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Abstract—In this paper we estend the class of MAP queueing networks to include blocking 
models. We consider two different blocking mechanisms: Repetitive Service-Random 
Destination and Blocking After Service. We analyze the Markov process underlying the MAP 
queueing network and propose a methodology based on a partition of the state space into 
“marginal state spaces”. By using this partition, we prove a set of “partial” balance equations 
that relates blocking performance indexes. The proposed methodology can be a sound 
framework to define approximate solution methods for MAP queueing networks with 
blocking. 
 
 
1. Introduction 

Blocking queueing networks are powerful tools to deal with more representative models of real-life 

systems. Their solutions are difficult and, despite of their importance, there is a general lack of 

methodologies aimed to include blocking phenomenon into solution tools. 

MAP queueing networks are shown to be the first analytical methodology to describe and predict 

accurately the performance of complex systems operating under temporal dependencies [CaMiSmi08, 

CaMiSmi10]. MAP queueing networks include servers whose service times are Markovian Arrival 

Processes (MAPs), a class of Markov-modulated point processes that can model general 

distributions as well as the main features of nonrenewal workloads, such as autocorrelation in 

service times and burstiness [Neu89].  

In this paper, we extend the class of MAP queueing network to include blocking mechanism. We 

consider two different blocking models: the Repetitive Service-Random Destination (RS-RD) 

mechanism and the Blocking After Service mechanism (BAS). These two different models are 

extensively studied in the literature and are representative of telecommunication systems and 

computer systems with limited shared resources. 

For these two mechanisms we analyze the Markov process underlying the MAP queueing network. 

Because of the state space explosion, the queueing network’s equilibrium behavior cannot be 

determined exactly, but we argue that it can still be bounded accurately by describing the system 

with “reduced” state spaces, which we call marginal state spaces. Marginal state spaces capture the 

behavior of the network conditioned on a given queue being active, blocked or idle. 

In the following section, we present the considered blocking models and the related literature. In the 

section 3, we define the MAP blocking queueing networks and we prove the marginal balance for 

BAS blocking. In the section 4, we extend the methodology and the results to the RS-RD blocking. 
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Finally, the section 5 concludes the paper. 

 

2. Blocking models 

Queueing network models with finite capacity queues and blocking have been introduced and 

applied as more realistic models of systems with finite capacity resources and population 

constraints. In these models, when a queue reaches its maximum capacity, the flow of customers 

entering the service node is stopped, both from other service nodes1 and from external sources in 

case of open networks. This phenomenon is referred to as blocking. In particular, each blocking 

mechanism defines the service node blocking time, the behaviours of arriving customers to full 

capacity service center and the servers' activity in the network. 

Queueing networks with blocking can be applied to telecommunication systems and computer 

systems with limited shared resources, such as interconnecting links or store and forward buffers, as 

well as in production systems with the finite storage buffers. Different blocking mechanisms 

representing distinct behaviours of real systems with limited resources have been defined and 

analyzed in the literature. The interested reader can refer to [BalDenOnv01, Onv90, Onv93, Per84, Per89, Per94] 

for an extensive bibliography. 

More recent results can be found in several research application areas such as computer systems 

[DeKe00], communication systems and networks [AwYaWo06, DaHo08, LiToLe07], manufacturing systems 

[YaMiYaMa09], software architectures [BaDenIn03] and also in the emerging area of “health systems” 

[KoKuSmi05]. 

Since the first results on product forms [Aky87, Aky88, Aky89, BalCl98, BalDen91, BouVan97, Cl98, Onv89, Ser99], 

and equivalence and monotonicity properties [AdVdw89, AmmGer89, BalDenIa87, BalDon89, DaLiTo94, DaTo91, 

Den94, OnPe89, ShaYa89, VanTi86], few effort has been devoted to develop general methodologies to deal 

with blocking queueing networks. More recently, some new solution approaches have been 

proposed [Be&alii07, OsBi09].  

Bounding analysis is a one of the most attractive methodologies to estimate performance measures 

with a limited cost. Tandem networks with general service time distribution and Blocking Before 

Service mechanism or BAS blocking were considered in [Nak00]. The author defines bounds for the 

expected cycle time. The presented results are good for very limited size of the finite buffers. Open 

general topologies networks with multiserver exponential queues and RS-RD blocking were 

considered in [KuSriKu98]. The model includes multiclass population. The authors defined bounds to 

the queues throughput and the blocking probabilities. 

                                                
1 Throughout this paper we use the terms queue, node and service center interchangeably. 
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Our methodology combines the blocking characteristic with the temporal dependencies 

characteristic in the service process. 

As introduced above, we consider two different blocking models that are extensively used in the 

literature. 

Let us consider a closed queueing network, with routing matrix P=pij, that is when pij>0 queue i 

is connected to queue j. We consider finite capacity queues, with Fi the queue i capacity. Note that 

Fi includes the jobs in service. If ni denotes the instantaneous population at queue i, when ni = Fi 

queue i is full and any incoming job cannot be accommodated until a departure from queue i takes 

place. Each blocking model defines the behaviour of the “sending” queue and the behaviours of 

arriving customers to full capacity queue. The considered blocking mechanisms are defined in the 

following. 

Repetitive Service-Random Destination (RS-RD)  

A queue i, if not empty, processes a job regardless of the job population at its destination j (pij>0). 

When node i completes, if node j is full, the completed job is rerouted at node i where, according to 

node i scheduling, it will receive a new service. During the new service, the job will select a new 

destination independently from the previous one. 

 

Note that according to RS-RD blocking a node will never be actually blocked, but it “wastes” its 

service, it could have to repeat it. In this case, we define blocking as the time the node is working 

for a full destination node. 

RS-RD blocking is used to model mainly telecommunications system. Recently, this blocking 

mechanism was used to model congestion control in the internet [AwYaWo06]. 

 

Blocking After Service mechanism (BAS) 

A queue i, if not empty, processes a job regardless of the job population at its destination j (pij>0). 

When node i completes, if node j is full, node i stops its activity (it is blocked) and the completed 

job waits until a departure will occur from node j. At that moment two simultaneous transitions take 

place: the completed job from i to j and the job from j. 

In a general network topology where more than one queue can complete job towards a full queue j, 

an “unblocking” policy has to be defined. Usually, the First Blocked First Unblocked (FBFU) 

policy is considered the fairest policy: first unblock the job was blocked first. In the following we 

assume FBFU policy. 
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BAS blocking has been used mainly to model production systems and disk I/O subsystems. 

Recently, this blocking was studied for two stages tandem queues with MAP and phase-type 

distributions [GoMar06]. 

 

3. MAP Blocking Queueing Networks 

We introduce the class of MAP queueing networks supporting nonrenewal service which is studied 

in the rest of the paper. A summary of the main notation is given in Table I. In this section, we 

present the case of BAS blocking mechanism. The RS-RD blocking mechanism case is presented in 

Section 4. 
 

