQx+ xTR11x < −ε|x|2
(6.75)

therefore (x, e) belongs to the interior of C and the system flows only.
The analysis of the continuous dynamics of SN follows the line of the proof

of Theorem 5.2. It follows that no complete solutions to SN from (x, e) ∈ C
remains in the set {(x, e) |V (x, e) = µ}, for any given µ > 0. By Proposition
6.1, it follows that (x, e) = (0, 0) is global pre-asymptotically stable. �
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6.5.3 Proof of Theorem 5.4.

By (1) of Theorem 5.4, for all (x, e) ∈ D

V (G(x, e)) − V (x, e) < 0 if e 6= 0. (6.76)

From the definitions of Ci andC in (5.32) and (5.33a), we have that 〈∇V (x, e), F (x, e)〉
is equal to

= −xTQx+ xTR11x+ xTR12e+ eTR22e (6.77a)

≤ −xTQx+ xTR11x+K1|x||e| +K2e
Te (6.77b)

≤ −xTQx+ xTR11x+K1|x|
q∑

i=1

|ei| +K2

q∑

i=1

e2i (6.77c)

≤
q∑

i=1

(
−αix

TQx+αix
TR11x+K1|x||ei| +K2e

2
i

)
(6.77d)

≤
q∑

i=1

−αiε|x|2 ≤ −ε|x|2 for all (x, e) ∈ C. (6.77e)

The inequality between (6.77a) and (6.77b) follows from the definition of K1

and K2. The inequality between (6.77b) and (6.77c) follows from the fact that
|e| ≤ ∑q

i=1 |ei|, where ei is the ith component of e, for each i ∈ {1, . . . , q}.
(6.77d) follows from (6.77c) by

∑q
i=1 αi = 1. Finally, from Ci and C, the

argument of the sum in (6.77d) can be written as (6.77e). It follows that (6.73)
holds.

Suppose now (x, e) belongs to D and V (x, e) = µ, for some given µ > 0. If
e 6= 0 then (6.76) holds and no complete solutions to SN from e 6= 0 remains in
the set {(x, e) |V (x, e) = µ}. If x 6= 0 and e = 0 then for each i ∈ {1, . . . , q}

−αix
TQx+αix

TR11x+K1|x||ei| +K2e
2
i =

= −αix
TQx+ αix

TR11x < −αiε|x|2
(6.78)

where the last inequality follows from (5.27). It follows that (x, e) cannot belong
to D, it belongs to the interior of C and the system flows only.

The analysis of the continuous dynamics of SN follows the line of the proof
of Theorem 5.2. It follows that no complete solutions to SN from (x, e) ∈ C
remains in the set {(x, e) |V (x, e) = µ}, for any given µ > 0. By Proposition
6.1, it follows that (x, e) = (0, 0) is global pre-asymptotically stable. �
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6.5.4 Proof of Theorem 5.5.

We need the following definition.

Definition 6.1 For each p ∈ N, a function σ : R
p → R is said to be homoge-

neous with degree δ ∈ R if, for all z ∈ R
p and λ > 0, σ(λz) = λδσ(z).

From Theorem 5.2, 5.3 or 5.4 we know that
{

˙̂x = A11x̂+A12e
ė = A21x̂+A22e

(x̂, e) ∈ C (6.79a)

{
x̂+ = x̂
e+ = g(x̂, e)

(x̂, e) ∈ D (6.79b)

y = Hx̂ (6.79c)

is GpAS. Then, define z =

[
x̂
e

]
, A =

[
A11 A12

A21 A22

]
and G(z) =

[
x̂

g(x̂, e)

]
. From

the homogeneity of (6.79) (e.g. [153], continuous and discrete dynamics are
defined by linear vector field and C and D are cones) and from [32, Theorem
7.9] and [153, Theorem 2], there exists a function V : R

n × R
q → R≥0 that is

smooth on R
n × R

q \ {0} and homogeneous with degree δ ∈ R such that,

α1(|z|) ≤ V (z) ≤ α2(|z|) ∀z ∈ R
n × R

p (6.80a)

