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Chapter 1

Introduction

1.1 Software systems

Electronic and information systems are gaining every day more and more relevance

in our world. We deal with the World Wide Web every day; we use our gps system

each time we don’t know the way to go to a destination we have never seen before;

our cars use more electronic systems than what we suppose; our home banking

system relies on a complex network of databases and application servers that are

intended to protect our privacy and our money of course. From the big Boeing 787

to the smallest cellular phone there is a great number of electronic devices around

us. That is, every day we base our lives on a rising number of complex systems.

The principal aim of today’s systems is to simplify our life, but doing so a lot

of things are demanded to those systems that inevitably become each day more

complex and coupled between them. But the problem is that more complex systems

are harder to design and requires more complex engineering approaches to be built.

This is true in electronics, but this is particularly true for software systems on which

today rely a lot of the features of systems.

If we think about how complex systems have evolved over the time we can see

an evolution from simple standalone systems of twenty years ago (where procedural

programming was an acceptable choice), to monolithic systems of ten years ago

(where a single application was rich of features but sometimes with some problems

of scalability and flexibility), to modern systems based on concepts like components

composition, cloud computing and so on. We are transitioning from standalone

1



1 – Introduction

monolithic systems to a world of elements capable of interactions between them and

where each component can be allocated on a different machine or can be moved from

one environment to another one without loss of performances of the entire system.

So we have to deal with a lot of electronic devices that interact between them;

their functionalities are every day more complex; inevitably the software required by

these devices has a complexity that grows during time. But not only electronic de-

vices are more complex, also pure software systems grows in complexity (think about

the infrastructure needed by eBay for example to manage millions of transactions

and payments every day), sometimes at an higher speed than electronics.

The need of more complex and efficient systems causes the evolution of engineer-

ing processes, but at the same time more efficient engineering processes lead to even

more complex systems than before.

From a software point of view to solve these problems of design complexity a

lot of engineering methodologies have been developed; we can mention the simple

waterfall methodology, the more complex iterative methodology and the innovative

agile methodologies. Some of them are completely obsolete (for example the wa-

terfall methodology had already showed all its limits in the past), some other are

continuously evolving (we can consider the variations of the iterative methodologies

based on Object Oriented Programming or Aspect Oriented Programming for ex-

ample), others are gaining the favour of engineers in some particular domains (for

example think about the Agile methodologies particularly strong into the enterprise

web environment).

But none of them is perfect and in particular each of them has a weakness in

the field of software quality prediction, a field whose importance grows with the

complexity of the system; that means that more complex is a software system, more

important is to evaluate its quality to be sure to achieve the prefixed goals.

1.2 Quality analysis

So we just said that software engineers can use a multitude of different methodologies

to build software systems. But if we analyze all these methodologies we can see that

are all very focused on the implementation of the functionalities of the system but

are weak from the point of view of the quality of the system. But what is “quality”

in software engineering?

2



1.2 – Quality analysis

In [63] we can find different definitions of the concept of software quality, but

according to our opinion the best one is that from Gerard Weinberg (see [55]) who

states that “Quality is value to some person”. So to see the quality of something

we have to find the value that this thing has for someone; this is true for everything

and thus this is true for software systems. But speaking as engineers do, to see the

value that defines the quality of software we have to measure it.

Although there are different definitions of software quality everyone agrees that

there are some factors that measure it. Again according to [63] a software quality

factor is a non-functional requirement for a software program which sometimes is

not called up by the customer’s contract, but nevertheless is a desirable requirement

which enhances the quality (read the value) of the software program. These factors

are characteristics that one seeks to maximize in order to optimize software quality,

that means that they are not a binary attribute. So rather then asking whether a

software product “has” a factor, ask instead the degree to which it has or has not.

Software quality factors are:

• Understandability: clarity of purpose; all the stuffs related to the software

system (code, documentation, etc. . . ) must be clearly written so that they are

easily understandable.

• Completeness: presence of all constituent parts, with each part (included input

data and external libraries) fully developed.

• Conciseness: minimization of excessive or redundant information or process-

ing.

• Portability: ability to be run well and easily on multiple computer configura-

tions (different hardware but also different operating systems).

• Consistency: uniformity in notation, symbology, appearance and terminology

within itself.

• Maintainability: propensity to facilitate updates to satisfy new requirements.

• Testability: disposition to support acceptance criteria and evaluation of per-

formances.

3



1 – Introduction

• Usability: convenience and practicality of use (usually referred to Man-Machine

Interface).

• Reliability: ability to be expected to perform its intended functions satisfacto-

rily; this implies a time factor in that a reliable product is expected to perform

correctly over a period of time.

• Structuredness: organization of constituent parts in a definite pattern.

• Efficiency: fulfillment of purpose without waste of resources such as memory,

processor utilization, network bandwidth, time, etc. . .

• Security: ability to protect data against unauthorized access and to withstand

malicious or inadvertent interference with its operations.

In spite of the number of factors we just saw, we will focus only on two of them:

reliability and efficiency.

Reliability represents the amount of time the system is up and running without

any failure. This is usually expressed in terms of a percentage computed by the

ratio between the time the system runs properly and the total amount of time the

system is in execution (including failures and crash periods).

On the other hand efficiency gives us a measure of what are the performances of

the system. This kind of information can be used to solve problems like bottlenecks

or to suggest to engineers a way to better plan the overall system architecture.

According to [58] performances analysis (also called “performance engineering”)

aims to:

• Increase business revenue by ensuring the system can process transactions

within the requisite timeframe.

• Eliminate system failures requiring scrapping and writing off the system de-

velopment effort due to performance objective failures.

• Eliminate late system deployment due to performance issues.

• Eliminate avoidable system rework due to performance issues.

• Eliminate avoidable system tuning efforts.
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1.2 – Quality analysis

• Avoid additional and unnecessary hardware acquisition costs.

• Reduce increased software maintenance costs due to performance problems in

production.

• Reduce increased software maintenance costs due to software impacted by ad

hoc performance fixes.

• Reduce additional operational overhead for handling system issues due to per-

formance problems.

Reliability and performances are very important and even considering only these

two factors of software quality we can obtain a lot of benefits from the point of view

of the efficiency of the system.

The biggest problem with performances and reliability is that you have to im-

plement your system and run it to see if it meets its quality requirements; that

means that during the analysis and design phase of your project you can’t be able

to understand if it is good enough. There are a lot of best practices to help you

maintaining a sufficient level of software quality (for example consider the iterative

approach where each iteration has its own test phase to check before proceeding),

but none of them is able to give you a measure of the goodness of your work before

writing a single line of code.

To address the problem of software quality prediction a wide number of method-

ologies has been developed over the years whose aim is to give to engineers a measure

of how their work is well done. Typically these methodologies use simulators or an-

alytical solvers and range from software performances computation to reliability

evaluation and so on. The matter now is that these methodologies are usually very

far from typical analysis and design methodologies and tools and frequently soft-

ware engineers don’t know them or how to apply them because they don’t have the

specific knowledge for this kind of instruments.

As we will see later to fill the gap between software analysis and design method-

ologies and quality prediction methodologies we can use a particular approach called

model driven development.
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1 – Introduction

1.3 Book structure

This work is structured in a way that can give a strong theoretical base to the reader

before proceeding to the inner core of the topic. In chapter 1 we gave a presentation

of the environment where we move; in chapter 2 we will present the motivation of

our work; in chapter 3 we will discuss some performance and reliability resolution

models presenting their core structure and some related tools. In chapter 4 we

will describe MDA (Model Driven Architecture), a software development approach

promoted by OMG (Object Management Group) that implements the philosophy

of model driven development and that is specifically designed to perform models

transformations (we will see later what that means). In chapter 5 we will present a

way to fill the gap between the design world and the quality evaluation world using

the MDA approach. In chapter 7 we will present an implementation of a model

transformation to the DTMC (Discrete-Time Markov Chains) reliability evaluation

model. In chapter 8 we will present an implementation of a model transformation

to another reliability evaluation model based on simulation, this model is then ex-

pressed using the SimJava library (with the SimJava based model we can also do

performance evaluation but this feature is still under development). In chapter 9 we

will see an implementation of a model transformation to the LQN (Layered Queue-

ing Networks) timing performance evaluation model. Then in chapter 10 we will

see how all the previous developed transformations are integrated into the Eclipse

environment and we will use such a tool in a typical application scenario. To end in

chapter 11 we will discuss our conclusions.
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Chapter 2

Software engineering processes

and Quality prediction

2.1 Modern software development methodologies

As stated in [62] a software development methodology refers to the framework that

is used to structure, plan and control the process of developing a software system.

A wide variety of such frameworks have evolved over the years, each with its own

recognized strengths and weaknesses. One system development methodology is not

necessarily suitable for use by all projects. Each of the available methodologies is

best suited to specific kind of projects, based on various technical, organizational,

project and team considerations.

However in chapter 1 we said that all of these methodologies have some weak-

nesses into the field of software quality. Before seeing how those weaknesses can be

avoided we will review some of these methodologies to understand how they work

and the limits they have about software quality evaluation.

Every software development methodology (see again [62]) is characterized by

its own approach to software development. But however there is a set of more

general approaches, which are developed into several specific methodologies. These

approaches are:

• Waterfall: linear framework type.

• Prototyping: iterative framework type.
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• Incremental: combination of linear and iterative framework type.

• Spiral: combination of linear and iterative framework type.

• Rapid Application Development (RAD): iterative framework type.

• Rational Unified Process: iterative and very versatile framework type.

• Agile software development: very different from the others because focused on

code and developers.

Waterfall Model

The Waterfall model is a sequential development process, in which development is

seen as flowing steadily downwards (like a waterfall) through the phases of require-

ments analysis, design, implementation, testing, integration and maintenance. Basic

principles of the Waterfall model are:

• Project is divided into sequential phases, with some overlap and splashback

acceptable between phases.

• Emphasis is on planning, time schedules, target dates, budget and implemen-

tation of an entire system at one time.

• Tight control is maintained over the life of the project through the use of ex-

tensive written documentation as well as through formal reviews and approval

by the customer occurring at the end of most phases before beginning the next

phase.

It is clear that the Waterfall model has a big problem with requirements change

management. Because all is produced with one single flow, no one can change a

single requirement because the requirement analysis phase occurs only once into the

entire software development life cycle.

By the way, from a software quality point of view you can’t be able to evalu-

ate performances or the reliability of the system until you have completed the code

phase and when you could have the needed information they are completely use-

less because you can’t modify your requirements according to the obtained results

(because analysis and design phases are already completed).
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Prototyping

Software prototyping is the set of activities executed during software development of

“prototypes”, incomplete versions of the software program being developed. Basic

principles of prototyping are:

• It is not a standalone and complete methodology, but rather an approach

to handling selected portions of a larger and more traditional development

methodology.

• It attempts to reduce project risks by breaking a project into smaller parts

simplifying the development process.

• Users are involved throughout the process; this increases the user acceptance

of the final product.

• Small mock-ups of the system are developed following an iterative modification

process until the prototype evolves to meet the user requirements.

• It is possible in some cases to evolve from a prototype to the working system

rather then discarding the prototype.

• A basic understanding of the fundamental business domain is necessary to

avoid solving the wrong problem.

The Prototyping approach is better than the Waterfall approach because it uses

iterations to refine the prototype until it meets the specified requirements, but for

software quality it suffers the same problem of the previous methodology, you have

to realize (that means you have to write code) your application and run it to know

if performances and reliability goals are achieved.

Incremental

Incremental methodology is a combination of linear and iterative development me-

thodologies with the primary objective of reducing inherent risks by breaking the

project into smaller segments and providing more ease-of-change during the devel-

opment process. Basic principles of incremental development are:
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• A series of mini-Waterfalls are performed; all phases of the Waterfall develop-

ment model are completed for a small part of the system before proceeding to

the next increment.

• All the requirements are defined before proceeding to the mini-Waterfall in-

crement.

• Sometimes a Waterfall approach is followed until the design phase, than from

the coding phase a prototyping approach is followed.

Again with the Incremental approach we have a combination of the problems

already seen with previous methodologies: there are some problems in the require-

ments change management and the system have to be implemented and run to

evaluate software quality.

Spiral

The Spiral methodology is an iterative approach that cycles over four main phases

(Analysis, Evaluation, Development, Planning) to build the software system in an

incremental way. Basic principles are:

• Focus is on risk assessment and on minimizing project risks by breaking it into

smaller segments and facilitating changes during the development process, as

well as providing the opportunity to evaluate risks and weigh consideration of

project continuation throughout the life cycle.

• Each cycle involves a progression through the same sequence of steps, for each

portion of the product and for each of its levels of elaboration, from an overall

concept of operation document down to the coding of each individual program.

• Each trip around the spiral traverses four basic quadrants: determine objec-

tives, alternatives and constraints of the iteration; evaluate alternatives and

identify and resolve risks; develop and verify deliveries from the iteration; plan

the next iteration.

• Begin each cycle with an identification of stakeholders and their needs; end

each cycle with review and commitment.
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Compared to previous methodologies we have a clear improvement concerning

the change management process but as usual the system has to be completely built

to see its quality performances.

Rapid Application Development

Rapid Application Development is a software development methodology which in-

volves iterative development and prototyping. Rapid application development is a

term originally used to describe a software development process introduced by James

Martin in 1991. Basic principles are:

• The key concept is a fast development and delivery of a high quality system

at a relatively low cost.

• The project is split into smaller segments to reduce project risks and to provide

more ease-of-change during the development process.

• It aims to produce high quality systems using iterative prototyping, active

users involvement and advanced tools (like CASE tools, graphical user inter-

faces and so on).

• If the project starts to slip, emphasis is on reducing requirements to fit the

time frame, not in increasing the deadline.

• Active users involvement into the development process is imperative.

• Iteratively produces production software and not only a throwaway prototype.

• It produces documentation necessary to facilitate future development and

maintenance.

• It can be used standard system analysis and design techniques.

Once again we have a good management of the system development from a

functional requirements point of view but we lack support for software quality eval-

uation (as usual we need to write and build code to see whether software quality

requirements are met).

11



2 – Software engineering processes and Quality prediction

Rational Unified Process

Rational Unified Process is an iterative methodology developed by Rational Software

and it not defined a single process, rather it defines an adaptable framework that

leads to different processes depending on the project and on the organization that

applies it.

A project life cycle consists of four phases:

• Inception: can be considered a feasibility study.

• Elaboration: in this phase software engineers do a domain analysis and project

the overall software architecture.

• Construction: this is the phase where true developments are made. At the

end of this phase we have the first release of the system.

• Transition: the system is moved from the development environment to the

customer for final refinements.

Each phase consists in some “discipline”:

• Business modeling.

• Requirements.

• Analysis and design.

• Implementation.

• Test.

• Deployment.

where the relevance given to each discipline varies according to the phase where it

is executed (but all disciplines are present in each phase).

Due to its versatility Rational Unified Process today is used for a wide range

of projects by different companies. Thanks to the high level of iteration change

management is very well supported but for software quality we meet again the same

problems found in previous methodologies.
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Agile software development

Agile software development refers to a group of software development methodologies

based on the iterative development, where requirements and solutions evolve through

collaboration between self-organizing cross-functional teams. The term was coined

in the year 2001 when the Agile Manifesto (see [20]) was formulated. Basic principles

are:

• people and interactions are more important than processes and instruments.

• It is more important to have runnable code than documentation.

• Direct collaboration with the customer is more important than the business

contract.

• The development team should be authorized to suggest modifications to the

project to actively react to changes.

This methodology is very practical development oriented and focuses its effort to

changes management, customer satisfaction and an effective code development. But

again, there is no way to evaluate software quality before obtaining the code, even

if in this kind of approach that is very “code centric” this is not a very big problem

because code is one of the first results of the methodology.

As we can see a lot of software development methodologies have been developed

during the years, each with its specific features, more or less generic, but all have one

limitation regarding software quality evaluation: the system, or one of its iterations,

has to be built (that means that we need some code that compiles and runs) in order

to collect data to use for the overall system performance and reliability evaluation.

Our aim is precisely to show how software engineers can consider quality factors

like performance and reliability at any stage of the software development process

(whatever it is) without the final system and without writing a single line of code.

More precisely our focus will be about software performance and reliability evalua-

tion at design time.
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2.2 A very early quality prediction

As we just said our aim is to evaluate software performances and reliability even

before developing the code, but when do we start to need such an evaluation? The

answer is quite simple: as soon as possible. That means that even during require-

ments definition someone could be interested in software quality.

Usually during the requirements analysis phase software quality evaluation is

not a real priority because in this phase we are more interested in understanding

which are the performances and reliability requirements of our system rather than

measuring them, but someone could have such a need.

It can seem very difficult to evaluate software quality at requirements analysis

time but if we use structured languages for the definition of requirements like SysML

we can see that it is really close to what we will see in the next section about software

quality evaluation at design time.

Figure 2.1. UML and SysML intersection

SysML (see [40]) is a language built as an evolution of UML but for system

requirements definition. It can use almost all UML diagrams and in addition it

introduces some new ones (for example the Blocks diagram). Deriving from UML

also SysML can define its own set of stereotypes and as we will see later these

stereotypes can be used to enrich diagrams with performance and reliability input

annotation. Once we have an annotated input SysML model (it can be a block

diagram, a class diagram and so on) we can apply all the consideration that we will

see in the next section.

Obviously we are at very early stage into the development process, therefore we

can’t use precise measurements and the obtained results must be considered at a

very high level and with a high error margin; however results can be used to give
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to engineers a general idea of what would be the behavior of the system and what

could be the failure points of the system architecture.

2.3 Prediction at design time

Whatever software development methodology we use (see chapter 1 for a brief in-

troduction to this topic) the design phase (here with the term “design” we refer to

analysis and design activities) is very important because this is the phase were all

the system is really built; the coding phase is only a conversion, preferably done

automatically, from project to code and should not have a big relevance.

Starting from the requirements analysis and during all the design phase software

engineers (implied roles are software architects and software designers) analyze re-

quirements, study the application domain, make a software architecture that will be

the infrastructure of all the software system and then they design each particular

of the system, from external communication interfaces to internal communications

between software components, from the man-machine interface to the interaction

with the chosen operating system, from the layers that compose the system to the

way the log has to work and so on; in short every particular of the system should

by decided during the design phase.

The problem is that if we look at actual software methodologies as they are

applied in the industry real world we can see that usually the design phase is under-

estimated running directly to the code phase with obvious catastrophic consequences

in case of problems (due to requirements changes or to design errors). The fact is

that actual design approaches are very functional requirements oriented; that means

that the main concern for engineers is to satisfy functional requirements. But the

more complex systems become the more functional requirements are not the only

objective to achieve, on the contrary when a system is very complex non functional

requirements such as performances and reliability play a crucial role because they

can deeply influence changes into the design and even in software requirements.

So to evaluate quality indexes during the design phase is a crucial activity before

turning the project into code because this last activity could be completely useless if

some major changes of the system are needed to achieve non functional requirements.

To solve this problem in the last years a number of methodologies have been

developed to help people to evaluate performance and reliability values during the
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design phase. In particular as reported in [50] we can categorize the different ap-

proaches as follows:

• Queueing network based methodologies.

– Methodologies based on the SPE1 approach.

– Architectural pattern-based methodologies.

– Methodologies based on trace analysis.

– Uml for performance2.

• Process-Algebra based approaches.

• Petri Net based approaches.

• Methodologies based on simulation methods.

• Methodologies based on stochastic processes.

Even if [50] is quite outdated the considerations done about methodologies cat-

egories are still valid.

• The preferred input method is usually UML with one of its profiles3 as exten-

sion used to annotate performance and reliability values.

• Queueing networks are the preferred performance model.

• Additional information is needed to augment the base system model represen-

tation with performance and reliability information.

• Feedback management is not very well managed (see section 2.5).

• There is much need of automated tools that support engineers in performance

and reliability evaluation.

1SPE stands for Software Performance Engineering and was a method introduced by Smith in
[51].

2methodologies based on uml notation as input to add relevant information to the input model
3Usually UML-SPT (see [43]) or the MARTE profile (see [42].
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From the points just seen we can find a great amount of information to think about,

but there are three main issues: need of software quality evaluation models, addi-

tional information needed by quality models, need for tools.

To evaluate software quality a certain number of quality evaluation models have

been developed until now. Such models range from queueing networks (with all

their variants), to Petri nets, to stochastic models, to process algebras, to simulation

models. Typically each model is well suited for a particular type of analysis; there

are models specific for performance evaluation (for example queueing networks) and

models specific for reliability evaluation (for example simulation, etc. . . ), but none

of them is useful for evaluation of all aspects of software quality. So engineers have

to choose the right model for the quality index they want to evaluate and usually

they have to use more than one single model on the same design project to address

all needed quality aspects. Moreover not all models are suitable all kind of systems;

some are good for web based systems, some are good for embedded systems, some

other are more general and can be adapted to a more variety of systems. However

the choice of the right models has to take into account all these factors.

But choosing the right quality evaluation model is not the only problem. To

compute software quality we need to provide additional information, to someone or

something, that will be used in addition to the design of the system; in other words

the design of the system tells what is the behavior of the system but don’t tell for

example what are the execution times of some particular actions or the percentage

of active time before a failure of a particular component; such measures have to

be provided to the quality evaluation model based on measurements from similar

system already completed, estimates, black box elements compositions and so on,

but have to be provided in addition to the system design (and here then raises the

problem about how this information must be provided to the design model, for a

deeper understanding of this topic see appendix ??).

The last issue is about the need of tools. Usually performance and reliability

are not taken into account by engineers simply because they don’t know them or,

if they know the topic, they don’t know how to use such models in a productive

way considering the time they have to design the system. To fill this gap usually

quality evaluation models are provided with a variety of tools that are in charge of

simplifying designers life.
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As already said quality evaluation at design time is the main topic of this work,

therefore in the following chapters we will see how the problems discussed until now

can be solved (or better we will see one of the possible solutions).

2.4 Prediction at runtime

Even if it is not within the scope of this work, it is useful to know that the same

techniques used at design time by software engineers, can be used by the system

itself.

The system can be built with a knowledge of itself. This knowledge can be used

at runtime to evaluate at precise instants the performances and the reliability of the

system; such measures can be used to modify the behavior of the system itself to

better suit its goals (for example think about a load balancing accomplished by a

web proxy according to some QoS rules or to a distributed system that changes the

deployment according to the availability of nodes).

Giving to the system the capacity to evaluate its software quality and reacting

in the best way adds to the system the capacity of self adaptation to situations. Self

adaptive systems is a very interesting research field (see [19]) and that is giving a

great number of useful results to the engineering community.

2.5 Prediction and feedback

Software quality evaluation (or prediction) can be done either at design time than

at runtime and it is interesting to note that there are some research areas that deal

with the way the results of these evaluations are used; in other words there are some

researches about how to use the feedback from quality evaluation.

In the rest of this work we will focus on performances and reliability prediction at

design time and we will see how engineers can use results obtained from evaluations

to take decisions over the overall system structure. We will concentrate on methods

to obtain measures and we will touch only marginally the way these measures are

used. Actually there are ongoing researches that are studying how software quality
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measures can be used in a systematic (read automatic) way to reflect appropriate

changes back to the system (either at design time than at runtime).

Even if feedback implementation at design time and at runtime has different

problems (basically completeness of the information for the former and stability

and overhead for the latter) some methodologies have been proposed like those in

[64] and [46])

However this is only for informational purposes since the main topic of this work

is about software quality prediction at design time and we don’t wont to go deeper

into this argument (even if it is really interesting).
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Chapter 3

Performance and reliability

prediction models

In chapter 2 we saw that engineers need some methods to evaluate software quality

at design time, but at this point we have some open questions: which indexes can we

use to evaluate software quality? And which quality models can we use to evaluate

these indexes? In this and the following sections we will try to give some answers

to these questions.

3.1 What kind of quality prediction?

In section 1.2 we told that software quality is the value that the software can have

for someone and we enumerated a number of factors that can be evaluated to ex-

press the degree of this value. However from a practical point of view some of the

factors presented are not very significant to engineers during the design phase, so

we will concentrate, as already anticipated, only on two of them: performances and

reliability.

3.1.1 Time performances

Performance indexes tell us how fast is the system, how it performs; in other words

when we talk about performance indexes we are talking of activities execution time.

Evaluating the execution time of the components of a system is very useful be-

cause from this metric we can derive very important indexes like throughput and
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utilization.

Throughput shows how many requests per second a component can satisfy; on

the other hand utilization shows the percentage of time a single component spent

serving requests from users or from other components. Combining these two indexes

we can know a lot of things about the system, but the most important thing is that

analyzing throughput and utilization we can decide if non functional requirements

(in this case non functional timing requirements) have been satisfied and if not we

can understand where to apply changes to the system to meet the required goals

(for example utilization and throughput are very useful to identify very annoying

problems like bottlenecks). Just to give some examples if we have a low throughput

with a low utilization probably we oversized some components of our system; instead

if we have an high throughput with an high utilization (near 99% for example), that

means that probably we have found a bottleneck with a possible loss of requests.

3.1.2 Reliability

In [29] reliability is defined as “the ability of a system or a component to perform its

required functions under stated conditions for a specific period of time”; so reliability

defines how long the system runs properly into its environment before a failure. This

is a very important information to take into account because gives us the capacity to

evaluate the robustness of our system. For example for a home banking web systems

we could have some requirements stating that the system have to be up and running

seven days a week (that means that when in power-on state the system can never

be down, therefore the required reliability must be equal to 100% in the related

time interval) or for example in an avionic system we could have some requirements

(typically derived from an avionic certification) that the system can’t have a failure

probability greater than 0.01 per hour because otherwise we could loose lives and

fail the mission.

In [2] it is introduced the concept of dependability of a system as the ability to

avoid service failures that are more frequent and more severe than is acceptable.

Always in [2] dependability is defined as an integrating concept that encompasses

the attributes:

• availability : readiness for correct service.

• reliability : continuity of correct service.
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• safety : absence of catastrophic consequences on the user(s) and the environ-

ment.

• integrity : absence of improper system alterations.

• maintainability : ability to undergo modifications and repairs.

So reliability is an attribute of dependability that expresses the continuity of correct

service; usually it is computed starting from the failure rate of system components

and can be evaluated as the probability that the system correctly performs its re-

quired functions under stated conditions for a specified period of time (see [25]) or

as the probability that the system successfully completes its task when it is invoked

(also known as “reliability on demand”, see [30]).

Now that we know what we want we will see some different models to use to evaluate

performance ad reliability. In this chapter we will give a theoretical presentation of

these models while in the following chapters we will show an effective way for using

them in a model driven environment.

3.2 DTMC

The acronym DTMC stands for Discrete Time Markov Chains; in this section we

will give an overview of DTMC; for a more detailed description see [21], [27] and [5].

A Markov chain (see [56]) is defined as a Markovian process1 with a finite states

space S, where states transitions occur randomly in discrete steps. One important

rule in Markovian processes is that the probability distribution for the system state

at the next step (and at all future steps) only depends on the current state of the

system and not on its state at previous steps. In a more formal way a stochastic

process {X0,X1, . . . ,Xn+1} with consecutive observation points 0,1, . . . ,n + 1 is a

DTMC if its conditional pmf 2 satisfy the following property for each n ε N0 and for

1More details on morkovian processes can be found in [57]
2Probability Mass Function, see [59]
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each si ε S:

P (Xn+1 = sn+1 | Xn = sn,Xn−1 = sn−1, . . . ,X0 = s0) = P (XN+1 = sn+1 | Xn = sn)

(3.1)

Since the system state changes randomly it is not possible to predict its exact state

in the future; however we can consider the statistical properties of the system and

use these properties to study the behavior of the system itself. For example Markov

chains can be used to represent the evolution of the states of a software system that

may be or not in a failure state, giving us the possibility to have some statistical

information about reliability.

From a practical point of view to study DTMC we have to know the following

characteristics:

• The states space S.

• The transition probability from a state i to the next state j denoted as pij.

Thanks to 3.1 this probability depends only on the states i. It must hold:∑
j pij = 1.

• The n-dimensional probability vector u (n is the number of possible states)

which represents the initial distribution (each element i of the vector represents

the probability to be at state i at instant 0 and the sum of all elements of the

vector must be equal to 1).

Given a states space S and the transition probabilities pij, it is possible to describe

a Markov chain with a non-negative stochastic matrix P:

P =


p00 p01 p02 . . .

p10 p11 p12 . . .

p20 p21 p22 . . .

. . . . . . . . .
. . .

 (3.2)

where the sum of the elements of each line of the matrix P have to be equal to one.

From the matrix P we can obtain the state transitions diagram. For example if we

have the matrix

P =

[
0.75 0.25

0.5 0.5

]
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Figure 3.1. DTMC state transition diagram for matrix P

we can obtain the diagram reported in figure 3.1.

If P is the transitions matrix for a Markov chain, the probability to go from the

state i to the state j in exactly n steps is given by the ij − th entry of the matrix

Pn. So if we consider the u vector previously presented we can say that if P is the

transition matrix for a Markov chain and u is the probability vector that represents

its initial distribution then the probability that the chain will be at state i after

exactly n steps is given from the i− th entry of the vector

u(n) = uPn (3.3)

From the reliability point of view there is a very interesting Markov chains type

called Absorbing Markov chains. An absorbing Markov chain has at least one state

si (it is called absorbing state) that can’t be left (that means that pii = 1) and that

can be reached from any other state in a finite number of steps. Any state that

is not absorbing is called transient state. Absorbing Markov chains are useful for

evaluating reliability because fault conditions, that are conditions from which the

system can’t go out, can be represented with absorbing states. But before we can

use such particular Markov chains we have to introduce some other concepts.

Given any Markov chain, the canonical form of its transition matrix P can be

obtained renumbering the states so that transient states are placed before absorbing

states; supposing to have r absorbing states and t transient states the canonical

matrix is:

P =

[
Q R

O I

]
(3.4)

where:
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Figure 3.2. Absorbing DTMC example

• I is an identity matrix r × r.

• O is a zero matrix r × t.

• R is a non-zero matrix t× r.

• Q is a t× t matrix.

and the first t states of the matrix are transient states while the last r are absorbing.

If P is in canonical form then Pn has the form:

Pn =

[
Qn ∗
O I

]
(3.5)

where * represents a t× r matrix and elements of Qn are the probability of being at

each transient state after n steps. Increasing n this matrix contains values smaller

and smaller; indeed there is a theorem that states that in an absorbing Markov

chain the probability that the process will be absorbed is equal to 1 (that means

that Qn → 0 for n → +∞).

Returning to the canonical matrix it can be shown that for an absorbing Markov

chain the matrix (I −Q)−1 = I + Q + Q2 + . . . called fundamental matrix for the

Markov chain represented by P, plays an important role. Indeed, the ij − th entry

of (I−Q)−1 represents the expected number of visits to the state sj assuming that

si is the initial state. The initial state is included in the count if i = j.

Knowing (I−Q)−1 we can see why DTMC are so useful for evaluating of relia-

bility: if bij is the probability that an absorbing Markov chain, whose initial state

is si, will be absorbed into the state sj than we can call B the matrix t × r which

has as entries the various bij; B can be computed as in [8]:

B = NR (3.6)
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where N is the fundamental matrix and R is the same as in 3.4.

If we consider reliability as the probability that a system will accomplish its duties

without any failure, than we can represent a system with an absorbing DTMC with

at least two different absorbing states: one that represents the correct end of system

execution without any failure and one that represents the system when some failure

happens; in that case from B we can obtain all the information we need to evaluate

the reliability of a software system.

3.3 LQN

As stated in [22] the Layered Queueing Network (LQN) model is a canonical form

for extended queueing networks with a layered structure. The layered structure

arises from servers at a given layer making requests to servers at lower layer as a

consequence of a request from a higher layer. LQN have a more complex structure

if compared with DTMC so we will discuss only the model architecture without any

reference to the mathematical concepts that lie behind it.

In LQN (for an example see figure 3.3) the basic building blocks are tasks that

run over processors (each task runs over a single processor) consuming execution

time of the processor itself (processors follows specific scheduling policies to choose

which of the tasks the rely in it to execute). Each task provides services through

some entry points called entry. Each entry can provide its service in two different

ways:

1. Phases: the activities of the entry are executed in different phases. Phase one

is a service phase and is used to reply to the service request, after phase one

is completed and a response is sent back to the requester, remaining phases

are executed one after another. Phases consume execution time on processors

and can make requests to other entries.

2. Activities graph: the requested service is provided executing the activities

linked into an activities graph (activities are defined below).

In point 2 we introduced the concept of activity. Activities are the lowest-level of

specification in the performance model; they consume time on processors, can call

entries (that reside on the same task or on other tasks) and are linked together to
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Figure 3.3. Simple LQN example

form an execution graph through some special elements called precedence. Prece-

dences are special nodes into the activities graph that determine the execution flow

of activities; available precedences are reported in table 3.1

We just said that activities can request services to entries; there are three differ-

ent requests types:

• Rendezvous requests: these are typical synchronous calls where the requester
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Name Description

Sequence Transfer of control from activity to join-list or from fork-list to activity.
And-Join A synchronization point for concurrent activities.
Or-Join The merge of two different branches.
And-Fork Start of concurrent execution.
Or-Fork A branching point where one of the paths is selected.
Loop Repeat the activity an average of n times.

Table 3.1. LQN precedences

is blocked until the server has completed its work and has sent back a response.

• Forwarding requests: the request is sent to a server but the response to the

requester is sent from a different server (to which the request is forwarded).

The requester is blocked until the response is received.

• Send-no-reply: these are typical asynchronous requests where the requester

make the call and then it goes forward without waiting for any response.

The last topics about LQN are multiplicity and replication. There is a subtle

difference between the two concepts because with the word “multiplicity” LQN refers

to a configuration of a single service center where there is a single queue that is served

by multiple servers (see figure 3.4a). Instead with the word “replication” LQN refers

to a single service center where there are multiple queue served by multiple servers

(see figure 3.4b).

So, as usual for queueing networks, all the LQN world turns around the concept

of entities (jobs, in the usual queueing network terminology) consuming processors’

execution time, but LQN adds the concept of a layered structure to the model of

the system. Typically queueing networks are used to compute execution times and

therefore timing performances (throughput and utilization) but the layers decompo-

sition of LQN models gives the possibility to better inspect the system and to easily

locate design problems like unused components, bad patterns, bottlenecks and so

on.
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(a) Multiserver (b) Replicated

Figure 3.4. Multiple copies of servers.

3.4 Simulation

Until now we have seen only quality models that can be solved (at least in principle)

analytically; that means that there is a strong mathematical foundation behind each

model that can be used to compute results without running the real system. In such

cases indexes (such as throughput, utilization or the overall failure rate) can be eval-

uated in an analytical way solving groups of equations. But analytical computation

is not the only way to obtain the required indexes. When the system is not yet

available (for example when you don’t have the system because you are designing

it) or when the system is too complex to be solved mathematically (because cpu

processing power is limited) an alternative solution is that of building a simulator.

According to [61] simulation is the imitation of some real thing, state of affairs

or process. The act of simulating something generally entails representing certain

key characteristics or behaviours of a selected physical or abstract system.

For software systems simulation is the practice of building a sort of prototype

of the model that doesn’t implement its functional requirements but is sufficient to

simulate the behavior of interest; when such a simulator is ready you can simply run

it and sit down seeing how the system would act (or better should act) if it was really

implemented. Something very important to understand is that the simulator is not

the real system nor in its features nor in the deployment, it is simply an object that

is very close to the behavior of the system compared to the aspect under evaluation

(therefore a simulator for studying an aspect of the real system is completely useless
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if considered for some other aspects). There are simulators for different types of

system analysis. In this work we will consider a Java3 simulation library called

SimJava.

SimJava (see [54] and [33]) is a software library capable of achieving discrete

events simulations (see [9]). In SimJava the system is seen as a set of entities that

interact between them; entities are linked together and communicate raising events.

This event flow is managed by a main class that orchestrates all the interactions.

The main concept in SimJava is the concept of entity. An entity is a process that

acts independently and can collaborate with other entities (or processes). From an

implementation point of view each entity is a Java Thread that runs autonomously

and its behaviour is realized by the implementation of its body() method. Entities

are linked together using ports and the interaction between them occurs using events ;

to manage events the library has three main features:

• Sending an event to an entity or to an entity port (this action is done using

the sim schedule() method).

• Turning an activity into a wait state (the entity is effectively descheduled)

until it receives an event (the wait is done using the sim get next() method).

• Managing the simulation clock running or pausing it (the method sim process()

consumes time simulating some sort of activity accomplished by the entity

while sim pause() pause the entity execution).

Each entity has a queue of received events; events are selected from this queue

using some predicates. Predicates are a kind of conditions that act like filters on

events. We can subdivide predicates into three types:

• General predicates: are used to select any event (SIM ANY) or to select no

events (SIM NONE).

• Tag predicates: the first event is selected that has the specified tag (the tag

is an integer value used as an event identifier to see what kind of event is into

the entity’s queue).

3Java is only an instrument to realize the simulator and it does not means that we can only
simulate Java applications
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• Source entity predicates: the selection of the event to be extracted and man-

aged from the waiting queue is done taking into account the entity that gen-

erated the event.

Two very important aspects to be considered are how the simulation starts and

its termination condition. The time that elapses from the initial instant of the

simulation until it reaches a steady state is called transient or warmup period; during

this time results are not very useful because they represents only a situation that

occurs into the simulator but has not an equivalent into the real system (because the

simulation refers only to a limited period of life of the system) so typically warmup

period results are discarded. In SimJava there are several ways to define a reached

transient condition:

• The number of completed events from the beginning of the simulation.

• The elapsed time from the beginning of the simulation.

• The “min-max method”: is a technique to automatically determine the warmup

period.

On the same way the termination condition is a condition that when met stops the

simulation; you can specify a termination condition in three different ways:

• All events are completed: that means that all events have been managed.

• Elapsed time: the simulation time is ended.

• Confidence interval accuracy: the simulation ends when the mean of a measure

has reached the desired accuracy.

The most relevant difference between analytical resolution models ad simulation

models is that using simulation the solution is not mathematically calculated but

it is based on some observed measures. Typically one simulation run is not enough

to have a meaningful evaluation of the system because it refers only to one specific

scenario, so to avoid this problem usually the simulation is run several times changing

the random number generators seeds to have different results (simulating a more

realistic scenario); when the results of all the runs are available some techniques are

used to extract the (statistical) results.
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In this chapter we briefly analyzed three of the possible quality analysis models

that software engineers can use to evaluate software quality at design time. It is clear

that to use these techniques one has to have some knowledge of the topic and this

can’t always be assumed for members of a software development team. Furthermore

it is clear that such models are something not so close to the usual tools used into

a typical design phase.

In the next chapter we will present a way to fill the gap between typical metho-

dologies used during the design phase and the software quality evaluation models

presented so far (but the same approach can be extended to every quality analysis

methodology).
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Chapter 4

Model Driven Approaches

So far we have stated the problem: software quality analysis is a powerful instrument

considering the complexity of today software systems and should be performed as

soon as possible, preferably during the design phase, but engineers typically don’t

have the right knowledge to use some of the many methodologies developed for this

purpose and usually the models they use to design the system are very different

from those used to evaluate software quality.

In this chapter we will see one of the possible solutions to this problem, the

Model Driven Approach.

4.1 What is MDA

According to [35] (but see also [36]) a model of a system is a description of that

system and its environment for some certain purpose. Model Driven Approach (or

Model Driven Architecture, or Model Driven Engineering, call it whatever you want

but it is always the same concept) is an approach to system development, which

increases the power of models; it is model driven because it provides a means for us-

ing models to direct the course of understanding, design, construction, deployment,

operation, maintenance and modification of a system.

The central concept of MDA is the model, or better the way to define the model.

MDA relies on MOF (Meta Object Facility, see [38]) that was born from the core

packages of UML (see [41]) using some of its simplest elements; some of the key

concepts of UML, like the concept of classes, attributes, relations (only binary),
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Figure 4.1. MOF, Meta model and model hierarchy

containment and so on, was taken to build something that could be used to demon-

strate and define UML itself. This subset of UML was called MOF (Meta Object

Facility) and its entities and “primitive” concepts allow to define not only the struc-

ture of UML, but also the structure of some other completely different models; they

can even be used to define MOF itself (that is MOF is self supporting).

MOF is at the base of MDA because it allows to define meta models; but it

is better if we go step by step. Referring to the figure 4.1 in MDA we have three

different levels of abstraction. The first level (denoted as “M3”) is MOF itself and it

is also called the meta meta model. The entities contained in MOF (concepts called

meta meta classes) can be used to define elements of the second level (denoted as

“M2”) called meta model that is the abstract representation of some sort of method

or concept; a meta model is an instance of a meta meta model. At the third level

(the lower one, denoted as “M1”) called model, we have one of the possible instances

of the entities of the second level. For example considering UML, at level M1 we

have the UML model of a system; this model is an instance of the concepts contained

at level M2 (where we can find entities like classes, attributes, relations, diagrams

and so on) into the UML meta model; at the end of this hierarchy the UML meta

36



4.1 – What is MDA

model of level M2 is only an instance of the meta meta model MOF.

So MOF can be used to define meta models and a typical meta model example

is UML. But UML is not the only meta model we can define; using MOF we can

define every sort of meta models from which we can instantiate every sort of model.

MOF is only one element of MDA because it allow to define meta models. The

true power of MDA is given by the ability to define transformations from a meta

model to another thanks to the fact that all the meta models share the same def-

inition language: MOF. The concept of transformation is fundamental in MDA

because once you have two meta models and you have defined some transformation

rules between them you can apply those rules to every instance (that means to every

model) of one of the two meta models.

The transformation process between meta models is so important that OMG

has developed a dedicated language called “Query/View/Transformation”, or QVT,

whose specification can be found in [37]. QVT defines a language to build trans-

formations; it has a syntax very similar to OCL (see [39]) and actually there are

two main variants of it: QVT Operational and QVT Declarative. The former is an

imperative language where you describe model transformations using the procedu-

ral style of an imperative programming language (for example like the C language),

while the latter is based on the concept of defining relations between the source and

the target meta model. At the moment QVT Operational already has some different

working implementations and despite its OCL like form (not very comfortable for

traditional procedural developers) it is widely adopted in the MDA environment.

QVT Declarative is a completely different approach to model transformation. Its

main feature is that writing the transformations in the form of relations they are

automatically reversible, that means that when you write a transformation with

QVT Declarative you can implement only one transformation that can be used in

both ways from the meta model A to the meta model B and from the meta model

B to the meta model A. On the contrary with QVT Operational you have to write

one specific transformation for each way; it is clear that QVT Declarative is more

powerful than QVT Operational, but this power has a cost to be paid. Indeed, these

kind of transformations are harder to write if compared to QVT Operational and

also the transformation engine is more difficult to build: this is evidenced by the fact

that actually there isn’t any mature implementation available for this transformation

language.
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Figure 4.2. Typical MOF and QVT interaction

As we can see in figure 4.2 with MOF that can be used to define meta models

and with QVT that allows transformations between meta models, now we have all

what we need to transform a model into another one using the MDA way.

As already stated MDA is an approach to systems development, so OMG in [35]

suggests some guidelines to be followed in building a system using MDA approaches.

According to OMG, during the development life cycle the first obtained artifact is

called PIM, that is Platform Independent Model; this means that the first result of

developing a system using models must be a model that is completely independent

of the specific platform where the final system will run; for “platform independent”

usually we mean independent of the underlying hardware but it could be even in-

dependent of some software infrastructure (for example independent of the specific

operating system in use). After we have obtained a PIM we should transform it

into a PSM, a Platform Specific Model that can be used as a starting point for code

generation (typically done automatically). See figure 4.3 for a schema of what we

just said. The advantages of this kind of approach are two:

1. The PIM independence from low level details permits to architects and design-

ers to concentrate on the structure of the system and on the domain problem

to solve.
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PIM

PSM

CODE

Figure 4.3. PIM to PSM transformation

2. If the PSM changes, the overall structure of the system (in that case the PIM)

doesn’t require changes; all you need to do is to build a new transformation

from the same PIM to generate a new PSM.

Obviously this approach has a lot of advantages if compared to other methodo-

logies that we have seen so far. A very simple and frequent example of this method

is starting from an UML model (the PIM) of the system that is completely inde-

pendent of the programming language to use; we can design our system without

considering all the programming language constraints and then when the design is

completed we can transform our UML model into a C++ model (the PSM) and

then generate code, or if C++ is not the right choice and for example we need some

kind of application portability we can transform to a Java model (another PSM)

and then generate code without any change to our input UML model (the PIM).

The previous one was only an example of a typical MDA approach and we have

to consider that it is the simplest application case; MDA can do much more powerful

things. The chain PIM → PSM → code of figure 4.4 demonstrates how a typical
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transformation from a PIM to a PSM is realized: transformation rules from the PIM

to the PSM are built starting from the analysis of the final platform where the PSM

will run.

Transformation

PIM

PSM

Marked PIM

Marks

Platform

Mapping

Figure 4.4. One of the simplest transformations: PIM to PSM.

4.2 Many ways to use MDA

The PIM to PSM transformation is only one of the possible applications of MDA

and it is an example of a model-to-model transformation.

In MDA we can identify two different types of transformations:

• M2M: model-to-model transformations.

• M2T: model-to-text transformations.

In M2M transformations the source and the target of the transformation are models,

that means that we can go from a model a conforming to a meta model Ma to a

model b conforming to a meta model Mb, or we can use the same meta model as

starting point and ending point of the transformation. The first kind of transforma-

tion is also called an endogenous transformation, while the second one is called an

exogenous transformation (see [60]). In M2T transformations the source is a model
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while the target is text; this is the typical transformation used for example when

someone wants to automatically generate code from a model. Even if M2T trans-

formations can seem out of the scope of the MDA approach that relies on models

we have to understand that code, or better text, can be considered as a particular

representation of a kind of model. To substantiate this thesis we have to consider

that according to OMG specifications (see for example [44]) models must be stored

into XMI files, where XMI is just a particular dialect of XML and therefore it is

text.

Until now we have seen the PIM → PSM → code paradigm where we have an

input design model that is transformed to a platform specific model from which we

can generate code. But as already said this is just one of the possible applications

(and this is one of the simplest cases); MDA doesn’t limit us in the number of

transformations we can apply in sequence, nor in the kind of transformations, nor

in the number of input models we can use for a single transformation. We can

apply more than one single M2M transformation in sequence before applying a M2T

transformation (see figure 4.5a), for example this can be done for an extension of the

typical PIM → PSM → code approach where in place of simple transformations

we can use chains of transformations of the form PIM → PIM1 → . . . → PIMn →
PSM → PSM1 → . . . → PSMm → code. Or we can use a single transformation

to merge many input models (see figure 4.5b); but the most important thing to

consider is that models and meta models can be anything, from the design project

of a system, to the representation of a data library, to some kind of software quality

evaluation model; we are not bound to the canonical meaning given to PIM and

PSM models. Indeed we can identify two different kinds of transformations:

• vertical transformations: the transformation is a refinement of the input model

but we are always into the same domain. An example is the PIM → PSM →
code transformation where we are always into the functional domain.

