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A local structure result for line graphs of strong

quasi-graphical matrices

Nicola Apollonio∗ Massimiliano Caramia†

Abstract

Let A be a binary matrix which generates a regular matroid with no M∗(K3,3) minor and
let L(A) be the line graph of A, namely, the graph whose vertices correspond to the columns
of A and where there is an edge between two vertices if the supports of the corresponding
columns intersect. In this paper we prove that every vertex of L(A) has at most four neighbors
on every hole of L(A). This result generalizes a local structure result proved by Golumbic
and Jamison [Golumbic and Jamison, J. Comb. Theory Ser. B 38, 1985] for Edge-Path-Tree
graphs, that is line graphs of network matrices reduced modulo 2.

Keywords: Line graphs, regular matrices, wheels.

1 Introduction

An Edge-Path-Tree (EPT) matrix is a binary matrix whose columns are incidence vectors of
edge-sets of paths in a given tree referred to as the underlying tree of the matrix. EPT matrices
are fundamental combinatorial objects. After a deep result of Seymour [17], EPT matrices are
(essentially) the building blocks of regular matrices that is those binary matrices that can be
signed to become Totally Unimodular. Recall that a signing of a matrix A consists of multiplying
some of the entries of A by -1. The image of the signing is thus a {−1, 0, 1} matrix. A {−1, 0, 1}
matrix is totally unimodular if the absolute value of the determinant of each of its nonsingular
submatrices is 1. EPT matrices have a rich combinatorial structure and can be tough of as the
unsigned patterns (i.e., reduced modulo 2) of the well-known network matrices. A {−1, 0, 1}M×N

matrix is a network matrix if there exists a connected directed graph D = (V, M ∪N) admitting
a spanning tree T = (V, M) such that if Pj denotes the unique path connecting the endpoints of
edge j in T (for j ∈ N) then

ai,j =




−1 if arc i occurs in Pj in the forwarddirection

0 if arc i does not occur in Pj

1 if arc i occurs in Pj in the backwarddirection

the forward direction in Pj being the direction of j in the cycle obtained by adding j to Pj .
EPT matrices became even more popular after the seminal paper [8] on Edge-Path-Tree (EPT)
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graphs, defined as the line graphs of EPT matrices. The line graph of matrix A ∈ {0, 1}M×N ,
M and N being finite, is the graph L(A) with vertex set N and where j, j′ ∈ N are adjacent if
ai,j = ai,j′ = 1, for some i ∈ M (i.e., the supports of columns j and j′ intersect).

In [8] Golumbic and Jamison obtained a number of results for the class of EPT graphs. Among
them they proved that EPT graphs have polynomially many cliques and gave a characterization
of the holes of an EPT graph in terms of certain configurations called pies which we now briefly
describe.

Let G = L(A) be an EPT graph for some EPT matrix A ∈ {0, 1}M×N underlain by a tree T .
A GJ-pie—the prefix GJ stands for Golumbic and Jamison–in T with respect to a set J ⊆ N of
k elements is a star subgraph of T with k edges v0v1 . . . , v0vk, such that, for j = 1, . . . , k, each
slice {v0vj , v0vj+1} is contained in a different member of {Ãj | j ∈ J} where Ãj is the support
of column Aj of A and addition over indices is modulo k. Recall that the support of a vector
u ∈ {0, 1}M is the set ũ = {i ∈ M | ai,j = 1} ⊆ M and that a hole in a graph is a chordless cycle
of length at least four.

By relying on the notion of pie, Golumbic and Jamison proved:

Theorem 1 An EPT graph contains a hole if and only if it contains a pie

Corollary 1 Let C be a hole in an EPT graph G and let v ∈ V (G) \ V (C). Then v has at most
four neighbors on C.

Corollary 2 An EPT graph does not contain C̄k, k ≥ 7 as induced subgraph.

The main aim of this paper is to extend the above results to proper superclasses of EPT graphs.
After having defined a slightly more general notion of pie we show that Theorem 1 holds in the class
of column-odd-wheel-matrices. The reader is referred to the next section for the definition of the
various classes of matrices occurring in the paper. A simple applications of the result also clarifies
the containment relationships among subclasses of column-odd-wheel-free perfect matrices. The
result is then specialized (Section 4) to a sharper superclass of EPT graphs, namely, line graphs
of strong quasi-graphical-families, within which the above two corollaries hold as well. The proof
of the latter result contains ideas from [3].

1.1 Regular and related matrices

The bipartite graph of a matrix A ∈ {0, 1}M×N , is the bipartite graph B(A) whose color classes
are M and N and where two vertices i and j are adjacent if ai,j = 1. Conversely, with every
bipartite graph B with color classes M and N one can associate the binary matrix A(B) whose
rows and columns are indexed by M and N , respectively, and where ai,j = 1, i ∈ M , j ∈ N , if i
and j are adjacent in B. In a graph, a hole in a induced cycle of length at least four. In bipartite
graphs holes have even length thus we call a hole even if its length is divisible by four and odd
otherwise. A hole submatrix of A is a square submatrix A′ of order k ≥ 3 such that B(A′) is a
hole in B(A). The length of the hole is twice the order of A′. If the order of A is six then A′ is
said to be a triangle submatrix of A′.