〈∇V (z), Az〉 ≤ −µV (z) ∀z ∈ C (6.80b)

V (G(z)) ≤ νV (z) ∀z ∈ D (6.80c)

where µ > 0, ν ∈ (0, 1) and α1, α2 ∈ K∞.
Consider δ = 2, then for each z, w ∈ R

n × R
p,

〈∇V (z), w〉 = lim
h→0

V (z + hw) − V (z)

h

= lim
h→0

V (|z| z
|z| + |z| h

|z|w) − V (|z| z
|z|)

|z| h
|z|

= lim
h→0

|z|2
|z|

V ( z
|z| + h

|z|w) − V ( z
|z|)

h
|z|

(6.81)

where the last equality is the result of the homogeneity of V . Since w is arbitrary,
for any z 6= 0, ∇V (z) = |z|∇V ( z

|z|). Since V is smooth, |∇V (z)| ≤ λ|z|, where

λ = max|z|=1 V (z). Note that α1(1)|z|2≤|z|2V ( z
|z|)≤α2(1)|z|2.
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With these tools we can now prove the global practical asymptotic stability
of (5.43). Consider γ ∈ R>0, γ ≪ 1 and take ℓ = α2(ρ + γρ), that implies,
{z | |z| ≤ ρ} ⊆ {z |V (z) < ℓ} and consider the compact set A = {z |V (z) ≤
ℓ} × {0}. We prove that A is globally pre-asymptotically stable for (5.43).
Define the candidate Lypunov function V (z, η) as follows.

V (z, η) =

{
V (z) − ℓ+ 1

2η
TPη V (z) ≥ ℓ

1
2η

TPη otherwise
(6.82)

where P is a positive definite symmetric matrix of dimension n×n. Note that V
is continuous in R

n ×R
q ×R

n, 0 in A and smooth for points (z, η) ∈ R
n+q ×R

n

such that V (z) 6= ℓ. It is locally Lipschitz for points (z, η) ∈ R
n+q × R

n such
that V (z) = ℓ. For such points, say (z, η), we consider the generalized gradient
(in the sense of Clarke) of V , that coincides with the convex hull of all limits of
sequences ∇V (zi, ηi) where (zi, ηi), i ∈ N, is any sequence converging to (z, η)
while avoiding an arbitrary set of measurement zero containing all the points at
which V is not differentiable [126].

Define B =

[
LH

−HLH

]
and consider (5.43a). The directional derivative of V

is less then or equal to




v1 = 〈∇V (z), Az +Bη〉 + ηTP (A− LH)η V (z) > ℓ
v2 = ηTP (A− LH)η V (z) < ℓ
v3 ∈ co{v1, v2} otherwise

By Assumption 5.3, ηTP (A−LH)η ≤ ηTQη, where Q is a negative definite
symmetric matrix of dimension n × n. Q will be defined below to guarantee
negativity of the derivative of V . (i) Consider the case z ∈ C.

v1 ≤ −µV (z) + λ|B||z||η| − ηTQη

≤
(
−µα1(1) + ε2

)
|z|2 +

(
λ|B|
ε2

− λmin(Q)

)
|η|2

v2 ≤ −ηTQη

Therefore v1 is strictly negative in {(z, η) | z ∈ C or |z| ≤ ρ} \ A for ε2 < µα1

and λmin(Q) > λ|B|
ε2 . v2 is strictly negative in {(z, η) | z ∈ C or |z| ≤ ρ} \ A by

the fact that, when η = 0, z ∈ C and V (z) ≤ ℓ imply z ∈ A. (ii) Consider
the case z /∈ C. Thus, |z| ≤ ρ. In this case, V (z) < ℓ therefore the directional
derivative of V is less then or equal to v2, that is, it is negative in {(z, η) | z ∈
C or |z| ≤ ρ} \ A.
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Consider now (5.43b). Then,

V (z+, η+) − V (z, η) ≤ (ν − 1)V (z) ≤ −(1 − ν)α1(1)|z|2

that is negative in {(z, η) | z ∈ D and |z| ≥ ρ} \ A by the fact that |z| ≥ ρ.
Then, by [126, Theorem 7.6] and [126, Corollary 7.7] the set A×{0} is globally
pre-asymptotically stable.