• horizontal transformations: the transformation of the input model leads to a

completely different domain. An example is the topic of this thesis where we

go from a functional domain to a performance domain.
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Figure 4.5. (a) Transformation chain. (b) Models merging transformation.

4.3 MDA today

MDA is not an easy topic and therefore it is perceived in many different ways. It

is strongly diffused into the academic world with a lot of universities and research

centers focused on many aspects of its applications, from code generation to design

models, from software quality prediction to Domain Specific Languages and so on.

The industry world on the contrary is not so addicted to MDA methodologies,

due to its traditional fear to embrace risks of new technologies even if MDA is around

from more then ten years (but the tools that make it possible to effectively use MDA

are very young yet). Except for some specific realities (like those born specifically to

advise model driven1) the adoption of model driven approaches is still very limited

even if in the last years its popularity is gaining more and more fans.

4.3.1 Applications

But how does people use MDA today? In the industry world MDA is mainly used

to automatically generate code and documentation from design models expressed in

UML (remember the PIM → PSM → code paradigm presented in the previous

1For example in Germany we have Itemis AG and in France we have Obeo
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section); in this kind of environment usually there are no true M2M transformations.

If there are some, they are only used to apply some specific patterns to the input

model in order to reduce manual operations of designers. Another field of application

is that of Domain Specific Languages where using MDA we want to automatically

generate ad-hoc parsers to convert some text to a model and then transform this

model to a new one and generate code from the last model.

If instead we consider the research world we can see that MDA is used in many

different ways and typically not to generate code like C, Java or C++. On the

contrary, the aim usually is to build transformation chains ranging from simple ones

to very long and complex transformations where the source and the target model

are very far from each other.

Our work lays at an intermediate point between all that. As we will see later

our source model will be something that is produced during the design phase (like

an UML model for example) whereas our target model will be a software quality

evaluation model, but we will not use a single transformation to obtain such a result.

4.3.2 Tools

Even if MDA is not recent from a conceptual viewpoint, the relevance of MDA has

grown only recently. The reason is that only recently some working tools have been

made available, tools that really allow to follow model driven approaches. In this

section we will outline some of them.

Rhapsody

Rhapsody is a design environment developed by Telelogic (now part of Rational

Software and so of IBM). It has an integrated environment for developing systems

using UML and recently to use SysML; from these models it is able to generate

code for some programming languages. The problem with this tool is that despite

it claims to be an MDA tool it has really nothing to do with MDA, it only allows

to make some very simple customizations to the code generator, but nothing to do

with M2M or M2T transformations and therefore with MOF and MDA.
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Artisan Studio

Studio (see [52]) is a tool developed by Artisan Software. It is a very good tool

for UML and SysML design modeling. It doesn’t offer any MOF implementation

and the support to M2M transformations is very limited, but M2T transformations

are supported even if the transformation language is very distant from the OMG

specification given for QVT. Artisan Studio actually can be considered the model

driven tool that requires less specific knowledge of MDA if compared to all the other

tools.

Eclipse

Eclipse (see [10]) is a very particular instrument because it is not a simple tool,

rather it is an ecosystem of tools integrated between them. In such an ecosystem

of tools (or plugins to speak in the Eclipse way) there are a lot of instruments

that combined together can give the best MDA tool available today with regard to

completeness and versatility. The drawback of Eclipse is that it requires a very deep

knowledge of model driven approaches and of all the technologies related to MDA.

TopCased

TopCased is a project sponsored by many industrial partners and by the European

commission with the VII Framework program (see [1]). It is mainly focused on

embedded systems but it can be used in any software domain without any problem.

The project is structured over Eclipse and in effect it is capable of using all the

potentiality of the Eclipse ecosystem. We have considered it separately because

it provides one possible and mature way to use some of the instruments already

present into Eclipse. From a user point of view TopCased has some nice UML and

SysML editors, a documentation generator, one implementation of QVT for M2M

transformations and another one for M2T transformations and also it provides some

tools specifically focused to embedded applications such as a simulator for state

machines. Its power is obviously the underlying Eclipse environment that makes

even access to MOF.
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4.3.3 The Eclipse world

Eclipse deserves more attention than other tools because actually it is the only

instrument that, despite the significant learning curve, is capable to offer all the

instruments needed to follow a true model driven approach; we can say that a

considerable part of the success of MDA of these last years is due precisely to

Eclipse.

Eclipse is the first tool that provides a really usable implementation of MOF

called EMF (Eclipse Modeling Framework) developed inside the Modeling sub-

project of Eclipse (see [32]).

Quite a number of tools has been built around EMF. Here we will describe the

most successful ones related to MDA and in particular to models transformations:

• GMF (see [13]): is a framework to build graphical environments (usually

graphical editors) based on a meta model.

• ATL (see [12]): it is a project from INRIA to implement M2M transforma-

tions; in effect it was the first project for M2M and therefore it is the most

distant from the actual QVT standard, but due to its long history it is widely

adopted.

• xTend (see [18]): it is the M2M language from Itemis AG born from the

openArchitectureWare project. It is more close to the QVT standard than

ATL and has a lot of OCL functionalities of QVT, but it is not yet a full QVT

implementation. If needed can be extended with Java classes.

• QVTO (see [15]): QVT Operational is an Eclipse implementation of QVT

in its operational form. It complies with the QVT specification but it is still

quite young, even if it is very promising.

• QVTR (see [16]: QVT Relational is an Eclipse implementation of QVT declar-

ative. Actually it is not yet suitable for a real use.

• JET (see [14]): Java Emitter Templates is the most basic tool for M2T trans-

formations. It generates code starting from templates based on a syntax very

similar to JSP.
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• Acceleo (see [11]): it is another code generator based on templates, but if

compared with JET it is more powerful and the scripting language offers more

functionalities. It is even more simple to use.

• xPand (see [17]): yet another template language for M2T transformations;

conceptually it is very close to Accelleo, but it may rely on a full integration

with xTend and its java extensions.

In addition to these sub-projects EMF ads a number of very useful tools like models

and meta models converters, models and meta models diff and merge and so on.

Eclipse is a really exciting and full of life project and actually it is one of the

most important driving force of the MDA environment. Actually all the work of

this thesis is developed under Eclipse.
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Chapter 5

The KLAPER approach: basic

concepts

5.1 The intermediate meta model concept applied

to performance and reliability analysis

In chapter 3 we saw some of the models typically used for software quality analysis,

but we also saw that they are very far from what typically is produced during a

usual software design phase. To tackle this problem we presented in chapter 4 a

development methodology whose main feature is the use of a model based approach

specifically focused on models definition and models transformations.

Working with models we are able to fill the gap between design artifacts and

software quality evaluation techniques. But we can follow many ways to achieve our

goal.

One possible approach could be to define a specific transformation from one

design meta model (because transformation rules refer to meta models and then

they are applied to models) to a specific software quality analysis meta model; then

if for some reason we have to add another quality meta model (different from the

previous one) we have to add another specific transformation to this new meta

model. But what happens if we introduce a new design model to use as input for

models transformations? With the use of MDA we just proposed we should define

two new transformations: one from the second input design meta model to the first

quality meta model and one from the same input design meta model to the second
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quality meta model. It is simple to understand that in this way the number of needed

transformations dramatically increases each time a new meta model is added (see

figure 5.1 for a graphical representation of this concept).

A

B

C

X

Y

Figure 5.1. Many to many MDA transformations

We think that this is not the best possible approach to solve the problem because

it requires too much effort to add the needed transformations each time a new meta

model is introduced (either a design meta model or a software quality analysis one).

A better approach to the problem is to use an intermediate meta model to reduce

the number of needed transformations.

In chapter 4 we said that transformations can be composed into a chain; but we

have to understand that using a specific transformation or a chain of transformations

can lead to the same result if the source meta models are the same and they are

transformed into the same final target meta model, or at least this is true if the

transformations chain applies an overall transformation identical to the single direct

transformation. Consequently we can introduce into our approach an intermediate

meta model that can be used to reduce the number of needed transformation as

shown in figure 5.2. With this kind of approach, every time a new meta model is

added we have to write only one new transformation from the new meta model to

the intermediate meta model if the new one is a design meta model, or from the

intermediate meta model to the new meta model if the new one is a software quality

analysis meta model.

In this chapter we present a possible implementation of the concept of the in-

termediate meta model to fill the gap between design models and software quality

evaluation models. Its name is KLAPER.
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Figure 5.2. Use of an intermediate meta model to reduce the number
of transformations

5.2 The meta model

KLAPER (Kernel LAnguage for PErformance and Reliability analysis, see [47] and

[26]) is an intermediate language whose aim is to simplify the transformation pro-

cess between design and software quality analysis models. It is mainly focused on

performance and reliability analysis and as an “intermediate” language it contains

some typical elements of design models and some typical element of performance

and reliability evaluation models.

5.2.1 An overview

A KLAPER model consists of two parts: a static one and a dynamic one. The

static part describes the structure of the system from the (hardware and software)

available resources and offered services point of view. The dynamic part instead

describes the way resources interact between them using services.

Meta model static part: the structure

The static part of KLAPER describes the resources of the system and the services

offered by each resource.

Inside a KLAPER model (see figure 6.3 for the KLAPER meta model) we can

find a set of Workload and a set of Resource. The former represents the way the

internal or the external workload (usually human users or other systems) interacts

with the system. The latter describes the resources of the system, where with
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the word “resource” we refer to any component, both hardware and software, of

the system that represents an entity capable of offering one or more services. Each

resource provides some Service that define the services offered by that resource, that

is actions that resource provides to everyone will require them; requested services

can rely on parameters expressed by FormalParam.

Meta model dynamic part: the behavior

The dynamic part of KLAPER describes the sequences of actions accomplished by

every system service in terms of a graph of activities and interactions with other

services; that means the the dynamic part of KLAPER describes the behavior of

the system.

Each service is defined by a Behavior which describes the dynamic behavior

realized by that service; in other words the Behavior specify the Step sequence

executed by a particular service and the way these Steps are linked together by

some Transition to realize the provided services (Transition are designed to define

the Step execution sequence).

Steps can be simple or composed and define actions executed inside the service.

Simple steps can be of different types: Start defines the beginning of an actions

flow, Wait handle the wait for the receipt of a specific event, End describes the end

of an actions flow. Are part of simple steps also Control steps that are in charge

to describe the actions flow inside a Behavior. Other simple steps are: Branch that

handles decision branches, Fork that creates parallel execution flows and Join that

synchronizes the parallel execution flows previously generated by one or more Fork.

A very important step is Activity. In its simplest form Activity (called “simple

Activity”) describes an atomic activity (often a single action) executed by the sys-

tem. If considered in its more complex form Activity (called “complex Activity”)

describes an entire Behavior (in this case considered as a sub-Behavior) as the action

to do. A complex Activity can be used to describe loops inside Behaviors’ action

flow.

An extension of Activity is the ServiceControl step; it represents a service request

to another resource (or even to the same resource) realizing the interaction between

resources of the same system; this interaction can be parametric and in that case

parameters have to be specified using ActualParam (mirror to FormalParam).
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As just said ServiceControl allow a Behavior to request services, but to do that

we need a Binding that links the service that must be executed. The Binding concept

is probably one of the most important elements of KLAPER because it relies on this

element for the capacity of dynamically reconfiguring system components according

to variations that can occur for design decisions (for example the deployment of the

system is changed to improve performance or a component is replaced with another

one) or for a dynamic runtime reconfiguration (for example an adaptive client/server

system capable of self reconfiguration to balance servers load). The Binding main

role is to define the specific service called by ServiceControl, suggesting whether the

interaction with this service is synchronous (and therefore we are speaking about a

true message between services) or asynchronous (and therefore we are speaking of

an event).

Dynamic system reconfigurations at runtime are done thanks to two specific steps

called CreateBinding and DeleteBinding ; from the names we can understand that

the former is used to create a new Binding while the latter has the role to destroy

an existent Binding.

KLAPER: what to map and where

Now that we know a little bit more how the KLAPER meta model is structured,

we can see some example of what is mapped into the main KLAPER meta classes

from the design world. Just to give some example:

• Each software component (expressed for example using SysML or UML nota-

tion) is mapped to a KLAPER Resource. The services offered and required

by each software component are mapped to KLAPER Services contained into

the related Resources.

• Hardware components supporting the execution of software components of the

system are mapped to KLAPER Resource (just like software components).

• The sequence of actions performed by an actor of the system and usually

expressed for example with an UML Sequence diagram is mapped to the

KLAPER Workload meta class. Usually to complete the mapping, the infor-

mation provided by the pure UML is not enough and therefore UML is aug-

mented with some additional notation (typically UML-SPT [43] or MARTE
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[42]) whose aim is to express concepts like think time, inter-arrival rate, system

population and so on.

• The sequence of actions of a service (for example consider a UML sequence

diagram or a UML activity diagram) is expressed using a KLAPER Behavior.

• Typical control constructs like loops, if, for and so on are mapped to the

related KLAPER control Step.

• Function calls, method calls and more in general the request for a service

issued by some system resource (both hardware and software) are mapped

to KLAPER ServiceControl step. This step is then associated to a suitable

Service offered by some Resource through a Binding. We point out that the

modification of Bindings is the way used in KLAPER to model the dynamic

reconfiguration of the system at runtime when needed.

• The execution of a software component over an hardware component is mod-

eled as follows: the software component is mapped to a KLAPER Resource

with a certain Service (but the Resource can have more Services), the hard-

ware component is mapped to a KLAPER Resource with a single Service that

represents the basic function of the hardware component (for example for a

Resource that models a cpu we can have a single Service called “process”),

the Resource representing the software component is linked to the Resource

representing the hardware component using a Binding between the related

Services. We have to note that Bindings are used to model two different sit-

uations: the interaction between two software components (discussed in the

previous point) and the deployment of a software component over an hardware

node (discussed in this point).

• Actions executed into a service and expressed for example using the body

(code) of a method of a UML class, are mapped to KLAPER Activity; here

we usually find also some additional informations related to performance, like

service times, and reliability, like failure times of failure probabilities, that are

directly mapped into KLAPER Activities’ attributes.

• Some quantities used in the design model, like the number of bytes transfered

over a network or the number of basic operations needed to complete an action,
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are mapped to KLAPER FormalParam and ActualParam.

• Handling the acquisition and release of finite capacity resources is mapped

to the Acquire and Release steps where the acquired or released Resource is

specified.

These are only few examples of how some concepts typical of the design world are

mapped to the KLAPER related entities; we have not the claim to fully explain here

all the aspects of the mapping from some design models (like UML for example) to

KLAPER; we just wanted to give an idea of how concepts from the design model can

be mapped to corresponding concepts of KLAPER, expressed by its meta classes.

We refer to section 10.2.1 for a complete example of the mapping from a design

model (in the specific case UML) to KLAPER.

For a better and detailed explanation of each KLAPER meta class with the

related attribute see the section 6.1.3

KLAPER for performance and reliability

The KLAPER meta model (the static part plus the dynamic one) is based on the

concepts of resources and services that perform activities and interact among them;

however, KLAPER does not model the semantics of these services and interactions

(i.e. the function they perform). KLAPER is just interested in modeling how long

it takes to complete an operation, or if it can fail before completing. This is only

one of the possible ways to consider a system. The advantage of such a view is that

we can concentrate on the structure of the system and on the interaction between

its components without any knowledge of the expected functions of the system

itself. But now that we are able to model a system independently of its functional

requirements, how can we use it to analyze performance and reliability? To answer

to this question we need to recall that KLAPER is an “intermediate” language

created to link two worlds: the software design one and the software analysis one.

From the software design world KLAPER takes an abstracted view of all the

elements needed to represent the static structure (the static part of KLAPER) and

the dynamic behavior (the dynamic part of KLAPER) of the system we want to

analyze; then from the software analysis world KLAPER takes a number of concepts

used to enrich the static and the dynamic parts just presented. Indeed concepts like

activities or service call, typical of design models, are augmented with informations
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like service time or failure probabilities that are instead typical of quality analysis

models.

More specifically the fundamental concepts allowing performance and reliability

analysis are:

• The execution time needed by an activity to be fully completed.

• The failure probability of an activity.

• The time spent by an activity before a failure.

• The dependence of an activity from a called service in terms of failure.

These concepts (all represented using attributes of KLAPER Steps) applied to the

static and dynamic description of the system given by the KLAPER meta model,

are what we need to successfully complete a performance and reliability analysis of

a software system.

One more thing very important to note is that all the concepts just described

(like for example the failure probabilities, the service times but also the repetitions

of activities) and used to analyze the performance and the reliability of the input

system are expressed using probability distribution functions. That means that all

the KLAPER approach relies on a “stochastic vision” of the analyzed system.

54



Chapter 6

KLAPER: syntax and semantics

6.1 Meta model packages

The KLAPER meta model consists of three packages: core, probability and expr.

In the next sections we will analyze each of these packages.

6.1.1 The probability package

Into the probability package, shown in figure 6.1, we have all the probability distri-

bution functions that we can use in KLAPER with theirs attributes:

• Normal distribution function. Its attributes are reported in table 6.1.

Attribute Type Description

mean Expression mean of the distribution.
standDev Expression standard deviation of the distribution.

Table 6.1. Normal distribution function attributes

• Poisson distribution function. Its attributes are reported in table 6.2.

Attribute Type Description

mean Expression mean of the distribution.

Table 6.2. Poisson distribution function attributes
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• Uniform distribution function. Its attributes are reported in table 6.3.

Attribute Type Description

min Expression minimum value of the distribution.
max Expression maximum value of the distribution.

Table 6.3. Uniform distribution function attributes

• Exponential distribution function. Its attributes are reported in table 6.4.

Attribute Type Description

mean Expression mean of the distribution.

Table 6.4. Exponential distribution function attributes

• Constant: it represents a constant value and therefore is not properly a prob-

ability distribution function but defined in this way is only a workaround to

simplify the meta model structure. Its attributes are reported in table 6.5.

Attribute Type Description

value Expression expression of the constant value.

Table 6.5. Constant

• Geometric distribution function. Its attributes are reported in table 6.6.

Attribute Type Description

mean Expression mean of the distribution.

Table 6.6. Geometric distribution function attributes

• Histogram distribution function. Its attributes are reported in table 6.7.

We must pay particular attention to the Constant meta class that is used to represent

a general constant value even if it derives from the meta class ProbabilityDistribu-

tionFunction which really has nothing in common, but doing so the meta model is

simpler to build.

56



6.1 – Meta model packages

Attribute Type Description

samples HistogramSample sample of the histogram.

Table 6.7. Histogram distribution function attributes

Figure 6.1. Package probability of KLAPER meta model

6.1.2 The expr package

The expr package (see figure 6.2) contains a meta model that represents expressions

formed by constant values, variables, unary operators and binary operators. The

meta classes composing this package are:

• Expression: is the root of an expression; it has no attributes.

• Atom: represents an atomic element like for example a number or a variable;

it has no attributes.

• Variable: meta class that represents the concept of a simple variable (for

example into the expression x+ y, x and y are variables); it has no attributes.

• Number: is the general concept for any kind of number; it has no attributes.

• Integer: meta class that represents a number contained into the Z set; its

attributes are reported in table 6.8.

• Double: like Integer is a meta class that represents a number but contained

into the R set; its attributes are reported in table 6.9.
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Figure 6.2. Package expr for the KLAPER meta model

Attribute Type Description

value Integer value is a number that {value | value ε Z}

Table 6.8. Integer attributes

Attribute Type Description

value Integer value is a number that {value | value ε R}

Table 6.9. Double attributes

• Unary: meta class that represents an element composed only by a single sub-

expression without any binary operator. The only unary operator defined is

the minus symbol; its attributes are reported in table 6.10.

• Binary: meta class that defines a binary operator; its attributes are reported

in table 6.11.
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Attribute Type Description

operator Minus the only unary operator admitted is the minus symbol.
element Expression a recursive expression.

Table 6.10. Unary attributes

Attribute Type Description

operator Operator the binary operator (admitted binary operators are
+, -, *, / and ∧).

left Expression the recursive expression on the left of the operator.
right Expression the recursive expression on the right of the opera-

tor.

Table 6.11. Binary attributes

• Operator: represents a binary operator; it has no attributes but has five de-

rived meta classes: Plus (for the binary operator “+”), Minus (for the binary

operator “-”), Mult for the binary operator “*”), Div for the binary operator

“/”) and Exp (for the binary operator “∧”).

With this kind of meta model we can model each expression, even the most

complex one.

6.1.3 The core package

The core package is the true heart of the KLAPER meta model (probability and

expr are only utility packages). In section 5.2.1 we already saw an overview of the

meta classes that compose the core package; here we will describe the details of each

of these classes:

• KlaperModel: is the container of all Workload and Resource composing the

system model; it has no attributes.

• Resource: a meta class that represents any hardware or software entity able

to provide a service; its attributes are reported in table 6.12.

• Service: this meta class describes the service offered by a resource; its at-

tributes are reported in table 6.13.
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KlaperModel

Resource

name
type
capacity
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description
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Figure 6.3. Package core of KLAPER meta model

• FormalParam: used to parameterize a service offered by a resource (the con-

cept is very similar to that of parameters in many programming languages,

but this time parameters refers to performance and reliability aspects); its

attribute are reported in table 6.14. FormalParameters can be input, output

1At the time this work is written we are evaluating if speedAttr and failAttr concepts can be
merged with Service’s FromalParams. The discussion is about what, if any, can be represented
with failAttr and speedAttr that can’t be represented with FormalParams
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Attribute Type Description

name String the name of the resource.
type String type of the resource (some types like “cpu”, “net-

work”, “disk” are managed in a special way).
capacity Real denotes the number of requests served in parallel

by the resource. It represents the overall capacity
of the resource considering all the requests to all
the services offered by the resource.

schedulingPolicy Enum requests scheduling policy applied by the resource.
There is the same policy for al l the services offered
by the resource.

description String a text description of the resource.
offeredService List a list of services provided by the resource.

Table 6.12. Resource attributes

Attribute Type Description

name String the name of the service.
speedAttr1 Real is used to represent the basic parameters charac-

terizing the resource “speed” in carrying out the
service; in the simplest case it could be a renaming
of the Real type, expressing for example the num-
ber of operations per unit time for this service.
In more complex cases it could specify additional
informations such as the time scale used in the
definition of this parameter.

failAttr1 Real . the same as speedAttr but related to the internal
failure probability of the service.

description String text description of the service.
behavior Behavior sequence of actions (steps) that realize the service.
formalParams List FormalParams of the service. They can be used

to parameterize expressions concerning the time
to complete an operation or the probability that
it fails from the point of view of the performance
and reliability analysis.

Table 6.13. Service attributes

or input/output parameters. Input parameters are used when the called ser-

vice depends on some external variable; output parameters are used when we
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need the result of a service execution to compute some other parameter or ex-

pression (for example we can consider a service that computes the number of

elements contained into a list, we can call this service and later we can use the

returned size of the list to compute the value of some expression like for exam-

ple the processing power needed to sort the list), just like reference or pointer

parameters of common programming languages; input/output parameters are

used when we want to use parameters both in input and output mode.

Attribute Type Description

name String name of the parameter.
return Boolean true if the parameter is an output or an input/out-

put parameter, false if it is only an input parame-
ter. Output parameters and input/output param-
eters can be used when the service time or the fail-
ure probability of an Activity of a Service depend
on some other Service previously called.

actual ActualParam the value that actualize this parameter.

Table 6.14. FormalParam attributes

• Workload: meta class that describes the internal or external system workload;

it is a particular form of service that doesn’t provide any service but only

requires services from other resources; its attributes are reported in table 6.15.

• Behavior: meta class that describes a sequence (or better a direct graph) of

steps or actions needed to provide a specific service; it attributes are reported

in the table 6.16.

• Step: is the basic action into a Behavior; there are two types of steps: simple

steps and complex steps; its attributes are reported in table 6.17.

• Transition: meta class that represents the transition from a step to another

one; its attributes are reported in table 6.18.

2An open workload is characterized by users that enter the system, do some requests and then
go away

3A closed workload is characterized by a constant number of users that when a request is served
do another request
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Attribute Type Description

name String name of the workload.
type Enum the type of the workload;

admitted types are OPEN
for an open workload2 and
CLOSED for a closed work-
load3.

population Integer the number of users in-
side the system for a closed
workload (in mutual exclu-
sion with arrivalProcess at-
tribute).

arrivalProcess ProbabilityDistributionFunction distribution function of user
arrival rate for an open
workload system (in mutual
exclusion with population
attribute).

behavior Behavior sequence of actions (steps)
that realize the workload.

Table 6.15. Workload attributes

Attribute Type Description

step List a list of steps that build the behavior (they com-
pose a direct graph).

transition List the links between the steps.

Table 6.16. Behavior attributes

Attribute Type Description

name String name of the step.
in List list of incoming transitions into the step.
out List list of outgoing transitions from the step.

Table 6.17. Step attributes

• Start: it is the starting step of each Behavior and is mandatory. It is a simple

step. Its attributes are reported in table 6.19.
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Attribute Type Description

from Step source step of the transition.
to Step target step of the transition.
prob Real the probability that the Transition is chosen where

more than one Transition is available; if not de-
fined defaults to the value 1.

Table 6.18. Transition attributes

Attribute Type Description

name String see Step.
in List empty list.
out List see Step but the list can have only one element.

Table 6.19. Start attributes

• Wait: it is a step that freezes the execution flow of a Behavior until the waited

event is raised4. It is a simple step. Its attributes are reported in table 6.20.

Attribute Type Description

name String see Step.
in List see Step.
out List see Step but the list can have only one element.

Table 6.20. Wait attributes

• End: it is the final step of each Behavior and it is mandatory. It is a simple

step. Its attributes are reported in table 6.21.

Attribute Type Description

name String see Step.
in List see Step.
out List empty list.

Table 6.21. End attributes

4The waited event is raised when it is executed the ServiceControl that is linked to the Wait
step via a Binding element.
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• Control: this meta class is a specific specialization of Step that models steps

used to control the execution flow of a Behavior. It is a simple step. Its

attributes are reported in table 6.22.

Attribute Type Description

name String see Step.
in List see Step.
out List see Step but the list can have only one element.

Table 6.22. Control attributes

• Branch: its a control step that model a branching point into the execution

flow of a Behavior. It is a simple step. Its attributes are reported in table 6.23.

The sum of the values of the prob attributes of this step’s outgoing Transitions

must be equal to 1.0.

Attribute Type Description

name String see Step.
in List see Step.
out List see Step.

Table 6.23. Branch attributes

• Fork: it is a control step that causes the creation of two or more parallel

execution flows into the same Behavior. It is a simple step. Its attributes are

reported in table 6.24.

Attribute Type Description

name String see Step.
in List see Step.
out List see Step.

Table 6.24. Fork attributes

• Join: it is a control step where parallel flows originated from a Fork step

join together. It is a simple step. Its attributes are reported in table 6.25.
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The transitionsNeededToGo attribute is used to define the number of flows

that we need to wait before going to the next step; for example if its value

is set to 1 that means that the step has to wait to be activeted by one only

incoming transition, if its value is set to 3 we have to wait at least three

incoming transitions before going to the next step. In general if we have n

incoming transitions and the attribute transitionsNeededToGo is set to 1 the

continuation condition can be considered as the OR between the predicates

that represent the termination of the activities that merge into the Join step,

while if the attribute is set to n the continuation condition can be considered

as the AND between those predicates; obviously all the intermediate values

between 1 and n are accepted (the value 0 on the contrary is not acceptable).

Attribute Type Description

name String see Step.
in List see Step.
out List see Step but the list can have only one element.
transitionsNeededToGo Integer number of transitions to gather before proceeding.

Table 6.25. Join attributes

• Activity: meta class that represents an action into a Behavior. There are two

types of Activity: simple (to describe atomic actions) and complex (to describe

actions composed by some other activities specified by a sub-Behavior). Its

attributes are reported in table 6.26.

In table 6.26 we said that loops can be modeled using the repetitions attribute.

To better explain this concept in figure 6.4 we present an example of how a

loop with a repetitions number greater than 1 can be modeled using repetitions

and how instead the same loop can be represented in KLAPER not using

repetitions ; the two representations are equivalent but obviously the first one

must be preferred due to its simplicity. In the example we have a repetitions

number represented by a constant value, but we can also express the number

of loops using a stochastic (parametric) distribution.

• ServiceControl: it is a special activity that makes calls to services of other
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Attribute Type Description

name String see Step.
in List see Step.
out List see Step but the list can

have only one element.
repetitions ProbabilityDistributionFunction times the activity is exe-

cuted before going to next
steps (this can be used to
model loops, for an example
see figure 6.4).

nestedBehavior Behavior defines a complete Behavior
as the action to do with this
step.

internalExecTime ProbabilityDistrbutionFunction time required by the system
to complete the action re-
lated to this step. Can de-
pend on Service’s Formal-
Params.

internalFailProb ProbabilityDistributionFunction the probability that the ac-
tivity will fail; it is used for
reliability analisys. Can de-
pend on Service’s Formal-
Params. It is in mutual
exclusion with internalFail-
Time

internalFailTime ProbabilityDistributionFunction the time before a failure will
happen during the activity
execution; it is used for re-
liability analisys. Can de-
pend on Service’s Formal-
Params. It is in mutual
exclusion with internalFail-
Prob.

Table 6.26. Activity attributes

resources or of the same resource or raises events. Its attributes are reported

in table 6.27. Special attention is required by the dependsOn attribute because

it plays a very important role during reliability analisys. In ServiceControls
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Attribute Type Description

name String see Activity.
in List see Activity.
out List see Activity.
repetitions ProbabilityDistributionFunction see Activity.
nestedBehavior Behavior see Activity.
internalExecTime ProbabilityDistrbutionFunction see Activity.
internalFailProb ProbabilityDistributionFunction see Activity.
InternalFailTime ProbabilityDistributionFunction see Activity.
resourceType String the type of the resource (for ex-

ample “cpu”, “network”, etc.)
that would provide the required
service. If the deployment of the
system is already available this in-
formation is useless, but if the de-
ployment has not been defined yet
this information could be useful
for some type of analysis.

serviceName String the name of the required Service.
isSynch Boolean true if the service request is syn-

chronous (and therefore block-
ing), false if it is asynchronous
(in that case the requester doesn’t
block waiting the response from
the requested service). If Service-
Control is used to raise a signal
this attribute must be false.

binding Binding the Binding linked to this Service-
Control. If the deployment of the
system is not yet available, this
reference can be empty.

ActualParam List a list of actual parameters with
which the object is invoked.

dependsOn Boolean true if a failure of the called ser-
vice causes a failure also into this
step, false if a failure of the called
service is not a problem for this
step. Used to evaluate reliability.

Table 6.27. ServiceControl attributes
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Figure 6.4. (a) Loop unfolding for a simple KLAPER Activity, (b) Loop unfolding
for a KLAPER Activity with a nested behavior.

with a synchronous call the calling service is obviously dependent on the called

service because the caller is blocked waiting the called to complete its activ-

ities; therefore a failure of the called service must cause also a failure of the

caller service; but when we have a ServiceControl with an asynchronous call

to another service this dependency of failures is not so obvious, there are cases

where a failure of the called service causes a failure of the caller service and

cases where this does not happen; the dependsOn attribute aim is precisely to

indicate whether or not a ServiceControl with an asynchronous call must fail
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if the called service has a failure.

• ActualParam: this meta class represents the real value of a formal parameter

assigned when a service is invoked by a ServiceCall. Its attributes are reported

in table 6.28.

Attribute Type Description

name String name of the parameter.
formal FormalParam the formal parameter which this parameter assigns

a value (for an example see figure 6.5).
value Expression the expression (see the expr package) that defines

the value of this parameter.

Table 6.28. ActualParam attributes

ServiceControl

param: x = 3
Binding Service

Behavior

Start

End

Activity
internalExecTime = x + 5

param: x

...

...

actual parameter

formal parameter

the value of x
here is 3

Figure 6.5. Example of correspondence between KLAPER ActualParam
and FormalParam.

• Binding: meta class that defines the link between a calling service (using

a ServiceCall) and a called service and defines if the call is a message or an

event/signal. Its attributes are reported in table 6.29.
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Attribute Type Description

call Service the service requested with the message.
signal Wait see the Wait steps this event have to wake up.

Table 6.29. Binding attributes

• Reconfiguration: it is responsible of reorganizing the links between Service-

Call and Service creating or destroying Bindings as needed.It is a simple Step.

Its attributes are defined in table 6.30.

Attribute Type Description

name String see Step.
in List see Step.
out List see Step but the list can have only one element.
sourceStep String the step object of the reconfiguration.
targetService String the service to modify.

Table 6.30. Reconfiguration attributes

• CreateBinding: it is a special reconfiguration step with the aim to create a

new Binding. It is a simple step. Its attributes are reported in table 6.31.

Attribute Type Description

name String see Step.
in List see Step.
out List see Step but the list can have only one element.
sourceStep String see Reconfiguration.
targetService String the new service to bind.

Table 6.31. CreateBinding attributes

• DeleteBinding: it is a special reconfiguration step with the aim to delete an

existing Binding. It is a simple step. Its attributes are reported in table 6.32.

• Acquire: handles the acquisition of a finite capacity resource. The execution
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Attribute Type Description

name String see Step.
in List see Step.
out List see Step but the list can have only one element.
sourceStep String see Reconfiguration.
targetService String the service to un-bind.

Table 6.32. DeleteBinding attributes

flows is blocked until the available capacity can’t satisfy the request. It is a

simple step. Its attributes are reported in table 6.33.

Attribute Type Description

name String see Step.
in List see Step.
out List see Step but the list can have only one element.
resourceUnit Integer units of resource needed (and acquired).
resource Resource target resource.

Table 6.33. Acquire attributes

• Release: handles the release of a finite capacity resource. It is a simple step.

Its attributes are reported in table 6.34.

Attribute Type Description

name String see Step.
in List see Step.
out List see Step but the list can have only one element.
resourceUnit Integer units of resource released.
resource Resource target resource.

Table 6.34. Release attributes
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6.2 Meta model semantics

To define the KLAPER meta model semantics we will use Abstract State Machines

(ASM) formalism. Even if in [4] ASM are described as a methodology for high

level software systems design in opposition to other methods like for example UML,

here we will use them to define the semantics of the KLAPER meta model; the

choice of such an instrument for the definition of a semantic is due, just as in [6],

to the severe rigor and formalism offered by this instrument and especially to the

mathematical foundations on top of which ASM are built (see [4]). A semantics

defined using ASM is simple to understand and, more important, thanks to its very

formal mathematical structure it hardly lends itself to interpretations as instead

frequently happens with semantics defined using natural language.

The next sections of this chapter requires at least a basic knowledge of ASM to

be correctly understood. To solve this problem we will spend some few words about

ASM.

6.2.1 A short ASM introduction

ASM have been mainly developed by E. Borger and F. Stark as an high level design

method for complex software systems and can be considered like an extension of the

simplest FSM (Finite State Machines).

An ASM is a system consisting of a finite set of rules of the form

if condition then updates (6.1)

where condition is a first order formula, without any free variable, whose interpre-

tation can be true or false and is called guard because when it happens it involves

the application of the linked rule. updates is the finite set of function updates of the

form

f(t1, . . . ,tn) = t (6.2)

its execution determines the definition or the change (in parallel) of the values of

a function; in practice updates corresponds to the pair < location,value > and

represents the state change unit determined by the change of the location value

location assuming the value value. The concept of state inside the ASM corresponds

to the concept of abstract data structure, that means data to which it is possible to

apply basic operations and predicates (attributes and relations).
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More formally (as done in [24]) we can say that an ASM can be defined by the

tuple:

ASM = {Header, Body, MainRule, Initialization} (6.3)

where:

• Header : contains the name of the ASM and its signature.

• Body : consists of function definitions according to domain and function decla-

rations in the signature of the ASM. It also contains declarations of transition

rules (also called update rules, see 6.1 and 6.2). An ASM M is therefore a finite

set of rules; state transitions of M may be influenced in two ways: internally,

through the transition rules, or externally, through the modifications of the en-

vironment. A computation of M is a finite or inifinite sequence S0,S1, . . . ,Sn, . . .

of states of M where S0 is an initial state and each Sn+1 is obtained from Sn

by firing simultaneously all of the update rules which are enabled in Sn.

• MainRule: is a transition (or update) rule and represents the starting point

of the machine program. The main rule is closed (that means it doesn’t have

parameters) and since there are no free global variables in the rule declarations

of an ASM , the notion of a move (or state transition) doesn’t depend on a

variable assignment, but only on the state of the machine.

• Initialization: is a characterization of the initial states of the ASM. An initial

state defines an initial value for domains and functions declared in the signa-

ture of the ASM. Executing an ASM means executing its main rule from a

specific initial state.

To understand the behavior of ASM we need to define the concept of consistency

of an update. A set of updates is defined as consistent if all its updates refer to

different locations; in other words if a pair of updates refers to the same location,

all the set have to be considered inconsistent.

Defined the concepts of “state” and “rule” for updates we can face how an ASM

is executed. ASM are executed by an agent that executes computational steps; a

computational step of an ASM in a given state is performing simultaneously all the

updates of all the rules whose guard is true in that particular state. The result of the

computation causes a state transition only if all the updates are consistent; if there is
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an inconsistent pair of updates the computational step does not imply a transition

to a new state but we have an error. The ASM agent computation advances in

an iterative way going through each computational step of the ASM itself. If the

execution of the ASM has an end we can define a specific ending criterion, like for

example:

• no more rules are applicable;

• an empty update is executed;

• the state is always the same and doesn’t change anymore;

• etc. . .

An evolution of simple ASM (considered until now) are distributed ASM (see [7]

and [28]) where there isn’t only one agent that executes updates but there are many

agents that execute in parallel each its own sub-ASM. But to have many agents

running on a distributed ASM we have to respect some rules (see [7]):

• each update and therefore each state change must have a finite number of

predecessors.

• steps (that means updates) of each agent are linearly ordered.

• each state must be the result of the updates of all the previous states (coherence

rule).

For simplicity we assume that for the rules just seen, updates and therefore state

changes are atomic; in a more general environment they could have considered both

atomic and with a period in time.

More detailed information about ASM, their structure and their use can be found

in [4] and [3].

6.2.2 Functions for the KLAPER ASM

Functions for meta classes

ASMs rely on functions between sets to represent the update rules executed by ASM

agents. Therefore the concepts modeled using meta classes in KLAPER have to be
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mapped to elements belonging to some set of elements with the related functions

needed to retrieve these elements. We need to follow this approach for all KLAPER

main concepts like Resources, Services, Behaviors, Steps and so on. In this section we

will present all the sets and functions we have introduced to describe the KLAPER

meta classes concepts in terms of ASM functions (that later will be used by update

rules).

A KLAPER ASM consists of an abstract set RESOURCE containing all the

Resource entities of the system. Each element of this set has the form

resource(name,type,capacity,schedulingPolicy,description,offeredService) (6.4)

we can refer to the previous section for the meaning of attributes of this function

and of all the other functions that we will see from now on.

With offeredService each resource provides some Service that are from the ab-

stract set SERVICE and have the form

service(name,speedAttr,failAttr,description,formalParams) (6.5)

Very similar to Service are Workload that are part of the abstract set WORK-

LOAD. Each Workload has the form

workload(name,type,population,arrivalProcess,behavior) (6.6)

Services and workload describe the sequence of steps executed with services using

the Behavior that are part of the abstract set BEHAVIOR. Each Behavior consists

of a graph of nodes and arcs respectively called Step and Transition. As seen until

now Transition are part of the abstract set TRANSITION and have the form

transition(from,to,prob) (6.7)

while Step are part of the abstract set STEP and have the form

step(name,in,out) (6.8)

But KLAPER has some different types of steps (that means meta classes that extend

the meta class Step); all of them are part of the abstract set STEP and have a form

very similar to that of Step itself

start(name,in,out) (6.9)
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end(name,in,out) (6.10)

fork(name,in,out) (6.11)

and so on, except for the Join meta class that has the form

join(name,in,out,transitionsNeededToGo) (6.12)

In addition to control step we have also other type of steps like for example Activity

that has the form

activity(name,in,out,repetitions,nestedBehavior,internalExecTime,internalFailProb,internalFailTime)

(6.13)

and ServiceControl with the form

serviceControl(name,in,out,resourceType,serviceName,isSynch,binding,actualParam)

(6.14)

other steps that derives from Activity are Acquire and Release that have the form

acquire(name,in,out,resourceUnits,resource) (6.15)

release(name,in,out,resourceUnits,resource) (6.16)

the last two steps are CreateBinding and DeleteBinding that have the form

createBinding(name,in,out,sourceStep,targetService) (6.17)

deleteBinding(name,in,out,sourceStep,targetService) (6.18)

ServiceControl meta classes are connected to other services using Binding.

Bindings are part of the abstract set BINDING and have the form

binding(call,signal) (6.19)

where call is a reference to the Service called when the binding is used as a service

call and signal is a reference to a Wait step when the binding is used as asignal (in

the same sense of an operating system signal for example).

To close this section concerning ASM functions related to KLAPER ASM we

have to present the two last meta classes used for parameters management, For-

malParam and ActualParam respectively with the form

formalParam(name,return,actual) (6.20)

and

actualParam(name,formal,value) (6.21)
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6.2.3 Auxiliary functions

Functions related to KLAPER meta classes are not enough to define the needed

update rules; we have to define something more to define KLAPER ASM rules. In

this section we will describe some auxiliary functions we created to facilitate the

update rules definition later in the next section.

Let us call AGENT the abstract set of agents that execute an ASM. Then, we

can define the function

active : AGENT → STEP (6.22)

as the function that, given an agent a ∈ AGENT , returns the step it is currently

executing with the notation active(a); this is useful to determine where a given agent

is within the graph of steps of a Behavior in a given moment. If we consider the

unary function Self that returns the agent currently in execution, then active(Self )

returns the step currently executed. For sake of simplicity, we denote it as active.

Given a step and a transition connected to it, it is possible to determine the step

connected at the other end of the transition by the function:

opposite : STEP × TRANSITION → STEP (6.23)

For example with the function opposite(active, transition) it is possible to obtain

the step linked to the actual one through the transition transition.

To determine whether the agent in execution is actually an agent or a sub-agent

(that means an agent that is executing a nestedBehavior), we can use agent’s prop-

erty isNested which corresponds to the function:

isNested : AGENT → {true,false} (6.24)

that returns true if the agent is a sub-agent, otherwise it returns false.

To determine the Behavior an agent is executing we can use the function:

currentBehavior : AGENT → BEHAV IOR (6.25)
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For example with currentBehavior(Self ) we get the Behavior of the currently active

agent.

If an agent is executing a nestedBehavior, we can get the containing Behavior

with the function:

outer : BEHAV IOR → BEHAV IOR (6.26)

An agent during an execution flow can have two different states1:

• running : when an agent is active and running.

• suspended : when an agent is waiting for some event (and thus blocked on a

step) that can be the end of a nestedBehavior or of a (synchronous) service

call, or even the receipt of an event (see the Wait step).

However it is always possible to obtain or modify (using the binary ASM assignation

operator “:=” after the function, see equation 6.28 for an example) the state of an

agent using the function:

mode : AGENT → {running,suspended} ∪ undef (6.27)

where undef represents an undefined state. An agent in undef state is neither

running nor suspended simply because it is not in execution (for example the agent

has completed its execution or has been killed). Changing state from running to

suspended completely blocks the agent execution (it is a blocking operation); when

it will be awakened the agent will execute the ASM update rule action immediately

next to that of state change.

The action of killing an agent can be done using the macro

delete(agent) ≡ mode(agent) := undef (6.28)

that simply sets to undefined the agent state removing it from execution.

1This is not ASM semantics, this is how we decided to handle ASM agents in our semantics.
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When we have to execute a sub-Behavior or when we have to execute parallel

execution flows, then to accomplish thise work one or more agents are created; all

new agents are created from a parent agent to which they notify their “no longer

running state” when they complete all their duties. This relationship between agents

can be expressed with the function

parent : AGENT → AGENT ∪ {undef} (6.29)

that returns the parent agent of any agent a or returns the value undef if we are

trying to get the parent of an agent that hasn’t a parent. All the sub-agents of a

given agent a are members of the set SubAgent(a) = {a′ ∈ AGENT | parent(a′) =

a}.

If we have to know the number of sub-agents already ended generated by a specific

agent, then the number of such sub-agents can be given by the function

subAgentsCompleted : AGENT → N (6.30)

where N is the set of natural numbers.

To realize loops it is necessary to add a new function that traces the times an

agent has consecutively executed a step; we can do that with the function

executedFromAgent : STEP × AGENT → N (6.31)

where N is the set of natural numbers.

If we have to execute a nestedBahvior we have to create a new agent to which

we have to assign a step to execute. Since each Behavior must start its execution

flow from its Start step (that is mandatory), then we need a function to find such a

step

start : BEHAV IOR → STEP (6.32)

that given a Behavior returns its Start step.

When an agent has been created due to a service call then this fact is shown by

the function

called : AGENT → {true,false} (6.33)

that returns true if the agent has been created to serve a ServiceCall, otherwise it

returns false.
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To obtain the Behavior of a service called by a ServiceControl we define the

function

calledBehavior : STEP → BEHAV IOR ∪ {undef} (6.34)

that given a step returns precisely the Behavior of the related service if the subject

step is a ServiceControl, while if the subject step is of any other kind the returned

value is undef.

Transitions have an attribute (prob) that represents the probability that a given

Transition is chosen when there are more possible transitions available; more pre-

cisely all the Transitions outgoing from any KLAPER Step must have the prob

attribute set to 1.0 (this is true also for Fork steps) to indicate that the outgoing

Transition or the outgoing Transitions are always activated; the only exception is

the Branch step where the sum of the prob attributes of all the outgoing Transitions

must be equal to 1.0. To know whether a specific Transition is activated or not we

can use the function

probabilitySelected : TRANSITION → {true,false} (6.35)

that returns true if the input Transition has been actually selected (e.g. by using

some random number generator) according to its prob probability, otherwise it re-

turns false. Obviously this function make sense only for Branch steps; for all other

steps it always return true because, as just said, except for the Branch step the prob

attribute is always equal to 1.0.

Agents can require and release resources. To support these activities we need to

know the number of resource units available for a specific kind of resource. This can

be known with the function

availableResources : RESOURCE → N (6.36)

that returns the number of resource currently available (that means not acquired)

for a specific kind of resources.

