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Introduction

The increasing attention in the scientific world towards a quantitative approach

to the biological sciences has produced useful and interesting work, giving rise

to Biomathematics as a well defined discipline. For applications in some fields

of medicine and biology, we also have a theory and a specific formalism [1, 2].

However, in some areas, given the complexity of the studied systems and the

difficulty of finding detailed informations, there is no accepted basis for modeling.

This is the case for the HIV infection that we are considering in this thesis.

Since we model a complex biological system, in Chapter 1 a brief, but some-

what detailed description is given. We chose to put it at the beginning because

we believe that modeling in Biomathematics should always be biologically correct

and the extent of approximations should be clear. From this point of view, the

models we present in Chapters 3 and 4 represent an effort of synthesis of these two

guidelines. An important part of the job has been to get out of the description a

bio-mathematical model. In this context, the researcher in Biomathematics needs

to master concepts and language of biology and to get continuous exchange with

biological researchers.

Moreover, we are well convinced that the bio-mathematical model must be

constructed starting from a well defined biological question.

There are some examples in Chapter 2. The main objectives of this thesis

are to investigate the basic and most important cause-effect relations of the phe-

nomenon, as we do in Chapter 3, and to estimate biological parameters difficult to

measure, starting from the features of the model and its solutions, as is presented

in Chapter 4.
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Chapter 1

HIV biology, therapy, drug

resistance

This chapter presents an introduction to the biology of the HIV/AIDS dynamics

in host, focusing on important things for mathematical modelling. Specifically,

the chapter deals with: the pathological and epidemiological understanding of the

virus; the emergence and evolution of mutations, modelling of HIV viral infection,

immune system responses, AIDS progression and drug resistance phenomena.

1.1 Biology of HIV

1.1.1 HIV as a retrovirus

HIV is a member of the genus lentivirus, a family of retroviruses. Retroviruses

transfer their genomic sequence information via the process of reverse transcrip-

tion (i.e., RNA → DNA); this is different from other living cells, in which the

genomic sequence information flows as a result of replication (i.e., DNA→ DNA),

transcription (i.e., DNA → mRNA) or translation (i.e., RNA → protein). HIV

primarily infects varieties of immune cells such as macrophages, microglial cells

(type of brain glial cell that acts as the immune cells), and lymphocyte T- cells

which make up a quarter of the white blood cell count. T-cells can be further

divided into CD8 and CD4 T-cells. CD4 T-cells are the main target of HIV

infection (by T- trophic strains). HIV infection has three main pathogenic mech-
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4 1. HIV biology, therapy, drug resistance

anisms: direct viral killing of CD4 T-cells, increasing of the rates of apoptosis

in the infected cells, and killing of the infected CD4 T-cells by CD8 cytotoxic

lymphocytes (the cells that recognize the infected cells). In addition to attack-

ing CD4 T-cells, HIV may directly attack organs such as the kidney, heart and

brain, leading to acute renal failure, cardiomyopathy, dementia and encephalopa-

thy. The reverse transcription process of viral RNA changes the functions and

genomic structure of CD4 T-cells. These changes damage the immune system

and lead to low CD4 T-cell counts. When the CD4 T-cell count declines below a

critical level (i.e., with the loss of cell-mediated immunity), the overall immune

system fails to hinder the growth of HIV and the body becomes progressively

more susceptible to opportunistic illnesses. AntiRetroVs reduce viral replication

and are used to contain the damage on the immune system and enable reconsti-

tution and ultimately an improved capacity to fight the virus. However, these

agents are highly problematic in terms of efficacy and side-effects [3].

1.1.2 Life cycle

HIV efficiently replicates only in living cells; the virus has no independent exis-

tence without infecting and replicating within human cells. The life cycle can be

divided as:

A Entry to the cell The virus binds itself to the target monocyte/macrophages

and CD4 T-cells by adsorbing its surface proteins (the envelop gp120 pro-

tein) to two host-cell receptors (proteins): the CD4 molecule receptor and

CCR5 or CXCR4 co-receptors. Once HIV has attached to the host cell, the

HIV-RNA and enzymes such as reverse transcriptase (RT), integrase (IN),

protease (PR), are able to enter into the host cell (cytoplasmic compart-

ment).

B Replication and transcription The RT converts the single-stranded

RNA genome of the virus into double-stranded DNA, which is used to make

doubled-stranded viral DNA intermediate (vDNA) in a process known as

reverse transcription; this is prone to errors (mutations). The new vDNA is

transported into the cell nucleus to be integrated into the host chromosome.
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At this stage, the virus is known as a provirus. The integration process re-

quires the IN enzyme. Thereafter, the virus can enter a latent stage of HIV

infection, because the proviral DNA remains permanently within the target

cell in either a productive or latent state. The factors that may affect this

stage are the HIV variant, the cell type, and the expression capacity of the

host cell [4]. Eventually, the transcription of the HIV genomic materials

and viral proteins forms the HIV messenger (mRNA) and proteins required

for the assembly of the virus. This production is exported from the cell

nucleus into the cell cytoplasm. This process remains poorly understood

because it involves many viral proteins.

C Assembly and release The new mRNA codes for the new viral proteins

that will contribute to the reconstruction of the HIV-RNA. The viral pro-

teins help the mRNA and the reconstruction proteins to transport into the

cell membrane side. The structural components of the virus accumulate at

the membrane of the infected cell to construct the HIV virion. Leftover

proteins (cleaved by the protease) associated with the inner surface of the

host-cell membrane, along with the HIV RNA, are released to form a bud

from the host cell, and can proceed to infect other healthy cells.

HIV has very high genetic variability because of its high rate of reverse tran-

scriptase mediated errors, estimated to be up to five mutations per genome, and

because of the high rates of the virion production (estimated to be one billion

virions a day)[5]. The ability of the virus to recombine during the replication

cycle in vivo increases the complexity of HIV genetic diversity. Therefore, an

individual infected with genetically different HIV strains may have viruses with

genomic recombinations. The diversity of HIV has allowed the division of the

viral strains into groups, subtypes and sub-subtypes. Thus, HIV-1 is subdivided

into three groups (M, O and N, respectively, Major, Outlier and Not-M, Not-O),

and HIV-2 is subdivided into two subtypes (A and B). The M group is the major

group in the worldwide pandemic; the other two groups are limited to Cameroon

and neighbouring regions. The M group involves nine subtypes (A-D, F-H, J

and K ) (K is a replacement for subtype F3 )[6]. The most prevalent, in order,

are B (North America and Europe), A and D (Africa), and C (Africa and Asia).
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Although co-infections with different clades of HIV-1, or with a mixture clades

of HIV-1 and HIV-2 subtypes have been reported, it is unknown whether the

infection resulted from exposure to different viruses at the same time, or serially.

HIV-1 superinfection is documented and is a mechanism whereby drug resistant

and multi-drug resistant strains of HIV-1 may become more prevalent in time.

1.2 Clinical aspects of HIV infection and AIDS

AIDS is a late consequence of HIV infection. Progression to AIDS is associated

with damage to CD4-T cells, the central cell type of the adaptive specific immune

system. Because the immune response to HIV infection varies among individuals,

the timing of progression to AIDS is highly variable and may range from one to

more than 20 years (known as the clinical latency period), with a small percent-

age of infected people being extremely slow to progress and are called long-term

non progressors. During this period, HIV and the immune system interact dra-

matically. Without antiretroviral therapy (ARV), the battle usually terminates

with progressive irreversible damage to the immune system (i.e., the final stage of

the disease) and profound immunodeficiency. This stage (i.e., when the CD4 T-

cell counts decline below a critical level) leaves individuals prone to opportunistic

infections (OIs).

1.2.1 Diagnosis and stages

Progression to AIDS and the fine pathogenesis of HIV infection vary among indi-

viduals. The extent of damage to the immune system and the viral load circulat-

ing and whole body levels differ among individuals. Difference in age, viral strains

and co-infection with OIs are also contributory factors to the rate of progression

of the immunodeficiency. There are four distinct stages of progression of HIV in-

fection to AIDS: primary infection, chronic asymptomatic infection, symptomatic

chronic infection and progression to AIDS.

A In the primary infection stage, a large number of HIV virions are produced

and the immune system starts developing the antibodies and cytotoxic lym-
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phocytes against the virus. This stage lasts for only a few weeks, during

which the individual is highly infectious.

B In the chronic asymptomatic stage, the immune system responds by ex-

panding anti-HIV specificity in the immune cells to keep the infection under

control. Despite this, HIV replication continues and produces large num-

bers of HIV virions that impede the production of competent CD4 T-cells.

The counts of these cells then gradually decline. This stage lasts a median

of about 10 years.

C When the CD4 T-cell counts fall below a critical level (< 200cell/mm3)

and serious OIs appear, HIV infection enters the symptomatic stage. Dur-

ing this stage, microbes that cause no illness in healthy individuals can lead

to fatal infections and further impair the immune system. The immune

system then fails to reproduce sufficient CD4 T-cells to defend the indi-

vidual. As more OIs emerge and the immune system is further damaged,

the infection leads to AIDS. According to the USA National Institutes of

Health (NIH) classification, HIV infection has three patterns of progression

to AIDS: rapid, intermediate and late.

1.2.2 Epidemiology

HIV/AIDS is a disastrous health problem. An estimated 39.5 million people

worldwide were living with HIV in 2007, of whom 4.3 million were newly infected

and an estimated 2.9 million lost their lives to AIDS that year. Worldwide, new

HIV infections are heavily concentrated among people aged 15 to 24 years; those

people accounted for about 40% of the new infections in 2007. Sub-Saharan

Africa remains the worst-affected region with 21.8-27.7 million people living with

HIV at the end of 2006.

1.2.3 Clinical laboratory tests

The clinical laboratory assessment of HIV infection and its impact on the individ-

ual involve five main tests: HIV antibody, HIV viral antigen (known as the p24

test), nucleic acid-based HIV viral load (known as the VL test), the host immune
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system T-cell subset analysis (known as the CD4 T-cell test), and ARV resistance

assays (known as drug resistance tests). The HIV antibody test enables the diag-

nosis of the infection even when asymptomatic; it is the most reachable test for

identifying the infection. The viral antigen is used to detect very early infection

and to screen for HIV-infected blood (i.e., as an alternative test for identifying

HIV infection). Both of these tests contribute to an accurate diagnosis of the

infection, and other tests are then used to monitor the response to therapeutic

regimens and predict and diagnose disease progression.

CD4 T-Cell count test

The CD4 T-cell count serves as a surrogate for T-cell mediated immune response

assays in monitoring the progression of HIV’s response to therapy. The test

determines the counts of CD4 T-cell per cubic millimetre of a blood sample. An

average normal CD4 T- cell count is 1000mm3, with a range of 400 − 1200mm3

in the RPAH laboratory. This count falls during primary infection and then

usually returns to near normal levels. Then, untreated, the CD4 T-cell count

falls gradually to about 200mm3, or even less, and at this level the incidence

of OIs arises; this phase is known as the AIDS incident stage. This reduction is

associated with the hyper-activation of CD8 T-cells, which may kill HIV- infected

cells. The CD8 T-cell response is thought to be important in controlling the

infection; however, the CD8 T-cell counts decline similarly to those of CD4 T-

cells over prolonged periods.