3.1 Model Definition 

We consider a closed network with finite single-server queues, which serve jobs according to a 

MAP service time process and under work-conserving FCFS scheduling. Each queue has finite 

capacità Fi and the same blocking mechanism. The service process is independent of both the job 

allocation across the queues and the state of other service processes. The network is composed by M 

queues and populated by N statistically indistinguishable jobs (single class model), which proceed 

through the queues according to a state-independent routing scheme. That is, upon departure from a 

queue i, a job joins queue j with fixed probability pij . 

 
TABLE I 

SUMMARY OF MAIN NOTATION 
h, k, u phase indexes 
i, j, m  queue indexes 
    

! 

r 
k   phase vector, i.e., active phases 
ki  active phase at queue i in     

! 

r 
k  

Ki number of phases in queue i’s MAP 
Kmax maximum Ki, 1≤ i ≤M 
M number of queues in the network 
µi mean service rate of queue i 
μi

k,h  completion rate of queue i, phase change k → h 

  

! 

vi
k ,h  background trans. rate of queue i, phase k → h 

N  number of jobs in the network 
ni number of jobs at queue i  
pij routing prob. from queue i to queue j 
π(ni, h, nj, k) prob. of ni jobs in queue i in phase h and nj jobs in queue j in phase k 

  

! 

qi, j
k ,h  rate for a queue i job completion towards queue j, phase change k → h  

Qi mean queue-length at queue i 

! 

Qi
k  mean queue-length at queue i in phase k 

Ui mean utilization of queue i 

! 

Ui
k  mean utilization of queue i in phase k 

Uefi mean effective utilization of queue i 
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! 

Uefi
k  mean effective utilization of queue i in phase k 

 
 
The service process at queue i is modeled by a MAP with Ki ≥ 1 phases. General service can be 

approximated accurately by a MAP [ZhaCaSmi08]. If Ki = 1, then the MAP reduces to an exponential 

distribution, otherwise it generates service time samples that are phase-type (PH) distributed [Neu89]. 

That is, hyperexponential, hypoexponential, Erlang, and Coxian are all allowed service time 

distributions; nonrenewal service is also supported, e.g., Markov Modulated Poisson Process 

(MMPP), Interrupted Poisson Process (IPP) [FiMe93]. It should be nevertheless remarked that MAP 

fitting can be still a challenging problem if the data has an irregular temporal dependence structure, 

see [HorTe02] for a review. We point to [ZhaCaSmi08] for a new technique, called Kronecker Product 

Composition  (KPC), that can provide MAP fitting of higher-order moments and temporal 

dependence structure of arbitrary processes. 

The transition from phase k to phase h for the MAP service process of queue i has rate φi
k,h and 

produces a service completion with probability ti
k,h ; if h = k then ti

k,k = 1 according to the MAP 

definition. We define μi
k,h = ti

k,hφi
k,h to be the rate of job completions in phase k that leaves the MAP 

in phase h; vi
k,h = (1−ti

k,h)φi
k,h , k ≠ h is the complementary rate of transitions not associated with job 

completions that only change the MAP active phase (background transitions). It is worth noting that 

if a queue is blocked it completely stops its activity. As a consequence, a phase transition cannot 

occur during the blocking time. Note that this holds for BAS blocking, but not for RS-RD where a 

queue is never effectively blocked. In this representation of queue i’s MAP, μi
k,h is the element in 

row k and column h of the D1 matrix; vi
k,h is in row k and column h of D0. We point the reader to 

[HorTe02] and references therein for background on MAPs and MAP fitting. 

 

3.2. Underlying Markov Process for BAS blocking 

General MAP service requires to maintain information at the process level on the current service 

phase at each queue. A feasible network state in the queueing network underlying Markov process 

is a tuple s= (s1 , s2 , …, sM ), where si is the state of queue i with  si = (ni, bi, mi, k) defined as follows: 

ni is the queue population (including the job in service); bi is the state of node i (1=blocked, 

0=active); mi is the list of queues blocked on queue i; k ∈ Ki is the phase of queue i. As stated in 

section 2., the First Blocked First Unblocked order is assumed. Head(mi) is the queue that will be 

unblocked by a departure from queue i in state s. 

In the following, for the sake of simplicity, we assume to omit bi=0 (queue i is blocked) and mi 

when this is empty (there are no queues blocked on the considered queue). Finally, let EBAS  be the 

state space of the queueing network when all queues behave according to BAS blocking. 
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According to this space, the Markov process transitions have rate 
  

! 

qi, j
k ,h  from state s =(s1 , s2 , …, sM ) 

to s’ =(s’1 , s’2 , …, s’M ); the rate is given by 

    

! 

qi, j
k ,h =

pijµi
k ,h
, i " j,

vi
k,h + pijµi

k ,h
, i = j and k " h.

# 

$ 
% 

& % 
  (1) 

 
The state s’ is defined in Table II according to the blocking and unblocking rules and the 

simultaneous transitions characterizing BAS blocking. In particular, the first row corresponds to the 

normal transition between i and j when queue j is not full and queue i does not have blocked queues 

on it. The second row corresponds to the case when queue i is full with queue m blocked on it and 

queue j is not full (for the aim of simplicity, we omit the case of multiple simultaneous transitions. 

The interested reader can refer [BalDenOnv01]). Finally the third row corresponds to the case of 

blocking, since queue j is full. Note that the remaining components of s’ are unchanged in respect of 

s. All these transitions have rate 
  

! 

qi, j
k ,h . 

 

TABLE II 
TRANSITION RELATED STATES 

s’ =(s’1 , s’2 , …, s’M ) Conditions on s =(s1 , s2 , …, sM ) 

s’i = (ni-1, b’i, m’i, h) ∧ s’j = (nj+1, b’i, m’j’, k’j) bi=0, nj < Fj , mi = ∅ 

s’i = (ni, b’i, m’i, h) ∧ s’j = (nj+1, b’i, m’j’, k’j) ∧ 

s’m = (nm-1, b’m, m’m, k’m) 

bi=0, ni = Fi, nj < Fj , mi ≠ ∅, head(mi)=m,  

mm = ∅ 

s’i = (ni, 1, m’i, h) ∧ s’j = (Fj, b’i, m’j’, k’j) bi=0, nj = Fj 

 

In (1), 
  

! 

qi, j
k ,h  is for i ≠ j the rate of departures from i to j triggering a phase transition in i’s service 

process from phase k to h; otherwise it accounts for the background transitions   

! 

vi
k ,h  and the rate of 

the self-looping jobs 
  

! 

pijµi
k ,h

 . Note that the case for i = j and k = h is not explicitly accounted since 

it corresponds to the diagonal of the infinitesimal generator of the Markov process. This diagonal is 

computed to make each row sum to zero.  The size of the infinitesimal generator corresponds to the 

cardinality of the related global balance equations. By considering only the population components 

ni, the state space of a blocking network is a subset of the state space of the same network but with 

infinite capacity queues. In particular, all states with ni > Fi  are cutted. On the other hand, all the 

different components bi, mi, increase the state space cardinality of the cutted subspace. To the best 

of our knowledge, a formula does not exist to compute the state space cardinality for blocking 

networks.  
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The state subspace of queue i in phase k can be partitioned in three subspaces: an idle subspace in 

which queue i is idle   

! 