Two binary matrices are GF (2)-equivalent if one arises from the other by a sequence of the
following operations: permuting rows, permuting columns and GF (2)-pivoting on a nonzero entry.
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Recall that pivoting A over GF (2) on a nonzero entry (the pivot element) means replacing

A =
(

1 a
b D

)
by Ã =

(
1 a
b D + ba

)

where the rows and columns of A have been permutated so that the pivot element is a1,1 ([6], p.
69, [15], p. 280). The operation of GF (2)-pivoting a matrix A ∈ {0, 1}M×N can be described in
terms of the bipartite graph B(A) as follows: if A′ is the result of GF (2)-pivoting on a nonzero
entry ai,j of A, then B(A′) results from B(A) by complementing the edges between N(i)\{j} and
N(j) \ {i}, where, for a vertex h of B(A), N(h) denotes the set of neighbors of h (see [5, 6]).

The following bipartite graphs (and the associated matrices) play an important role throughout
the rest of the paper:
—wheels: A wheel is a graph (C, l) consisting of a hole C (the rim) and a vertex l 6∈ V (C) (the
center) that has at least three neighbors on C; each edge of the wheel incident to l is called a
spoke. A wheel odd if it has an odd number of spokes; otherwise it is even. In this paper we
are mostly concerned with wheels that are bipartite graphs and, unless otherwise stated, when we
say wheel we mean a bipartite wheel. For any such wheel the rim has always an even number of
vertices and we say that it is complete if it has |C|/2 spokes, |C| being the order of C. A k-wheel
is a wheel with k-spokes. A k-wheel whose center is in the color class N is denoted by Wk(N).
Analogously, Wk(M) will denote a k-wheel whose center is in M , while Wk will always denote a
k-wheel regardless of the color class its center belongs to.
—3-path-configurations: an uv-3-path configuration (3PC(u, v)) is a bipartite graph consisting
of three internally vertex-disjoint uv-paths P1, P2 and P3 such that V (Pi)∪ V (Pj), i 6= j, induces
a chordless cycle and u and v are not adjacent. A 3-path configuration (3PC) is a 3PC(u, v) for
some u and v. Since 3PC(u, v) is a bipartite graph, the length of each of the three uv-paths is
odd or even accordingly to whether u and v belong to different color classes or to the same color
class, respectively. In the former case each path has length at least three and the 3PC is said to
be odd. In the latter case, if each path has length at least four, we say that the 3PC is even1. For
even 3PC’s we write 3PC(M) and 3PC(N) for those even 3PC(u, v) with u, v ∈ M and u, v ∈ N ,
respectively.

The two special matrices in (1) have odd wheels with three spokes as their bipartite represen-
tation. They are the Fano and the dual Fano matrix, respectively.

F7 =




1 1 1 0
1 0 1 1
1 1 0 1


 , F ∗7 =




1 1 1
1 1 0
0 1 1
1 0 1


 (1)

A graph G is H-free if G does not contain any induced subgraph isomorphic to H. A matrix
A ∈ {0, 1}M×N is column-odd-wheel-free if B(A) does not contain any Wk(N) as induced subgraph
for k odd. It is row-odd-wheel-free if B(A) does not contain any Wk(M) as induced subgraph for
k odd; it is odd-wheel-free if it does not contain any odd wheel as induced subgraph. Throughout
the rest of the paper we use the following concrete bicoloring for the graph B(A) of a matrix
A ∈ {0, 1}M×N : vertices in M are represented by empty circles while those in N by solid circles.
The class of column-odd-wheel-free matrices contains several interesting classes of matrices which

1We stress here that if H is a 3PC(u, v), with u and v belonging to the same color class, but u and v are linked
by a path of length two, then H must not be considered an even wheel.
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Figure 1: W3, complete W4(N), odd 3PC of the form 3PC(u, v) and even 3PC(N) of the form
3PC(u, v). Solid lines represent edges and dotted lines represent paths.

we are going to list. To this end recall first a {−1, 0, 1} matrix A is balanced if the sum of the
entries of each hole submatrix is divisible by 4. This notion, due to Truemper [18], generalizes
Berge’s notion of binary balanced matrix (see e.g [4]). It is well known that totally unimodular
matrices are balanced.

The following classes are proper subclasses of the class of column-odd-wheel-free matrices:

• balanceable matrices, i.e., those matrices admitting a balanced signing; these matrices have
a W2h+1(N)-free bipartite representation, h ∈ N, by a result of Truemper [18] asserting that
a binary matrix A is balanceable if and only if B(A) contains neither odd-wheels nor odd
3PC’s as induced subgraphs;

• regular matrices, i.e., those matrices admitting an unimodular signing; these matrices have
a W2h+1(N)-free bipartite representation, h ∈ N, because of Tutte’s characterization of
regular matrices (see e.g., [15]) asserting that a matrix is regular if and only if it cannot be
transformed into the matrix F ∗7 in (1) by permuting rows and columns, taking submatrices,
taking transpose and pivoting over GF (2); as matrices of the form A(W2h+1(N)) can be
GF (2)-pivoted into matrices containing F ∗7 as submatrix [5] (see also Lemma 2) and since
B(F ∗7 ) ∼= W3(N) (and B(F7) ∼= W3(M)), it follows that regular matrices are odd-wheel-free
for k odd. In particular, regular matrices are balanceable [5];

• EPT matrices; these matrices are regular because they can be signed to become network
matrices and such matrices are totally unimodular matrices (see e.g., [16] Vol. A, p. 213).

