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1.2.2 The idèle class group and the Artin map . . . . . . . . 27
1.2.3 Ray class fields . . . . . . . . . . . . . . . . . . . . . . 30

2 Uniqueness of optimal curves over F2 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Ray class fields . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 Zeta function and real Weil polynomial of a curve . . . 38
2.2.3 Related theorems . . . . . . . . . . . . . . . . . . . . . 39

2.3 Ray class fields constructions of function fields of optimal curves 40
2.3.1 On the optimal elliptic curve . . . . . . . . . . . . . . . 40
2.3.2 On higher genus curves . . . . . . . . . . . . . . . . . . 42

2.4 Uniqueness of the Zeta function of an optimal curve . . . . . . 50
2.5 Some remarks on the Galois closure of a degree 3 non-Galois

covering of E . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.6 Further remarks on genus 6 non-Galois coverings of E . . . . . 58
2.7 Uniqueness of low genus optimal curves . . . . . . . . . . . . . 62
2.8 An example of two genus 7 optimal curves having different

Zeta functions . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 79

7



Introduction

The earliest interest in determining the number of rational points of a curve
defined over a finite field can be traced back more than two centuries to the
first results of Gauss on solving equations over the integers modulo prime
numbers. Though the concepts of field and of curve belong to modern alge-
bra, it is remarkable how the foundations for the study of these geometric
objects lay deeply in the arithmetic of numbers. In this direction, after the
work of Gauss and Jacobi on characters sums, further development has been
made in algebraic number theory by Dirichlet, Dedekind, Kronecker and
Weber in the nineteenth century. Though it is only with the work of Artin,
Hasse, F.K. Schmidt and A. Weil in the last century that a deep interest in
the arithmetic of geometric objects arises.

Among the most interesting tools that have been developed in algebraic
number theory there is the Dedekind Zeta function of a numer field K, i.e.
a finite field extension of the field of rational numbers Q. This is a function
of complex variable s ∈ C defined as the series

ζK(s) =
∑

I⊆OK

(
NK/Q(I)

)−s
,

where I ranges through the non-zero ideals of the ring of integers OK of the
number field K. Here NK/Q(I) denotes the norm of I, i.e. the number of the
residue classes of I in OK/I. The series converges absolutely only for the
complex numbers s such that <e(s) > 1, but it can be analytically continued
to all complex numbers as a meromorphic function with a simple pole at
s = 1. Moreover, since prime factorization of ideals in OK is unique, the
Dedekind Zeta function can be expressed as an Euler product

ζK(s) =
∏

P⊆OK

1

1− (NK/Q(P))−s
,

where P is a prime non-zero ideal of OK .

For the special case K = Q one gets the well known Riemann Zeta func-
tion as the series

ζ(s) =
∑
n

1

ns
.
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Here the sum ranges through all non-negative integers n, generators of the
ideals nZ of the ring of integers Z. The norm of such an ideal is indeed given
by the cardinality of Z/nZ. Also the Riemann Zeta function converges for
complex numbers s having <e(s) > 1 and satisfies the Euler product form

ζ(s) =
∏
p

1

1− p−s
.

It is proved that the analytical continuation of ζ(s) to all complex numbers
s 6= 1 has zeros at the negative even integers, the so-called trivial zeros, while
the non-trivial zeros are the object of the Riemann hypothesis, that states
that they all have real part equal to 1/2.

In 1924 Artin introduced the Zeta function for a hyperelliptic curve of
equation y2 = f(x) defined over a finite field Fq for odd q in strict analogy to
the Dedekind Zeta function for an algebraic number field. He reformulated
Dedekind’s Zeta function for number fields in terms of ideals of algebraic
function fields in one variable over a finite field Fq in connections with his
work on class field theory. Such a function field F is a finite algebraic field
extension of the rational function field Fq(x), where x is an element of F of
trascendece degree 1 over Fq. In this context, the role of a prime ideal of a
number field is played by a place P of F , i.e. the maximal ideal MP of a
discrete valuation ring OP in F . The norm of a prime ideal of a number field
is the cardinality qdegP of the residue class field OP/MP of a place P . This
is a finite extension of Fq whose index degP is called the degree of P . By
substitution of variable t = q−s, the Euler product form of the Zeta function
of a fuction field F looks like

Z(t) =
∏
P

1

(1− tdegP )
=

∞∏
d=1

1

(1− td)ad
,

where P runs over the places of F and ad denotes the number of places of
degree d of F . Let D =

∑
P nPP be an effective divisor of a fuction field F ,

i.e. a formal sum over the places P of F where the integers nP ≥ 0 are zero
but a finite number. The power series form of the Zeta function Z(t) of a
function field F is given by

Z(t) =
∑
D

1

qdegD s
=
∑
D

tdegD =
∞∑
d=0

Adt
d. (1)

Here degD =
∑

P nPdegP is the degree of the divisor D and Ad the number
of effetive divisors of F of degree d.
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F.K. Schmidt explicitly introduced the Zeta function for a smooth, pro-
jective, absolutely irreducible curve C defined over a finite field Fq in the
equivalent suggestive form

Z(t) = exp

(
∞∑
n=1

#C(Fqn)

n
tn

)
.

In this form is more evident that the Zeta function encodes information on
the number #C(Fqn) of rational places of C over any degree n extension of
the definition field Fq. The function field of C is an algebraic function field
over Fq as described above and this exponential form for the Zeta fuction
is obtained taking the logarithm derivative of the Euler product form and
considering that

#C(Fqn) =
∑
d|n

dad.

The latter relation comes from the fact that a place of degree d of C corre-
sponds to a conjugacy class of points in C(Fq) of cardinality d, given by the
action of the Galois group Gal(Fq/Fq), where Fq is a fixed algebraic closure
of Fq. Schmidt also proved that the Zeta function of a genus g curve is a
rational function

Z(t) =
L(t)

(1− t)(1− qt)
, (2)

where L(t) is a degree 2g polynomial. This is the form we are used to
nowadays. The polynomial L(t) can be factored over C as

L(t) =

2g∏
i=1

(1− αit), (3)

where the αi’s are algebraic integers and can be arranged in such a way
that αiαg+i = q holds for i = 1, . . . , g since the polynomial L(t) satisifes the
functional equation

L(t) = qgt2gL(1/qt). (4)

Moreover the polynomial Ln(t) = (1−t)(1−qnt)Zn(t) associated to the curve
C defined over Fqn satisfies

Ln(t) =

2g∏
i=1

(1− αni t). (5)

Artin conjectured the reciprocal roots αi of the Zeta function of a curve to
be complex numbers having absolute value

|αi| =
√
q.
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Since |q−s| = q−<e(s), this is equivalent to say that the zeros 1/αi of the Zeta
function are of the form q−s with <e(s) = 1/2, in analogy with the conjecture
about the zeros of the Riemann Zeta function. Not much later, around 1932,
Hasse observed an interesting consequence of Artin’s conjecture. Since

#C(Fq) = q + 1−
g∑
i=1

(αi + αi), (6)

by comparison of the linear terms in (1) and in (3), the number #C(Fq)
of rational points of a genus g curve C defined over a finite field Fq can be
bounded by

|#C(Fq)− (q + 1)| ≤ 2g
√
q. (7)

Hasse proved the conjecture and hence the bound for g = 1. But the proof
of this conjecture of Artin in the general case is due to Weil in 1948. The
Weil Theorem on the zeros of the Zeta function of a curve defined over Fq
can be considered as a milestone in the history of number theory. Moreover,
further conjectures due to Weil have been pushing forward investigations for
the next twenty-five years, concerning the possibility to extend to Zeta func-
tions of varieties over finite fields the same properties that Weil had proved
to hold for Zeta functions of curves over finite fields. A complete proof of
Weil’s conjectures has finally been achieved by Deligne in 1973.

In the context of curves over finite fields, the bound in (7) is nowadays
known as Hasse-Weil bound and it has played an undisputed predominant
role until the ’80s. Only in 1982, in fact, a sudden revival in the subject
takes place, in connection with the studies about error-correcting codes of
the Russian mathematician Goppa.

A linear code C is an Fq-linear subspace of Fq
n. We denote by k its

dimension over Fq. An element of C is said to be a codeword. Each codeword
can be represented as a n-tuple of elements of Fq in which the first k-entries
consist of information that needs to be transmitted through a noisy channel.
The rest of the entries is linearly dependent on the previous k and this
redundancy allows the receiver of the message to detect errors occured during
the transmission, whenever the structure of the received codeword has not
been mantained. Sometimes it is even possible to correct the transmission
errors: in particular it is possible to correct up to [(d − 1)/2] errors in one
word, where d = minv 6=w∈C{i | v−w has a number i of non-zero coordinate}
is the minimal distance of the code. Moreover the lenght n, the dimension k
and the minimum distance d of a code are related by the Singleton bound:

k + d ≤ n+ 1.

Information and redundancy have to be balanced in order to give a good
code: two important parameters that describe the quality of a code are the
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transmission rate k/n and the relative distance d/n.
Let C be a genus g curve defined over Fq and let D =

∑
P nPP be a rational

divisor of C. Consider a set of Fq-rational points P1, . . ., Pn of C such that
Pi 6∈ suppD, for all i = 1, . . . , n. Then define the map

ϕ : L(D) → Fq
n

f 7→ (f(P1), . . . , f(Pn)),

from the Fq-vector space L(D) = {f ∈ K∗ | (f) +D ≥ 0} ∪ {0} of elements
of the function field K of C. Here (f) +D ≥ 0 means that for the principal
divisor (f) =

∑
P vP (f)P one has that vP (f) + nP ≥ 0 for every P . In

particular f admits a pole in P of order at most nP and f is well defined in
the Pi’s. The Goppa code associated to the curve X, and to the divisors D
and

∑n
i=1 Pi is defined to be the image of ϕ. The length of a Goppa code

is clearly n, while the minimal distance is bounded by d ≥ n − degD > 0.
By arguments of algebraic geometry as the Riemann-Roch theorem, one can
show that the dimension of the code is at least k ≥ degD−g+1. From these
last two inequalities and the Singleton bound it is easily verified that

1 +
1− g

n
≤ k

n
+
d

n
≤ 1 +

1

n
.

This implies that for a Goppa code it is possible to have both transmission
rate k/n and relative minimum distance d/n large, whenever the code is asso-
ciated to a curve C having small genus g and a large number n of Fq-rational
points.

Motivated by the idea that “good codes” could be explicitly constructed
by means of curves defined over finite fields having many rational points with
respect to their genus, it became of interest to reconsider the study of such
curves in order to find explicit examples. Rather unexpectedly, it appeared
that Weil’s estimates were not best possible for large genus. One can in
fact consider the asymptotic behavior of the ratio between the number of
Fq-rational points and the genus of all genus g curves C. By means of the
Hasse-Weil bound it can be estimated as

A(q) = lim sup
g→∞

#C(Fq)

g
≤ 2

√
q.

Serre gave first a non-trivial improvement to the Hasse-Weil bound when q
is not a square

|#C(Fq)− (q + 1)| ≤ g[2
√
q], (8)

(here [ ] indicates the integer part). An imediate corollary is A(q) ≤ [2
√
q].

The bound (2.1) follows considering the arithmetic-geometric-mean inequal-
ity

1

g

g∑
i=1

xi ≥ (

g∏
i=1

xi)
1/g ≥ 1,
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taken over the totally positive algebraic integers xi = [2
√
q] + 1 +αi +αi for

i = 1, . . . , g, where the αi’s are the reciprocal roots of the Zeta function of
C. This implies indeed

∑g
i=1 xi ≥ g and hence the bound.

Generalizing a further improvement due to Ihara [I], in 1983 Drinfeld and
Vlădut [D-V] achieved the best known asymptotic bound

A(q) ≤ √
q − 1, (9)

which has been shown to be attained by Shimura curves when q is a square.
The proof relies on some basic ideas from which Serre has obtained infor-
mation for a particular value of g: the final result is analogous to the use
of Weil’s explicit formulae for bounding below the discriminant of a num-
ber field. Here’s the idea that provides new upper bounds for #C(Fq). Let
Ψ(t) =

∑∞
n=1 cnt

n be a polynomial with non-negative real coefficients cn
satisfying to

1 + Ψ(θ) + Ψ(θ−1) ≥ 0, for all θ ∈ C, |θ| = 1,

and denote by Ψd the polynomial Ψd(t) =
∑∞

n≡0 (mod d) cnt
n. Consider the

equalities

#C(Fqn) = qn + 1−
g∑
j=1

(αnj + αj
n) = qn + 1− qn/2

g∑
j=1

(einθj + e−inθj),

where αj =
√
qeiθj for j = 1, . . . , g are the reciprocal roots of the Zeta

function of C (the first equality is a generalization of (6) due to (4) and (5)).
One has

0≤
g∑
j=1

(Ψ(einθj)+Ψ(e−inθj)+1) = g +

g∑
j=1

∑
n≥1

cn(e
inθj + e−inθj)

= g +
∑
n≥1

q−n/2cn(q
n + 1−#C(Fqn))

= g+Ψ(q1/2)+Ψ(q−1/2)−
∑
d≥1

∑
d|n

q−n/2cndad.

Then, for any choice of real non-negative coefficients cn, the following relation
holds ∑

d≥1

dadΨd(q
−1/2) ≤ g + Ψ(q1/2) + Ψ(q−1/2),

and in particular

#C(Fq) ≤
g + Ψ(q−1/2) + Ψ(q1/2)

Ψ(q−1/2)
,
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since #C(Fq) = a1. Hence any choice of the polynomial Ψ(t) provides an
upper bound for the number of Fq-rational points: for example for Ψ(t) = t/2
one obtaines the Hasse-Weil bound. But good choices for cn are those that
minimize the corresponding upper bound. For q = 2, by choosing Ψ(t) such
that

1 + Ψ(t) + Ψ(t−1) =
1

c
(1 + x1(t+ t−1) + x2(t

2 + t−2) + x3(t
3 + t−3))2,

where c = 1+2x1
2+2x2

2+2x3
2, x1 = 1, x2 = 0.7 and x3 = 0.2, Serre obtained

the estimate #C(F2) ≤ 0.83g+5.35. For g ≥ 2 this improves the Hasse-Weil
bound. Indeed already for g = 2 one has now that #C(F2) ≤ 6, while the
Hasse-Weil bound only predicts #C(F2) ≤ 8 and Serre’s refinement in (2.1)
gave #C(F2) ≤ 7. The improvement is even better as the genus increases: in
case g = 12, for example, the Hasse-Weil bound is 36, while the new estimate
given by Ψ(t) is 15. For more comparisons see Table 2.1. Oesterlé’s linear
programming method optimized the choice for Ψ(t) in 1982 (the argument
has never been published but a sketch of the proof can be found in [S], page
Se Th 29, and [E]).

Nevertheless also this estimate failed to be sharp. It became hence of
interest to consider the quantity

Nq(g) := max{#C(Fq) | for a genus g curve C defined over Fq}, (10)

i.e. the actual maximum number of Fq-rational points that a genus g curve
can have, and to define optimal a genus g curve defined over Fq having a
number of Fq-rational points equal to Nq(g).

Several methods have been used in order to determine Nq(g) and to pro-
vide examples of optimal curves over Fq for fixed values of the genus g and
of the cardinality of the finite field Fq. The progress in characteristic 2 and
3 and for genus g ≤ 50 is listed in the tables [G-V]: in particular the values
of N2(g) for low genus g have been determined by Serre in [S1] (see also [S],
page Se Th 41, for more details), giving examples of curves having a number
of F2-rational points attaining the bounds shown in the row tagged as Serre-
Oesterlé of Table 2.1. Most of Serre’s examples consist of abelian coverings
of curves over F2, whose algebraic function fields can be constructed as ray
class fields. We display Serre’s results on N2(g) in the table below.