Ii
k , a blocked subspace in which queue i is blocked   

! 

Bi
k , an active subspace in 

which queue i is neither empty nor blocked   

! 

Ai
k , that is queue i is active. 

Definition 1 (Marginal State Spaces) 

The idle condition subspace 
  

! 

Ii
k = s : si 0,0,",k( ){ } is the set of states of the MAP network where 

queue i is empty (ni=0), active (bi=0), with no node blocked on it (mi=∅) and in phase k∈Ki. 

The active condition subspace 
  

! 

Ai
k = s : si ni,0,mi,k( ){ } is the set of states of the MAP network 

where queue i is not empty (ni>0), active (bi=0) and in phase k∈Ki. Note that if queue i is full 

(ni=Fi), it is also possible that some node is blocked on it (mi≠∅). 

The blocked condition subspace 
  

! 

Bi
k = s : si ni,1,mi,k( ){ }  is the set of states of the MAP network 

where queue i is not empty (ni>0), blocked (bi=1) and in phase k∈Ki. Note that if queue i is full 

(ni=Fi), it is also possible that some node is blocked on it (mi≠∅). 

As a summarizing example, the MAP network in Figure 1 with routing probabilities p11, p12, p13 = 1 

− p11− p12 at the first queue and p21 = 1, p31 = 1, at the remaining queues has underlying Markov 

process as shown in Figure 2. In the last figure, each queue i has finite capacity Fi = 2 and the total 

number of jobs circulating in the network is N=3. Two queues are exponential with rates μ1 ≡ μ1
1,1 

and μ2 ≡ μ2
1,1, respectively; the third queue is a MAP with K3 = 2 phases having μ3

k, h = 0 for k ≠ h, 

that is a MMPP(2) process. 

 
Fig. 1. Example network composed by two exponential queues and a MAP queue. 

 

In figure 2, we show the Markov subspace related to queue 3 in phase 1, for the network of Figure 1 

with finite capacity Fi = 2 ∀ i, i= 1, 2, 3, and N=3 jobs in the network. An analogous graph could be 

shown for the queue 3 in phase 2. For the sake of readability the phase change transitions are 

omitted. In the figure, the partition in the active-subspace, the idle-subspace and the blocked-

subspace is also shown. The states in the active set are the only states that contribute to the 

transitions out from a queue i. According to the defined state notation, the state ((2 [3]) 0 (1,1), 1) in 

the blocked-subspace, denotes the case queue 3 is blocked (b3=1) since it completed a job for queue 

1 that is full. As soon as queue 1 completes a job, two simultaneous transitions will take place. The 
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process transition will be into the state (2 1 0, 1) in the idle-subspace if the completed job is 

destined to queue 2, while it will be into the state (2 0 1, 1) in the active-subspace if the completed 

job is destined to queue 3. 

 
Fig. 2.   Underlying Markov process of the network in Figure 1 with BAS and N=3 (subspace for queue 3 in phase 1). 

 

In the following figures 3.a and 3.b the active subspaces are shown for queues 1 and 2 respectively. 

The blocked and empty subspaces can be easily derived. 

 

 
Fig. 3.b   Subspace for queue 1 in phase 1. 

 

 
Fig. 3.c   Subspace for queue 2 in phase 1. 

 

In the following section, we present a “partial” balance analysis. Indeed, we prove partial balance 

equations that relate the performance indexes of the queues. 
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3.3. Marginal balance and performance indexes for BAS blocking 

In this Section, we define a sort of “partial” balance, although the class of models considered in this 

paper in non-product-form. The first step is the definition of a marginal steady state probability that 

relates two queues of the network. 

Let us define the marginal probability function that relates two queues in the network: 

    

! 

" ni,k ,n j ,u( ) = " s'( )       
#s'$EBAS :s 'i=(n'i,b'i,m'i,k'i ):n'i=ni,k 'i=k ,

s ' j =(n' j ,b' j ,m' j ,k' j ):n' j =n j ,k ' j =u

%    (2) 

where EBAS is the state space, that is EBAS ={ (s1 , s2 , …, sM ) si = (ni, bi, mi, ki), 0 ≤ ni ≤ Fi, 

  

! 

nii=1
M" =N}. 

 

The function represents the joint steady state probability to have queue i in phase k with ni jobs and 

queue j in phase u with nj jobs. 

We also define a subspace   

! 

Yi
k  marginal probability function 

  

! 

" i
k ni,k ,n j ,u( )  as the marginal 

probability function defined in (2), but restricted to the states in the subspace   

! 

Yi
k , where   

! 

Yi
k∈{  

! 

Ii
k , 

  

! 

Bi
k ,   

! 

Ai
k }, that is 

    

! 

" i
k ni,k ,n j ,u( ) = " s'( )       

#s'$Yi
k

:s'i=(n'i,b'i,m'i,k'i ):n'i=ni,k 'i=k ,

s ' j =(n' j ,b' j ,m' j ,k' j ):n' j =n j ,k ' j =u

%    (3) 

Let us define the performance indexes in terms of the marginal probability function. 

The mean queue length of queue i is 

! 

Qi = Qi
k

k=1

Ki"  with 

! 

Qi
k = ni" ni ,k,n j ,h( )h=1

K j#
n j =0

min N ,Fj{ }
#

ni =1

min N ,Fi{ }
#     (4) 

with respect to any queue j, 1≤ j ≤M. 

Let us define the classical utilization of queue i as 

 

! 

Ui = Ui
k

k=1

Ki"   (5) 

 

where we denote by 

! 

Ui
k  the classical utilization of queue i in phase k and it can be computed as 

follows: 
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! 

Ui
k = " ni ,k,n j ,h( )h=1

K j#
n j =0

min N ,Fj{ }
#

ni =1

min N ,Fi{ }
#   (6) 

with respect to any queue j, 1≤ j ≤M. 

According to the blocking theory, the classical utilization is a measure of the occupancy degree of 

the queue, but this does not correspond to the queue productivity, since a not-idle queue could even 

be blocked if its destination is full. 

For the aim to measure the effective productivity of a queue, we have to define an “effective 

utilization“. The effective utilization of queue i is defined as follows: 

 

! 