There is another interesting class of matrices which is properly sandwiched between the class of
EPT matrices and the class of regular matrices. Such a class, which is our main concern, is defined
as the class of those regular matrices that cannot be transformed into the following matrix

H3,3 =




1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1



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by permuting rows and columns, taking submatrices and pivoting over GF (2). Any such matrix
will be referred to as strongly-quasi-graphical. It can be seen [2, 3] that A is strongly quasi-
graphical if and only if matrix [Im|A], Im being the identity matrix of order m, generates a binary
regular matroid with no M∗(K3,3) minor (see Sections 3.3, 4 and the references cited therein for
some background). Moreover, strongly quasi-graphical matrices form a proper subclass of the class
of quasi-graphical matrices defined as those balanceable matrices whose bipartite representation
contains neither Wk(N) for k ≥ 4, k even, nor even 3PC(N) [3]. This explains why strongly
graphical families are so called: quasi-graphical because they generalize EPT matrices, namely,
graphical objects, strongly because they are more than quasi-graphical in that the class is closed
under GF (2)-pivoting.

2 Holes in column-odd-wheel-free matrices

Our results strongly rely upon an appropriate extension of the notion of pie introduced in [8] for
EPT graphs. Pies can be viewed natural generalization to families of sets of the notion of circuit
in a graph. For j ∈ N , let Aj denote the j-th column of A ∈ {0, 1}M×N . For J ⊆ N , AJ is
the submatrix of A obtained by deleting the column whose index is not in J . A pie in A is a
submatrix of the form AJ for some J ⊆ N , |J | = k ≥ 3, such that

(a) for some permutation (j1, . . . , jk) of J one has Ãjl ∩ Ãjl+1 6= ∅ and Ãjh ∩ Ãjl = ∅ if |l− h| 6∈
{1, k − 1}, (addition over indices is modulo k);

(b) if k = 3 then ∩j∈J Ãj = ∅.

Two columns (members) Ah and Al (Ãh and Ãl) of a pie are consecutive if Ãh ∩ Ãl 6= ∅. The
number k is the size of the pie; The pie is odd if k is odd and even otherwise. Remark that if AJ

is a pie in A then each i ∈ ∪J Ãj occurs in at most two members of the pie. Also notice that if A
contains a pie then B(A) contains a hole. On the other hand B(A) might contain hole while A
does not contain any pie: for instance F ∗7 is such. A set is called odd if it has odd cardinality.

Theorem 2 Let A be a column-odd-wheel-free matrix and let C be an odd hole in B(A). Then,
for some odd K ⊆ V (C) ∩ J , AK in an odd-pie in A.

Proof. Let C be a minimum size counterexample with V (C) = I ∪ J , I ⊆ M , J ⊆ N . Possibly
after renumbering, we may suppose that J = {1, 2, . . . , k} and that Ah and Aj are consecutive if
and only if |h − j| ∈ {1, k − 1}. Since AJ is not a pie in A there is some i ∈ M such that the
corresponding row intersects more than two columns. Thus J∗ = {j ∈ J | i ∈ Ãj} is nonempty
and contains at least three indices. Therefore, |J∗| ≥ 3 and J∗ = J1 ∪ . . . ∪ Jt, for some disjoint
intervals of J∗. Without loss of generality 1 ∈ J1 and k 6∈ Jt. Let K1, . . .Kt, be the intervals
factorizing J \ J∗. We claim that Kl is odd for at least one l ∈ {1, . . . , t}. Suppose that all of the
Kl’s are even. Thus |J∗| as the same parity as k and hence it is odd, k being odd. Therefore i has
an odd number of neighbors on C and V (C)∪{i} induces an odd wheel in B(A). A contradiction.
Consequently Kl is odd for some l ∈ {1, . . . , t}. Let El be the set of the neighbors of the vertices in
Kl on C, and let i′ and i′′ be the two vertices of El having exactly one neighbor in Kl. Moreover,
Let j′ and j′′ be the unique neighbors of i′ and i′′, respectively, outside Kl. Thus El∪Kl∪{j′, j′′}
induces a subpath P of C with j′, j′′ ∈ J∗. The neighbors of i on P are j′ and j′′. Hence V (P )∪{i}
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induces an odd hole C ′ in B(A) of size 2(|Kl| + 2) ≤ 2(|J \ J∗| + 2) < 2k, (|J∗| being odd and
greater than 1). Since Kl = V (C ′) ∩ N it follows that AJ ′ is not a pie for any odd J ′ ⊆ Kl

(because C is a counterexample). Hence C ′ is still a counterexample contradicting the minimality
of C. 2

Let A′ be a hole submatrix of A ∈ {0, 1}M×N and let J ′ ⊆ N be the index set of the columns of
A′. We say that A′ is minimal if AJ′ contains no hole matrix of smaller order.

Remark 1 Let A be a column-odd-wheel-free matrix and let C = B(A′) be the bipartite graph of a
minimal hole submatrix and let J ′ be the index set of the columns of A′. By the proof of Theorem
2, either AJ∩V (C) is a pie or B(AJ∩V (C)) contains a complete even wheel as subgraph whose rim
is C.

Corollary 3 Let A be a column-odd-wheel-free matrix and let G = L(A). If H is a hole in G
then AV (H) is a pie in A.

Proof. If H is a hole in L(A) then A contains a hole submatrix A′. Moreover, A′ is minimal
because H is chordless. Clearly the set of columns of A′ is V (H). Let C = B(A′). Thus
V (C)∩N = V (H), N being the index set of the columns of A. In view of Remark 1, either AV (H)

is a pie in A or, for some i ∈ I, B(AV (H)) contains a complete even wheel (C, i). In the latter case
since i ∈ ∩j∈V (H)Ãj , H cannot be a hole in G, V (H) being actually a clique in G. 2

3 Some Application

In this section we exploit the preceding observations to give extensions a new proofs of known
results for EPT matrices and EPT graphs.