Notice that for genus 7 Serre-Oesterlé’s estimate in the table is 11. In or-
der to determine N2(7) = 10, Serre gave first an example of a genus 7 curve
having 10 rational points and next proved that there is no genus 7 curve
with 11 rational points (cf. [S], page Se Th 38a). For genus 12, on the other
hand, while it is known that a curve exists having 14 rational points, one still
can not prove whether or not there exists a curve attaining the bound of 15
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g 0 1 2 3 4 5 6 7 8 9 10 11 12
Hasse - Weil 3 5 8 11 14 17 19 22 25 28 31 34 36
Serre - Oesterlé 5 6 6 7 8 9 10 11 11 12 13 14 15
N2(g) 3 5 6 7 8 9 10 10 11 12 13 14 14− 15

Table 1: Bounds on the number of F2-rational points of a genus g curve

rational points over F2. This means that N2(12) has not been determined yet.

In this thesis we use class field theoretic methods following Serre to con-
struct optimal curves over F2. The main idea is to construct as ray class
fields suitable abelian extensions of the algebraic function fields of low genus
curves over F2.
The first chapter is an introduction to these methods. One begins by fix-
ing a base curve X over F2 of genus gX , a non empty set S of rational
points of X and an effective rational divisor D =

∑
P nPP of X, such that

suppD ∩ S = ∅. Here the sum runs over the places P of the function field
K of X. Next one looks for a convenient finite abelian covering Y → X, i.e.
a separable surjective map corresponding, by pull back, to a finite abelian
Galois extension of the function fields L/K, where all places of K in suppD
ramify over the function field L of Y (D turns out to be the conductor of
L/K), and where all places of K in S split completely over L. In this way
the curve Y is defined over F2 and has |Gal(L/K)| rational points lying over
each point of X in S and one rational point lying over each rational point
of X in the support of D that totally ramifies. The genus gY of Y can be
determined from the genus of X by a variant of the Hurwitz formula that
expresses the different of the abelian extension L/K in terms of the conduc-
tors of the cyclic subextensions. Class field theory explains how to determine
Gal(L/K) and hence the arithmetic of the curve Y from the arithmetic of
X, according to the choices made for S and D.
By means of class field theory it is also possible to study the splitting behav-
ior of places of any degree d of the base curve X in the covering Y , whose
function fields extention L/K has been constructed as ray class field. One
considers first of all that the places of K that ramify over L are precisely
those lying in the support of the conductor D. A not ramifying place P of
K splits completely over L if and only if its decomposition group is trivial:
the latter is defined to be the subgroup of elements of Gal(L/K) fixing one
of the conjugate places Q of L lying over P . Since P is not ramified its de-
composition group is cyclic, and, since the extension is abelian, the generator
FrobP of the decomposition group depends only on P . The order of FrobP
can be computed explicitely using class field theory.
A further step in the study of curves defined over finite fields is to consider
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their Zeta function as in (2). As seen above this object encodes important
arithmetic information on the number of points of the curve over all finite
extensions Fqn of the definition field Fq. On the other hand only a finite piece
of information is sufficient to completely determine the Zeta function. For
example it is enough to know the numbers ad of places of the curve of degree
d = 1, . . . , g in order to determine the first g + 1 coefficients of the series
expansion

(1−qt)(1−t)Z(t) =
(1− qt)(1− t)∏g
d=1(1− td)ad

+O(tg+1) = 1+b1t+ . . .+bgt
g+O(tg+1),

that coincide with the first g + 1 coefficients of the numerator of the Zeta
function L(t) = qgt2g + b2g−1t

2g−1 + . . .+ b1t+ 1. The rest of the coefficients
is determined by b2g−i = qg−ibi for i = 1, . . . , g, by the functional equation
(4) of L(t).

One can recover the number of degree d = 1, . . . , g places and hence the
Zeta function of a curve Y , whose function field has be constructed as ray
class field as presented in Section 2.3.

On the other hand one can consider the problem of recovering the Zeta
function of an optimal genus g curve C defined over Fq when only the number
of Fq-rational points of C is known (much less that the g numbers ad of degree
d places, for d = 1, . . . , g, we had to consider in the previous part). This is
possible following the approach that Serre started by considering the so called
real Weil polynomial h(t) associated to the curve C:

h(t) =

g∏
i=1

(t− µi) ∈ Z[t],

where µi = αi+αi for i = 1, . . . , g and the αi’s are the reciprocal roots of the
Zeta function of C. The real Weil polynomial of a curve has hence all roots in
the interval [−2

√
q, 2

√
q] and moreover has the property that also the roots

of its derivatives lie in the same interval. Since the real Weil polynomial of
a genus g curve C is related to the numerator L(t) of the Zeta function of C
by

tgL(1/t) = h(t+ q/t), (11)

the problem of determining the Zeta function of C can be turned into the
problem of determining the real Weil polynomial of C. We define a monic
degree g polynomial

h(t) = tg + cg−1t
g−1 + . . .+ c1t+ c0 ∈ Z[t]

to be a candidate real Weil polynomial for a genus g curve C defined over Fq
if it satisfies the following three properties:
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1. the trace is cg−1 = #C(Fq)− (q + 1),

2. the polynomial h(t) and all its derivatives have all roots in the interval
[−2

√
q, 2

√
q],

3. the polynomial L(t) = tgh(1 + qt2), as in (11), satisfies

L(t) +O(tg+1) = (1− t)(1− qt)

g∏
i=1

1

(1− td)ad
+O(tg+1),

with all ad ≥ 0.

For a given genus g curve C there are only finitely many candiate real Weil
polynomials h(t) = tg + (#C(Fq) − (q + 1))tg−1 + . . . + c1t + c0. One can
compute them explicitly (cf. [S]). In order to determine the coefficients ci for
i = 0, . . . , g − 2 one considers the i-th derivatives h(i)(t) of h(t) backwards.
The equation y = h(g−2)(t) represents a family of parabolas determined up to
translation of the unknown coefficient cg−2. Then h(g−2)(t) has the two roots
in [−2

√
q, 2

√
q] whenever the corresponding parabola has two intersections

with the t-axis in the interval [−2
√
q, 2

√
q]. Hence cg−2 is bounded by the

interval of integer values corresponding to the parabolas satisfying the latter
property. Each of the values of cg−2 determines together with cg−1 a value
for a2: if a2 is negative one discards the corresponding value of cg−2. To
each value of cg−2 giving a non-negative value of a2 one associates a branch
of a tree and determines h(g−3)(t) and an interval of integer values for cg−3

corresponding to non-negative a3’s in a similar way. The procedure can be
iterated until one has as leaves of this tree values for the coefficient c0 for
which the all roots of h(t) lie in [−2

√
q,
√
q].

Further investigation on the candidate real Weil polynomials of the list
sometimes allows to see that there exist no curves associated to some of them.
Useful results for further analysis in this direction are due to Serre and more
recently to E. Howe and K. Lauter (cf. Section 2.2.3). The idea at the basis
of these results is that the factorization of the real Weil polynomial of a genus
g curve C encodes some properties of the Jacobian of C.

The main result of the thesis deals with uniqueness up to isomorphism of
optimal curves F2 of genus g = 1, . . . , 6. Indeed two curves having the same
Zeta function may not be isomorphic a priori. In Section 2.7 we prove the
following results on uniqueness of optimal curves.

• There exists a unique genus g optimal curve over F2 up to isomorphism
for any genus 1 ≤ g ≤ 5. The optimal curves constructed by means of
class field theory in Section 2.3 are, in this sense, the unique examples
of optimal curves.
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• There exists a unique genus 6 optimal curve over F2 for each of the
two possible Zeta functions listed in a) and b) of Proposition 2.1.4. In
particular, the optimal curve constructed in Section 2.3 is the unique
example of genus 6 optimal curve having a) as Zeta function. On the
other hand, all genus 6 optimal curves having b) as Zeta function are
isomorphic to the curve we describe in Proposition 2.4.3.

We approach to these results in two steps: first we show the following
results on uniqueness of the Zeta function of optimal curves

• For g = 1, . . . , 5 the Zeta function of a genus g optimal curve over F2 is
unique and indeed it is the Zeta function of the genus g optimal curve
described in Section 2.3. We list these Zeta functions in Proposition
2.1.3.

• Any genus 6 optimal curve over F2 can have one of two possible Zeta
functions. They are listed in Proposition 2.1.4.

In the second step we show how uniqueness up to F2-isomorphism of an op-
timal genus g curve follows from its Zeta function.

When the genus increases, the list of candidate real Weil polynomials for
a genus g optimal curve defined over F2 becomes longer and longer. Trying to
determine which candidate polynomials do not occur as real Weil polynomial
of a curve turns out to be quite hard.

Finally we provide a further example of non-uniqueness by constructing
a ray class field having among its subfields the function fields of two genus 7
optimal curves whose Zeta functions are different. We do not know if these
are the only examples of genus 7 optimal curves defined over F2.





Chapter 1

An introduction to class field
theory for curves over finite
fields

Let X be a projective, smooth absolutely irreducible curve defined over Fq.
The function field K of X is defined to be the quotient field of the coordi-
nate ring of any open ∅ 6= U  X and it is an algebraic function field in
one variable over Fq in the sense of Definition 1.1.1. To any separable sur-
jective morphism of curves Y → X one can associate by pull back the finite
separable extension L/K of function fields, where L is the function field of
Y . We call such a morphism a covering of X of degree n, where n is the
extension degree [L : K]. If the extension is Galois and the corresponding
Galois group is abelian, the extension L/K is said to be an abelian extension
and the corresponding covering Y → X is said to be an abelian covering.
Most of the results of class field theory that hold for abelian extensions of
number fields also hold for these abelian extensions of function fields. In this
way it is possible to describe all finite abelian extensions L of the function
field K, and hence give a description of the associated coverings Y → X.
We divide this introductory chapter into two sections. In the first we recall
some definitions and give results without proof on algebraic function fields
and their Galois extensions. A more detailed exposition with proofs and
examples can be found in [Sti]. In the second section we present some im-
portant results of class field theory for function fields and in particular we
focus on ray class fields. More on this subject can be found in [Au], [L1],
[N-X], [S], [Sch].



1.1. Algebraic function fields and Galois extensions 21

1.1 Algebraic function fields and Galois ex-

tensions

Let k be an arbitrary field.

Definition 1.1.1. An algebraic function field K of one variable over k (short
function field) is a field extension K/k such that there exists an element
x ∈ K of transcendence degree 1 over k, such that K is a finite algebraic
field extension of the rational function field k(x) (i.e. [K : k(x)] <∞).

The set k = {z ∈ K | z algebraic over k} is a subfield of K called the field
of constants of K. Naturally k ⊆ k ⊂ K and K/k is itself a function field
over k. If k = k we say that k is the full constant field of K.

1.1.1 Places of a function field and valuations

One of the basics in the theory of algebraic function field is the concept of
place. A discrete valuation ring is a principal ideal domain with exactly one
non-zero maximal ideal, then

Definition 1.1.2. A place of a function field K/k is the maximal ideal MP

of a valuation ring O of K/k. Any generator t of MP , as principal ideal tO,
is called uniformizer at the place P .

Let t be a uniformizer at a place P , then every element 0 6= z ∈ K has
a unique representation of the form z = tnu, for some n ∈ Z, u ∈ O∗. The
discrete valuation ring O is then uniquely determined by MP :

O = { z ∈ K | z−1 /∈MP}.

Hence the notation OP = O makes sense and it is correct to talk about the
discrete valuation ring of the place P . Moreover one defines

Definition 1.1.3. A normalized discrete valuation of the function field K/k
is a surjective map v : K → Z ∪ {∞} satisfying the following properties:

i) v(x) = ∞ ⇐⇒ x = 0;

ii) v(xy) = v(x) + v(y) for all x, y ∈ K;

iii) v(x+ y) ≥ min { v(x), v(y)} for all x, y ∈ K;

iv) v(a) = 0 for all 0 6= a ∈ k.
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There is a bijective correspondence between the normalized discrete val-
uations of a function field K and its places defined by associating to any
place P the map vP : K → Z ∪ {∞} in the following way: let t be a uni-
formizer at P and consider for any 0 6= z ∈ K its unique representation
z = tnu, ∃ n ∈ Z, ∃ u ∈ O∗

P , one defines vP (z) = n and vP (0) = ∞.
Viceversa, one has

OP = { z ∈ K | vP (z) ≥ 0},
O∗
P = { z ∈ K | vP (z) = 0},

MP = { z ∈ K | vP (z) > 0},

as further characterization for a place P of K. An element t ∈ K is a
uniformizer at P if and only if vP (t) = 1.

Definition 1.1.4. Let P be a place of K.

i) FP = OP/MP is called the residue class field of P . It is a finite
extension of k.

ii) degP = [FP : k] is called the degree of P .

For the case when degP = 1 one has FP = k and in this case the place
is called a k-rational place.

Definition 1.1.5. Let z ∈ K and P a place of K, then

i) P is a zero of z if and only if vP (z) > 0; if vP (z) = m > 0, P is called
a zero of z of order m.

ii) P is a pole of z if and only if vP (z) < 0; if vP (z) = −m < 0, P is
called a pole of z of order m.

One can prove that every function field has infinitely many places. On the
other hand any non-zero element of a function field has only a finite number
of zeros and poles.

1.1.2 Divisors and genus of a function field

The places of a function field generate an additive group as follows.

Definition 1.1.6. A divisor of a function field K/k is a formal sum

D =
∑
P

nPP,

where the sum runs over the places of K and all but a finite number of nP ∈ Z
are zero.
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We define the support of a divisor D by suppD = {P ∈ K |nP 6= 0}. The
divisors of a function field K form an additive (free abelian) group, generated
by the places of the function field itself, called the divisor group of K/k and
denoted with Div(K). A partial ordering over Div(K) is defined by:

D1 ≤ D2 ⇔ vP (D1) ≤ vP (D2) ∀ P place of K,

where vP (D) = nP . A divisor D ≥ 0 is called effective and the degree of a
divisor is defined by

degD =
∑
P

vP (D) degP,

yielding the group homomorphism deg : Div(K) → Z.

Definition 1.1.7. For any 0 6= z ∈ K one defines the principal divisor of z
as the divisor (z) =

∑
P vP (z)P .

Any principal divisor is the difference (z) = (z)0 − (z)∞ of the effective
divisors (z)0 and (z)∞, whose support is respectively the set of zeros of z and
the set of poles of z. Moreover deg(z)0 = deg(z)∞ and hence every principal
divisor has degree zero. Since ∀ 0 6= x, y ∈ K, (xy) = (x)+(y), the principal
divisors of K/k form a subgroup of Div(K), called the group of principal
divisors of K/k and denoted by

Princ(K) = { (z) ∈ Div(K) | 0 6= z ∈ K}.

The quotient group Div(K)/Princ(K) is called the divisor class group of K.
To the same divisor class [D] = D + Princ(K) of D ∈ Div(K) belong all
divisors D′ ∼ D such that D′ = D + (z) for some z ∈ K\{0}.
The set Div0(K) consisting of all divisors of degree 0 of K is a subgroup of
Div(K) containing Princ(K). It is called the divisor group of degree zero of
K. The factor group

Cl(K) = Div0(K)/Princ(K)

is called the divisor class group of degree zero of K. It is a finite group and
its cardinality h(K) is called the divisor class number of K.

Definition 1.1.8. For any divisor D ∈ Div(K) we set

L(D) = {z ∈ K | (z) +D ≥ 0} ∪ { 0}.

If D =
∑r

i=1 niPi −
∑s

j=1mjQj with ni > 0, mj > 0 then L(D) consists
of all elements z ∈ F such that

i) z has zeros of order ≥ mj at Qj, for j = i, . . . , s, and

ii) z may have poles at the places P1, . . . , Pr with pole order at Pi being
bounded by ni (i = 1, . . . , r).
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One can prove that, for all D ∈ Div(K), L(D) is a finite dimensional
vector space over k and that, if D′ ∼ D, then L(D) ' L(D′) (as vector space
over k). The rank of a divisor D is `(D) = dimL(D). Therefore equivalent
divisors have not only the same degree but also the same rank. So that it
makes sense to speak of degree and of rank of a divisor class in the divisor
class group.

Definition 1.1.9. The genus g of a function field K/k can be defined by

g = max {degD − `(D) + 1 |D ∈ Div(K)}.

One has the following theorem

Theorem 1.1.10 (Riemann-Roch Theorem). If D is a divisor of K/k such
that degD > 2g − 2, then

`(D) = degD + 1− g.