Viral load test

The nucleic acid-based HIV VL test is used to decide when to start an HIV

therapy regimen. The test determines the number of HIV copies in a blood

sample. VL is a strong predictor of the likelihood of disease progression and

provides strong prognostic value, when paired with CD4 T-cell counts. Therefore,

the current guidelines of US NIH and WHO for monitoring the HIV infection in

developed countries advocate the use of VL assays for determining initiation of

treatment regimens, monitoring the responses to these therapies, and switching

drug regimens [7]. Many assays methods have been developed and shown to be
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robust and their use attests to the diagnostic power of VL.

Drug resistance tests

Genotypic assays for ARV resistance produce nucleotide sequence data that may

be used to determine the HIV-RNA strains and structure. Recommendations

of the International AIDS Society indicate that, despite limitations, resistance

testing should be incorporated into patient management. These tests are recom-

mended to guide the choice of new regimens after treatment failure. The recom-

mendations indicate that resistance testing should be considered in treatment-

naive patients with established infection and before initiating therapy in patients

with acute HIV infection, although therapy should not be delayed pending the re-

sults. Given the complexity of results and genotypic assay limitations, an expert

interpretation is also recommended.

1.2.4 Course of HIV and CD4 interaction

Within a few weeks after HIV infection, the multiple viral quasispecies accumulate

to reach a high level in the blood of an infected individual. As a result of the

response of the immune system and in those cases where there is commencement

of ART, this level falls to the point where the infection remains stable in the long

terms, up to and beyond 20 years, whereas without ARV progression is almost

universal.

Untreated, CD4 T-cell counts fluctuate gradually from about 600 to 800

cell/mm3 and then over many years decline towards an undetectable level. The

virus takes advantage of this period to evolve during killing and infecting progeny

of the initially infected CD4 cells. The plasma virus increases from high early

levels and peaks at very high level, and then increases forward as it reaches the

symptomatic AIDS phase [21]. Further complexities occur during this period

because of the immunological and virological interdependencies. Thus, the in-

fected CD4 cells are impeded in their containment of HIV and the virus gains

an advantage by infecting other healthy CD4 cells. The result of this dynamics

is frequently severe immunodeficiency as the immune system becomes exhausted

and unable to generate a replacement quantity of CD4 cells daily.
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In the few very slow (or non-progressor) cases the mechanisms of the infec-

tion containment and protection against progressive disease after initial infection

are not yet entirely understood, illustrating the complexity of the dynamic in-

teractions between HIV populations and immune system cells, and the genetic

variations that evolve at the sites of the PR and RT genes. In progressors these

variations enable the evolution of new virions with immune system evasion mech-

anisms evident. CD4 T-cell counts and ranges of VL continue to fluctuate ac-

cording to this evolution. Figure 1.1 illustrates a generalised relationship between

the HIV copies and CD4 T-cell counts during the typical course of the disease in

untreated individuals.

Figure 1.1: HIV viral load and CD4 cells counts in a human over the course of a

treatment-naive HIV infection



Chapter 2

Modeling of HIV/AIDS

Here it is presented a brief description of a wide range of mathematical models

describing the dynamics and the evolution of HIV and/or its interactions with

immune systems, drugs, other infections. Focusing on a complex phenomenon,

as described in the previous chapter, mathematical models of HIV need to be

enough rich to contain relevant biological aspects, but not so much to prevent

mathematical analysis and simulations. So, any mathematical model of a complex

biological phenomenon not only need to be an approximation of real world but

also has to be addressed to a specific target, to respond a precise question about

the phenomenon. Namely, HIV models are used to estimate specific immuno-

virological parameters, an optimized therapy or the expected number of newly

infected cells (or individuals). Other models are essential in understanding cause-

effect relation between different biological processes of the virus. Any different

question about HIV gives rise to different models with different approximations

regarding the overall phenomenon. This clearly explains why there are many

different models that can be classified to be HIV Models, but, in fact, there

are different models because they address to different aspects of the complex

phenomenon as synthetically named HIV/AIDS.

HIV/AIDS models provide crucial insights into understanding the biologi-

cal and clinical behavior of HIV infection, during the immune response, asymp-

tomatic phase and during ARV treatment. The two major broad research do-

mains where modeling has been active are AIDS epidemiology and HIV patho-

genesis (including treatment). Obviously there are two approaches in both of

11



12 2. Modeling of HIV/AIDS

these areas: deterministic and stochastic. The dominant parameters in patho-

genesis/treatment HIV/AIDS models include immunological and virological re-

sponses and their interactions, the dynamics of HIV drug resistance and effects

of treatment regimens and practices.

2.1 Deterministic models

Deterministic models, especially any kind of ODE systems, have been successfully

used to investigate the interactions of HIV with the immune system [8, 9, 10, 11,

12, 13] and to create better clinical protocols and therapy optimization [14, 15, 16].

The most part is based on the model developed by Nowak and May [17] as shown

by Perelson and Callaway [18]. ODE systems using an SIR-like modelization are

also successfully used to explain the transmission and the evolution of the virus

among hosts [19]

2.1.1 The basic deterministic model of HIV

Many HIV/AIDS models are derived from the first model of viral dynamics by

Nowak and May (i.e., the basic model of HIV). Here, we provide a brief description

of this model (see also related Equation 3.1.1 and Appendix A) [2]. This model

encompasses three variables: the population size of uninfected cells, infected cells,

and free virions, termed as x, y and v, respectively. These values can indicate

either the total load in a host, or the load in a given volume of blood or tissue.

ẋ = Λ− x(µx + αv)

ẏ = αvx− µyy (2.1.1)

v̇ = ky − µvv

According to this model, the free virus population v infects the uninfected

cells x at a rate proportional to the product of their loads, −αxv, where α is the

rate of infection (changing healthy cells to infected ones). The infected cells y

start producing free virions at a rate proportional to their load, ky, where k is
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the production rate of virions by the infected cells, and die at a rate µyy, while

the free virions v are removed from the system at rate µvv. For R0 = kΛα
µxµyµv

≤ 1

(R0 is termed the basic reproductive ratio [17]) there is only one stationary point;

the healthy state which is stable (xeq = Λ/µx, yeq = 0, veq = 0). For R0 > 1, there

are two stationary points: the healthy state becomes unstable and the stable

infectious state appears, (xeq, yeq, veq) =
(

Λ
µxR0

, Λ(R0−1)
µyR0

, µx/α(R0 − 1)
)

.

Starting from equations 2.1.1 there are a lot of models that investigate the

coupled dynamics between HIV and Immune System, long-time asymptomatic

phase and co-receptor switching from X4 to R5. They differ, for example, for

the form of infection term in x, like αvx
α′+ρx+ρ′v

[18], or for the presence of a logistic

growth of target cells, where (Λ− µxx) is replaced by rx(1− x/x̄).

Depending on which biological problem the models are focused, they include more

detailed modelization, for example in modeling drug-resistance there are also pop-

ulations of resistant virus and resistant infected cells [20]; if the focus is immune

system responses one can introduce new population of immune specific response

(c) and a killing term in equation for y, like −βyc, or introduce mutation among

viral strains and, consequently, different viral strains, which vary continuously1

v(t, s), s ∈ [0, 1] or discretely vi(t) ∀i = 1, 2, . . . , N . Resuming, there are a

lot of models developed starting from the basic one, 3.1.1, that focused on differ-

ent aspects of biology of HIV like quantification of the parameters of the coupled

dynamics HIV infection/immune system, or the evolutionary and clinical latency

that affect the timing of progression to AIDS.

Others have aimed to examine the role of the immune system with respect to

the emergence of resistance mutations [21], viral decay during the intra-cellular

phase [22], and long-term HIV infection dynamics.

2.1.2 Modeling HIV dynamics with antiretrovirals

therapy

In clinical studies, when three or more drugs are given to HIV-infected patients, to

analyze the effects of giving an antiretroviral drug, equations have to be modified.

Reverse transcriptase (RT) inhibitors block the ability of HIV to successfully

1In this case the virus genotype is an index s wich vary continuosly in [0; 1]



14 2. Modeling of HIV/AIDS

infect a cell. Protease inhibitors (PI) cause the production of non-infectious viral

particles.

In the presence of these drugs there are two different virus populations vi and vni,

infectious and non-infectious viral particles, respectively. So, the model equations

become:

ẋ = Λ− x (µx + (1− URT )αvi)

ẏ = (1− URT )αvx− µyy (2.1.2)

v̇i = (1− UPI)ky − µvvi
v̇ni = UPIky − µvvni

where URT , UPI ∈ [0, 1] are the efficacies of RT and PI (U• = 1 being a perfect

drug), v = vi + vni is the total amount of viruses.

The infectious steady state exists for R′0 ≤ 1 and becomes

(xeq, yeq, veqi , v
eq
ni) =

(
Λ

µxR′0
,

Λ(R′0−1)

µyR′0
, µx
α

(R′0 − 1
)

where R′0 = R0(1−UPI)(1−URT )

and R0 ≤ R′0 ≤ 1

If a 100% effective PI is given to an individual at infectious steady state with

viral load v0, and one assumes that over the time period of interest x remains

constant, the viral load decay will be explicitly given by:

v(t) = v0exp(−µvt)+ µvv0
µv−µy

(
µvv0
µv−µy (exp(−µyt)− exp(−µvt))− µyt exp(−µvt)

)

2.1.3 Control Problem of an HIV model

In a clinical point of view, the problem it to assure that the total amount of free

virion particles is below a certain level in a period of time τ . As an example,

Nowak el al. [23], set deterministic control problem, consider a finite number of

virus strains, or quasi-species, and allow mutations from one strain to another. A

finite number of therapeutic options are allowed, where each option consists of the

simultaneous application of one or more RT inhibitors. The model incorporates

uninfected CD4+ T cells, and infected cell and infectious free virus associated

with each virus strain; in this context, the RT inhibitors prevent the free virus
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from successfully infecting uninfected CD4+ cells. Each drug option has a dif-

ferent efficacy against each virus strain, thereby allowing for complex drug-virus

interactions. Because of the high dimensionality of the control problem, they

resort to approximation methods: more specifically, the perturbation methods

and the policy improvement algorithm are used to derive a closed form dynamic

policy. For i = 1, ..., I , let yi(t) be the density of CD4 cells infected by strain i

at time t, and let vi(t) denote the density of infectious free virus of strain i; non-

infectious virions are ignored in this model. If x(t) is defined to be the density of

uninfected CD4+ cells at time t, then the state of the system at time t is given

by (x(t), y1(t), ..., yI(t), v1(t), ..., vI(t)), which is denoted by (x(t), yi(t), vi(t)).

The controller has J therapeutic options at time t, where each option corre-

sponds to a prespecified combination of RT inhibitors, each used in a prespecified

dosing schedule. For example, a typical combination might be 100mg of AZT

taken three times daily with 200mg of ddI taken twice daily. Control variables

dj(t) satisfy:

J∑
j=1

dj(t) ≤ 1

dj(t) ∈ {0, 1}

where dj(t) = 1 if option j is applied at time t, and equals zero otherwise.