Uefi = Uefi
k

k=1

Ki"   (7) 

 

where we denote by 

! 

Uefi
k  the effective utilization of queue i in phase k and it can be computed as 

follows: 

 

  

! 

Uefi
k =

s'" Ai
k
:n'i=ni,k'i=k

# $ ni,k ,ni,k( )  (8) 

 

As introduced above, the effective utilization takes into account the “useful” utilization of a queue, 

that is the period of time the queue is busy and it is not blocked, so it can produce useful work. 

Let us define the mean queue length of i 
  

! 

Cj
k i( )  in the active and blocked subspace, 

  

! 

Aj
k
"

! 

Bj
k , of 

queue j in phase k: 

! 

C j
k
i( ) = ni" ni ,h,n j ,k( )h=1

Ki#
ni =1

min N ,Fi{ }
#

n j =1

min N ,Fj{ }
#     (9) 

 

As a consequence, 

! 

C j
k
j( ) =Qj

k . The following theorem relates classical utilization with mean queue 

length. 

 

Theorem 1 

In the state subspace where queue j is not-idle and in phase k, the 
  

! 

Cj
k i( )  sum to 

  

! 

NU j
k , i.e. 

! 

C j
k
i( )i=1

M
" = NU j

k   (10) 

   1 ≤ k ≤ Kj 
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Proof 

By using (6) and the population constraint, we have 

! 

NU j
k = N " n j ,k,ni ,h( ) =

h=1
Ki#

ni =0

min N ,Fi{ }
#

n j =1

min N ,Fj{ }
#

! 

nzz=1
M

" # n j ,k,ni ,h( )h=1
Ki"

ni =0

min N ,Fi{ }
"

n j =1

min N ,Fj{ }
" =  

! 

=
z=1
M

" nz# n j ,k,ni ,h( )h=1
Ki"

ni =0

min N ,Fi{ }
"

n j =1

min N ,Fj{ }
"  

and by the definition (6) one can choose any i, with 1≤ i ≤ M. So by choosing i=z , the following 

holds: 

! 

NU j
k =

z=1
M

" nz# n j ,k,nz ,h( )h=1
Kz"

nz=0

min N ,Fz{ }
"

n j =1

min N ,Fj{ }
" =

! 

C j
k
z( )z=1

M
"  

 

Note that in the theorem 1 the classical utilization is considered, since we are interested in the 

computation of mean queue length. So we have to include the “blocking period”. 

In the following theorem we derive a balance between the effective utilization of queue i in all its 

phases. Indeed, for the BAS blocking the transitions are associated only to the non-blocking states. 

As a consequence, since the Theorem 2 represents a balance between transitions, it can only 

consider the effective utilization. 

 

Theorem 2 

The utilizations of queue i in its Ki phases are in equilibrium, i. e., 

    

! 

j=1
M" qi, j

k ,h ni( )Uefi
k

h=1
h#k if j=i

Ki
" =

  

! 

j=1
M" qi, j

h,k ni( )Uefi
h

h=1
h#k if j=i

Ki
"     (11) 

 

Proof  

Let δm be a binary variable that is one if and only if queue m is not-idle in state (    

! 

r 
n ,    

! 

r 
k ), i.e. nm ≥ 1. 

Let us consider the global balance equation for state 
  

! 

n ,k ( ) : 

! 

Om, j n ,k ( )j=1
M

"m=1
M

" =

! 

Im, j n ,k ( )j=1
M

"m=1
M

"  

 

where for j=m 

  

! 

Om,m n ,k ( ) = "m qm,m
k ,h

h=1
h#k

Km$ % n ,k ( ) 
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! 

Im,m n ,k ( ) = "m qm,m
h,k

h=1
h#k

Km$ % n ,k + h & k( )e m( )  

 

and for j≠m 

 

  

! 

Om, j n ,k ( ) = "m qm, j
k ,h

h=1

h#k , n ,k ( ):n j <Fj

Km$ % n ,k ( ) 

  

! 

Im, j n ,k ( ) = " j qm, j
h,k

h=1
h#k

Km$ % n & e j + e m ,k + h & k( )e m( )  

 

By considering all global balance equations of states in which queue i is in phase k, we evaluate the 

following identity relation: 

    

! 

(
r 
n ,

r 
k ):ki=k" Om, j n ,k ( ) # Im, j n ,k ( )( )j=1

M"m=1
M" =0. 

 

For m=i and j=i  

    

! 

" i(
r 
n ,

r 
k ):ki=k#

h=1
h$k

Ki# qi,i
k ,h% n ,k ( ) & qi,i

h,k% n ,k + h & k( )e i( )( ) = 

=
  

! 

qi,i
k ,h" ni,k ,ni,k( ) # qi,i

h,k" ni,h,ni,h( )( )h=1
h$k

Ki%

& 

' 

( 
( 

) 

* 

+ 
+ 

ni=1

min N ,Fi{ }
% = 

=
  

! 

qi,i
k ,hUi

k " qi,i
h,kUi

h( )h=1
h#k

Ki$  

 

for m=i and j≠i  

    

! 

(
r 
n ,

r 
k ):ki=k"

j=1
j#i

M" $ iqi, j
k ,h% n ,k ( ) & $ jqi, j

h,k% n & e j + e i,k + h & k( )e i( )( )h=1

h#k , n ,k ( ):n j <Fj

Ki" = 

=
    

! 

qi, j
k ,hUefi

k " qi, j
h,kUefi

h( )h=1
h#k

Ki$  

 

for m≠i and 1≤ j ≤ M 

 

    

! 

(
r 
n ,

r 
k ):ki=k"

j=1
M" #mqm, j

u,h$ n ,k ( ) % # jqm, j
h,u$ n % e j + e m ,k + h % k( )e m( )( )h=1

h&k , n ,k ( ):n j <Fj

Km"
m=1
m&i

M" =0 
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! 

(
r 
n ,

r 
k ):ki=k"

j=1
j#m

M" qm, j
u,hUefm

u $ qm, j
h,uUefm

h( )h=1
h#u

Km" + qm,m
u,h Um

u $ qm,m
h,u Um

h( )h=1
h#u

Km"

% 

& 

' 
' 

( 

) 

* 
* m=1

m#i

M" =0 

 

In the following theorem, we prove that a “marginal balance” holds between the marginal 

probabilities similarly to the global balance between the steady state probabilities. 

 

Theorem 3 

The arrival rate at queue i when its queue-length is ni jobs, 0< ni ≤ min{N, Fi}-1, is balanced by the 

rate of departures when the queue-length is ni +1, i.e. 

! 

"s#A
j
k :m j=$%head m j( )&i

' q j,i
k,h

u=1
Ki'h=1

K j'k=1
K j' ( j

k
ni ,u,n j ,k( )j=1

j&i

M
'      (12) 

! 