3.1 Perfection of column-odd-wheel-free matrices

For w ∈ ZN
+ let us associate with A ∈ {0, 1}M×N the following pair of dual linear programs:

max{wx | Ax ≤ 1, x ≥ 0} = min{1y | yA ≥ w, y ≥ 0} (2)

The polytope P (A) on the left hand side of (2) is referred to as the fractional packing polyhedron
of A. A binary matrix A is perfect if its fractional packing polyhedron is integral, i.e., has integral
vertices only. By a Theorem of Lovász (see e.g., [16]), A is perfect if and only the minimization
problem on the right hand of (2) has an integral optimal solution for any choice of w ∈ ZN

+ (i.e,
the defining system of P (A) is Totally Dual Integral).

A {0, 1}-matrix is totally balanced if A does not contain any hole matrix. Let N, B, TB and U
denote the classes of perfect, balanced, totally balanced and totally unimodular binary matrices,
respectively. It is well known (see e.g., [16]) that U ⊆ B ⊆ N and that TB ⊆ B ⊆ N. In
general all inclusions are strict; moreover, TB and U are in general inclusionwise incomparable
classes. Remark that the class of perfect matrices is denoted by N (rather than by P) because
the hypergraph defined by identifying the columns of a perfect binary matrix with their supports
is a Normal hypergraph (see e.g., [4], [16]).

Corollary 4 Let A be a column-odd-wheel-free binary matrix. Then A is perfect if and only if it
is balanced.
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Proof. The if part is trivial. Let us prove that a perfect column-odd-wheel-free matrix is
balanced. No perfect column-odd-wheel-free matrix A can contain an odd pie AJ for some J ⊆ N
where, possibly after renumbering, Ah and Aj are consecutive if and only if |h − j| ∈ {1, k − 1}.
Indeed, by letting xj = 1/2, for j ∈ {1, . . . , k} and xj = 0 for N \J , one defines a feasible fractional
solution in the polyhedron of (2) whose value is k/2. By choosing ij ∈ Ãj ∩ Ãj+1, (addition over
indices is modulo k) and by letting yij = 1/2 if j ∈ {1, . . . k} and yi = 0 for i ∈ M − {i1, . . . , ik},
one defines a feasible fractional dual solution whose value is k/2. Hence A cannot be perfect,
k being odd. Thus, in view of Theorem 2, if A is perfect column-odd-wheel-free matrix then A
cannot contain odd hole submatrices, otherwise B(A) would contain odd holes and thus A odd
pies. Hence A is balanced and the only if part is established. 2

Balancedeness is a self-dual property. Therefore as the transpose of balanced matrix is balanced as
well and the transpose of a column-odd-wheel-free matrix is a row-odd-wheel-free matrix, Corollary
4 implies:

Corollary 5 Let A be a row-odd-wheel-free binary matrix. Then A is perfect family if and only
if it is balanced.

Corollary 6 Within the class of regular matrices one has N = B = U ⊆ TB. In particular a
regular matrix is perfect if and only if it does not contain odd pies, while if it is totally balanced
then it does not contain any pie.

Proof. Every balanced signing of a regular matrix is totally unimodular ([5, 6]). In particular,
if a regular matrix is balanced then it is totally unimodular. Hence the thesis follows by Corollary
4 and from the inclusion TB ⊆ B. 2

Remark 2 Observe that being pie-free is only a necessary condition for a matrix A being totally
balanced. The complete bipartite wheel with four spokes correspond to a matrix whose transpose
contains no pies. However it contains a hole submatrix.

3.2 Hellyness

A family of subsets of a given ground set is Helly (or has the Helly Property) if pairwise intersecting
members have nonempty intersection. Let A ∈ {0, 1}M×N be a binary matrix and Ã = (Ãj | j ∈ N)
be the family of the supports of the columns of A (these are subsets of M). We say that A is
Helly if so is Ã. The transpose of A is denoted by A∗ and the family Ã∗ is called the dual family
(of A). Matrices whose dual is Helly are called conformal. A matrix A is strong Helly (or has the
strong Helly property) if every of its submatrices is Helly. Strong Helly matrices are characterized
by the following result of Ryser [14] (see also [10, 13] for more results).

Theorem 3 (Ryser [14]) A is strong Helly if and only if it does not contain any triangle sub-
matrix.

As a further corollary of Theorem 2 we collect below some straightforward consequences for
the Helly Property (more results can be found in [2]). After Corollary 9 and subsequent Remark
4 (see Section 4) these imply hellyness of families of arc sets of directed paths in a directed tree
as proved by Monma and Wey [11] and the conformality of their dual as proved by Gutierrez and
Meidanis [9].

7



Corollary 7 Let A be a column-odd-wheel-free matrix. Then the following statement are equiva-
lent:

(1) A is Helly;

(2) A does not contain 3-pies;

(3) A is strong Helly.

If in addition A is regular then

(4) A is Helly if and only if so is A∗.

Proof. ((1)⇒ (2)). 3-pies are non-Helly families. ((3)⇒ (1)). trivial. ((2)⇒ (3)) By Theorem 2
A does not contain any triangle submatrix hence the result follows by Theorem 3. If A is regular
then both A and A∗ are column-odd-wheel-free matrices. Hence (4) follows from the first part. 2

Remark 3 Matrix F7 is a column-odd-wheel-free matrix free which is conformal (its transpose is
F ∗7 which is Helly) but not Helly.