The assumptions are the following:

• at most one drug combination can be used at each point in time;

• each virus strain has its own infectivity rate, denoted by bi, which is the

rate at which it infects uninfected CD4+ cells.

The RT inhibitors reduce virus infectivity in the following manner:

• ∀i = 1, . . . , I and j = 1, . . . , J let pji denote the efficacy of drug combination

j in blocking new infections by virus strain i.

• Under a generic drug policy dj(t), the infectivity of virus i is β̃i[1−
∑J

j=1 pjidj(t)],

assuming that the values of pji are chosen so that the infectivity of each

strain is non-negative under all feasible therapeutic strategies.
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The dynamics of the system is described by the following set of ordinary

differential equations:

ẋ(t) = λ− x(t)

(
µ+

I∑
i=1

β̃ivi(t)

(
1−

J∑
j=1

pjidj(t)

))

ẏi(t) = x(t)

(
I∑

k=1

qkiβ̃kvk(t)

(
1−

J∑
j=1

pjkdj(t)

))
− αiyi(t)

v̇i(t) = πiyi(t)−
(
ki + β̃ix(t)

)
The rate at which uninfected cells are invaded by virus strain i at time t is

β̃ivi(t)x(t), and each of these potential infections leads to a reduction in free virus.

The rate of successful infections by strain i is β̃i[1 −
∑J

j=1 pjidj(t)]vi(t)x(t), and

these infections cause a simultaneous decline in uninfected cells x(t) and rise in

infected cells yi(t). The mutation rate qij is the fraction of reverse transcriptions

of strain i that result in a cell infected by strain j. Hence,
∑J

j=1 qij = 1 and the

diagonal terms of the mutation matrix are close to one in value, while the off-

diagonal terms are nearly zero. Strain i replicates at rate πi after it has infected

a CD4 cell, and thus free virus of strain i is produced at rate πiyi(t).

In [23], the authors explicitly state: Because the primary focus of this paper is

on therapeutic regimens and not on natural disease progression, we purposely do

not incorporate the human immune response into the model. Hence, we implicitly

assume that the strength of the immune response remains constant over the time

horizon under study. The model also ignores latently infected cells; although most

plasma virus comes from actively infected cells, this does not imply that latently

infected cells are unimportant for the emergence of drug resistance. Finally,

although the lymph system is the location of considerable production of plasma

virus and many new infections, our model focuses on the blood and essentially

assumes that the blood and lymph system are in equilibrium.

If τ is the time horizon, the mathematical control problem is to choose the

binary controls (dj(t), t ≥ 0) to minimize
∫ τ

0

∑I
i=1 vi(t)dt

The approximation method, which uses perturbation analysis and the policy

improvement algorithm, gives rise to a dynamic index policy: each drug combina-

tion has an associated dynamic index, and at each point in time the policy uses
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the drug combination with the largest index. The dynamic indices succinctly

summarize the efficacy of each drug combination on each virus strain and the

marginal benefit of blocking a new cell infection by each virus strain; the latter

quantity changes over time as a function of an individual’s CD4+ count, viral

load and viral mix.

Numerical results for a two-virus, two-drug model suggest that dynamic multi-

drug therapies outperform their static counterparts: the total viral load is re-

duced, the uninfected CD4+ count is increased, and the emergence of drug resis-

tant strains is delayed.

2.2 Stochastic models

Stochastic models, as applied to HIV, proceed from the assumption that the

effective population size is so small (or that selective forces are so weak) that

random drift dominates over selection. This is particularly true in the first step

of infection, after the first peak of infection (' 2-3 weeks after the infections,

see figure 1.1. In this case, the hypothesis of selectively neutral mutations (small

populations, not uniformly distributed, and very low mutation rates) works fine.

Rouzine et al [24] developed a general theory that includes the effects of both

selection and drift on a population. They use a set of assumptions appropriate to

virus populations, focusing on the interplay between deterministic and stochastic

behavior in the context of virologically realistic experiments, applying these to the

simplest possible model: mutation at a single site with only two alleles, replicating

in a steady-state system (constant number of infected cells) under the influence of

constant selective pressure in a single isolated population. They do not consider

recombination explicitly, neither allelic dominance. They consider the evolution

of one nucleotide position at a time, and they assume that each nucleotide has

a choice between only two alleles, conventionally denoting the better-fit allele as

wild type and the less-fit allele as mutant. A deleterious mutation event (from

wild type to mutant) is referred to as forward mutation, and an advantageous

mutation event will be referred to as reverse mutation. Each separate nucleotide

is characterized by two parameters, which are both assumed to be much less

than unity: the mutation cost (or selection coefficient), s, which is the relative
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difference in fitness between the two alleles, and the mutation rate per base per

replication cycle, µ. They assume that mutations at different nucleotides have a

weak additive effect on virus fitness.

They introduce the virus population model that considers an asexual popula-

tion of N cells infected with two genetic variants of a virus: n cells are infected

with mutant virus, and N − n cells are infected with wild-type virus. The total

population size N is fixed, while n changes in time. During a generation step,

each mutant-infected cell produces b1 mutant virions and then dies, and each

wild-type-infected cell produces b2 wild-type virions and dies. The respective

numbers of virions per cell, b1 and b2, are assumed to be large, b1, b2 � 1, and

differ slightly for the two alleles: b1 = b2(1− s), where s, s� 1, is, by definition,

the selection coefficient (mutation cost), reflecting the difference in fitness. From

all the virions produced per generation, N virions are sampled randomly to infect

new generation of cells. Each virion, on infecting a cell, can mutate into the op-

posite genetic variant with a probability µ, µ � 1. The virus population model

described is a particular case of the Wright-Fisher population with discrete time.

Then, they get out the stochastic equation of evolution, in terms of a discrete

Markovian equation.

Let p(n, t) be the probability of n mutant cells at time t, where t is an integer

that numbers generations and n can change from 0 through N . If consecutive

generations do not overlap, p(n, t) is a Markov chain described by a discrete

evolution equation

p(n, t+ 1) =
N∑

n′=0

P (n|n′)p(n′, t)

(2.2.1)

where P (n|n′) is the conditional probability of having n mutants, given that their

number at the previous step was n′.

Neglecting mutation events, suppose that the number of mutants in some

generation is n′ . The total numbers of virions produced by all mutant and all

wild-type-infected cells are

B1 = b1n
′

B2 = b2(N − n′)
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respectively. If n is the number of new mutant-infected cells, then the numbers

of mutant and wild-type virions which infect must be n and N − n, respectively.

The probability of n new mutant cells, P0(n|n′), is proportional to the number of

possible ways in which one can choose n mutant virions from B1 possible mutant

virions and N − n wild-type virions from B2 possible wild-type virions

P0(n|n′) = A
(n′)n(N − n′)N−n(1− s)n

n!(N − n)!

A :
∑
n

P0(n|n′) = 1

Taking mutations into consideration, suppose, at the moment of infection of

new cells by n mutant and N − n wild-type virions, m1 forward and m2 reverse

mutations occur. The resulting number of mutant-infected cells, n′′, will be n′′ =

n+m1−m2. The probability of m2 reverse mutations among n infecting virions,

if n is large, is given by Poisson statistics with the average µn

π(m2|n) =
(µn)m2

m2!
exp(−µn)

m2 = 0, 1, . . . (2.2.2)

Analogously, the probability of m1 forward mutations is π(m1|(N − n)). Fi-

nally, the conditional probability P (n′′|n) is

P (n′′|n) =
N∑
n=0

N−n∑
m1=0

n∑
m2=0

δn′′,n+m1−m2π(m1|(N − n))π(m2|n)P0(n|n′)

where the Kronecker symbol δi,j is 1 if i = j and 0 otherwise.

Then they simplify the expression for the full conditional probability useng

the fact that mutations are rare (µ � 1), so that the probability values of m1

and m2 are much smaller than those of N − n and n.

The corresponding evolution equation and the boundary conditions have the

form:

∂ρ

∂t
= − ∂q

∂f

q(f, t) = − 1

2N

∂

∂f
[f(1− f)ρ]− sf(1− f)ρ− µ(2f − 1)ρ

q(f, t)f→0 = q(f, t)f→1 = 0
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where f is the mutant frequency, ρ is the probability density of the mutant fre-

quency, q is the probability density flux, t is the generation number and N is

the population size. Equations are valid under the conditions s, µ � 1 and

µN � 1/lnN (large population). In this case,t and f can be treated (approxi-

mately) as continuous variables.

In the particular case where the probability density, ρ(f, t), it is possible, com-

bining the first two equations, to derive the evolutionary equation:

∂ρ

∂t
=
fmax(1− fmax)

2N

∂2ρ

∂f 2
+sfmax(1− fmax) ∂ρ∂f +µ(2fmax − 1)

∂ρ

∂f

Drift(µ = s = 0) Selection(N →∞, µ = 0) Mutation(N →∞, s = 0)

In small populations, where µN � 1/[µln(1/µ)], the population can be found,

with a finite probability, in a purely monomorphic state of f (0 or 1). In this inter-

val, the total probability density can be breaked up into a sum of the continuous

probability density and of two singular terms, as given by:

ρ(f, t) = p0(t)δ(f) + p1δ(1− f) + g(f, t)

where p0 and p1 are the probabilities of having pure wild-type and pure

mutant, respectively; δ(f) denotes the Dirac delta function; and g(f, t), where

f(1−f)� 1/N , is the continuous part of the probability density. The boundary

conditions are:

dp0

dt
= −q(0, t), dp1

dt
= q(1, t) N � 1/[µln(1/µ)]

2µNp0 = [fg(f)]f→0 , 2µNp1 = [(1− f)g(f)]f→1

The differential equation for the continuous part of the probability density,

g(f, t), has a form:

δρ

δt
= − δq

δf

q(f, t) = − 1

2N

δ

δf
[f(1− f)ρ]− sf(1− f)ρ

With numerical simulations the authors find that (as long as the mutation rate

is lower than the selection coefficient) the dynamic properties differ drastically

in three wide intervals of the population size, called the drift, selection-drift,
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and selection regimes. Transition between stochastic and deterministic behavior

of genetic evolution occurs in the intermediate selection-drift regime, which is

expected to be very wide in the population size, especially for DNA systems.

Estimates of typical population sizes and of the time in which new advan-

tageous alleles appear and become fixed in the population suggest that higher

organisms may evolve during the selection-drift regime. If this is the case, the

speed of evolution depends on three parameters: mutation rate, selective ad-

vantage, and population size. Hence, selection pressure and random drift are

equally important, although they act differently: selection promotes evolution,

and random drift slows it down.

For HIV populations in vivo, theory based on the purifying selection alone

predicts either a weak diversity or a very low genetic turnover rate. Experimental

searches for rapidly varying bases can provide biological evidence for selection for

diversity due to different environments, a changing immune response, changes in

host cell populations with time, and other important aspects of HIV infection.





Chapter 3

Toward a new basic Model

The modelization by Nowak et al. [17] shew by simulations and some further

discussion the consequences of the increase of diversity of HIV virus population,

just by analyzing the critical role of the associated index (Simpson’s index), which

changes the qualitative behavior of the system; the way by which new strains

arise in the game is modelized there by a one-step increase of the dimensionality

of the viral population space at random times. In this chapter we propose to

model mutations by means of a diffusion term in the genomic space. In this way

we are able to follow via computer simulations and numerical analysis all the

relevant quantities, highlighting the role of several parameters involved in the

model. Another attempt of our models is to consider a more biological situation

whith respect to Nowak [17] and Perelson [8], in which we consider the uninfected

cells as also an immune system response to infection.