=
u=1
K j"n j =0

min N ,Fj{ }#1"
s'$A

i
k
:n'i =ni +1,m i =%,n' j =n j ,k' j =u

" qi, j
k,h& i

k
ni +1,k,n j ,u( )h=1

Ki"k=1
Ki"j=1

j'i

M
" +  

! 

+
l=1
l"i

M
#n j =1

min N ,Fj{ }# nl =0
min N ,Fl{ }$1# u=1

Kl#
s'%A

j
k
:n'i =ni +1,head m j( )=i

# q
j,l
k,h& j

k
n j ,k,nl ,u( )h=1

K j#k=1
K j#j=1

j"i

M
#  

 

for all 1 ≤ i ≤ M. In the case ni = 0 the marginal balance specializes to the more informative relation 

! 

"s#A
j
k :m j=$%head m j( )&i

' q j,i
k,h

h=1
K j'k=1

K j' ( j
k
ni = 0,u,n j ,k( )j=1

j&i

M
'       (13) 

 

! 

=
h=1
K j"n j =0

min N ,Fj{ }#1"
s'$A

i
k
:n'i =ni +1,m'i =%,n' j =n j ,k' j =u

" qi, j
k,u& i

k
ni =1,k,n j ,h( )k=1

Ki"j=1
j'i

M
" +  

! 

+
l=1
l"i

M
#n j =1

min N ,Fj{ }# nl =0
min N ,Fl{ }$1# w=1

Kl#
s'%A

j
k
:n'i =1,k'i =u,head m j( )=i

# q
j,l
k,h& j

k
n j ,k,nl ,w( )h=1

K j#k=1
K j#j=1

j"i

M
#

 

which holds for each phase u, 1 ≤ u ≤ Ki, with 1 ≤ i ≤ M. 

 

Proof 

The left side of the equation considers all the departures from queue j towards queue i: j has to be in 

the active subspace and i cannot be full. All these departures yield the population in i to become 

ni+1, except for the case in which i is unblocked by the departure from j (head(mj)=i, that is i was 

waiting for free space in j, and by effect of the simultaneous transitions the population in i would 

remain ni. 
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The right side of the equation considers all the departures from queue i, when the population in i is 

ni+1. All these departures yield the population in i to become ni. These departures are:  

a. the transitions from i towards j: i has to be active and j non-full. Moreover, queue i doesn’t have 

blocked qeues on it (mi=∅), otherwise its population would still remain ni +1; 

b. the transitions between any pair of nodes j and l, with j, l ≠ i, when the queue j is full and the 

queue i is the first blocked node in the j list mj, that is head(mj)=i. These transitions trigger a 

simultaneous one from queue i, thus decreasing its population to ni. 

Let  S(k, ni)≡{ s= (s1 , s2 , …, sM ) 

! 

si = ni ’,bi ’,m i ,ki ’( ) : ni
’
" ni ,ki

’ = k }, since the theorem requires ni 

≤ min{N, Fi}-1 there always exists the related set 

! 

S (k, ni)≡{ s= (s1 , s2 , …, sM ) 


    

! 

si = ni ',bi ',m i,ki '( ) : ni
'
" ni +1,ki

' = k }. 

The equilibrium probability flux exchanged by 
  

! 

"
k=1
Ki  S(k, ni) and 

  

! 

"
k=1
Ki

! 

S (k, ni) must be in balance 

because their union is the entire state space. We seek for a representation of the exchanged 

probability flux using the marginal probabilities. The flux F  from 
  

! 

"
k=1
Ki

! 

S (k, ni)  to 
  

! 

"
k=1
Ki  S(k, ni)  

needs to decrease the queue-length of queue i to ni . By considering that batch completions are not 

allowed, these transitions are the two cases a. and b. described above. Therefore F  is the following 

flux of job completions: 

 

  

! 

F "

s'#A
i
k
:n'i =ni +1,mi =$,n' j <Fj

% qi, j
k,h& s'( )h=1

Ki%k=1
Ki%j=1

j'i

M
% + 

! 

+
l=1
l"i

M
#

s'$A
j
k
:n'i =ni +1,head m j( )=i,n'l <Fl

# q
j,l
k,h% s'( )h=1

K j#k=1
K j#j=1

j"i

M
#  

 

which excludes the self-routed jobs (case j = i) that do not decrease ni +1 to ni. Note that the job 

transition towards queue x is possible only if x is not full (nx < Fx), x=j, l. The opposite flux G needs 

to increase the queue-length of queue i to ni+1. The transitions towards states where i has ni+1  jobs 

are allowed from states where the following conditions hold: the sending queue j is not blocked, 

head

! 

m j( ) " i such that a simultaneous transition doesn’t occur (otherwise the i population doesn’t 

change), queue i is not full (ni < Fi). Therefore G  is the following flux of job completions: 

 

  

! 

G " q j,i
k,h

s'#A
j
k
:n'i =ni ,m j =$%head m j( )&i

'h=1
K j'k=1

K j' ( s'( )j=1
j&i

M
'  

and describes all possible transitions that bring a job from queue j ≠ i. 
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However by the given definition (3) 

 

! 

s'"A
i
k
:n'i =ni +1,mi =#,n' j <Fj

$ qi, j
k,h% s'( )h=1

Ki$k=1
Ki$j=1

j&i

M
$ +

! 

+
l=1
l"i

M
#

s'$A
j
k
:n'i =ni +1,head m j( )=i,n'l <Fl

# q
j,l
k,h% s'( )h=1

K j#k=1
K j#j=1

j"i

M
# = 

  

! 

= u=1
K j"

n j =0
min N ,Fj{ }#1"

s'$A
i
k
:n'i =ni +1,m i=%,n' j =n j ,k' j =u

" qi, j
k ,h& i

k ni +1,k ,n j ,u( )h=1
Ki"k=1

Ki"
j=1
j'i

M" + 

! 

+
l=1
l"i

M
#n j =1

min N ,Fj{ }# nl =0
min N ,Fl{ }$1# u=1

Kl#
s'%A

j
k
:n'i =ni +1,head m j( )=i

# q
j,l
k,h& j

k
n j ,k,nl ,u( )h=1

K j#k=1
K j#j=1

j"i

M
#  

and 

 

! 

q j,i
k,h

s' "A
j
k
:n' i =ni ,m j =#$head m j( )%i

&h=1
K j&k=1

K j& ' s'( ) =
j=1
j%i

M
&  

! 

=

"s#A
j
k :m j=$%head m j( )&i

' q j,i
k,h

u=1
Ki'h=1

K j'k=1
K j' ( j

k
ni ,u,n j ,k( )j=1

j&i

M
'  

 

and by substituting them  

  

! 