1.1.3 Ramifications in Galois extensions of function
fields

Consider now an algebraic function field K and assume its field of constants
k = Fq is finite. We briefly recall some important properties satisfied by a
finite separable function field extension L of K.

We say that a place Q of L lies over a place P of K whenever MP =
OP ∩ MQ. We indicate this by Q|P . Chosen a uniformizer tP at P , the
positive integer e(Q|P ) = vQ(tP ) is called the ramification index of Q over
P . We say that Q is unramified if e(Q|P ) = 1, otherwise we say that Q is
ramified. In particular it is totally ramified if e(Q|P ) = [L : K]. Moreover
the ramification of Q can be wild or tame whenever the characteristic p of
Fq = Fpn divides the ramification index or not.
Let FQ and FP the residue fields of Q and P respectively. The extension
FQ/FP is finite and the degree f(Q/P ) = [FQ : FP ] is called relative degree
of Q over P . Ramification indexes and relative degrees of places R |Q |P in
a function fields tower K ⊆ L ⊆ L′ of finite separable extensions, satisfy

e(R|P ) = e(R|Q)e(Q|P ) and f(R|P ) = f(R|Q)f(Q|P ).

Moreover the fundamental relation holds

r∑
i=1

e(Qi|P )f(Qi|P ) = [L : K],

where Qi for i = 1, . . . , r are all places of L lying over P .
We say that a place P of K splits completely over L if there are exactly
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[L : K] places over it, i.e. if both ramification index and relative degree are
trivial for any of the places lying over P .
In particular if the extension L/K is Galois, the Galois group Gal(L/K) acts
transitively on the places of L: σ(Q) = {σ(x) : x ∈ Q} is a conjugate place
of Q by σ ∈ Gal(L/K). Thus one can show that for a place P of K all
ramification indexes and relatives degrees of the places of L lying over P are
equal. Moreover if r is the number of places of L lying over P then one has
re(P )f(P ) = [L : K].

Ramifications of a function field extension L/K are bounded by the fol-
lowing formula.

Proposition 1.1.11 (Hurwitz genus formula). Let L/k′ be a finite separable
extension of K/k. Then

2gL − 2 =
[L : K]

[k′ : k]
(2gK − 2) + degDiff(L/K),

where gL and gK are the genera of L and K respectively.

Here Diff(L/K) =
∑

P

∑
Q|P d(Q|P )Q is the different of the extension

L/K. It is a divisor of the function field L, where the second sum runs over
the places Q of L lying over the places P of K. Only the ramified places of
L appear in the support of Diff(L/K). Indeed the following proposition on
the different exponent d(Q|P ) of Q over P holds

Proposition 1.1.12. For a place Q of L lying over a place P of K one has

i) d(Q|P ) = e(Q|P )− 1 if Q is tamely ramified (or unramified);

ii) d(Q|P ) > e(Q|P )− 1 if Q is wildly ramified.

1.1.4 Decomposition and inertia groups

Let L/K a finite Galois extension of Galois group Gal(L/K) and let Q a
place of L lying over the place P of K.

Definition 1.1.13. The decomposition group of Q is defined as the stabilizer
of Q in Gal(L/K)

D(Q|P ) = {σ ∈ Gal(L/K) |σ(Q) = Q}.

In the Galois correspondence the fixed field of D(Q|P ) is called the de-
composition field of P .
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Each σ ∈ Gal(L/K) provides an isomorphism

σ : OQ/MQ → Oσ(Q)/Mσ(Q)

z 7→ σ(z),

for any place Q of L. Here z ∈ OQ and z is the residue class of z in the residue
class field FQ = OQ/MQ of Q. The isomorphism leaves FP pointwise fixed,
so that we have a map σ → σ from Gal(L/K) to Gal(FQ|FP ) by identifying
the finite fields FQ and Fσ(Q). This map is a group isomorphism.

Proposition 1.1.14. Let Q a place of L lying over a place P of K. Then
the following sequence is exact

1 // I(Q|P ) // D(Q|P )
φ // Gal(FQ|FP ) // 1 .

Moreover one has |D(Q|P )| = e(Q|P )f(Q|P ) and |I(Q|P )| = e(Q|P ).

Definition 1.1.15. The kernel I(Q|P ) of the map φ is called the inertia
group of Q. It is hence a normal subgroup of D(Q|P ).

For any place Q of L lying over P the decomposition groups and the
inertia groups of the conjugates places of Q are conjugate. More precisely

D(σ(Q)|P ) = σD(Q|P )σ−1 and I(σ(Q)|P ) = σI(Q|P )σ−1,

for any σ ∈ Gal(L/K) and Q|P . In particular if L/K is an abelian extension
they are equal.

If Q is an unramified place of L lying over a place P of K, then the ex-
act sequence above gives an isomorphism of groups and the decomposition
group D(Q|P ) of Q turns out to be a cyclic group. In particular there exists
a unique generator σ ∈ D(Q|P ) such that φ(σ) is the Frobenius morphism
σ : x 7→ xr, for any x in the residue field of Q if r is the cardinality of FP .
This element σ is called the Frobenius automorphism FrobQ of Q, and it is
characterized by the property that σ(x) ≡ xr modMQ for all x ∈ OQ.

If L/K is an abelian extension, then the Frobenius of Q does not depend
on Q but only on the place P of K lying under Q. So we can denote it by
FrobP and finally state a very useful result.

Proposition 1.1.16. Let L/K be an abelian extension and let K ′ be a sub-
field of L/K. An unramified place P of K splits completely over K ′ if and
only its Frobenius automorphism FrobP belongs to Gal(L/K ′).

1.2 Class field theory for function fields

Let K be a algebraic function field defined over the finite field Fq.
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1.2.1 Completions and ramification groups

For any place P of the function field K consider the (unique) completion
KP of K with respect to the normalized discrete P -adic valuation vP . We
denote by OP the subring of elements x of KP for which vP (x) ≥ 0. This
corresponds to the completion of the discrete valuation ring OP . Also OP has
a unique maximal ideal generated by a uniformizer tP at P . One can prove
that any element x of KP can be uniquely expressed by a formal Laurent
series expansion

x =
∞∑
n=r

xnt
n
P ∈ Fqd [[tP ]],

where r ∈ Z. In particular the elements in the ring OP are formal Taylor
series expansions. Viceversa, any such a series with ar 6= 0 represents a non-
zero element of KP such that vP (x) = r. This also gives an isomorphism
OP/(tP ) → FP between the constants of KP (the elements of valuation zero)
and the residue class field FP ' Fdq of the place P , where d is the degree of P .

Let L be a finite Galois extension of K and Q a place of L lying over a
place P of K. One can show that the Q-adic valuation on L is the unique
extension of the P -adic valuation to a discrete normalized valuation on L.
We denote by LQ the Q-adic completion of L. Since σ(OQ) = Oσ(Q) for any
element σ ∈ Gal(L/K), we have that σ induces a KP isomorphism LQ →
Lσ(Q). If σ ∈ D(Q|P ), the decomposition group of Q over P , then σ induces
a KP -automorphism σQ on EQ. One can prove the following proposition

Proposition 1.2.1. If L/K is a finite Galois extension, the LQ/KP is also
a finite Galois extension and the map

µ : D(Q|P ) → Gal(LQ/KP )

σ 7→ σQ

is an isomorphism.

Moreover for each integer i ≥ −1 one can define the i-th ramification
group of LQ/KP as

Gi(LQ/KP ) = {σ ∈ Gal(LQ/KP ) | vQ(σ(x)− x) ≥ i+ 1 for all x ∈ OQ}.

The group G−1(LQ/KP ) is just the Galois group Gal(LQ/KP ), isomorphic
to D(Q|P ). Similarly, the group G0(LQ/KP ) is called the inertia group of
LQ/KP and one can prove that it is isomorphic to the inertia group D(Q|P ).

1.2.2 The idèle class group and the Artin map

Definition 1.2.2. The ring of adèles of the function field K defined by

AK = {(xP )P ∈
∏
P

KP |xP ∈ OP for all but finitely many places P},
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is the restricted product of the completions KP ’s with respect to the OP ’s.

AK is an abelian ring with unity (xP )P , such that xP = 1 for any P , and
addition and multiplication are defined componentwise. As in K any 0 6= x
has only finitely many poles, it makes sense to define (also for x = 0) the
adèle all of whose components are equal to x. This is called the principal
adèle of x. This gives the diagonal embedding

K ↪→ AK

x 7→ (x)P .

Definition 1.2.3. The unit group of A∗K is called the group of idèles of K:

A∗K = {(xP )P ∈
∏
P

K∗
P |xP ∈ O∗

P for all but finitely many places P}.

The restriction of the above diagonal embedding to K∗ ↪→ A∗K allows to
consider K∗ as a subroup of A∗K by identification with its image.

Definition 1.2.4. The quotient group

CK = A∗K/K
∗

is called the idèle class group of K.

The group of idèles admits a natural surjective homomorphism

AK → Div(K)

(xP )P 7→
∑
P

vP (xP )P,

induced by the valuations maps vP : KP → Z. The kernel U of this morphism
consists of the idèles that have trivial valuations at all places. The elements
of K∗ lying in the kernel are precisely the constants F∗q. The idèle class group
fits hence, in the following commutative diagram.

1

��

1

��

0

��
1 // F∗q

��

// K∗

��

// Princ(K)

��

// 0

1 // U

��

// A∗K

��

// Div(K)

��

// 0

1 // U/F∗q

��

// CK

��

// Div(K)/Princ(K)

��

// 0

1 1 0



1.2. Class field theory for function fields 29

The idèle class group is the main object of study of class field theory. It
is a topological group with respect to the quotient topology, where a base of
open neighborhoods of unity for the idèle group A∗K is given by the groups∏

P∈T K
∗
P ×

∏
P 6∈T O

∗
P , where T denotes a finite set of places of K. The main

results of class field theory give a correspondence between open subgroups of
CK and abelian extensions of the function field K.

Theorem 1.2.5. Let K be a function field defined over Fq.

i) (Artin Reciprocity) For any finite abelian field extension L/K, there is
a canonical isomorphism

CK
NL/K

→ Gal(L/K),

given by the surjective homomorphism θ : CK → Gal(L/K) of kernel
NL/K = (K∗ ·NL/K(A∗K))/K∗. Here NL/K : A∗L → A∗K is the canonical
extension of the norm from L to K and the homomorphism θ is induced
by the Artin map θL/K in (1.1).

ii) (Existence Theorem) For any open subgroup M of CK of finite index,
there exists a unique (in a fixed algebraic closure of K) finite extension
L/K such that M = NL/K.

Let LQ be the completion of L with respect to the unique normalized
discrete valuation vQ of L extending vP . Then the global Artin map

θL/K : A∗K → Gal(L/K)

(xP )P 7→
∏
P

θP (xP ),

is defined as product of local Artin reciprocity maps

θP : K∗
P → Gal(LQ/KP ) ' D(P ) ↪→ Gal(L/K), (1.1)

satisfying the following properties:

i) θP is a surjective map and the kernel is given by the norms of L∗Q in
K∗
P ;

ii) if KP is unramified in LQ then θP (x) = FrobP vP (x) for any x ∈ K∗
P ,

where FrobP is the Frobenius automorphism in Gal(L/K);

iii) the unit group O∗
P of K∗

P is mapped onto the inertia group I(P ) of P
in Gal(L/K).

Each local map θP determines hence the global splitting behavior of P over
L/K. Thus for a place P of K we have:
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i) P is unramified in L/K if and only if O∗
P ⊆ H,

ii) P splits completely in L/K if and only if K∗
P ⊆ H,

forH a subgroup of A∗K containingK∗ such thatM = H/K∗ andGal(L/K) '
CK/M .

Moreover Galois correspondence apply to the subgroups of CK : given any
two finite abelian extensions L/K and L′/K in a fixed algebraic closure of
K, one has L ⊆ L′ if and only if NL′/K ⊆ NL/K .

1.2.3 Ray class fields

There are some special abelian extensions of a function field K that corre-
spond to particular subgroups of the idèle class group CK . Let D =

∑
P nPP

a rational effective divisor of K and define

UD =
{

(xP )P ∈ U
xP ≡ 1 mod tnP

P

}
,

where tP is a uniformizer at P . Then UD is an open subgroup of the idèle
group A∗K . The maximal abelian extension LD/K where all places in the
support of D ramify has Galois group isomorphic to CK/(K

∗ ·UD). Moreover,
let S be a finite non empty set of places of K disjoint from the support of
D. There exists a unique subfield LSD of LD for which the Galois group is
isomorphic to the quotient of CK/(K

∗ · UD) by the group generated by the
K∗
P ’s for any P in S. It is the maximal finite abelian extensions of K over

which all places lying in the support of D ramify and all rational places in S
split completely. This kind of field is called ray class field of conductor D.
The corresponding finite quotient of CK is called the ray class group. The
field of constants of LSD is a cyclic extension of Fq of degree d equal to the
greatest common divisor of the degrees of the places in S. Thus if S consists
only of rational places of K, then LSD has Fq as its field of constants.

Theorem 1.2.6 (Conductor Theorem). Let L/K a finite abelian extension
of function fields in a fixed algebraic closure of K and let S be a finite non-
empty set of places of K such that all places in S split completely in L/K.
Let moreover D be the conductor of the extension L/K, then L is a subfield
of LSD. If moreover D′ is an effective divisor of K such that suppD′ ∩ S = ∅
and L ⊆ LSD′, then D′ ≥ D.

The hardest part is to give an explicit description of the Galois group of
a ray class field extension. Let K the function field of a curve X defined over
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Fq, and denote by Pic(X) the Picard group of X isomorphic to the divisor
class group Div(K)/Princ(K) of K. For any arbitrary divisor D of K one
has the exact sequence

1 // U/UD // CK/UD // Pic(X) // 0 . (1.2)

For the group U/UD one can give the following explicit description

U/UD '
⊕

P ∈ suppD

F degP
q [[tP ]]∗/{u : u ≡ 1 mod tnP

P }.

We want to give a description of the Galois group Gal(LSD/K) in a situ-
ation which frequently arises in applications. Let

O∗
S = {x ∈ K | vP (x) = 0 for all P 6∈ S}

denote the group of S-units of K. Moreover let πP denote an idèle all of
whose coordinates are equal to 1, but the one at P which is a uniformizer tP
at P . Then we have the following lemma.

Lemma 1.2.7. Let K the algebraic function field of a curve X defined over
Fq, S a finite non empty set of rational places of K and D a rational divisor
of K such that suppD ∩ S = ∅. Let L be the maximal ray class field exten-
sion of K of conductor D in which all places of S split completely. Under
the assumption that the group Pic(X) is generated by the points in S, the
following isomorphism holds

Gal(L/K) ' U/UDO
∗
S.

Proof. Denote by DivS(K) the subgroup of Div(K) having support disjoint
from S. Let PrincS(K) be the subgroup of principal divisors of DivS(K).
The cokernel PicS(X) of the map PrincS(K) → DivS(K) is the quotient of
the group Pic(X) modulo the classes of the points in S, which is trivial by
assumption. Similarly to what done above one has the following commutative
diagram

1

��

1

��

0

��
1 // O∗

S

��

// K∗

��

// PrincS(K)

��

// 0

1 // U〈πP 〉P∈S

��

// A∗K

��

// DivS(K)

��

// 0

1 // U〈πP 〉P∈S/O∗
S

��

// CK

��

// 0

1 1
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The snake lemma gives an isomorphism map in the bottom row

ψ : U〈πP 〉P∈S/O∗
S → A∗K/K

∗ = CK .

The ray class group of conductor D is the quotient of CK by the subgroup
UD, as in (1.2). Since the points in S have to split in L, the Galois group
Gal(L/K) is hence a quotient of the ray class group by 〈πP 〉P∈S. Thus
Gal(L/K) ' A∗K/(K

∗ · UD〈πP 〉P∈S), and by the isomorphism ψ the latter
group is isomorphic to U〈πP 〉P∈S/(UD〈πP 〉P∈SO∗

S) ' U/UDO
∗
S.