3.1 Nowak-May-like models

Here we list some models of viral infection, ordered by complexity, starting from

the basic one by Nowak an May [17], see section 2.1.1.

x denotes the population of healthy immune cells, v that of virions, y that

of infected immune cells; further c denotes the specific immune cell population.

The parameter µ• denotes the specific rate of death of the • population (so • may

mean x, v, y, c). Other common parameters are:

23
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• Λ, the immune cell production rate,

• α, the specific rate of infection (changing healthy cells to infected ones),

• k, the production rate of virions by the infected cells.

3.1.1 Analysis of Nowak-May ”basic” model

After rescaling1, assuming µx = µy, and keeping the same symbols, the system

can be rewritten in the following way:

ẋ = 1− x(1 + v)

ẏ = vx− y (3.1.1)

v̇ = ky − µvv

Stationary points

For R0 = k/µv ≤ 1, (R0 is termed the basic reproductive ratio [17]), there is only

one stationary point (xeq = 1, yeq = 0, veq = 0), which represents the healthy state

and it is stable. For R0 > 1, there are two stationary points: the healthy state be-

comes unstable and stable infectious state appears, (xeq, yeq, veq) = (1/R0, 1/R0(R0−
1), R0 − 1), see fig. 3.1.

3.1.2 Nowak-May with immune system responses

Starting from model 3.1.1, the next step is to include that x cells are, in HIV

case, immune cells. For this reason, we introduced another population c, coming

from x’s, and loss terms, −βxxy and −βccy, where β• is the killing rate for

immune cells •, in the evolution equation for the infected cells y. The c’s represent

more specialized immune cells stemming from the unspecialized x’s which kill the

infected ones more efficiently (βc > βx).

The equations for the system are:

1see A.1 for detailed calculations of scaling and stationary points
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Figure 3.1: Stationary solutions for Nowak-May basic model and their R0-

dependent stability
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ẋ = Λ− x(µx + αv + Fy)

ċ = Fxy − c(µc + αv)

ẏ = αv(x+ c)− y(µy + βxx+ βcc) (3.1.2)

v̇ = ky − µvv

After the assumption µx = µc = µy, several scaling of variables and parame-

ters2 and keeping the same symbols, the system can be rewritten in the form:

ẋ = 1− x(1 + v + Fy)

ċ = Fxy − c(1 + v)

ẏ = v(x+ c)− y(1 + βxx+ βcc) (3.1.3)

v̇ = ky − µvv

Stationary points

The healthy state, (xeq, ceq, yeq, veq) = (1, 0, 0, 0), is a persistent stationary point

iff R0 < 1 + βx (see appendix A). The presence of term −βxxy increases the im-

munization whit respect to the basic model, where the healthy state is stable iff

R0 < 1.

For F = 0 = βc, c
eq = 0 always, and only the aspecific response (βx 6= 0) is

active. In this case, iff R0 > βx + 1, just one infectious state solution exists,

(x̄eq, c̄eq, ȳeq, v̄eq)= (1/(R0 − βx), 0, 1/R0(R0 − βx − 1), R0 − βx − 1) and it is

stable. When only the aspecific immune reaction is present, the behavior of veq

as a function of R0 is, except for a shift from 1 to 1 + βx, exactly the same of the

basic model.

So, the presence of an aspecific immune reaction doesn’t change the behavior

of the system, see figure 3.2.

2See appendix for detailed calculations of scaling and stationary points stability
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Figure 3.2: Stationary solutions for Nowak-May with aspecific immune system

(F = βc = 0, βx = 1) and their R0-dependent stability
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For the whole system, (βc, F 6= 0), iff R0 > 1 + βx just one positive solution

exist,

(x̄eq, c̄eq, ȳeq, v̄eq)=
(

(1 + v̄eq + v̄eqF/R0)−1, F v̄eq

R0(1+v̄eq)(1+v̄eq+v̄eqF/R0)
, v̄eq/R0, v̄

eq
)

where

v̄eq =
− [1 + (R0 − βx − 1) + F (1/R0 − 1) + βcF/R0]

2(1 + F/R0)
+√

[1 + (R0 − βx − 1) + F (1/R0 − 1) + βcF/R0]2 + 4(R0 − βx − 1)(1 + F/R0)

2(1 + F/R0)

which is stable, see figure 3.3(a).

In this case, relying on biological facts, we argue that the specific immune re-

sponses start only if the aspecific system fails. This means R0 > βx + 1, and in

this case we have the above solution for the infectious state3.

It’s interesting to note that v̄eq(R0), for the whole system, is always less than the

corresponding value for the aspecific one, and that v̄eq(R0) ' R0 − βx − 2, as

R0 →∞, while in the aspecific case, for R0 > βx + 1, v̄eq(R0) = R0 − βx − 1, see

figure 3.3(b).

3.2 First purpose of a Model

As announced before, here we analyze a model that takes into account, differently

from Nowak-May models, mutations and effect of immune system. For simplicity,

here we state the equations for infected cells, considering N virus strains Vσ,

σ = 1, . . . , N , and Xσ corresponding immune system responses. We introduce,

in the equations for the X’s, a term −α1XσVσ, α1 ∈ < that is the sum of two

effect. The first one is the stimulated production of immune system cells by the

presence of the virus and it is proportional to XσVσ. The second one is due to the

fact that infection of cell Xσ by the corresponding Vσ is slightly more probable

because, due to immune response, virus Vσ can encounter slightly more likely X’s

with same σ. The latter term is proportional to −XσVσ. As a consequence, we

3See appendix A for detailed calculations
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(a)

(b)

Figure 3.3: (a): Stationary solutions for Nowak-May model with complete immune system

(F = 1, βc = 10, βx = 1) and their R0-dependent stability(b): Comparison of stationary values

of veq as functions of R0 between aspecific immune system(−−−) and complete immune system

(—).
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introduce a term α2XσVσ, α2 ∈ <, that is the sum of a term for immune system

killing, proportional to −XσVσ, and a term of virus production, proportional to

XσVσ, due to the term of specific infection in equation for the X’s.

The mutation term contributes to the evolution of Vσ’s like a discrete diffusion

term, ε(∆V )σ, where (∆V )σ = Vσ+1 + Vσ−1 − 2Vσ. The single population Xσ

can be infected by the overall virus populations VT , defined by VT
∑

σ Vσ; as

consequence the growth of a single population Vσ as a positive term proportional

to the overall immune cells population XT , defined as XT =
∑

σXσ The resulting

equations for the system are:

∀σ = 1, . . . , N

Ẋσ = Λ−Xσ (αVT + α1Vσ + µX) (3.2.1)

V̇σ = Vσ (αXT + α2Xσ − µV ) + ε (∆V )σ

where:

• Λ is the immune cell production rate,

• α is the rate of infection,

• µX , µV denote the rate of death of the X’s and the V ’s, respectively.

• Λ, α, µX , µV , ε ∈ <+

Applying the following scaling of variables and parameters to the model 3.2.1

• t′ = µXt

• ε′ = ε/µX , α̃ = αΛ/µ2
X , A = α1/α, B = α2/α, C = µV µX/(αΛ)

• X ′σ = XσµX/Λ, V ′σ = (α/µX)Vσ

we obtain

∀σ = 1, . . . , N

Ẋσ
′

= 1−X ′σ (V ′T + AV ′σ + 1) (3.2.2)

V̇σ
′

= α̃V ′σ (X ′T +BX ′σ − C) + ε′ (∆V ′)σ
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3.2.1 Study of the model with ε′ = 0

Under the hypothesis ε′ = 0 and that only for σ = 1, . . . , K V ′σ are 6= 0 and equal

to Z so V ′T = KZ, there are K equations of the form Ẋ ′σ = 1−X ′σ ((K + A)Z + 1)

and N −K of the form Ẋ ′σ = 1−X ′σ (KZ + 1) for the X’s.

Under these hypotheses, we can reduce the system 3.2.2 to a 3-dimensional

system (Xa, Xna, Z)4. The Xa’s are representative for the K activated Xσ’s while

the Xna’s are for the N −K not activeted Xσ’s. The equations are of the form:

Ẋa = 1−Xa ((K + A)Z + 1)

Ẋna = 1−Xna (KZ + 1) (3.2.3)

Ż = α̃Z ((K +B)Xa + (N −K)Xna − C)

Stationary points

The stationary points are solutions of the following system:

0 = 1−X∗a ((K + A)Z∗ + 1)

0 = 1−X∗na (KZ∗ + 1)

0 = α̃Z∗ ((K +B)X∗a + (N −K)X∗na − C)

So, neglecting the suffix ∗, the stationary points are Xa = ((K + A)Z + 1)−1

and Xna = (KZ + 1)−1. We assume A > −K because we don’t want divergence

of Xa at stationary point for Z ≥ 0.

We find an equation for Z:

α̃Z

(
K +B

(K + A)Z + 1
+
N −K
KZ + 1

− C
)

= 0

Z = 0 gives the solution of non-infectious state (Xa, Xna, Z) = (1, 1, 0). For

Z 6= 0 we find this second order equation in Z:

Z2 + Z
C(2K + A)−K(B − A)−N(K + A)

CK(K + A)
+

C −N −B
CK(K + A)

= 0 (3.2.4)

4a stand for activated and na for not activated
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that can be written in the form Z2 − (Z1 + Z2)Z + Z1Z2 = 0, where Z1,2 are the

solutions of the equation.

If Z1Z2 < 0, there exists only one positive solution. For C > 0, in the region

A > −K, CK(K + A) > 0 the condition Z1Z2 < 0 is true iff C < N + B. We

call this region Nowak-May (NM region) because it reproduces the behavior of

Nowak-May model.

Otherwise, if C > N + B, Z1Z2 > 0, that implies only sign(Re(Z1)) =

sign(Re(Z2)) and we need to study the sign of Z1 +Z2. Z1 +Z2 > 0 iff CK(2K+

A) − K(B − A) − N(K + A) < 0. This gives another condition for C: C <
K(B+N)+A(N−K)

2K+A
.

Resuming, the condition for C is N +B < C < K(B+N)+A(N−K)
2K+A

. This is true

iff K(B+N)+A(N−K)
2K+A

> N +B and K(B+N)+A(N−K)
2K+A

> 0.

This gives a condition for B, −N K+A
K

+ A < B < −NK 1+A/N
K+A

and, in this

case, B ∈ <−. This is possible iff A > 0.

If the two above conditions, for B and C, aren’t satisfied, Re(Z1), Re(Z2) < 0

and the system has only one stationary point at (1, 1, 0).