3.3 Holes in EPT graphs and Pies in matrices

We shall prove that notion of pie and GJ-pie are equivalent. To be consistent with the aim of
the paper we give a “vertex-free” proof of this fact namely, a proof which uses only the graphic
matroid associated with an EPT matrix (the reader is referred to [12, 19, 20] for the elementary
background in matroid theory we need in this paper. We follow Section 7 and Section 8 of [6]
and Chapter 6 of [20] which contain all what we need here). Recall that with every binary matrix
A ∈ {0, 1}M×N with m = |M | rows one can associate the binary matroid M(A) generated on
M ∪ N by the columns of [Im, A], Im being the identity matrix of order m. Such a matroid is
defined as the matroid whose circuits are the minimal supports of the vectors in the nullspace of
[Im, A], [Im, A] being a viewed as a matrix over GF (2). If A and A′ are GF (2)-equivalent matrices
then they generate isomorphic binary matroids and, conversely, if A and A′ have the same order
and M(A) and M(A′) are isomorphic (written M(A) ∼= M(A′)) then A and A′ are GF (2)-
equivalent. Isomorphism between two binary matroids is meant as the isomorphism between the
binary spaces generated by them. A graphic matroid is the binary matroid M(A), where A is
some EPT matrix [7]. Given a graph G and one of its spanning forest T , the EPT matrix of G
with respect to T is the binary matrix AG,T whose columns are indexed by N = E(G) − E(T )
and for any j ∈ E(G) − E(T ), Aj

G,T is incidence vector of the unique path in T connecting the
endpoints of j. The cycle matroid of a graph G is the graphic matroid generated by M(AG,T ) for
some spanning forest T of G. While isomorphic graphs (in the graphical theoretical sense) have
isomorphic graphic matroids (in the matroid theoretical sense) the converse is not true in general.
Whitney’s 2-isomorphism Theorem describes when such a converse statement is true. To state it
precisely we shall describe the operations of vertex identification and twisting. We follow chapter
6.1 of [20]. Recall first that if U is a subsets of vertices of a graph G the graph G − U is the
graph induced by V (G) \ U . If U is the singleton {u} we write as customary G − u in place of
G− {u}. Let G1 and G2 be two disjoint graphs and let v1 ∈ V (G1) and v2 ∈ V (G2). The graph
G′ obtained by identifying v1 and v2 as a new vertex v 6∈ V (G1)∪V (G2)) is the graph with vertex
set (V (G1) \ {v1}) ∪ (V (G1) \ {v1}) ∪ {v} and edge set E(G1 − v1) ∪ E(G2 − v2) ∪ {uv | uv1 ∈
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E(G1) for some u ∈ V (G1)} ∪ {uv | uv2 ∈ E(G2) for some u ∈ V (G2)}. A loopless 2-connected
graph is block. Let G be a block and u, v ∈ V (G) be such that {u, v} is a vertex cut and let G1

and G2 be the connected components arising after the removal of u and v. The graph obtained
by twisting at u and v is the graph defined as follows.

– Let G′1 be the graph induced in G by V (G1) ∪ {u, v}, with vertex u and v renamed by u1

and v1, respectively;

– if u and v induce an edge of G let G′2 be the graph induced in G by V (G1) ∪ {u, v} with
edge uv removed and u and v renamed by u2 and v2, respectively;

– if u and v are independent let G′2 be the graph induced in G by V (G1) ∪ {u, v} with u and
v renamed by u2 and v2, respectively;

– finally let G′ be the graph obtained by identifying u1 with v2 as a new vertex u and v1 with
u2 as a new vertex v.

Theorem 4 (Whitney’s 2-isomorphism Theorem, 1933) If H and G are blocks and M(H) ∼=
M(G) then H can be obtained from G by a succession of twisting.

A graph G is homeomorphic from a graph H, written G ≺ H, if either H ∼= G or G is
isomorphic to a graph obtained from H by edge subdivisions. We also say that G is (isomorphic
to) a subdivision of H. A graphic matroid M uniquely determines a graph G if M is isomorphic to
the cycle matroid of G and any other graph whose cycle matroid is isomorphic to M is isomorphic
to G. Throughout the rest of the section (but not longer) we reserve the term wheel to those
non-bipartite wheels whose center is adjacent to every vertex of the rim.

Lemma 1 Let H be a graph homeomorphic from a wheel. Then the cycle matroid M(H) of H
uniquely determines H (up to isomorphisms).

Proof. Call each edge on the rim of a wheel a tourniquet. Since H ≺ Wk for some k ∈ N, k ≥ 3,
each tourniquet as well as each spoke of Wk is replaced by a path of positive length (possibly one).
We refer to such paths as the tourniquets and the spokes of H. Now H is 2-connected but is not
3-connected (unless H ∼= Wk). Therefore the vertex cuts of H are pairs of vertices. Such vertex
cuts consist of nonadjacent vertices of H. Moreover, it is easily checked that if {u, v} is any such
2-vertex cut the u, v both belong either to the same tourniquet or to the same spoke. It follows
that one of the two components of H − {u, v}, is a path (possibly with zero length). Therefore
twisting at {u, v} amounts to rename u by v and v by u, that is taking an automorphism of H.
Thus twisting at u and v leaves H unchanged up to isomorphism. To complete the proof it suffices
to invoke Whitney’s 2-isomorphism Theorem. 2

Theorem 5 Let A ∈ {0, 1}M×N be an EPT matrix and let T be any of its underlying trees. Then
A contains a pie of size k if and only if T contains CJ-pie of size k with respect to some J ⊆ N
of k elements.

Proof. If T contains a GJ-pie of size k with respect to some J ⊆ N of k elements then clearly
AJ fulfils conditions (a) and (b) in the definition of pie given in Section 1.