Chapter 2

Uniqueness of optimal curves
over F2

2.1 Introduction

Consider a projective, smooth and absolutely irreducible curve C of genus g
defined over a finite field Fq. An upper bound for the number of Fq-rational
points of C is given by the following (cf. [Sti], Section V.2):

Theorem 2.1.1 (Hasse - Weil Bound).
The number #C(Fq) of Fq-rational places of a genus g curve is bounded by

#C(Fq) ≤ q + 1 + [2g
√
q], (2.1)

where [x] denotes the integral part of the real number x.

As soon as the genus g of C increases with respect to the cardinality
of the finite field Fq, this bound is no more sharp and, as Serre has shown
(cf. [S], pg. Se Th 38), better bounds can be obtained adapting Weil’s
explicit formula to function fields of curves. Indeed let Ψ(t) =

∑∞
n=1 cnt

n be
a polynomial such that

1 + Ψ(θ) + Ψ(θ−1) ≥ 0, for all θ ∈ C, |θ| = 1.

For any choice of real non-negative coefficients cn one has that the the number
of rational points of genus g curve defined over Fq satisfies

#C(Fq) ≤
g + Ψ(q−1/2) + Ψ(q1/2)

Ψ(q−1/2)
,

Good choices of cn are those that minimize this upper bound for #C(Fq).
For example, for q = 2, by choosing Ψ such that

1 + Ψ(t) + Ψ(t−1) =
1

c
(1 + x1(t+ t−1) + x2(t

2 + t−2) + x3(t
3 + t−3))2,
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where c = 1 + 2x1
2 + 2x2

2 + 2x3
2, x1 = 1, x2 = 0.7 and x3 = 0.2, one has

the estimate #C(F2) ≤ 0.83g+ 5.35. Oesterlé’s linear programming method
optimizes the choice of ψ(t) (cf. also [S] and [E]). For g ≥ 2 this improves the
Hasse-Weil bound as shown in the row of Table 2.1 marked by Serre-Oesterlé.

Next, it is of interest to consider the quantity

Nq(g) := max{#C(Fq) | for a genus g curve C defined over Fq}, (2.2)

i.e. the actual maximum number of Fq-rational points that a genus g curve
can have, and give the following definition:

Definition 2.1.2. A curve C of genus g defined over a finite field Fq is said
to be an optimal curve if the number of its Fq-rational points equals Nq(g).

Several methods have been developed in order to determine Nq(g), im-
proving the Hasse-Weil bound and providing examples of optimal curves over
Fq for fixed values of the genus g and of the cardinality of the finite field Fq.
The progress in characteristic 2 and 3 and for genus g ≤ 50 is listed in the
tables [G-V]: in particular the values of N2(g) for low genus g have been
determined by Serre in [S1] (see also [S] for more details), giving examples of
curves having exactly a number of F2-rational points attaining the bounds
in the third row of Table 2.1. These examples consist of abelian coverings
of curves over F2, whose algebraic function fields can be constructed as ray
class fields. We display Serre’s results on N2(g) in Table 2.1.

g 0 1 2 3 4 5 6 7 8 9 10 11 12
Hasse - Weil 3 5 8 11 14 17 19 22 25 28 31 34 36
Serre - Oesterlé 5 6 6 7 8 9 10 11 11 12 13 14 15
N2(g) 3 5 6 7 8 9 10 10 11 12 13 14 14− 15

Table 2.1: Bounds on the number of F2-rational points of a genus g curve

Notice that Serre’s estimate for the number of F2-rational points of a
genus 7 curve is 11. Serre has been able to determine N2(7) by giving first
an example of genus 7 curve having 10 rational points and next proving that
there is no genus 7 curve with 11 rational points (cf. [S] Se Th 38a). On
the other hand for genus 12, while it is known that a curve exists having 14
rational points, one still can not prove whether there exists or not a curve
attaining the bound of 15. This means that N2(12) has not been determined
yet.

We focus our attention on optimal curves defined over the finite field F2

having genus 1 ≤ g ≤ 6. In Section 2.3 and in Section 2.8 we present for
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completeness Serre’s ray class field constructions giving proof of existence
of the optimal genus g curves in the table. Moreover we determine the
Zeta function associated to each of these curves, by means of the arithmetic
information provided by the constructions of their function fields.
In Section 2.4 on the other hand, adapting some results and techniques due
to Serre, we completely determine the Zeta function of a general optimal
curve of genus g = 1, . . . , 5, i.e. without assuming it is an abelian covering
of a given curve.

Proposition 2.1.3. An optimal curve C of genus g = 1, . . . , 5 has a unique
Zeta function and it is as follows:

1) g = 1, hence #C(F2) = 5:

Z(t) =
2t2 + 2t+ 1

(1− 2t)(1− t)
;

2) g = 2, hence #C(F2) = 6:

Z(t) =
4t4 + 6t3 + 5t2 + 3t+ 1

(1− 2t)(1− t)
;

3) g = 3, hence #C(F2) = 7:

Z(t) =
8t6 + 16t5 + 18t4 + 15t3 + 9t2 + 4t+ 1

(1− 2t)(1− t)
;

4) g = 4, hence #C(F2) = 8:

Z(t) =
(2t2 + t+ 1)(2t2 + 2t+ 1)(4t4 + 4t3 + 2t2 + 2t+ 1)

(1− 2t)(1− t)
;

5) g = 5, hence #C(F2) = 9:

Z(t) =
(2t2 + 1)(2t2 + 2t+ 1)2(4t4 + 4t3 + 2t2 + 2t+ 1)

(1− 2t)(1− t)
.

A priori it is not true that there exists a unique possibility for the Zeta
function of a genus g curve if we only know the number of its Fq-rational
points. The quantity #C(Fq) just allows to determine the coefficient of
the linear term of the numerator of the Zeta function, which is given by
#C(Fq)− (q + 1) (see Section 2.2 for more on the Zeta function of a curve).
In fact for genus 6 we do not have uniqueness anymore.

Proposition 2.1.4. An optimal genus 6 curve C defined over F2 (hence
#C(F2) = 10) has one of the following Zeta functions:
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a) Z(t) = (2t2+1)(2t2+2t+1)(16t8+40t7+52t6+50t5+39t4+25t3+13t2+5t+1)
(1−2t)(1−t) ,

b) Z(t) = (2t2−t+1)(2t2+2t+1)(4t4+6t3+5t2+3t+1)2

(1−2t)(1−t) .

Moreover two curves having the same Zeta function are in general not
isomorphic. Our final results state that the considered optimal curves are
unique up to isomorphism:

Proposition 2.1.5. An optimal curve over F2 of genus g is unique up to
isomorphism, for g = 1, . . . , 5. In particular its function field is always
isomorphic to the ray class field of the genus g optimal curve of Section 2.3.

A slightly more sophisticated approach is needed for the genus g = 6 case.
Combining recent results due to Howe and Lauter (cf. [H-L]) with methods
of Galois theory (see Section 2.5 and Section 2.6), we prove the following
result.

Proposition 2.1.6. There are two optimal curves Ca and Cb over F2 of
genus 6 and each of them is unique up to isomorphism. In particular

a) the curve Ca, having Zeta function as in a) of Proposition 2.1.4, is iso-
morphic to the optimal genus 6 curve whose function field is described
as ray class field in Proposition 2.3.8;

b) the curve Cb, having Zeta function as in b) of Proposition 2.1.4, is
isomorphic to an unramified degree 5 cyclic covering of the unique genus
2 curve Y having Zeta function

Z(t) =
(2t2 − t+ 1)(2t2 + 2t+ 1)

(1− 2t)(1− t)
,

where the two rational places of Y fixed by the hyperelliptic involution
split completely.

Finally in Section 2.8 we provide an example of two non-isomorphic genus
7 optimal curves over F2, by constructing a ray class field having among
its subfields the function fields of two genus 7 optimal curves whose Zeta
functions are different. We do not know if they are the only examples of
genus 7 optimal curves defined over F2.

2.2 Background

We recall that the curves considered are always projective, smooth and ab-
solutely irreducible curves defined over a finite field Fq, though we refer to
them simply as curves. In particular we deal with optimal curves in the sense
of Definition 2.1.2. In this subsection we present some background that is
necessary for the rest of the note.
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2.2.1 Ray class fields

Serre gives explicit constructions of curves having a number of F2-rational
points that meets the upper bound presented in the row tagged as Serre-
Oesterlé in Table 2.1. These constructions give hence a description of op-
timal curves over F2. In Section 2.3 and in Section 2.8 these examples for
genus g = 1, . . . , 7 are presented. The main idea is to exhibit those curves
as abelian coverings over F2 of low genus curves by constructing the corre-
sponding abelian extensions of function fields as ray class fields. One begins
by fixing a base curve X over F2 of genus gX , a non empty set S of ratio-
nal points of X and an effective rational divisor D =

∑
P nPP of X, such

that suppD ∩ S = ∅. Next one looks for a convenient finite abelian covering
Y → X, i.e. a separable surjective map corresponding, by pull back, to a
finite abelian Galois extension of the function fields L/K. One wants all
places of K in suppD to ramify over the function field L of Y and all places
of K in S to split completely over L. In this way the curve Y turns out to
be defined over F2 and has |Gal(L/K)| rational points lying over each point
of X in S and one rational point lying over each rational point of X in the
support of D that is totally ramified. The genus gY of Y can be determined
by a variant of the Hurwitz formula (where the different is replaced by an
analogous of the product-discriminant formula for number fields, cf. [G] pg.
128):

2gY − 2 = |Gal(L/K)|(2gX − 2) +
∑
χ

degD(χ),

where χ : Gal(L/K) → C∗ is a character of Gal(L/K), i.e. a group homo-
morphism, and D(χ) denotes the conductor of the cyclic subextension of L
fixed by kerχ.

Class field theory explains the splitting behavior of the places of X giving
a description of these abelian function fields extensions in terms of the idèle
class group of K: this is the quotient group CK = A∗K/K

∗ of the group of
idèles of K

A∗K =
{

(xP ) ∈
∏
P

K∗
P

xP ∈ O∗
P for all but a finite number of places P

}
.

Here KP denotes the P -adic completion of K and OP its group of units. The
main result of class field theory is that to any open finite index subgroup M
of CK there exists a unique finite abelian extension L/K (in a fixed algebraic
closure of K), such that the Galois group Gal(L/K) is isomorphic to the
quotient CK/M . The isomorphism is induced by the global Artin map. For
any choice of the rational divisor D =

∑
P nPP , let

UD =
{

(xP ) ∈
∏
P

O∗
P

xP ≡ 1 mod tP
nP

}
,
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an open subgroup of the idèle group A∗K . Then for a non-empty finite set of
rational places S disjoint from the support of D, there exists a finite abelian
extension L/K corresponding to a finite quotient of CK/(K

∗ · UD) by the
image of the group 〈K∗

P 〉P∈S. This is the maximal finite abelian extension
of K where the places in the support of D ramify and the places in S split
completely. Such an abelian extension is called ray class field of conductor
D. More on the subject can be found in [Au], [L1], [N-X], [S], [Sch].

2.2.2 Zeta function and real Weil polynomial of a curve

We are interested in the study of the Zeta function of a genus g curve C over
Fq in the form of a rational function on Q

Z(t) =
L(t)

(1− t)(1− qt)
,

where

L(t) =

g∏
i=1

(1− αit)(1− αit)

= qgt2g + b2g−1t
2g−1 + . . .+ b1t+ 1

is a polynomial in Z[t] of degree 2g. The reciprocal roots αi ∈ C are pairwise
conjugate and satisfy |αi| =

√
q for all i = 1, . . . , 2g.

We compute the Zeta function of a curve C by determining the numbers
ad = |{P |P is a place of C such that degP = d}| of places of C of degree
d = 1, . . . , g. In particular a1 is equal to the number #C(Fq) of rational
places the curve C over the field Fq. The first g + 1 coefficients of the series
expansion

(1− qt)(1− t)Z(t) =
(1− qt)(1− t)∏g
d=1(1− td)ad

+O(tg+1) = L(t)

coincide with the first g+1 coefficients of L(t). The other coefficients of L(t)
are determined by b2g−i = qg−ibi, for 1 ≤ i ≤ g.

We sum up information on the number ad of places of degree d of a curve C
for d = 1, 2, 3, . . ., in the d-th coordinate of the vector a(C) = [a1, a2, a3, . . .].

Moreover to a curve C having L(t) as numerator of it Zeta function, we
associate the so-called real Weil polynomial

h(t) =

g∏
i=1

(t− µi).
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This is a polynomial in Z[t] of degree g, having all real roots µi = αi + αi ∈
[−2

√
q, 2

√
q] for all i = 1, . . . , g. The real Weil polynomial of a curve has

hence the property that all roots of its derivatives also lie in the interval
[−2

√
q, 2

√
q]. The real Weil polynomial of a genus g curve C is related to

L(t) by
tgL(1/t) = h(t+ q/t).

We define a monic degree g polynomial

h(t) = tg + cg−1t
g−1 + . . .+ c1t+ c0 ∈ Z[t]

to be a candidate real Weil polynomial for a genus g curve defined over Fq if
it satisfies the following three properties:

1. the trace is cg−1 = #C(Fq)− (q + 1),

2. the polynomial h(t) and all its derivatives have all roots in the interval
[−2

√
q, 2

√
q],

3. the polynomial L(t) = tgh(1 + qt2) satisfies

L(t) +O(tg+1) = (1− t)(1− qt)

g∏
i=1

1

(1− td)ad
+O(tg+1),

with all ad ≥ 0.

Following an idea of Serre (cf. [S]), one can turn the problem of determin-
ing the Zeta function of C into the problem of determining the real Weil
polynomial of C.

2.2.3 Related theorems

Once computed a list of candidate real Weil polynomials for a genus g curve
defined over a finite field Fq, there may be some polynomials in the list for
which there exists no curve. The following results allow most of the time to
discard some of the polynomials in the list that lack of properties that an
actual real Weil polynomial of a curve should have. The first theorem is due
to Serre:

Theorem 2.2.1. (cf. [S], page Se 11 and cf. [L], Lemma 1)
Let h(t) be the real Weil polynomial of a curve C over Fq. Then h(t) cannot be
factored as h(t) = h1(t)h2(t), with h1(t) and h2(t) non-constant polynomials
in Z[t] such that the resultant of h1(t) and h2(t) is ±1.

Further generalizations of this Theorem have been proved by Howe and
Lauter.
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Theorem 2.2.2. (improvement of Theorem 1 b) in [H-L] by further unpub-
lished work, cf. [H])
Let h(t) = h1(t)h2(t) be the real Weil polynomial of a curve C over Fq, where
h1(t) and h2(t) are coprime non-constant factors in Z[t]. Let r be the reduced
resultant of the radical of h1(t) and the radical of h2(t). If r = ±2. Then,
there exists a degree 2 map from C to a curve C ′ over Fq. The curve C ′ has
either h1(t) or h2(t) as real Weil polynomial.

Theorem 2.2.3. (cf. [H-L], Theorem 1 and Proposition 13)
Let h(t) = (t − µ)h2(t) be the real Weil polynomial of a curve C over Fq,
where t − µ is the real Weil polynomial of an elliptic curve E and h2(t) a
non-constant polynomial in Z[t] coprime with t−µ. If r 6= ±1 is the resultant
of t − µ and the radical of h2(t), then C admits a map of degree dividing r
to an elliptic curve isogenous to E.

We recall that the reduced resultant of two polynomials f1 and f2 ∈ Z[x]
is defined to be the non-negative generator of the ideal Z ∩ (f1, f2). To
compute the reduced resultant of to coprime polynomials f1 and f2 one can
compute Bézout’s identity g1(x)f1(x)+g2(x)f2(x) = 1 in Q[x] and then clear
denominators.

2.3 Ray class fields constructions of function

fields of optimal curves

Let P1 denote the projective line over F2. It has 3 rational points: we denote
them by P0, P1 and P∞. According to the Hasse-Weil bound this is an
example of optimal genus 0 curve. Every optimal genus 0 curve is isomorphic
to P1 since it has F2(x) as field of functions. The Zeta function of P1 is

Z(t) =
1

(1− 2t)(1− t)
.

2.3.1 On the optimal elliptic curve

We prove in this subsection some properties satisfied by an optimal genus 1
curve over F2 and by its abelian extensions. In Section 2.4 we also prove that
there is a unique optimal genus 1 curve satisfying these properties.