When a resource is not available an agent must wait until someone releases the

required units of the required resource; to do that an agent has to set its attributes

81



6 – KLAPER: syntax and semantics

requiredResource and requiredUnits. When a resource is released by an agent this

agent has the responsibility to wake up another agent waiting for the released re-

sources, if any; to find the potentially awaken agents we can use the function

findAgentRequiring : RESOURCE × N → AGENT (6.37)

that returns (only) one agent, if any (it can also return an empty set), from those

waiting for the availability of the specified resource (the released resource is com-

pared to the awaken agents’ requiredResource attribute) in a number of elements

less than or equal to the resource units released by the agent (the released resource

units are compared to the awaken agents’ requiredUnits attribute).

Sometimes we need to know if a Binding is used to connect a service call or a

signal. To do that we can use the function

bindingType : STEP → {call,signal} ∪ {undef} (6.38)

that returns call if the Binding is linked to a Service, while it returns signal if the

Binding is linked to a Wait step. If the step we are quering is not a ServiceControl

step and therefore can’t have a link to a Binding, then the function returns the value

undef.

6.2.4 Rules for KLAPER ASM

In this section we will present the rules that define the semantics of the Steps that

build the Behavior’s graph of actions (that realize a Service). This means that we

will analyze the way an execution flow of a service proceeds, describing its behavior

in terms of firing of update rules that determine the way ASMs evolve in their state

changes.

Steps correspond to the actions accomplished by ASM agents; therefore almost

each Step has its own rule (only steps that are never instantiated, like Control and

Reconfiguration, don’t have their rule); these rules define how an ASM agent behaves

when it arrives at each step; also we will define which is the impact of steps from the

point of view of the two software quality attributes we are considering: performance

and reliability.
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Rule for the Start step

At the beginning of a Behavior we always have the same step: the Start step. The

function of this step is simply to start the actions sequence of a Behavior, so its

update rule is quite simple:

Rule Start Step

if active is start(name, in, out)

then active := opposite(active, out)

Effects on software quality attributes:

• performance: none.

• reliability: none, it can’t fail.

Rule for the End step

On the opposite side of the Start step we have the End step that has the responsi-

bility of closing the actions flow of a Behavior and therefore it stops the execution

of an ASM agent. The update rule that describes this step is:

Rule End Step

if active is end(name, in, out)

then

if (called(parent(Self )) = true and isSynch(parent(Self )) = true)

or isNested(Self ) = true

then mode(parent(Self )) := running

delete(Self )

else mode(Self ) := undef

where we are saying that if the current agent is a sub-agent (that is an agent born

to execute a nestedBahavior or to handle a synchronous call) then the sub-agent has

to return the control to its parent agent (the agent that created it) and then it can

end its execution; if instead the current agent is a normal agent or if it is an agent

born to handle an asynchronous call, then the agent is simply stopped (changing its

state to undef ).

Impact on software quality attributes:
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• performance: none.

• reliability: none, it can’t fail.

Rule for the Wait step

The Wait step has the role of waiting for the occurrence of a particular condition

represented by an event; its update rule is:

Rule Wait Step

if active is wait(name, in, out)

then

mode(Self ) := suspended

active := opposite(active, out)

When the agent’s state is changed to suspended, instantly its execution is sus-

pended; the agent will be restarted only when some other agent sends a signal to the

agent itself changing its state to running ; only at this point it is possible to change

the currently active step to the “next” step and then going ahead with subsequent

rules (more specifically a new update rule is triggered because we have linked update

rules activation to the type of the current active step). The suspended agent when

blocked in its execution stays on the current step (see the semantic of mode function

in section 6.2.3) and when awakened its first action will be that subsequent to the

change state action: in this case the first action executed will be setting a new active

step. From the Wait semantics it is clear that if some signal is raised before the

agent agent reaches the suspended mode during the rule execution, it will be lost; in

practice if the ASM agent is still active and executing a step, changing its state to

active has no effect because the agent is already in that condition. When a signal is

raised before the agent has reached the suspended mode, as already said the signal

is lost and the agent executing the Wait step rule will suspend its execution waiting

for a new signal.

Impact on software quality attributes:

• performance: it doesn’t consume processing power, but Wait step blocks an

agent execution and therefore it adds time to the time needed to reach the

final step.

• reliability: none, it can’t fail.
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Rule for the Branch step

The Branch step has the role to introduce the concept of “decision tree”, that is

it indicates two or more alternative ways that can be undertaken with a certain

probability. The rule that represents this step is:

Rule Branch Step

if active is branch(name, in, outi)

then

if probabilitySelected(out1) then active := opposite(active, out1)

. . .

if probabilitySelected(outn) then active := opposite(active, outn)

where 1 ≤ i ≤ n and obviously
∑n

i=1 prob(outi) = 1 where with prob(x) we express

the probability of the Transition x.

Impact on software quality attributes:

• performance: none.

• reliability: none, it can’t fail.

Rule for the Fork step

When we need to execute more parallel flows we must use the Fork step whose func-

tion is that of generating a variable number (this number is equal to the number of

elements we have into the out list) of sub-agents that execute different actions simul-

taneously, temporarily suspending their parent agent until one or more sub-agents

have completed their task (to see how and when the parent agent is reactivated see

the update rule of the Join step). The update rule for the Fork step is:

Rule Fork Step

if active is fork(name, in, out)

then

extend AGENT with a1 . . . an

do forall 1 ≤ i ≤ n

active(ai) := opposite(active, outi)

parent(ai) := Self

called(ai) := false
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mode(ai) := running

mode(Self ) := suspended

where n is equal to the cardinality of the out list. In the update rule the main

agent creates n sub-agents; for each of them it initializes as the active step the first

step of the related parallel flow and then sets the sub-agent mode to running. It

is important to note that the parent agent is blocked at the Fork Step because it

doesn’t receive a new active state; it will be responsibility of sub-agents, when they

will execute the related Join step, to set the parent agent to the new current step

in consideration of what its sub-agents have done.

Impact on software quality attributes:

• performance: the parent agent is blocked but its sub-agents are running; there-

fore to the execution time required by the parent agent we have to add the

time consumed by the slowest sub-agent from those required to unlock the

related Join step.

• reliability: the parent agent can’t directly fail on this step; but because sub-

agents are running on other steps and consequently can fail, we can assume

that also the parent agent fails if the number of failed sub-agents is equal to

the number of sub-agents required to unlock the related Join step.

Rule for the Join Step

Sub-agents created into a Fork step when completed their tasks can either end or

signal to their parent that they have finished their activities, reactivating the parent

itself if needed. All that can be done with the Join step whose update rule is:

Rule Join Step

if active is join(name, in, out, transitionsNeededToGo)

then

subAgentsCompleted(parent(Self )) :=

subAgentsCompleted(parent(Self )) + 1

if subAgentsCompleted(parent(Self )) = transitionsNeededToGo

then

active(parent(Self )) := opposite(active, out)

mode(parent(Self )) := running
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delete(Self )

where Self this time represents the agent executing the step, that means the

sub-agent and not the parent agent. We have to note that if the parent agent have

to be reactivated, this is done when the sub-agent is still running and only after the

parent reactivation a sub-agent can terminate; this actions sequence should be done

atomically, but even if this does not happen the update rule will be right because

we will delay only the end of the sub-agent (that has completed all its activities and

therefore can’t cause any damage to the ASM).

Impact on software quality attributes:

• performance: none.

• reliability: the parent agent blocked on some Fork step can’t fail directly, but

we can assume that if a number of sub-agent fails, equal to the number of

all possible sub-agents minus the number of sub-agents required to unlock the

Join step, then also the father agent will fail. For example if we have a Fork

step that can generate at most n sub-agents, then the related Join step fails if

the number of failed sub-agents is greater than n− transitionsNeededToGo.

Rule for the Activity step

The step that can be considered the most important one between those composing

KLAPER Behaviors is the Activity step that is responsible to model the execution

of the real “actions” of the system. The update rule that describes the Activity step

is quite complex because with this step we can realize not only simple activities, but

also loops and nested behaviors:

Rule Activity Step

if active is activity(name, in, out, repetitions, nestedBehavior, internalExecTime,

internalFailProb, internalFailTime)

then

if nestedBahavior /= undef

then

extend AGENT with a

active(a) := start(nestedBehavior)

parent(a) := Self
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called(a) := false

mode(a) := running

mode(Self ) := suspended

DoJob

executedFromAgent(active, Self ) := executedFromAgent(active, Self ) + 1

if executedFromAgent(active, Self ) > repetitions

then

active(Self ) := opposite(active, out)

where repetitions is a random variable. We have to note that loops are realized

using the last if of the update rule that changes the active step (or better the active

rule) only when the step itself has been repetitively executed for a random number

of times equal to repetitions.

DoJob is a very particular function we defined but we did not present it in sec-

tion 6.2.3 because its meaning is strictly related to Activity steps. It is represented

as a nullary functions but actually it can depend on the parameters of the Service

containing the Activity. It models the execution of all the activities of this step by

an agent (activities that last a random time internalExecT ime, fail with the proba-

bility internalFailPorb and/or in the random time internalFailT ime); definitively

it is the place were we model that computation happens, time is spent and failures

can occur.

Impact on software quality attributes:

• performance: the step consumes a time internalExecTime to execute all its

duties; this is true also for loops (where internalExecutionTime is the time of

a single run) and nested behaviors (where internalExecutionTime if expressed

is the time of all the nested behavior, unless it is specified the internalExecTime

of each step of the nested behavior, in this last case the attribute of the Activity

is not valid). More precisely for hardware resources “consumes time” means

Resource usage by a specific service; the way the resource is used depends on

the specified scheduling policy. For Example for the most common scheduling

policies we have:

– fifo: each service exclusively holds the resource until it needs it and other

services have to wait their turn. Enqueued services are served using
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a First-In-First-Out policy. The internalExecTime is spent when the

service holds the resource.

– round robin: all services are executed for a (small) quantum of time

giving the impression of a parallel execution, but in reality each service

is executed and exclusively holds the resource for a very short period

of time. Usually all the services have the same priority and are served

cyclically. The internalExecTime is spent for the little quantum of time,

therefore the services looks like they are executing in parallel but in reality

they are executing in a serial way and execution times are incremented

(if compared to the fifo policy).

– infinite server: all services have all the resources needed and therefore

they are all executed in parallel. The internalExecTime is immediately

spent from the beggining of the service until its end even if there are more

than one service executing over the resource.

– processor sharing: like infinite server policy all the services are executed in

parallel but the execution capacity of the resource is equally distributed

between all the services, therefore the real internalExecTime spent by

each Activity is greater than the one specified.

• reliability: the step can fail with a probability expressed by internalFailProb

(the probability that the Activity can fail, expressed with a stochastic distri-

bution) or it can fail in a time expressed by internalFailTime (the time beyond

wich the Activity can fail, expressed with a stochastic distribution). For loops

and nested behaviors, internalFailProb or internalFailTime of the container

Activity are considered only if they are not specified for contained Activities.

Just to give an example about how the execution of an Activity “consumes time”,

let’s consider a Service running on a Resource that models a software component.

The Service of a Resource modeling a software component certainly must model the

usage of a cpu to accomplish some computations (like for example the operations

needed to compute the result of a database query). To execute that Service or better

an Activity of that Service we need5 to request a service to a Resource representing

5This is only one of the possible patterns that can be used to model such a situation, other
patterns can be developed by software models specialists
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a physical cpu (therefore representing an hardware component); this service request

is done using a ServiceControl modeling a synchronous call to the basic Service

offered by the cpu Resource. The Service of the cpu resource is modeled using a

single Activity that has a specific internalExecTime to model the service time of

the resource (often this service time is function of some formal parameters of the

Service that can be used to specify for example the number of elementary operations

needed by the requester of the service). Because the service call (and therefore the

ServiceControl) is synchronous, the Service running on the Resource modeling the

software component has to wait until the requested service is completed; this means

that the Resource modeling the hardware component could be busy (according to

the specified scheduling policy, see the discussion of the impact of the Activity step

on performance) and could not satisfy other requests. This can be translated into

an utilization of some kind of servant (or processor) in quality analysis models. In

figure 6.6 we can see an example of the just described scenario.

ServiceControl Resource

type: cpu

Behavior

Start

Activity

internalExecTime: x*5

End

Service
param: x

Software
component

Hardware
component

Figure 6.6. Example of “time consumption” for a KLAPER ServiceControl (that
is a special case of an Activity)

Rules for Acquire and Release steps

Acquire and Release steps have update rules quite simple:
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Rule Acquire Step

if active is acquire(name, in, out, resourceUnits, resource)

then

DoJob

if availableResources(resource) - resourceUnits ≤ 0

then

requiredResource(Self ) := resource

requiredUnits(Self ) := resourceUnits

mode(Self ) := suspended

availableResources(resource) := availableResources(resource) - resourceUnits

opposite(active, out)

where DoJob is the same as in Activity. The Acquire step update rule checks if there

are enough resource units for the required resource; if this is not the case it sets the

agent’s requiredResource and requiredUnits attributes and put itself in suspended

mode waiting for the required resources; when the required resources are available,

the agent is awaken and the resources availability is decremented. Note that if the

required resource was already available the agent never put itself to the suspended

mode but immediately acquire the resources.

Rule Release Step

if active is release(name, in, out, resourceUnits, resource)

then

DoJob

availableResources(resource) := availableResources(resource) + resourceUnits

mode(findAgentRequiring(resource, resourceUnits)) := running

opposite(active, out)

where DoJob is the same as in Activity. This rule simply increments the number of

available resources and wakes up an agent waiting for a number of resources less or

equal to resourceUnits ; if there isn’t any agent waiting for the resource the mode()

function does nothing.

Impact on software quality attributes:

• performance: the same as Activity even if internalExecTime is not shown into

the rule, but actually Acquire and Release are specializations of Activity.
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• reliability: the same as Activity even if internalFailProb and internalFailTime

are not shown into the rule, but actually Acquire and Release are specializa-

tions of Activity.

Rules for CreateBinding and DeleteBinding steps

Here we have to made the same considerations already done for the previous steps,

therefore the update rules are quite simple and are:

Rule CreateBinding Step

if active is createBinding(name, in, out, sourceStep, targetService)

then

DoJob

opposite(active, out)

Rule DeleteBinding Step

if active is deleteBinding(name, in, out, sourceStep, targetService)

then

DoJob

opposite(active, out)

where DoJob one more time represents the activities done by the agent into this

step. In particular, in the CreateBinding Step update rule, DoJob creates a new

Binding that has as source the sourceStep Step and as target the targetService

Service. Similarly in the DeleteBinding Step update rule DoJob deletes a Binding

element between the sourceStep Step and the targetService Service.

Impact on software quality attributes:

• performance: see Acquire and Release.

• reliability: see Acquire and Release.

Rule for the ServiceControl step

The ServiceControl step is a specialization of the Activity Step used to request

services, therefore it realizes interactions between resources. Since ServiceControl is

a specialization of Activity in this step we can find all the properties of the parent

meta class plus the functionalities needed to call services. The update rule is:
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Rule ServiceControl Step

if active is serviceControl(name, in, out, resourceType, serviceName,

isSynch, bindign, actualParam)

then

do Activity Step job

if bindingType(active) = signal

then

mode(target) := running

else

extend AGENT with a

active(a) := start(calledBehavior(active))

parent(a) := Self

called(a) := true

mode(a) := running

if isSynch = true

then

mode(Self ) := suspended

opposite(active, out)

where with target we refer to the Wait step linked to this signal. In practice when

an agent enters this step it executes first all the operations typical of an Activity,

then if we are in the signal configuration a sleeping agent is awaken, whereas if we

are in the service call configuration a new agent is created that handles the Behavior

of the called service.

Impact on software quality attributes:

• performance: if it represents a signal it doesn’t consume time, but if instead

it represents a service call it consumes time only if it is a synchronous service

call because it has to wait the called service response (while in case of an

asynchronous service call this is not done).

• reliability: if this step models a signal2, the failure of the signaled step has

consequence only on the reliability of that step (see failure conditions for the

2We can understand if a ServiceControl models a service call or a signal from the linked Binding.
If the Binding has a value for the call attribute that means it is modeling a service call, otherwise
if it has a value for the signal attribute that means it is modeling a signal.
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Wait step); that means that the failure of the signaled step doesn’t cause

a failure of this step, but however this step can always fail on its own. If

considered as a service call a failure of the called service causes a failure in

this step for a synchronous call; for an asynchronous call a failure of the called

service causes a failure of the caller only if the dependsOn attribute is set to

true, if it is set to false a called service failure has no consequences on the

caller.
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Chapter 7

Transforming to DTMC

As we already saw in section 3.2, DTMC can be used as a software quality model

aimed at evaluating reliability. In this chapter we will see the rules used to map a

KLAPER model to a DTMC model. Before doing so we will analyze the DTMC

meta model that is the target of our transformation.

7.1 The DTMC meta model

The DTMC meta model showed in figure 7.1 has been built starting from the gen-

eral concepts characterizing DTMCs, like states, transitions and so on. However,

these are not the only concepts we can find into the DTMC meta model; indeed

we have added also some foreign concepts. Some of these foreign concepts, like

the ExternalReference meta class, have been introduced to simplify the subsequent

model-to-text transformation, while some other concepts, like the completionModel

and the internalFailProb attributes of the State meta class, have been introduced

to express some concepts typical of the KLAPER meta model. With this approach

we have a meta model which we may refer as a hybrid meta model, because it has

a lot of concepts of a canonical DTMC plus some other concepts coming from the

KLAPER world. The task of purging the DTMC hybrid meta model from all the

foreign concepts, leaving only the DTMC fundamental ones, is left to the model-

to-text transformation with its mapping rules. We followed this kind of approach

because it strongly simplifies the model-to-text transformation and the related code

generation.
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Figure 7.1. DTMC hybrid meta model

The DTMC meta model is quite simple if compared to the KLAPER meta model.

In this section we will see an overview of the meta model; for a more detailed

description of all classes’ attributes see [8].

The DTMC meta model consists of the following meta classes:

• ReliabilityModel: this meta class is only a container added to simplify the

meta model handling, but it hasn’t any conceptual value for DTMC.

• DTMC: meta class that represents a DTMC into the model. Models can be

composed by many DTMCs and all the DTMCs of a model can be classified

into two different types: fundamental DTMCs, that represent the services into

our system, and support DTMCs, that represent particularly sensitive portions

of the system. Maintaining this classification is very effective to analize critical

sections of a system that can be isolated into a support DTMC.

• Transition: meta class that represents the transition from one state to the

other of a DTMC. It is characterized by the probability that the transition

happens and the source and target states at the extremity of the transition.
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• State: this meta class represents a state into the DTMC. We can identify two

kind of states: those that model the execution of a simple action (called simple

states) and those (called complex states) that model the request for services.

States are linked between them using Transitions. Some States can fail so the

meta class has an attribute to define the failure probability and an attribute

to describe how a State fails if it is a complex state (that is the completion

model used when we have parallel calls). Simple states failures depend only

on their internalFailProb attribute failure probability, while complex states

failures depend on the failure probabilities of the called entities.

• Start: it is a particular State that can never fail and that is used as starting

point of a DTMC.

• End: it is an absorbing state that represents the correct end of a DTMC; that

is, it is the state where we go when all into the system runs properly and so

we can reach a correct ending point.

• Fail: it is an absorbing state that represents a failure condition of the system

(we have a single Fail state for all the failure conditions of the system); it is

the state where we fall when something wrong happens into the system and a

correct end is impossible to reach.

• ExternalReference: this meta class is used by complex states to represent

a reference to a state that the referencing state depends on. The dependency

can be synchronous or asynchronous (see the attribute dependsOn) and can

be conditioned on reaching a particular State if we are modeling a system with

signals.

7.2 KLAPER to DTMC transformation, concepts

Before going deep into the code of transformation rules that implement the mapping

from the KLAPER meta model to the hybrid DTMC meta model, we will present

now some general concepts applied during the transformation. They show the key

concepts underlying the transformation itself:
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• KLAPER Workloads are not considered in this work. Even if someone can

argue their influence on reliability, in this work we assume that this influence

can be considered irrelevant.

• KLAPER Resources haven’t any correspondence into the hybrid DTMC meta

model; this is because into the hybrid DTMC all is related to services and

there isn’t the concept of a group of services.

• Each KLAPER Service is mapped to a DTMC DTMC meta class (KLAPER

Resources has not any equivalent concept into DTMC).

• Each DTMC has exactly one Fail state that represents the absorbing condition

of a failure of the related DTMC.

• Each KLAPER Step is mapped to a DTMC States.

• Each KLAPER Start step is mapped to a DTMC Start state.

• Each KLAPER End step is mapped to a DTMC End state.

• Each KLAPER Activity is mapped to a DTMC State. If the Activity is re-

peated only once and doesn’t have any nested behavior, the failure probability

of the step is used to define the probability of the transition to the Fail state of

the DTMC which the new state is part of. Otherwise a new DTMC, intended

to model the nested behavior, is created with the related external reference

and the transition probability to the Fail state is set to 0.

• Each KLAPER Wait step is mapped into a simple DTMC state that later will

be linked to the related signal source through an ExternalReference meta class

instance (placed into the DTMC where is located the signaling state).

• Each KLAPER ServiceControl step is mapped just like Activity steps, but

this time the external reference (to the DTMC that models the called service)

depends also from the synchronization of the call: signals and asynchronous

calls with the dependsOn attribute set to false can’t have an external reference

because their asynchronous nature doesn’t imply any dependency from any

other service; that means that a failure of the signaled element or of the

called service does not cause a failure into the calling entity; on the contrary
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synchronous calls and asynchronous calls with the dependsOn attribute set to

true always have an external reference (even if they are repeated only once

and don’t have a nested behavior) because a failure of the called service can

cause a failure in the caller entity.

• Each KLAPER Fork step is mapped to DTMC built as follows: a simple state

is created corresponding to the root of the fork. Then for each path of the fork

we create a fake KALPER Service that is transformed using the rule previously

presented for general Services. The simple state created as fork root has an

external reference to each DTMC coming from fake services.

• Each KLAPER Branch step is mapped to a simple DTMC state (branches are

managed using DTMC states transitions with their probabilities).

• Each nested behavior is mapped to a new DTMC DTMC meta class.

• DTMC created from Activities with repetitions have a structure that depends

on the probability distribution function used to represent repetitions. In the

actual transformation all the probability distribution functions are reduced

to only two cases: geometric distribution function and histogram distribution

function. All constant distribution are reduced to an histogram distribution

with a single sample with probability 1.0 and as value the value of the con-

stant original distribution; all other distribution are reduced to a geometric

distribution having the same mean of the original distribution.

• KLAPER Join steps don’t have any direct mapping because every DTMC

state can be a join point if it collects many paths coming from the same fork

state.

7.3 KLAPER to DTMC transformation, imple-

mentation

In the previous section we outlined some general concepts followed designing the

transformation from KLAPER to the hybrid DTMC meta model. Now we want

better specify the transformation rules mentioned before; to do this we will see a
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real implementation of the general rules just seen done using the Xtend scripting

language we already described in section 4.3.3; it is an OCL like language that is

not a complete implementation of the QVT standard, but it is very close to it. See

[45] to have more details about the Xtend tool.

In this chapter we will see only the most relevant portions of the transformation.

To see the complete transformation code see appendix C.

The starting point of the transformation is the function klaper2dtmc():

23 /∗
24 Sta r t i ng po int f o r the t rans fo rmat ion ( t h i s ex tens i on i s invoked d i r e c t l y

from the workflow ) .

25 PLEASE NOTE: The input KlaperModel i s supposed to be we l l formed f o r the

purpose o f r e l i a b i l i t y an a l i s y s with DTMC!

26 ∗/

27 dtmc : : core : : Re l i ab i l i t yMode l klaper2dtmc ( k lape r : : core : : KlaperModel m) :

28 m. transformModel ( ) ;

that simply calls the transformModel() function over a KlaperModel instance; it is

only an access point to the real transformation.

Then the transformModel() function starts the true transformation of the KLAPER

model into a DTMC model:

30 /∗
31 Creates a Re l i ab i l i t yMode l from the input KlaperModel

32 ∗/

33 pr i va t e c r e a t e dtmc : : core : : Re l i ab i l i t yMode l newModel transformModel ( k lape r : : co re : :

KlaperModel m) :

34 newModel . dtmc . addAll (m. r e s ou r c e . o f f e r e d S e r v i c e . t r ans f o rmServ i c e ( newModel ) )

−>

35 m. re sou r c e . o f f e r e d S e r v i c e . behavior . s tep . t ypeSe l e c t ( k lape r : : core : :

S e rv i c eCont ro l ) . s e l e c t ( e | e . b inding . s i g n a l != nu l l ) . c o l l e c t ( e | e . l inkWait (

newModel ) )−>

36 newModel ;

where on line 34 we transform each KLAPER service into a DTMC DTMC meta

class instance and then on line 35 we link ExternalReference instances with State

instances (we will see the linkWait() function later) starting from KLAPER signals.

The linkWait() function is responsible to create ExternalReference instances with

related attributes to set reliability dependency for synchronous and asynchronous

KLAPER ServiceCalls and for Wait steps

39 pr i va t e Void l inkWait ( k lape r : : core : : S e rv i c eCont ro l s , dtmc : : core : : Re l i ab i l i t yMode l

m) :

40 l e t extRef=new Externa lRe fe rence :

41 l e t waitSt=s . b inding . s i g n a l . r e t r i eveWa i tS ta t e (m) :

42 l e t scSt=s . r e t r i e v eS e r v i c eCon t r o l S t a t e (m) :

100



7.3 – KLAPER to DTMC transformation, implementation

43 extRef . setDependsOn ( ( dtmc : : core : :DTMC) scSt . eContainer )−>

44 extRef . s e tNav iga t eUnt i l ( s cSt )−>

45 waitSt . ex t e rna lRe f e r ence . add ( extRef ) ;

where the setDependsOn() function sets the dependsOn attribute that defines if a

state, that requires the services offered by another state (using an ExternalRefer-

ence), fails in case of a called state failure. The setNavigateUntil() completes the

ExternalReference initialization setting the state that the current state refers to

(the referred state must be derived from a KLAPER Wait); if the current state

can’t be reached because of a failure also the referred state can be considered as

failed because speaking in KLAPER terms it will never be awaken.

But before setting ExternalReferences we have to transform each KLAPER Ser-

vice into a DTMC instance using the function transformService()

46 /∗
47 Creates a DTMC from each Se rv i c e o f f e r e d by a given Klaper Resource (

Workloads are not u s e f u l f o r r e l i a b i l i t y a n a l s i s y s ) .

48 A Fa i l s t a t e i s added to the Markov Chain at once .

49 ∗/

50 pr i va t e c r e a t e dtmc : : core : :DTMC newDtmc t rans f o rmServ i c e ( k lape r : : core : : S e rv i c e s ,

dtmc : : core : : Re l i ab i l i t yMode l m) :

51 l e t f = new Fa i l :

52 f . setName ( ” Fa i l ” )−>

53 newDtmc . setName ( ( ( k laper : : core : : Resource ) s . eContainer ) . name+” ”+s . name )−>

54 newDtmc . s t a t e . add ( f )−>

55 newDtmc . s t a t e . addAll ( s . behavior . s t ep . c o l l e c t ( e | trans formStep ( e , newDtmc ,m) ) )

−>

56 newDtmc . s t a t e . s e l e c t ( e | e . ex t e rna lRe f e r enc e . s i z e==0) . c o l l e c t ( e |
upda t eTran s i t i onProbab i l i t i e s ( e ) )−>

57 newDtmc . s t a t e . removeAll (newDtmc . s t a t e . s e l e c t ( e | e . name==nu l l ) )−>

58 newDtmc ;

where each DTMC instance is created with an absorbing fail state named “Fail”

and a list of states directly converted from KLAPER steps; updateTransitonProba-

bilities() is a function that computes all the transition probabilities of a state con-

sidering the failure probability of the state itself (that is the probability to activate

the transition to the “Fail” absorbing state), but it is applied only to those states

that don’t have ExternalReferences (e.externalReference.size==0), that means to

KLAPER steps that don’t do service calls or signals.

As already said in the previous section, KLAPER Workload meta class is not

considered into the DTMC transformation because workloads are assumed to be

not relevant for reliability evaluation1. Note that we also don’t care about the

1This is an assumption done in this thesis and even if results obtained in this way are enough
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KLAPER concept of Resource; in DTMC all is related to services and therefore

some KLAPER concepts have no mapping into the transformation rules. Also the

standard KLAPER Behavior has no relevance for reliability, except for nestedBe-

haviors, but we will see them later.

Once the DTMCs of the system have been created we only need to transform

each KLAPER Step into its corresponding DTMC State representation.

Before describing the transformations applied to KLAPER Steps we have to

introduce some concepts about how the KLAPER Join Step is mapped in the trans-

formation from KLAPER to DTMC. KLAPER Join has not a real mapping into any

meta class of the DTMC meta model; simply it is mapped into any DTMC State

due to the presence of the completionModel attribute; that means that any DTMC

State can represent a KLAPER Join Step. Because every State can map a Join (see

figure 7.2 for an example), in every DTMC State transformation rule we will find the

stepBelongsToForkJoin() function that has the aim to establish if a particular State

is contained between a Fork-Join pair (with the possibility of nesting). This is very

useful when converting a Fork; indeed, as we will see later, the DTMC meta model

represents the sequence of actions between a KLAPER Fork-Join pair with a support

DTMC (see section 7.1 about support DTMCs) and the stepBelongsToForkJoin()

function is very useful to establish where a support DTMC ends.

Activity
A

Activity
B

Activity
C

Join

transformation

State
A

State
B

State
C

KLAPER DTMC

Figure 7.2. Transformation of a KLAPER Join step into the DTMC meta model.
DTMC doesn’t have a specific entity to represent join condition.

Transformations for KLAPER Start and End steps are so simple that they don’t

accurate, the impact of workload on reliability can give even more accurate results
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require any explanation.

72 /∗
73 Creates a DTMC Star t s t a t e from a Klaper Sta r t s tep

74 ∗/

75 pr i va t e c r e a t e dtmc : : core : : S ta r t newState trans formStep ( k laper : : core : : S ta r t s , dtmc

: : core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :

76 newState . setName ( s . name)−>

77 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n .

s e l e c t ( x | x . from==s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

78 newState ;

79

80 /∗
81 Creates a DTMC End s t a t e from a Klaper End step

82 ∗/

83 pr i va t e c r e a t e dtmc : : core : : End newState trans formStep ( k laper : : core : : End s , dtmc : :

core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :

84 newState . setName ( s . name)−>

85 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n .

s e l e c t ( x | x . to==s && x . from . metaType!=Join ) . c o l l e c t ( e | e .

t rans fo rmTrans i t i on (d ,m) ) )−>

86 newState ;

Also the transformation for the KLAPER Wait step is quite simple

124 Creates a DTMC State from a KLAPER Wait s tep

125 ∗/

126 pr i va t e c r e a t e dtmc : : core : : State newState trans formStep ( k laper : : core : : Wait s , dtmc

: : core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :

127 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

128 (

129 newState . setName ( s . name)−>

130 newState . setCompletionModel ( ”OR” )−>

131 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s . eContainer ) .

t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x . from . metaType!=Join ) | | x . from==

s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

132 newState

133 ) :

134 {} ;

where the only thing to note is the state completion model set to “OR” to indicate

that the execution flow can go over the state without waiting any other incoming

Transition.

To close the list of simple transformations we can see the KLAPER Branch step

transformation that simply creates a new named DTMC State

225 /∗
226 Creates a DTMC State cor re spond ing to a Klaper Branch Step .

227 ∗/

228 pr i va t e c r e a t e dtmc : : core : : State newState trans formStep ( k laper : : core : : Branch s ,

dtmc : : core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :
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229

230 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

231 (

232 newState . setName ( s . name)−>

233 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s . eContainer ) .

t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x . from . metaType!=Join ) | | x . from==

s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

234 newState

235 ) :

236 {} ;

the only thing to note here is that Branch can have multiple outgoing Transitions,

therefore line 233 will add many DTMC Transitions as those that go out from the

KLAPER Branch step.

The transformation from the KLAPER Fork step is the first with a bit of com-

plexity so far

203 /∗
204 A top−l e v e l Fork ( i . e . a Fork which i s not nested in another Fork−Join

pattern ) i s mapped in to a new State which po in t s ( by means o f n

Exte rna lRe f e r ence s )

205 to the DTMCs corre spond ing to the n paths s t a r t i n g from such Fork . Each

path i s f i r s t transformed in to a Klaper Se rv i c e ( by means o f

transformForkPathToService ( ) )

206 and then such Se rv i c e i s transformed in to a DTMC ( crea t eExte rna lRe f e r ence ( )

does t h i s job ) .

207

208 ∗/

209 pr i va t e c r e a t e dtmc : : core : : State newState trans formStep ( k laper : : core : : Fork s , dtmc

: : core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :

210 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

211 (

212 l e t pa thSe rv i c e s = ( L i s t [ k l ape r : : co re : : S e rv i c e ] ) {} : //Each path

s t a r t i n g from Fork i s mapped to a Se rv i c e

213 s . out . c o l l e c t ( e | pathSe rv i c e s . add ( e . to . transformForkPathToService ( s ,

m) ) )−>

214

215 newState . ex t e rna lRe f e r ence . addAll ( pa thSe rv i c e s . c o l l e c t ( e | e .

c r ea t eExte rna lRe f e r ence (m) ) )−>

216 newState . setName ( s . name)−>

217 newState . setCompletionModel ( s . retr ieveJoinFromFork (0 ,{} ) . in . s i z e==s

. retr ieveJoinFromFork (0 ,{} ) . transit ionsNeededToGo ?”AND” : ”OR” )−>

218 d . s t a t e . add ( newState )−>

219 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s . eContainer ) .

t r a n s i t i o n . s e l e c t ( e | e . to==s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,

m) ) )−>

220 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s . eContainer ) .

t r a n s i t i o n . s e l e c t ( e | e . from==s . retr ieveJoinFromFork (0 ,{} ) ) .

c o l l e c t ( e | e . t rans fo rmJo inTrans i t i on (d , newState ,m) ) )

221 ) :
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222 {} ;

the idea here is to create a State with an ExternalReference to a DTMC derived

from fake Services artificially built for each path (from each path we build a new

Service with a new Behavior composed by steps taken from the path itself) that

starts from the Fork step (see lines 212 and 213); see figure 7.3 to better understand

how the transformation works. After that the transformation sets the completion

model of the State; this is done comparing the number of outgoing paths starting

from the Fork step with the number of required completion set on the Join related

to the Fork under exam (the completion model is set to “AND” if all the fork paths

are required to complete to have the permission to exit from the Join step, otherwise

it is set to “OR”). To complete the work we only need to transform Transitions (see

line 219 and 220).

Transforming a KLAPER Activity is a little bit more complex than the steps

seen until now:

89 /∗
90 Creates a DTMC State from a Klaper Act i v i t y . A t r a n s i t i o n towards the Fa i l

s t a t e ( whose p r obab i l i t y i s e l i c i t e d from the Act i v i ty ’ s

i n t e rna lFa i lP rob a t t r i b u t e )

91 i s added to the Chain only in the case the Act i v i ty i s repeated only once

and does not conta in a nested Behavior . In a l l the other cases , the

Act i v i ty i s mapped in to

92 a new DTMC (by means o f t rans fo rmAct iv i ty ( ) ) and the State c r ea ted here

conta in s an Externa lRe fe rence po in t ing to such DTMC.

93 ∗/

94 pr i va t e c r e a t e dtmc : : core : : State newState trans formStep ( k laper : : core : : Ac t i v i t y s ,

dtmc : : core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :

95

96 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

97 (

98 s . t r an s f o rmAct i v i t yRepe t i t i on s ( )−>

99 s . i sAS impleAct iv i ty ( ) ?

100 (

101 newState . setName ( ”ACT ”+s . name)−>

102 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s .

eContainer ) . t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x .

from . metaType!=Join ) | | x . from==s ) . c o l l e c t ( e | e .

t rans fo rmTrans i t i on (d ,m) ) )−>

103 d . t r a n s i t i o n . add ( s . t r an s i t i onToFa i l (d ,m) )−>

104 newState

105 )

106 :

107 (

108 m. dtmc . add ( s . t rans fo rmAct iv i ty (m) )−>

109 (
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Figure 7.3. Transformation of a KLAPER Fork step into the DTMC meta model.
Each path of the fork is mapped into an external DTMC.

110 l e t extRef=new Externa lRe fe rence :

111 extRef . setDependsOn ( s . t rans fo rmAct iv i ty (m) )

−>

112 newState . s e t I n t e rna lFa i lP r ob ( 0 . 0 )−>

113 newState . ex t e rna lRe f e r ence . add ( extRef )

114 )

115 −>

116 newState . setCompletionModel ( ”OR” )−>
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117 newState . setName ( s . name)−>

118 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s .

eContainer ) . t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x .

from . metaType!=Join ) | | x . from==s ) . c o l l e c t ( e | e .

t rans fo rmTrans i t i on (d ,m) ) )−>

119 newState

120 )

121 )

122 : { } ;

if the Activity is an activity without nested behaviors and without repetitions, then

it is directly mapped to a DTMC State with a Transition to the Fail state of the

same DTMC; where the probability to go to the Fail State is computed starting

from the KLAPER Activity internalFailProb, using the function transitionToFail()

(see lines from 101 to 104). If instead the KLAPER Activity has a nested behavior

or has more than one repetition then the transformation rule creates a new DTMC

State with an ExternalReference to a new DTMC (lines from 108 to 114) that

will map the KLAPER Activity; in figure 7.4 we have an example of the possible

transformations for a simple activity (a), an activity with repetitions (b) and an

activity with a nested behavior (c). The new DTMC State is created using the

function s.transformActivity(m)); it is not reported here due to its big dimension and

considering the fact that it is not really relevant to understand the transformation

between meta models because it simply map the Activity to a States graph according

to the probability distribution function chosen for the KALPER Activity repetitions

attribute.

As we already saw in the previous chapter, in KLAPER Activity has a very

important specialization called ServiceControl that is used to request some services

to other resources or to raise signals. Here we see how ServiceControl is transformed

from KLAPER to DTMC:

137 /∗
138 Creates a DTMC State from a Klaper Se rv i c eCont ro l . In the case the

Se rv i c eCont ro l i s repeated j u s t once , newState conta in s a l r eady an

Externa lRe fe rence po in t ing to

139 the DTMC rep r e s en t i ng the invoked s e r v i c e and i t s i n t e rna lFa i lP rob i s s e t

with the same value as the o r i g i n a l Se rv i c eCont ro l . In a l l the other

cases ,

140 the Se rv i c eCont ro l i s mapped in to a new DTMC (by means o f

t rans fo rmServ i c eCont ro l ( ) ) and the State c r ea ted here conta in s an

Externa lRe fe rence po in t ing to such DTMC.

141 ∗/

142 pr i va t e c r e a t e dtmc : : core : : State newState trans formStep ( k laper : : core : :

S e rv i c eCont ro l s , dtmc : : core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :
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ActivityA StateA(a)

ActivityA(b) Loop StateA
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End

LoopDTMC

repetit ions=n
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Act

Start

End
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Behavior

Start

NestedAct

End

StateA

Figure 7.4. Transformation of a KLAPER Activity step into the DTMC
meta model. (a) simple Activity (b) Activity with repetitions (c) Activity
with a nested behavior.

143 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

144 ( // belongsToForkJoin=f a l s e

145 s . t r an s f o rmAct i v i t yRepe t i t i on s ( )−>

146

147 s . i sAS i gna lSe rv i c eCont ro l ( ) ?

148 ( // s i g n a l

149

150 newState . setName ( s . name )−>

151 newState . s e t I n t e rna lFa i lP r ob ( s . i n t e rna lFa i lP rob .

getMean ( ) )−>
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152 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s .

eContainer ) . t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x .

from . metaType!=Join ) | | x . from==s ) . c o l l e c t ( e | e .

t rans fo rmTrans i t i on (d ,m) ) )−>

153 d . t r a n s i t i o n . add ( s . t r an s i t i onToFa i l (d ,m) )−>

154 newState

155 ) // s i g n a l

156 :

157 ( // c a l l

158

159 ( s . i sSynch==f a l s e&&s . dependsOn==f a l s e ) ?

160 ( // synch=f a l s e

161 newState . setName ( s . name)−>

162 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : : Behavior ) s .

eContainer ) . t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x .

from . metaType!=Join ) | | x . from==s ) . c o l l e c t ( e | e .

t rans fo rmTrans i t i on (d ,m) ) )−>

163 d . t r a n s i t i o n . add ( s . t r an s i t i onToFa i l (d ,m) )−>

164 newState

165 ) // synch=f a l s e

166 :

167 ( // synch==true

168 s . i sAS impleServ i ceContro l ( ) ?

169 ( // simpleSC

170 newState . setName ( ”SC ”+s . name)−>

171 (

172 l e t extRef=new Externa lRe fe rence :

173 extRef . setDependsOn ( s . b inding . c a l l .

t r ans f o rmServ i c e (m) )−>

174 newState . s e t I n t e rna lFa i lP r ob ( s .

i n t e rna lFa i lP rob . getMean ( ) )−>

175 newState . ex t e rna lRe f e r ence . add (

extRef )−>

176 newState . setCompletionModel ( ”OR” )

177 )−>

178 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : :

Behavior ) s . eContainer ) . t r a n s i t i o n .

s e l e c t ( x | ( x . to==s&& x . from . metaType!=

Join ) | | x . from==s ) . c o l l e c t ( e | e .

t rans fo rmTrans i t i on (d ,m) ) )−>

179 newState

180 ) // simpleSC

181 :

182 ( //complexSC

183 m. dtmc . add ( s . t rans fo rmServ i c eCont ro l (m) )−>

184

185 (

186 l e t extRef=new Externa lRe fe rence :

187 extRef . setDependsOn ( s .

t rans fo rmServ i c eCont ro l (m) )−>

188 newState . s e t I n t e rna lFa i lP r ob ( 0 . 0 )−>
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189 newState . ex t e rna lRe f e r ence . add (

extRef )

190 )

191 −>

192 newState . setCompletionModel ( ”OR” )−>

193 newState . setName ( s . name)−>

194 d . t r a n s i t i o n . addAll ( ( ( k lape r : : core : :

Behavior ) s . eContainer ) . t r a n s i t i o n .

s e l e c t ( x | ( x . to==s&& x . from . metaType!=

Join ) | | x . from==s ) . c o l l e c t ( e | e .

t rans fo rmTrans i t i on (d ,m) ) )−>

195 newState

196 ) //complexSC

197 ) // synch=true

198 ) // c a l l

199 ) // belongsToForkJoin=f a l s e

200 :

201 {} ;

we have three different behaviors according to the meaning of the ServiceControl:

• ServiceControl as a signal (lines from 147 to 155): a new DTMC State is cre-

ated with related Transitions including the one to the DTMC’s Fail State. The

new State has an internalFailProb attribute computed from that of the related

KLAPER ServiceControl; this attribute is not the real failure probability of

the State (which is instead correctly expressed using the Transition to the

Fail State of the same DTMC), but it is used to simplify the computation of

the failure probability of a Wait State potentially linked to the newly created

State.

• ServiceControl as an asynchronous call (lines from 159 to 165): a new DTMC

State is created with related Transitions including the one to the DTMC’s Fail

State.

• ServiceControl as a synchronous call (lines from 167 to 196): here we have

to specify two different sub cases: simple ServiceControl (for ServiceControls

that don’t have repetitions or nested behaviors but simply make a synchronous

call to another service) and complex ServiceControl (for ServiceControls that

do not simply make a synchronous call to another service but also have the

repetitions attribute greater than 1 and/or have a nested behavior).

– Simple ServiceControl (see lines from 169 to 180): a new DTMC State

with an ExternalReference is created. The new State can’t fail, indeed it
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hasn’t any Transition to the Fail State of its DTMC (there is no transi-

tionToFail() function called). The internalFailProb attribute (set at line

174) will be used later in the M2T transformation to set the failure prob-

ability of the referenced DTMC. The ExternalReference point to another

DTMC created from the KLAPER Service called (see the “binding” ele-

ment of line 173) by the KLAPER ServiceCall (we have already seen how

a KLAPER service is transformed into a DTMC).

– Complex ServiceControl (see lines from 182 to 196): this case is identical

to the simple ServiceControl case except for two things: the first (see

line 188) is that the internalFailProb attribute is set to 0 (this is because

all the responsibilities of a failure are demanded to the newly created

DTMC), the second (see line 183) is that this time a new DTMC is created

to handle all the activities accomplished by the complex ServiceControl

and the true call will be done by one of the States of this new DTMC.

As already done with the transformActivity() function we do not present

here the transformServiceControl() function because it simply apply a

State configuration that is required to build a correct DTMC, but has

really relevant for the description of the meta model transformation rules.

We have not presented all the transformation rules used to go from the KLAPER

meta model to the DTMC one; we only presented those excerpts that are more

relevant to the aim of understanding how the transformation works. To see the full

transformation and to have more details about it take a look at [8].

7.4 Using the DTMC meta model

This section should be named “Using the DTMC model” because after applying

the KLAPER to DTMC transformation, starting from a KLAPER model we have a

real DTMC model; in the title we spoke about meta models because transformations

rules are defined between meta models and models are only an artifact used as input

and obtained as result.

A DTMC model is useless until it is converted to an input file for some tool.

In our case we want to transform (and the word “transform” has not been chosen
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accidentally) our model into an input file for the SHARPE tool (see [53]). The trans-

formation to the SHARPE input file is a typical example of a M2T transformation

where from a model we obtain a text file; due to the space required by the model to

text transformation we can’t explicitly analyze it here, but we prefer to concentrate

our attention to the intermediate meta model (KLAPER) and to the model to model

transformation that start from it; however you can find the complete model to text

transformation, realized using Xpand, in [8] where you will find also a complete

explanation about the use of the SHARPE tool and about interpreting the obtained

results. In chapter 10 we will see a complete application of the transformation chain

related to the DTMC meta model as explained until now; starting from a KLAPER

model we will transform it into a DTMC model (M2M transformation), from this

model we will generate an input file (M2T transformation) that submitted to the

SHARPE tool will return some results to analyze (software quality analysis) and

may be to use to give some feedback about the starting model.
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Chapter 8

Transforming to SimJava

8.1 The SimJava meta model

With SimJava, like with DTMCs, we can evaluate reliability; moreover, like with

LQN, with SimJava we can also evaluate performance. But while DTMC and LQN

use analytical solvers to compute the required indexes, SimJava adopts a different

kind of approach based on simulation. That means that from KLAPER we will not

build some analysis model expressed in a particular formalism (required by some

kind of tool as input), rather we generate real executable Java code, based on the

SimJava library, that implements the behavioral semantic of KLAPER .