F =
u=1
K j"n j =0

min N ,Fj{ }#1"
s'$A

i
k
:n'i =ni +1,m i =%,n' j =n j ,k' j =u

" qi, j
k,h& i

k
ni +1,k,n j ,u( )h=1

Ki"k=1
Ki"j=1

j'i

M
" +  

! 

+
l=1
l"i

M
#n j =1

min N ,Fj{ }# nl =0
min N ,Fl{ }$1# u=1

Kl#
s'%A

j
k
:n'i =ni +1,head m j( )=i

# q
j,l
k,h& j

k
n j ,k,nl ,u( )h=1

K j#k=1
K j#j=1

j"i

M
#  

 

  

! 

G =

"s#A
j
k :m j=$%head m j( )&i

' q j,i
k,h

u=1
Ki'h=1

K j'k=1
K j' ( j

k
ni ,u,n j ,k( )j=1

j&i

M
'  

and by imposing the equilibrium balance F=G for ni≥1 we find immediately (12). 

Note that (12) would hold also for ni = 0; nevertheless, in this case we can give the more detailed 

condition (13) by recalling that if ni = 0 phase transitions in i are not posssible, hence the balance F 

= G splits into a set of disjoint probability flux balances, one for each phase u of i. The proof in this 

case is almost identical by considering the interface between the sets S(k, ni=0)≡{ s= (s1 , s2 , …, sM ) 



! 

si = ni ' ,bi ' ,m i ,ki '( ) : ni
'
" 0,ki

' = u}, and 
  

! 

"
k=1
Ki

! 

S (k, ni=1). 
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The following theorem can be seen as an extension of the Theorem 1. Indeed Theorem 4 defines a 

relation between the sum of mean queue-lengths of all queues and the classical utilization of any 

queue i when a queue j is in phase k, for any j and k. 

 

Theorem 4 

The sum of mean queue-lengths of all queues t, t=1, …, M, when queue j is in phase k, satisfies  

 

! 

n j =0

min N ,Fj{ }
" nt# nt ,h,n j ,k( )h=1

Kt"
nt =1

min N ,Ft{ }
"

$ 

% 

& 
& & 

' 

( 

) 
) ) t=1

M" * N # ni ,h,n j ,k( )
n j =0

min N ,Fj{ }
"

ni =1

min N ,Fi{ }
"h=1

Ki"  (16) 

 

for all 1≤ i ≤M, 1≤ j ≤M, 1≤ k ≤Kj. 

 

Proof  

Letting 

! 

"
s j= n j ,b j ,m j ,k j( ):k j =k#

s$A
j
k%B

j
k%I

j
k :s j= n j ,b j ,m j ,k j( ):k j =k# , we have 

! 

N " s( )
s j= n j ,b j ,m j ,k j( ):k j =k# =

t=1
M

# nt" s( )
s j= n j ,b j ,m j ,k j( ):k j =k# = 

=

! 

n j =0

min N ,Fj{ }
" nt# nt ,h,n j ,k( )h=1

Kt"
nt =1

min N ,Ft{ }
"

$ 

% 

& 
& & 

' 

( 

) 
) ) t=1

M"  

 

On the other hand 

! 

N " s( )
s j= n j ,b j ,m j ,k j( ):k j =k# $

! 

N " ni ,h,n j ,k( )
n j =0

min N ,Fj{ }
#

ni =1

min N ,Fi{ }
#  

since in the first member there are also states with ni=0. 

 

Finally in the following theorem, all the performance indexes of queue i in all its phase are related. 

 

Theorem 5 

The performance indexes of queue i in phase k and in phase h are related by the following equation 
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! 

h=1
h"k

Ki# qi, j
k ,hni$ ni,k ,n j ,u( )

s'%A
i
k
:n'i =ni ,k'i=k ,n' j =n j ,k' j =u

#u=1
K j#

n j =0
min N ,Fj{ }# +j=1

M#  

    

! 

+ qi, j
h,k" ni,h,n j ,u( )

s'#A
i
k
:n'i =ni ,k'i=h,n' j =n j ,k' j =u

$u=1
K j$

n j =0
min N ,Fj{ }$h=1

Ki$
j=1
j%i

M$ =    (17) 

 

  

! 

= q j,i
h,u" ni,k ,n j ,h( )ni=0

min N ,Fi{ }#

s'$A
j
h :n'i =ni ,k'i=k ,n' j =n j ,k' j =h,

mj=%&top mj( )=i

#u=1
K j# +h=1

K j#
j=1
j'i

M#  

 

  

! 

+
h=1
h"k

Ki# qi, j
h,k ni$ ni,h,n j ,u( )

s'%A
i
h
:n'i =ni ,k'i=h,n' j =n j ,k' j =u

#u=1
K j#

n j =0
min N ,Fj{ }#j=1

M#  

 

Proof 

Let us consider the weighted sum of all global balance equations of states in which queue i is in 

phase k: 

 

  

! 

niAi
k"Bi

k"I i
k# Om, j s( ) $ Im, j s( )( )j=1

M#m=1
M# =0 

 

The proof follows a similar high-level structure than the proof of theorem 2. 

 

4. MAP Queueing Networks with RS-RD blocking 

In this section we present MAP queueing networks with RS-RD blocking. In this case, since the 

given mechanism definition, a simple state notation is enough to characterize unambiguously the 

network behaviour. A feasible network state in the queueing network underlying Markov process is 

a tuple (    

! 

r 
n ,    

! 

r 
k ), where     

! 

r 
n  = (n1, n2, . . . , nM), 0 ≤ ni ≤ Fi, 

  

! 

nii=1
M" =N, describes the number of jobs in 

each queue, and     

! 

r 
k  = (k1, k2, . . . , kM), 1 ≤ ki ≤ Ki, specifies the active phase for each service process. 

Note that this state description coincides with the one used for the non-blocking case. According to 

this space, the Markov process transitions have rate 
  

! 

qi, j
k ,h  from state (    

! 

r 
n ,    

! 

r 
k ) 

to (    

! 

r 
n −    

! 

r 
e i+    

! 

r 
e j ,     

! 

r 
k '), ki = k, ki

’ = h, where     

! 

r 
e t  is a vector of zeros with a one in the t-th position; the rate 

is given by (1). Finally, let ERS-RD  be the state space of the queueing network when all queues 

behave according to RS-RD blocking. 

As stated above for the BAS case, the state space of a blocking network is a subset of the state 

space of the same network but with infinite capacity queues. In particular, for RS-RD, the state 

space can be simply obtained by cutting all states with ni > Fi. To the best of our knowledge, a 
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formula does not exist to compute the state space cardinality for blocking networks. The interested 

reader can refer to [BalDenOnv01] for a recursive expression to compute the state space cardinality for 

a queueing network in which all queues have the same capacity and RS-RD blocking. 