Let us show conversely that, no matter how T is chosen, if AJ is a pie of size k in A, for some
J ⊆ N , then T contains CJ-pie of size k with respect to some J ⊆ N . Let K = ∪j∈J Ãj and

9



let AJ
K be the submatrix of A obtained by deleting the rows and the columns whose index is not

in K and J , respectively. Clearly AJ
K is an EPT matrix as well and it is underlain by T J

K , the
subgraph spanned by K in T—observe that, since A is an EPT matrix and T is a tree, then T J

K is a
subtree of T–. Indeed, T underlies any submatrix A′ of A obtained by deleting columns. Thus T J

K

underlies any submatrix of A′ obtained by deleting zero rows, i.e., rows corresponding to elements
not occurring in any member of Ã′—remark in passing that these rows correspond to co-loops of
M(A′) and, accordingly, each of the corresponding elements does not belong to any circuit of any
graph whose cycle matroid is M(A′)–. It follows that T contains CJ-pie of size k with respect to
J (and A) if and only so does T J

K with respect to J (and AJ
K). By a known construction (see

e.g., [7]) if (D, F ) is the pair formed by an EPT matrix D ∈ {0, 1}R×S underlain by a tree F
then M(D) is isomorphic to the cycle matroid of the graph obtained from F by adding an edge
s between the endpoints of d̃s, s ∈ S. Let GJ

K be the graph obtained by applying the preceding
construction to (AJ

K , T J
K). It is readily seen that M(AJ

K) is isomorphic to the cycle matroid of a
subdivision of a wheel: just observe that, up to a permutation of rows and columns, AJ

K is the
EPT matrix of a subdivision of Wk taken with respect to a spanning tree obtained by deleting
one edge from each tourniquet. Since graphs homeomorphic from a wheel are blocks, Lemma 1
applies and thus GJ

K ≺ Wk. In particular, AJ
K is the EPT matrix of GJ

K taken with respect to
TK

J . Therefore, no matter how T is chosen to underly A, the edges of TK
J incident to the center

of GK
J form a CJ-pie of size k with respect to J . 2

Corollary 8 (Theorem 2 in [8]) Let G be an EPT graph with underlying tree T . If G contains
a hole H then T contains a GJ pie on V (H).

Proof. EPT matrices are regular and hence column-odd-wheel-free matrices (see the Section
1.1). The result thus follows by Corollary 3 after Theorem 5. 2

For EPT matrices Corollary 6 immediately implies the following consequence proved directly in
[1].

Corollary 9 ([1]) Let A be an EPT matrix which does not contain any odd pie. Then A is a
{0, 1} network matrix.

Remark 4 {0, 1} network matrices are better known as Directed-Path-Tree (DPT) Matrices.
These matrices are defined as the incidence matrices of families of arc-sets of directed paths in a
directed tree.

4 An extension of the local structure result

Here we show that the local structure result can be extended in a sharper way from the class of
line graphs of EPT matrices to the class of line graphs of strong quasi-graphical matrices. To this
end we need to list some subgraph that is forbidden in the bipartite representation of a strong
quasi-graphical matrix.

Lemma 2 None of the following graphs is an induced subgraph in the bipartite representation of
a strong quasi-graphical matrix A ∈ {0, 1}M×N .

(i) odd 3PC’s and odd wheels;
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(ii) even 3PC(N) and even Wk(N).

Proof. Recall from Section 1.1 that if A′ is the result of pivoting on a nonzero entry ai,j of A,
then B(A′) results from B(A) by complementing the edges between N(i) \ {j} and N(j) \ {i},
where, for l ∈ I ∪ J , N(l) denote the set of neighbors of l (see [5, 6]). Thus the subgraphs in
(i) are forbidden because they can be pivoted into graphs containing either B(F7) = W3(M) or
B(F ∗7 ) = W3(N) [5, 6], contradicting the regularity of strongly quasi-graphical matrices. To prove
that those in (ii) are forbidden as well we shall prove the following claim.

(3) Let G be a bipartite graph such that G is either an even 3-path configuration 3PC(u, v)
or an even wheel (C, v). Then G can be pivoted into a bipartite graph containing a complete
4-wheel whose center is in the same color class of u and v if G = 3PC(u, v) and in the same
color class of v if G = (C, v).

Proof of (3): It suffices to show that by pivoting and taking subgraphs even 3PC’s and even
wheels can be transformed into a complete 4-wheel. In the first place observe that any chordless
uv-path of odd length can be transformed into the single edge uv by repeatedly pivoting on a inner
edge u′v′, say, and deleting u′ and v′. Thus any even 3PC(u, v) can be transformed into an even
3PC(u, v), G say, where the three paths have length four. Now let ux and yv be the end edges
of any of the three paths of G and let z be the middle vertex on such a path. Notice that z has
the same color as u and v. By pivoting on ux and yv and deleting x and y results in a complete
4-wheel centered at z. Analogously, any even wheel (C, v) can be transformed into a complete
even wheel (C ′, v) with the same center and the same number of spokes. If C ′ has eight vertices
we are done; otherwise let u1, v1, u2, v2, u3 and v3 induce a subpath on C ′ where ui is adjacent to
v, i = 1, 2, 3. The following sequence of operations preformed on (C ′, v) takes (C ′, v) into an even
complete wheel (C ′′, v) with two spokes less: pivot on u2v2 (hence v1 and u3 become adjacent)
and delete u2 and v2; pivot on v1u3 (hence u1 and v3 become adjacent) and delete v1 and u3. A
repeated application of these procedures eventually yields a complete 4-wheel. ¥
By (3), the subgraphs in (ii) are forbidden because they can be pivoted into subgraphs containing
the bipartite representation of the matrix H3,3, namely, a complete 4-wheel centered at a vertex
representing a column. 2

Theorem 6 Let G be the line graph of a strong quasi-graphical matrix. Then each vertex of G
has at most four neighbors on every hole which does not contain it.