Note that A × {0} ⊆ α−1
1 (α2(ρ + γρ))B × {0}. By the fact that αi(s) =

|s|2αi(1), for i ∈ {1, 2}, it follows that α−1
1 (s) =

(
s

α1(1)

) 1
2

. Then, α−1
1 (α2(ρ +

γρ)) =
(

α2(1)
α1(1)

) 1
2

(ρ+ γρ), that is, γ = (1 + γ)
(

α2(1)
α1(1)

) 1
2

. �
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Model Recovery Anti-Windup, 127
MRAW, 128

Nontrivial solution, 26

Outer limit, 37
Outer semicontinuity, 33

Passivity, 150
Perturbed hybrid system, 42
Perturbed solution, 31
Pre-asymptotic stability, 45
Premodel, 84

Range of a function, 14
Reachable set, 26
Real numbers, 13
Regular hybrid system, 33

Scalar product, 13
Semantic function, 88
Sequential compactness of the solutions

space, 38
Set of solutions, 83
Solution to a hybrid system, 23
Stability, 45
Suffix-closure, 83
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Time-optimal feedback, 117
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Zeno solution, 26



228 CHAPTER 6. PROOFS



Bibliography

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and Computation, 104:2–34, 1993.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.
Hybrid Systems.

[3] R. Alur, C. Courcoubetis, T.A. Henzinger, and P. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, edi-
tors, Hybrid Systems, volume 736 of Lecture Notes in Computer Science,
pages 209–229. Springer, 1992.

[4] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

[5] R. Alur, T.A. Henzinger, and P. Ho. Automatic symbolic verification of
embedded systems. IEEE Transactions on Software Engineering, 22:181–
201, 1996.

[6] H. Anai and V. Weispfenning. Reach set computations using real quantifier
elimination. In HSCC ’01: Proceedings of the 4th International Workshop
on Hybrid Systems, pages 63–76, London, UK, 2001. Springer-Verlag.

[7] A. Arnold and D. Niwinski. Rudiments of µ-calculus. Elsevier Science
B.V., Netherlands, 2001.

[8] E. Asarin, T. Dang, and A. Girard. Reachability analysis of nonlinear
systems using conservative approximation. In In Oded Maler and Amir

229



230 CHAPTER 6. PROOFS

Pnueli, editors, Hybrid Systems: Computation and Control, LNCS 2623,
pages 20–35. Springer-Verlag, 2003.

[9] E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate reachability
analysis of piecewise-linear dynamical systems. In HSCC ’00: Proceedings
of the Third International Workshop on Hybrid Systems: Computation
and Control, pages 20–31, London, UK, 2000. Springer-Verlag.

[10] E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of dynami-
cal systems having piecewise-constant derivatives. Theoretical Computer
Science, 138(1):35–65, 1995. Hybrid Systems.

[11] M. Athans and P. L. Falb. Optimal control: an introduction to the theory
and its applications. McGraw-Hill, 1966.

[12] M. Badamchizadeh, S. Khanmohammadi, G. Alizadeh, A. Aghagolzadeh,
and G. Karimian. Using sum of squares decomposition for stability of
hybrid systems. IEICE Transactions, 90-A(11):2478–2487, 2007.

[13] C. Baier and J.P. Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[14] C. Barbu, S. Galeani, A.R. Teel, and L. Zaccarian. Nonlinear anti-windup
for manual flight control. International Journal of Control, 78(14):1111–
1129, September 2005.