By considering the network of Figure 1, the underlying Markov process is shown in Figure 4. 

 

 
Fig. 4.   Underlying Markov process of the network in Figure 1 with RS-RD and N=3. 

 

The notation, e.g., (102, 1) indicates that the exponential queue 2 is idle, the exponential queue 1 

has 1 job in service, and the MAP queue has two jobs and is in phase 1. According to RS-RD 

mechanism, in this state queue 1 is “blocked” with probability 0 < p13 < 1 (it is working for a full 

queue). In (210, 2), the phase 2 is the phase left active by the last served job and queue 2 is 

“blocked” with probability p21 = 1. 

In the following section, we present the “partial” balance analysis for the case of RS-RD blocking. 

 

4.1. Marginal balance and performance indexes for RS-RD blocking 

Let us define the marginal probability function that relates two queues of the network: 

 

! 

" ni ,k,n j ,u( ) = " n ',k '( )       

n ',k '( )#ERS$RD
:n'i =ni ,k 'i =k,n' j =n j ,k' j =u

%    (18) 

where ERS-RD  is the state space, that is ERS-RD={(    

! 

r 
n ,    

! 

r 
k )     

! 

r 
n  = (n1, n2, . . . , nM), 0 ≤ ni ≤ Fi, 

  

! 

nii=1
M" =N}. 

Similarly to equation (2), this represents the joint steady state probability to have queue i in phase k 

with ni jobs and queue j in phase u with nj jobs. 

For the sake of brevity, we do not repeat the definitions that are identical to those defined for the 

BAS blocking. As a consequence, the mean queue length 

! 

Qi  and the classical utilization 

! 

Ui  for 
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queue i with RS-RD blocking, are defined by using the marginal probability function (18), instead 

of (2), in the equations (4), (5) and (6). 

To measure the effective utilization for RS-RD blocking, we have to exclude the useless work 

destined to full queues. Indeed, according to the blocking definition, this work will have to be 

repeated, therefore it is considered useless work.  The effective utilization 

! 

Uefi
k  of queue i in phase 

k can be computed as follows: 

 

  

! 

Uefi
k = " ni,k ,ni,k( ) # pij" ni,k ,Fj ,h( )

h=1

K j$j=1
j%i,pij >0

M
$

& 

' 

( 
( 

) 

* 

+ 
+ 

ni=1

min N ,Fi{ }

$   (19) 

The effective utilization 

! 

Uefi  of queue i, can be simply obtained by substituting (19) into equation 

(7). 

Note that the mean queue length 
  

! 

Cj
k i( ) , defined in (9) for BAS corresponds to the mean queue 

length of i when queue j is not idle and it is in phase k for RS-RD. As a consequence, the Theorem 

1 holds with the same proof. 

In the following theorem we derive a balance between the utilization of queue i in all its phases, 

both classical and effective. Note that this is different from the Theorem 2 for the BAS case. Indeed, 

for the RS-RD mechanism, queue blocking doesn’t really occur. As a consequence, since this 

Theorem represents a balance between transitions, it includes also the classical utilization.  

 

Theorem 2’ 

The utilizations of queue i in its Ki phases are in equilibrium, i. e., 

    

! 

j=1
j"i

M# qi, j
k ,hUefi

k
+ qi,i

k ,hUi
k

h=1
h"k

Ki
#

h=1

Ki
# =

  

! 

j=1
j"i

M# qi, j
h,kUefi

h
+ qi,i

h,kUi
h

h=1
h"k

Ki
#

h=1

Ki
#   (20) 

 

Proof  

Let δm be a binary variable that is one if and only if queue m is not-idle in state (    

! 

r 
n ,    

! 

r 
k ), i.e. nm ≥ 1. 

Let us consider the global balance equation for state 
  

! 

n ,k ( ) : 

! 

Om, j n ,k ( )j=1
M

"m=1
M

" =

! 

Im, j n ,k ( )j=1
M

"m=1
M

"  

 

where for j=m 

  

! 

Om,m n ,k ( ) = "m qm,m
k ,h

h=1
h#k

Km$ % n ,k ( ) 
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! 

Im,m n ,k ( ) = "m qm,m
h,k

h=1
h#k

Km$ % n ,k + h & k( )e m( )  

 

and for j≠m 

 

  

! 

Om, j n ,k ( ) = "m qm, j
k ,h

h=1

h#k , n ,k ( ):n j <Fj

Km$ % n ,k ( ) 

  

! 

Im, j n ,k ( ) = " j qm, j
h,k

h=1
h#k

Km$ % n & e j + e m ,k + h & k( )e m( )  

 

By considering all global balance equations of states in which queue i is in phase k, we evaluate the 

following identity relation: 

    

! 

(
r 
n ,

r 
k ):ki=k" Om, j n ,k ( ) # Im, j n ,k ( )( )j=1

M"m=1
M" =0. 

 

For m=i and j=i  

    

! 

" i(
r 
n ,

r 
k ):ki=k#

h=1
h$k

Ki# qi,i
k ,h% n ,k ( ) & qi,i

h,k% n ,k + h & k( )e i( )( ) = 

=
  

! 

qi,i
k ,h" ni,k ,ni,k( ) # qi,i

h,k" ni,h,ni,h( )( )h=1
h$k

Ki%

& 

' 

( 
( 

) 

* 

+ 
+ 

ni=1

min N ,Fi{ }
% = 

=
  

! 

qi,i
k ,hUi

k " qi,i
h,kUi

h( )h=1
h#k

Ki$  

 

for m=i and j≠i  

    

! 

(
r 
n ,

r 
k ):ki=k"

j=1
j#i

M" $ iqi, j
k ,h% n ,k ( ) & $ jqi, j

h,k% n & e j + e i,k + h & k( )e i( )( )h=1

h#k , n ,k ( ):n j <Fj

Ki" = 

=
    

! 

qi, j
k ,hUefi

k " qi, j
h,kUefi

h( )h=1
h#k

Ki$  

 

for m≠i and 1≤ j ≤ M 

 

    

! 

(
r 
n ,

r 
k ):ki=k"

j=1
M" #mqm, j

u,h$ n ,k ( ) % # jqm, j
h,u$ n % e j + e m ,k + h % k( )e m( )( )h=1

h&k , n ,k ( ):n j <Fj

Km"
m=1
m&i

M" =0 
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! 

(
r 
n ,

r 
k ):ki=k"

j=1
j#m

M" qm, j
u,hUefm

u $ qm, j
h,uUefm

h( )h=1
h#u

Km" + qm,m
u,h Um

u $ qm,m
h,u Um

h( )h=1
h#u

Km"

% 

& 

' 
' 

( 

) 

* 
* m=1

m#i

M" =0 

 

In the following theorem, we prove that a “marginal balance” holds between the marginal 

probabilities similarly to the global balance between the steady state probabilities. 