We need to verify when Z1, Z2 ∈ <. If exist, the solutions are:

Z1,2 =
(−C(2K + A) +K(B − A) +N(K + A))

2CK(K + A)
(3.2.5)

∓

√
(−C(2K + A) +K(B − A) +N(K + A))2 − 4CK(K + A)(C −N −B)

2CK(K + A)

Z1, Z2 ∈ < is verified iff:

∆ = (−C(2K + A) +K(B − A) +N(K + A))2− 4CK(K +A)(C −N −B) > 0

So this give to an inequality equation for C:

A2C2−2AC (−K(K +B) + (N −K)(K + A))+(K(K +B) + (K + A)(N −K))2 > 0

which the solution is C < C− or C > C+,

where C∓ = 1/A
(√

(K + A)(N −K)∓
√
−K(K +B)

)2

,

iff N +B < C∓ <
K(B+N)+A(N−K)

2K+A
.
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But C+ > K(B+N)+A(N−K)
2K+A

and C− <
K(B+N)+A(N−K)

2K+A
always

if −N K+A
K

+ A < B < −NK 1+A/N
K+A

.

So C can’t be greater than C+ and there are 2 positive solutions Z1, Z2 iff

A > 0

−NK + A

K
+ A < B < −NK 1 + A/N

K + A
(3.2.6)

N +B < C < C−

we call this parameter region GST 5 zone. So, for A > 0, we can represent in the

plane (B,C) the different regions for stationary points, graph 3.4.

Stability of Stationary Points

Now we study the conditions 3.2.6 for A,B,C, that give 2 positive solution for

Zeq.

The associated characteristic equation for the eigenvalues T , p(T ) = 0, of the

linearized matrix is:∣∣∣∣∣∣∣∣
−(K + A)Z − 1− T 0 −Xa(K + A)

0 −KZ − 1− T −KXna

α̃Z(K +B) α̃Z(N −K) α̃ (Xa(K +B) + (N −K)Xna − C)− T

∣∣∣∣∣∣∣∣ = 0

For (1,1,0) the matrix becomes:∣∣∣∣∣∣∣∣
−1− T 0 −(K + A)

0 −1− T −K
0 0 α̃ (B +N − C)− T

∣∣∣∣∣∣∣∣ = 0 = (−1−T )(−1−T )(−(C−N−B)−T )

So T1 = T2 = −1 and T3 = −(C −N − B) < 0 iff C > N + B. Zeq = 0 is stable

iff C > N +B. In the Nowak-May region, C < N +B, Zeq = 0 is unstable.

For ([(K + A)Z + 1]−1, (KZ + 1)−1, Z), where Z = Z1,2,

∣∣∣∣∣∣∣∣
−(K + A)Z − 1− T 0 ((K + A)Z1,2 + 1)−1 − (K + A)

0 −KZ − 1− T (KZ + 1)−1 −KXna

α̃Z(K +B) α̃Z(N −K) −T

∣∣∣∣∣∣∣∣ = 0

5Gobron-Santoro-Triolo
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Figure 3.4: Condition for existence of stability points Z1, Z2 in the plane (B,C).

Here N = 1000, K = 50, A = 10
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we use, for the last term in the diagonal (−T ), that these points are solutions for

the stationary equation Xa(K +B) + (N −K)Xna − C = 0.

This gives a third degree equation for T :

T 3 +

T 2(1 +KZ + 1 +K(Z +A)) +

T

[
[1 + Z(K +A)](1 +KZ) +

α̃Z [(K(N −K))(1 + Z(K +A)) + (K +B)(K +A)(1 +KZ)]
[1 + Z(K +A)](1 +KZ)

]
+

α̃Z

[
[1 + Z(K +A)]K(N −K)

1 +KZ
+

(K +B)(K +A)(1 + ZK)
1 + Z(K +A)

]
= 0

Its solutions satisfy the following relations6:

S = T1 + T2 + T3 = −(1 +KZ + 1 +K(Z +A)) < 0

S2 = T1T2 + T2T3 + T3T1 =

[1 + Z(K +A)](1 +KZ) +
α̃Z [(K(N −K))(1 + Z(K +A)) + (K +B)(K +A)(1 +KZ)]

[1 + Z(K +A)](1 +KZ)

P = T1T2T3 = α̃Z[1 + Z(K +A)](1 + ZK)
[
−K(N −K)

(1 +KZ)2
− (K +B)(K +A)

[1 + Z(K +A)]2

]

The condition S < 0, gives us the information that almost one solution need

to be neagtive. So ∀ Z ∈ <+ ∃ T3 < 0. For the study of the sign of P we use

the fact that, at the stationary points Z1, Z2, C = N−K
1+KZ

+ K+B
1+Z(K+A)

. Thinking

C as a function of Z, let us derive it, giving ∂C
∂Z

= −K(N−K)
(1+KZ)2

− (K+B)(K+A)
[1+Z(K+A)]2

,

and sign(P ) = sign(∂C
∂Z

). Taking into account that C(Z = 0) = N + B and
∂C
∂Z
|Z=0 > 0, and supposing C > N + B fixed, we find two values of Z: the first,

Z1, in the zone ∂C
∂Z

> 0 and the second one, Z2, in the zone ∂C
∂Z

< 0. So, for Z = Z1,

P > 0, which implies that there exist T1 > 0 (T2 < 0) and Z1 is always unstable,

while for Z = Z2 P < 0, which means that sign(Re(T1)) = sign(Re(T2)) and it

is necessary to study the sign of S2. For α̃ = 0 S < 0, P = 0 and S2 > 0, which

6We can rewrite p(T ) as a combination of its roots:

(T − T1)(T − T2)(T − T3) = 0

T 3 − T 2(T1 + T2 + T3) + T (T1T2 + T2T3 + T3T1)− T1T2T3 = 0
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means that Re(T1), Re(T2) < 0 and T3 = 0. For α̃� 1 P < 0, which implies, for

continuity, T3 < 0.

Since P < 0 ∀α̃, and S2 is monotone in α̃, the only way to have either Re(T1) > 0

or Re(T2) > 0 is that they pass trough 0 as opposite purely imaginary, T1,2 = ±iθ.
In this case, P = T3θ

2, S = T3, S2 = θ2 which gives the necessary condition

P − SS2 = 0. Now we show that is also sufficient to have T1,2 = ±iθ.

i) If T1, T2 are complex conjugates, T1,2 = w ± iθ, then:

P = T3(w2 + θ2)

S2 = 2wT3 + w2 + θ2

S = T3 + 2w

P − SS2 = T3(w2 + θ2)− (T3 + 2w)(2wT3 + w2 + θ2)

= 2w(T 2
3 + 2wT3 + w2 + θ2)

Setting P −SS2 = 0 gives either w = 0 or (w+T3)2 + θ2 = 0, but the latter

one is absurd. So, only w = 0 is the solution for the c.c. case.

ii) Let T1, T2 be real and set P − SS2 = (T1 + T2)(T1 + T3)(T3 + T2) = 0.

Because sign(T1) = sign(T2), then (T1 + T2) 6= 0 and if T1, T2 < 0 there

is no solution. On the other hand, if T1, T2 > 0, let be, without loosing

generality, T1 = −T3 a possible solution; this gives P = −T 2
3 T2 < 0 and

S = T1 +T2 +T3 = T2 < 0, that is absurd due to the hypothesis T1, T2 > 0.

Finally we can find the critical value of α̃, α̃∗, in which Re(T1) = Re(T2) = 0,

applying the condition P − SS2 = 0. Introducing q1 = 1 + KZ2 and q2 =
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1 +K(Z2 + A) we have:

S = −(1 +KZ2 + 1 +K(Z2 +A)) = −q1 − q2

S2 =

[1 + Z2(K +A)](1 +KZ2) +
α̃Z2(K(N −K))(1 + Z2(K +A))

[1 + Z2(K +A)](1 +KZ2)

+
α̃Z2(K +B)(K +A)(1 +KZ2)

[1 + Z2(K +A)](1 +KZ2)

= q1q2 + α̃

[
(N −K)(q1 − 1)

q1
+

(K +B)(q2 − 1)
q2

]
P = α̃∗Z2[1 + Z2(K +A)](1 + Z2K)

[
−K(N −K)

(1 +KZ2)2
− (K +B)(K +A)

[1 + Z2(K +A)]2

]
= −α̃∗

[
q2(q1 − 1)(N −K)

q1
+
q1(q2 − 1)(K +B)

q2

]
P − SS2 =

= α̃∗
[

(q1 − 1)(N −K)
q1

(q1 + q2 − q2) +
(q2 − 1)(K +B)

q2
(q1 + q2 − q1)

]
+ q1q2(q1 + q2) = 0

α̃∗ =
−q1q2(q1 + q2)

(N −K)(q1 − 1) + (K +B)(q2 − 1)
=

=
−(1 +KZ2)[1 + Z2(K +A)][1 +KZ2 + 1 + Z2(K +A)]

Z2[(N −K)K + (K +B)(K +A)]
(3.2.7)

Under the condition −N K+A
K

+ A < B < −NK 1+A/N
K+A

, α̃∗ > 0. Resuming, for

stationary points we find that:

• (Xa, Xna, Z) = (1, 1, 0) is locally stable if C < N + B, locally unstable if

C > N +B;

• (Xa, Xna, Z) = ([1 + Z1(K + A)]−1, (1 + KZ1)−1, Z1), when exists ( see

conditions 3.2.6) is locally unstable;

• (Xa, Xna, Z) = ([1+Z2(K+A)]−1, (1+KZ2)−1, Z2), when exist (C > N+B

or conditions 3.2.6) is locally stable iff α̃ < α̃∗.
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Numerical simulations

In this section we show some numerical simulations of the system 3.2.3, obtained

fixing some parameters and varying others, as follows:

• N = 1000, K = 50, C = 20, A = 10 fixed

• B = −950 (Nowak-May zone) or B = −1050 (GST zone)

• α̃ < α̃∗ or α̃ > α̃∗

We show the simulations by drawing two graphs: the first one represents the time

evolution of VT/K = Z and of the average number of total X cells, XT/N . The

second one is the plot of (VT/K,XT/N) that give an idea of the trajectories in

the phase space; it will be very useful to compare these results whit simulations

in the case ε 6= 0. A very useful index to understand the evolution of the virus

distribution, in other words its variability (see Nowak and May [17]), is the Simp-

son Index (SI), defined as SI =
P
σ V

2
σ (t)

(
P
σ Vσ(t))2

. Note that 1/N < SI < 1 and in our

cases 1/N = 10−3. We show it on the same graph for VT/K and XT/N .

GST zone, α̃ = 0.02 < α̃∗. For GST zone α̃∗ = 0.21. As expected, the

simulation, for α̃ < α̃∗, shows a stable steady state in Z2 = 0.061, graph 3.5. The

initial conditions for V ’s are VT/K(0) = 0.3, obtained setting Vσ(0) = 0.3 ∀σ =

1, . . . , K and Vσ(0) = 0 ∀σ = K+ 1, . . . , N . The initial condition XT/N(0) = 1

was obtained simply setting Xσ(0) = 1 ∀σ

GST zone, α̃ = 0.23 > α̃∗. In this case the simulation shows, as expected, a

stable sready state only in Z0 = 0, graph 3.6. The initial conditions are the same

as in the previous simulation, graph 3.5.