In any case in a model driven approach to build a simulator we need to define

a meta model of simulation models that we want to generate; you can see such a

SimJava based meta model in figure 8.1.

Here we will present an overview of meta classes of the meta model based on

SimJava (if you want to have more details about this meta model see [9]).

The SimJava based meta model consists of the following meta classes:

• SimModel: this meta class is the usual container like those already seen for

other meta models.

• Workload: it represents the workload of the system, that is it models the

way actors interact with the system; in SimJava this means a set of Steps (see

later) that are executed with a specified flow.

• OpenWorkload: this meta class models an open workload; usually an open
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Figure 8.1. SimJava meta model

workload is characterized by the arrival rate of users and this is not an ex-

ception, indeed we have the arrivalProcess relation whose aim is precisely to

define the mean number of users that comes to the system from the outside

world.

• ClosedWorkload: this meta class represents a closed workload; all the con-

siderations already done for open workload are also valid for closed workloads,

but with an exception, for closed workloads we don’t consider the arrival rate

of users but we need to know the the mean population of users that run around

the system because it can affect the number of times actions are accomplished

and therefore can influence reliability.

• ResourceQueue: this meta class represents a logical or a physical component
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of the system. It has the role of requests handler, therefore it is its responsi-

bility to monitor when the capacity (that is the maximum number of parallel

requests that can be served) of a resource is full and as soon as there is a free

servant to send available requests to it. But it also have to monitor the end of

requests to update the number of requests that can be served by a resource.

• Service: this meta class represents the concept of a service that a resource

can provide to someone that need it. Actually its main role is to be a container

of SimJava Steps.

• Step: this meta class represents the atomic action of a Service (Services are

container of Steps). To provide a Service each Step interact with other Steps

using Transitions, indeed the outTransition attribute is the set of Transitions

outgoing from a Step. There are Steps that are only used to control the execu-

tion flow of a Service or a Workload and therefore don’t affect the simulation

and there are Steps that effectively influence the simulation time and therefore

the reliability and the performance of the system.

• Transition: this meta class defines a link between two Steps and the prob-

ability (the attribute prob) that given a Step, the next Step will be the one

linked with the Transition.

• Start: this is a Step that is used to start a Service or a Workload. It doesn’t

affect the simulation time.

• End: this is a Step that is used to end a Service or a Workload. It doesn’t

affect the simulation time.

• Branch: this Step is used to model branches with a given probability. Obvi-

ously the sum of the probabilities of outgoing Transitions has to be equal to

1. It doesn’t affect the simulation time.

• Fork: this Step is used to model the execution of parallel flows. It is very

similar to Branch but in this case all the outgoing Transitions have a proba-

bility equal to 1 because all of them are executed at the same time. It doesn’t

affect the simulation time.
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• Join: this Step is strictly coupled with the Fork step because Join merges

parallel flows originated by a Fork. The attribute nTransition defines the

number of requests that the step has to wait before doing a request to its next

step. It doesn’t affect the simulation time.

• Wait: this Step models the wait for an event. While waiting, the step is not

in execution and the simulation of the related part of the system is completely

suspended (while other parts of the system continue their execution), therefore

it doesn’t affect the simulation time.

• ServiceWake: this Step is used to awake the simulation for a Wait step (the

Wait step to awake is selected using the attribute signal). It doesn’t affect the

simulation time.

• FailMode: mate class that defines the failure mode used for an Activity (see

later) or an ExternalService (see later).

• DiscreteFailMode: this fail mode defines the time (using a probability dis-

tribution function) after which the Activity is considered failed.

• ContinuousFailMode: this fail mode defines the probability (between 0.0

and 1.0) that an Activity or an ExternalService have to fail.

• Activity: this meta class represents a phase in which the request is served by

the resource the activity run on. An Activity can be repeated repetitions times,

has a failure mode (the attribute failMode) and a service time (the attribute

serviceTime that defines the time required to serve the request). The failure

mode strongly influences the way the simulation proceeds for an Activity:

– failure mode is a DiscreteFailMode1: this failure mode models a situa-

tion where we have an execution time and a failure time (both of them

expressed using stochastic distributions) that “race” between them; if

the execution time wins we have a normal execution, while if the failure

time wins we have a failure. To better understand this concept imagine

that once the service request is received from the probability distribution

function serviceTime we generate a service time, then from the proba-

bility distribution function internalFailTime we generate a failure time;
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if the failure time is smaller than the service time then the activity is

considered failed and we have to update all reliability indexes, otherwise

(failure time greater than the service time) we advance the simulation

clock of the service time, update statistics and then we can proceed to

the next step.

– failure mode is a ContinuousFailMode1: this failure mode models a situa-

tion where we know that an activity will fail with a certain probability no

matter what is its duration. To better understand this concept imagine

that once the service request is received using a uniform distribution we

generate a number between 0 and 1, then if this number is smaller than

the internalFailProb the Activity can be considered failed and therefore

we can update statistics and close the Activity; if instead the generated

number is greater than the internalFailProb attribute we can generate a

service time from serviceTime and use this value to increment the simu-

lation time and then update statistics before going to the next step.

• ServiceCall: this meta class models a service request to another Service.

• SynchServiceCall: meta class that represents a synchronous service call,

that is a service call that wait for a request before proceeding.

• AsynchServiceCall: meta class that represents an asynchronous service call,

that is a service call that doesn’t wait any response but after doing the request

simply goes ahead.

• ExternalService: this meta class represents the calling style of a service

request; indeed it is a container of a ServiceCall (that can be synchronous or

asynchronous) and a ContinuousFailMode2 (that represents the failure mode

of the service call). We have two different behaviors of the meta class according

to the service call type chosen for ExternalService:

1Understanding the meaning of DiscreteFailMode and ContinuousFailMode the reader could
complain that the two names should be swapped to better fit the name of the meta classes with
the concepts they model; this is absolutely true but due to some compatibility issues with previous
releases of the meta model the names are left as we described here.

2The actual meta model considers only ContinuousFailMode as the possible failure mode for an
ExternalService. This is a limitation for the meta model that hasn’t any technical or conceptual
motivation; in the near future also the DiscreteFailMode will be available as failure mode of the
ExternalService meta class
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– synchronous service call (SynchServiceCall): after receiving the request

we generate a random number between 0 and 1, if it is smaller than the

failProb attribute the step is failed. If instead it is greater than it we can

call the service specified by the service attribute of the SynchServiceCall

meta class; at this point the execution of the current step is suspended

until the called service successfully ends with a response or it fails. If the

called service ends the requested service without any failure we can go

to the step following this ExternalService, otherwise the called service is

failed and we have to consider also this ExternalService step as failed.

– asynchronous service call (AsynchServiceCall): after receiving the request

we generate a random number between 0 and 1, if it is smaller than the

failProb attribute the step is failed. If instead it is greater than it we can

call the service specified by the service attribute of the AsynchService-

Call meta class; this time we don’t care about the responses because an

asynchronous request simply requests a service and goes ahead. Here we

don’t consider the dependsOn attribute of KLAPER asynchronous calls;

currently it is always considered as false, but this is a limitation of the

KLAPER to SimJava transformation that will be removed in the near

future.

8.2 KLAPER to SimJava transformation, concepts

The KLAPER meta model and the SimJava based one are really close; this is obvious

if we think that the latter is an implementation of the behavioral semantic of the

former, based on the SimJava Java library. This similarity has as a consequence the

fact that a lot of elements of the two meta model are directly mapped one to one.

In the remaining part of this section we will see the concepts that lies behind

the transformation rules from the KLAPER meta model to the SimJava based one.

In these transformation concepts we will use the term “SimJava” to refer to the

SimJava based meta model.

• Each KLAPER Workload is transformed into a SimJava Workload, Open-

Workload or ClosedWorkload, depending from the KLAPER specific Workload

type considered (KLAPER has only one Workload meta class to represent both
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open and closed workloads, while SimJava has two specific sub-meta classes,

one for each specific concept).

• Each KLAPER Resource is transformed into a SimJava ResourceQueue. Ser-

vices of KLAPER Resources are then transformed into Services of SimJava

ResourceQueues.

• KLAPER Behaviors haven’t a correspondence into SimJava; they are mapped

directly to the SimJava Service meta class.

• Each KLAPER Transition is transformed into a SimJava Transition. Both

meta classes have the prob attribute that expresses the probability that the

transition occurs. But while KLAPER Transitions are stored into Behaviors,

SimJava stores Transitions into Steps because it lacks the concept of a Behav-

ior.

• Each KLAPER Service is transformed into a SimJava Service.

• Each KLAPER Start step is transformed into a SimJava Start step.

• Each KLAPER End step is transformed into a SimJava End step.

• Each KLAPER Branch step is transformed into a SimJava Branch step.

• Each KLAPER Fork step is transformed into a SimJava Fork step.

• Each KLAPER Join step is transformed into a SimJava Join step. The Join

step is the only SimJava step that stores the information about incoming tran-

sitions; this is necessary to properly handle the nTransition attribute (directly

converted from the KLAPER transitionsNeededToGo attribute).

• Each KLAPER Wait step is transformed into a SimJava Wait step.

• Each KLAPER Activity is transformed into a SimJava Activity. KLAPER

repetitions are considered, while nested behaviors are not transformed (this is

still under development). If an internalFailTime is specified for the KLAPER

Activity, the SimJava Activity has a discrete failure mode, otherwise it has a

continuous failure mode.
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• Each KLAPER ServiceControl that acts like a signal is transformed into a

SimJava ServiceWake.

• Each KLPAER ServiceControl that acts like a service call, is transformed

into a SimJava ExternalService containing a SimJava SynchServiceCall if the

KLAPER ServiceControl is synchronous, or a SimJava AsynchServiceCall if

the KLAPER ServiceControl is asynchronous. ExternalServices can have only

a continuous fail mode that in the transformation rule is transformed from the

internalFailProb attribute of the KLAPER ServiceControl meta class if this

last one is specified.

After discussing the general concepts, we can now analyze the concrete imple-

mentation of transformation rules.

8.3 KLAPER to SimJava transformation, imple-

mentation

The QVT transformation from KLAPER to SimJava (as usual expressed using the

Xtend tool) is very simple due the fact that the two meta models are very close to

each other.

We can start transforming a KLAPER KlaperModel into its corresponding Sim-

Java container with the rule

25 // Klaper KlaperModel c l a s s

26 pr i va t e c r e a t e s imu la to r : : core : : SimModel t h i s transformModel ( k lape r : : co re : :

KlaperModel m) :

27 t h i s . s e tResource (m. r e s ou r c e . trans formResource ( ) )−>

28 // t h i s . setWorkload (m. workload . s e l e c t (w |w. type . t oS t r i ng ( )==’OPEN ’ ) .

transformOpenWorkload ( ) )−>

29 t h i s . workload . addAll (m. workload . s e l e c t (w |w. type . t oS t r i ng ( )==’OPEN’ ) .

transformOpenWorkload ( ) )−>

30 // t h i s . setWorkload (m. workload . s e l e c t (w |w. type . t oS t r i ng ( )==’CLOSED ’ ) .

transformClosedWorkload ( ) )−>

31 t h i s . workload . addAll (m. workload . s e l e c t (w |w. type . t oS t r i ng ( )==’CLOSED’ ) .

transformClosedWorkload ( ) )−>

32 t h i s ;

where we put into a SimModel meta class all the SimJava Resources (line 27) and

Workloads (open workload at line 29 and closed workload at line 31) of the input

model.
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A SimJava OpenWorkload is created from a KLAPER Workload with the rule

34 pr i va t e c r e a t e s imu la to r : : core : : OpenWorkload t h i s transformOpenWorkload ( k laper : :

co re : : Workload w) :

35 t h i s . setName (w. name)−>

36 t h i s . s e tStep (w. behavior . s t ep . trans formStep ( ) )−>

37 t h i s . s e tA r r i v a lP r o c e s s (w. a r r i v a lP r o c e s s . t r an s f o rmDi s t r i bu t i on ( ) )−>

38 t h i s ;

where at line 36 we transform all the KLAPER Steps found into the KLAPER

Workload in SimJava Steps and then at line 37 we set the arrival process of the

open workload. We have to note that even if probability distribution functions are

defined in the same way both in KLAPER and in SimJava (probability distribution

functions represented in the SimJava based meta model had been directly cloned

from the KLAPER meta model), they must be converted in any case, using the

transformDistribution() function because even if identical they belong to different

meta models; however the transformation is trivial because we have a one to one

matching.

SimJava ClosedWorkload are transformed in the same way as OpenWorkload

with the rule

40 pr i va t e c r e a t e s imu la to r : : core : : ClosedWorkload t h i s transformClosedWorkload ( k lape r

: : core : : Workload w) :

41 t h i s . s e tPopu la t ion (w. populat ion )−>

42 t h i s . setName (w. name)−>

43 t h i s . s e tStep (w. behavior . s t ep . trans formStep ( ) )−>

44 t h i s ;

where the only change is that in closed workload rather than setting the arrival

process we have to set the population attribute.

KLAPER Resources are directly transformed into ResourceQueue with the rule

46 pr i va t e c r e a t e s imu la to r : : core : : ResourceQueue t h i s transformResource ( k lape r : : core : :

Resource r ) :

47 t h i s . s e tCapac i ty ( r . capac i ty . t o In t e g e r ( ) )−>

48 t h i s . s e tDe s c r i p t i on ( r . d e s c r i p t i o n )−>

49 t h i s . setName ( r . name)−>

50 t h i s . s e tO f f e r e dS e r v i c e ( r . o f f e r e d S e r v i c e . t r ans f o rmServ i c e ( ) )−>

51 t h i s ;

where we can see that the mapping between the KLAPER meta model and the

SimJava meta model is really one to one.

A KLAPER Service is transformed into a SimJava Service using the rule

53 pr i va t e c r e a t e s imu la to r : : core : : S e rv i c e t h i s t r ans f o rmServ i c e ( k laper : : core : : S e rv i c e

s ) :
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54 t h i s . setName ( s . name)−>

55 t h i s . s e tDe s c r i p t i on ( s . d e s c r i p t i o n )−>

56 t h i s . s e tStep ( s . behavior . s t ep . trans formStep ( ) )−>

57 t h i s ;

where we can see one of the few differences between KLAPER and SimJava, SimJava

doesn’t have the concept of behavior; in SimJava the KLAPER concepts of Service

and Behavior are merged into the Service meta class. At line 56 we can see how

KLAPER Steps are transformed into SimJava Steps and then added to a SimJava

Service.

The first step of a KLAPER Behavior is always the Start step whose transfor-

mation rule is

62 pr i va t e c r e a t e s imu la to r : : core : : S ta r t t h i s trans formStep ( k lape r : : co re : : S ta r t s ) :

63 t h i s . setName ( s . name)−>

64 t h i s . s e tOutTrans i t ion ( ( ( k lape r : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . from . name==s . name) . t rans fo rmTrans i t i on ( ) )−>

65 t h i s ;

where at line 64 we select all KLAPER Transitions that have the Start step as source

(see the condition select(t|t.from.name == s.name)) and then we transform them

into SimJava Transitions belongings from (because they are contained into) the

SimJava Start step.

The KLAPER End step is trivial to transform to its corresponding SimJava Step;

its transformation rule is

67 pr i va t e c r e a t e s imu la to r : : core : : End t h i s trans formStep ( k lape r : : co re : : End e ) :

68 t h i s . setName ( e . name)−>

69 // t h i s . s e tOutTrans i t ion ( ( ( k lape r : : co re : : Behavior ) e . eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . from . name==e . name) . t rans fo rmTrans i t i on ( ) )−>

70 t h i s ;

where the only thing we have to set is the name of the Step (see line 68), because

the End step in SimJava has no any following step and therefore there is nothing

else to set.

Transformation rules for KLAPER Branch step and KLAPER Fork step are

identical

72 pr i va t e c r e a t e s imu la to r : : core : : Branch t h i s trans formStep ( k lape r : : co re : : Branch b) :

73 t h i s . setName (b . name)−>

74 t h i s . s e tOutTrans i t ion ( ( ( k lape r : : core : : Behavior )b . eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . from . name==b . name) . t rans fo rmTrans i t i on ( ) )−>

75 t h i s ;

76

77 pr i va t e c r e a t e s imu la to r : : core : : Fork t h i s trans formStep ( k lape r : : co re : : Fork f ) :
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78 t h i s . setName ( f . name)−>

79 t h i s . s e tOutTrans i t ion ( ( ( k lape r : : core : : Behavior ) f . eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . from . name==f . name) . t rans fo rmTrans i t i on ( ) )−>

80 t h i s ;

both the transformation rules set the name of the Step (lines 73 and 78) and the

outgoing Transitions (lines 74 and 79).

The transformation rule for the KLAPER Join step is similar to other rules seen

so far with a little difference

82 pr i va t e c r e a t e s imu la to r : : core : : Jo in t h i s trans formStep ( k lape r : : co re : : Jo in j ) :

83 t h i s . setName ( j . name)−>

84 t h i s . s e tNTrans i t ion ( j . transit ionsNeededToGo )−>

85 t h i s . s e t I nTran s i t i on ( ( ( k lape r : : core : : Behavior ) j . eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . to . name==j . name) . t rans fo rmTrans i t i on ( ) )−>

86 t h i s . s e tOutTrans i t ion ( ( ( k lape r : : core : : Behavior ) j . eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . from . name==j . name) . t rans fo rmTrans i t i on ( ) )−>

87 t h i s ;

where the only new thing we have to analyze is at line 85; here we set a list of

incoming Transitions (selected using a way very similar to that used for outgoing

transition) that will be used during the M2T transformation for a comparison with

the nTransition attribute to decide when the Java code representing a Join step can

resume its execution.

The KLAPER Wait step has the same transformation rule already seen for other

Steps

89 pr i va t e c r e a t e s imu la to r : : core : : Wait t h i s trans formStep ( k lape r : : co re : : Wait w) :

90 t h i s . setName (w. name)−>

91 t h i s . s e tOutTrans i t ion ( ( ( k lape r : : core : : Behavior )w. eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . from . name==w. name) . t rans fo rmTrans i t i on ( ) )−>

92 t h i s ;

we already saw identical transformation rules so there is no need to add anything

anymore.

The transformation rule for the KLAPER Activity step is something more in-

teresting if compared to other Steps

94 pr i va t e c r e a t e s imu la to r : : core : : Ac t i v i t y t h i s trans formStep ( k lape r : : co re : : Ac t i v i t y

a ) :

95 t h i s . setName ( a . name)−>

96 t h i s . s e tOutTrans i t ion ( ( ( k lape r : : core : : Behavior ) a . eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . from . name==a . name) . t rans fo rmTrans i t i on ( ) )−>

97 t h i s . s e tRep e t i t i o n s ( a . r e p e t i t i o n s . getMean ( ) . t o In t e g e r ( ) )−>

98 t h i s . se tServ iceTime ( a . internalExecTime . t r an s f o rmDi s t r i bu t i on ( ) )−>

99 a . in t e rna lFa i lT ime != nu l l ?
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100 t h i s . setFai lMode ( a . in t e rna lFa i lT ime . t rans formDiscreteFai lMode ( ) ) :

t h i s . setFai lMode ( a . i n t e rna lFa i lP rob . transformContinuousFailMode

( ) )−>

101 t h i s ;

where at line 95, 96 and 97 we only set attributes. At line 98 we set the SimJava

serviceTime directly from the KLAPER internalExecTime; then if an internalFail-

Time has been specified for the KLAPER Activity we set a DiscreteFailMode for the

SimJava Activity, otherwise we set a ContinuousFailMode for the SimJava Activity.

KLAPER ServiceControl meta class has two different transformation rules de-

pending on the service call or the signal nature of the meta class itself. The trans-

formation rule used to represent a service call is

103 pr i va t e c r e a t e s imu la to r : : core : : Ext e rna lSe rv i c e t h i s trans formStep ( k lape r : : co re : :

S e rv i c eCont ro l sc ) :

104 sc . b inding . c a l l != nu l l ?

105 (

106 t h i s . setName ( sc . name)−>

107 t h i s . s e tOutTrans i t ion ( ( ( k lape r : : core : : Behavior ) sc . eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . from . name==sc . name) . t rans fo rmTrans i t i on ( ) )−>

108 sc . i n t e rna lFa i lP rob != nu l l ? t h i s . s e tFa i lProb ( sc . i n t e rna lFa i lP rob .

transformContinuousFailMode ( ) ) : t h i s . s e tFa i lProb ( nu l l )−>

109 sc . i sSynch==true ?

110 t h i s . s e t S e r v i c eCa l l ( sc . t rans fo rmSynchServ i ceCa l l ( ) ) : t h i s .

s e t S e r v i c eCa l l ( sc . t rans formAsynchServ iceCal l ( ) )−>

111 t h i s )

112 : n u l l ;

where at line 104 we check the service call nature of ServiceCall verifying if the

KLAPER Binding meta class instance references some KLAPER Service. If so we

can set the name of the LQN ExternalService (line 106) and the set of outgoing

LQN Transitions (line 107). Then at line 108 we set the failure mode (if present),

where we recall that ExternalServices can have only a ContinuousFialMode (while

Activities can also have a DiscreteFailMode); if the KLAPER ServiceCall has no

internalFailProb specified, then the LQN failure mode is not set. Before closing the

rule we only need to set the right service call type checking the KLAPER isSynch

attribute (see line 109), in case its value is true we instantiate an LQN SynchSer-

viceCall, otherwise we instantiate an LQN AsynchServiceCall (see line 110). The

final null of line 112 is only due to an Xtend limitation that doesn’t have an “if”

construct but presents only an “if then else” construct where the “else” condition

has to be set to null to realize a simple “if” condition.

The transformation rule for the KALPER ServiceControl in its meaning of signal
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is very close to the one used for service call but with some differences

114 pr i va t e c r e a t e s imu la to r : : core : : ServiceWake t h i s trans formStep ( k lape r : : co re : :

S e rv i c eCont ro l sc ) :

115 sc . b inding . s i g n a l != nu l l ?

116 (

117 t h i s . setName ( sc . name)−>

118 t h i s . s e tOutTrans i t ion ( ( ( k lape r : : core : : Behavior ) sc . eContainer ) . t r a n s i t i o n .

s e l e c t ( t | t . from . name==sc . name) . t rans fo rmTrans i t i on ( ) )−>

119 t h i s . s e t S i g n a l ( sc . b inding . s i g n a l . t rans formStep ( ) )−>

120 t h i s

121 )

122 : n u l l ;

where the main difference is that this time we create a ServiceWake step rather than

an ExternalService. Then we have to consider that signals can’t fail, because they are

instantaneus, and don’t have a synchronization, they are asynchronous by definition;

therefore in this case we don’t have to set a failure mode nor a synchronization mode,

we only need to set the LQN Wait step to awake (see line 119).

All the LQN Steps created by the transformation rules seen so far are linked

together using LQN Transitions whose transformation rule is

165 pr i va t e c r e a t e s imu la to r : : core : : Trans i t i on t h i s t rans fo rmTrans i t i on ( k lape r : : core : :

Trans i t i on t ) :

166 t h i s . setFrom ( t . from . trans formStep ( ) )−>

167 t h i s . setTo ( t . to . t rans formStep ( ) )−>

168 t h i s . setProb ( ( t . prob>0 && t . prob<=1)? t . prob : 1 . 0 )−>

169 t h i s ;

where we have a one to one correspondence, indeed LQN source Step (the from

attribute) is directly taken from the related KLAPER source step (see line 166),

LQN target Step (the to attribute) is directly taken from the related KLAPER

target step (see line 167) and the LQN Transition probability is converted from the

KLAPER Transition probability if it is specified, otherwise it is set to the default

1.0.

8.4 Using the SimJava meta model

We already said that SimJava is not an analytical solver like those we use with

DTMC or LQN, but it is a simulation tool in the sense that it provides a Java

library we can use to build a system that, even if it is not the real system in terms

of functional requirements, has a behavior really close the the real system behavior

in terms of performance and reliability.
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While with other models we generate an input file to be provided as input to

some sort of solver, with SimJava we generate Java code that uses some specific

APIs provided by the SimJava Java library (available as a jar package). This means

that the result of the KLAPER tool execution this time is pure Java code; we need a

Java compiler to build the generated code into an application that, once run, returns

as output a set of measures collected during the simulation.

8.4.1 Tool limitations

The SimJava based meta model was the first developed inside the KLAPER project

and therefore it suffers from some lack of experience. This has led to some limitations

due to both the structure of the used meta model and the implementation of the

model-to-text transformation.

The current tool presents the following limitations (they are not limitation of

SimJava itself, but only of the current implementation of the tool):

• Limitations due to the meta model structure:

1. Acquire and Release steps are not considered.

2. Bindings cannot be reconfigured.

3. KLAPER nested behaviors cannot be represented; there isn’t any meta

model entity that permits the mapping of such a concept.

4. All the service requests are sotisfied using a FIFO policy; there isn’t any

other scheduling policy available.

• Limitations due to the model-to-text transformation implementation:

5. FormalParam and ActualParam are not considered during the transfor-

mation.

6. Every SimJava Step has been implemented extending a Java Thread,

this means that even for systems not so complex we can easily reach the

maximum number of available threads of the Java virtual machine.

We have to note that limitations 4 and 5 are the reason why actually the SimJava

based meta model tool is not usefull to analyze performance. In addition, the meta

model is too much close to the KLAPER meta model rather than to what should
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have been a real SimJava meta model; this lead to a model-to-text transformation

more complex than expected.

These meta model and transformation limitations obviously restrict the range of

input models that can be successfully analyzed by the tool. Indeed with the current

SimJava based meta model and the current implementation of the model-to-text

transformation we can only simulate very simple systems (this limitation obviously

is not present for LQN and DTMC that use a completely independent environment).

In any case due to some space requirements and we can’t deeper analyze these

limitations; however all the needed information (including an extensive discussion

of the Java code generation) can be found in [9].

127



8 – Transforming to SimJava

128



Chapter 9

Transforming to LQN

While DTMC and the SimJava based simulator are models for reliability evaluation

(actually SimJava is also capable of performance evaluation but the use of this fea-

ture in KLAPER is still under development), LQN (Layered Queueing Network, see

section 3.3 for more details about the theoretical aspects of LQN) is a model whose

aim is to evaluate performance, therefore into the transformation from KLAPER to

LQN we will find some elements of the KLAPER meta model that we haven’t used

so far.

9.1 The LQN meta model

KLAPER relies on a model driven approach and to do so it needs meta models of

the quality analysis methodology we want to apply. LQN creators don’t provide a

meta model, so to solve this problem we decided to build the meta model ourself

(see figure 9.1). We chose to use as starting point the xml schema (see [31]) used by

input files of lqns, that is the analytical solver developed by the Carleton University

of Ottawa (home of the guys who developed LQN). The use of a meta model built

in this way guarantee to us two very important things: the first is that the meta

model should be semantically correct because it derives directly from a work done

by the creators of LQN, the second is that in this way the M2T transformation is

very easy to write because there is a one-to-one correspondence between the meta

model and the final code to generate (that must be compliant with the xsd adopted

by the lqns tool).
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Figure 9.1. LQN meta model

Here we will present an overview of the meta classes that compose the meta

model; to have more details see chapter 3 of [23].

The LQN meta model consists of the following meta classes:

• LqnModel: this is the container of other meta classes; it also contains some

additional information about the model like the reference xsd schema and the

description of the model itself.
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EntryA EntryB

activityA1 activityB1

activityA2 activityB2

activityA3

SomeTask

EntryA EntryB

activityA1 activityB1

activityA2 activityB2

activityA3

SomeTask

(a) (b)TaskActivityGraph EntryActivityGraph

Figure 9.2. LQN representation of TaskActivityGraph (a) and Entry-
ActivityGraph (b))

• Processor: this meta class represents an LQN processor and stores informa-

tion about the processor such as multiplicity and replication (already discussed

in section 3.3), scheduling policy and the quantum (the interval of time each

task is executed when the selected scheduling policy is a round robin like

policy).

• Task: represents the LQN concept of a task and stores all the related infor-

mation.

• Entry: this meta class represents the LQN concept of an entry with all related

attributes.

• TaskActivityGraph: in LQN activities can be organized in some different

ways into a task; one of this way is to use some activity graphs to define the

sequence of activities. This meta class represents exactly this idea and can be

considered as a container of activities, with the addition of some information.

• EntryActivityGraph: this meta class is another way to represents the graph

of the activities within a task, the difference with TaskActivityGraph is that

EntryActivityGraph stores task activities grouping them by the activities that

refers to a particular Entry while TaskActivityGraph stores all the activities
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of a Task. See figure 9.2 to better understand the differences between the two

kind of graphs.

• ActivityGraph: this is the parent meta class for the TaskActivityGraph and

EntryActivityGraph meta classes and describes the common element needed

to realize a graph of LQN activities.

• ReplyActivity: each Entry of a task returns some kind of service and we

already saw that this service is realized by a sequence of activities that can be

expressed using TaskActivityGraphs or EntryActivityGraphs; but we need a

way to define which Activity effectively replies to a particular Entry and this

is the role of the ReplyActivity meta class.

• ReplyEntry: this meta class defines the Entry to which an activity replies

when the activities graph is expressed using a TaskActivityGraph.

• PhaseActivities: this is another way to define the activities accomplished by

an Entry; activities can be specified using phases (theoretically we can have

as many phases as we want but in practice lqns support up to three phases

where the first is the one used to reply to synchronous calls) and these phases

are contained into an instance of the PhaseActivities meta class.

• ActivityDefBase: this meta class represents the activity concept as an action

to do. This is only the main concept that then is specialized according to the

context where it is used.

• ActivityPhase: it is the implementation of an activity when the activities of

an Entry are expressed using phases.

• ActivityDef : it is the implementation of an activity when the activities of

an Entry are expressed using an activities graph (whether it is a TaskActivi-

tyGraph or an EntryActivityGraph).

• EntryActivityDef : actually not used and reported into the meta model only

because it is present into the lqns xsd schema.

• CallList: this meta class is one of the possible way used by activities to make

service calls, but even if the lqns solver supports this concept actually we use

another mechanism to do calls.
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• SynchCall: this is a specialization of CallList used for synchronous calls.

• AsynchCall: this is a specialization of CallList used for asynchronous calls.

• MakingCall: this meta class is the second mechanism used by the lqns solver

to make service calls and it is the one actually used by the KLAPER to

LQN transformation; it contains concepts like a reference to the called service

(the attribute name), the number of replicated servers that a client calls (the

attribute fanout) and the number of replicated clients that call a server (the

attribute fanin).

• EntryMakingCall: this meta class represents the concept of an Entry making

a call without specifying any activity, that is a forwarding request; actually

this is not used by the KLAPER to LQN transformation even if lqns can

handle it.

• ActivityMakingCall: represents an activity that makes a synchronous or

an asynchronous call specifying a mean number of calls (using the attribute

callsMean); this is the way calls are done with the KLAPER to LQN trans-

formation.

• Precedence: this meta class is used to specify the way activities are linked

between them to build an activities graph; a Precedence always have one or

more “pre” (or AND, that comes before) elements followed by one or more

“post” (or OR, that comes after) elements.

• Activity: this meta class represents the reference to an activity (identified by

the attribute name).

• ORList: this meta class is a precedence used to describe branch conditions;

• ActivityOR: this meta class represents a single branch of a branch condition

with the probability (the attribute prob) associated to the related branch.

• ActivityList: when used as a “pre” precedence this meta class represents

the merging of different branches previously started from a branch condition,

while when used as a “post” precedence it represents a typical fork condition

for multiple concurrent activities.
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• AndJoinList: this meta class is a precedence used to represent join condi-

tions, that is a synchronization point for concurrent activities.

• SingleActivityList: this class used as “pre” or “post” precedence always

represents a single activity into a simple activities sequence.

• ActivityLoopList: this is the precedence used to represent loops, where the

end attribute denotes the activity executed at the end of the loop.

• ActivityLoop: this meta class define a reference to an activity that is re-

peated count times before going out the loop.

9.2 KLAPER to LQN transformation, concepts

Now that we know how the LQN meta model is defined, before going deep into the

details of the transformation rules with the related code, in this section we will see

the general concepts that we apply to the transformation from the KLAPER meta

model to the LQN meta model:

• Each KLAPER Workload is mapped into a special LQN Task that is called

reference task. The peculiarity of a reference Task is that it has an Entry but

this Entry can never be called by anyone. A closed workload is represented

setting the multiplicity of the LQN Task to the population number of the

KLAPER Workload, while an open workload is represented setting the arrival

rate of the Task’s Entry. The mapping also creates a special processor reserved

to the reference Task execution not affecting other real Processors execution.

• KLAPER doesn’t make difference between hardware and software resources;

they are all represented as KLAPER Resources. LQN maps hardware re-

source to Processors plus the related base service implemented as a simple

Task (with a single Entry), while software resources are mapped as common

LQN Tasks. Actually hardware resources are recognized using the type at-

tribute of KLAPER Resources; the only values currently accepted for hard-

ware resources are cpu, network and disk. We will see in the next section some

examples of hardware resources transformation.

• Each KLAPER Service is mapped into an LQN Entry of a Task.
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• Each KLAPER Behavior is mapped into an LQN TaskActivityGraph.

• LQN EntryActivityGraphs are not used by the transformation rules.

• Each KLAPER Start step is mapped into an LQN Activity with a service time

equal to 0.0 and a simple Precedence.

• Each KLAPER End step is mapped into an LQN Activity with a service time

equal to 0.0 and a simple Precedence.

• Each KLAPER Wait step is mapped into an LQN Activity with a service time

equal to 0.0 and a simple Precedence.

• Each KLAPER Branch step is mapped into an LQN Activity with a service

time equal to 0.0 and an LQN PostOR precedence.

• Each KLAPER Fork step is mapped into an LQN Activity with a service time

equal to 0.0 and an LQN PostAND precedence.

• Each KLAPER Join step is mapped into an LQN Activity with a service time

equal to 0.0 and an LQN PreAnd precedence.

• KLAPER Activities are mapped in different ways:

– if the KLAPER Activity has no nested behaviors and the repetition num-

ber is equal to 1 then the activity is mapped into a simple LQN Activity

with the related service time.

– if the KLAPER Activity has a repetition number greater than 1 then the

activity is mapped into an LQN Activity with a loop Precedence.

– if the KLAPER Activity has a nested behavior the activity is mapped

into an LQN Activity with a loop Precedence (the loop counter is set to 1

if we have a simple nested behavior or to the mean number of KLAPER

Activity repetitions if this attribute is specified); the nested behavior is

then mapped like normal KLAPER Behaviors but using as root the LQN

loop Activity.

• KLAPER ServiceControl are mapped just like KLAPER Activities into LQN

Activities, but with the only difference of service calls. The mapping rule
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creates a new LQN ActivityMakingCall instance that is added to the synchCall

list of the LQN Activity if the KLAPER isSynch attribute is equal to true,

otherwise the new instance is added to the asynchCall list of the LQN Activity.

This is only an overview of general concepts applied to the transformation rules

between the KLAPER meta model and the LQN meta model. In the following

section we will better analyze each of these rules with examples and the references

to the QVT code used into the real implementation of KLAPER tools.

9.3 KLAPER to LQN transformation, implemen-

tation

As already done with the other meta models we will present the QVT transformation

rules from KLAPER to LQN using the Xtend language.

One of the main problems transforming from KLAPER to LQN is that, as already

said, KLAPER doesn’t make difference between hardware and software resources,

they are considered exactly at the same level, while LQN is strongly based on this

separation due to the difference between the concepts of processors and tasks. In

LQN every task runs over a processor and therefore we need to know the deployment

of the system to correctly transform from KLAPER. The solution we choose to

overcome this problem is to split the transformation process in two steps: in the

first step we map all KLAPER resources to LQN tasks and we allocate them (both

hardware and software resources) into a dummy processor, then in the second step

we reconfigure the system with the correct deployment moving each task to its own

processor1. This is necessary because when we analyze the KLAPER model for the

first time we don’t yet know the hardware configuration of the system that is later

computed analyzing the type of KLAPER resources, but we will see better later

how the deployment identification works. All that we said until now is visible into

the following excerpt of code

28 // s t a r t i n g po int f o r the t rans fo rmat ion

29 // ( t h i s ex tens i on i s c a l l e d from the workflow ! )

30 Object k lape r2 lqn ( k laper : : core : : KlaperModel m) :

31 // m. transformModel ( ) ;

32 m. t rans fo rmat ionSteps ( ) ;

1at the end of this process the dummy processor is removed from the model
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33

34

35 pr i va t e lqn : : LqnModel t rans fo rmat ionSteps ( k lape r : : co re : : KlaperModel m) :

36 m. trans format ionStep1 ( ) . t rans fo rmat ionStep2 (m) ;

After that starts the first part of the transformation with the transformation-

Step1() function

40 pr i va t e lqn : : LqnModel t rans fo rmat ionStep1 ( k lape r : : co re : : KlaperModel m) :

41 reportWarning ( ”Model t rans fo rmat ion running ” ) −>

42 m. transformModel ( ) ;

that simply starts the instantiation of LQN meta classes.

The first action to do is to create a container for all LQN Processors, but for

now we will put into this container only a single dummy processor plus some other

specific processors (those needed by workloads)

56 /∗∗
57 ∗ c r e a t e s the i n i t i a l model with a dummy proc e s s o r

58 ∗/

59 pr i va t e c r e a t e lqn : : LqnModel t h i s transformModel ( k lape r : : co re : : KlaperModel m) :

60 t h i s . setName ( ”LqnModel” ) −>

61 t h i s . s e tDe s c r i p t i on ( ”Model auto−genereted by Klaper t o o l ” ) −>

62 t h i s . setLqncoreSchemaVersion ( ” 1 .0 ” ) −>

63 t h i s . setLqnSchemaVersion ( ” 1 .0 ” ) −>

64 t h i s . p r o c e s s o r . add ( createDummyProcessor (m. r e s ou r c e ) ) −> // c r e a t e s

a dummy proc e s s o r

65 t h i s . p r o c e s s o r . addAll (m. workload . transformWorkload ( ) ) −>

66 t h i s ;

where on line 64 we create the dummy processor and on line 65 we create a single

processor for every workload present into the model.

Workloads are very important for performance evaluation, because modifying

workloads we can greatly change the behavior of the system from the point of view

of performances; therefore the first part of the KALPER to LQN transformation is

completely dedicated to how a KLAPER Workload meta class can be represented

in LQN.

LQN doesn’t have a dedicated concept to represent workloads, so we have to

map them to the structure of Processors and Tasks; more precisely every KLAPER

Workload is transformed into a pair composed by an LQN Processor and an LQN

Task that runs over it (see figure 9.3). To represent workloads LQN relies on special

Tasks, called reference tasks ; they cannot be called by anyone but to be triggered

they rely on external requests represented by requests inter-arrival rate (expressed

using Entries) for open workloads or on a fixed number of users that live into the
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system represented using a population number (expressed using the multiplicity of

the related Task) for closed workloads.

Workload

Behavior

Start

ServiceControlA

End

....

....

Processor....

Start

End

WorkloadTask [ref]

....

....

....

ActivityA

WorkloadEntry

Figure 9.3. Transformation of a KLAPER (open or closed) Workload into an LQN
Processor and a reference Task

81 /∗∗
82 ∗ trans form a workload in to a p ro c e s s o r + task

83 ∗/

84 pr i va t e c r e a t e lqn : : Proce s so r t h i s transformWorkload ( k lape r : : co re : : Workload w) :

85 t h i s . setName (w. name) −>

86 t h i s . s e tMu l t i p l i c i t y (1 ) −>

87 t h i s . s e tRep l i c a t i o n (1 ) −>

88 t h i s . s e tSchedu l ing ( lqn : : SchedulingType : : ps ) −>

89 t h i s . setQuantum (0 . 1 ∗ 0 .1 ∗ 0 .1 ∗ 0 .1 ∗ 0 . 1 ) −> // only because 0 .00001

g ive a parse e r r o r ! but why???

90 switch (w. type . t oS t r i ng ( ) )

91 {
92 case k laper : : core : : WorkloadType : :OPEN. toS t r i ng ( ) :

93 t h i s . task . add (w. createOpenWorkloadTask ( ) )

94 case k laper : : core : : WorkloadType : :CLOSED. toS t r i ng ( ) :

95 t h i s . task . add (w. createClosedWorkloadTask ( ) )

96 de f au l t :

97 r epor tEr ro r ( ”For workload ’ ” + w. name + ” ’ unknown type ’ ”

+ w. type . t oS t r i ng ( ) + ” ’ ” )

98 } −>

99 t h i s ;
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where from line 85 to 89 we set the newly created Processor’s attributes, while from

lines 90 to 98 we create a Task that represents the actions done into the Workload.

The switch control over a string on line 90 is simply due to an Xtend bug that

sometimes is not capable of applying the switch construct over an enumeration;

then we create Tasks of different type depending on the open or closed nature of the

workload.

For an open Workload the transformation rules are

102 /∗∗
103 ∗ c r e a t e s a task rappre s ent ing an open workload

104 ∗/

105 pr i va t e c r e a t e lqn : : Task t h i s createOpenWorkloadTask ( k lape r : : core : : Workload w) :

106 t h i s . setName (w. name) −>

107 t h i s . s e tMu l t i p l i c i t y (32700) −>

108 t h i s . s e tRep l i c a t i o n (1 ) −>

109 t h i s . s e tSchedu l ing ( lqn : : TaskSchedulingType : : f c f s ) −>

110 t h i s . setAct iv i tyGraph ( lqn : : TaskOptionType : : YES) −>

111 t h i s . entry . add (w. createOpenWorkloadEntry ( ) ) −>

112 t h i s . s e tTaskAct iv i ty (w. createTaskAct iv ityGraph (w. createOpenWorkloadEntry ( ) )

) −>

113 t h i s ;

114

115

116 /∗∗
117 ∗ c r e a t e s an Entry that s e t s r eque s t s at an open a r r i v a l r a t e f o r an open workload

118 ∗/

119 pr i va t e c r e a t e lqn : : Entry t h i s createOpenWorkloadEntry ( k lape r : : core : : Workload w) :

120 t h i s . setName (w. name . toLowerCase ( ) ) −>

121 t h i s . setType ( lqn : : EntryType : :NONE) −>

122 t h i s . setOpenArrivalRate (w. a r r i v a lP r o c e s s . getMean ( ) ) −>

123 t h i s ;

where first on line 109 we create a new Task with an “fcfs” scheduling policy (that

is a FIFO scheduling policy), then on line 110 we say that we will use an activi-

ties graph setting the activityGraph attribute to yes and to finish we add an Entry

and a TaskActivityGraph (lines 111 and 112) to the new Task. The createTaskAc-

tivityGraph() will be analyzed later because it is the same used for regular Tasks.

Instead the createOpenWorkloadEntry() is presented from line 116 to line 123 where

we create a simple LQN Entry with an open arrival rate (typical for open workloads)

computed from the arrival process of the KLAPER Workload.

One thing to note is that in KLAPER we always deal with probability distri-

bution functions to be as general as possible, while in LQN the only thing we care

about distribution function is the related mean that obviously we have to compute.
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For a closed Workload the transformation rules are

126 /∗∗
127 ∗ c r e a t e s a task rappre s ent ing a c l o s ed workload

128 ∗/

129 pr i va t e c r e a t e lqn : : Task t h i s createClosedWorkloadTask ( k laper : : co re : : Workload w) :

130 t h i s . setName (w. name) −>

131 t h i s . s e tMu l t i p l i c i t y (w. populat ion ) −>

132 t h i s . s e tRep l i c a t i o n (1 ) −>

133 t h i s . s e tSchedu l ing ( lqn : : TaskSchedulingType : : r e f ) −>

134 t h i s . setAct iv i tyGraph ( lqn : : TaskOptionType : : YES) −>

135 t h i s . entry . add (w. createClosedWorkloadEntry ( ) ) −>

136 t h i s . s e tTaskAct iv i ty (w. createTaskAct iv ityGraph (w. createClosedWorkloadEntry

( ) ) ) −>

137 t h i s ;

138

139 /∗∗
140 ∗ c r e a t e s an Entry that s e t s r eque s t s f o r a c l o s ed workload

141 ∗/

142 pr i va t e c r e a t e lqn : : Entry t h i s createClosedWorkloadEntry ( k lape r : : core : : Workload w) :

143 t h i s . setName (w. name . toLowerCase ( ) ) −>

144 t h i s . setType ( lqn : : EntryType : :NONE) −>

145 t h i s ;

where the applied transformations are quite similar to those used for open workloads

with three simple differencies: on line 131 the multiplicity of the task is set to the

population number of the closed workload instead of a really big number used for

open workloads to represent the infinite value, on line 133 the scheduling policy is

set to “ref” to represent a reference task (the typical task used for closed workloads)

and finally from line 142 to line 145 the Task’s Entry doesn’t have any open arrival

rate because it is not needed in closed workloads.

After transforming Wokloads, the next step is to transform all the Resources of

the model; this is done with the following rule

148 /∗∗
149 ∗ c r e a t e s an lqn Task

150 ∗/

151 pr i va t e c r e a t e lqn : : Task t h i s transformTask ( k lape r : : core : : Resource r ) :

152 t h i s . setName ( r . name) −>

153 t h i s . s e tMu l t i p l i c i t y ( r . capac i ty . t o In t e g e r ( ) ) −>

154 t h i s . s e tRep l i c a t i o n (1 ) −>

155 t h i s . s e tSchedu l ing ( r . s chedu l i ngPo l i cy . toLqnSchedul ing ( ) ) −>

156 t h i s . setAct iv i tyGraph ( lqn : : TaskOptionType : : YES) −>

157 t h i s . entry . addAll ( r . o f f e r e d S e r v i c e . c reateEntry ( ) ) −>

158 t h i s . s e tTaskAct iv i ty ( r . createTaskAct iv ityGraph ( ) ) −>

159 t h i s ;
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in our KLAPER to LQN transformation we use the method of LQN TaskActivi-

tyGraphs to convert all KLAPER Services and related steps so, after setting some

attributes, on line 156 we declare that we want to use TaskActivityGraph as steps

container (attribute activityGraph set to yes), on line 157 we transform all the En-

tries of the current Task and then on line 158 we create the TaskActivityGraph.

Each Task has one or more Entries and each Entry is transformed using the

simple rule

162 /∗∗
163 ∗ c r e a t e s an Lqn Entry f o r r e gu l a r ta sk s

164 ∗/

165 pr i va t e c r e a t e lqn : : Entry t h i s createEntry ( k lape r : : core : : S e rv i c e s ) :

166 t h i s . setName ( s . name) −>

167 t h i s . setType ( lqn : : EntryType : :NONE) −>

168 t h i s ;

where we set the name and the type of the Entry. The type attribute set to NONE

is the way the LQN meta model uses to define Entries when a TaskActivityGraph

is used (the attribute has a different value for EntryActivityGraphs and for phases).