 

Theorem 3’ 

The arrival rate at queue i when its queue-length is ni jobs, 0< ni ≤ min{N, Fi}-1, is balanced by the 

rate of departures when the queue-length is ni +1, i.e. 

 

! 

n j =1
min N ,Fj{ }" q j,i

k,h
u=1
Ki"h=1

K j"k=1
K j" # ni ,u,n j ,k( )j=1

j$i

M
"  

  

! 

= u=1
K j"

n j =0
min N ,Fj{ }#1" qi, j

k ,h$ ni +1,k ,n j ,u( )h=1
Ki"k=1

Ki"
j=1
j%i

M"   (21) 

 

for all  1 ≤ i ≤ M. In the case ni = 0 the marginal balance specializes to the more informative relation 

! 

n j =1
min N ,Fj{ }" q j,i

k,h
h=1
K j"k=1

K j" # ni = 0,u,n j ,k( )j=1
j$i

M
"  

  

! 

= h=1
K j"

n j =0
min N ,Fj{ }#1" qi, j

k ,u$ ni =1,k ,n j ,h( )k=1
Ki"

j=1
j%i

M"   (22) 

which holds for each phase u, 1 ≤ u ≤ Ki, with 1 ≤ i ≤ M. 

 

Proof 

Let  S(k, ni)≡{

! 

n ',k '( ) : ni
'
" ni ,ki

' = k }, since the theorem requires ni ≤ min{N, Fi}-1 there always 

exists the related set 

! 

S (k, ni)≡{

! 

n ',k '( ) : ni
'
" ni +1,ki

' = k }. 

The equilibrium probability flux exchanged by 
  

! 

"
k=1
Ki  S(k, ni) and 

  

! 

"
k=1
Ki

! 

S (k, ni) must be in balance 

because their union is the entire state space. We seek for a representation of the exchanged 

probability flux using the marginal probabilities. The flux F  from 
  

! 

"
k=1
Ki

! 

S (k, ni)  to 
  

! 

"
k=1
Ki  S(k, ni)  

needs to decrease the queue-length of queue i to ni . Only states where i has ni +1 jobs can have 

transitions to states where i has ni  jobs (batch completions are not allowed); therefore F  is the 

following flux of job completions 
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! 

F "
n j =1
min N ,Fj{ }#1$ qi, j

k,h
n ’,k ’( )% S k,ni( ):n’i =ni +1,n’j =n j{ }$h=1

Ki$k=1
Ki$ & n ’,k ’( )j=1

j'i

M
$  

which excludes the self-routed jobs (case j = i) that do not decrease ni +1 to ni. Note that the job 

transition towards queue j is possible only if j is not full (nj < Fj). The opposite flux is  

 

  

! 

G "
n j =1
min N ,Fj{ }# q j,i

k,h
u=1
Ki# n ’,k ’( )$ S u,ni( ):n’i =ni ,n’j =n j{ }#h=1

K j#k=1
K j# % n ’,k ’( )j=1

j&i

M
#  

and describes all possible transitions that bring a job from queue j ≠ i for all possible phases u of i in 

    

! 

r 
k . To account for the single step behavior, we have imposed that the population in i is of ni jobs. 

However by the given definition (18) 

 

! 

" n ',k '( )n ',k '( )# S k,ni( ):n' i=ni +1,n' j =n j{ }$ = " ni +1,k,n j ,u( )u=1
K j$  

! 

" n ',k '( )n ',k '( )# S u,ni( ):n'i =ni ,n' j =n j{ }$ = " ni ,u,n j ,k( )k=1
K j$  

 

and by substituting them  

 

  

! 

F "
n j =1
min N ,Fj{ }#1$ qi, j

k,h % ni +1,k,n j ,u( )u=1
K j$h=1

Ki$k=1
Ki$j=1

j&i

M
$  

  

! 

G "
n j =1
min N ,Fj{ }# q j,i

k,h $ ni ,u,n j ,k( )k=1
K j#u=1

Ki#h=1
K j#k=1

K j#j=1
j%i

M
#  

and by imposing the equilibrium balance F=G for ni≥1 we find immediately (21). 

The proof for the more detailed condition (22) can be simply derived as for the BAS blocking. 

 

Analogously to what stated above for the Theorem 1, Theorem 4 still holds for the RS-RD case. 

The proof follows the same steps by considering that the subspace 
  

! 

Aj
k
"

  

! 

Bj
k
" I j

k  is simply the 

subspace of queue j in phase k for RS-RD. 

 

Finally, as for the BAS case, in the following theorem all the performance indexes of queue i in all 

its phases are related. 

 

Theorem 5’ 

The performance indexes of queue i in phase k and in phase h are related by the following equation 
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! 

h=1
h"k

Ki# qi, j
k ,hni$ ni,k ,n j ,u( )ni=1

min N ,Fi{ }#u=1
K j#

n j =0
min N ,Fj{ }%1# +

j=1
j"i

M#  

  

! 

+ qi,i
k ,hni" ni,k ,ni,k( )ni=1

min N ,Fi{ }#
h=1
h$k

Ki# +  

    

! 

+ qi, j
h,k" ni,h,n j ,u( )ni=1

min N ,Fi{ }#u=1
K j#

n j =0
min N ,Fj{ }$1#h=1

Ki#
j=1
j%i

M# =     (23) 

 
  

! 

= q j,i
h,u

n j =1
min N ,Fj{ }" # ni,k ,n j ,h( )ni=0

min N ,Fi{ }$1"u=1
K j" +h=1

K j"
j=1
j%i

M"  

 
  

! 

+
h=1
h"k

Ki# qi, j
h,k ni$ ni,h,n j ,u( ) +

ni=1
min N ,Fi{ }#u=1

K j#
n j =0
min N ,Fj{ }%1#

j=1
j"i

M#  

 
  

! 

+ qi,i
h,k ni" ni,h,ni,h( )ni=1

min N ,Fi{ }#
h=1
h$k

Ki#  

 

Proof 

Let us consider the weighted sum of all global balance equations of states in which queue i is in 

phase k: 

 

    

! 

ni(
r 
n ,

r 
k ):ki=k" Om, j n ,k ( ) # Im, j n ,k ( )( )j=1

M"m=1
M" =0 

 

The proof follows a similar high-level structure than the proof of theorem 2’. 

 

 

5. Conclusions 

In this paper, we consider the class of closed queueing networks with blocking and MAP service 

times. We consider two of the most used blocking mechanisms: BAS and RS-RD blocking. 

We analyze the underlying Markov processes and we prove a set of marginal balance equations that 

relates the blocking performance indexes. We argue that the marginal balance can be a sound 

framework for approximate solution techniques. A bounding analysis will be presented in a 

forthcoming paper. 
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