Proposition 2.3.1. There exists a degree 2 extension of the function field
of P1 of conductor 4P∞, in which the rational places in S = {P0, P1} split
completely. This is the function field of a genus 1 curve having 5 rational
points over F2. The Zeta function of this curve is

Z(t) =
2t2 + 2t+ 1

(1− 2t)(1− t)
. (2.3)
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Proof. Let S = {P0, P1} and consider the abelian extension of the the func-
tion field of P1 of conductor 4P∞ in which the points in S are split. By class
field theory, the Galois group G of such an extension is isomorphic to the
quotient of the group R = F2[[t]]

∗/{u : u ≡ 1 mod t4} ' Z4 ⊕ Z2 by the
image in R of the S-units group O∗

S, where t is a uniformizer at P∞. Consider
the principal divisors

(x) = P0 − P∞,

(x+ 1) = P1 − P∞,

where x = 1/t. Then we can take

x

x+ 1
=

1

1 + t
= 1 + t+ t2 + t3 +O(t4)

as generator for O∗
S, which by Dirichlet’s Theorem has rank |S| − 1 = 1. Its

image in R generates a subgroup of order 4. Thus G has order 2 and the
corresponding double covering of P1 is a curve having N = 2 · |S|2 + 1 = 5
rational points over F2. Its genus g, given by the Hurwitz formula 2g − 2 =
2(2 ·0−2)+4, is thus 1. By the Hasse-Weil bound, this construction provides
hence an optimal elliptic curve E over F2.
Since the genus of E is 1, the number of its rational points is enough to
determine the Zeta function of E. The numerator is the degree 2g = 2
polynomial 2t2 + at+ 1, where a is given by N = q + 1 + a for q = 2. Hence
a = 5− 2− 1 = 2 and the Zeta function is as in (2.3).

Remark 2.3.2. We will often refer to this elliptic curve in the rest of the
note, hence for convenience we denote it by E. From the Zeta function it is
easy to compute that E has no places of degree two nor three, as well as 5
places of degree four and 4 places of degree five. We sum up this an further
information in the vector

a(E) = [5, 0, 0, 5, 4, 10, 20, . . .]. (2.4)

We can view E as a smooth cubic in P2 of affine equation

y2 + y = x3 + x (2.5)

and, in terms of this equation, we denote the 5 rational points of E as

P0 = P∞, P1 = (0, 0), P2 = (0, 1), P3 = (1, 0), P4 = (1, 1). (2.6)

For future reference, we also state here a Lemma concerning some abelian
coverings of E.

Lemma 2.3.3. An abelian covering of E of conductor 4P∞ or 2P∞ + 2P1,
in which all points in S = {P2, P3, P4} split completely, is necessarily trivial.
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Proof. We begin by factoring some principal divisors of E:

(x) = P1 + P2 − 2P∞, (2.7)

(x+ 1) = P3 + P4 − 2P∞,

(y) = P1 + 2P3 − 3P∞,

(y + 1) = P2 + 2P4 − 3P∞,

(x+ y) = 2P1 + P4 − 3P∞.

Eliminating P1 and P∞ from these relations we obtain the following principal
divisors, which are generated by S-units:(

y + 1

y

x

x+ 1

)
= 2P2 + P4 − 3P3,(

x+ y

y

x+ 1

x

)
= 2P4 − P3 − P2.

Choose t = x/y as a uniformizer at P∞. Then 1/x = t2 + O(t3) and 1/y =
t3+O(t4). Dividing the equation of E by x3 we obtain the equation 1+1/x2 =
1/x2 · 1/t+ 1/x · 1/t2. This easily implies that 1/x = t2 + O(t4). Finally we
express the units in terms of the parameter t:

y + 1

y

x

x+ 1
=

(
1 +

1

y

)(
1 +

1

x

)−1

= (1 + t3)(1 + t2) +O(t4),

x+ y

y

x+ 1

x
=

(
1 +

x

y

)(
1 +

1

x

)
= (1 + t)(1 + t2) +O(t4). (2.8)

By class field theory the Galois group G of an abelian covering of E of
conductor 2P∞ + 2P1 is isomorphic to a subgroup of the quotient group
R = F2[[t]]

∗/{u : u ≡ 1 mod t2} × F2[[x]]
∗/{u : u ≡ 1 mod x2} ' Z2 × Z2

modulo the image in R of the S-units. Since the image in R of the unit in 2.8
generates F2[[t]]

∗/{u : u ≡ 1 mod t2}, the Galois group should have order 2
or be trivial. On the other hand a double covering of E would have genus
satisfying 2g − 2 = 4, hence g = 3 and 2 · |S|+ 2 = 8 rational points, which
is not allowed by Serre’s estimate in Table 2.1. Hence the Galois group is
trivial.
Similarly the Galois group G′ of a covering of conductor 4P∞ is isomorphic
to a subgroup of R′ = F2[[t]]

∗/{u : u ≡ 1 mod t4} ' Z4 ⊕ Z2 modulo the
image of the S-units. The computation in 2.8 shows that the image of the
S-units generate the whole group R′ and hence that G′ is trivial.

2.3.2 On higher genus curves

In this section we give examples of ray class fields that are abelian extensions
of the rational function field F2(x) or of the function field of the elliptic curve
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E defined over F2. These ray class fields are function fields of optimal curves
defined over F2 of genus g = 2, . . . , 6. By means of class field theory we
compute also the Zeta function of these curves.

Proposition 2.3.4. Let Q be a place of degree three of P1. There exists a
degree 2 extension of the function field of P1 of conductor 2Q, in which all
points in S = {P0, P1, P∞} are split. This is the function field of a genus 2
curve having 6 rational points over F2. Its Zeta function is

Z(t) =
4t4 + 6t3 + 5t2 + 3t+ 1

(1− 2t)(1− t)
. (2.9)

Proof. The projective line P1 has 2 places of degree three over F2, one of
uniformizer x3 + x + 1 and the other one of uniformizer x3 + x2 + 1. Let Q
be any of these places and let S = {P0, P1, P∞} consist of all rational points
of P1. There exists a degree 2 covering C of P1 of conductor 2Q in which all
points in S are split. The curve C has then 6 rational points and its genus g
satisfies 2g − 2 = −2 · 2 + 6, so that g = 2.
Indeed, by class field theory, the Galois group of the corresponding function
fields extension is isomorphic to the quotient group of R = F23 [[t]]∗/{u : u ≡
1 mod t2} modulo the image in R of the S-unit group. This quotient is a
group of order 2. In order to perform this computation we take t = x3 +x+1
as uniformizer at Q (the case where t = x3 + x2 + 1 is similar). The group R
is then isomorphic to Z7⊕Z2⊕Z2⊕Z2: one write R as R = {a+ bt mod t2 :
a ∈ F∗8, b ∈ F8} and take as generators α, a primitive 7-th root of unity and
root of x3 + x+ 1, 1 + t, 1 + αt and 1 + α2t respectively. Consider then the
principal divisors generated by S-units

(x) = P0 − P∞,

(x+ 1) = P1 − P∞.

Since x 6≡ 1 modulo x3 + x + 1, its image in R generates the 7-part of R
and we are just left with the computation of the images of the S-units in
the 2-part of R. Elements in the 2-part of R have the form 1 + bt, with b ∈
F2[x]/(x

3 + x + 1) ' F8. Hence the 2-part image of the S-units in R is the
same as the image of their 7-th powers: indeed (a+ bt)7 ≡ (a+ bt)6(a+ bt) ≡
a6(a + bt) ≡ 1 + a6bt mod t2. Thus the images of the 7-th powers of the
S-units generate a group isomorphic to a subgroup of the additive group
F2[x]/(x

3 + x+ 1). Here the computation of

x7 − 1 ≡ (x− 1)(x3 + x2 + 1)(x3 + x+ 1)

≡ (x+ 1)(x2 + x+ t)t

≡ (x+ 1)(x2 + x)t

≡ t mod t2
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shows that x7 = 1 + t in R. In a similar way

(x+ 1)7 − 1 ≡ x(x3 + x2 + 1)(x3 + x+ 1)

≡ x(x2 + x+ t)t

≡ x(x2 + x)t

≡ (x2 + x+ 1)t mod t2

so that (x+ 1)7 = 1 + (x2 + x+ 1)t in R. This shows that the Galois group
is isomorphic to the additive group

F2[x]/(x
3 + x+ 1)

〈1, x2 + x+ 1〉
, (2.10)

which is indeed a group of order 2.
In order to determine the Zeta function of the genus 2 curve C it is enough
to determine the number of its degree two places a2. This depends on the
behavior of the only degree two place of P1. The latter indeed cannot ramify,
since it does not appear in the support of the conductor, but it still can either
split into 2 points or be inert. If the first case occurs, the image in the ray
class group 2.10 of its uniformizer x2 + x+ 1 has to be trivial. Consider the
image of the 7-th power of x2 + x+ 1:

(x2 + x+ 1)7 ≡ (x16 + x8 + 1)/(x2 + x+ 1)

≡ (x2 + x8 + 1)/(x2 + x+ 1)

≡ 1 + (x8 + x)/(x2 + x+ 1) mod t2,

where we used that x16 ≡ x2 modulo t2 (since t divides x7 − 1 and hence t2

divides x14 − 1). Now

x8 + x = x(x7 − 1) ≡ x(x+ 1)(x3 + x2 + 1)t

≡ x(x+ 1)(x+ x2)t

≡ xt mod t2,

and hence

(x2 + x+ 1)7 ≡ 1 + x/(x2 + x+ 1) t

≡ 1 + (x+ 1)t mod t2.

Now the degree two place of P1 splits completely if and only if x+ 1 belongs
to the additive group 〈1, x2 + x + 1〉. But this is not the case and hence
a2 = 0 and the Zeta function of C is (2.9).

Proposition 2.3.5. Let Q be a place of P1 of degree three. There exists a
degree 7 extension of the function field P1 of conductor Q, in which S = {P∞}
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is split. This is the function field of a genus 3 curve with 7 rational points
over F2. Its Zeta function is

Z(t) =
8t6 + 16t5 + 18t4 + 15t3 + 9t2 + 4t+ 1

(1− 2t)(1− t)
. (2.11)

Proof. Let S = {P∞} and let Q be a place of P1 of degree three. There
exists a degree 7 = #F∗8 covering C of P1 of conductor Q in which P∞ splits
completely. Indeed denote by t a uniformizer at one of the 2 places of P1 of
degree three. Then the Galois group of the associated function field extention
is isomorphic to the group F23 [[t]]∗/{u : u ≡ 1 mod t} ' F∗8 ' Z7, since the
group of the S-units is trivial by Dirichlet’s unit theorem. The genus g of C
satisfies 2g − 2 = −7 · 2 + 6 · 3, so that g = 3. Thus, since Serre’s estimate
for the upper bound of the number of F2-rational points of a genus 3 curve
is 7, the curve C has at least and hence precisely 7 rational points and it is
an optimal genus 3 curve.
In order to compute the Zeta function of C we use class field theory. We
represent the Galois group of the above extension as G =

(
F2[x]/(x

3+x+1)
)∗

and consider the image in G of uniformizers of places of degree two and
three of P1. In particular we have that a place P having as uniformizer an
irreducible polynomial g(x) ∈ F2[x] splits completely over C if and only if
g(x) ≡ 1 modx3 + x+ 1. Since the uniformizer x2 + x+ 1 of the only degree
two place of P1 is not 1 modulo x3 + x + 1, we have that a2 = 0. Similarly
the uniformizer x3 + x2 + 1 of the degree three place of P1 different from Q
is not 1 modulo x3 + x+ 1. Hence a3 = 1, the only contribution being given
by Q itself. The values of N = a1 = 7, a2 = 0 and a3 = 1 determine the Zeta
function of C to be as in (2.11).

Proposition 2.3.6. There exists a double covering of E of conductor 4P∞+
2P1, in which all points in S = {P2, P3, P4} are split. This is a genus 4 curve
having 8 rational points over F2. Its Zeta function is

Z(t) =
(2t2 + t+ 1)(2t2 + 2t+ 1)(4t4 + 4t3 + 2t2 + 2t+ 1)

(1− 2t)(1− t)
. (2.12)

Proof. Consider abelian coverings C of E of conductor 4P∞ + 2P1 in which
all points in S = {P2, P3, P4} are split. The degree of this covering is at least
2 and, by Lemma 2.3.3, exactly 2. Thus one has a curve C with 3 · 2 + 2 = 8
rational points and genus g satisfying 2g − 2 = 0 + 6, so that g = 4. The
curve C is hence an optimal curve of genus 4.
By Remark 2.3.2, we know that E has no places of degree two nor three and
5 places of degree four. Hence, since no rational point of E is inert on C, the
curve C does not have any place of degree two nor three either. We consider
now the parametric form for the Zeta function of C that can be recovered
from the values of N = a1 = 8, a2 = 0, a3 = 0:

Z(t) =
16t8 + 40t7 + 56t6 + 56t5 + αt4 + 28t3 + 14t2 + 5t+ 1

(1− 2t)(1− t)
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where α ∈ Z and the associated real Weil polynomial

h(t) = t4 + 5t3 + 6t2 − 2t+ (α− 48).

Since C is a covering of the curve E, its Zeta function must be divisible by
the Zeta function of E (cf. [A-P]). Thus its real Weil polynomial must be
divisible by the real Weil polynomial t + 2 of E. Hence, since h(−2) = 0
implies α = 44, the Zeta function of C is precisely (2.12).

Proposition 2.3.7. There exists a degree 8 abelian covering of P1 of con-
ductor 4P0, in which P∞ is split. This is a genus 5 curve with 9 rational
points over F2. Its Zeta function is

Z(t) =
(2t2 + 1)(2t2 + 2t+ 1)2(4t4 + 4t3 + 2t2 + 2t+ 1)

(1− 2t)(1− t)
. (2.13)

Proof. Let S = P∞ and consider abelian coverings of P1 of conductor kP0 in
which P∞ is split. The Galois group of these extensions is always isomorphic
to the ray class group F2[[x]]

∗/{u : u ≡ 1 modxk} since the groups of S-
units is trivial. Then for k = 2 one has a covering of degree 2 and for k = 3
a covering of degree 4. The Galois group of the function field extension
associated to the latter covering is isomorphic to Z4. Finally for k = 4 one
has a covering C of degree 8 and in this case the corresponding Galois group
is isomorphic to Z4⊕Z2. In the latter case the genus g of the curve C satisfies
then 2g− 2 = −8 · 2+2+2 · 3+4 · 4, so that g = 5. The curve C has at least
and hence, by Serre’s improvements in Table 2.1, precisely 9 rational points.
It is an optimal curve of genus 5.
It is not difficult to determine the Zeta function of C using class field theory.
We start considering x+1 as uniformizer at P1. Since the image of x+1 has
order 4 in the ray class group, the inertia degree of P1 is 4. In other words,
P1 splits into 2 degree four places over C. Similarly for the only degree two
place of P1: the image in the ray class group of the uniformizer x2 + x + 1
is an element of order 4. Hence the only degree two place of P1 splits into 2
places of degree eight over C. Consider now the 2 places of degree three of
P1 of uniformizers x3 + x2 + 1 and x3 + x + 1: the order of their images in
the ray class group is 2 and 4 respectively. Hence the first place splits into 4
places of degree six and the second splits into 2 places of degree twelve over
C. About the places of degree four of P1 it is of interest just the number of
those splitting completely over C: but since the only degree four polynomial
x4 + 1 equivalent to 1 modulo x4 is not irreducible, there are no places of
degree four of P1 splitting completely over C. Similarly the are no degree five
irreducible polynomials congruent to 1 modulo x4 and hence no degree five
places of P1 splitting completely over C. In conclusion the values N = a1 = 9,
a2 = 0, a3 = 0, a4 = 2 and a5 = 0 determine completely the Zeta function as
in (2.13).