If we set the initial conditions near the stationary point (Xa, Xna, Z2), we

can see, in graph 3.7 that, for α̃ > α̃∗, the trajectory is destabilized due to the

presence of c.c. eigenvalues as predicted in calculations of α̃∗ in equations 3.2.7.
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Figure 3.5: (a) Time evolution of VT /K and XT /N ; (b) Evolution in the plane (XT /N ,VT /K)
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Figure 3.6: (a) Time evolution of VT /K and XT /N ; (b) Evolution in the plane (XT /N ,VT /K)



3.2. First purpose of a Model 41

 0.0001

 0.001

 0.01

 0.1

 1

 0  50  100  150  200
 0.01

 0.1

S
im

ps
on

 In
de

x

Time Index

XT/N
VT/K

S.I.

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

V
T
/K

XT/N

VT/K vs XT/N

(b)

Figure 3.7: (a) Time evolution of VT /K and XT /N ; (b) Evolution in the plane (XT /N ,VT /K)
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NM zone, α̃ = 0.01 < α̃∗. For NM zone α̃∗ = 1.92. If α̃ < α̃∗ the simulation

shows the expected stable steady state in Z = 0.17, graph 3.8. The initial

conditions for V ’s are VT/K(0) = 0.84, obtained setting Vσ(0) = 0.84 ∀σ =

1, . . . , K and Vσ(0) = 0 ∀σ = K+ 1, . . . , N . The initial condition XT/N(0) = 1

was obtained simply setting Xσ(0) = 1 ∀σ

NM zone, α̃ = 1.96 > α̃∗. In this case the simulation shows a limit cycle

because Z2 becomes locally unstable but the system can explode. If we start near

the stationary point Z2, the system evolves to the limit cycle inside it, graph 3.9.

If the initial conditions are far away from Z2 and Z0, the system tends to the

limit cycle outside it, graph 3.10 .
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Figure 3.8: (a) Time evolution of VT /K and XT /N ; (b) Evolution in the plane (XT /N ,VT /K)
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Figure 3.9: (a) Time evolution of VT /K and XT /N ; (b) Evolution in the plane (XT /N ,VT /K)
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3.2.2 Numerical Study of the Model with ε 6= 0

Until now, analitical study of the model with ε 6= 0 hasn’t yet given a better

understanding of the system. So we run many numerical simulations in order to

have some information on the behavior of the system in this case. Depending

on the distribution of vσ at the initial conditions, the simulations indicate that

the virus can either grow and compact in a single strain σ (graph 3.11), 3.12), if

it is concentrated, or be killed otherwise. The very important thing is that the

NM zone, when α̃ > α̃∗, and the distribution of the virus is concentrated, seems

to have a stable stationary point, graph 3.13 with the same parameters as the

previous simulations.

Despite increasing ε the simulation show the same behavior for the system. This

can do essentially to the fact that non active X cells can growth as the active

ones. When virus mutate it find a Xσ that as already the right volume. In other

word, we need a system in which the actives can growth more than the non active

ones. In the next section we will try to modify the model in this way.
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Figure 3.11: (a) Time evolution of VT /K and XT /N ; (b) Evolution in the plane

(XT /N ,VT /K). Note that isn’t a projection of trajectory



48 3. Toward a new basic Model

"CONFIG-NM-alLow18Apr09" u 1:2:3

 0  50  100  150  200  250  300  350  400
Time Index  0

 50

 100

 150

 200

 0

 5

 10

 15

 20

 25

Figure 3.12: Evolution of the distribution of the virus in σ
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Figure 3.13: (a) Time evolution of VT /K and XT /N ; (b) Evolution in the plane

(XT /N ,VT /K), but isn’t a trajectory
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3.3 Second purpose of a Model

As explained in the previous section, the model 3.2.1, describes an immune system

that has already the right density of cells to respond to an infection. To modelize

an immune system that has the ability to increase only its specific parts involved

in immune responses, we modify the equation for the X’s, such that Λ becomes

a Λ(Vσ):

Ẋσ = Λ
1 +NVσ
N (1 + Vσ)

−Xσ (αVT + α1Vσ + µX) (3.3.1)

V̇σ = Vσ (αXT + α2Xσ − µV ) + ε (∆V )σ

Applying the following scaling of variables and parameters to the model 3.3.1

• t′ = µXt

• ε′ = ε/µX , α′ = α/µX , Λ′ = Λ/µX , A = α1/α,B = α2/α, C = µV µX/(αΛ)

• X ′σ = XσµX/Λ, V ′σ = α/µXVσ

we obtain

Ẋ ′σ =
α′ +NV ′σ
N (α′ + V ′σ)

−X ′σ (V ′T + AVσ + 1) (3.3.2)

V̇ ′σ = Λ′α′V ′σ (X ′T +BX ′σ − C) + ε (∆V )σ

3.3.1 Study of the model with ε = 0

As in section 3.2.1, under the hypothesis ε = 0 and supposing that only for

σ = 1, . . . , K V ′σ are 6= 0 and equal to Z, so V ′T = KZ, there are K equations of

the form Ẋ ′σ = α′+NV ′σ
N(α′+V ′σ)

and N − K of the form Ẋ ′σ = 1/N − X ′σ (KZ + 1) for

the X’s.

Under these hypotheses, we can reduce the system 3.3.2 to a 3-dimensional

system (Xa, Xna, Z) of the form:

Ẋa =
α′ +NZ

N (α′ + Z)
−Xa ((K + A)Z + 1)

Ẋna = 1/N −Xna (KZ + 1) (3.3.3)

Ż = α′Λ′Z ((K +B)Xa + (N −K)Xna − C)
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Stationary Points

The stationary points are solutions of the following system:

0 =
α′ +NZ∗

N (α′ + Z∗)
−X∗a ((K + A)Z∗ + 1)

0 = 1/N −X∗na (KZ∗ + 1)

0 = α′Λ′Z∗ ((K +B)X∗a + (N −K)X∗na − C)

So,neglecting the suffix ∗, at stationary Xa = α′+NZ
N(α′+Z)((K+A)Z+1)

and Xna =

(N(KZ + 1))−1. We assume A > −K because we don’t want divergence of Xa

at stationary point for Z ≥ 0.

We find an equation for Z:

α′Λ′Z

(
(α′ +NZ)(K +B)

N(α′ + Z) ((K + A)Z + 1)
+

N −K
N(KZ + 1)

− C
)

= 0

as expected, Z = 0 gives the solution of non-infectious state (Xa, Xna, Z) =

(1/N, 1/N, 0) For Z 6= 0 we find a third order equation in Z, that corresponds to

the equation:

C =
(α′ +NZ)(K +B)

N(α′ + Z) ((K + A)Z + 1)
+

N −K
N(KZ + 1)

(3.3.4)

In order to find the positive value of Z at stationary point, we study C thought

as a function of Z, C = CN(Z).

Existence of stationary points with approximation N →∞

Considering the biological aspect, we are interested in a situation in which HIV

virus infects the host with a low number of variants. So, we apply the approxima-

tion N →∞. This gives to C∞(Z) = Z2((K+A)+K(K+B))+Z(1+α′(K+A)+(K+B))+α′

(α′+Z)(KZ+1)(1+Z(K+A))
.

Let us now study the properties of C∞(Z).

C∞(0) = 1

lim
Z→∞

C∞(Z) = 0

dC∞(Z)

dZ
|Z=0 =

K +B

α′
−K > 0 iff K +B > α′K
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The intersections of C∞(Z) with Z axis are given by the solution of the equa-

tion

Z2((K + A) + K(K + B)) + Z(1 + α′(K + A) + (K + B)) + α′ = 0 that is of

the type Z2 − (Z1 + Z2)Z + Z1Z2 = 0 where Z1 + Z2 = −1+α′(K+A)+(K+B)
(K+A)+K(K+B)

and

Z1Z2 = α′

(K+A)+K(K+B)
.

While α′ > 0, if (K +A) +K(K +B) > 0, that means (K +B) > −(K +A)/K,

Z1Z2 > 0. sign(Z1 + Z2) = −sign(1 + α′(K + A) + (K + B))sign(Z1Z2) and

1 + α′(K + A) + (K +B) > 0 iff (K +B) > −1− α′(K + A).

Summarizing:

K +B < α′K This is the case C ′∞(0) < 0.

If K + B < −(K + A)/K, Z1 < 0 and Z2 > 0. So the qualitative behavior

of C∞(Z) is shown in graph 3.14. This shows that under these conditions there

exist only a value for the stationary point Z 6= 0 iff 0 ≤ C < 1, that is the NM

zone where C = 1/R0.

If K +B > −(K + A)/K, while

sign(Z1 + Z2) = −sign(1 + α′(K + A) + (K +B))sign(K +B + (K + A)/K),

we distinguish two cases:

−(K + A)/K > −1− α′(K + A)

This condition implies K +B > −1 +α′(K +A) and is verified if 0 < K <

A/2(
√

1 + 4/(α′A)− 1). This gives to Z1 +Z2 < 0 and, as shown in graph

3.15, an infectious stationary point exists iff we are in NM zone.

−(K + A)/K < −1− α′(K + A)

This condition is verified if K > A/2(
√

1 + 4/(α′A) − 1). So it is possible

to have the condition −(K + A)/K < K + B < −1 − α′(K + A). In this

case there exist Z1, Z2 > 0 and, as shown in graph 3.16, there are 2 or 3

infectious stationary states for C > 0.
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Figure 3.14: Qualitative behavior of C∞(Z) under conditions K + B < α′K and K + B <

−(K +A)/K
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Figure 3.15: Qualitative behavior of C∞(Z) under conditions K + B < α′K and K + B >

−(K +A)/K > −1− α′(K +A)
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Figure 3.16: Qualitative behavior of C∞(Z) under conditions K + B < α′K and −(K +

A)/K < K +B < −1− α′(K +A)
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Figure 3.17: Qualitative behavior of C∞(Z) under condition K +B > α′K

K +B > α′K This is the case C ′∞(0) > 0.

In this case K + B > −(K + A)/K and −1− α′(K + A) and Z1, Z2 < 0. So for

C > 1 there are two positive stationary solutions, while, for C < 1, there is only

one. The qualitative behavior of C∞(Z) is shown in graph 3.17.
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3.3.2 Numerical Study of the Model with ε 6= 0

As just an example, we show that in this second model we obtain the opposite

behavior than the first one. In fact, in this case numerical simulation shown that

virus can expand in all the sites σ, see graphs 3.18, 3.19
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Figure 3.18: (a) Time evolution of VT /K and XT /N ; (b) Evolution in the plane

(XT /N ,VT /K). Note that isn’t a projection of trajectory
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Figure 3.19: Evolution of the distribution of the virus in σ
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3.4 General Model

The two previous model can be view as a particular cases of this general one:

Ẋσ = Λ(Vσ)−Xσ(1 + AVσ + VT )

V̇σ = ωVσ(BXσ +XT − C) (3.4.1)

where 1 ≤ σ ≤ N , VT =
∑

σ Vσ, XT =
∑

σXσ, and Λ(v) is a continuous

inceasing function on R+ with a finite limit. We set λ0 = Λ(0) and

λ∞ = limv→+∞ Λ(v).

Even in this general model, we consider the particular solutions with K iden-

tical non zero strain densities. We set

1 ≤ σ ≤ K : Vσ = V, Xσ = Xa

σ > K : Vσ = 0, Xσ = Xna

so that VT = KV and XT = KXa + (N −K)Xna.