Proof. Let G = L(A) for some strong quasi-graphical matrix A ∈ {0, 1}M×N . Let J ⊆ V (G)
be a set of k ≥ 5 vertices that induces a hole in G (if k = 4 the result is trivial). Possibly
after renumbering J = {1, 2, . . . , k} and, for i, j ∈ J , Ai and Aj are consecutive if and only if
|i− j| ∈ {1, k − 1}. Hence J is endowed by a cyclic order and for each j ∈ J we denote by j+ the
successor of j in such an order. Thus 1+ = 2, . . . (k − 1)+ = k and k+ = 1. For r ∈ N \ J . By
Corollary 3 AJ is a pie in A. Let Bj = Ãj ∩ Ãj+1, j ∈ J (addition over the indices is taken modulo
k) be the j-th branch of the pie. Observe that by the definition of pie one has Bi∩Bj = ∅, for i 6= j,
i, j ∈ J . Furthermore let Zj be the set of elements of ∪k

j=1Ã
j occurring only in Ãj . We say that

Bh, Bi (Zh, Zi) are consecutive in AJ , if |i−h| ∈ {1, k−1}. Let S(r) = {j ∈ J | Ãr∩Bj 6= ∅} and
T (r) = {j ∈ J | Ãr ∩ Zj 6= ∅} and denote by s(r) and t(r) the respective cardinalities. Moreover,
for j ∈ J let b(j, r) be an element of Bj ∩ Ãr if Bj ∩ Ãr 6= ∅ else let b(j, r) be any element of Bj .
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Observe in the first place that

(4) NG(r) ∩ J = S(r) ∪ T (r) ∪ S+(r), ∀r ∈ N \ J,

where we have set S+(r) = {j+ | j ∈ S(r)}. To prove the theorem thus it suffices to show that
|S(r) ∪ T (r) ∪ S+(r)| ≤ 4. First we claim that

(5) s(r) ≤ 2, ∀r ∈ N \ J .

Proof of (5): consider the graph W induced in B(A) by {b(1, r) . . . , b(k, r)}∪J ∪{r} and observe
that if s(r) were greater than two then W ∼= Ws(r)(N) contradicting Lemma 2. ¥

Next we claim that

(6) s(r) = 0 ⇒ t(r) ≤ 2, ∀r ∈ N \J ; moreover, t(r) = 2 if and only if Ãr intersects consecutive
Zj ’s.

Proof of (6): suppose not. Hence we can find elements ajh
∈ Ãjh ∩ Zjh

, h = 1, . . . , p, for some
p ∈ N such that 3 ≤ p ≤ k. Since k ≥ 5 among Zj1 , . . . Zjp we can find two members, Zjh

and Zjl

say, that are nonconsecutive in AJ . The graph induced by {b(1, r), . . . , b(k, r)} ∪ J ∪ {r, ajh
, ajk

}
is thus isomorphic to an even 3PC(ajh

, ajk
) still contradicting Lemma 2. We conclude that

s(r) = 0 ⇒ t(r) ≤ 2 with t(r) = 2 if and only if Ãr intersects consecutive Zj ’s. ¥

We claim also

(7) S(r) = {j} ⇒ |T (r) ∩ {j, j + 1}| ≤ 1, ∀r ∈ N \ J .

Proof of (7): without loss of generality j = 1. If T (r) contained both 1 and 2 then we could
find a1 ∈ Z1 and a2 ∈ Z2 such that {b(2, r), . . . , b(k, r)} ∪ J ∪ {r} ∪ {a1, a2} induces a hole C ′

in B(A). Now b(1, r) 6∈ V (C ′) but b(1, r) has exactly three neighbors on C ′, namely, 1, 2 and r.
Hence V (C ′)∪{b(1, r)} would induce a wheel with three spokes contradicting the regularity of A.¥

Finally we claim that

(8) if, for some r ∈ N \ J , S(r) and T (r) are both nonempty then for each j ∈ T (r) either j
or j − 1 (addition is modulo k) belongs to S(r).

Proof of (8): to prove the claim we assume for the sake of contradiction that it is false.
Since T (r) 6= ∅ there is j ∈ T (r). Let a ∈ Ãr ∩ Zj and consider the graph W induced by
{b(1, r), . . . , b(k, r)} ∪ J ∪ {a, j}. Let us distinguish two cases: s(r) = 1 (referred to as case 1) and
s(r) = 2 (referred to as case 2). In case 1 we may suppose that S(r) = {1}; thus T (r)∩ {1, 2} = ∅
and j ∈ T (r) \ {1, 2}; it follows that W is an odd 3PC(a, j) in B(A). In case 2 we may suppose
that S(r) = {1, h}, with h 6= 1, k; thus T (r) ∩ {1, 2, h, h + 1} = ∅ and j ∈ T (r) \ {1, 2, h, h + 1}
(remark that h might coincide with 2); now, in W , b(1, r), b(h, r) and a are adjacent to r while a
is adjacent to j; by pivoting on edge ja and deleting vertex a results in a wheel with four spokes.
In either cases Lemma 2 is contradicted and the claim is thus proved. ¥

After (7) and (8) we see that if s(r) > 0 then T (r) ⊆ S(r) ∪ S+(r). Therefore |NG(r) ∩ J | ≤
|S(r) ∪ S+(r)| ≤ 2|S(r)| ≤ 4 the latter inequality being due to (5) (notice that the inequality
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can be strict: if S(r) = {i, j} then NG(r) ∩ J = {i, i + 1} ∪ {j, j + 1}; hence if the branches
intersected by r are consecutive then |NG(r)∩ J | = 3). The only case left is s(r) = 0. In this case
|NG(r) ∩ J | = t(r) ≤ 2 by (6). The theorem is thus completely proved. 2

The following consequence of Theorem 6 extends Corollary 3 in [8] from the class of EPT
graphs to the class of intersection graphs of quasi-graphical families.