2.3. Ray class fields constructions of function fields of optimal curves 47

Proposition 2.3.8. Let Q be a place of degree five of E. There exists a
double covering of E of conductor 2Q, in which all 5 rational points of E
split completely. This is a genus 6 curve having 10 rational points over F2.
Its Zeta function is

Z(t) = (2t2+1)(2t2+2t+1)(16t8+40t7+52t6+50t5+39t4+25t3+13t2+5t+1)
(1−2t)(1−t) . (2.14)

Proof. Let Q denote a place of degree five of E. There is a quadratic cover
C of E of conductor 2Q in which all 5 rational points of E split completely.
As a consequence, the curve C has 10 rational points and it genus g satisfies
2g − 2 = 0 + 2 · 5 by the Hurwitz formula, so that g = 6.
By class field theory the Galois group of the associated abelian function
fields extension is isomorphic to the ray class group R = F25 [[t]]∗/{u : u ≡
1 mod t2} modulo the group generated by the image of the S-unit group in
R. Here t is a uniformizer at Q and S denotes the set of 5 rational places of
E. The S-units x, x + 1, y and x + y, whose effective divisors are listed in
(2.7), generate the whole S-unit group. We first choose a degree five place
Q of E. Let α be a zero of x5 + x3 + 1. Then the F25-rational point of
coordinates P = (α, α4) is a point of E. The prime ideal of the coordinate
ring F2[x, y]/(y

2 + y+x3 +x) corresponding to P is p = (x5 +x3 +1, y+x4).
Considering the divisor (x5 +x3 +1) = P +P ′− 10P∞, where P ′ is the point
of E of coordinate (α, α4 + 1), we can take the function t = x5 + x3 + 1 as
uniformizer at Q. Actually there are 4 places of degree five over E, but a
different choice for Q would lead to the same results.
Next consider again the S-units: since the image of x in the ray class group R
is not trivial modulo t, it generates the 31-part of R. Thus we compute the 2-
part of R generated by the image of the S-units similarly to the genus 2 case.
We consider the 31-st power modulo t2 of each generator: this is an element
of R of the form 1 + at, where a is in the additive group F2[x]/(x

5 + x3 + 1).
A computer calculation shows that the first two uniformizers x and x + 1
satisfy

x31 ≡ 1 + t mod t2,

(x+ 1)31 ≡ 1 + (x4 + x3 + 1)t mod t2.

For the S-unit y we first consider that from the equation of E one has y31 =
y32/y = (v+ y)/y = 1 + v/y, where v = TrF16/F2(x

3 +x) = (x3 +x)16 + (x3 +
x)8 + (x3 + x)4 + (x3 + x)2 + (x3 + x) ≡ 0 mod t. Since y ≡ x4 modulo t, we
compute

(y31 − 1)/t ≡ v

x4t
≡ x4 + 1 mod t.

In a similar way

(y + x)31 = (y + x)32/(y + x) = (y32 + x32)/(y + x)

= (v + y + x32)/(y + x)

= 1 + (v + x32 + x)/(y + x),
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so that a computer calculation yields

((y + x)31 − 1)/t ≡ v + x32 + x

(x4 + x)t
≡ x2 + 1 mod t.

Hence the images of the four S-units in K = F2[x]/(x
5 + x3 + 1) are 1,

x4 + x3 + 1, x4 + 1, x2 + 1 and they are F2-independent. These polynomials
generate the hyperplane of polynomials of K having no linear term. Hence
the Galois group has order 2 and a place of E splits completely over C if and
only if the image of Frobenius in K has linear term equal to zero.

We want to determine the Zeta function of C: we already know that
N = a1 = 10 and that a2 = a3 = 0 because E does not have any place of
degree two nor three. We perform computations now to determine the images
in K of the uniformizers of degree four and five places of E and hence a4 and
a5 using class field theory. A computer calculation shows all factorizations of
g(x)2 + g(x) + x3 + x for all polynomials g(x) ∈ F2[x] of degree d ≤ 3. This
allows us to determine the coordinates of representatives of the 5 places of
degree four of E as:

i) Q1 = (a, a3) and Q2 = (a, a3 + 1), where a4 + a3 + a2 + a+ 1 = 0;

ii) Q3 = (b, b2 + b3) and Q4 = (b, b2 + b3 + 1), where b4 + b3 + 1 = 0;

iii) Q5 = (c, d), where c2 + c+ 1 = 0 and d4 + d+ 1 = 0;

while the corresponding prime ideals are

i) (x4 + x3 + x2 + x+ 1, y + x3) and (x4 + x3 + x2 + x+ 1, y + x3 + 1);

ii) (x4 + x3 + 1, y + x3 + x2) and (x4 + x3 + 1, y + x3 + x2 + 1);

iii) (x2 + x+ 1, y4 + y + 1).

As uniformizers we can take y + x3, y + x3 + 1, y + x3 + x2, y + x3 + x2 + 1
and x2 + x+ 1 respectively and compute their images in F2[x]/(x

5 + x3 + 1).
For the first 4 places we consider in general

(y + f(x))31 = (y32 + f(x)32)/(y + f(x))

= 1 + (v + f(x)32 + f(x))/(y + f(x)), (2.15)

and compute ((v + f(x)32 + f(x))/t)/(y + f(x)) modulo t. For f(x) = x3

and f(x) = x3 + 1 we have that the images of the two places in i) are x2 + x
and x+ 1 respectively. While for f(x) = x3 + x2 and f(x) = x3 + x2 + 1 we
compute the images of the two places in ii) to be x4 +x3 +x and x3 +x2 +x
respectively. Still we have to deal with the place of uniformizer x2 + x + 1.
We have

((x2 + x+ 1)31 − 1)/t ≡ x4 + x+ 1 mod t,
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in other words (x2+x+1)31 ≡ 1+(x4+x+1)t mod t2. Since all polynomials
x2 + x, x + 1, x4 + x3 + x, x3 + x2 + x and x4 + x + 1 have a linear term,
none of them lies in the group generated by the image of the S-units in K.
Hence none of the degree four places of E splits over C and a4(C) = 0.
Consider now the 4 places of degree five of E. They are the places of coor-
dinates

i) (a, a4) and (a, a4 + 1), where a5 + a3 + 1 = 0;

ii) (b, b4 + b) and (b, b4 + b+ 1), where b5 + b4 + b3 + b2 + 1 = 0.

The corresponding prime ideals are

i) (x5 + x3 + 1, y + x4) and (x5 + x3 + 1, y + x4 + 1);

ii) (x5+x4+x3+x2+1, y+x4+x) and (x5+x4+x3+x2+1, y+x4+x+1).

The first place in i) is the place Q that ramifies in C by definition. As
uniformizer of the second place in i) we take y+x4 +1. Since y ≡ x4 modulo
t, this time y+ x4 + 1 ≡ 1 modulo t, so that it is already in the 2-part of the
ray class group R and it is not necessary to compute its 31-st power. Hence
we have

y + x4 + 1 ≡ 1 + (y + x4)(y + x4 + 1)/(y + x4 + 1)

≡ 1 + (x3 + x+ x8 + x4)/(y + x4 + 1)

≡ 1 +
(x3 + x)t

y + x4 + 1
mod t2.

Since y ≡ x4 modulo t we have that (y+ x4)/t ≡ x3 + x modulo t and hence
y + x4 + 1 ≡ 1 + (x3 + x)t modulo t2: the polynomial x3 + x has a linear
term and hence the degree five place of E of uniformizer y4 + x + 1 is not
split over C.
As uniformizers of the places in ii) we take y + x4 + x and y + x4 + x + 1
respectively and a computation similar to (2.15) leads to their images in K:
x2 and x4 + x3 + x2 + x + 1. Having no linear term, only the first of them
splits. Thus a5 = 3.
Now we consider the parametric form for the Zeta function of C that can be
recovered from the values of N = a1 = 10, a2 = a3 = a4 = 0 and a5 = 3:

Z(t) =64t12+9600t11+2640t10+600t9+108t8+14t7+αt6+300t5+165t4+75t3+27t2+7t+1
(1−2t)(1−t)

and the associated real Weil polynomial

h(t) = t6 + 7t5 + 15t4 + 5t3 − 15t2 − 10t+ (α− 460).

Since C is a covering of the curve E, the Zeta function of E divides the Zeta
function of C. In other words the real Weil polynomial t+2 of E must divide
the real Weil polynomial of C. Hence, since h(−2) = 0 leads to α = 460, the
Zeta function of C is precisely (2.14).
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2.4 Uniqueness of the Zeta function of an op-

timal curve

The previous section shows the Zeta function of an optimal curve C over
F2 arising as an abelian covering of P1 or of the elliptic curve E and having
genus 1 ≤ g ≤ 6. In this section we consider again optimal curves over F2 of
genus 1 ≤ g ≤ 6 and we compute their Zeta functions in a general setting.
This prevents us to recover information on the number of places of degree
d = 1, . . . , g of the optimal curve using class field theory. To determine Zeta
functions we start following the idea of Serre in [S] (cf. pages Se Th 38
and following) in order to get a list of candidate real Weil polynomials for a
genus g curve over F2. Since we know that for each genus g an optimal curve
always exists, one of the candidate real Weil polynomials in the list has to
correspond to the Zeta function we found in Section 2.3. We use Theorems
of Subsection 2.2.3 to determine for which polynomials among the remaining
ones there exists no curve.

Proposition 2.4.1. The real Weil polynomial of any optimal curve X de-
fined over F2 of genus g = 1, . . . , 5 is as follows.

1) g = 1:

h(t) = t+ 2, a(X) = [5, 0, 0, 5, 4, 10, . . .],

2) g = 2:

h(t) = t2 + 3t+ 1, a(X) = [6, 0, 1, 1, 6, 12, . . . ],

3) g = 3:

h(t) = t3 + 4t2 + 3t− 1, a(X) = [7, 0, 1, 0, 7, 7, . . .],

4) g = 4:

h(t) = (t+ 1)(t+ 2)(t2 + 2t− 2), a(X) = [8, 0, 0, 2, 4, 8, . . .],

5) g = 5:

h(t) = t(t+ 2)2(t2 + 2t− 2), a(X) = [9, 0, 0, 2, 0, 12, . . .],

The vector a(X) = [a1, a2, a3, . . .] sums up the number ad of degree d places
of X in the d-th entry.
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Proof. For genus g = 1, the number of rational points N = 5 is indeed
sufficient to determine completely the real Weil polynomail of X: this is a
degree 1 polynomial h(t) = t−a, where N = q+1−a, hence h(t) = t+2. For
genus g = 2, . . . , 5, searching for candidate real Weil polynomials of degree
g we find only two or three possibilities for each degree. We do with the
help of computer calculation implementing the algorithm explained in the
introduction on page 17:

g = 2:

1. h1(t) = t2 + 3t+ 1, a(X) = [6, 0, . . . ]

2. h2(t) = (t+ 1)(t+ 2), a(X) = [6, 1, . . . ]

g = 3:

1. h1(t) = t3 + 4t2 + 3t− 1, a(X) = [7, 0, 1, . . . ]

2. h2(t) = (t+ 2)(t2 + 2t− 1), a(X) = [7, 0, 0, . . . ]

g = 4:

1. h1(t) = (t+ 1)(t+ 2)(t2 + 2t− 2), a(X) = [8, 0, 0, 2, . . . ]

2. h2(t) = (t2 + 2t− 1)(t2 + 3t+ 1), a(X) = [8, 0, 1, 0, . . . ]

g = 5:

1. h1(t) = t(t+ 2)2(t2 + 2t− 2), a(X) = [9, 0, 0, 2, 0, . . .]

2. h2(t) = (t+1)(t4 +5t3 +5t2−5t−5), a(X) = [9, 0, 0, 0, 7, . . . ]

3. h3(t) = (t2 +3t+1)(t3 +3t2−3), a(X) = [9, 0, 0, 1, 3, . . . ]

In all cases one can check that all polynomials but the h1(t)’s can not occur
by Serre’s Theorem 2.2.1: indeed in every case the resultant of the two factors
is 1 or −1.

The Zeta functions related to each real Weil polynomial can now be easily
computed from the vectors a(X)’s. For convenience they have been listed in
Proposition 2.1.3.

The two possibilities for the Zeta functions of a genus 6 optimal curve
listed in Proposition 2.1.4 follow from the following result.

Proposition 2.4.2. An optimal genus 6 curve X defined over F2 has one of
the following real Weil polynomials:

a) h(t) = t(t+ 2)(t4 + 5t3 + 5t2 − 5t− 5), a(X) = [10, 0, 0, 0, 3, 10, . . .];

b) h(t) = (t− 1)(t+ 2)(t2 + 3t+ 1)2, a(X) = [10, 0, 0, 0, 2, 15, . . . ].
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Proof. A computer calculation as in the proof of Proposition 2.4.1 reveals
that the candidate real Weil polynomials of an optimal genus 6 curve X are
the following:

1. h1(t) = (t−1)(t+2)(t2+3t+1)2, a(X) = [10, 0, 0, 0, 2, 15, . . . ];

2. h2(t) = t(t+2)(t4+5t3+5t2−5t−5), a(X) = [10, 0, 0, 0, 3, 10, . . . ];

3. h3(t) = (t3+3t2−3)(t3+4t2+3t−1), a(X) = [10, 0, 0, 0, 4, 6, . . . ];

4. h4(t) = (t+1)(t+2)(t2+2t−2)(t2+2t−1), a(X) = [10, 0, 0, 1, 0, 12, . . . ].

We consider the list backwards.

a) Polynomial number 4 cannot occur. Since the resultant of the polyno-
mials t+2 and (t+1)(t2 +2t− 2)(t2 +2t− 1) is −2, applying Theorem
2.2.3, we deduce that the genus g = 6 curve X admits a degree 2 map
to the elliptic curve E that has real Weil polynomial equal to t+2. By
Remark 2.3.2 the elliptic curve E has 5 places of degree four and X
has only one. This means that one of the degree four places of E must
ramify in X. In other words the different of the covering X → E is
divisible by 2Q for some degree four place Q of E (where the coefficient
2 is forced by wild ramification). By the Hurwitz formula we have that
the degree of the different has to be equal to 2g − 2 = 10. Since 2Q
already gives a contribution of 8 to the degree of the different, the only
possibility for the different is to be equal to 2Q + 2R, where R is a
rational point of E. But this gives a contradiction since all the points
of E must be totally split in order to get 10 rational points on X.

b) Number 3 can not occur either by Theorem 2.2.1 since the resultant of
the two factors is 1.

c) Of the two remaining polynomials we recognize polynomial number 2
as the real Weil polynomial associated to the genus 6 curve given by
the class field theory construction in Proposition 2.3.8: since the double
covering X → E is ramified at precisely one place Q of degree five, the
number of places of degree five of X has to be odd. In fact places
of degree five of E that are totally split, resp. inert, always give a
contribution of 2 places, resp. no points, of degree five on X. Since
polynomial number 1 gives a5(X) = 2 and polynomial number 2 gives
a5(X) = 3, the right one has hence to be the second. This confirms the
computations performed in the proof of Proposition 2.3.8.

d) In Proposition 2.4.3 we construct a genus 6 optimal curve having poly-
nomial number 1 as real Weil polynomial.
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Proposition 2.4.3. Let C the genus 2 projective curve defined over F2 of
affine equation y2 + xy = x5 + x4 + x2 + x. There exists an unramified cyclic
degree 5 covering X of C in which the place at infinity P∞ and the rational
place P0 = (0, 0) of C split completely. The curve X is an optimal genus 6
curve defined over F2. The Zeta function of X is

Z(t) =
(2t2 − t+ 1)(2t2 + 2t+ 1)(4t4 + 6t3 + 5t2 + 3t+ 1)2

(1− 2t)(1− t)
.

Proof. The curve C is a smooth curve defined over F2, whose equation has
the form y2 + h(x)y = f(x), where h(x), f(x) ∈ F2[x] are polynomials of
degree degh(x) < g and deg f(x) = 2g + 1 respectively, for g = 2. This kind
of curve is called a hyperelliptic curve over F2 and its genus is precisely g = 2
(cf. for example the brief introduction in [M-N]). The curve C has a unique
place at infinity P∞ and 3 more rational places over F2 of coordinates

P0 = (0, 0), P1 = (1, 0), P2 = (1, 1).