We get:

Ẋa = Λ(V )−Xa(1 + (K + A)V )

Ẋna = λ0 −Xna(1 +KV )

V̇ = ωV ((B +K)Xa + (N −K)Xna − C) (3.4.2)

Since at equilibrium, both Xa and Xna go to zero when V → ∞, V̇ < 0 for V

large enough, and the stationary solutions are bounded. If Λ(v) is continuous in

0, the stability of the V = 0 solution is determined by the ratio R0 = (N+B)λ0

C
: If

R0 > 1, this solutiuon is unstable and the model is of Nowak-May type (there is

at least one non zero solution). If R0 < 1, V = 0 is locally stable.

The transition point between these two regimes can be crossed in two different

settings:

B ≈ −N (large cyto-toxicity) or λ0 = O( 1
N

) (finite volume).

Note that for B +K < 0, we have at equilibrium

VT = KV =
(N −K)λ0

C − (B +K)Xa

− 1 ≤ Nλ0

C
(3.4.3)
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so that the total number of viruses is bounded independently of K and the larger

value is obtained for a large K ( < −B) value (in the limit of large N).

In the finite volume case, λ0 = O( 1
N

) and B << N , one of the effects of

mutations might be the change in sign of B +K which may turn specific T-cells

into a positive growth factor for the viruses. Indeed, for K > −B, VT can exceed
Nλ0

C
( ≈ R0 for B << N) , but then it is bounded by

VT ≤
λ0

C
((B +K)

λ∞
λ0

+ (N −K)) (3.4.4)

which may be very large for λ∞
λ0

of order N .





Chapter 4

Nowak-May like models

In the previous section we presented a purpose of a new general basic model,

neglecting some, but secondary, biological aspects. This is principally due to the

fact that the mechanisms and the dynamics of infection and immune responses

are too complex to be modelized with a well mathematically analyzable model. In

this chapter we present a model that contain more biological aspect, like different

immune system cells, memory, as a tool of modelling different biological aspect

of complex HIV-immune system interactions. We start to do this whit a deeper

considerations of the biological facts related to HIV tropism, immune system

dynamics and HIV escape from immune responses.

Immune System Dynamics, Immune Responses to HIV and HIV Mu-

tations and Tropism

Human immune system can be divided into 2 principal component: innate im-

mune system and adaptive immune system. The innate immune system provides

an immediate, but non-specific response. Innate immune systems are found in all

plants and animals. However, if pathogens successfully evade the innate response,

vertebrates possess a second protection, the adaptive immune system, which is

activated by the innate response. Here, the immune system adapts its response

during an infection to improve its recognition of the pathogen. This improved

response is then retained after the pathogen has been eliminated, in the form

of an immunological memory, and allows the adaptive immune system to mount
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faster and stronger attacks each time this pathogen is encountered.HIV infect

cells of the innate component especially the phagocytic cells (macrophages, neu-

trophils and dendritic cells) and cells of the adaptive component especially CD4+

T cells[3]. HIV enters target cells through interactions between the viral glyco-

proteins (gp120 and gp41), the cellular receptor CD41, and a co-receptor, most

often CCR5(R5) or CXCR4 (X4) [25]. Over the course of infection, HIV mute

into different strains and the adaptive immune systems needs different specific

responses to fight them. In addiction, the co-receptor usage of the HIV virus

changes from a preference for R5 to a preference for X4 in ' 60% of infected

individuals. R5-using viruses are often present in the early phase of infection,

whereas X4-using viruses usually become detectable only at later stages. The

broadening of co-receptor usage to include CXCR4 is associated with accelerated

loss of CD4 cells and faster progression to AIDS [26]. The mechanisms respon-

sible for virus co-receptor switch during the course of infection are still unclear.

Several hypotheses have been proposed that may explain the late appearance of

X4 viruses [11]. The transmission-mutation hypothesis suggests that R5 viruses

are preferentially transmitted and gradually mutate into X4 viruses, whereas the

target-cell-based hypothesis emphasizes that a gradual shift in the availability

of CCR5- and CXCR4-expressing cell populations is responsible for the appear-

ance of X4 viruses. Finally, the immune system-based hypothesis suggests that

X4 viruses are better recognized by the immune system and subsequently sup-

pressed. X4 populations may emerge as a consequence of gradual immune system

dysfunction[27].

Considering all the above facts we need to develop a model in which we

distinguish between healthy macrophages,representing the phagocytic cells, and

those infected by X4 or R5 virus populations, different immune specific cells (X4

or R5) and memory/immunization effect. We have also to insert the mutation

X4 < − > R5 and the mutations due to the viral escape from immune system

responses. We resume all this fact in a graphic model in figure 4.1

We model the multiplicity of the immune responses by considering a periodic

space of N different specific responses Tσ, σ = 1, . . . , N , in this case periodic-

1Cluster of differentiation 4 (CD4) is a glycoprotein expressed on the surface of T helper

cells (CD4+ T), regulatory T cells, macrophages, and dendritic cells.
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Figure 4.1: Schematic representation of HIV-immune system dynamics
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ity means T0 = TN , TN+1 = T1 and so on. Each Tσ kills the infected cells, Yσ,

with the same index σ, which generate the corresponding viral sub-population Vσ.

The mutation term contributes to the evolution of Yσ’s like a discrete diffusion

term, αε(∆V )σ, where (∆V )σ = Vσ+1 + Vσ−1 − 2Vσ. In our model, ”immuniza-

tion/memory” term is inserted in this way: after a successful response Tσ to an

infection (Vσ = Yσ = 0), the decay term in the equation of Tσ is proportional

to it until Tσ is sufficiently slow (Tσ < (1 + ν)(TT )/N , ν > 0, TT =
∑N

σ=1 Tσ)

and it decays proportional to (TT )/N . When Tσ becomes smaller than (TT )/N

its decay returns proportional to Tσ. This ensure that the immunization effect

is present only when it represent a small fraction of the immune system. In

other word ”the memory of infection” is maintained only if the immune system

has the resources to responds to other infections. We also include a term of

carrying capacity for production of T ’s stimulated by the Y ’s that is propor-

tional to Tσ
(
Y R5
σ + Y X4

σ

) (
1− Tσ

TMAX

)
Θ
(

1− Tσ
TMAX

)
. Θ is the Heaviside func-

tion, Θ(z) = 1 when z < 0, otherwise Θ(z) = 0.

Resuming:

• The T ’s has a death term like this −µT TTN D
(
NTσ
TT

)
. D(z), z ∈ [0, N ], should

satisfy:

– if 1 ≤ z ≤ z0, D(z) = 1,

– otherwise D(z) = z

(see figure 4.2, where z0 = 5).

• The T ’s has a growth term like this Λ + FTσYσ

(
1− Tσ

TMAX

)
Θ
(

1− Tσ
TMAX

)

We set the parameters of the model independent from σ. So we may introduce

this part of the model, resembling the Nowak-May one, with virus mutations and

a more complex immune system dynamics, represented by the A cycle in figure

4.1.
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Figure 4.2: Behavior of D(z) for z0 = 5

Ṫσ = Λ + FTσYσ

(
1− Tσ

TMAX

)
Θ

(
1− Tσ

TMAX

)
− TσαV VT − µTTTD

(
NTσ
TT

)
Ẏσ = TT (Vσ + ε2(∆V )σ)− Yσ (µT + βTσ)

V̇σ = kYσ − µV Vσ

We simply test the immune system structure. The initial conditions are T1 =

0.9, ∀σ 6= 1 Tσ = 10−4, ∀σ Yσ = Vσ = 0. In figure 4.3 we show the memory effect

on T1 population.
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Figure 4.3: Behavior of the complete immune system (− − −) and T1 specific

subpopulation
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Introducing the healthy population of macrophages, M0, we need to distin-

guish between R5 and X4 populations of infected macrophages, MR5 and MX4,

respectively. So we have two type of mutations, X4 ↔ R5 and between σ geno-

types whit mutation coefficients ε1 and ε2, respectively. Now T ’s, Y ’s and V ’s

are also labeled by X4 or R5 in this way Tσ ⇒ TR5
σ and so on. Now we can write

the complete model for the figure 4.1

Ṁ0 = Λ−M0

(
µM0 + αMR5V

Y,R5
T + αMX4V

Y,X4
T

)
∀σ = 1, . . . , N

ṀR5
σ = M0

(
(1− ε1)αMR5

(
V Y,R5
σ + ε2(∆V )Y,R5

σ

)
+ ε1αMX4

(
V Y,X4
σ + ε2(∆V )Y,X4

σ

))
− µMR5M

R5
σ

ṀX4
σ = M0

(
(1− ε1)αMX4

(
V Y,X4
σ + ε2(∆V )Y,X4

σ

)
+ ε1αMR5

(
V Y,R5
σ + ε2(∆V )Y,R5

σ

))
− µMX4M

X4
R5

ṪR5
σ = ΛR5 + FR5T

R5
σ

(
Y R5
σ + Y X4

σ

)(
1− TR5

σ

TR5
MAX

)
Θ
(

1− TR5
σ

TR5
MAX

)
− TR5

σ αV R5

(
V Y,R5
T + VM,R5

T

)
− µTR5T

R5
T D

(
NTR5

σ

TR5
T

)
ṪX4
σ = ΛX4 + FX4T

X4
σ

(
Y X4
σ + Y R5

σ

)(
1− TX4

σ

TX4
MAX

)
Θ
(

1− TX4
σ

TX4
MAX

)
− TX4

σ αV X4

(
V Y,X4
T + VM,X4

T

)
− µTX4T

X4
T D

(
NTX4

σ

TX4
T

)
˙Y R5
σ = TR5

T (1− ε1)
(
V Y,R5
σ + VM,R5

σ + ε2
(
(∆V )Y,R5

σ + (∆V )M,R5
σ

))
+ ε1T

X4
T

(
V Y,X4
σ + VM,X4

σ + ε2
(
(∆V )Y,X4

σ + (∆V )M,X4
σ

))
− Y R5

σ

(
µTR5 + β5T

R5
σ + β4T

X4
σ

)
Ẏ X4
σ = TX4

T (1− ε1)
(
V Y,X4
σ + VM,X4

σ + ε2
(
(∆V )Y,X4

σ + (∆V )M,X4
σ

))
+ ε1T

R5
T

(
V Y,R5
σ + VM,R5

σ + ε2
(
(∆V )Y,R5

σ + (∆V )M,R5
σ

))
− Y X4

σ

(
µTX4 + β5T

R5
σ + β4T

X4
σ

)
V̇M,R5
σ = kMR5M

R5
σ − µVR5V

M,R5
σ

V̇ Y,R5
σ = kYR5Y

R5
σ − µVR5V

Y,R5
σ

V̇M,X4
σ = kMX4M

X4
σ − µVX4V

M,X4
σ

V̇ Y,X4
σ = kYX4Y

X4
σ − µVX4V

Y,X4
σ
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After the assumption µM0 = µMR5
, ΛR5 = ΛX4, FR5 = FX4 = F ,

TR5
MAX = TX4

MAX = TMAX , several scaling of variables and parameters and keeping

the same symbols, the system can be rewritten:

Ṁ0 = 1−M0

(
1 + αMR5V

Y,R5
T + αMX4V

Y,X4
T

)
∀σ = 1, . . . , N
˙MR5
σ = M0

(
(1− ε1)αMR5

(
V Y,R5
σ + ε2(∆V )Y,R5

σ

)
+ ε1αMX4

(
V Y,X4
σ + ε2(∆V )Y,X4

σ

))
−MR5

σ

˙MX4
σ = M0

(
(1− ε1)αMX4

(
V Y,X4
σ + ε2(∆V )Y,X4

σ

)
+ ε1αMR5

(
V Y,R5
σ + ε2(∆V )Y,R5

σ

))
− µMX4M

X4
R5

˙TR5
σ = 1 + FTR5

σ

(
Y R5
σ + Y X4

σ

)(
1− TR5

σ

TMAX

)
Θ
(

1− TR5
σ

TMAX

)
− TR5

σ

(
V Y,R5
T + VM,R5

T

)
− µTR5T

R5
T D

(
NTR5

σ

TR5
T

)
˙TX4
σ = ΛX4 + FX4T

X4
σ

(
Y X4
σ + Y R5

σ

)(
1− TX4

σ

TX4
MAX

)
Θ
(

1− TX4
σ

TX4
MAX

)
− TX4

σ

(
V Y,X4
T + VM,X4

T

)
− µTX4T

X4
T D

(
NTX4

σ

TX4
T

)
˙Y R5
σ = TR5

T (1− ε1)
(
V Y,R5
σ + VM,R5

σ + ε2
(
(∆V )Y,R5

σ + (∆V )M,R5
σ

))
+ ε1T

X4
T

(
V Y,X4
σ + VM,X4

σ + ε2
(
(∆V )Y,X4

σ + (∆V )M,X4
σ

))
− Y R5

σ

(
µTR5 + β5T

R5
σ + β4T

X4
σ

)
˙Y X4
σ = TX4

T (1− ε1)
(
V Y,X4
σ + VM,X4

σ + ε2
(
(∆V )Y,X4

σ + (∆V )M,X4
σ

))
+ ε1T

R5
T

(
V Y,R5
σ + VM,R5

σ + ε2
(
(∆V )Y,R5

σ + (∆V )M,R5
σ

))
− Y X4

σ

(
µTX4 + β5T

R5
σ + β4T

X4
σ

)
˙

VM,R5
σ = kMR5M

R5
σ − µVR5V

M,R5
σ

˙
V Y,R5
σ = kYR5Y

R5
σ − µVR5V

Y,R5
σ

˙
VM,X4
σ = kMX4M

X4
σ − µVX4V

M,X4
σ

˙
V Y,X4
σ = kYX4Y

X4
σ − µVX4V

Y,X4
σ

As previously said this model is intended for numerical simulations and pre-

dictions and it can be used only if the most part of parameters is estimated by

biological and clinical data. Until now we don’t have this estimations, but the

model is intended as framework of numerical modelling and test clinical hypothe-

ses. We remark that this model is to be used only if the most part of parameters

is already done.



Conclusions

Widely used models for the viral dynamics in vivo, particularly HIV, are based

on the model of Nowak-May[17]. We have seen how the simple introduction of a

period of immune response to this model is not sufficient to generate a suitably

dynamics, more adeguate to the HIV’s one. Note that we have extensively re-

ported in appendix A the calculations for the stability of stationary points, not

present in the literature. We have therefore developed in the following sections

two proposals for a new basic model for the dynamics of HIV that are not only

a generalization of the Nowak-May one, but also contain an improved biological

modeling (immune system, mutations).

In both proposals, we have verified that there is a zone of stability for the

infection equivalent to that of Nowak-May, which corresponds to a highly cyto-

pathic virus (C < C0 ). A new picture emerges here: we can identify a region

of parameters where the virus is less cytopathic (C0 < C < C1), but where it

still manages to survive. In this area, in the case of the first model (equations

3.2.2) we also show a Hopf bifurcation. All the calculations have been validated

by numerical simulations of the system.

Finally in the last section of Chapter 3 we define a general model in which

the two previous are special cases.

In Chapter 4 we have presented a proposal for a numerical model as a tool to

analyze or estimate particular parameters of HIV infection. This represents, from

a biological point of view, a more refined model (mutations, tropism, macrophages,

CD4), but is usable only if there is a refined estimate of almost all the parame-

ters used. This is because the model contains many parameters and, in a certain

range, one can get the desired dynamics, without knowing if the parameters have

the right (biological) order of magnitude.
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The model in Chapter 4 is a tool to test specific hypotheses on the effect of

a drug or on the estimation of a parameter of viral dynamics. We don’t present

numerical results because the estimated parameters of the model, in collabora-

tion with the department of Microbiology and Experimental Medicine of this

University (Prof. Carlo Federico Perno), have not yet been finalized.

This work has hopefully contributed to a refinement of the HIV infection

modeling and also to the debate on a better understanding of the HIV-Immuno

competition.



Appendix A

Scaling and stationary points

calculations of NM-like Models

A.1 Nowak-May basic Model

The starting model is:

ẋ = Λ− x(µx + αv)

ẏ = αvx− µyy

v̇ = ky − µvv

Scaling

Taking µx = µy = µ and scaling time t, t′ = µt,

ẋ = Λ′ − x(1 + α′v)

ẏ = α′vx− y

v̇ = k′y − µ′vv

where constant′ = constant/µ.

It is also possible to scale Λ′ and α′:

ẋ′ = 1− x′(1 + v′)

ẏ′ = v′x′ − y′

v̇′ = k′′y′ − µ′vv′
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where:

• Z ′ = Z/Λ′ = Zµ/Λ for Z = x, y

• v′ = α′v = vα/µ

• k′′ = k′Λ′α′ = kΛα/µ3,

Recalling all variables and parameters without quotes, we get:

ẋ = 1− x(1 + v)

ẏ = vx− y (A.1.1)

v̇ = ky − µvv

Stationary Points

From the system 3.1.1, the equations for stationary points are:

1− x(1 + v) = 0

vx− y = 0

ky − µvv = 0

A.2 Nowak-May with immune system responses

The starting model is:

ẋ = Λ− x(µx + αv + Fy)

ċ = Fxy − c(µc + αv)

ẏ = αv(x+ c)− y(µy + βxx+ βcc)

v̇ = ky − µvv



A.2. Nowak-May with immune system responses 75

Scaling

Taking µx = µc = µy = µ and scaling time t, t′ = µt

ẋ = Λ′ − x(1 + α′v + F ′y)

ċ = F ′xy − c(1 + α′v)

ẏ = α′v(x+ c)− y(1 + β′xx+ β′cc)

v̇ = k′y − µ′vv

where constant′ = constant/µ.

It is also possible to scale Λ′ and α′:

ẋ′ = 1− x′(1 + v′ + F ′′y′)

ċ′ = F ′′x′y′ − c′(1 + v′)

ẏ′ = v′(x′ + c′)− y′(1 + β′′xx
′ + β′′c c

′)

v̇′ = k′′y′ − µ′vv′

where:

• Z ′ = Z/Λ′ = Zµ/Λ for Z = x, c, y

• v′ = α′v = vα/µ

• F ′′ = F ′Λ′ = FΛ/µ2, β′′i = β′iΛ
′ = βiΛ/µ

2 for i = x, c

• k′′ = k′Λ′α′ = kΛα/µ3,

Recalling all variables and parameters without quotes, we studied:

ẋ = 1− x(1 + v + Fy)

ċ = Fxy − c(1 + v)

ẏ = v(x+ c)− y(1 + βxx+ βcc) (A.2.1)

v̇ = ky − µvv
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stationary points

The equations for stationary points of system A.2.1 are:

1− x(1 + v + Fy) = 0

Fxy − c(1 + v) = 0

v(x+ c)− y(1 + βxx+ βcc) = 0

ky − µvv = 0

Stability of healthy state

The first stationary point is the healthy state (xeq, ceq, yeq, veq) = (1, 0, 0, 0) and

the associated characteristic equation for the eigenvalues T , p(T ) = 0, is:∣∣∣∣∣∣∣∣∣∣
−1− T 0 −F −1

0 −1− T F 0

0 0 −1− βx − T 1

0 0 k −µv − T

∣∣∣∣∣∣∣∣∣∣
= 0 = − (T + 1)2 [k − (1 + βx + T ) (µv + T )]

T1,2 = −1 < 0 and T3 = −1/2
[
(1 + βx + µv) +

√
(1 + βx − µv)2 + 4k

]
< 0.

T4 = −1/2
[
(1 + βx + µv)−

√
((1 + βx − µv)2 + 4k)

]
< 0, that means that

healthy state is locally stable, iff R0 < 1 + βx.

Existence and stability of infectious state

If v̄eq 6= 0 the second equilibrium point is (x̄eq = (1 + v̄eq + F/R0v̄
eq)−1, c̄eq =

F v̄eq

R0(1+v̄eq)(1+v̄eq+F/R0v̄eq)
, ȳeq = v̄eq/R0, v̄

eq) where the equation for v̄eq is

J2(R0)(v̄eq)2 + J1(R0)v̄eq + J0(R0) = 0 (A.2.2)

where:

• J2(R0) = 1 + F/R0

• J1(R0) = 1 + βx + F (1/R0 − 1) + βcF/R0 + (1−R0)

• J0(R0) = βx + 1−R0
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For F = 0 = βc, c
eq = 0 the equation A.2.2 is reduced to:

(v̄eq)2 + [2 + βx −R0)]v̄eq + βx + 1−R0 = 0 (A.2.3)

and just one positive solution exists, v̄eq = R0 − βx − 1, iff R0 > βx + 1.

Stability is given by the existence of all negative solutions for eigenvalues equation

p(T ) = 0

∣∣∣∣∣∣∣∣∣∣
− (1 + v̄eq + T ) 0 0 −x̄eq

0 − (1 + v̄eq + T ) 0 −c̄eq

v̄eq − βx + ȳeq v̄eq − (1 + βxx̄
eq + T ) x̄eq + c̄eq

0 0 k −µv − T

∣∣∣∣∣∣∣∣∣∣
= 0

using k = µvR0

∣∣∣∣∣∣∣∣∣∣∣

− (R0 − βx + T ) 0 0 1
βx−R0

0 − (R0 − βx + T ) 0 0

R0 − βx + (βx + 1) (βx/R0 − 1) R0 − βx − 1 −
(

R0

R0−βx + T
)

1
R0−βx

0 0 µvR0 −µv − T

∣∣∣∣∣∣∣∣∣∣∣
= 0

R0µv
R0 − βx

(T +R0 − βx)
{
T + (1 + βx)

(
1− βx

R0

)
+

[
R0

(
1− βx

R0

)
+ T

](
1 +

T

µv

)[
1 + T

(
1− βx

R0

)]}
= 0

T1 = βx −R0 < 0 iff R0 > βx

p(T ) is reduced to

T + AB =

(
1 +

T

µv

)
(T +R0B) (1 +BT )

where: A = 1 + βx > 0 and B = 1− βx/R0 > 0.

One can see, for example graphically, that T2, T3 < 0 and T4 < 0 iff R0 > A.

Finally we can conclude that the infectious state, for βc = F = 0, exists and is

stable iff R0 > 1 + βx
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