At this point we only need to set TaskActivityGraph; but we need two differ-

ent rules depending on the subject of the transformation. If we are generating a

TaskActivityGraph from a Workload we use the rule

171 /∗∗
172 ∗ c r e a t e s an Lqn TaskActivityGraph f o r workload ’ s behavior

173 ∗/

174 pr i va t e c r e a t e lqn : : TaskActivityGraph t h i s createTaskAct iv ityGraph ( k lape r : : co re : :

Workload w, lqn : : Entry entry ) :

175 l e t a c t i v i t i e s = {} :

176 l e t precedences = {} :

177 w. behavior . bu i l dAct i v i t i e sGraph ( a c t i v i t i e s , precedences , entry ) −>

178 t h i s . s e tAc t i v i t y ( a c t i v i t i e s ) −>

179 t h i s . s e tPrecedence ( precedences ) −>

180 t h i s . rep lyEntry . add (w. behavior . s tep . t ypeSe l e c t ( k lape r : : co re : : End) . f i r s t ( ) .

createReplyEntry ( ” r e p l y ” + w. name) ) −>

181 t h i s ;

that is identical to that we will see later for Resources, except for the replyEntry

attribute that is directly set to a specific value (line 180) because we are sure that

Workloads have only one Entry, while Resources can present more the one single En-

try and therefore more than one single replyEntry value. Instead if we are generating

a TaskActivityGraph from a Resource we have to use the rule

184 /∗∗
185 ∗ c r e a t e s an lqn TaskActivityGraph
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186 ∗/

187 pr i va t e c r e a t e lqn : : TaskActivityGraph t h i s createTaskAct iv ityGraph ( k lape r : : co re : :

Resource r ) :

188 l e t a c t i v i t i e s = {} :

189 l e t precedences = {} :

190 l e t r e p l y e n t r i e s = {} :

191 r . o f f e r e d S e r v i c e . bu i l dAct i v i t i e sGraph ( a c t i v i t i e s , precedences ,

r e p l y e n t r i e s ) −>

192 t h i s . s e tAc t i v i t y ( a c t i v i t i e s ) −>

193 t h i s . s e tPrecedence ( precedences ) −>

194 t h i s . setReplyEntry ( r e p l y e n t r i e s ) −>

195 t h i s ;

where on lines 192, 193 and 194 we set respectively the Activities of the graph, the

Precedences of the graph and the replyEntrys of the graph (this time replyEntry

can be more than one and this is why we have to implement two different rules for

Workloads and for Resources). The buildActivitiesGraph() function take as input

an empty activities list, an empty precedences list and an empty replyEntry list and

parses a Behavior to fill these lists.

The buildActivitiesGraph function is very useful because it visits the Behavior

activities graph of a KLAPER Service with the rule

198 /∗∗
199 ∗ conver t s a k laper s e r v i c e in to a sub−graph o f a TaskActivityGraph

200 ∗/

201 pr i va t e bu i l dAct i v i t i e sGraph ( k lape r : : co re : : S e rv i c e s , L i s t [ Act iv i tyDe f ] a c t i v i t i e s ,

L i s t [ Precedence ] precedences , L i s t [ ReplyEntry ] r e p l y e n t r i e s ) :

202 s . behavior . bu i l dAct iv i t i e sGraph ( a c t i v i t i e s , precedences , s . c reateEntry ( ) )

−>

203 r e p l y e n t r i e s . add ( s . behavior . s tep . t ypeSe l e c t ( k lape r : : co re : : End) . f i r s t ( ) .

createReplyEntry ( ” r e p l y ” + s . name) ) ;

where on line 202 we truely visit the service Behavior graph and on line 203 we

set the replyEntry related to the current service (and therefore related to a specific

Entry that represents the current Service).

The ReplyEntries are linked to the concept of the KLAPER End step because

they represent the end of an activities flow, therefore it is the moment when a Service

can reply to its clients. The rules used to transform an End step into a ReplyActivity

are very simple

206 /∗∗
207 ∗ c r e a t e s an Lqn ReplyEntry ( f o r TaskActivityGraph )

208 ∗/

209 pr i va t e c r e a t e lqn : : ReplyEntry t h i s createReplyEntry ( k laper : : core : : End e , S t r ing

reply name ) :

210 t h i s . setName ( reply name ) −>
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211 t h i s . r e p l yAc t i v i t y . add ( e . c r ea t eRep lyAct iv i ty ( ) ) −>

212 t h i s ;

213

214

215 /∗∗
216 ∗ c r e a t e s an Lqn ReplyAct iv i ty ( f o r TaskActivityGraph )

217 ∗/

218 pr i va t e c r e a t e lqn : : ReplyAct iv i ty t h i s c r ea t eRep lyAct iv i ty ( k laper : : core : : End e ) :

219 t h i s . setName ( e . name) −>

220 t h i s ;

where we set the name of the activity (the End step) that replies to a specific Entry

(that means to a specific service request).

Until now we have transformed the statical part of KLAPER, the part that con-

cerns the infrastructure of the system modeled. Now we have to deal with KLAPER

Behaviors and therefore we have to deal with the dynamic (or behavioral) part of

KLAPER: Steps.

To start transforming a Behavior with its Steps we need to use the rule

223 /∗∗
224 ∗ bu i l d s an a c t i v i t y graph ( f o r behav ior s and r e s ou r c e s )

225 ∗/

226 pr i va t e bu i l dAct i v i t i e sGraph ( k lape r : : co re : : Behavior b , L i s t [ Act iv i tyDe f ] a c t i v i t i e s

, L i s t [ Precedence ] precedences , lqn : : Entry entry ) :

227 b . s tep . t ypeSe l e c t ( k lape r : : core : : S ta r t ) . t rans formStep ( a c t i v i t i e s ,

precedences , entry ) −>

228 nu l l ;

where we select as starting point of the transformation the first step of each Behavior,

the Start step.

The Start step transformation rule is quite simple, considering that the role of

this step is only to start a new graph of activities:

262 /∗∗
263 ∗ t rans forms a Star t s tep

264 ∗/

265 pr i va t e trans formStep ( k lape r : : co re : : S ta r t s t a r t , L i s t [ Act iv i tyDe f ] a c t i v i t i e s , L i s t

[ Precedence ] precedences , lqn : : Entry entry ) :

266 l e t a c t i v i t y = new lqn : : Act iv i tyDe f :

267 a c t i v i t y . setName ( s t a r t . name) −>

268 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

269 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

270 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

271 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

272 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

273 i f ( entry != nu l l ) then // entry can be nu l l f o r nested behav ior s

274 (

275 a c t i v i t y . setBoundToEntry ( entry . name)
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276 ) −>

277 a c t i v i t i e s . add ( a c t i v i t y ) −>

278 i f ( s t a r t . out . f i r s t ( ) . to . in . s i z e == 1) then

279 (

280 l e t precedence = new lqn : : Precedence :

281 precedence . se tPre ( s t a r t . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

282 precedence . s e tPost ( s t a r t . out . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) )

−>

283 precedences . add ( precedence )

284 ) −>

285 s t a r t . out . f i r s t ( ) . to . trans formStep ( a c t i v i t i e s , precedences , nu l l ) ;

where from line 243 to line 249 we create a new ActivityDef instance, that represents

the current step, and then we set all its attributes (note the hostDemandMean set to

0.0, that means that this step doesn’t consume any processing resource). Then if the

Start step belongs to a normal Behavior (if condition of line 250 equal to true) we

link its corresponding activity to the related LQN Entry, instead if the step belongs

to a nested behavior (if condition of line 250 equal to false) the linking is not done.

At this point the newly created activity is ready to be added to the activities list

of a TaskActivityGraph (see line 254). Before ending this transformation rule we

check the number of incoming Transitions of the Step that comes after the Start

step (see line 255), if it is equal to 1 (and this is always true because Start steps are

always the single starting point of a KLAPER Behavior) we have to create a new

Precedence (see line 257); this Precedence is composed by a single activity as pre-

element (the activity we just created transforming from the Start step, see line 258)

and by a single activity as post-element (the activity created by the transformation

of the Step on the opposite side of the Transition starting from Start, see line 259).

To close a KLAPER Behavior started with a Start step we need a transformation

rule for its counterpart, the End step

265 /∗∗
266 ∗ t rans forms an End step

267 ∗/

268 pr i va t e trans formStep ( k lape r : : co re : : End end , L i s t [ Act iv i tyDe f ] a c t i v i t i e s , L i s t [

Precedence ] precedences , lqn : : Entry entry ) :

269 i f ( ! ( a c t i v i t i e s . e x i s t s ( a | a . name == end . name) ) ) then // the step i s

transformed only once

270 (

271 l e t a c t i v i t y = new lqn : : Act iv i tyDe f :

272 i f ( end . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

273 (

274 l e t precedence = new lqn : : Precedence :

275 precedence . setPreOR ( end . c r e a t eAc t i v i t yL i s t I n ( ) ) −>
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276 precedence . s e tPost ( end . in . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

277 precedences . add ( precedence )

278 ) −>

279 a c t i v i t y . setName ( end . name) −>

280 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

281 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

282 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

283 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

284 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

285 a c t i v i t i e s . add ( a c t i v i t y )

286 ) ;

on line 269 we check if the step has been already transformed (this shouldn’t never

happen for the End step, but it is better to check because we could have an erro-

neous input model). If the step has never been transformed we can create a new

ActivityDef instance (see line 271) and set all its attributes (from line 279 to line

285 and note once again that the hostDemandMean attribute is set to 0 because also

this step doesn’t consume any processing resource), but before doing that we have to

check how many ingoing Transitions we have into the End step (see line 272). If the

End step has only 1 ingoing Transition then the needed LQN Precedence has been

already instantiated by the previous Step and the End step must not do anything; if

instead the number of ingoing Transition is greater than one then we have to model

a KLAPER merge of branches (coming from a Branch step) that is transformed into

an LQN OR-Join precedence with ActivityList as pre-element (see line 275) and a

single activity (the one transformed by the End step) as post-element (see line 276).

Another KLAPER base Step is the Wait step whose aim is to wait for some

particular event; its rule is

290 /∗∗
291 ∗ t rans forms a Wait s tep

292 ∗/

293 pr i va t e trans formStep ( k lape r : : co re : : Wait wait , L i s t [ Act iv i tyDe f ] a c t i v i t i e s , L i s t [

Precedence ] precedences , lqn : : Entry entry ) :

294 i f ( ! ( a c t i v i t i e s . e x i s t s ( a | a . name == wait . name) ) ) then // the step i s

transformed only once

295 (

296 l e t a c t i v i t y = new lqn : : Act iv i tyDe f :

297 i f ( wait . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

298 (

299 l e t i n p r e c edence = new lqn : : Precedence :

300 i n p r e c edence . setPreOR ( wait . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

301 i n p r e c edence . s e tPost ( wait . in . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

302 precedences . add ( in pr e c edence )
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303 ) −>

304 a c t i v i t y . setName ( wait . name) −>

305 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

306 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

307 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

308 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

309 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

310 a c t i v i t i e s . add ( a c t i v i t y ) −>

311 i f ( wait . out . f i r s t ( ) . to . in . s i z e == 1) then

312 (

313 l e t out precedence = new lqn : : Precedence :

314 out precedence . se tPre ( wait . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

315 out precedence . s e tPost ( wait . out . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

316 precedences . add ( out precedence )

317 ) −>

318 wait . out . f i r s t ( ) . to . trans formStep ( a c t i v i t i e s , precedences , nu l l )

319 ) ;

as already seen with the End step, the first thing to do (see line 294) is to check if the

step has already been transformed. After that from line 297 to line 303 we set the

possible OR-Join condition (see the End step for an explanation). Then from line

304 to line 310 we set all the ActivityDef attributes (again the hostDemandMean

attribute is set to 0 because this is only a control step that doesn’t require any

processing resource). To complete the transformation from line 311 to line 317 we

set the standard simple Precedence in the case the next step has only one incoming

Transition, otherwise it will be responsibility of the next Step to allocate the right

Precedence.

The KLAPER Branch step transformation rule is not so different from those

seen until now

321 /∗∗
322 ∗ t rans forms a Branch step

323 ∗/

324 pr i va t e trans formStep ( k lape r : : co re : : Branch branch , L i s t [ Act iv i tyDe f ] a c t i v i t i e s ,

L i s t [ Precedence ] precedences , lqn : : Entry entry ) :

325 i f ( ! ( a c t i v i t i e s . e x i s t s ( a | a . name == branch . name) ) ) then // the step i s

transformed only once

326 (

327 l e t a c t i v i t y = new lqn : : Act iv i tyDe f :

328 l e t out precedence = new lqn : : Precedence :

329 i f ( branch . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

330 (

331 l e t i n p r e c edence = new lqn : : Precedence :

332 i n p r e c edence . setPreOR ( branch . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

333 i n p r e c edence . s e tPost ( branch . in . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>
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334 precedences . add ( in pr e c edence )

335 ) −>

336 a c t i v i t y . setName ( branch . name) −>

337 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

338 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

339 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

340 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

341 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

342 a c t i v i t i e s . add ( a c t i v i t y ) −>

343 out precedence . se tPre ( branch . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

344 out precedence . setPostOR ( branch . c r ea t eOrL i s t ( ) ) −>

345 precedences . add ( out precedence ) −>

346 branch . out . to . trans formStep ( a c t i v i t i e s , precedences , nu l l )

347 ) ;

at line 325 we check if the Step has been already transformed. Then from line 329

to line 335 we check the OR-Join condition and from line 336 to line 342 we set

all ActivityDef attributes (one more time see the hostDemandMean attribute set

to 0). The differences from the other transformation rule seen so far is that this

time a new kind of precedence is created: the pre-element (see line 343) is a single

activity list (already used for other Steps), but the post-element (see line 344) is an

ORList element that expresses each outgoing transition with a particular type of

LQN activity called ActivityOR characterized by a prob attribute that defines the

probability of a specific branch.

The transformation rule used for the KLAPER Fork step is very similar to that

just seen for the Branch step (and this is easy to understand if we consider that

the two Steps are very similar, the only difference is that the Branch step describes

alternative flows while the Fork step describes parallel flows); the transformation

rule is

550 /∗∗
551 ∗ t rans forms a Fork step

552 ∗/

553 pr i va t e trans formStep ( k lape r : : co re : : Fork fork , L i s t [ Act iv i tyDe f ] a c t i v i t i e s , L i s t [

Precedence ] precedences , lqn : : Entry entry ) :

554 i f ( ! ( a c t i v i t i e s . e x i s t s ( e | e . name == fo rk . name) ) ) then // the step i s

transformed only once

555 (

556 l e t a c t i v i t y = new lqn : : Act iv i tyDe f :

557 l e t out precedence = new lqn : : Precedence :

558 i f ( f o rk . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

559 (

560 l e t i n p r e c edence = new lqn : : Precedence :

561 i n p r e c edence . setPreOR ( fo rk . c r e a t eAc t i v i t yL i s t I n ( ) ) −>
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562 i n p r e c edence . s e tPost ( f o rk . in . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

563 precedences . add ( in pr e c edence )

564 ) −>

565 a c t i v i t y . setName ( f o rk . name) −>

566 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

567 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

568 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

569 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

570 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

571 a c t i v i t i e s . add ( a c t i v i t y ) −>

572 out precedence . se tPre ( f o rk . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

573 out precedence . setPostAND( fo rk . c r ea t eAc t i v i t yL i s tOut ( ) ) −>

574 precedences . add ( out precedence ) −>

575 f o rk . out . to . trans formStep ( a c t i v i t i e s , precedences , nu l l )

576 ) ;

where we have all the elements already seen: the check if the Step has been already

transformed (line 554), the OR-Join condition for a number of incoming Transitions

greater than 1(from line 558 to line 564), the ActivityDef attributes configuration

(from line 565 to line 571) and finally the outgoing precedence, but here we have a

specific behavior for the Fork step.

For each Fork step we need a corresponding Join step. The transformation rule

for the KLAPER Join step is

579 /∗∗
580 ∗ t rans forms a Join step

581 ∗/

582 pr i va t e trans formStep ( k lape r : : co re : : Jo in jo in , L i s t [ Act iv i tyDe f ] a c t i v i t i e s , L i s t [

Precedence ] precedences , lqn : : Entry entry ) :

583 i f ( ! ( a c t i v i t i e s . e x i s t s ( e | e . name == j o i n . name) ) ) then // the step i s

transformed only once

584 (

585 l e t a c t i v i t y = new lqn : : Act iv i tyDe f :

586 l e t i n p r e c edence = new lqn : : Precedence :

587 i n p r e c edence . setPreAND( j o i n . c reateAndJo inLi s t ( ) ) −>

588 i n p r e c edence . s e tPost ( j o i n . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

589 precedences . add ( in pr e c edence ) −>

590 a c t i v i t y . setName ( j o i n . name) −>

591 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

592 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

593 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

594 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

595 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

596 a c t i v i t i e s . add ( a c t i v i t y ) −>

597 i f ( j o i n . out . f i r s t ( ) . to . in . s i z e == 1) then

598 (

599 l e t out precedence = new lqn : : Precedence :

600 out precedence . se tPre ( j o i n . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>
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601 out precedence . s e tPost ( j o i n . out . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

602 precedences . add ( out precedence )

603 ) −>

604 j o i n . out . f i r s t ( ) . to . trans formStep ( a c t i v i t i e s , precedences , nu l l )

605 ) ;

where at line 583 we have the usual if condition to check if the step has been already

transformed to avoid loops. Then this time we have no condition on the number

of incoming Transitions because the role of the Join step is exactly that of merging

parallel execution flows; to do this we need a new type of precedence composed

by an LQN AndJoinList (that is a list of incoming activities with the specification

of the number of completed activities needed before going to the next activity) as

pre-element (see line 587) and a simple single LQN activity as post-element (see

line 588). Once this Precedence is properly instantiated, as usual we can set all

ActivityDef attributes (hostDemandMean always set to 0, see lines from 590 to 596)

and instantiate the final simple Precedence if the next step has only one incoming

Transition (see lines from 597 to 603).

Until now we have seen all the transformation rules used for KLAPER control

steps. Since they are all control steps, they are all characterized by a value for

the hostDemandMean attribute equal to 0; this is done because control steps are

only used to manage the execution flow of KLAPER activities and therefore don’t

waste any processing resource, that is they do not consume time. But a performance

evaluation model need a way to express the time consumed by actions accomplished

by the system; in KLAPER this idea is expressed using Activities and ServiciControl

and now we will see how these meta classes can be transformed into LQN concepts.

KLAPER Activities are used to represent three different concepts: simple activ-

ities, loops and nested behaviors. The transformation rule used to map a KLAPER

Activity into some LQN concepts directly reflects this multiple meaning

349 /∗∗
350 ∗ t rans forms an Act iv i ty s tep

351 ∗/

352 pr i va t e trans formStep ( k lape r : : co re : : Ac t i v i t y a c t i v i t y , L i s t [ Act iv i tyDe f ] a c t i v i t i e s

, L i s t [ Precedence ] precedences , lqn : : Entry entry ) :

353 i f ( ! ( a c t i v i t i e s . e x i s t s ( e | e . name == a c t i v i t y . name) ) ) then // the step i s

transformed only once

354 (

355 l e t act = new lqn : : Act iv i tyDe f :

356 l e t loop = new lqn : : Act iv i tyDe f :

357 l e t loop name = a c t i v i t y . name + ” loop ” :
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358 l e t i s l o o p = ( a c t i v i t y . r e p e t i t i o n s == nu l l ) ? ( f a l s e ) : ( ! (

a c t i v i t y . r e p e t i t i o n s . getMean ( ) == 1 . 0 ) ) :

359

360 i f ( a c t i v i t y . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

361 (

362 l e t i n p r e c edence = new lqn : : Precedence :

363 i n p r e c edence . setPreOR ( a c t i v i t y . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

364 // f o r a s i n g l e a c t i v i t y

365 i n p r e c edence . s e tPost ( a c t i v i t y . in . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

366 precedences . add ( in pr e c edence )

367 ) −>

368

369 i f ( i s l o o p | | ( a c t i v i t y . nestedBehavior != nu l l ) ) then // loop

cond i t i on

370 (

371 l e t loop = new lqn : : Act iv i tyDe f :

372 l e t l oop precedence = new lqn : : Precedence :

373 l e t l o o p l i s t = new lqn : : Act iv i tyLoopLi s t :

374

375 loop . setName ( a c t i v i t y . name) −>

376 loop . setHostDemandMean ( 0 . 0 ) −>

377 loop . setHostDemandCvsq ( 1 . 0 ) −>

378 loop . setThinkTime ( 0 . 0 ) −>

379 loop . setMaxServiceTime ( 0 . 0 ) −>

380 loop . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

381 a c t i v i t i e s . add ( loop ) −>

382

383 l oop precedence . se tPre ( ( new lqn : : S i n g l eAc t i v i t yL i s t ) .

s e tAc t i v i t y ( ( new lqn : : Ac t i v i t y ) . setName ( a c t i v i t y . name) )

) −>

384 l o o p l i s t . setEnd ( a c t i v i t y . out . f i r s t ( ) . to . name) −>

385 i f ( a c t i v i t y . nestedBehavior == nu l l ) then // s imple a c t i v i t y

386 (

387 l e t l o o p s i n g l e a c t i v i t y = new lqn : : Act iv i tyDe f :

388 l e t a c t i v i t y l o o p = new lqn : : Act iv ityLoop :

389

390 l o o p s i n g l e a c t i v i t y . setName ( a c t i v i t y . name + ”

loop i t em ” ) −>

391 l o o p s i n g l e a c t i v i t y . setHostDemandMean ( a c t i v i t y .

internalExecTime . getMean ( ) ) −>

392 l o o p s i n g l e a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

393 l o o p s i n g l e a c t i v i t y . setThinkTime ( 0 . 0 ) −>

394 l o o p s i n g l e a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

395 l o o p s i n g l e a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : :

STOCHASTIC) −>

396 a c t i v i t i e s . add ( l o o p s i n g l e a c t i v i t y ) −>

397 a c t i v i t y l o o p . setName ( a c t i v i t y . name + ” loop i t em ” )

−>

398 a c t i v i t y l o o p . setCount ( a c t i v i t y . r e p e t i t i o n s . getMean

( ) ) −>
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399 l o o p l i s t . a c t i v i t y . add ( a c t i v i t y l o o p )

400 ) −>

401

402 i f ( a c t i v i t y . nestedBehavior != nu l l ) then // nested behavior

403 (

404 l e t a c t i v i t y l o o p = new lqn : : Act iv ityLoop :

405

406 bu i ldAct i v i t i e sGraph ( a c t i v i t y . nestedBehavior ,

a c t i v i t i e s , precedences , nu l l ) −>

407 a c t i v i t y l o o p . setName ( a c t i v i t y . nestedBehavior . s t ep .

t ypeSe l e c t ( k lape r : : core : : S ta r t ) . f i r s t ( ) . name)

−>

408 ( a c t i v i t y . r e p e t i t i o n s != nu l l ) ? a c t i v i t y l o o p .

setCount ( a c t i v i t y . r e p e t i t i o n s . getMean ( ) ) :

a c t i v i t y l o o p . setCount ( 1 . 0 ) −>

409 l o o p l i s t . a c t i v i t y . add ( a c t i v i t y l o o p )

410 ) −>

411 l oop precedence . setPostLOOP( l o o p l i s t ) −>

412 precedences . add ( l oop precedence )

413 )

414 e l s e // s i n g l e a c t i v i t y

415 (

416 i f ( a c t i v i t y . nestedBehavior == nu l l ) then // s imple a c t i v i t y

417 (

418 act . setName ( a c t i v i t y . name) −>

419 act . setHostDemandMean ( a c t i v i t y . internalExecTime .

getMean ( ) ) −>

420 act . setHostDemandCvsq ( 1 . 0 ) −>

421 act . setThinkTime ( 0 . 0 ) −>

422 act . setMaxServiceTime ( 0 . 0 ) −>

423 act . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

424 a c t i v i t i e s . add ( act )

425 )

426 ) −>

427

428 // f o r a s i n g l e a c t i v i t y

429 i f ( a c t i v i t y . out . f i r s t ( ) . to . in . s i z e == 1) then

430 (

431 l e t out precedence = new lqn : : Precedence :

432 out precedence . se tPre ( a c t i v i t y . c r e a t e S i n g l eA c t i v i t yL i s t ( ) )

−>

433 out precedence . s e tPost ( a c t i v i t y . out . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

434 precedences . add ( out precedence )

435 ) −>

436

437 a c t i v i t y . out . f i r s t ( ) . to . t rans formStep ( a c t i v i t i e s , precedences , nu l l

)

438 ) ;

we start with a preparatory phase where at line 353 we find the usual if condition
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used to check if a Step has already been transformed needed to avoid loops, at

line 358 we check if we are transforming a loop (a mean number of repetitions

greater than 1.0 represents a loop condition) and finally from line 260 to line 367 we

manage the usual OR-Join condition. From line 369 to line 413 we handle loop and

nested behavior conditions. More precisely from line 371 to line 381 we instantiate

a new LQN ActivityDef element that is only a dummy activity used to delimit

the loop or the nested behavior (the name use for the activity is related to loops,

but it is only a name and this strategy can work both for loops and for nested

behaviors); once the dummy loop activity has been created we have to link it to

other activities of the same Task and to do this we create a new Precedence specific

for loops characterized by a simple activity as pre-element (see line 383), a list of

parallel activities to execute for the loop (see line 411) and a simple activity as the

activity to execute at the end of the loop (see line 411). When the specific loop

Precedence has been instantiated we have a distinction into the way to transform

simple loops and the way to transform nested behaviors. Simple loops (considered

as loops composed by a single activity) are transformed from line 385 to line 400

where we create a new ActivityDef instance and we set all its attributes, including

the hostDemandMean attribute that this time is set to a value computed from the

internalExecTume of the source KLAPER step because KL; we have to note that

before completing the section of simple loops from line 397 to line 399 we have to

add a reference into the list of activities done by the current loop and expressed by

the loop Precedence of lines 383, 384, 411 and 412 and at line 398 we have to set

the mean number of times the loop is iterated. If we haven’t a loop a single simple

activity but we have to transform a nested behavior we can simply recursively call

the buildActivitiesGraph() function (line 406) we already discussed for KLAPER

Behaviors; when the nested behavior is completely transformed we have to set the

mean number of iterations of the loop (see line 408) and link all the created elements

to the loop Precedence as already seen for simple loops. One thing is very important

to note, LQN loops can specify a number of activities that can be iterated at the

same time; KLAPER doesn’t have this feature, it is only capable of expressing loops

composed by one step or by a graph of steps, but these steps are executed in sequence

and not in parallel at least that you don’t use a Fork step into the graph; therefore

into KLAPER to LQN transformations we use LQN loops not at their full power,

but it is only because we don’t need that. Now come back to the KLAPER Activity
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step transformation with the simplest case, that of a simple single activity; this time

the transformation is very simple (see lines from 415 to 426) because we only need

to set the ActivityDef attributes taking care to set the hostDemandMean attribute

to the mean value of the internalExecutionTime of the related KLAPER Activity

step. Before closing this transformation rule from line 429 to line 435 we instantiate

the final single Precedence needed if the next Step has only one incoming Transition

as already done for other KLAPER Steps transformation rules.

As discussed in section 9.1 the KLAPER Activity meta class has a very important

extension named ServiceControl that is used for service calls and for sendig signals;

its transformation rule is

441 /∗∗
442 ∗ t rans forms a Se rv i c eCont ro l s tep

443 ∗/

444 pr i va t e trans formStep ( k lape r : : co re : : S e rv i c eCont ro l s e r v i c e , L i s t [ Act iv i tyDe f ]

a c t i v i t i e s , L i s t [ Precedence ] precedences , lqn : : Entry entry ) :

445 i f ( ! ( a c t i v i t i e s . e x i s t s ( e | e . name == s e r v i c e . name) ) ) then // the step i s

transformed only once

446 (

447 l e t act = new lqn : : Act iv i tyDe f :

448 l e t loop = new lqn : : Act iv i tyDe f :

449 l e t loop name = s e r v i c e . name + ” loop ” :

450 l e t i s l o o p = ( s e r v i c e . r e p e t i t i o n s == nu l l ) ? ( f a l s e ) : ( ! ( s e r v i c e .

r e p e t i t i o n s . getMean ( ) == 1 . 0 ) ) :

451

452 i f ( s e r v i c e . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

453 (

454 l e t i n p r e c edence = new lqn : : Precedence :

455 i n p r e c edence . setPreOR ( s e r v i c e . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

456 // f o r a s i n g l e a c t i v i t y

457 i n p r e c edence . s e tPost ( s e r v i c e . in . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

458 precedences . add ( in pr e c edence )

459 ) −>

460

461 i f ( i s l o o p | | ( s e r v i c e . nestedBehavior != nu l l ) ) then // loop

cond i t i on

462 (

463 l e t loop = new lqn : : Act iv i tyDe f :

464 l e t l oop precedence = new lqn : : Precedence :

465 l e t l o o p l i s t = new lqn : : Act iv i tyLoopLi s t :

466

467 loop . setName ( s e r v i c e . name) −>

468 loop . setHostDemandMean ( 0 . 0 ) −>

469 loop . setHostDemandCvsq ( 1 . 0 ) −>

470 loop . setThinkTime ( 0 . 0 ) −>

471 loop . setMaxServiceTime ( 0 . 0 ) −>
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472 loop . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

473 a c t i v i t i e s . add ( loop ) −>

474

475 l oop precedence . se tPre ( ( new lqn : : S i n g l eAc t i v i t yL i s t ) .

s e tAc t i v i t y ( ( new lqn : : Ac t i v i t y ) . setName ( s e r v i c e . name) ) )

−>

476 l o o p l i s t . setEnd ( s e r v i c e . out . f i r s t ( ) . to . name) −>

477 i f ( s e r v i c e . nestedBehavior == nu l l ) then // s imple a c t i v i t y

478 (

479 l e t l o o p s i n g l e a c t i v i t y = new lqn : : Act iv i tyDe f :

480 l e t a c t i v i t y l o o p = new lqn : : Act iv ityLoop :

481

482 l o o p s i n g l e a c t i v i t y . setName ( s e r v i c e . name + ”

loop i t em ” ) −>

483 l o o p s i n g l e a c t i v i t y . setHostDemandMean ( s e r v i c e .

internalExecTime . getMean ( ) ) −>

484 l o o p s i n g l e a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

485 l o o p s i n g l e a c t i v i t y . setThinkTime ( 0 . 0 ) −>

486 l o o p s i n g l e a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

487 l o o p s i n g l e a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : :

STOCHASTIC) −>

488 a c t i v i t i e s . add ( l o o p s i n g l e a c t i v i t y ) −>

489 a c t i v i t y l o o p . setName ( s e r v i c e . name + ” loop i t em ” )

−>

490 a c t i v i t y l o o p . setCount ( s e r v i c e . r e p e t i t i o n s . getMean

( ) ) −>

491 l o o p l i s t . a c t i v i t y . add ( a c t i v i t y l o o p )

492 ) −>

493

494 i f ( s e r v i c e . nestedBehavior != nu l l ) then

495 (

496 l e t a c t i v i t y l o o p = new lqn : : Act iv ityLoop :

497

498 bu i ldAct i v i t i e sGraph ( s e r v i c e . nestedBehavior ,

a c t i v i t i e s , precedences , nu l l ) −>

499 a c t i v i t y l o o p . setName ( s e r v i c e . nestedBehavior . s tep .

t ypeSe l e c t ( k lape r : : core : : S ta r t ) . f i r s t ( ) . name)

−>

500 ( s e r v i c e . r e p e t i t i o n s != nu l l ) ? a c t i v i t y l o o p .

setCount ( s e r v i c e . r e p e t i t i o n s . getMean ( ) ) :

a c t i v i t y l o o p . setCount ( 1 . 0 ) −>

501 l o o p l i s t . a c t i v i t y . add ( a c t i v i t y l o o p )

502 ) −>

503 l oop precedence . setPostLOOP( l o o p l i s t ) −>

504 precedences . add ( l oop precedence )

505 )

506 e l s e // s i n g l e a c t i v i t y

507 (

508 i f ( s e r v i c e . nestedBehavior == nu l l ) then // s imple a c t i v i t y

509 (

510 l e t c a l l = new lqn : : Act iv i tyMakingCal l :

154



9.3 – KLAPER to LQN transformation, implementation

511

512 // a c t i v i t y a t t r i b u t e s

513 act . setName ( s e r v i c e . name) −>

514 act . setHostDemandMean ( s e r v i c e . internalExecTime .

getMean ( ) ) −>

515 act . setHostDemandCvsq ( 1 . 0 ) −>

516 act . setThinkTime ( 0 . 0 ) −>

517 act . setMaxServiceTime ( 0 . 0 ) −>

518 act . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

519 // s e r v i c e c on t r o l a t t r i b u t e s

520 c a l l . setFanin (1 ) −>

521 c a l l . setFanout (1 ) −>

522 ( s e r v i c e . b inding . c a l l != nu l l ) ?

523 c a l l . s e tDest ( s e r v i c e . b inding . c a l l . name) :

c a l l . s e tDest ( s e r v i c e . b inding . s i g n a l .

name) −>

524 c a l l . setCal lsMean ( 1 . 0 ) −>

525 ( s e r v i c e . i sSynch ) ?

526 (

527 act . synchCal l . add ( c a l l )

528 )

529 :

530 (

531 act . asynchCal l . add ( c a l l )

532 ) −>

533 a c t i v i t i e s . add ( act )

534 )

535 ) −>

536

537 // f o r a s i n g l e a c t i v i t y

538 i f ( s e r v i c e . out . f i r s t ( ) . to . in . s i z e == 1) then

539 (

540 l e t out precedence = new lqn : : Precedence :

541 out precedence . se tPre ( s e r v i c e . c r e a t e S i n g l eA c t i v i t yL i s t ( ) )

−>

542 out precedence . s e tPost ( s e r v i c e . out . f i r s t ( ) . to .

c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

543 precedences . add ( out precedence )

544 ) −>

545

546 s e r v i c e . out . f i r s t ( ) . to . trans formStep ( a c t i v i t i e s , precedences , nu l l )

547 ) ;

this transformation rule is identical to that of the Activity meta class but with a

difference in the case of the mapping of a single simple activity (in other words

when we have no loops and no nested behaviors). Examining lines from 507 to 535

we can see that from line 513 to line 518 we simply set all the LQN ActivityDef

meta class attributes, then we start setting all the necessary stuff required by a

request of a service from another resource or by a signal raising. At lines 520 and
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521 we set the fanin and the fanout of the LQN activity call; they are both set to

1 because into the KLAPER to LQN transformation we always map a one to one

relationship between clients and servers, while LQN is capable with the multiplicity

and the replication concepts to map also other kind of relationships. At lines 522

and 523 we set the name of the called LQN Entry (or Service if we use the KLAPER

nomenclature) if we are modeling a service call, otherwise we set the name of the

LQN activity modeling the KLAPER Wait step. Then from line 525 to line 532

we add the ActivityMakingCall instance that represents the call to the right list

depending on the synchronous or asynchronous nature of the call. We skipped line

524 because the trasnformation is not yet able to set the mean time an LQN call

is done; this information should be computed considering the KLAPER actual and

formal parameters concepts, but actually we have to complete KLAPER parameters

transformation; therefore we simply set the mean number of a call to 1 but this value

has to be changed by hand after the final lqns input file is produced.

With the ServiceControl step we have transformed all the KLAPER meta model

elements, but we still have to do the second phase of the transformation: the pro-

cessors reconfiguration. Until now we have allocated all the LQN Tasks into a single

dummy processor (except for workloads that have their own processors), but we

have to solve this situation creating the rigth Processors and allocating each Tesk

on its own Processor. To do this first of all we create the needed Processor with the

following transformation rule

669 /∗∗
670 ∗ c r e a t e s the r e a l p r o c e s s o r s and r e c on f i g u r e ta sk s from the dummy proc e s s o r

671 ∗/

672 pr i va t e lqn : : LqnModel r e c on f i g u r eP r o c e s s o r s ( lqn : : LqnModel temp model , k l ape r : : co re

: : KlaperModel m) :

673 // //−−−− r i g h t now hardware r e s ou r c e s names are hardcoded but they should be

de f ined by the user ! ! ! TODO

674 temp model . p r o c e s s o r . addAll (m. r e s ou r c e . s e l e c t ( e | { ’ cpu ’ , ’ network ’ , ’ d i sk ’ } .

c onta in s ( e . type ) ) . t rans fo rmProces so r ( ) ) −>

675

676 // removes the dummy proc e s s o r

677 temp model . s e tP ro c e s s o r ( temp model . p r o c e s s o r . w i thoutF i r s t ( ) ) −>

678 temp model ;

where at line 674 we select all the KLAPER resources named “cpu”, “network”

or “disk” (that is all are hardware resources), these resources are the transformed

into LQN Processors using the transformProcessor() function; currently the name

of hardware resources has to match one of the three hardcoded possibilities (“cpu”,

156



9.3 – KLAPER to LQN transformation, implementation

“network” and “disk”) but the selection should be up to the tool user, may be using

a form to specify the names of hardware resources for the provided input model;

the problem is that KLAPER doesn’t make any difference between hardware and

software resources but LQN does and therefore we have two possibilities: to hardcode

the name of the hardware resources (this is how thing work now, but the modeler has

to respect the chosen convention) or to leave to the modeler the capacity to specify

which are the hardware resources (but this approach requires a support from the tool

user during the transformation). After creating the right Processors at line 677 we

can remove from the model the dummy Processor using the function withoutFirst()

that applied to a list returns the same list but without the first element.

After all the needed Processors have been created we can relocate Tasks according

to the real deployment of the system using the transformation rule

681 /∗∗
682 ∗ c r e a t e s an lqn p ro c e s s o r from an hardware k laper r e s ou r c e

683 ∗/

684 pr i va t e c r e a t e lqn : : Proce s so r t h i s t rans fo rmProces so r ( k lape r : : core : : Resource r ) :

685 t h i s . setName ( r . name) −>

686 t h i s . s e tMu l t i p l i c i t y (1 ) −>

687 // t h i s . setSpeedFactor ( 0 . 0 ) −>

688 t h i s . s e tRep l i c a t i o n (1 ) −>

689 // t h i s . setQuantum ( 0 . 1 ) −>

690 ( r . s chedu l i ngPo l i cy != nu l l ) ? t h i s . s e tSchedu l ing ( r . s chedu l i ngPo l i cy .

t rans formSchedul ing ( ) ) : nu l l −>

691 // t h i s . s e tSchedu l ing ( lqn : : SchedulingType : : ps ) −>

692 t h i s . setQuantum (0 . 1 ∗ 0 .1 ∗ 0 .1 ∗ 0 .1 ∗ 0 . 1 ) −> // only because 0 .00001

g ive a parse e r r o r ! but why???

693

694 // adds the main task running on t h i s p ro c e s s o r ( the task that r ep r e s en t s

hardware s e r v i c e s )

695 t h i s . task . add ( r . transformTask ( ) ) −> // i t uses caching ! ! ! !

696

697 // l ooks f o r a l l the ta sk s that use the prev ious one

698 t h i s . task . addAll (

699 ( ( k lape r : : core : : KlaperModel ) ( r . eContainer ) ) . r e s ou r c e . s e l e c t ( e | e

!= r ) . s e l e c t ( e | e . o f f e r e d S e r v i c e . behavior . s tep . t ypeSe l e c t (

k lape r : : core : : S e rv i c eCont ro l ) . b inding . c a l l . name . i n t e r s e c t ( r .

transformTask ( ) . entry . name) . s i z e > 0) . transformTask ( )

700 ) −>

701 t h i s ;

where the truly interesting operations happen at the last two lines. At line 695

we add to the current Processor the Task that represents its effective processing

power; to understand that we have to consider that in KLAPER each Resource

representing an hardware resource has always at least a single Service that represents
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the specific action done by that hardware element, for example cpus always have a

“process” Service, networks always have a “transmit” Service and disks always have

a “readWriteAccess” Service2. After that with the code of line 699 we select all

the Tasks containing calls to the Task of line 695 and we put them into the current

Processor because if they use the Task that represents the processing action of a

Processor they have to be run on this Processor. To note that all the Tasks created at

line 695 and line 699 are not truly instantiated, because the were previously created

and thanks to the caching system of Xtend the underlying engine understand that

a specific Task has been already created and simply returns a reference to this Task

rather than creating a new one, so also performances of the final tool are guaranteed.

9.4 Using the LQN meta model

Now that we know how to transform a KLAPER model into an LQN model we can

run our transformations as needed, but to make them useful we still need a way

to transform from the LQN meta model to the input file used by lqns (the LQN

analytical solver). The model to text transformation from LQN to the input format

used by lqns is not discussed here simply because it is very simple considering that

the LQN meta model has been built starting from the xsd schema used by lqns itself,

therefore transforming from an LQN model into the xml file format used by lqns in

most cases is a one to one transformation that simply adds some xml tags. However

you can find more details about the M2T transformation for LQN inspecting the

code at [47] into the svn browsing section.

When we have an xml input file representing the model to be solved, we can give

this input to the lqns solver that modifies the input file adding the computed results

for each entity (or better for each LQN Activity). The results are utilization and

throughput and are computed for Activities, Tasks, Entries and Processors and are

very useful to understand the behavior of the system and to find bottlenecks of the

input model.

2This is not strictly dependent from the KLAPER meta model but rather it is a kind of con-
vention to make things easily working
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Chapter 10

A case study

In previous chapters we saw why and how KLAPER can be used to evaluate software

quality indexes.

In this chapter we will see KLAPER in action. We will see, from the point

of view of the final user, how we can practically use some tools developed around

KLAPER to analyze and modify a software design of an example system.

10.1 Tool integration

KLAPER provides a number of tools that implement all the concepts seen in pre-

vious chapters. In particular KLAPER provides some Eclipse plugins that extend

the functionalities of this powerful tool.

All the plugins are completely integrated into the Eclipse environment and the

user doesn’t need any knowledge of concepts like model driven, the KLAPER meta

model or the technologies used to implement these plugins (openArchitectureWare

for example) because everything is hidden behind a simple graphical user interface

like the one shown in figure 10.1. All that is required is the knowledge needed to

write a KLAPER model (but this is only needed because we haven’t yet a working

transformation from input models like UML to KLAPER, this is planned for the

future) and the knowledge needed to understand the output of the different external

tools (e.g. lqns or SHARPE) used for software quality analysis.

Available KLAPER tools are:

• KLAPER dsl Project Wizard: it is a complete wizard that helps the user in
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Figure 10.1. Integration of KLAPER into Eclipse and the related user interface

the creation of a KLAPER Project. It resolves all the plugin dependencies

and create the initial files needed to successfully analyze the input model.

• KLAPER dsl Editor: it is a text editor for KLAPER models complete of

syntax highlight and error checking at runtime (that means possible errors are

detected and displayed while you are writing). See figure 10.2 for a sample

screenshot.

• KLAPER to LQN transformation tool: you can launch a transformation from

KLAPER to LQN simply right clicking on a KLAPER model (a file with a

.klp extension), then from the context menu you have a practical KLAPER

sub menu where you can choose the LQN transformation. As a result of this
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simple action you obtain the LQN representation of your model ready to be

used by the lqns solver.

• KLAPER to SimJava transformation tool: right clicking on a KLAPER model

file you can choose the transformation to SimJava. As a result of this operation

you obtain a java package containing all the source files needed to build the

simulator; the only thing you have to do is to build the application and run

the Subsystem java class (it can be directly run from inside Eclipse itself).

• KLAPER to DTMC transformation tool: like the other transformation tools

you can launch a transformation simply right clicking on a KLAPER model

file and choosing “Generate DTMC Code” from the KLAPER sub-menu of

the obtained context menu. In addition from the context menu you have also

a SHARPE sub-menu that runs the SHARPE tool for you and post process

the obtained output results to make them more human readable.

All these tools can be easily used without any knowledge of model driven ap-

proaches; they may be used with just a little knowledge of KLAPER, but nothing

is required about model transformations and the knowledge of the target analysis

methodologies (even if it would be preferable).

Now that we have the tools, we need a practical example to see them working.

10.2 Description

As an example to see the KLAPER tools at work we choose a very simple and

basic scenario derived from one of the case studies presented in [49]. Considering

the simplicity of the example there would be no need to use any analysis tool to

understand which are the design mistakes of the input software system, but we chose

such a scenario exactly because it is so simple that results cannot be doubted.

As test-bed scenario we consider a simple client/server system with many clients

connecting to a single server to have some kind of service. This server is simply

an application server that makes some computations on the data provided by a

backend database where all the needed information are stored. That is, this is a

typical three-tier client/server system.
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Figure 10.2. The KLAPER dsl Editor

We will analyze the overall system from the point of view of client applications;

therefore our observation point will be the same of a web browser application, for

example, and our first access point into the system will be the network that connects

clients with the application server.

In our analysis we will use the following reliability and performance data as input

to our computation:

• all cpus are pentium III with 500 Mhz (1354 MIPS) and a failure probability

of 0.01%.

• client-server network is a 100 Mbps network with a failure probability of 0.7%.

• server-database network is a network based on a very old switch with 100

Mbps ports but a failure probability of 10%.
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• the database disk is a typical IDE disk with a rate of 300 MBps and a failure

probability of 2%.

• the system workload can be modeled by an open workload with an arrival rate

of 0.87 requests per second.

and our software quality (non functional) requirements are:

• reliability of all the components (intended as the hardware and software build-

ing blocks) of the system must be greater than 90.0%.

• the service time (considered as the time needed to satisfy a request plus the

time spent into the waiting queue of the resource providing the needed service)

seen by clients must be less than 5 seconds.

10.2.1 The real input: UML

Even if actually KLAPER is not capable to handle an input different from its own

domain specific language (presented in appendix A), we want to show what should

be the real input of our analysis. For example we can express the system in terms

of UML diagrams. To do this, for our specific example scenario we need at least two

types of diagrams: deployment diagram and sequence diagram.

With the deployment diagram shown in figure 10.3 we can understand the de-

ployment of the system that consists of a client node (actually we have more client

nodes) on which the client application runs, a server node where the application

server front-end runs and a database where the database system runs.

package PhdExample

Client Server Database

Figure 10.3. Example scenario UML deployment diagram

Simply looking at the deployment diagram shown in figure 10.3 we can under-

stand that the three main components of our system are located on different nodes
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and are linked using some kind of network; in this example we assume that we have

two different networks: one to link clients and the server and another one to link

the server and the database. This is a very useful information because networks

must be modeled (using network connectors) into the KLAPER model to have a

representation of the input system as close as possible to the real system.