[15] C. Barbu, R. Reginatto, A.R. Teel, and L. Zaccarian. Anti-windup for
exponentially unstable linear systems with inputs limited in magnitude
and rate. In American Control Conference, pages 1230–1234, Chicago
(IL), USA, June 2000.

[16] C. Barbu, R. Reginatto, A.R. Teel, and L. Zaccarian. Anti-windup for
exponentially unstable linear systems with rate and magnitude limits.
In V. Kapila and K. Grigoriadis, editors, Actuator Saturation Control,
chapter 1, pages 1–31. Marcel Dekker, 2002.

[17] A. Bateman and Z. Lin. An analysis and design method for linear systems
under nested saturation. Systems and Control Letters, 48:41–52, 2003.

[18] O. Beker, C.V. Hollot, and Y. Chait. Plant with an integrator: an ex-
ample of reset control overcoming limitations of linear feedback. IEEE
Transactions Automatic Control, 46:1797–1799, 2001.



231

[19] O. Beker, C.V. Hollot, Y. Chait, and H. Han. Fundamental properties of
reset control systems. Automatica, 40:905–915, 2004.

[20] J.M. Berg, K.D. Hammett, C.A. Schwartz, and S.S. Banda. An analysis
of the destabilizing effect of daisy chained rate-limited actuators. IEEE
Trans. on Control Systems Technology, 4(2):171–176, March 1996.

[21] J.-M. Biannic and S. Tarbouriech. Optimization and implementation of
dynamic anti-windup compensators with multiple saturations in flight
control systems. Control Engineering Practice, 17(6):703–713, 2009.

[22] P. Blackburn, J.F.A.K. van Benthem, and F. Wolter. Handbook of Modal
Logic, Volume 3 (Studies in Logic and Practical Reasoning). Elsevier
Science Inc., New York, NY, USA, 2006.

[23] F. Blanchini and C. Savorgnan. Stabilizability of switched linear systems
does not imply the existence of convex Lyapunov functions. Automatica,
44(4):1166 – 1170, 2008.

[24] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix In-
equalities in System and Control Theory. Society for Industrial an Applied
Mathematics, 1994.

[25] J.C. Bradfield. Verifying Temporal Properties of Systems. Birkhauser,
1992.

[26] J.C. Bradfield and C. Stirling. Local model checking for infinite state
spaces. Theoretical Computer Science, 96(1):157–174, 1992.

[27] M. Branicky. Multiple Lyapunov functions and other analysis tools for
switched and hybrid systems. IEEE Trans. Aut. Cont., 43(4):475–482,
1998.

[28] A. Bressan and B. Piccoli. A generic classification of time-optimal pla-
nar stabilizing feedbacks. SIAM Journal on Control and Optimization,
36(1):12–32, 1998.

[29] O. Brieger, M. Kerr, D. Leißling, I. Postlethwaite, J. Sofrony, and M.C.
Turner. Flight testing of a rate saturation compensation scheme on the
attas aircraft. Aerospace Science and Technology, 13(2-3):92–104, 2009.

[30] C. Cai and A.R. Teel. Characterizations of input-to-state stability for
hybrid systems. Systems & Control Letters, 58(1):47–53, 2009.



232 CHAPTER 6. PROOFS

[31] C. Cai, A.R. Teel, and R. Goebel. Smooth Lyapunov functions for hybrid
systems-Part I: Existence is equivalent to robustness. IEEE Transactions
on Automatic Control, 52(7):1264–1277, 2007.

[32] C. Cai, A.R. Teel, and R. Goebel. Smooth Lyapunov functions for hybrid
systems Part II:(pre) asymptotically stable compact sets. IEEE Transac-
tions on Automatic Control, 53(3):734–748, 2008.

[33] D. Carnevale, A.R. Teel, and D. Nešić. Further results on stability of
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