Over F4 there are 4 more points satisfying the equation of C, namely those
of coordinates (a, a), (a, a + 1), (a + 1, a) and (a + 1, a + 1), for a such
that a2 + a + 1 = 0. Hence C has 2 places of degree two. From the pa-
rameters a(C) = [4, 2, . . .] one can compute the real Weil polynomial of
C to be h(t) = (t− 1)(t+ 2) and the numerator of the Zeta function of C
to be L(t) = 4t4 + 2t3 + 2t2 + t + 1. One has that the class group di-
visor Pic0(C) = Div0(C)/Princ(C) of C has order L(1) = 10 and hence
Pic0(C) ' Z2 × Z5.
Consider now the unramified extension of the function field of C where the
place P∞ splits completely. This is a Hilbert class field, i.e. a ray class field of
conductor D = 0. By class field theory one has the following exact sequence

1 // U // CK
ψ // Pic(C) // 0 , (2.16)

where ψ is induced by the map A∗K → Div(C), (xP )P 7→
∑

P vP (xP )P . By
taking quotiens by U = kerψ one gets the isomorphism CK/U → Pic(C).
The quotient of this class group by the subgroup 〈FrobP∞〉 ' K∗

P∞/O
∗
P∞

generated by the Frobenius automorphism FrobP∞ of P∞, is the class group
of the maximal non-ramified abelian extension X ′ of C in which P∞ splits
completely. Indeed one has the following diagram
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1

��

0

��
1 // K∗

P∞/O
∗
P∞

��

vP∞ // Z

��

// 0

1 // CK/U

��

ψ // Pic(C)

��

// 0

1 // CK/U〈FrobP∞〉

��

// Pic0(C) ' Z2 × Z5

��

// 0

1 1

Thus the class group associated to the morphism X ′ → C is isomorphic
to Pic0(C) ' Z5 × Z2. By class field theory this is also the Galois group
of the corresponding finite function fields extension. Now by the Galois
correspondence there exists a degree 5 cyclic covering X of C such that the
Galois group G of the function fields extension is isomorphic to Z5 as quotient
of Pic0(C) by its order 2 subgroup. We show that in the function field of X
also the rational place P0 splits completely. This is equivalent to show that
the Frobenius of P0 lies in the subgroup of order 2 of Pic0(C), so that FrobP0

is trivial in G. The map CK/U〈Frob P∞〉 → Pic0(C) sends an idèle class in
the class of the associated divisor. Hence if tP0 is a uniformizer at P0, then
the idèle (. . . , 1, 1, 1, tP0 , 1, 1, . . .) ∈ K∗

P0
/O∗

P0
is sent in the class of P0 − P∞.

Since 2(P0 − P∞) = (x) is a principal divisor it is hence trivial in Pic0(C).
Thus FrobP0 corresponding to the image of P0 − P∞ in the quotient group
of order 5 is trivial.
By the Hurwitz formula the curveX has genus g satisfiying 2g−2 = 5(2·2−2).
Hence X is a genus 6 curve and it has at least, and by Serre’s estimate hence
exactly, 10 rational places over F2. In other words X is an optimal genus 6
curve over F2. By Proposition 2.4.2 there are only two possibilities for the
real Weil polynomial of X. Since X is a covering of the curve C, the real
Weil polynomial of C has to divide the real polynomial of X [A-P]. Hence
the Zeta function of X is the one corresponding to the real Weil polynomial
b) of Proposition 2.4.2.

2.5 Some remarks on the Galois closure of a

degree 3 non-Galois covering of E

This section is an auxiliary section. We present in a more general context
some useful results for the proof of Proposition 2.1.6 on genus 6 optimal
curves defined over F2.
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Let E be an optimal elliptic curve over F2 as in Remark 2.3.2 and X
a curve over F2 of genus g such that there exists a morphism X → E of
degree 3, but the function field extension X/E is not normal and hence non-
Galois. Consider the curveX whose function field is the normal closure of the
function field of X with respect to the fucntion field of E. The function field
ofX is now a Galois extension of the function field of E and the corresponding
Galois group G isomorphic to S3. In the Galois correspondence the function
field extension associated to the covering X → E corresponds to one of the
3 non-normal subgroups of S3 of index three. This also means that there are
2 more curves Y and Z, isomorphic to X, between X and E, each of them
corresponding to the other 2 subgroups of S3 of order two. Moreover there
is a unique quadratic extension K of F2(E), function field of the curve X ′

which is a double covering X ′ → E, which correspons to A3 ' Z3, the unique
(normal) subgroup of S3 of index two. The situation can be described in the
following picture:
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In the rest of the section we assume that X satisfies two conditions:

1. X is unramified out of the F2-rational places of E,

2. X doesn’t have any place of degree two nor three.

Under the latter hypothesis all places P ′ of X lying over a rational place P
of E must have relative degree f(P ′ |P ) = 1, i.e. their residue field is F2.
Therefore there are only three possibilities for each F2-rational point P in E:

a) P splits completely over X,

b) P splits into 2 points, one unramified and the other one with ramification
index two,

c) P is totally ramified with ramification index three.

In the following we refer to these points as the a-points, the b-points and
the c-points of E and denote by a, b, c the number of a-points, b-points
and c-points of E respectively. The following lemma describes their splitting
behavior over X and over X ′.
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Lemma 2.5.1.

a) The a-points of E split completely over X and over X ′ as well,

b) over each b-point of E there are 3 points over X each with ramification
index two and 1 point over X ′ which is totally ramified,

c) the c-points of E are inert over X ′ giving rise to a degree two place that
totaly ramifies over X.

Proof.

a) Consider one of the a-points P of E. It is totally split over X. Since
there are other 2 curves Y and Z, such that their function fields are
isomorphic to the function field of X and are subfield of the function
field of X, P is totally split in Y and Z as well. Hence the splitting
field of P has to be a subfield of the function field of X containing all
3 function fields of the curves X, Y and Z. In other words it has to
contain their compositum as well, which is indeed the function field of
X, i.e. the a-points of E split completely over X. On the other hand,
also the function field of the curve X ′ is contained in the function field
of X which is the splitting field of P , hence the a-points of E split
completely over X ′.

b) A b-point P of E has inertia group of order two: indeed one of the two
splitting points of X lying over P has ramification index two, and if it
ramifies further in X, then the places of X lying over P would have
different ramification indices. This is not possible since X is a Galois
extension of E. Now since the inertia group is a normal subgroup of the
decomposition group, also the decomposition group has order two and
we can conlude that, over each point of this type, there are 3 points in
X, each with ramificaton index two. Hence P has to be totally ramified
over X ′.

c) A c-point P of E has inertia group of order three. Indeed it is totally
ramified with ramification indeces eP (X|E) and eP (Y |E) equal to 3
both in X and in Y . Since the ramification is tame, P ramifies in X,
the compositum of X and of Y , with ramification index eP (X|E) =
lcm (eP (X|E), eP (Y |E)) = 3 as well (Abhyankar’s Lemma, cf. [Sti]
pag. 125). Hence the order of the decomposition group of P can be
either six or three. In the first case there is only one place Q in X
lying over P having relative degree f(Q|P ) = 2. In the second case
there are 2 places Q and Q′ in X lying over P having residue class field
F2. We show that the second case is impossible. We have e(Q|P ) =
eP (X|E) = 3. This is the order of the inertia group I(P ) = G0(Q|P )
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of P . Consider now the residue class field of Q and denote it by FQ.
The map

ψ : G0(Q|P ) → F∗
Q

σ → σ(t)

t
mod Q

where t is a uniformizer at Q, is a group homomorphism from G0(Q|P )
to the moltiplicative group of FQ and the kernel is the 1-th ramification
group G1(Q|P ) := {σ ∈ Gal(X/E) | vQ(σ(z) − z) ≥ 2 for all z ∈ OQ}
of P (cf. [Sti], page 122-123). In our case the map ψ is injective since
the ramification of P is tame. Indeed, since e(Q|P ) = 3, we have that
the different exponent d(Q|P ) = 2. But the different exponent can be
expressed by Hilbert’s different formula (cf. [Sti], Theorem III.8.8) as

d(Q|P ) =
∞∑
i=0

(Gi(Q|P )− 1).

Since the order of G0(Q|P ) is already 3, its contribution is the only one
which is non-trivial, while all Gi’s must have order one for i ≥ 1. Thus
G0(Q|P ) is isomorphic to a subgroup of F∗

Q. Since G0(Q|P ) has order
three, the residue class field of Q has to be F4. Hence f(Q|P ) = 2 and
Q is the only place lying over P in X and P is inert over X ′.

Lemma 2.5.2. The extension X ′/E ramifies exactly at the b-points ramify-
ing in X/E.

Proof. We know from the previous lemma that the a-points and the c-points
of E do not ramify over X ′. Consider now a place Q of E of degree d > 1.
X/E is unramified out of the rational places by hypothesis (2) and the same
holds for the isomorphic covering Y/E. Since X is the compositum of X and
Y , Q does not ramify in X either (cf. [Sti], Corollary III.8.4 b)). Thus Q is
unramified in X ′ as well.

Proposition 2.5.3. Let X be a degree three non-normal covering of E of
genus g, unramified out of the F2-rational places of E, having no places of
degree two nor three and such that b 6= 0 then the field of functions of X ′ has
constant field equal to F2 and X ′ has genus g′ = g − c.

Proof. Let K be the field of functions of X ′. Suppose the constant field of K
is not F2, then K is a degree 2 constant field extension of F2(E) and hence
the field of functions of X ′ has to be F4. Since by hypothesis there is always
at least one b-point P of E which totally ramifies, the residue field of the
F2-rational point of X ′ lying over P has to be F2. Now since the residue field
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of a place of a function field always contains the constant function field, we
have that F2 ⊇ F4. This is a contradiction.
Since locally at any of these b-points the covering X ′ → E is isomorphic to
X → E, we can compute the different of X ′ → E by looking at the ex-
tension X → E. We have 2g − 2 = degDiff(X/E) = deg (Diff(X/E)tame) +
deg (Diff(X/E)wild). The contribution to Diff(X/E) given by the c tame ram-
ified points is 2c, while the contribution given by the b wildly ramified points
is hence 2g − 2− 2c. Since X ′ is not ramified out of the b-points by Lemma
2.5.2, it follows that 2g′ − 2 = deg (Diff(X ′/E)) = deg (Diff(X/E)wild), so
that g′ = g − c.

2.6 Further remarks on genus 6 non-Galois

coverings of E

Through the whole section we let X be a genus 6 optimal curve defined
over F2 having Zeta function as in b) of Proposition 2.1.4. We give a series
of results on X in terms of Section 2.5 in order to finally prove uniqueness
results on genus 6 optimal curves in section 2.7.

Proposition 2.6.1. The curve X is a non-Galois extension of degree 3 of
the optimal elliptic curve E, unramified out of the F2-rational places of E.

Proof. We recall that the real Weil polynomial of X is h(t) = (t − 1)(t +
2)(t2 + 3t + 1)2 and the parameters of X are a(X) = [10, 0, 0, 0, 2, 15, . . . ].
Since the resultant of the polynomials t+ 2 and (t− 1)(t2 + 3t+ 1) is equal
to 3, by Theorem 2.2.3 the curve X admits a morphism of degree 3 to the
usual optimal elliptic curve E. Since X has no points of degree two nor
three, all places P ′ of X lying over a rational place P of E must have relative
degree f(P ′|P ) = 1, i.e. their residue field is F2. Therefore, according to the
notations of Section 2.5, each of the F2-rational points in E can be either an
a-point, or a b-point or a c-point. Then we have

a+ b+ c = 5

3a+ 2b+ c = 10

and hence
2a+ b = 5 and a = c.

This leaves us with the following three cases:

a b c
I 0 5 0
II 1 3 1
III 2 1 2
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In each case the covering X → E is not a Galois covering. Indeed, since
b is never zero, the extension can never be Galois. We show that moreover
it has to be unramified outside the F2-rational places of E. Consider the
degree of the different of the function fields extension corresponding to the
covering X → E: by the Hurwitz formula the degree of the different has to be
2g−2 = 10, where g = 6 is the genus of X. The a-points of E are unramified
by definition. Over each b-point of E lies precisely one ramified point with
ramification index 2. Hence the ramification is wild and its contribution to
the different is therefore at least 2. Finally the c-points of E are tamely
ramified. The contributions to the different that come from the rational
points of E are therefore at least db + 2c wiht d ≥ 2, i.e. at least 5 · 2 = 10
in case I, at least 3 · 2 + 2 = 8 in case II and at least 1 · 2 + 2 · 2 = 6 in case
III. Since there are no points of degree two, three nor four on X, any other
non-rational ramified place of E should have degree strictly larger than 4.
But this gives a too large contribution to the different. Hence there are no
other places of E ramifying in X but those of degree one.

The parameters of X are a(X) = [10, 0, 0, 0, 2, 15, . . . ]. Hence, by the
previous Proposition, we have that X is a genus 6 non-Galois covering of E
of degree 3 satisfying the two conditions (1) and (2) of Section 2.5.

We can consider now the curveX whose function field is the Galois closure
of the function field of X with respect to the function field of E.

Lemma 2.6.2. The behavior of the places of X and of the places of X ′

depends on the behavior of the rational points of E as follows:

a1(X) = 6a+ 3b, a1(X
′) = 2a+ b;

a2(X) = c, a2(X
′) = c;

a3(X) = 0, a3(X
′) = 0;

a4(X) = 0, a4(X
′) = 10;

a5(X) = 0.

Proof. By Lemma 2.5.1, the computation of the number of F2-rational points
a1(X) and a1(X

′) is easily done. The places in X ′ of degree two are precisely
the ones lying over the c-points of E and they are themselves totally ramified
in X. This gives

a2(X) = c and a2(X
′) = c.

Consider now the vectors of the ai’s of E and X, they are:

a(E) = [5, 0, 0, 5, 4, ...] and a(X) = [10, 0, 0, 0, 2, 15, ...]

It follows at once that a3(X
′) = a3(X) = 0. Since X has no places of degree

two nor four, we have a4(X) = 0, which means that the places of degree four
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of E are inert in X. Since they are not ramified, their decomposition group
has to be cyclic and hence of order 3. Therefore they are split in X ′ and we
have

a4(X
′) = 2a4(E) = 2 · 5 = 10.

If a5(X) is not zero, then one of the points of degree five of E splits completely
in X. This implies that X has at least 3 places of degree five, which is not
the case. This proves the lemma.

More precisely, the following proposition holds:

Proposition 2.6.3. Let X be a genus 6 optimal curve defined over F2 having
Zeta function

Z(t) =
(2t2 − t+ 1)(2t2 + 2t+ 1)(4t4 + 6t3 + 5t2 + 3t+ 1)2

(1− 2t)(1− t)
.

Consider the degree 3 non-Galois morphism X → E, where E is an optimal
elliptic curve defined over F2. Denote by X the curve whose function field is
the Galois closure of the function field of X with respect to F2(E) and by X ′

the curve whose function field is the quadratic subfield of F2(X). There are
two possibilities for the splitting behavior of the F2-rational points of E and
in each case we can determine genus and real Weil poynomial of X ′ and of
X. They are as follows:

I) All 5 rational points of E are b-points, i.e. they split over X into 2
rational points such that one has ramification index 2 and the other
one is unramified.
• The double covering X ′ → E is a genus g′ = 6 curve having parame-
ters

a(X ′) = [5, 0, 0, 10, 4, 20, . . .]

and real Weil polynomial

h(t) = t(t+ 2)(t2 − 5)2.

• The Galois closure X of X over E is a genus g = 16 curve having
parameters

a(X)=[15, 0, 0, 0, 0, 30, 0, 30, 60, 96, 120, 340, 720, 1200, 2164, 3960, . . .]

and real Weil polynomial

h(t) = t(t+ 2)(t− 1)2(t2 − 5)2(t2 + 3t+ 1)4.

II) Of the 5 rational points of E, one is an a-point, i.e. it splits completely
over X; 3 are b-points, i.e. they split over X into 2 rational points
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such that one has ramification index two and the other one is unrami-
fied; one is a c-point, i.e. it is totally ramified over X.
• The double covering X ′ → E is a genus g′ = 5 curve having parame-
ters

a(X ′) = [5, 1, 0, 10, 4, . . .]

and real Weil polynomial

h(t) = (t+ 2)(t2 − 5)(t2 − 2).