Using only the deployment diagram is not enough, because we don’t have any

information about how services interact among them. To know this interaction we

need some kind of behavioral description, like that provided by a sequence diagram.

In figure 10.4 we can see the sequence diagram of our input system; here we

sd SequenceDiagram

 : Client  : Server : User  : Database  : Disk

server_query

client_query

db_query
disk_access

Figure 10.4. Example scenario UML sequence diagram

can see how each resource (the UML class instances) provides a service (the UML

class methods) and how services require services provided by other resources. But

this is not the only information we can extrapolate from the sequence diagram;

an interesting thing to see in figure 10.4 is that database model should consist

of a cpu, where the database application runs, and a disk (the sequence diagram

identifies a specific class for the disk resource), where the database application has to

access to fetch the information needed to its computations. Looking at the sequence

diagram we can understand one more thing: in our input model all service calls

are synchronous because all the arrows are full and this is the way UML uses to

represent synchronous operation calls.
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But the simple standard UML is not enough to represent all the information

we need to build a KLAPER model, we need also performance and reliability data

and UML is not capable of expressing such information. However one of the main

peculiarities of UML is its capability to be extended; so we can use one of the

UML extensions called profiles (the most used for this purpose are UML-SPT, see

[43], and MARTE, see [42]) to augment the base UML representation with all the

performance and reliability requirements and data we need.

10.3 The KLAPER representation

The UML model provided in section 10.2.1 should be the only input needed by

KLAPER tools, but right now the transformation from UML to KLAPER is not

ready yet and so we have to make it by hand. To do this task we are helped by the

KLAPER dsl Editor, so we can express all the input system model into a textual

format that can be automatically converted into a KLAPER model with a simple

click of the mouse.

Even if not yet formalized, the mapping from UML to KLAPER should be based

on the following general rules:

• Each UML component is mapped into a KLAPER Resource whose Services

are directly converted from the provided interfaces. Behaviors of these Services

are mapped from UML component state machine or activity diagram.

• UML diagrams modeling component use cases are used to create KLAPER

Workloads whose Behaviors are derived from UML diagrams (for example

sequence diagrams) modeling the use case dynamics.

• UML behavioral diagrams (state machine diagrams, sequence diagrams, col-

laboration diagrams and activity diagrams) are used to map KLAPER Services

Behaviors. Each UML flow control element (like if conditions, loops and so

on) present in these diagrams can be mapped to its related KLAPER control

Step.

• Each access to a UML interface, but in general each use of a UML operation

of a class, can be mapped to a KLAPER ServiceControl step.
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• KLAPER meta classes attributes are manly derived from additional informa-

tion applied to UML elements using some specific profile like UML-SPT or

MARTE.

But applying the rules presented above is not sufficient to have a complete

KLAPER mapping of the UML input model; there are two additional rules that

we have to follow.

The first additional rule is that from UML nodes1 and from UML nodes rela-

tionships we must create a special Resource with a Service that represents the basic

service offered by the related hardware resource. In our model we have three of

these services: transmit cl net (but also transmit srv net) that represents the send-

ing of some bytes over a network, process server cpu (but also process db cpu) that

represents the elaboration of a cpu, disk access that represents an input/output op-

eration towards a disk. All these services have not any explicit counterpart into the

input UML model, they have been introduced in KLAPER to represent the way

KLAPER describes an hardware resource (remember that KLAPER Resources can

map indifferently an hardware or a software resource of the input system). More

specifically so far we have three different types of special Resources in KLAPER:

• cpus: they represent a physical cpu and always present a single Service called

process that represents the processing activity of the cpu. UML nodes that

model some kind of computer usually generate a cpu Resource.

• networks: they represent a physical link between two nodes of the system that

can be an ethernet link, but also a wi-fi connection, a serial cable or a com-

munication bus and so on; they always present a single Service called transmit

that represents a data transfer. Each UML communication path generate a

network Resource (here “link” may be a better name than “network”).

• disks: they represent a physical disk and always present a single Service called

disk access that represents input and output operations over the disk. UML

nodes that model some kind of computer or storage device usually generate a

disk Resource.

Example templates for cpus and networks special resources can be found in figures

10.5 and 10.6.
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ResourceService
type: cpu
name: NodeCpu

name: process

Behavior Start

Activity

End

name: process

Figure 10.5. Template structure for KLAPER representation of a cpu special Resource

ResourceService
type: network
name: NodeLink

name: transmit

Behavior Start

Activity

End

name: transmit

Figure 10.6. Template structure for KLAPER representation of a net-
work special Resource

The second additional rule is about KLAPER connectors. Connectors are used

to represent the data exchange actions (data sending and data receiving) over a link

between two distinct entities connected using a specific physical means. Connectors

are not a replacement for network special resources presented above, but they are a

1In UML deployment diagrams nodes represent hardware resources
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level of abstraction over these; they are Services whose behavior is always composed

in this way: a Start step, a ServiceControl Step that represents the sending of a

request over a network special Resource, a ServiceControl Step that represents the

call of the remote Service, a ServiceControl Step that represents the receiving of a

response over the network special Resource and finally an End Step. Obviously this

is the configuration used for synchronous calls, for asynchronous calls we don’t have

the last response ServiceCall. In figure 10.7 we can find a typical template example

of KLAPER connectors.

ResourceService
type: connector
name: SomeConnname: conn_service

Behavior Start

ServiceControl

End

name: send
call: net_transmit

ServiceControl
name: service
call: remote_service

ServiceControl
name: receive
call: net_transmit

Figure 10.7. Template structure for a KLAPER synchronous connector

The complete listing for the input system provided in section 10.2.1, converted

into a KLAPER model following the general rules just discussed and expressed using

the KLAPER dsl language can be found in appendix B. In this source file and in

the next sections we use some names to refer to services and hardware resources

whose meaning is described in table 10.1.
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Item Description

client net The network that connects clients with the server
(see figure 10.3)

server cpu The cpu of the server workstation (see figure 10.3).
server net The network that connects the server workstation

with the database host (see figure 10.3).
db cpu The cpu of the database host (see figure 10.3).
disk The physical disk of the database host (see figure

10.3).
server query connector The connector service added to model the con-

nection between clients and the server (see figure
10.7).

transmit cl net The base service offered by the client net hardware
resource.

process server cpu The base service offered by the server cpu hard-
ware resource.

server query The main service offered by the system server (see
figure 10.4).

transmit srv net The base service offered by the server net hardware
resource.

db query connector The connector service added to model the connec-
tion between the server and the database (see fig-
ure 10.7).

process db cpu The base service offered by the db cpu hardware
resource.

db query The main service offered by the system database
(see figure 10.4).

disk io This is only a convenience service added to simplify
the KLAPER representation of the input model,
but it hasn’t any reference to any hardware or soft-
ware entity.

disk access The base service offered by the disk hardware re-
source.

Table 10.1. Items descriptions

10.4 The first run

Now that we have our KLAPER model we can apply a software quality analysis

to the input system using the KLAPER project tools; running the three quality

169



10 – A case study

analysis model, we obtain some results that are the starting point of our analysis.

We start with the DTMC transformation. In table 10.2 we can see the results

directly reported from the SHARPE tool.

Item Reliability

server query connector 78.25%
transmit cl net 99.30%
process server cpu 99.99%
server query 79.36%
transmit srv net 90.00%
db query connector 79.37%
process db cpu 99.99%
db query 97.99%
disk io 98.00%
disk access 98.00%

Table 10.2. DTMC Reliability

To validate the obtained results we can run the transformation to the SimJava

based simulator that is also capable to evaluate the reliability of the system. The

result of this new transformation is Java code that we can build and run to obtain

an output file; from this output we can find the number of total events occurred for

the server query connector service, that runs on the server conn resource, and the

related number of failures. Applying the equation:

Reliability = 1− failures events number

total events number
(10.1)

we can compute the reliability for the server query connector service and therefore

for the server conn resource. The computed value is reported in table 10.3.

Item Reliability

server query connector 78.58%

Table 10.3. SimJava Reliability

Looking at the results obtained so far, we can already make some considerations

for reliability. Two different analysis methodologies (analytical solving for DTMC

and simulation for SimJava) give a reliability for the server query connector around
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78%, but we recall this is not sufficient to satisfy our reliability requirement that

needs a value greater then 90.0%.

Now it is the turn of software performances computed using LQN and its ana-

lytical solver lqns. Running lqns on the transformed model we obtain the results

reported in table 10.4 and 10.5.

Item Service time (secs) Throughput

server query connector 8.95028 0.869958
transmit cl net 0.00830947 1.73985
process server cpu 0.1 0.869895
server query 8.92741 0.869926
transmit srv net 0.0168565 1.73974
db query connector 8.79875 0.869895
process db cpu 0.5 0.869857
db query 8.72535 0.869872
disk io 7.76877 0.869857
disk access 1 0.869849

Table 10.4. LQN tasks service time and throughput

Item Utilization

client net 0.0142529
server cpu 0.0869895
server net 0.028504
db cpu 0.434929
disk 0.869849

Table 10.5. LQN processors utilization

Looking at the LQN results we can see that the response time seen from the client

point of view is quite high (it is greater than 8 seconds) and it is caused by the tasks

of the disk resource (because all the tasks in the related call graph have such an

high response time until those running on the disk resource), that incidentally has

an utilization approximately of 87%.
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10.5 Analyzing Reliability

To begin we decide to start with the reliability analysis. Examining the results

reported in tables 10.2 and table 10.3 we can see the same values, so we are convinced

of the goodness of these results; but DTMC results are more detailed than those of

SimJava so we can concentrate only on table 10.2.

The server query connector service has a reliability value of 78.25%. We already

said that this value is too low to satisfy the required reliability requirement so now

we have to understand what causes such a result. Looking at table 10.2 we can

see that only three services have a reliability below 90%: server query connector,

server query and db query connector. server query connector in its calls tree de-

pends from server query which in turn depends from db query connector; db query connector

has a reliability of 79.37% and depends from db query and transmit srv net: the

former has a reliability of 97.99%, while the latter has a reliability of 90.0%. Appar-

ently the best candidate to be the source of our problem is transmit srv net that has

a lower reliability value, but how can a reliability of 90.0% of the transmit srv net

service cause a final 79.37% value for the db query connector service? The answer

is that db query connector calls transmit srv net twice: the first time for sending

data for the request and the second time to receive data for the response of the

synchronous call. So a simple 10.0% failure rate for the server-database network

switch can cause a reliability value of 90% for this network and therefore a 79.37%

as the service result that is propagated until clients.

To solve this situation we must lower the failure rate of the server-database

network; we can achieve this replacing the old network switch with a better one

that has a best reliability, that in this case means a lower failure rate. If for example

we choose a network switch with a failure rate equal to 0.7% (before we had a

failure rate of 10.0%), like the one used for the client-server network, running again

the KLAPER tools and the analysis tools we obtain the results reported in table

10.6, 10.7, 10.8 and 10.9.

Analyzing the new results we can see that performance are completely unchanged

and this is correct because we replaced our network switch with an equal one from

the point of view of performance, but less faulty. If instead we analyze DTMC and

SimJava results we can see that the results from the two analysis models are coherent

and now all the reliabilities are above 90.0%; therefore the solution we tested can
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Item Reliability

server query connector 95.26%
transmit cl net 99.30%
process server cpu 99.99%
server query 96.61%
transmit srv net 99.30%
db query connector 96.62%
process db cpu 99.99%
db query 97.99%
disk io 98.00%
disk access 98.00%

Table 10.6. DTMC Reliability with the new network switch

Item Reliability

server query connector 95.70%

Table 10.7. SimJava Reliability with the new network switch

be considered as a possible improvement of the initial system design that meets all

system reliabilty requirements.

Item Service time (secs) Throughput

server query connector 8.95028 0.869958
transmit cl net 0.00830947 1.73985
process server cpu 0.1 0.869895
server query 8.92741 0.869926
transmit srv net 0.0168565 1.73974
db query connector 8.79875 0.869895
process db cpu 0.5 0.869857
db query 8.72535 0.869872
disk io 7.76877 0.869857
disk access 1 0.869849

Table 10.8. LQN tasks service time and throughput with the new network switch
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Item Utilization

client net 0.0142529
server cpu 0.0869895
server net 0.028504
db cpu 0.434929
disk 0.869849

Table 10.9. LQN processors utilization with the new network switch

10.6 Analyzing Performances

Now it is the turn of performance. But this time we don’t start from tables 10.4

and 10.5 because they refers to our initial model that we already modified to solve

reliability problems. Our analysis starting point will be the results reported in tables

10.8 and 10.9.

Before proceeding with the obtained results analysis we have to understand the

meaning that these results take into the LQN world. The utilization defines the

percentage of time a service is actually used (or the percentage of time it is active)

related to the overall execution time; a low utilization means that a service is not

very requested and/or that it is very fast to execute, while a high utilization means

that a service has a lot of requests and/or it is quite slow to execute. Throughput

defines the number of requests satisfied per second; it is a useful index if considered

at the access point of the system or if considered in combination with some other

index like utilization or service time. Service time defines the time a request waits

into the service queue before being served plus the time needed to effectively satisfy

the request.

In table 10.8 we find a service time of 8.95028 seconds for the service query connector

service; it is quite high. If we look for the element that causes such a response time

we can see that it is more or less present until the disk io service. But the disk io

service simply depends from disk access that has a service time of 1.0 second. How

can a service that requires 1 second to execute generate 8.95028 of response time in

the calling service? If we remember the definition of service time we gave for LQN

few lines above, we can understand that many seconds are spent into the waiting

queue of the guilty disk io service. Our thesis is confirmed by the utilization re-

ported into table 10.9 where the disk resource has an utilization equa to 86.98%
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that is very high. We have found our bottleneck.

What is happening into the system is that a simple request from a client generates

not so much work into the application server (we can see utilization that do not

exceed 10%), but requires a lot of work into the database. Here every single request

requires a fair amount of computation (the database cpu has an utilization of 43.49%)

and a massive access to the disk (utilization value equal to 86.98%) to fetch the

needed table rows for the queries.

To solve this situation we could change the disk with a more performing one (as

we already done with the network switch to improve reliability), but we are already

using a not so bad disk and buying a faster one would be too expensive for our

project. This time we have to come back to the design phase and think our system

in a way that it strongly reduces disk access. For example we could think about

introducing a software caching system into our database to dramatically reduce the

mean service time of the disk access service form 1.0 second to 0.5 seconds. Running

again all the transformations and the related tools we obtain the results reported in

tables 10.10, 10.11, 10.12 and 10.13.

Item Reliability

server query connector 95.26%
transmit cl net 99.30%
process server cpu 99.99%
server query 96.61%
transmit srv net 99.30%
db query connector 96.62%
process db cpu 99.99%
db query 97.99%
disk io 98.00%
disk access 98.00%

Table 10.10. DTMC Reliability with the new network switch and disk caching

Item Reliability

server query connector 95.60%

Table 10.11. SimJava Reliability with the new network switch and disk caching
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Item Service time (secs) Throughput

server query connector 1.92619 0.869991
transmit cl net 0.00830948 1.73997
process server cpu 0.1 0.869984
server query 1.91207 0.869987
transmit srv net 0.0168566 1.73997
db query connector 1.80276 0.869984
process db cpu 0.5 0.869983
db query 1.76949 0.869983
disk io 0.885144 0.869983
disk access 0.5 0.869982

Table 10.12. LQN tasks service time and throughput with the new net-
work switch and disk caching

Item Utilization

client net 0.0142539
server cpu 0.0869984
server net 0.0285076
db cpu 0.434991
disk 0.434991

Table 10.13. LQN processors utilization with the new network switch and disk caching

Analyzing the new obtained results we can see that DTMC reliability is com-

pletely unchanged (see table 10.10) and also SimJava reliability can be considered

unchanged (see table 10.11), while for what concerns performance instead we have

some differences.

Simply introducing a software caching system that reduces the disk access service

time from 1 second to 0.5 seconds (per request), the overall service time seen from

clients changes from almost 9 seconds to 1.92619 seconds. Obviously the overall

system response time is strongly reduced because it is reduced the disk access service

time, but especially because this service time reduction in the disk services response

is sufficient to dramatically reduce the time each request spends into the disk io

service waiting queue. This is also confirmed from the disk resource utilization that

changes from an excessive 86.98% to a more reasonable 43.49%.

The throughput of all services is more or less unchanged due to the workload of
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the system that in the time interval under analysis has never been such to cause some

user (or better client) requests loss; all requests have been always served whitout

the caching system, even if the response times where too long, and they do all the

more so now that we have the caching system.

In this chapter we saw how we can use the tools developed around the KLAPER

meta model jointly to some other external tools (SHARPE, SimJava and lqns) to

evaluate performance and reliability of our system before producing a single line of

code. From our analysis we saw how sometimes design problems can be solved acting

at deployment level, for example choosing a node with some better characteristics,

and how some other times problems can be solved simply returning to the design

phase to change some elements of our software system. The analysis of possible

actions that we can take to solve such situations are matters of the feedback analysis

we briefly discussed in chapter 2; this is a field on which there are some research

activities based on model driven approaches (see [64] and [46] for example), but they

are out of the topic of this work. However we think that one fundamental element

is clear: we can solve problems at the design phase strongly reducing the effects and

the costs of wrong design decision or involuntary mistakes that we would be pay if

the problems where discovered building and running the real system.
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Chapter 11

Conclusions

11.1 What we have done

In this work we have seen that modern software systems are very hard to design

and implement due to their complexity; discovering some design errors at a late

software development cycle phase is a very bad event because the more late they

are discovered the more they are hard to solve and require time and resources to be

removed.

To address all these problems during the years some software quality analysis

methodologies have been developed; they are able to identify potential problems

without the need of the completed real system, simply starting from a (design)

model of the system. But those methodologies are not very well known, especially

from those engineers that are in charge of the software system design.

Model Driven approaches and technologies can help joining the design world

and the analysis world building transformation rules between them. But there are

different ways to apply these concepts.

KLAPER presents a possible solution about how to transform from design mod-

els to software quality analysis models introducing an intermediate meta model that

can be used as a bridge from one world to the other reducing and simplifying trans-

formations.

At the time this work is written KLAPER consists of a set of really working

tools (Eclipse plugins) that provide:

• An implementation of the intermediate meta model.
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• A domain specific language for the intermediate meta model with the related

editor.

• A transformation engine to the DTMC models (and to the input format re-

quired by the SHARPE tool), for reliability evaluation.

• A transformation engine to the SimJava based simulator model (that pro-

duces Java code based on the SimJava library framework), for reliability and

performance evaluation (performance evaluation with the SimJava simulator

works for very small models, but it is still under development and need more

validation).

• A transformation engine to the LQN models (and to the input format required

by the lqns tool), for performance evaluation.

Even if these tools still have some bugs and limitation they are almost ready to

be used in a real world environment, as we saw into the example scenario presented

in chapter 10 where we discussed an example of a typical application of KLAPER

tools.

11.2 What we will do

At present, the KLAPER tools are not yet bug free so in the near future we have

to work in the direction of stability and usability because some particular model

configurations cannot be solved yet.

Then we have to consider that some tools have to be completed. For example the

LQN transformation engine right now is not yet able to handle KLAPER parameters

and this could give some inconveniences because you have to build the KLAPER

model in a not intuitive way to trick this problem.

Another aspect to consider is that the SimJava transformation engine produces

some output models with a very limited usage range; the excessive number of Java

threads used by the generated code forbids the use of this specific tool with large

models or with models that have an high value for resources capacity.

Lately we have found another interesting route to follow. Indeed we realized

that our approach to represent events in KLAPER is not enough versatile than we

thought, so we are exploring different approaches to do that and this could lead to
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some changes into the meta model, like for example the replacement of the Wait

step with an approach based on Transitions activation and deactivation.

Finally it would be interesting to add some more target analysis methodologies

to transform to. Because each analysis methodology has its own specific feature and

helps solving a particular aspect of the input model, having as many methodologies

as possible is a good idea.

11.3 Related works

During the years some similar works have been developed in the field of design phase

software quality analysis evaluation; some of them are original works and some other

are closely related to KLAPER itself. Here we present some of them:

• PUMA (see [48]): it is a project very similar to KLAPER in the sense that it

takes as input a UML model and returns as output an LQN representation of

it. The differences are that it doesn’t use a true model driven approach and

it doesn’t use an intermediate meta model; moreover it has only LQN as its

only output target analysis methodology.

• Palladio (see [34]): this is a project very similar to KLAPER whose aim is to

provide a modeling language, with related tools, to design component-based

software architectures. It uses the same approach based on model transforma-

tions, but without the intermediate meta model idea of KLAPER. It is more

mature than KLAPER and has a very nice tool integration inside the Eclipse

environment with a very usable man-machine interface.

• Q-impress (see [49]): is a project developed under the Seventh Framework

Programme (see [1]) and its main aim is to create a method for quality-driven

software development and evolution, where the consequences of design deci-

sions and system resource changes on performance, reliability and maintain-

ability can be foreseen through quality impact analysis and simulation. It uses

the same approach of model transformations and to do that it is based on an

intermediate meta model like in KLAPER. It is definitively a KLAPER in big;

even KLAPER is one of the components of Q-impress, but its intermediate

meta model is not yet so mature as the KLAPER one.
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Appendix A

The Klaper dsl grammar

1 /∗∗
2 ∗ f i l e : k l ap e rd s l . xtxt

3 ∗
4 ∗ author : Enrico Randazzo

5 ∗ o rgan i za t i on : Un ive r s i ty o f Rome ”Tor Vergata”

6 ∗ emai l : en r i c o . randazzo@gmail . com

7 ∗/

8

9 Model :

10 ( types+=Type) ∗ ;

11

12 Type :

13 KlaperModel |
14 Resource |
15 Workload |
16 Se rv i c e ;

17

18

19 // KlaperModel c l a s s

20 KlaperModel :

21 ”model” (name=ID) ? ” ; ” ;

22

23

24 // Resource c l a s s

25 Resource :

26 ” r e sour c e ” name=ID

27 ”{”

28 ( r e s o u r c e a t t r s+=ResourceAttrs )∗
29 ”}” ;

30

31 ResourceAttrs :

32 Resource Type |
33 Resource Capacity |
34 Resource Schedu l ingPo l i cy |
35 Resource Desc r ip t i on ;

36

37 Resource Type :

38 ” type” type=STRING ” ; ” ;

39

40 Resource Capacity :

41 ” capac i ty ” capac i ty=DOUBLE ” ; ” ;

42

43 Resource Schedu l ingPo l i cy :

44 ” schedu l ing ” schedu l ing=Schedul ingPol icyKind ” ; ” ;

45

46 Enum Schedul ingPol icyKind :
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47 Ea r l i e s tDead l i n eF i r s t=” Ea r l i e s tDead l i n eF i r s t ” |
48 FIFO=”FIFO” |
49 F ixedPr i o r i ty=” F ixedPr i o r i ty ” |
50 Leas tLax i tyF i r s t=” Leas tLax i tyF i r s t ” |
51 RoundRobin=”RoundRobin” |
52 TimeTableDriven=”TimeTableDriven” ;

53

54 Resource Desc r ip t i on :

55 ” d e s c r i p t i o n ” d e s c r i p t i o n=STRING ” ; ” ;

56

57

58 // Workload c l a s s

59 Workload :

60 ”workload” name=ID

61 ”{”

62 ( work load at t r s+=WorkloadAttrs )∗
63 ”}” ;

64

65 WorkloadAttrs :

66 Workload Type |
67 Workload Arr iva lProcess |
68 // Workload ArrivalProcessParams |
69 Workload Population |
70 Work load In i t i a lResource |
71 Behavior ;

72

73 Workload Type :

74 ” type” type=WorkloadType ” ; ” ;

75

76 Enum WorkloadType :

77 OPEN=”OPEN” |
78 CLOSED=”CLOSED” ;

79

80 Workload Population :

81 ” populat ion ” populat ion=INT ” ; ” ;

82

83 Work load In i t i a lResource :

84 ” i n i t i a lR e s o u r c e ” i n i t i a lR e s o u r c e=STRING ” ; ” ;

85

86 Workload Arr iva lProcess :

87 ” a r r i v a lP r o c e s s ” a r r i v a lP r o c e s s=Probab i l i t yD i s t r i bu t i onFunc t i on ” ; ” ;

88

89 Probab i l i t yD i s t r i bu t i onFunc t i on :

90 NormalDistr ibut ionFunct ion |
91 Po i s sonDi s t r ibut ionFunct ion |
92 Uni formDistr ibut ionFunct ion |
93 ExpDistr ibut ionFunct ion |
94 ConstantDist r ibut ionFunct ion ;

95

96 NormalDistr ibut ionFunct ion :

97 ”normal” mean=MathExpr ” , ” standDev=MathExpr ;

98

99 Po i s sonDi s t r ibut ionFunct ion :

100 ” po i s son ” mean=MathExpr ;

101

102 Uni formDistr ibut ionFunct ion :

103 ”uniform” ” [ ” min=MathExpr ” , ” max=MathExpr ” ] ” ;

104

105 ExpDistr ibut ionFunct ion :

106 ”exp” mean=MathExpr ;

107

108 ConstantDist r ibut ionFunct ion :

109 ” const ” value=MathExpr ;

110

111

112 // Se rv i c e c l a s s

113 Se rv i c e :

114 ” s e r v i c e ” name=ID

115 ”{”

116 ( s e r v i c e a t t r s+=Serv i c eAt t r s )∗
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117 ”}” ;

118

119 Se rv i c eAt t r s :

120 Serv i ce SpeedAttr |
121 S e r v i c e Fa i lA t t r |
122 S e r v i c e De s c r i p t i on |
123 Behavior |
124 Serv i c e Resource |
125 FormalParams ;

126

127 Serv i ce SpeedAttr :

128 ” speedAttr ” speedAttr=DOUBLE ” ; ” ;

129

130 S e r v i c e Fa i lA t t r :

131 ” f a i l A t t r ” f a i l A t t r=DOUBLE ” ; ” ;

132

133 Se r v i c e De s c r i p t i on :

134 ” d e s c r i p t i o n ” d e s c r i p t i o n=STRING ” ; ” ;

135

136 Serv i c e Resource :

137 ” r e sou r c e ” r e sou r c e =[Resource | ID ] ” ; ” ;

138

139

140 // FormalParams c l a s s

141 FormalParams :

142 ”param” name=ID ( return?=” return ” ) ? ” ; ” ;

143

144

145 // Behavior c l a s s

146 Behavior :

147 ” behavior ”

148 ”{”

149 ( b ehav i o r a t t r s+=BehaviorAttrs )∗
150 ”}” ;

151

152 BehaviorAttrs :

153 Trans i t i on |
154 Step ;

155

156

157 Trans i t i on :

158 from=[Step | ID ] ”−>” to=[Step | ID ] ( ”prob” prob=DOUBLE) ?” ; ” ;

159

160

161 // Step c l a s s

162 Step :

163 Star t |
164 End |
165 Control |
166 Wait |
167 Act iv i ty ;

168

169

170 // Star t c l a s s

171 Star t :

172 ” s t a r t ” name=ID ” ; ” ;

173

174

175 // End c l a s s

176 End :

177 ”end” name=ID ” ; ” ;

178

179

180 // Wait c l a s s

181 //

182 // name i s the name o f the wait Step , not the event to wait !

183 // Wait i s g ene ra l ( no event s p e c i f i e d ) , in t h i s way the language i s more gene ra l and f l e x i b l e

184 // l eav ing the r e s p on s ab i l i t y o f binding to the WaitBinding ( aka s i g n a l ) c l a s s

185 Wait :

186 ”wait ” name=ID ” ; ” ;
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187

188

189 // Control c l a s s

190 Control :

191 Branch |
192 Fork |
193 Join ;

194

195

196 // Branch c l a s s

197 Branch :

198 ”branch” name=ID ” ; ” ;

199

200

201 // Fork c l a s s

202 Fork :

203 ” fo rk ” name=ID ” ; ” ;

204

205

206 // Join c l a s s

207 Join :

208 ” j o i n ” name=ID ” ( ” transit ionsNeededToGo=INT ” ) ” ” ; ” ;

209

210

211 // inte rmed ia te c l a s s

212 Act iv i ty :

213 S impleAct iv i ty |
214 Recon f igurat ion |
215 Acquire |
216 Release |
217 Serv i c eCont ro l ;

218

219

220 // Act iv i ty c l a s s

221 S impleAct iv i ty :

222 ” a c t i v i t y ” name=ID

223 ”{”

224 ( a c t i v i t y a t t r s+=Act iv i tyAt t r s )∗
225 ”}” ;

226

227 Act iv i tyAt t r s :

228 Act iv i ty Interna lExecTime |
229 Ac t i v i t y In t e rna lFa i lP r ob |
230 Act i v i t y In t e rna lFa i lT ime |
231 Ac t i v i t y Repe t i t i o n s |
232 Act iv i ty Behav io r ;

233

234 Act iv i ty Interna lExecTime :

235 ”execTime” internalExecTime=Probab i l i t yD i s t r i bu t i onFunc t i on ” ; ” ;

236

237 Ac t i v i t y In t e rna lFa i lP r ob :

238 ” f a i lP r ob ” in t e rna lFa i lP rob=Probab i l i t yD i s t r i bu t i onFunc t i on ” ; ” ;

239

240 Act i v i t y In t e rna lFa i lT ime :

241 ” fa i lT ime ” inte rna lFa i lT ime=Probab i l i t yD i s t r i bu t i onFunc t i on ” ; ” ;

242

243 Ac t i v i t y Repe t i t i o n s :

244 ” r e p e t i t i o n s ” r e p e t i t i o n s=Probab i l i t yD i s t r i bu t i onFunc t i on ” ; ” ;

245

246 Act iv i ty Behav io r :

247 nestedBehavior=Behavior ;

248

249

250 // inte rmed ia te c l a s s

251 Recon f igurat ion :

252 S impleReconf igurat ion |
253 CreateBinding |
254 DeleteBinding ;

255

256
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257 /∗∗
258 ∗ For c l a s s e s below I should have p r e f e r r ed a form l i k e

259 ∗ a c t i v i t y=SimpleAct iv i ty ” r e c on f i g u r e ” . . .

260 ∗ but the problem i s that ANTLR i s l e f t valued ( see ANTRL manual ) ; that means that i t app l i e s

261 ∗ the r u l e s check from l e f t to r i gh t and i t doesn ’ t make ( e x p l i c i t l y ) backtracking , so i f i t

f i n d s two

262 ∗ r u l e s that s t a r t at the same manner i t i s n ’ t ab le to r e s o l v e the ambiguity and chooses

263 ∗ to drop a l l the va r i an t s except the f i r s t one .

264 ∗ So I need the r u l e s s t a r t whit a d i f f e r e n t keyword to make them l e f t valued ! ! !

265 ∗ This concept app l i e s to :

266 ∗ − SimpleReconf igurat ion

267 ∗ − CreateBinding

268 ∗ − DeleteBinding

269 ∗ − Acquire

270 ∗ − Release

271 ∗/

272

273

274 // Recon f igurat ion c l a s s

275 S impleReconf igurat ion :

276 ” r e c on f i g u r e ” name=ID ” f o r ” sourceStep=[Step | ID ] ” to ” t a r g e t S e r v i c e =[ Se rv i c e | ID ] ”with”

a c t i v i t y=SimpleAct iv i ty ;

277

278

279 // CreateBinding c l a s s

280 CreateBinding :

281 ”bind” name=ID ” f o r ” sourceStep=[Step | ID ] ” to ” t a r g e t S e r v i c e =[ Se rv i c e | ID ] ”with” a c t i v i t y=

SimpleAct iv i ty ;

282

283

284 // DeleteBinding c l a s s

285 DeleteBinding :

286 ” ! ” ”bind” name=ID ” f o r ” sourceStep=[Step | ID ] ” to ” t a r g e t S e r v i c e =[ Se rv i c e | ID ] ”with”

a c t i v i t y=SimpleAct iv i ty ;

287

288

289 // Acquire c l a s s

290 Acquire :

291 ” acqu i r e ” name=ID ” ( ” re sourceUni t=INT ” ) ” ( r e sou r c e =[Resource | ID ] ) ? ”with” a c t i v i t y=

SimpleAct iv i ty ;

292

293

294 // Release c l a s s

295 Release :

296 ” r e l e a s e ” name=ID ” ( ” re sourceUni t=INT ” ) ” ( r e sou r c e =[Resource | ID ] ) ? ”with” a c t i v i t y=

SimpleAct iv i ty ;

297

298

299 // Serv i c eCont ro l c l a s s

300 Serv i c eCont ro l :

301 ” con t r o l ” name=ID

302 ”{”

303 ( c o n t r o l a t t r s+=Contro lAttrs )∗
304 ”}” ;

305

306 Contro lAttrs :

307 Act iv i tyAt t r s |
308 Control ResourceType |
309 Control ServiceName |
310 Contro l I sSynch |
311 Binding |
312 ActualParam ;

313

314 Control ResourceType :

315 ” resourceType ” resourceType=STRING ” ; ” ;

316

317 Control ServiceName :

318 ” serviceName” serviceName=[ Se rv i c e | ID ] ” ; ” ;

319

320 Contro l I sSynch :
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321 ” isSynch ” isSynch=BooleanType ” ; ” ;

322

323 Enum BooleanType :

324 btrue=” true ” |
325 b f a l s e=” f a l s e ” ;

326

327

328 // Binding c l a s s

329 Binding :

330 Serv iceBind ing |
331 WaitBinding ;

332

333 Serv iceBind ing :

334 ” c a l l ” c a l l =[ Se rv i c e | ID ] ” ; ” ;

335

336 WaitBinding :

337 ” s i g n a l ” s i g n a l =[Wait | ID ] ” ; ” ;

338

339

340 // ActualParam c l a s s

341 ActualParam :

342 ”param” name=[FormalParams | ID ] ”=” value=MathExpr ” ; ” ;

343

344

345

346

347 /∗∗
348 ∗ MathExpr implements a grammar f o r mathematical e xp r e s s i on s composed by

349 ∗ numbers ( i n t e g e r or double ) , operands (+ ,− ,∗ ,/ ,ˆ where ∗ and / have

350 ∗ more precedence than + and − and ˆ has more precedence than each other operand )

351 ∗ and FormalParams i d e n t i f i e r s .

352 ∗
353 ∗ example : −1 + 4 .5 ∗ ( xˆ6) where x i s the i d e n t i f i e r o f a FormalParam

354 ∗/

355 MathExpr : l e f t=Mexpr ( r i g h t s+=RightMathExpr )∗ ;

356

357 RightMathExpr : ( op=”+” | op=”−” ) r i gh t=Mexpr ;

358

359 Mexpr : l e f t=Dexpr ( r i g h t s+=RightMexpr )∗ ; // Mexpr i s at a d i f f e r e n t l e v e l from MathExpr to make

∗ and / s t ronge r than + and −
360

361 RightMexpr : ( op=”∗” | op=”/” ) r i gh t=Dexpr ;

362

363 Dexpr : element=Atom (op=”ˆ” pow=Atom)∗ ; // pow expre s s i on

364

365 Atom : Element | Parenthes izedExpr ;

366

367 Element : NumericElement | ParamElement ; // an Element can be a number or a r e f e r e n c e to a

FormalParam

368

369 NumericElement : IntNumericElement | DoubleNumericElement ;

370

371 IntNumericElement : value=INT ;

372

373 DoubleNumericElement : value=DOUBLE;

374

375 ParamElement : value=[FormalParams | ID ] ;

376

377 Parenthes izedExpr : ” ( ” MathExpr ” ) ” ;

378

379

380

381

382 Native DOUBLE :

383 ” ( ’− ’) ? ( ’ 0 ’ . . ’ 9 ’ ) + ’ . ’ ( ’ 0 ’ . . ’ 9 ’ )+” ;
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Appendix B

Use case example

Here we show the KLAPER model of the example used in chapter 10 and expressed

using the Domain Specific Language implemented into one of the Eclipse plugins

of the KLAPER project (whose EBNF grammar can be found in appendix A). It

refers to the starting condition of the example, when any change has not yet been

made.

1 model t h r e e t i e r ;

2

3 workload system workload

4 {
5 type OPEN;

6 // type CLOSED;

7 a r r i v a lP r o c e s s exp 0 . 8 7 ;

8 // populat ion 20 ;

9 behavior

10 {
11 s t a r t s ta r t ow ;

12 // a c t i v i t y think ow

13 // {
14 // r e p e t i t i o n s const 1 . 0 ;

15 // execTime exp 2 . 0 ;

16 // f a i lP r ob const 0 . 0 ;

17 // }
18 con t r o l c a l l ow

19 {
20 r e p e t i t i o n s const 1 . 0 ;

21 execTime const 0 . 0 ;

22 f a i lP r ob const 0 . 0 ;

23 isSynch true ;

24 c a l l s e r v e r que ry connec to r ; // c l i e n t qu e r y ;

25 }
26 end end ow ;

27

28 // s tar t ow −> think ow ;

29 // think ow −> ca l l ow ;

30 s tar t ow −> ca l l ow ;

31 ca l l ow −>end ow ;

32 }
33 }
34

35 // r e sour c e c l i e n t c pu

36 //{
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37 // schedu l ing RoundRobin ;

38 // type ”cpu ” ;

39 //}
40

41 // s e r v i c e p r o c e s s c l i e n t c pu

42 //{
43 // r e sour c e c l i e n t c pu ;

44 // param num opts c l ;

45 // behavior

46 // {
47 // s t a r t s t a r t c l c p u ;

48 // a c t i v i t y a c t c l c pu

49 // {
50 // r e p e t i t i o n s const 1 . 0 ;

51 // execTime exp 0.000000000738 ;

52 // f a i lP r ob const 0 . 0 5 ;

53 // }
54 // end end c l cpu ;

55 //

56 // s t a r t c l c p u −> a c t c l c pu ;

57 // a c t c l c pu −> end c l cpu ;

58 // }
59 //}
60

61 // r e sour c e c l i e n t

62 //{
63 // schedu l ing RoundRobin ;

64 // type ” app l i c a t i on ” ;

65 //}
66

67 // s e r v i c e c l i e n t qu e r y

68 //{
69 // r e sour c e c l i e n t ;

70 // behavior

71 // {
72 // s t a r t s t a r t c l ;

73 // con t r o l compute cl

74 // {
75 // r e p e t i t i o n s const 1 . 0 ;

76 // execTime const 0 . 0 ;

77 // f a i lP r ob const 0 . 0 ;

78 // isSynch true ;

79 // c a l l p r o c e s s c l i e n t c pu ;

80 // param num opts c l =1.0;

81 // }
82 // con t r o l que ry c l

83 // {
84 // r e p e t i t i o n s const 1 . 0 ;

85 // execTime const 0 . 0 ;

86 // f a i lP r ob const 0 . 0 ;

87 // isSynch true ;

88 // c a l l s e rv e r que ry connec to r ;

89 // }
90 // end end c l ;

91 //

92 // s t a r t c l −> compute cl ;

93 // compute cl −> que ry c l ;

94 // que ry c l −> end c l ;

95 // }
96 //}
97

98 r e sou r c e c l i e n t n e t

99 {
100 schedu l ing RoundRobin ;

101 type ”network” ;

102 capac i ty 125 . 0 ;

103 }
104

105 s e r v i c e t r an sm i t c l n e t

106 {
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107 r e sou r c e c l i e n t n e t ;

108 param num bytes c l ;

109 behavior

110 {
111 s t a r t s t a r t c l n e t ;

112 a c t i v i t y a c t c l n e t

113 {
114 r e p e t i t i o n s const 1 . 0 ;

115 execTime exp 0 .008192 ; // 100KB ∗ 0 .00000008 ;

116 f a i lP r ob const 0 . 0 0 7 ;

117 }
118 end end c l n e t ;

119

120 s t a r t c l n e t −> a c t c l n e t ;

121 a c t c l n e t −> end c l n e t ;

122 }
123 }
124

125 r e sou r c e s e rve r conn

126 {
127 schedu l ing RoundRobin ;

128 type ” connector ” ;

129 capac i ty 32760 . 0 ;

130 }
131

132 s e r v i c e s e rv e r que ry connec to r

133 {
134 r e sou r c e s e rve r conn ;

135 behavior

136 {
137 s t a r t s t a r t s r v c onn ;

138 con t r o l s end srv conn

139 {
140 r e p e t i t i o n s const 1 . 0 ;

141 execTime const 0 . 0 ;

142 f a i lP r ob const 0 . 0 ;

143 isSynch true ;

144 c a l l t r a n sm i t c l n e t ;

145 param num bytes c l =1.0;

146 }
147 con t r o l s e rve r que ry conn

148 {
149 r e p e t i t i o n s const 1 . 0 ;

150 execTime const 0 . 0 ;

151 f a i lP r ob const 0 . 0 ;

152 isSynch true ;

153 c a l l s e rv e r que ry ;

154 }
155 con t r o l r e cv s rv conn

156 {
157 r e p e t i t i o n s const 1 . 0 ;

158 execTime const 0 . 0 ;

159 f a i lP r ob const 0 . 0 ;

160 isSynch true ;

161 c a l l t r a n sm i t c l n e t ;

162 param num bytes c l =1.0;

163 }
164 end end srv conn ;

165

166 s t a r t s r v c onn −> send srv conn ;

167 send srv conn −> s e rve r que ry conn ;

168 se rve r que ry conn −> r e cv s rv conn ;

169 r e cv s rv conn −> end srv conn ;

170 }
171 }
172

173 r e sou r c e s e rve r cpu

174 {
175 schedu l ing RoundRobin ;

176 type ”cpu” ;
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177 }
178

179 s e r v i c e p r o c e s s s e r v e r cpu

180 {
181 r e sou r c e s e rve r cpu ;

182 param num opts srv ;

183 behavior

184 {
185 s t a r t s t a r t s r v c pu ;

186 a c t i v i t y a c t s rv cpu

187 {
188 r e p e t i t i o n s const 1 . 0 ;

189 execTime exp 0 . 1 ; // 0 .000000000738 ;

190 f a i lP r ob const 0 . 0 001 ;

191 }
192 end end srv cpu ;

193

194 s t a r t s r v c pu −> ac t s rv cpu ;

195 ac t s rv cpu −> end srv cpu ;

196 }
197 }
198

199 r e sou r c e s e r v e r

200 {
201 schedu l ing RoundRobin ;

202 type ” app l i c a t i on ” ;

203 capac i ty 32760 . 0 ;

204 }
205

206 s e r v i c e s e rve r que ry

207 {
208 r e sou r c e s e r v e r ;

209 behavior

210 {
211 s t a r t s t a r t s r v ;

212 con t r o l compute srv

213 {
214 r e p e t i t i o n s const 1 . 0 ;

215 execTime const 0 . 0 ;

216 f a i lP r ob const 0 . 0 ;

217 isSynch true ;

218 c a l l p r o c e s s s e r v e r cpu ;

219 param num opts srv =1.0;

220 }
221 con t r o l query s rv

222 {
223 r e p e t i t i o n s const 1 . 0 ;

224 execTime const 0 . 0 ;

225 f a i lP r ob const 0 . 0 ;

226 isSynch true ;

227 c a l l db query connector ;

228 }
229 end end srv ;

230

231 s t a r t s r v −> compute srv ;

232 compute srv −> query s rv ;

233 query s rv −> end srv ;

234 }
235 }
236

237 r e sou r c e s e r v e r n e t

238 {
239 schedu l ing RoundRobin ;

240 type ”network” ;

241 capac i ty 6 2 . 5 ;

242 }
243

244 s e r v i c e t r an sm i t s r v ne t

245 {
246 r e sou r c e s e r v e r n e t ;

192



247 param num bytes srv ;

248 behavior

249 {
250 s t a r t s t a r t s r v n e t ;

251 a c t i v i t y a c t s r v n e t

252 {
253 r e p e t i t i o n s const 1 . 0 ;

254 execTime exp 0 .016384 ; // 200KB ∗ 0 .00000008 ;

255 f a i lP r ob const 0 . 1 0 ; // <−−− r e l i a b i l i t y ( step1 : 0 . 10 , s tep2 : 0 .007 ,

step3 : 0 . 007 )

256 }
257 end end s rv ne t ;

258

259 s t a r t s r v n e t −> a c t s r v n e t ;

260 a c t s r v n e t −> end s rv ne t ;

261 }
262 }
263

264 r e sou r c e db conn

265 {
266 schedu l ing RoundRobin ;

267 type ” connector ” ;

268 capac i ty 32760 . 0 ;

269 }
270

271 s e r v i c e db query connector

272 {
273 r e sou r c e db conn ;

274 behavior

275 {
276 s t a r t s ta r t db conn ;

277 con t r o l send db conn

278 {
279 r e p e t i t i o n s const 1 . 0 ;

280 execTime const 0 . 0 ;

281 f a i lP r ob const 0 . 0 ;

282 isSynch true ;

283 c a l l t r an sm i t s r v ne t ;

284 param num bytes srv =1.0;

285 }
286 con t r o l db query conn

287 {
288 r e p e t i t i o n s const 1 . 0 ;

289 execTime const 0 . 0 ;

290 f a i lP r ob const 0 . 0 ;

291 isSynch true ;

292 c a l l db query ;

293 }
294 con t r o l recv db conn

295 {
296 r e p e t i t i o n s const 1 . 0 ;

297 execTime const 0 . 0 ;

298 f a i lP r ob const 0 . 0 ;

299 isSynch true ;

300 c a l l t r an sm i t s r v ne t ;

301 param num bytes srv =1.0;

302 }
303 end end db conn ;

304

305 s ta r t db conn −> send db conn ;

306 send db conn −> db query conn ;

307 db query conn −> recv db conn ;

308 recv db conn −> end db conn ;

309 }
310 }
311

312 r e sou r c e db cpu

313 {
314 schedu l ing RoundRobin ;

315 type ”cpu” ;
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316 }
317

318 s e r v i c e proces s db cpu

319 {
320 r e sou r c e db cpu ;

321 param num opts db ;

322 behavior

323 {
324 s t a r t s ta r t db cpu ;

325 a c t i v i t y act db cpu

326 {
327 r e p e t i t i o n s const 1 . 0 ;

328 execTime exp 0 . 5 ; // 0 .000000000738 ;

329 f a i lP r ob const 0 . 0 001 ;

330 }
331 end end db cpu ;

332

333 s ta r t db cpu −> act db cpu ;

334 act db cpu −> end db cpu ;

335 }
336 }
337

338 r e sou r c e db

339 {
340 schedu l ing RoundRobin ;

341 type ” app l i c a t i on ” ;

342 capac i ty 32760 . 0 ;

343 }
344

345 s e r v i c e db query

346 {
347 r e sou r c e db ;

348 behavior

349 {
350 s t a r t s t a r t db ;

351 con t r o l compute db

352 {
353 r e p e t i t i o n s const 1 . 0 ;

354 execTime const 0 . 0 ;

355 f a i lP r ob const 0 . 0 ;

356 isSynch true ;

357 c a l l proces s db cpu ;

358 param num opts db =1.0;

359 }
360 con t r o l d i s k i o db

361 {
362 r e p e t i t i o n s const 1 . 0 ;

363 execTime const 0 . 0 ;

364 f a i lP r ob const 0 . 0 ;

365 isSynch true ;

366 c a l l d i s k i o ;

367 }
368 end end db ;

369

370 s t a r t db −> compute db ;

371 compute db −> d i s k i o db ;

372 d i s k i o db −> end db ;

373 }
374 }
375

376 r e sou r c e d i sk

377 {
378 schedu l ing RoundRobin ;

379 type ” d i sk ” ;

380 capac i ty 1 . 0 ;

381 }
382

383 s e r v i c e d i s k a c c e s s

384 {
385 r e sou r c e d i sk ;
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386 param num bytes disk ;

387 behavior

388 {
389 s t a r t s t a r t d i s k ;

390 a c t i v i t y a c t d i s k

391 {
392 r e p e t i t i o n s const 1 . 0 ;

393 execTime exp 1 . 0 ; // 0 .00000000333 ; // <−− performance ( step1 : 1 . 0 , s tep2

: 1 . 0 , s tep3 : 0 . 5 )

394 f a i lP r ob const 0 . 0 2 ;

395 }
396 end end di sk ;

397

398 s t a r t d i s k −> a c t d i s k ;

399 a c t d i s k −> end d i sk ;

400 }
401 }
402

403 r e sou r c e db disk

404 {
405 schedu l ing RoundRobin ;

406 type ”dummy resource” ;

407 capac i ty 32760 . 0 ;

408 }
409

410 s e r v i c e d i s k i o

411 {
412 r e sou r c e db disk ;

413 behavior

414 {
415 s t a r t s t a r t i o ;

416 con t r o l c a l l i o

417 {
418 r e p e t i t i o n s const 1 . 0 ;

419 execTime const 0 . 0 ;

420 f a i lP r ob const 0 . 0 ;

421 isSynch true ;

422 c a l l d i s k a c c e s s ;

423 param num bytes disk =1.0;

424 }
425 end end io ;

426

427 s t a r t i o −> c a l l i o ;

428 c a l l i o −> end io ;

429 }
430 }
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Appendix C

Transformation Rules from

KLAPER to DTMC

Here we report all the transformation rules used to go from the KLAPER meta

model to the DTMC meta model.