Corollary 10 If G = L(A) for some quasi-graphical matrix A, then for every chordless cycle H
on vertices j1, . . . jk, k ≥ 4 and every r 6∈ V (H) exactly one of the following holds:

(1) NG(r) ∩ V (H) = ∅,
(2) NG(r) ∩ V (H) = {jh} for some h,

(3) NG(r) ∩ V (H) = {jh, jh+1} for some h,

(4) NG(r) ∩ V (H) = {jh, jh+1, jh+2} for some h,

(5) NG(r) ∩ V (H) = {jh, jh+1, ji, ji+1} for some h and i,

where addition over indices is modulo k.

Proof. Let J = V (H) where, possibly after renumbering J = {1, . . . , k}. Thus AJ is a pie in A.
Suppose that s(r) = 0. Then by (6) t(r) ≤ 2 and t(r) = 2 if and only if Ãr intersects consecutive
members of ÃJ . Thus if s(r) = 0 then NG(r) ∩ V (H) is either empty or a singleton or it consists
of two adjacent vertices, that is, one of (1)÷(3) applies. Suppose now that s(r) = 1 and let
S(r) = {j}. By (7) and (7) one has T (r) ⊆ {j, j + 1} and |T (r) ∩ {j, j + 1}| ≤ 1. Therefore Ãr

intersects Ãj and (possibly) Ãj+1 and one of (2) and (3) applies. Finally, if s(r) = 2 then still by
(8) we know that T (r) ⊆ S(r) ∪ S+(r). Hence we are either in case (4) if S(r) = {j, j + 1} for
some j ∈ J or in case (5) if S(r) = {i, j} for some two distinct vertices i, j ∈ J . 2

Golumbic and Jamison proved that none of the two graphs G1 and G2 of Figure 2 are EPT graphs.
Thus none of them can be an induced subgraph in any EPT graph (as the property of being EPT
is preserved under taking induced subgraphs). Since G2 is isomorphic to P 6 it follows that the
complement of any EPT graph cannot contain induced P6 and hence induced Pk on k ≥ 6 vertices
(Corollary 4 in [8]). ¿From this fact Corollary 2 follows. We are going to show that the same result
holds within line graphs of strong quasi-graphical matrices (see Corollary 11). The result implies
that G1 and G2 are forbidden induced subgraphs in line graphs of strong quasi-graphical matrices
as well. Since also the property of being strong quasi-graphical is inherited by deleting columns,
this implies that if G = L(A) for some strong quasi-graphical matrix A, then its complement G
cannot contain an induced Pk on k ≥ 6 vertices, thus providing a further extension of the local
structure result. Corollary 11 relies on the following fact which is proved in [3].

Lemma 3 Let A ∈ {0, 1}M×N be a quasi-graphical matrix and let AJ be a pie in A of size k ≥ 3
for some J ⊆ N . Suppose without loss of generality that J = {1, 2 . . . , k} and that i and j
are consecutive if and only if |i − j| ∈ {1, k − 1}. For h ∈ {1, . . . , k} let K(h, J) be the index
set of the columns of A whose support intersects the h-th branch of AJ , namely, K(h, J) = {r ∈
N | Ãr∩Bh 6= ∅}, where Bjh

= Ãh∩Ãh+1. Then there is b(h) ∈ Bh such that b(h) ∈ ∩r∈K(h,J)Ãr.
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G1
G2

Figure 2: The graphs G1 and G2 are forbidden induced subgraphs in any EPT graph. The encircled
vertices both have at least three consecutive neighbors on a hole (thick lines) and among these
neighbors they have at least two adjacent common neighbors.

Let G be a graph and let H be a hole in G with V (H) = J = {1, 2, . . . , k}. For v ∈ V (G) \ J
let D(v, J) = NG(v) ∩ J and d(v, J) = |D(j, J)|.

Corollary 11 Let G = L(A) for some strong quasi-graphical matrix A ∈ {0, 1}M×N and let H be
a hole in G with V (H) = J = {1, 2, . . . , k}. Let q, r ∈ V (G) \ J be such that either

D(q, J) = {j − 1, j, j + 1} and D(r, J) = {j, j + 1, j + 2}

or
D(q, J) = {j − 1, j, j + 1} and D(r, J) = {j − 1, j, j + 1, j + 2}.

Then q and r are adjacent in G.

Proof. By Corollary 3, AJ is a pie in A. Since d(q, J) and d(r, J) are both not smaller than 3
by Corollary 10 it follows that D(x, J) = S(x) ∪ S+(x) for x ∈ {q, r}. In particular, necessarily
S(q) = {j − 1, j} for some j ∈ J , because D(q, J) consists of consecutive elements. By the
same reason either S(r) = {j, j + 1} or S(r) = {j − 1, j + 1}. Thus either j ∈ S(q) ∩ S(r) or
j− 1 ∈ S(q)∩S(r). These in turn imply that either q, r ∈ K(j, J) or q, r ∈ K(j− 1, J). In either
case, by Lemma 3, there is b(h) ∈ Ãq∩Ãr 6= ∅ (h ∈ {j − 1, j}). Consequently, qr is an edge of G.

2

Corollary 11 implies that the graph G1 and G2 of Figure 2 are not induced in the line graph of
any strong quasi-graphical matrix. Such graphs are therefore C̄7-free.
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