1 // Import source metamodel

2 import k laper : : core ;

3 import k laper : : p r obab i l i t y ;

4 import k laper : : expr ;

5

6 // Import t a r g e t metamodel

7 import dtmc : : core ;

8

9 // Inc lude a few u t i l i t y ex t en s i on s

10 extens ion org : : k laper : : u t i l : : d s l : : Extens ions ;

11 extens ion org : : k laper : : u t i l : : ProbExtensions ;

12 extens ion org : : k laper : : dtmc : :m2m: : u t i l : : k laperToklaper ;

13 extens ion org : : k laper : : dtmc : :m2m: : u t i l : : dtmcEnt i t i e s ;

14 extens ion org : : k laper : : dtmc : :m2m: : u t i l : : f o r kU t i l ;

15 extens ion org : : k laper : : dtmc : :m2m: : u t i l : : r e p e t i t i o n sU t i l ;

16 extens ion org : : k laper : : dtmc : :m2m: : u t i l : : u t i l s ;

17

18 // Inc lude the i o extens ions , f o r debugging purposes ( in case we need i t )

19 extens ion org : : openarch i tec tureware : : u t i l : : s t d l i b : : i o ;

20 extens ion org : : openarch i tec tureware : : u t i l : : s t d l i b : : i s s u e s ;

21 extens ion org : : openarch i tec tureware : : u t i l : : s t d l i b : : counter ;

22

23 /∗
24 Sta r t i ng point f o r the t rans fo rmat ion ( t h i s extens ion i s invoked d i r e c t l y from the

workflow ) .

25 PLEASE NOTE: The input KlaperModel i s supposed to be we l l formed f o r the purpose o f

r e l i a b i l i t y ana l i s y s with DTMC!

26 ∗/

27 dtmc : : core : : Re l i ab i l i t yMode l klaper2dtmc ( k laper : : core : : KlaperModel m) :

28 m. transformModel ( ) ;

29

30 /∗
31 Creates a Re l i ab i l i t yMode l from the input KlaperModel

32 ∗/

33 pr i va t e c r ea t e dtmc : : core : : Re l i ab i l i t yMode l newModel transformModel ( k laper : : core : : KlaperModel m)

:

34 newModel . dtmc . addAll (m. r e sou r c e . o f f e r e dS e r v i c e . t rans fo rmServ i c e ( newModel ) )−>
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35 m. r e sour c e . o f f e r e dS e r v i c e . behavior . s tep . typeSe l e c t ( k laper : : core : : Se rv i c eCont ro l ) . s e l e c t (

e | e . b inding . s i g n a l != nu l l ) . c o l l e c t ( e | e . l inkWait ( newModel ) )−>

36 newModel ;

37

38

39 pr i va t e Void l inkWait ( k laper : : core : : Se rv i c eCont ro l s , dtmc : : core : : Re l i ab i l i t yMode l m) :

40 l e t extRef=new Externa lRe ference :

41 l e t waitSt=s . binding . s i g n a l . r e t r i eveWai tS ta t e (m) :

42 l e t scSt=s . r e t r i e v eS e r v i c eCon t r o l S t a t e (m) :

43 extRef . setDependsOn ( ( dtmc : : core : :DTMC) scSt . eContainer )−>

44 extRef . s e tNav iga teUnt i l ( scSt )−>

45 waitSt . ex t e rna lRe f e r ence . add ( extRef ) ;

46 /∗
47 Creates a DTMC from each Se rv i c e o f f e r e d by a given Klaper Resource ( Workloads are not

u s e f u l f o r r e l i a b i l i t y a n a l s i s y s ) .

48 A Fa i l s t a t e i s added to the Markov Chain at once .

49 ∗/

50 pr i va t e c r ea t e dtmc : : core : :DTMC newDtmc t rans fo rmServ i c e ( k laper : : core : : S e rv i c e s , dtmc : : core : :

Re l i ab i l i t yMode l m) :

51 l e t f = new Fa i l :

52 f . setName ( ” Fa i l ” )−>

53 newDtmc . setName ( ( ( k laper : : core : : Resource ) s . eContainer ) . name+” ”+s . name )−>

54 newDtmc . s t a t e . add ( f )−>

55 newDtmc . s t a t e . addAll ( s . behavior . s tep . c o l l e c t ( e | transformStep ( e , newDtmc ,m) ) )−>

56 newDtmc . s t a t e . s e l e c t ( e | e . ex t e rna lRe f e r ence . s i z e==0) . c o l l e c t ( e |
upda t eTran s i t i onProbab i l i t i e s ( e ) )−>

57 newDtmc . s t a t e . removeAll (newDtmc . s t a t e . s e l e c t ( e | e . name==nu l l ) )−>

58 newDtmc ;

59

60 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
61

62 Polymorphic extens ion transformStep

63

64 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

65

66 /∗
67 Dummy trans fo rmat ion f o r abs t rac t c l a s s k laper : : core : : Step

68 ∗/

69 pr i va t e c r ea t e dtmc : : core : : State newState transformStep ( k laper : : core : : Step s , dtmc : : core : :DTMC d

, dtmc : : core : : Re l i ab i l i t yMode l m) :

70 {} ;

71

72 /∗
73 Creates a DTMC Star t s t a t e from a Klaper Star t s tep

74 ∗/

75 pr i va t e c r ea t e dtmc : : core : : S tar t newState transformStep ( k laper : : core : : S tar t s , dtmc : : core : :DTMC

d , dtmc : : core : : Re l i ab i l i t yMode l m) :

76 newState . setName ( s . name)−>

77 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n . s e l e c t ( x | x . from==s

) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

78 newState ;

79

80 /∗
81 Creates a DTMC End s t a t e from a Klaper End step

82 ∗/

83 pr i va t e c r ea t e dtmc : : core : : End newState transformStep ( k laper : : core : : End s , dtmc : : core : :DTMC d ,

dtmc : : core : : Re l i ab i l i t yMode l m) :

84 newState . setName ( s . name)−>

85 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n . s e l e c t ( x | x . to==s

&& x . from . metaType!=Join ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

86 newState ;

87

88

89 /∗
90 Creates a DTMC State from a Klaper Act iv i ty . A t r a n s i t i o n towards the Fa i l s t a t e (whose

p r obab i l i t y i s e l i c i t e d from the Act iv i ty ’ s i n t e rna lFa i lP rob a t t r i bu t e )

91 i s added to the Chain only in the case the Act iv i ty i s repeated only once and does not

conta in a nested Behavior . In a l l the other cases , the Act iv i ty i s mapped in to

92 a new DTMC (by means o f t rans fo rmAct iv i ty ( ) ) and the State c reated here conta ins an

Externa lRe ference po int ing to such DTMC.
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93 ∗/

94 pr i va t e c r ea t e dtmc : : core : : State newState transformStep ( k laper : : core : : Ac t i v i ty s , dtmc : : core : :

DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :

95

96 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

97 (

98 s . t r an s f o rmAct iv i t yRepe t i t i on s ( )−>

99 s . i sASimpleAct iv i ty ( ) ?

100 (

101 newState . setName ( ”ACT ”+s . name)−>

102 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) .

t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x . from . metaType!=Join ) | | x .

from==s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

103 d . t r a n s i t i o n . add ( s . t r an s i t i onToFa i l (d ,m) )−>

104 newState

105 )

106 :

107 (

108 m. dtmc . add ( s . t rans fo rmAct iv i ty (m) )−>

109 (

110 l e t extRef=new Externa lRe ference :

111 extRef . setDependsOn ( s . t rans fo rmAct iv i ty (m) )−>

112 newState . s e t I n t e rna lFa i lP rob ( 0 . 0 )−>

113 newState . ex t e rna lRe f e r ence . add ( extRef )

114 )

115 −>

116 newState . setCompletionModel ( ”OR” )−>

117 newState . setName ( s . name)−>

118 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) .

t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x . from . metaType!=Join ) | | x .

from==s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

119 newState

120 )

121 )

122 :{} ;

123

124 /∗
125 Creates a DTMC State from a KLAPER Wait step

126 ∗/

127 pr i va t e c r ea t e dtmc : : core : : State newState transformStep ( k laper : : core : : Wait s , dtmc : : core : :DTMC d

, dtmc : : core : : Re l i ab i l i t yMode l m) :

128 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

129 (

130 newState . setName ( s . name)−>

131 newState . setCompletionModel ( ”OR” )−>

132 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n . s e l e c t ( x | (
x . to==s&& x . from . metaType!=Join ) | | x . from==s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on

(d ,m) ) )−>

133 newState

134 ) :

135 {} ;

136

137 /∗
138 Creates a DTMC State from a Klaper Se rv i c eCont ro l . In the case the Se rv i c eCont ro l i s

repeated j u s t once , newState conta ins a l ready an Externa lRe ference po int ing to

139 the DTMC rep r e s en t i ng the invoked s e r v i c e and i t s i n t e rna lFa i lP rob i s s e t with the same

value as the o r i g i n a l Se rv i c eCont ro l . In a l l the other cases ,

140 the Serv i c eCont ro l i s mapped in to a new DTMC (by means o f t rans fo rmServ i ceContro l ( ) ) and

the State c reated here conta ins an Externa lRe ference po int ing to such DTMC.

141 ∗/

142 pr i va t e c r ea t e dtmc : : core : : State newState transformStep ( k laper : : core : : Se rv i c eCont ro l s , dtmc : :

core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :

143 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

144 ( // belongsToForkJoin=f a l s e

145 s . t r an s f o rmAct iv i t yRepe t i t i on s ( )−>

146

147 s . i sAS igna lSe rv i c eCont ro l ( ) ?

148 ( // s i g n a l

149

150 newState . setName ( s . name )−>
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151 newState . s e t I n t e rna lFa i lP rob ( s . i n t e rna lFa i lP rob . getMean ( ) )−>

152 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) .

t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x . from . metaType!=Join ) | | x .

from==s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

153 d . t r a n s i t i o n . add ( s . t r an s i t i onToFa i l (d ,m) )−>

154 newState

155 ) // s i g n a l

156 :

157 ( // c a l l

158

159 ( s . i sSynch==f a l s e&&s . dependsOn==f a l s e ) ?

160 ( // synch=f a l s e

161 newState . setName ( s . name)−>

162 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) .

t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x . from . metaType!=Join ) | | x .

from==s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

163 d . t r a n s i t i o n . add ( s . t r an s i t i onToFa i l (d ,m) )−>

164 newState

165 ) // synch=f a l s e

166 :

167 ( // synch==true

168 s . i sASimpleServ iceContro l ( ) ?

169 ( // simpleSC

170 newState . setName ( ”SC ”+s . name)−>

171 (

172 l e t extRef=new Externa lRe ference :

173 extRef . setDependsOn ( s . b inding . c a l l .

t r ans fo rmServ i c e (m) )−>

174 newState . s e t I n t e rna lFa i lP rob ( s . i n t e rna lFa i lP rob .

getMean ( ) )−>

175 newState . ex t e rna lRe f e r ence . add ( extRef )−>

176 newState . setCompletionModel ( ”OR” )

177 )−>

178 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s .

eContainer ) . t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x . from .

metaType!=Join ) | | x . from==s ) . c o l l e c t ( e | e .

t rans fo rmTrans i t i on (d ,m) ) )−>

179 newState

180 ) // simpleSC

181 :

182 ( //complexSC

183 m. dtmc . add ( s . t rans fo rmServ i ceContro l (m) )−>

184

185 (

186 l e t extRef=new Externa lRe ference :

187 extRef . setDependsOn ( s . t rans fo rmServ i ceContro l (m)

)−>

188 newState . s e t I n t e rna lFa i lP rob ( 0 . 0 )−>

189 newState . ex t e rna lRe f e r ence . add ( extRef )

190 )

191 −>

192 newState . setCompletionModel ( ”OR” )−>

193 newState . setName ( s . name)−>

194 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s .

eContainer ) . t r a n s i t i o n . s e l e c t ( x | ( x . to==s&& x . from .

metaType!=Join ) | | x . from==s ) . c o l l e c t ( e | e .

t rans fo rmTrans i t i on (d ,m) ) )−>

195 newState

196 ) //complexSC

197 ) // synch=true

198 ) // c a l l

199 ) // belongsToForkJoin=f a l s e

200 :

201 {} ;

202

203 /∗
204 A top−l e v e l Fork ( i . e . a Fork which i s not nested in another Fork−Join pattern ) i s

mapped in to a new State which po int s (by means o f n Externa lRe fe rences )

205 to the DTMCs corresponding to the n paths s t a r t i n g from such Fork . Each path i s f i r s t

transformed in to a Klaper Se rv i c e (by means o f transformForkPathToService ( ) )
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206 and then such Se rv i c e i s transformed in to a DTMC ( crea t eExte rna lRe f e r ence ( ) does t h i s

job ) .

207

208 ∗/

209 pr i va t e c r ea t e dtmc : : core : : State newState transformStep ( k laper : : core : : Fork s , dtmc : : core : :DTMC d

, dtmc : : core : : Re l i ab i l i t yMode l m) :

210 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

211 (

212 l e t pathServ i c e s = ( L i s t [ k laper : : core : : S e rv i c e ] ) {} : //Each path s t a r t i n g from

Fork i s mapped to a Se rv i c e

213 s . out . c o l l e c t ( e | pathServ i c e s . add ( e . to . transformForkPathToService ( s ,m) ) )−>

214

215 newState . ex t e rna lRe f e r ence . addAll ( pathServ i c e s . c o l l e c t ( e | e .

c r ea t eExte rna lRe f e r ence (m) ) )−>

216 newState . setName ( s . name)−>

217 newState . setCompletionModel ( s . retr ieveJoinFromFork (0 ,{} ) . in . s i z e==s .

retr ieveJoinFromFork (0 ,{} ) . transit ionsNeededToGo ?”AND” : ”OR” )−>

218 d . s t a t e . add ( newState )−>

219 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n . s e l e c t ( e | e
. to==s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on (d ,m) ) )−>

220 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n . s e l e c t ( e | e
. from==s . retr ieveJoinFromFork (0 ,{} ) ) . c o l l e c t ( e | e . t rans fo rmJo inTrans i t i on (d ,

newState ,m) ) )

221 ) :

222 {} ;

223

224

225 /∗
226 Creates a DTMC State corresponding to a Klaper Branch Step .

227 ∗/

228 pr i va t e c r ea t e dtmc : : core : : State newState transformStep ( k laper : : core : : Branch s , dtmc : : core : :DTMC

d , dtmc : : core : : Re l i ab i l i t yMode l m) :

229

230 ( s . stepBelongsToForkJoin (0 ,{} )==f a l s e ) ?

231 (

232 newState . setName ( s . name)−>

233 d . t r a n s i t i o n . addAll ( ( ( k laper : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n . s e l e c t ( x | (
x . to==s&& x . from . metaType!=Join ) | | x . from==s ) . c o l l e c t ( e | e . t rans fo rmTrans i t i on

(d ,m) ) )−>

234 newState

235 ) :

236 {} ;

237

238 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
239

240 END of Polymorphic extens ion transformStep

241

242 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

243

244 /∗
245 Creates a DTMC from a Klaper Behavior ( t h i s can be a Behavior nested in an Act iv i ty , as

we l l as the Behavior o f a f i c t i t i o u s Se rv i c e c reated f o r a Fork path ) .

246 A Fa i l s t a t e i s added to the Markov Chain at once .

247 ∗/

248 pr i va t e c r ea t e dtmc : : core : :DTMC newDtmc transformBehavior ( k laper : : core : : Behavior b , dtmc : : core : :

Re l i ab i l i t yMode l m) :

249 l e t f=new Fa i l :

250 f . setName ( ” Fa i l ” )−>

251 newDtmc . setName ( ( ( k laper : : core : : Ac t iv i ty ) (b . eContainer ) ) . name+” BEHAV” )−>

252 newDtmc . s t a t e . add ( f )−>

253 newDtmc . s t a t e . addAll (b . s tep . c o l l e c t ( e | transformStep ( e , newDtmc ,m) ) )−>

254 newDtmc . s t a t e . s e l e c t ( e | e . ex t e rna lRe f e r ence . s i z e==0) . c o l l e c t ( e |
upda t eTran s i t i onProbab i l i t i e s ( e ) )−>

255 newDtmc . s t a t e . removeAll (newDtmc . s t a t e . s e l e c t ( e | e . name==nu l l ) )−>

256 newDtmc ;

257

258 /∗
259 Creates a dummy Klaper Se rv i c e f o r a path having f i r s t S t e p as i t s 1 s t Step and s t a r t i n g

from f .

260 ∗/
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261 pr i va t e c r ea t e k laper : : core : : S e rv i c e newServ transformForkPathToService ( k laper : : core : : Step

f i r s t S t e p , k laper : : core : : Fork f , dtmc : : core : : Re l i ab i l i t yMode l m) :

262 l e t newB=new klaper : : core : : Behavior :

263 newServ . setName ( f . name+” PATH TO ”+f i r s t S t e p . name)−>

264 f . copyForkPath ( f i r s t S t e p , newB,1 ,{} )−>

265 newServ . setBehavior (newB)−>

266 newServ ;

267

268

269 /∗
270 Transforms a Klaper Act iv i ty in to a DTMC. The s t ru c tu r e o f such DTMC depends on the

d i s t r i b u t i o n func t i on used f o r ” r e p e t i t i o n s ” a t t r i bu t e o f Act iv i ty .

271 In the case an Histogram func t i on i s used , t h i s s t r u c tu r e i s v a r i ab l e and

c r e a t eAc t i v i t yS t a t eL i s t ( ) i s invoked in order to do the job .

272 Otherwise , the s t ru c tu r e i s f i x ed and the job i s done d i r e c t l y with in t h i s extens ion .

273 ∗/

274 pr i va t e c r ea t e dtmc : : core : :DTMC newDtmc trans fo rmAct iv i ty ( k laper : : core : : Ac t iv i ty a , dtmc : : core : :

Re l i ab i l i t yMode l m) :

275

276 ( ( k laper : : core : : S e rv i c e ) ( ( k laper : : core : : Behavior ) a . eContainer ) . eContainer ) . name . conta in s ( ”

PATH TO” ) ?

277 newDtmc . setName ( ”ACT ”+(( k laper : : core : : S e rv i c e ) ( ( k laper : : core : : Behavior ) a . eContainer ) . eContainer

) . name . s p l i t ( ” PATH TO” ) . f i r s t ( )+” ”+a . name) :

278 newDtmc . setName ( ”ACT ”+(( k laper : : core : : S e rv i c e ) ( ( k laper : : core : : Behavior ) a . eContainer ) .

eContainer ) . name+” ”+a . name )−>

279

280 newDtmc . s t a t e . add ( c r e a t eFa i l S t a t e ( ” Fa i l ” , a ) )−>

281 newDtmc . s t a t e . add ( c r e a t eS t a r tS t a t e ( ”START” , a ) )−>

282 newDtmc . s t a t e . add ( createEndState ( ”End” , a ) )−>

283 newDtmc . s t a t e . add ( c r ea t eS ta t e ( ”Switch” , a ) )−>

284

285 a . r e p e t i t i o n s . metaType==Geometric ?

286 (

287 a . nestedBehavior != nu l l ?

288 (

289 l e t extRef=new Externa lRe ference :

290 m. dtmc . add ( transformBehavior ( a . nestedBehavior ,m) )−>

291 extRef . setDependsOn ( transformBehavior ( a . nestedBehavior ,m) )−>

292 c r ea t eS ta t e ( a . name , a ) . s e t I n t e rna lFa i lP rob ( 0 . 0 )−>

293 c r ea t eS ta t e ( a . name , a ) . setCompletionModel ( ”OR” )−>

294 c r ea t eS ta t e ( a . name , a ) . ex t e rna lRe f e r ence . add ( extRef )

295 ) :

296 {} −>

297 newDtmc . s t a t e . add ( c r e a t eS ta t e ( a . name , a ) )−>

298 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS t a r tS t a t e ( ”START” , a ) , c r e a t eS ta t e (

”Switch” , a ) , 1 . 0 , a ) )−>

299 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS ta t e ( ”Switch” , a ) , c r e a t eS ta t e ( a .

name , a ) ,1.0−a . r e p e t i t i o n s . g e tSucc e s sProbab i l i t y ( ) , a ) )−>

300 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS ta t e ( ”Switch” , a ) , createEndState ( ”

End” , a ) , a . r e p e t i t i o n s . g e tSucc e s sProbab i l i t y ( ) , a ) )−>

301 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS ta t e ( a . name , a ) , c r e a t eS ta t e ( ”

Switch” , a ) ,1.0−a . i n t e rna lFa i lP rob . getMean ( ) , a ) )−>

302 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS ta t e ( a . name , a ) , c r e a t eFa i l S t a t e ( ”

Fa i l ” , a ) , a . i n t e rna lFa i lP rob . getMean ( ) , a ) )

303 )

304 :

305 (

306 a . r e p e t i t i o n s . metaType==Histogram?

307 (

308 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS t a r tS t a t e ( ”START” , a ) ,

c r e a t eS ta t e ( ”Switch” , a ) , 1 . 0 , a ) )−>

309 ( ( k laper : : p r obab i l i t y : : Histogram ) ( a . r e p e t i t i o n s ) ) . samples . c o l l e c t ( e |
310 c r e a t eAc t i v i t yS t a t eL i s t ( e . value , 1 , c r e a t eFa i l S t a t e ( ” Fa i l ” , a ) ,

c r e a t eS ta t e ( ”Switch” , a ) , createEndState ( ”End” , a ) ,newDtmc , e .

p robab i l i t y , a ,m) )

311 )

312 :

313 (

314 {}
315 )
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316

317 )

318 −>

319 newDtmc . s t a t e . removeAll (newDtmc . s t a t e . s e l e c t ( e | e . name==nu l l ) )−>

320 newDtmc ;

321

322 /∗
323 Support extens ion f o r t rans fo rmAct iv i ty ( ) . Transforms each Sample o f an Histogram

rep r e s en t i ng the number o f r e p e t i t i o n s f o r a given Act iv i ty

324 in to a path o f l i s t L en State s each r ep r e s en t i ng a s i n g l e r e p e t i t i o n o f a .

325 ∗/

326 pr i va t e c r ea t e dtmc : : core : : State newState c r e a t eAc t i v i t yS t a t eL i s t ( In t eg e r l i s tLen , In t eg e r count

, dtmc : : core : : Fa i l f , dtmc : : core : : State swi ,

327 dtmc : : core : : End end , dtmc : : core : :DTMC d , Real l i s tProb , k laper : : core

: : Ac t iv i ty a , dtmc : : core : : Re l i ab i l i t yMode l m) :

328 l i s t L en==0?

329 (

330 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( swi , end , l i s tProb , a ) )

331 )

332 :

333 (

334

335 a . nestedBehavior != nu l l ?

336 (

337

338 l e t extRef=new Externa lRe ference :

339 m. dtmc . add ( transformBehavior ( a . nestedBehavior ,m) )−>

340 extRef . setDependsOn ( transformBehavior ( a . nestedBehavior ,m) )−>

341 newState . s e t I n t e rna lFa i lP rob ( 0 . 0 )−>

342 newState . setCompletionModel ( ”OR” )−>

343 newState . ex t e rna lRe f e r ence . add ( extRef )

344 ) :

345 {} −>

346 newState . setName ( ”REP”+count+” o f ”+l i s t L en )−>

347 d . s t a t e . add ( newState )−>

348 a . nestedBehavior==nu l l ?

349 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( newState , f , a . i n t e rna lFa i lP rob . getMean ( ) , a ) )

:{}−>

350 count==1?

351 (

352 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( swi , newState , l i s tProb , a ) )

353 )

354 :

355 {}
356 −>

357 count==l i s t L en ?

358 (

359 a . nestedBehavior==nu l l ?

360 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( newState , end ,1.0−a . i n t e rna lFa i lP rob .

getMean ( ) , a ) ) :

361 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( newState , end , 1 . 0 , a ) )

362 )

363 :

364 (

365

366 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( newState , c r e a t eAc t i v i t yS t a t eL i s t (

l i s tLen , count+1, f , swi , end , d , l i s tProb , a ,m) ,

367 a . nestedBehavior==nu l l ?

368 1.0−a . i n t e rna lFa i lP rob . getMean ( ) : 1 . 0 , a )

369 )

370 ) )

371 ;

372

373 /∗
374 Transforms a Klaper Se rv i c eCont ro l in to a DTMC. The s t ru c tu r e o f such DTMC depends on

the d i s t r i b u t i o n func t i on used f o r ” r e p e t i t i o n s ” a t t r i bu t e o f Se rv i c eCont ro l .

375 In the case an Histogram func t i on i s used , t h i s s t r u c tu r e i s v a r i ab l e and

c r e a t eS e r v i c eCon t r o l S t a t eL i s t ( ) i s invoked in order to do the job .

376 Otherwise , the s t ru c tu r e i s f i x ed and the job i s done d i r e c t l y with in t h i s extens ion .

377 ∗/
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378 pr i va t e c r ea t e dtmc : : core : :DTMC newDtmc trans fo rmServ i ceContro l ( k laper : : core : : Se rv i c eCont ro l a ,

dtmc : : core : : Re l i ab i l i t yMode l m) :

379

380 ( ( k laper : : core : : S e rv i c e ) ( ( k laper : : core : : Behavior ) a . eContainer ) . eContainer ) . name . conta in s ( ”

PATH TO” ) ?

381 newDtmc . setName ( ”SC ”+(( k laper : : core : : S e rv i c e ) ( ( k laper : : core : : Behavior ) a . eContainer ) . eContainer )

. name . s p l i t ( ” PATH TO” ) . f i r s t ( )+” ”+a . name) :

382 newDtmc . setName ( ”SC ”+(( k laper : : core : : S e rv i c e ) ( ( k laper : : core : : Behavior ) a . eContainer ) .

eContainer ) . name+” ”+a . name )−>

383

384 newDtmc . s t a t e . add ( c r e a t eFa i l S t a t e ( ” Fa i l ” , a ) )−>

385 newDtmc . s t a t e . add ( c r e a t eS t a r tS t a t e ( ”START” , a ) )−>

386 newDtmc . s t a t e . add ( createEndState ( ”End” , a ) )−>

387 newDtmc . s t a t e . add ( c r ea t eS ta t e ( ”Switch” , a ) )−>

388

389 a . r e p e t i t i o n s . metaType==Geometric ?

390 (

391

392 l e t extRef=new Externa lRe ference :

393 extRef . setDependsOn ( a . binding . c a l l . t r ans fo rmServ i c e (m) )−>

394 c r ea t eS ta t e ( a . name , a ) . s e t I n t e rna lFa i lP rob ( a . i n t e rna lFa i lP rob . getMean ( ) )−>

395 c r ea t eS ta t e ( a . name , a ) . setCompletionModel ( ”OR” )−>

396 c r ea t eS ta t e ( a . name , a ) . ex t e rna lRe f e r ence . add ( extRef )−>

397 newDtmc . s t a t e . add ( c r e a t eS ta t e ( a . name , a ) )−>

398

399 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS t a r tS t a t e ( ”START” , a ) , c r e a t eS ta t e (

”Switch” , a ) , 1 . 0 , a ) )−>

400 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS ta t e ( ”Switch” , a ) , c r e a t eS ta t e ( a .

name , a ) ,1.0−a . r e p e t i t i o n s . g e tSucc e s sProbab i l i t y ( ) , a ) )−>

401 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS ta t e ( ”Switch” , a ) , createEndState ( ”

End” , a ) , a . r e p e t i t i o n s . g e tSucc e s sProbab i l i t y ( ) , a ) )−>

402 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS ta t e ( a . name , a ) , c r e a t eS ta t e ( ”

Switch” , a ) , 1 . 0 , a ) )

403 )

404 :

405 (

406 a . r e p e t i t i o n s . metaType==Histogram?

407 (

408 newDtmc . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( c r e a t eS t a r tS t a t e ( ”START” , a ) ,

c r e a t eS ta t e ( ”Switch” , a ) , 1 . 0 , a ) )−>

409 ( ( k laper : : p r obab i l i t y : : Histogram ) ( a . r e p e t i t i o n s ) ) . samples . c o l l e c t ( e |
410 c r e a t eS e r v i c eCon t r o l S t a t eL i s t ( e . value , 1 , c r e a t eFa i l S t a t e ( ” Fa i l ” , a

) , c r e a t eS ta t e ( ”Switch” , a ) , createEndState ( ”End” , a ) ,newDtmc , e .

p robab i l i t y , a ,m) )

411 )

412 :

413 (

414 {}
415 )

416

417 )

418 −>

419 newDtmc . s t a t e . removeAll (newDtmc . s t a t e . s e l e c t ( e | e . name==nu l l ) )−>

420 newDtmc ;

421

422 /∗
423 Support extens ion f o r t rans fo rmServ i ceContro l ( ) . Transforms each Sample o f an Histogram

rep r e s en t i ng the number o f r e p e t i t i o n s f o r a given Serv i c eCont ro l

424 in to a path o f l i s t L en State s each r ep r e s en t i ng a s i n g l e r e p e t i t i o n o f a .

425 ∗/

426 pr i va t e c r ea t e dtmc : : core : : State newState c r e a t eS e r v i c eCon t r o l S t a t eL i s t ( In t eg e r l i s tLen , In t eg e r

count , dtmc : : core : : Fa i l f , dtmc : : core : : State swi ,

427 dtmc : : core : : End end , dtmc : : core : :DTMC d , Real l i s tProb , k laper : : core

: : Se rv i c eCont ro l a , dtmc : : core : : Re l i ab i l i t yMode l m) :

428 l i s t L en==0?

429 (

430 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( swi , end , l i s tProb , a ) )

431 )

432 :

433 (

204



434 l e t extRef=new Externa lRe ference :

435 extRef . setDependsOn ( a . binding . c a l l . t r ans fo rmServ i c e (m) )−>

436 newState . s e t I n t e rna lFa i lP rob ( a . i n t e rna lFa i lP rob . getMean ( ) )−>

437 newState . setCompletionModel ( ”OR” )−>

438 newState . ex t e rna lRe f e r ence . add ( extRef )−>

439 newState . setName ( ”REP”+count+” o f ”+l i s t L en )−>

440 d . s t a t e . add ( newState )−>

441

442 count==1?

443 (

444 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( swi , newState , l i s tProb , a ) )

445 )

446 :

447 {}
448 −>

449 count==l i s t L en ?

450 (

451 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( newState , end , 1 . 0 , a ) )

452 )

453 :

454 (

455 d . t r a n s i t i o n . add ( c r e a t eTran s i t i on ( newState , c r e a t eS e r v i c eCon t r o l S t a t eL i s t

( l i s tLen , count+1, f , swi , end , d , l i s tProb , a ,m) , 1 . 0 , a )

456 )

457 ) )

458 ;

459

460

461 /∗
462 Creates an Externa lRe ference ” po int ing ” to the DTMC corresponding to Se rv i c e s ’ Behavior

.

463 ∗/

464

465 pr i va t e c r ea t e dtmc : : core : : Externa lRe ference newRef c r ea t eExte rna lRe f e r ence ( k laper : : core : :

S e rv i c e s , dtmc : : core : : Re l i ab i l i t yMode l m) :

466 m. dtmc . add ( s . behavior . transformBehavior (m) )−>

467 newRef . setDependsOn ( s . behavior . transformBehavior (m) )−>

468 newRef ;

469

470 /∗
471 Create a DTMC Trans i t i on corresponding to a Klaper Trans i t i on which doesn ’ t s t a r t from a

Join step .

472 ∗/

473 pr i va t e c r ea t e dtmc : : core : : Trans i t i on newTrans t rans fo rmTrans i t i on ( k laper : : core : : Trans i t i on t ,

dtmc : : core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :

474 t . from . metaType==Join ? t rans fo rmJo inTrans i t i on ( t , d , transformStep ( t . from .

retr ieveForkFromJoin (0 ,{} ) ,d ,m) ,m) :

475 (

476 newTrans . setName ( t . from . name+” t o ”+t . to . name)−>

477 newTrans . setFrom ( transformStep ( t . from , d ,m) )−>

478 newTrans . setTo ( transformStep ( t . to , d ,m) )−>

479 newTrans . s e tP r obab i l i t y ( t . prob )−>

480 newTrans ) ;

481

482

483 /∗
484 Create a DTMC Trans i t i on corresponding to a Klaper Trans i t i on which s t a r t s from a Join

step .

485 ∗/

486 pr i va t e c r ea t e dtmc : : core : : Trans i t i on newTrans t rans fo rmJo inTrans i t i on ( k laper : : core : : Trans i t i on

t , dtmc : : core : :DTMC d , dtmc : : core : : State fromState , dtmc : : core : : Re l i ab i l i t yMode l m) :

487 newTrans . setName ( fromState . name+” t o ”+transformStep ( t . to , d ,m) . name)−>

488 newTrans . setFrom ( fromState )−>

489 newTrans . setTo ( transformStep ( t . to , d ,m) )−>

490 newTrans . s e tP r obab i l i t y ( t . prob )−>

491 newTrans ;

492

493 /∗
494 Create a DTMC Trans i t i on towards a DTMC Fa i l State

495 ∗/
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496 pr i va t e c r ea t e dtmc : : core : : Trans i t i on newTrans t r an s i t i onToFa i l ( k laper : : core : : Ac t iv i ty s , dtmc : :

core : :DTMC d , dtmc : : core : : Re l i ab i l i t yMode l m) :

497 s . i n t e rna lFa i lP rob != nu l l ?

498 (

499 newTrans . setName ( s . name+” t o F a i l ” )−>

500 newTrans . setFrom ( transformStep ( s , d ,m) )−>

501 newTrans . setTo (d . s t a t e . s e l e c t F i r s t ( e | e . metaType==Fa i l ) )−>

502 newTrans . s e tP r obab i l i t y ( s . i n t e rna lFa i lP rob . getMean ( ) )−>

503 newTrans

504 ) :

505 nu l l ;

506

507 /∗
508 Update t r a n s i t i o n p r o b a b i l i t i e s s t a r t i n g from s by tak ing in to account the p r obab i l i t y

o f the t r a n s i t i o n s towards Fa i l s t a t e .

509 ∗/

510 pr i va t e upda t eTran s i t i onProbab i l i t i e s (dtmc : : core : : State s ) :

511 {
512 l e t p f a i l=s . outgoing . s e l e c t ( e | e . to . metaType==Fa i l ) . s i z e==1? s . outgoing .

s e l e c t F i r s t ( e | e . to . metaType==Fa i l ) . p r obab i l i t y : 0 . 0 :

513 s . outgoing . s e l e c t ( e | e . to . metaType!= Fa i l ) . c o l l e c t ( x | x . s e tP r obab i l i t y (x .

p robab i l i t y−p f a i l ) )

514 } ;
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Appendix D

Transformation Rules from

KLAPER to SimJava

Here we report all the transformation rules used to go from the KLAPER meta

model to the SimJava meta model.

1 import k laper : : core ;

2 import k laper : : p r obab i l i t y ;

3 import k laper : : expr ;

4

5 import s imulator : : core ;

6 import s imulator : : p r obab i l i t y ;

7

8 // to inc lude the toDouble ( ) extens ion

9 extens ion org : : k laper : : u t i l : : d s l : : Extens ions ;

10

11 // to inc lude p r obab i l i t y d i s t r i b u t i o n func t i on s

12 extens ion org : : k laper : : u t i l : : ProbExtensions ;

13

14 // and we a l s o load the i o extens ions , f o r the purpose o f

15 // debugging , in case we need i t

16 extens ion org : : openarch i tec tureware : : u t i l : : s t d l i b : : i o ;

17 extens ion org : : openarch i tec tureware : : u t i l : : s t d l i b : : i s s u e s ;

18 extens ion org : : openarch i tec tureware : : u t i l : : s t d l i b : : counter ;

19

20 // s t a r t i n g point f o r the t rans fo rmat ion

21 // ( t h i s extens ion i s c a l l e d from the workflow ! )

22 s imulator : : core : : SimModel k laper2s im ( KlaperModel m) :

23 m. transformModel ( ) ;

24

25 // Klaper KlaperModel c l a s s

26 p r i va t e c r ea t e s imulator : : core : : SimModel t h i s transformModel ( k laper : : core : : KlaperModel m) :

27 t h i s . se tResource (m. r e sou r c e . transformResource ( ) )−>

28 // t h i s . setWorkload (m. workload . s e l e c t (w|w. type . t oS t r ing ( )==’OPEN ’) . transformOpenWorkload ( ) )

−>

29 t h i s . workload . addAll (m. workload . s e l e c t (w|w. type . t oS t r ing ( )==’OPEN’ ) .

transformOpenWorkload ( ) )−>

30 // t h i s . setWorkload (m. workload . s e l e c t (w|w. type . t oS t r ing ( )==’CLOSED ’) . transformClosedWorkload ( ) )

−>

31 t h i s . workload . addAll (m. workload . s e l e c t (w|w. type . t oS t r ing ( )==’CLOSED’ ) .

transformClosedWorkload ( ) )−>

32 t h i s ;

33
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34 pr i va t e c r ea t e s imulator : : core : : OpenWorkload t h i s transformOpenWorkload ( k laper : : core : : Workload w

) :

35 t h i s . setName (w. name)−>

36 t h i s . s e tStep (w. behavior . s tep . transformStep ( ) )−>

37 t h i s . s e tAr r i v a lP r o c e s s (w. a r r i v a lP r o c e s s . t r an s f o rmDi s t r ibu t i on ( ) )−>

38 t h i s ;

39

40 p r i va t e c r ea t e s imulator : : core : : ClosedWorkload t h i s transformClosedWorkload ( k laper : : core : :

Workload w) :

41 t h i s . s e tPopu lat ion (w. populat ion )−>

42 t h i s . setName (w. name)−>

43 t h i s . s e tStep (w. behavior . s tep . transformStep ( ) )−>

44 t h i s ;

45

46 p r i va t e c r ea t e s imulator : : core : : ResourceQueue t h i s transformResource ( k laper : : core : : Resource r ) :

47 t h i s . setCapac i ty ( r . capac i ty . t o In t e g e r ( ) )−>

48 t h i s . s e tDe s c r i p t i on ( r . d e s c r i p t i o n )−>

49 t h i s . setName ( r . name)−>

50 t h i s . s e tO f f e r edS e r v i c e ( r . o f f e r e dS e r v i c e . t rans fo rmServ i c e ( ) )−>

51 t h i s ;

52

53 p r i va t e c r ea t e s imulator : : core : : S e rv i c e t h i s t rans fo rmServ i c e ( k laper : : core : : S e rv i c e s ) :

54 t h i s . setName ( s . name)−>

55 t h i s . s e tDe s c r i p t i on ( s . d e s c r i p t i o n )−>

56 t h i s . s e tStep ( s . behavior . s tep . transformStep ( ) )−>

57 t h i s ;

58

59 p r i va t e c r ea t e s imulator : : core : : Step t h i s transformStep ( k laper : : core : : Step s ) :

60 t h i s ;

61

62 p r i va t e c r ea t e s imulator : : core : : S tar t t h i s transformStep ( k laper : : core : : S tar t s ) :

63 t h i s . setName ( s . name)−>

64 t h i s . se tOutTrans i t ion ( ( ( k laper : : core : : Behavior ) s . eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . from .

name==s . name) . t rans fo rmTrans i t i on ( ) )−>

65 t h i s ;

66

67 p r i va t e c r ea t e s imulator : : core : : End t h i s transformStep ( k laper : : core : : End e ) :

68 t h i s . setName ( e . name)−>

69 // t h i s . se tOutTrans i t ion ( ( ( k laper : : core : : Behavior ) e . eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . from .

name==e . name) . t rans fo rmTrans i t i on ( ) )−>

70 t h i s ;

71

72 p r i va t e c r ea t e s imulator : : core : : Branch t h i s transformStep ( k laper : : core : : Branch b) :

73 t h i s . setName (b . name)−>

74 t h i s . se tOutTrans i t ion ( ( ( k laper : : core : : Behavior )b . eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . from .

name==b . name) . t rans fo rmTrans i t i on ( ) )−>

75 t h i s ;

76

77 p r i va t e c r ea t e s imulator : : core : : Fork t h i s transformStep ( k laper : : core : : Fork f ) :

78 t h i s . setName ( f . name)−>

79 t h i s . se tOutTrans i t ion ( ( ( k laper : : core : : Behavior ) f . eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . from .

name==f . name) . t rans fo rmTrans i t i on ( ) )−>

80 t h i s ;

81

82 p r i va t e c r ea t e s imulator : : core : : Join t h i s transformStep ( k laper : : core : : Join j ) :

83 t h i s . setName ( j . name)−>

84 t h i s . s e tNTrans i t ion ( j . transit ionsNeededToGo )−>

85 t h i s . s e t I nTran s i t i on ( ( ( k laper : : core : : Behavior ) j . eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . to .

name==j . name) . t rans fo rmTrans i t i on ( ) )−>

86 t h i s . se tOutTrans i t ion ( ( ( k laper : : core : : Behavior ) j . eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . from .

name==j . name) . t rans fo rmTrans i t i on ( ) )−>

87 t h i s ;

88

89 p r i va t e c r ea t e s imulator : : core : : Wait t h i s transformStep ( k laper : : core : : Wait w) :

90 t h i s . setName (w. name)−>

91 t h i s . se tOutTrans i t ion ( ( ( k laper : : core : : Behavior )w. eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . from .

name==w. name) . t rans fo rmTrans i t i on ( ) )−>

92 t h i s ;

93

94 p r i va t e c r ea t e s imulator : : core : : Ac t iv i ty t h i s transformStep ( k laper : : core : : Ac t i v i ty a ) :
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95 t h i s . setName ( a . name)−>

96 t h i s . se tOutTrans i t ion ( ( ( k laper : : core : : Behavior ) a . eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . from .

name==a . name) . t rans fo rmTrans i t i on ( ) )−>

97 t h i s . s e tRepe t i t i on s ( a . r e p e t i t i o n s . getMean ( ) . t o In t e g e r ( ) )−>

98 t h i s . setServ iceTime ( a . internalExecTime . t r an s f o rmDi s t r ibu t i on ( ) )−>

99 a . in t e rna lFa i lT ime != nu l l ?

100 t h i s . setFai lMode ( a . in t e rna lFa i lT ime . trans formDiscreteFai lMode ( ) ) : t h i s .

setFai lMode ( a . i n t e rna lFa i lP rob . transformContinuousFailMode ( ) )−>

101 t h i s ;

102

103 pr i va t e c r ea t e s imulator : : core : : Exte rna lSe rv i c e t h i s transformStep ( k laper : : core : : Se rv i c eCont ro l

sc ) :

104 sc . b inding . c a l l != nu l l ?

105 (

106 t h i s . setName ( sc . name)−>

107 t h i s . se tOutTrans i t ion ( ( ( k laper : : core : : Behavior ) sc . eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . from

. name==sc . name) . t rans fo rmTrans i t i on ( ) )−>

108 sc . i n t e rna lFa i lP rob != nu l l ? t h i s . s e tFa i lProb ( sc . i n t e rna lFa i lP rob .

transformContinuousFailMode ( ) ) : t h i s . s e tFa i lProb ( nu l l )−>

109 sc . i sSynch==true ?

110 t h i s . s e t S e r v i c eCa l l ( sc . t rans formSynchServ iceCal l ( ) ) : t h i s . s e t S e r v i c eCa l l ( sc .

t rans formAsynchServ iceCal l ( ) )−>

111 t h i s )

112 : nu l l ;

113

114 pr i va t e c r ea t e s imulator : : core : : ServiceWake t h i s transformStep ( k laper : : core : : Se rv i c eCont ro l sc ) :

115 sc . b inding . s i g n a l != nu l l ?

116 (

117 t h i s . setName ( sc . name)−>

118 t h i s . se tOutTrans i t ion ( ( ( k laper : : core : : Behavior ) sc . eContainer ) . t r a n s i t i o n . s e l e c t ( t | t . from

. name==sc . name) . t rans fo rmTrans i t i on ( ) )−>

119 t h i s . s e t S i gna l ( sc . b inding . s i g n a l . transformStep ( ) )−>

120 t h i s

121 )

122 : nu l l ;

123

124 pr i va t e c r ea t e s imulator : : core : : DiscreteFai lMode t h i s trans formDiscreteFai lMode ( k laper : :

p r obab i l i t y : : P robab i l i t yD i s t r i bu t i onFunc t i on di ) :

125 t h i s . s e t In t e rna lFa i lT ime ( d i . t r an s f o rmDi s t r ibu t i on ( ) )−>

126 t h i s ;

127

128 pr i va t e c r ea t e s imulator : : core : : ContinuousFailMode t h i s transformContinuousFailMode ( k laper : :

p r obab i l i t y : : P robab i l i t yD i s t r i bu t i onFunc t i on co ) :

129 t h i s . s e t I n t e rna lFa i lP rob ( 0 . 0 )−>

130 t h i s ;

131

132 pr i va t e c r ea t e s imulator : : core : : ContinuousFailMode t h i s transformContinuousFailMode ( k laper : :

p r obab i l i t y : : Constant c ) :

133 t h i s . s e t I n t e rna lFa i lP rob ( c . getMean ( ) )−>

134 t h i s ;

135

136 pr i va t e c r ea t e s imulator : : core : : ContinuousFailMode t h i s transformContinuousFailMode ( k laper : :

p r obab i l i t y : : Poisson p) :

137 t h i s . s e t I n t e rna lFa i lP rob (p . getMean ( ) ) −>

138 t h i s ;

139

140 pr i va t e c r ea t e s imulator : : p r obab i l i t y : : P robab i l i t yD i s t r i bu t i onFunc t i on t h i s

t r an s f o rmDi s t r i bu t i on ( k laper : : p r obab i l i t y : : P robab i l i t yD i s t r i bu t i onFunc t i on pdf ) :

141 t h i s ;

142

143 pr i va t e c r ea t e s imulator : : p r obab i l i t y : : Exponentia l t h i s t r an s f o rmDi s t r i bu t i on ( k laper : :

p r obab i l i t y : : Exponentia l ex ) :

144 t h i s . setMean ( ex . getMean ( ) )−>

145 t h i s ;

146

147 pr i va t e c r ea t e s imulator : : p r obab i l i t y : : Normal t h i s t r an s f o rmDi s t r i bu t i on ( k laper : : p r obab i l i t y : :

Normal no ) :

148 t h i s . setMean (no . getMean ( ) )−>

149 t h i s . s e tVar iance ( no . standDev . s o l v e ( ) ∗ no . standDev . s o l v e ( ) )−>

150 t h i s ;
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151

152 pr i va t e c r ea t e s imulator : : p r obab i l i t y : : Uniform th i s t r an s f o rmDi s t r i bu t i on ( k laper : : p r obab i l i t y : :

Uniform un) :

153 t h i s . setMin (un . min . s o l v e ( ) )−>

154 t h i s . setMax (un .max . s o l v e ( ) )−>

155 t h i s ;

156

157 pr i va t e c r ea t e s imulator : : core : : SynchServ iceCal l t h i s t rans formSynchServ iceCal l ( k laper : : core : :

Se rv i c eCont ro l sc ) :

158 t h i s . s e t S e r v i c e ( sc . b inding . c a l l . t r ans fo rmServ i c e ( ) )−>

159 t h i s ;

160

161 pr i va t e c r ea t e s imulator : : core : : AsynchServ iceCal l t h i s t rans formAsynchServ iceCal l ( k laper : : core : :

Se rv i c eCont ro l sc ) :

162 t h i s . s e t S e r v i c e ( sc . b inding . c a l l . t r ans fo rmServ i c e ( ) )−>

163 t h i s ;

164

165 pr i va t e c r ea t e s imulator : : core : : Trans i t i on t h i s t rans fo rmTrans i t i on ( k laper : : core : : Trans i t i on t ) :

166 t h i s . setFrom ( t . from . transformStep ( ) )−>

167 t h i s . setTo ( t . to . transformStep ( ) )−>

168 t h i s . setProb ( ( t . prob>0 && t . prob<=1)? t . prob : 1 . 0 )−>

169 t h i s ;
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Appendix E

Transformation Rules from

KLAPER to LQN

Here we report all the transformation rules used to go from the KLAPER meta

model to the LQN meta model.

1 // Model t rans fo rmat ion from the Klaper meta−model to Lqn meta−model

2 //

3 // Author : Enrico Randazzo

4 // Organizat ion : Un ive r s i ty o f Rome ”Tor Vergata”

5 // emai l : en r i c o . randazzo@gmail . com

6

7

8 // imports lqn metamodel

9 import lqn ;

10

11 // imports k laper metamodel packages

12 import k laper : : core ;

13 import k laper : : p r obab i l i t y ;

14 import k laper : : expr ;

15

16 // and we a l s o load the i o extens ions , f o r the purpose o f

17 // debugging , in case we need i t

18 extens ion org : : openarch i tec tureware : : u t i l : : s t d l i b : : i o ;

19 extens ion org : : openarch i tec tureware : : u t i l : : s t d l i b : : i s s u e s ;

20 extens ion org : : openarch i tec tureware : : u t i l : : s t d l i b : : counter ;

21

22 // add i t i ona l ex t en s i on s

23 extens ion org : : k laper : : u t i l : : ProbExtensions ;

24 extens ion org : : k laper : : u t i l : : ExprExtensions ;

25 extens ion org : : k laper : : u t i l : : d s l : : Extens ions ;

26

27

28 // s t a r t i n g point f o r the t rans fo rmat ion

29 // ( t h i s extens ion i s c a l l e d from the workflow ! )

30 Object k laper2 lqn ( k laper : : core : : KlaperModel m) :

31 // m. transformModel ( ) ;

32 m. t rans fo rmat ionSteps ( ) ;

33

34

35 pr i va t e lqn : : LqnModel t rans fo rmat ionSteps ( k laper : : core : : KlaperModel m) :

36 m. trans format ionStep1 ( ) . t rans format ionStep2 (m) ;

37 //−−−− m. trans format ionStep1 ( ) ;

38
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39

40 pr i va t e lqn : : LqnModel t rans format ionStep1 ( k laper : : core : : KlaperModel m) :

41 reportWarning ( ”Model t rans fo rmat ion running ” ) −>

42 m. transformModel ( ) ;

43

44

45 pr i va t e lqn : : LqnModel t rans format ionStep2 ( lqn : : LqnModel intermediate , k laper : : core : : KlaperModel

m) :

46 reportWarning ( ”Model deployment running ” ) −>

47 inte rmed ia te . r e c on f i gu r eP r o c e s s o r s (m) ;

48

49

50 /∗∗
51 ∗ STEP 1 Procedures ( system bu i ld ing without deployment ) :

52 ∗ −−−−−−−−−−−−−−−−−−
53 ∗/

54

55

56 /∗∗
57 ∗ c r e a t e s the i n i t i a l model with a dummy proce s so r

58 ∗/

59 pr i va t e c r ea t e lqn : : LqnModel t h i s transformModel ( k laper : : core : : KlaperModel m) :

60 t h i s . setName ( ”LqnModel” ) −>

61 t h i s . s e tDe s c r i p t i on ( ”Model auto−genereted by Klaper t o o l ” ) −>

62 t h i s . setLqncoreSchemaVersion ( ” 1 .0 ” ) −>

63 t h i s . setLqnSchemaVersion ( ” 1 .0 ” ) −>

64 t h i s . p ro c e s so r . add ( createDummyProcessor (m. r e sou r c e ) ) −> // c r e a t e s a dummy

proce s so r

65 t h i s . p ro c e s so r . addAll (m. workload . transformWorkload ( ) ) −>

66 t h i s ;

67

68

69 /∗∗
70 ∗ c r e a t e s a dummy proce s so r needed only to bu i ld the i n i t i a l ta sks i n f r a s t r u c t u r e

71 ∗/

72 pr i va t e c r ea t e lqn : : Proces sor t h i s createDummyProcessor ( L i s t r e s ou r c e s ) :

73 t h i s . setName ( ”DummyProcessor” ) −>

74 t h i s . s e tSchedu l ing ( lqn : : SchedulingType : : ps ) −>

75 t h i s . setTask ( r e s ou r c e s . t ypeSe l e c t ( k laper : : core : : Resource ) . transformTask ( ) ) −>

76 t h i s . s e tMu l t i p l i c i t y (1 ) −>

77 t h i s . s e tRep l i c a t i on (1) −>

78 t h i s ;

79

80

81 /∗∗
82 ∗ transform a workload in to a proc e s so r + task

83 ∗/

84 pr i va t e c r ea t e lqn : : Proces sor t h i s transformWorkload ( k laper : : core : : Workload w) :

85 t h i s . setName (w. name) −>

86 t h i s . s e tMu l t i p l i c i t y (1 ) −>

87 t h i s . s e tRep l i c a t i on (1) −>

88 t h i s . s e tSchedu l ing ( lqn : : SchedulingType : : ps ) −>

89 t h i s . setQuantum (0 . 1 ∗ 0 .1 ∗ 0 .1 ∗ 0 .1 ∗ 0 . 1 ) −> // only because 0.00001 g ive a parse

e r r o r ! but why???

90 switch (w. type . t oS t r ing ( ) )

91 {
92 case k laper : : core : : WorkloadType : :OPEN. toS t r ing ( ) :

93 t h i s . task . add (w. createOpenWorkloadTask ( ) )

94 case k laper : : core : : WorkloadType : :CLOSED. toSt r ing ( ) :

95 t h i s . task . add (w. createClosedWorkloadTask ( ) )

96 de f au l t :

97 repor tEr ro r ( ”For workload ’ ” + w. name + ” ’ unknown type ’ ” + w. type .

t oS t r ing ( ) + ” ’ ” )

98 } −>

99 t h i s ;

100

101

102 /∗∗
103 ∗ c r e a t e s a task rappre sent ing an open workload

104 ∗/
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105 pr i va t e c r ea t e lqn : : Task t h i s createOpenWorkloadTask ( k laper : : core : : Workload w) :

106 t h i s . setName (w. name) −>

107 t h i s . s e tMu l t i p l i c i t y (32700) −>

108 t h i s . s e tRep l i c a t i on (1) −>

109 t h i s . s e tSchedu l ing ( lqn : : TaskSchedulingType : : f c f s ) −>

110 t h i s . setAct iv i tyGraph ( lqn : : TaskOptionType : : YES) −>

111 t h i s . entry . add (w. createOpenWorkloadEntry ( ) ) −>

112 t h i s . s e tTaskAct iv i ty (w. createTaskActivityGraph (w. createOpenWorkloadEntry ( ) ) ) −>

113 t h i s ;

114

115

116 /∗∗
117 ∗ c r e a t e s an Entry that s e t s r eque s t s at an open a r r i v a l r a t e f o r an open workload

118 ∗/

119 pr i va t e c r ea t e lqn : : Entry t h i s createOpenWorkloadEntry ( k laper : : core : : Workload w) :

120 t h i s . setName (w. name . toLowerCase ( ) ) −>

121 t h i s . setType ( lqn : : EntryType : :NONE) −>

122 t h i s . setOpenArrivalRate (w. a r r i v a lP r o c e s s . getMean ( ) ) −>

123 t h i s ;

124

125

126 /∗∗
127 ∗ c r e a t e s a task rappre sent ing a c l o s ed workload

128 ∗/

129 pr i va t e c r ea t e lqn : : Task t h i s createClosedWorkloadTask ( k laper : : core : : Workload w) :

130 t h i s . setName (w. name) −>

131 t h i s . s e tMu l t i p l i c i t y (w. populat ion ) −>

132 t h i s . s e tRep l i c a t i on (1) −>

133 t h i s . s e tSchedu l ing ( lqn : : TaskSchedulingType : : r e f ) −>

134 t h i s . setAct iv i tyGraph ( lqn : : TaskOptionType : : YES) −>

135 t h i s . entry . add (w. createClosedWorkloadEntry ( ) ) −>

136 t h i s . s e tTaskAct iv i ty (w. createTaskActivityGraph (w. createClosedWorkloadEntry ( ) ) ) −>

137 t h i s ;

138

139 /∗∗
140 ∗ c r e a t e s an Entry that s e t s r eque s t s f o r a c l o s ed workload

141 ∗/

142 pr i va t e c r ea t e lqn : : Entry t h i s createClosedWorkloadEntry ( k laper : : core : : Workload w) :

143 t h i s . setName (w. name . toLowerCase ( ) ) −>

144 t h i s . setType ( lqn : : EntryType : :NONE) −>

145 t h i s ;

146

147

148 /∗∗
149 ∗ c r e a t e s an lqn Task

150 ∗/

151 pr i va t e c r ea t e lqn : : Task t h i s transformTask ( k laper : : core : : Resource r ) :

152 t h i s . setName ( r . name) −>

153 t h i s . s e tMu l t i p l i c i t y ( r . capac i ty . t o In t e g e r ( ) ) −>

154 t h i s . s e tRep l i c a t i on (1) −>

155 t h i s . s e tSchedu l ing ( r . s chedu l ingPo l i cy . toLqnScheduling ( ) ) −>

156 t h i s . setAct iv i tyGraph ( lqn : : TaskOptionType : : YES) −>

157 t h i s . entry . addAll ( r . o f f e r e dS e r v i c e . createEntry ( ) ) −>

158 t h i s . s e tTaskAct iv i ty ( r . createTaskActivityGraph ( ) ) −>

159 t h i s ;

160

161

162 /∗∗
163 ∗ c r e a t e s an Lqn Entry f o r r e gu l a r ta sks

164 ∗/

165 pr i va t e c r ea t e lqn : : Entry t h i s createEntry ( k laper : : core : : S e rv i c e s ) :

166 t h i s . setName ( s . name) −>

167 t h i s . setType ( lqn : : EntryType : :NONE) −>

168 t h i s ;

169

170

171 /∗∗
172 ∗ c r e a t e s an Lqn TaskActivityGraph f o r workload ’ s behavior

173 ∗/
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174 pr i va t e c r ea t e lqn : : TaskActivityGraph t h i s createTaskActivityGraph ( k laper : : core : : Workload w, lqn

: : Entry entry ) :

175 l e t a c t i v i t i e s = {} :

176 l e t precedences = {} :

177 w. behavior . bu i ldAct iv i t i e sGraph ( a c t i v i t i e s , precedences , entry ) −>

178 t h i s . s e tAc t i v i t y ( a c t i v i t i e s ) −>

179 t h i s . se tPrecedence ( precedences ) −>

180 t h i s . replyEntry . add (w. behavior . s tep . typeSe l e c t ( k laper : : core : : End) . f i r s t ( ) .

createReplyEntry ( ” r ep l y ” + w. name) ) −>

181 t h i s ;

182

183

184 /∗∗
185 ∗ c r e a t e s an lqn TaskActivityGraph

186 ∗/

187 pr i va t e c r ea t e lqn : : TaskActivityGraph t h i s createTaskActivityGraph ( k laper : : core : : Resource r ) :

188 l e t a c t i v i t i e s = {} :

189 l e t precedences = {} :

190 l e t r e p l y e n t r i e s = {} :

191 r . o f f e r e dS e r v i c e . bu i ldAct iv i t i e sGraph ( a c t i v i t i e s , precedences , r e p l y e n t r i e s ) −>

192 t h i s . s e tAc t i v i t y ( a c t i v i t i e s ) −>

193 t h i s . se tPrecedence ( precedences ) −>

194 t h i s . setReplyEntry ( r e p l y e n t r i e s ) −>

195 t h i s ;

196

197

198 /∗∗
199 ∗ conver t s a k laper s e r v i c e in to a sub−graph o f a TaskActivityGraph

200 ∗/

201 pr i va t e bu i ldAct iv i t i e sGraph ( k laper : : core : : S e rv i c e s , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [

Precedence ] precedences , L i s t [ ReplyEntry ] r e p l y e n t r i e s ) :

202 s . behavior . bu i ldAct iv i t i e sGraph ( a c t i v i t i e s , precedences , s . c reateEntry ( ) ) −>

203 r e p l y e n t r i e s . add ( s . behavior . s tep . typeSe l e c t ( k laper : : core : : End) . f i r s t ( ) . createReplyEntry

( ” r ep l y ” + s . name) ) ;

204

205

206 /∗∗
207 ∗ c r e a t e s an Lqn ReplyEntry ( f o r TaskActivityGraph )

208 ∗/

209 pr i va t e c r ea t e lqn : : ReplyEntry t h i s createReplyEntry ( k laper : : core : : End e , S t r ing reply name ) :

210 t h i s . setName ( reply name ) −>

211 t h i s . r ep l yAc t i v i t y . add ( e . c r ea t eRep lyAct iv i ty ( ) ) −>

212 t h i s ;

213

214

215 /∗∗
216 ∗ c r e a t e s an Lqn ReplyAct iv i ty ( f o r TaskActivityGraph )

217 ∗/

218 pr i va t e c r ea t e lqn : : ReplyAct iv i ty t h i s c r ea t eRep lyAct iv i ty ( k laper : : core : : End e ) :

219 t h i s . setName ( e . name) −>

220 t h i s ;

221

222

223 /∗∗
224 ∗ bu i l d s an a c t i v i t y graph ( f o r behav ior s and r e s ou r c e s )

225 ∗/

226 pr i va t e bu i ldAct iv i t i e sGraph ( k laper : : core : : Behavior b , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [

Precedence ] precedences , lqn : : Entry entry ) :

227 b . s tep . typeSe l e c t ( k laper : : core : : S tar t ) . transformStep ( a c t i v i t i e s , precedences , entry ) −>

228 nu l l ;

229

230

231 /∗∗
232 ∗ t rans forms a gene r i c Step

233 ∗/

234 pr i va t e transformStep ( k laper : : core : : Step s , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [ Precedence ]

precedences , lqn : : Entry entry ) :

235 // dummy funct ion , do nothing

236 nu l l ;

237
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238

239 /∗∗
240 ∗ t rans forms a Star t s tep

241 ∗/

242 pr i va t e transformStep ( k laper : : core : : S tar t s ta r t , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [ Precedence ]

precedences , lqn : : Entry entry ) :

243 l e t a c t i v i t y = new lqn : : Act iv i tyDef :

244 a c t i v i t y . setName ( s t a r t . name) −>

245 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

246 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

247 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

248 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

249 a c t i v i t y . se tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

250 i f ( entry != nu l l ) then // entry can be nu l l f o r nested behav ior s

251 (

252 a c t i v i t y . setBoundToEntry ( entry . name)

253 ) −>

254 a c t i v i t i e s . add ( a c t i v i t y ) −>

255 i f ( s t a r t . out . f i r s t ( ) . to . in . s i z e == 1) then

256 (

257 l e t precedence = new lqn : : Precedence :

258 precedence . se tPre ( s t a r t . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

259 precedence . se tPost ( s t a r t . out . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

260 precedences . add ( precedence )

261 ) −>

262 s t a r t . out . f i r s t ( ) . to . transformStep ( a c t i v i t i e s , precedences , nu l l ) ;

263

264

265 /∗∗
266 ∗ t rans forms an End step

267 ∗/

268 pr i va t e transformStep ( k laper : : core : : End end , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [ Precedence ]

precedences , lqn : : Entry entry ) :

269 i f ( ! ( a c t i v i t i e s . e x i s t s ( a | a . name == end . name) ) ) then // the step i s transformed only once

270 (

271 l e t a c t i v i t y = new lqn : : Act iv i tyDef :

272 i f ( end . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

273 (

274 l e t precedence = new lqn : : Precedence :

275 precedence . setPreOR ( end . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

276 precedence . se tPost ( end . in . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

277 precedences . add ( precedence )

278 ) −>

279 a c t i v i t y . setName ( end . name) −>

280 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

281 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

282 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

283 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

284 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

285 a c t i v i t i e s . add ( a c t i v i t y )

286 ) ;

287

288

289

290 /∗∗
291 ∗ t rans forms a Wait s tep

292 ∗/

293 pr i va t e transformStep ( k laper : : core : : Wait wait , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [ Precedence ]

precedences , lqn : : Entry entry ) :

294 i f ( ! ( a c t i v i t i e s . e x i s t s ( a | a . name == wait . name) ) ) then // the step i s transformed only

once

295 (

296 l e t a c t i v i t y = new lqn : : Act iv i tyDef :

297 i f ( wait . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

298 (

299 l e t in precedence = new lqn : : Precedence :

300 in precedence . setPreOR ( wait . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

301 in precedence . se tPost ( wait . in . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

302 precedences . add ( in precedence )

303 ) −>
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304 a c t i v i t y . setName ( wait . name) −>

305 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

306 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

307 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

308 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

309 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

310 a c t i v i t i e s . add ( a c t i v i t y ) −>

311 i f ( wait . out . f i r s t ( ) . to . in . s i z e == 1) then

312 (

313 l e t out precedence = new lqn : : Precedence :

314 out precedence . se tPre ( wait . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

315 out precedence . se tPost ( wait . out . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) )

−>

316 precedences . add ( out precedence )

317 ) −>

318 wait . out . f i r s t ( ) . to . transformStep ( a c t i v i t i e s , precedences , nu l l )

319 ) ;

320

321 /∗∗
322 ∗ t rans forms a Branch step

323 ∗/

324 pr i va t e transformStep ( k laper : : core : : Branch branch , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [ Precedence

] precedences , lqn : : Entry entry ) :

325 i f ( ! ( a c t i v i t i e s . e x i s t s ( a | a . name == branch . name) ) ) then // the step i s transformed only

once

326 (

327 l e t a c t i v i t y = new lqn : : Act iv i tyDef :

328 l e t out precedence = new lqn : : Precedence :

329 i f ( branch . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

330 (

331 l e t in precedence = new lqn : : Precedence :

332 in precedence . setPreOR ( branch . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

333 in precedence . se tPost ( branch . in . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) )

−>

334 precedences . add ( in precedence )

335 ) −>

336 a c t i v i t y . setName ( branch . name) −>

337 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

338 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

339 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

340 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

341 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

342 a c t i v i t i e s . add ( a c t i v i t y ) −>

343 out precedence . se tPre ( branch . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

344 out precedence . setPostOR ( branch . c r ea t eOrL i s t ( ) ) −>

345 precedences . add ( out precedence ) −>

346 branch . out . to . transformStep ( a c t i v i t i e s , precedences , nu l l )

347 ) ;

348

349 /∗∗
350 ∗ t rans forms an Act iv i ty step

351 ∗/

352 pr i va t e transformStep ( k laper : : core : : Ac t i v i ty a c t i v i t y , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [

Precedence ] precedences , lqn : : Entry entry ) :

353 i f ( ! ( a c t i v i t i e s . e x i s t s ( e | e . name == a c t i v i t y . name) ) ) then // the step i s transformed only

once

354 (

355 l e t act = new lqn : : Act iv i tyDef :

356 l e t loop = new lqn : : Act iv i tyDef :

357 l e t loop name = a c t i v i t y . name + ” loop ” :

358 l e t i s l o o p = ( a c t i v i t y . r e p e t i t i o n s == nu l l ) ? ( f a l s e ) : ( ! ( a c t i v i t y . r e p e t i t i o n s

. getMean ( ) == 1 . 0 ) ) :

359

360 i f ( a c t i v i t y . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

361 (

362 l e t in precedence = new lqn : : Precedence :

363 in precedence . setPreOR ( a c t i v i t y . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

364 // f o r a s i n g l e a c t i v i t y

365 in precedence . se tPost ( a c t i v i t y . in . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) )

−>
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366 precedences . add ( in precedence )

367 ) −>

368

369 i f ( i s l o o p | | ( a c t i v i t y . nestedBehavior != nu l l ) ) then // loop cond i t i on

370 (

371 l e t loop = new lqn : : Act iv i tyDef :

372 l e t l oop precedence = new lqn : : Precedence :

373 l e t l o o p l i s t = new lqn : : Act iv i tyLoopLi s t :

374

375 loop . setName ( a c t i v i t y . name) −>

376 loop . setHostDemandMean ( 0 . 0 ) −>

377 loop . setHostDemandCvsq ( 1 . 0 ) −>

378 loop . setThinkTime ( 0 . 0 ) −>

379 loop . setMaxServiceTime ( 0 . 0 ) −>

380 loop . se tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

381 a c t i v i t i e s . add ( loop ) −>

382

383 loop precedence . setPre ( ( new lqn : : S i n g l eAc t i v i t yL i s t ) . s e tAc t i v i t y ( ( new

lqn : : Ac t iv i ty ) . setName ( a c t i v i t y . name) ) ) −>

384 l o o p l i s t . setEnd ( a c t i v i t y . out . f i r s t ( ) . to . name) −>

385 i f ( a c t i v i t y . nestedBehavior == nu l l ) then // s imple a c t i v i t y

386 (

387 l e t l o o p s i n g l e a c t i v i t y = new lqn : : Act iv i tyDef :

388 l e t a c t i v i t y l o o p = new lqn : : Act ivityLoop :

389

390 l o o p s i n g l e a c t i v i t y . setName ( a c t i v i t y . name + ” loop i t em ” ) −>

391 l o o p s i n g l e a c t i v i t y . setHostDemandMean ( a c t i v i t y . internalExecTime

. getMean ( ) ) −>

392 l o o p s i n g l e a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

393 l o o p s i n g l e a c t i v i t y . setThinkTime ( 0 . 0 ) −>

394 l o o p s i n g l e a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

395 l o o p s i n g l e a c t i v i t y . se tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

396 a c t i v i t i e s . add ( l o o p s i n g l e a c t i v i t y ) −>

397 a c t i v i t y l o o p . setName ( a c t i v i t y . name + ” loop i t em ” ) −>

398 a c t i v i t y l o o p . setCount ( a c t i v i t y . r e p e t i t i o n s . getMean ( ) ) −>

399 l o o p l i s t . a c t i v i t y . add ( a c t i v i t y l o o p )

400 ) −>

401

402 i f ( a c t i v i t y . nestedBehavior != nu l l ) then // nested behavior

403 (

404 l e t a c t i v i t y l o o p = new lqn : : Act ivityLoop :

405

406 bu i ldAct iv i t i e sGraph ( a c t i v i t y . nestedBehavior , a c t i v i t i e s ,

precedences , nu l l ) −>

407 a c t i v i t y l o o p . setName ( a c t i v i t y . nestedBehavior . s tep . typeSe l e c t (

k laper : : core : : S tar t ) . f i r s t ( ) . name) −>

408 ( a c t i v i t y . r e p e t i t i o n s != nu l l ) ? a c t i v i t y l o o p . setCount ( a c t i v i t y

. r e p e t i t i o n s . getMean ( ) ) : a c t i v i t y l o o p . setCount ( 1 . 0 ) −>

409 l o o p l i s t . a c t i v i t y . add ( a c t i v i t y l o o p )

410 ) −>

411 loop precedence . setPostLOOP( l o o p l i s t ) −>

412 precedences . add ( loop precedence )

413 )

414 e l s e // s i n g l e a c t i v i t y

415 (

416 i f ( a c t i v i t y . nestedBehavior == nu l l ) then // s imple a c t i v i t y

417 (

418 act . setName ( a c t i v i t y . name) −>

419 act . setHostDemandMean ( a c t i v i t y . internalExecTime . getMean ( ) ) −>

420 act . setHostDemandCvsq ( 1 . 0 ) −>

421 act . setThinkTime ( 0 . 0 ) −>

422 act . setMaxServiceTime ( 0 . 0 ) −>

423 act . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

424 a c t i v i t i e s . add ( act )

425 )

426 ) −>

427

428 // f o r a s i n g l e a c t i v i t y

429 i f ( a c t i v i t y . out . f i r s t ( ) . to . in . s i z e == 1) then

430 (
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431 l e t out precedence = new lqn : : Precedence :

432 out precedence . se tPre ( a c t i v i t y . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

433 out precedence . se tPost ( a c t i v i t y . out . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t

( ) ) −>

434 precedences . add ( out precedence )

435 ) −>

436

437 a c t i v i t y . out . f i r s t ( ) . to . transformStep ( a c t i v i t i e s , precedences , nu l l )

438 ) ;

439

440

441 /∗∗
442 ∗ t rans forms a Serv i c eCont ro l s tep

443 ∗/

444 pr i va t e transformStep ( k laper : : core : : Se rv i c eCont ro l s e rv i c e , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [

Precedence ] precedences , lqn : : Entry entry ) :

445 i f ( ! ( a c t i v i t i e s . e x i s t s ( e | e . name == s e r v i c e . name) ) ) then // the step i s transformed only

once

446 (

447 l e t act = new lqn : : Act iv i tyDef :

448 l e t loop = new lqn : : Act iv i tyDef :

449 l e t loop name = s e r v i c e . name + ” loop ” :

450 l e t i s l o o p = ( s e r v i c e . r e p e t i t i o n s == nu l l ) ? ( f a l s e ) : ( ! ( s e r v i c e . r e p e t i t i o n s .

getMean ( ) == 1 . 0 ) ) :

451

452 i f ( s e r v i c e . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

453 (

454 l e t in precedence = new lqn : : Precedence :

455 in precedence . setPreOR ( s e r v i c e . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

456 // f o r a s i n g l e a c t i v i t y

457 in precedence . se tPost ( s e r v i c e . in . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) )

−>

458 precedences . add ( in precedence )

459 ) −>

460

461 i f ( i s l o o p | | ( s e r v i c e . nestedBehavior != nu l l ) ) then // loop cond i t i on

462 (

463 l e t loop = new lqn : : Act iv i tyDef :

464 l e t l oop precedence = new lqn : : Precedence :

465 l e t l o o p l i s t = new lqn : : Act iv i tyLoopLi s t :

466

467 loop . setName ( s e r v i c e . name) −>

468 loop . setHostDemandMean ( 0 . 0 ) −>

469 loop . setHostDemandCvsq ( 1 . 0 ) −>

470 loop . setThinkTime ( 0 . 0 ) −>

471 loop . setMaxServiceTime ( 0 . 0 ) −>

472 loop . se tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

473 a c t i v i t i e s . add ( loop ) −>

474

475 loop precedence . setPre ( ( new lqn : : S i n g l eAc t i v i t yL i s t ) . s e tAc t i v i t y ( ( new

lqn : : Ac t iv i ty ) . setName ( s e r v i c e . name) ) ) −>

476 l o o p l i s t . setEnd ( s e r v i c e . out . f i r s t ( ) . to . name) −>

477 i f ( s e r v i c e . nestedBehavior == nu l l ) then // s imple a c t i v i t y

478 (

479 l e t l o o p s i n g l e a c t i v i t y = new lqn : : Act iv i tyDef :

480 l e t a c t i v i t y l o o p = new lqn : : Act ivityLoop :

481

482 l o o p s i n g l e a c t i v i t y . setName ( s e r v i c e . name + ” loop i t em ” ) −>

483 l o o p s i n g l e a c t i v i t y . setHostDemandMean ( s e r v i c e . internalExecTime .

getMean ( ) ) −>

484 l o o p s i n g l e a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

485 l o o p s i n g l e a c t i v i t y . setThinkTime ( 0 . 0 ) −>

486 l o o p s i n g l e a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

487 l o o p s i n g l e a c t i v i t y . se tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

488 a c t i v i t i e s . add ( l o o p s i n g l e a c t i v i t y ) −>

489 a c t i v i t y l o o p . setName ( s e r v i c e . name + ” loop i t em ” ) −>

490 a c t i v i t y l o o p . setCount ( s e r v i c e . r e p e t i t i o n s . getMean ( ) ) −>

491 l o o p l i s t . a c t i v i t y . add ( a c t i v i t y l o o p )

492 ) −>

493
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494 i f ( s e r v i c e . nestedBehavior != nu l l ) then

495 (

496 l e t a c t i v i t y l o o p = new lqn : : Act ivityLoop :

497

498 bu i ldAct iv i t i e sGraph ( s e r v i c e . nestedBehavior , a c t i v i t i e s ,

precedences , nu l l ) −>

499 a c t i v i t y l o o p . setName ( s e r v i c e . nestedBehavior . s tep . typeSe l e c t (

k laper : : core : : S tar t ) . f i r s t ( ) . name) −>

500 ( s e r v i c e . r e p e t i t i o n s != nu l l ) ? a c t i v i t y l o o p . setCount ( s e r v i c e .

r e p e t i t i o n s . getMean ( ) ) : a c t i v i t y l o o p . setCount ( 1 . 0 ) −>

501 l o o p l i s t . a c t i v i t y . add ( a c t i v i t y l o o p )

502 ) −>

503 loop precedence . setPostLOOP( l o o p l i s t ) −>

504 precedences . add ( loop precedence )

505 )

506 e l s e // s i n g l e a c t i v i t y

507 (

508 i f ( s e r v i c e . nestedBehavior == nu l l ) then // s imple a c t i v i t y

509 (

510 l e t c a l l = new lqn : : Act iv ityMakingCal l :

511

512 // a c t i v i t y a t t r i b u t e s

513 act . setName ( s e r v i c e . name) −>

514 act . setHostDemandMean ( s e r v i c e . internalExecTime . getMean ( ) ) −>

515 act . setHostDemandCvsq ( 1 . 0 ) −>

516 act . setThinkTime ( 0 . 0 ) −>

517 act . setMaxServiceTime ( 0 . 0 ) −>

518 act . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

519 // s e r v i c e con t r o l a t t r i b u t e s

520 c a l l . setFanin (1) −>

521 c a l l . setFanout (1) −>

522 ( s e r v i c e . b inding . c a l l != nu l l ) ?

523 c a l l . s e tDest ( s e r v i c e . b inding . c a l l . name) : c a l l . s e tDest (

s e r v i c e . b inding . s i g n a l . name) −>

524 c a l l . setCal lsMean ( 1 . 0 ) −>

525 ( s e r v i c e . i sSynch ) ?

526 (

527 act . synchCal l . add ( c a l l )

528 )

529 :

530 (

531 act . asynchCal l . add ( c a l l )

532 ) −>

533 a c t i v i t i e s . add ( act )

534 )

535 ) −>

536

537 // f o r a s i n g l e a c t i v i t y

538 i f ( s e r v i c e . out . f i r s t ( ) . to . in . s i z e == 1) then

539 (

540 l e t out precedence = new lqn : : Precedence :

541 out precedence . se tPre ( s e r v i c e . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

542 out precedence . se tPost ( s e r v i c e . out . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( )

) −>

543 precedences . add ( out precedence )

544 ) −>

545

546 s e r v i c e . out . f i r s t ( ) . to . transformStep ( a c t i v i t i e s , precedences , nu l l )

547 ) ;

548

549

550 /∗∗
551 ∗ t rans forms a Fork step

552 ∗/

553 pr i va t e transformStep ( k laper : : core : : Fork fork , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [ Precedence ]

precedences , lqn : : Entry entry ) :

554 i f ( ! ( a c t i v i t i e s . e x i s t s ( e | e . name == fork . name) ) ) then // the step i s transformed only

once

555 (

556 l e t a c t i v i t y = new lqn : : Act iv i tyDef :
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557 l e t out precedence = new lqn : : Precedence :

558 i f ( f o rk . in . s i z e > 1) then // f o r ( incoming ) OR−j o i n precedence

559 (

560 l e t in precedence = new lqn : : Precedence :

561 in precedence . setPreOR ( fo rk . c r e a t eAc t i v i t yL i s t I n ( ) ) −>

562 in precedence . se tPost ( f o rk . in . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

563 precedences . add ( in precedence )

564 ) −>

565 a c t i v i t y . setName ( fo rk . name) −>

566 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

567 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

568 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

569 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

570 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

571 a c t i v i t i e s . add ( a c t i v i t y ) −>

572 out precedence . se tPre ( f o rk . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

573 out precedence . setPostAND( fo rk . c r ea t eAct iv i tyL i s tOut ( ) ) −>

574 precedences . add ( out precedence ) −>

575 fo rk . out . to . transformStep ( a c t i v i t i e s , precedences , nu l l )

576 ) ;

577

578

579 /∗∗
580 ∗ t rans forms a Join step

581 ∗/

582 pr i va t e transformStep ( k laper : : core : : Join jo in , L i s t [ Act iv i tyDef ] a c t i v i t i e s , L i s t [ Precedence ]

precedences , lqn : : Entry entry ) :

583 i f ( ! ( a c t i v i t i e s . e x i s t s ( e | e . name == jo i n . name) ) ) then // the step i s transformed only

once

584 (

585 l e t a c t i v i t y = new lqn : : Act iv i tyDef :

586 l e t in precedence = new lqn : : Precedence :

587 in precedence . setPreAND( j o i n . c reateAndJo inLis t ( ) ) −>

588 in precedence . se tPost ( j o i n . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

589 precedences . add ( in precedence ) −>

590 a c t i v i t y . setName ( j o i n . name) −>

591 a c t i v i t y . setHostDemandMean ( 0 . 0 ) −>

592 a c t i v i t y . setHostDemandCvsq ( 1 . 0 ) −>

593 a c t i v i t y . setThinkTime ( 0 . 0 ) −>

594 a c t i v i t y . setMaxServiceTime ( 0 . 0 ) −>

595 a c t i v i t y . s e tCa l lOrder ( lqn : : Cal lOrder : : STOCHASTIC) −>

596 a c t i v i t i e s . add ( a c t i v i t y ) −>

597 i f ( j o i n . out . f i r s t ( ) . to . in . s i z e == 1) then

598 (

599 l e t out precedence = new lqn : : Precedence :

600 out precedence . se tPre ( j o i n . c r e a t e S i n g l eA c t i v i t yL i s t ( ) ) −>

601 out precedence . se tPost ( j o i n . out . f i r s t ( ) . to . c r e a t e S i n g l eA c t i v i t yL i s t ( ) )

−>

602 precedences . add ( out precedence )

603 ) −>

604 j o i n . out . f i r s t ( ) . to . transformStep ( a c t i v i t i e s , precedences , nu l l )

605 ) ;

606

607 /∗∗
608 ∗ c r e a t e s an Lqn S i n g l eAc t i v i t yL i s t element

609 ∗/

610 pr i va t e lqn : : S i n g l eAc t i v i t yL i s t c r e a t e S i n g l eA c t i v i t yL i s t ( k laper : : core : : Step s ) :

611 l e t a c t i v i t y l i s t = new lqn : : S i n g l eAc t i v i t yL i s t :

612 a c t i v i t y l i s t . s e tAc t i v i t y ( s . c r e a t eAc t i v i t y ( ) ) −>

613 a c t i v i t y l i s t ;

614

615

616 /∗∗
617 ∗ c r e a t e s an Lqn Act iv i ty

618 ∗/

619 pr i va t e lqn : : Ac t iv i ty c r e a t eAc t i v i t y ( k laper : : core : : Step s ) :

620 l e t a c t i v i t y = new lqn : : Ac t iv i ty :

621 a c t i v i t y . setName ( s . name)−>

622 a c t i v i t y ;

623
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624

625 /∗∗
626 ∗ c r e a t e s an Lqn OrList

627 ∗/

628 pr i va t e lqn : : OrList c r ea t eOrL i s t ( k laper : : core : : Branch b) :

629 l e t o r l i s t = new lqn : : OrList :

630 o r l i s t . a c t i v i t y . addAll (b . out . c r ea teAct iv i tyOr ( ) ) −>

631 o r l i s t ;

632

633 /∗∗
634 ∗ c r e a t e s an Lqn Act iv ityOr

635 ∗/

636 pr i va t e lqn : : Act iv ityOr c rea teAct iv i tyOr ( k laper : : core : : Trans i t i on t ) :

637 l e t a c t i v i t y o r = new lqn : : Act iv ityOr :

638 a c t i v i t y o r . setName ( t . to . name) −>

639 a c t i v i t y o r . setProb ( t . prob ) −>

640 a c t i v i t y o r ;

641

642

643 /∗∗
644 ∗ c r e a t e s an Lqn Ac t i v i t yL i s t

645 ∗/

646 pr i va t e c r ea t e lqn : : Ac t i v i t yL i s t t h i s c r e a t eAc t i v i t yL i s t I n ( k laper : : core : : Step s ) :

647 t h i s . a c t i v i t y . addAll ( s . in . from . c r e a t eAc t i v i t y ( ) ) −>

648 t h i s ;

649 p r i va t e c r ea t e lqn : : Ac t i v i t yL i s t t h i s c r ea t eAct i v i tyL i s tOut ( k laper : : core : : Step s ) :

650 t h i s . a c t i v i t y . addAll ( s . out . to . c r e a t eAc t i v i t y ( ) ) −>

651 t h i s ;

652

653 /∗∗
654 ∗ c r e a t e s an Lqn AndJoinList

655 ∗/

656 pr i va t e c r ea t e lqn : : AndJoinList t h i s createAndJo inLis t ( k laper : : core : : Join j o i n ) :

657 t h i s . a c t i v i t y . addAll ( j o i n . in . from . c r e a t eAc t i v i t y ( ) ) −>

658 t h i s . setQuorum ( j o i n . transit ionsNeededToGo ) −> // what i s the r e a l meaning o f the quorum

???? not documented ! ! ! !

659 // t h i s . setQuorum (0) −>

660 t h i s ;

661

662

663 /∗∗
664 ∗ Step 2 procedures ( system deployment ) :

665 ∗ −−−−−−−−−−−−−−−−−−
666 ∗/

667

668

669 /∗∗
670 ∗ c r e a t e s the r e a l p r o c e s s o r s and r e c on f i g u r e ta sks from the dummy proce s so r

671 ∗/

672 pr i va t e lqn : : LqnModel r e c on f i gu r eP r o c e s s o r s ( lqn : : LqnModel temp model , k laper : : core : : KlaperModel

m) :

673 // //−−−− r i gh t now hardware r e s ou r c e s names are hardcoded but they should be de f ined by

the user ! ! ! TODO

674 temp model . p ro c e s so r . addAll (m. r e sou r c e . s e l e c t ( e |{ ’ cpu ’ , ’ network ’ , ’ d i sk ’ } . conta ins ( e .

type ) ) . t rans fo rmProces sor ( ) ) −>

675

676 // removes the dummy proce s so r

677 temp model . s e tProc e s s o r ( temp model . p ro c e s so r . w i thoutF i r s t ( ) ) −>

678 temp model ;

679

680

681 /∗∗
682 ∗ c r e a t e s an lqn proc e s so r from an hardware k laper r e sou r c e

683 ∗/

684 pr i va t e c r ea t e lqn : : Proces sor t h i s t rans fo rmProces sor ( k laper : : core : : Resource r ) :

685 t h i s . setName ( r . name) −>

686 t h i s . s e tMu l t i p l i c i t y (1 ) −>

687 // t h i s . setSpeedFactor ( 0 . 0 ) −>

688 t h i s . s e tRep l i c a t i on (1) −>

689 // t h i s . setQuantum ( 0 . 1 ) −>
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690 ( r . s chedu l ingPo l i cy != nu l l ) ? t h i s . s e tSchedu l ing ( r . s chedu l ingPo l i cy . t rans formSchedul ing

( ) ) : nu l l −>

691 // t h i s . s e tSchedu l ing ( lqn : : SchedulingType : : ps ) −>

692 t h i s . setQuantum (0 . 1 ∗ 0 .1 ∗ 0 .1 ∗ 0 .1 ∗ 0 . 1 ) −> // only because 0.00001 g ive a parse

e r r o r ! but why???

693

694 // adds the main task running on t h i s p ro c e s so r ( the task that r ep r e s en t s hardware

s e r v i c e s )

695 t h i s . task . add ( r . transformTask ( ) ) −> // i t uses caching ! ! ! !

696

697 // looks f o r a l l the ta sks that use the prev ious one

698 t h i s . task . addAll (

699 ( ( k laper : : core : : KlaperModel ) ( r . eContainer ) ) . r e s ou r c e . s e l e c t ( e | e != r ) . s e l e c t ( e

| e . o f f e r e dS e r v i c e . behavior . s tep . typeSe l e c t ( k laper : : core : : Se rv i c eCont ro l ) .

b inding . c a l l . name . i n t e r s e c t ( r . transformTask ( ) . entry . name) . s i z e > 0) .

transformTask ( )

700 ) −>

701 t h i s ;

702

703 pr i va t e lqn : : SchedulingType trans formSchedul ing ( k laper : : core : : Schedul ingPol icyKind s ) :

704 // t h i s switch seems i t doesn ’ t work with normal enum va lues . With s t r i n g s i t works . . .

but why not with enum l i t e r a l s ?????

705 switch ( s . t oS t r ing ( ) ) {
706 case k laper : : core : : Schedul ingPol icyKind : : Ea r l i e s tDead l i n eF i r s t . t oS t r i ng ( ) : lqn : :

SchedulingType : : ho l

707 case k laper : : core : : Schedul ingPol icyKind : : FIFO . toS t r ing ( ) : lqn : : SchedulingType : :

f c f s

708 case k laper : : core : : Schedul ingPol icyKind : : F ixedPr i o r i ty . t oS t r ing ( ) : lqn : :

SchedulingType : : pp

709 case k laper : : core : : Schedul ingPol icyKind : : Lea s tLax i tyF i r s t . t oS t r ing ( ) : lqn : :

SchedulingType : : ho l

710 case k laper : : core : : Schedul ingPol icyKind : : RoundRobin . t oS t r ing ( ) : lqn : :

SchedulingType : : ps

711 case k laper : : core : : Schedul ingPol icyKind : : TimeTableDriven . t oS t r i ng ( ) : lqn : :

SchedulingType : : ps

712 de f au l t : lqn : : SchedulingType : :NULL

713 } ;

714

715 pr i va t e lqn : : TaskSchedulingType toLqnScheduling ( k laper : : core : : Schedul ingPol icyKind s ) :

716 switch ( s . t oS t r ing ( ) ) {
717 case k laper : : core : : Schedul ingPol icyKind : : Ea r l i e s tDead l i n eF i r s t . t oS t r i ng ( ) : lqn : :

TaskSchedulingType : : ho l

718 case k laper : : core : : Schedul ingPol icyKind : : FIFO . toS t r ing ( ) : lqn : :

TaskSchedulingType : : f c f s

719 case k laper : : core : : Schedul ingPol icyKind : : F ixedPr i o r i ty . t oS t r ing ( ) : lqn : :

TaskSchedulingType : : p r i

720 case k laper : : core : : Schedul ingPol icyKind : : Lea s tLax i tyF i r s t . t oS t r ing ( ) : lqn : :

TaskSchedulingType : : ho l

721 case k laper : : core : : Schedul ingPol icyKind : : RoundRobin . t oS t r ing ( ) : lqn : :

TaskSchedulingType : : p o l l

722 case k laper : : core : : Schedul ingPol icyKind : : TimeTableDriven . t oS t r i ng ( ) : lqn : :

TaskSchedulingType : : p o l l

723 de f au l t : lqn : : TaskSchedulingType : :NULL

724

725 } ;
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dell’affidabilità di sistemi a componenti, 2009. Università degli studi di Roma
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