• The Galois closure X of X over E is a genus g = 15 curve having
parameters

a(X) = [15, 1, 0, 0, 0, 18, 0, 42, 60, 108, 120, 334, 720, 1164, 2164, . . .]

and real Weil polynomial

h(t) = (t+ 2)(t− 1)2(t2 − 5)(t2 − 2)(t2 + 3t+ 1)4.

Proof. Consider the curve X ′. From Proposition 2.5.3 we have that its genus
g′ = g−c and from Proposition 2.6.2 we have that a(X ′) = [2a+b, c, 0, 10, . . .].
Hence according to the three cases described above:

a b c g′ a(X ′)
I 0 5 0 6 [5, 0, 0, 10, . . .]
II 1 3 1 5 [5, 1, 0, 10, . . .]
III 2 1 2 4 [5, 2, 0, 10, . . .]

We can easily eliminate case number III since X ′ would be a genus 4
curve having N4 = N +2a2 +4a4 = 5+2 · 2+4 · 10 = 49 rational points over
F24 , while N4(4) = 45 according to the tables [G-V].
A computer calculation implementing the algorithm on page 17, allows us to
determine that there is only one candidate real Weil polynomial possible in
each case and precisely

I h(t) = t(t+ 2)(t2 − 5)2,

II h(t) = (t+ 2)(t2 − 5)(t2 − 2)

From the real Weil polynomials of X and X ′ we can recover the real Weil
polynomial of X in both cases I and II. We first of all consider the following
relation among the Zeta function ZX(t) of X and the Zeta functions ZX(t)
and ZX′(t) of the curves X and X ′ respectively:

ZX(t) = LX(t)2LX′(t)ZE(t),

where here

LX(t) =
ZX(t)

ZE(t)
and LX′(t) =

ZX′(t)

ZE(t)



62 2. Uniqueness of optimal curves over F2

denote the Artin L-functions of X and X ′ respectively (cf. for example [R]
Chapter 9, in particular Remark 4, pg. 130).
Similarly, for the real Weil polynomials we obtain

hX(t) =
h2
X(t)hX′(t)

h2
E(t)

,

from which the genus and the real Weil polynomial of X follow as stated.

2.7 Uniqueness of low genus optimal curves

Proposition 2.4.1 shows the only possible form of a Zeta function of an op-
timal genus g curve for 1 ≤ g ≤ 5. But two curves having the same Zeta
function are not isomorphic a priori.
In this section we show that for g = 1, . . . , 5 an optimal genus g curve defined
over F2 is unique up to isomorphism. In particular it is isomorphic to the
genus g optimal curve of the construction of Section 2.3. This is what is
stated in Proposition 2.1.5. In order to prove this Proposition, we first state
and prove some other lemmas that are useful for the genus 3 case.

Lemma 2.7.1. Let C be a genus 3 curve having 7 rational points over F2,
then

a) J ac(C) has an automorphism τ of order 7,

b) τ preserves the polarization of J ac(C).

Proof. For a curve X defined over Fq we denote by J ac(X) the Jacobian
variety of X and by V` the Tate module attached to J ac(X), where ` is
a prime number different from the characteristic of Fq. Let F : V` → V`
be the Frobenius map and by V : V` → V` the Verschiebung map This is
the unique map such that V ◦ F = q. The ring Z[F, V ] is a subring of the
endomorphism ring of J ac(X). Next we let φ be the canonical polarization
on J ac(X). Then φ can be represented as a non-degenerate alternating
form φ : V` × V` → Q`, with values in the `-adic completion of Q. Since
φ(F (x), F (y)) = qφ(x, y) for every x and y in V`, by bilinearity of φ we
have that φ(F (x), F (y)) = qφ(x, y) = φ(qx, y) = φ(V (F (x)), y). Comparing
the first and the latter member of the equality we have that φ(z, F (y)) =
φ(V (z), y) for any y and z in V`. In other words V is left adjoint to F with
respect to φ.

a) We show that for the genus 3 curve C defined over F2 the ring Z[F, V ]
generated by F and V is isomorphic to Z[ζ7], the ring of integers of
Q(ζ7). Thus Z[ζ7] is isomorphic to a subring of the endomorphism ring
of J ac(C) and in particular J ac(C) has an automorphism τ of order
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7 corresponding to ζ7.
By Proposition 2.4.1 the real Weil polyomial of C is h(t) = t3 + 4t2 +
3t− 1, which is the minimal polynomial of F + V . Its discriminant is
49. Hence the corresponding number field is the subfield Q(ζ7 + ζ−1

7 ) of
degree 3 of Q(ζ7) (cf. [Wa], pg. 16). This can be seen as follows: put
µ = ζ7+ζ

−1
7 . Now −µ−µ2 ∈ Z[µ] is a root of the polynomial h(t). Since

the discriminant of the minimal polynomial p(t) = x3 +x2−2x−1 of µ
is 49 as well, we have that Z[−µ− µ2] ' Z[F + V ] ' Z[ζ7 + ζ−1

7 ]. Now
consider the ring generated by Frobenius F and Verschiebung V : the
minimal polynomial of F over Q[ζ7 + ζ−1

7 ] is the polynomial t2− at+2,
with a = −µ−µ2. Since 1− ζ7− ζ5

7 is a root of this polynomial, we can
conclude that Z[F, V ] ⊆ Z[ζ7]. On the other hand ζ7+ζ5

7 = ζ3
7 (ζ−2

7 +ζ2
7 )

is in the ring generated by F and V and ζ−2
7 + ζ2

7 = µ2 − 2 is a unit
of Z[µ]: indeed (ζ−2

7 + ζ2
7 )−1 = ζ5

7 + ζ2
7 = −1 − ζ7 − ζ−1

7 = −1 − µ.
Hence ζ3

7 ∈ Z[F, V ] and ζ7 = (ζ3
7 )5 ∈ Z[F, V ]. This shows that the ring

Z[F, V ] is isomorphic to Z[ζ7] the ring of integers of Q(ζ7) as wanted.

b) Let φ be a fixed polarization on J ac(C) as above. Now by bilinearity
of φ and since V is the complex conjugate of F , the left adjoint to an
element τ in Z[F, V ] is its complex conjugate τ . Hence in particular we
have φ(τ(x), y) = φ(x, τ(y)) = φ(x, τ−1(y)) for every x, y in V` and τ the
automorphism of J ac(C) of order 7, since τ is an element of Z[F, V ] of
absolute value 1 by point a). This implies that φ(τ(x), τ(y)) = φ(x, y)
for every x and y in V`, i.e. τ preserves the polarization φ of J ac(C).

Theorem 2.7.2. Torelli Theorem (cf. [W])
Let X and X ′ be two curves over a perfect field k.
Let σ : J ac(X) → J ac(X ′) be an isomorphism compatible with the canonical
polarizations. Then

a) if X is hyperelliptic, there exists a unique isomorphism f : X → X ′

which gives σ;

b) if X is not hyperelliptic, there exists a unique isomorphism f : X → X ′

and a unique ε ∈ {±1} such that f gives εσ.

Corollary 2.7.3. If σ is an automorphism of J ac(X) preserving the pola-
rization, then either σ or −σ comes from an automorphism of X.

Proof of Proposition 2.1.5. We divide the proof into five parts, each for a
different value of the genus of the curve.

1) A genus 1 curve C over F2 is an elliptic curve. This means that there
is a separable morphism C → P1 of degree 2. Since C has 5 rational
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points the only possibility is that 2 of the three rational points of P1

splits completely and one of them ramifies over C. Hence this is an
abelian extension of degree 2 and the conductor has to be 2P + D,
where P is the wildly ramified point of C and D a rational divisor of
C. By the Hurwitz formula degD = 2. Since the ramification of the
only degree two place of P1 would not be tame and no other rational
point of C but P ramifies, we have D = 2P . Hence C is an abelian
extension of P1 of conductor 4P , where the other two rational points
of P1 are split.
If P = P∞ we have the construction of Proposition 2.3.1. We can al-
ways reduce to this case choosing for P any of the other two rational
points of P1: in fact P1 has an automorphism group acting doubly tran-
sitively on its 3 rational points.

It is possible to determine the equation of C supposing, for example,
it is the point at infinity of P1 the ramifying one. First of all such
an equation has to be of the form y2 + a(x)y = f(x), where a(x) and
f(x) are polynomials in F2[x], the first of degree 0 or 1 and the latter
of degree 3. In order to let ramify only the point at infinity, a(x) has
to be 1, hence the equation has the form y2 + y = f(x). Since the
points of P1 of coordinate x = 0 and x = 1 have to split, we have that
f(0) = f(1) = 0 and hence f(x) = x(x + 1)(x + a), where a ∈ F2. If
a = 1 we find the equation y2 + y = x3 + x and if a = 0 the equation
is y2 + y = x3 + x2. The two curves indeed turn out to be isomorphic
over F2 by changing coordinates through the map (x, y) 7→ (x+ 1, y).

2) A genus 2 curve C over F2 is a hyperelliptic curve. Hence we know that
there exists a separable double covering C → P1. For C to have 6 ratio-
nal points, all three F2-rational points of P1 have to split completely in
C. Since, by Proposition 2.4.1, the curve C has only one place of degree
three, only 1 of the 2 degree three places Q of P1 totally ramifies in C.
Hence the conductor D of the covering is divided by 2Q. Moreover by
the Hurwitz formula we have 2 ·2−2 = 2(2 ·0−2)+degD. This implies
that the degree of the conductor has to be 6. Thus any genus 2 curve
having 6 rational points over F2 is a double covering of P1 of conductor
2Q, where Q is a place of P1 of degree three, in which all rational points
of P1 are split. This is the class field theory construction we described
in Proposition 2.3.4.
The choice of which of the 2 places of degree three of P1 has to ram-
ify leads to two isomorphic curves. Indeed the F2-automorphism τ
of P1 sending x 7→ 1/x, sends in particular Q = (x3 + x2 + 1) into
Q′ = (x3 + x+ 1).

3) By Lemma 2.7.1 and by the above Corollary of Torelli’s Theorem the
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curve C admits an automorphism f of order 7. Indeed if f does not
induce τ of order 7 as in the Lemma, but f induces −τ , we can take
f ◦ f as automorphism of order 7 of C. Then C is a cyclic covering of
degree 7 and conductor D of a curve X, that by the Hurwitz formula
can only be P1. Indeed if the genus of X would be g ≥ 2 one had

2 · 3− 2 = 7(2g − 2) + 6 degD ≥ 14 + 6 degD

and hence a different of degative degree, which is not possible. If X
would be a genus 1 curve than degD = 2/3, which is not possible
since it is not an integer value. By the Hurwitz formula the degree
of the conductor D of the cyclic covering over P1 is then given by
2 g(C)−2 = 7 (2 g(P1)−2)+6 degD, that is degD = 3. Since there are
7 points on C, one rational place of P1 splits completely over C. Hence
C has to be a degree 7 covering of P1 of conductor a place Q of P1 of
degree three where one of the rational points R of P1 splits completely.
It is not difficult to check that different choices for the splitting point R
and for the degree three place Q give rise to isomorphic curves. Indeed
first we can always reduce to the case R = P∞ as in Proposition 2.3.5
because the automorphisms group of P1 acts transitively on the rational
points. Next the automorphism x 7→ x + 1 fixes the point at infinity
and maps one degree 3 place of P1 into the other one.

4) By Proposition 2.4.1 the real Weil polynomial of an optimal genus 4
curve C over F2 is (t + 1)(t + 2)(t2 + 2t − 2). Since the resultant
of the polynomials t + 2 and (t + 1)(t2 + 2t − 2) is 2, by Theorem
2.2.3, there exists a double covering C → E, where E is the optimal
elliptic curve of equation y2 + y = x3 + x we have been dealing with
above. The comparison between the two vectors a(C) = [8, 0, 0, 2, . . .]
and a(E) = [5, 0, 0, 5, 4, . . .] gives some additional information on the
behavior of the rational points of E in C. Since C has no places of
degree two, no rational point of E can be inert in C. To get 8 rational
points on C, then, there is only one possibility for the 5 rational points
of E: 3 points are split and 2 are totally ramified. Denoting by P and
P ′ the two wildly ramified points, the contribution to the different is
at least 2P + 2P ′. By the Hurwitz formula we know that the degree of
the different has to be 6. Since deg(2P + 2P ′) = 4 and since there are
no other rational places of E ramifying, the different, and hence the
conductor of the abelian extension, has to be 4P + 2P ′ (or 2P + 4P ′).
Thus any optimal genus 4 curve over F2 is a double covering of the
optimal elliptic curve E of conductor 4P + 2P ′, where P and P ′ are 2
rational points of E, in which the other 3 rational points of E are split.
This is the class field theory construction we described in Proposition
2.3.6 when P = P∞ and P ′ = P1.
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Uniqueness up to isomorphism of C follows (and the case 2P + 4P ′

reduces to the case 4P + 2P ′) from the fact that we can choose for
P and P ′ any two points of E, having E an endomorphism group
acting doubly transitively on its 5 rational points: one can map any two
rational places of E to any other pair of rational places by an element of
the group generated by τ and σ, where τ : (x, y) 7→ (x+ 1, x+ y + 1)
is an automorphism of order 4 and σ the endomorphisms of order 5
corresponding to the addition by P1.

5) By Proposition 2.4.1 a genus 5 optimal curve C defined over F2 has
real Weil polynomial h(t) = t(t + 2)2(t2 + 2t − 2). One has moreover
that 2 = t(t + 2)− (t2 + 2t− 2) is the generator of the principal ideal
(t(t+ 2), t2 + 2t− 2) ∩ Z. Hence, by Theorem 2.2.2, a genus 5 optimal
curve C is a double covering of a curve Y having real Weil polynomial
either t(t+ 2)2 or t2 + 2t− 2. But a curve having real Weil polynomial
t(t+2)2 would be a genus 3 curve having 7 rational points over F2: this
is impossible by Proposition 2.4.1. Hence Y is a genus 2 curve hav-
ing 5 rational places and no place of degree two. Every genus 2 curve
defined over F2 is a hyperelliptic curve Y , i.e. it admits a separable
F2-morphism Y → P1 of degree 2. Up to F2-isomorphism there exists
a unique hyperelliptic curve having real Weil polynomial t2 + 2t − 2.
One can find for example in Maisner and Nart’ paper [M-N] (pg. 327)
a classification of hyperelliptic curves up to F2-isomorphisms. In par-
ticular for a hyperelliptic curve Y over F2 having 5 rational points the
different of the function fields extension associated to the double cover-
ing Y → P1 has to be 6P , where P is a rational point of P1. By taking
P = P∞ any hyperelliptic curve over F2 having real Weil polynomial
h(t) = t2 + 2t − 2 turns out to be F2-isomorphic to a projective curve
of affine equation y2 + y = x5 + ax3 + bx2 + c with a, b, c ∈ F2. Of the
8 possible equations arising from the choice of the parameters a, b, c,
only the equation y2 + y = x5 +x3 is the equation of a projective curve
having 5 rational points and no place of degree two over F2.
Since there are 9 rational places over C, only one of the 5 rational
places of Y ramifies and the other 4 split completely over C. On the
other hand the different of the corresponding function fields extension
has degree 4 by the Hurwitz formula. Since ramification is wild the
only possibility for the different, and hence for the conductor of the
extension, has to be 4P , where P is the only rational point of Y ram-
ifying over C. Let X ′ be a curve such that its function field F2(X

′)
is the maximal abelian extension of the function field F2(Y ) of Y of
conductor 4P∞ where all other rational places of Y split completely. If
Gal(F2(X

′)/F2(Y )) ' Z2, then X coincides with X ′ since X ′ is unique
by class field theory. The class group of conductor 4P is isomorphic
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to R =
(
F2[[t]]/(t

4)
)∗
' Z4 × Z2, where t is a uniformizer at the ra-

tional place P . By class field theory, the group Gal(F2(X
′)/F2(Y )) is

isomorphic to a quotient of R by the group generated by the Frobe-
nius elements of the splitting rational places. Denote by P0 = (0, 0),
P ′

0 = (0, 1), P1 = (1, 0) and P ′
1 = (1, 1) the affine rational places of the

curve Y of equation y2 + y = x5 + x3. We consider all possible choices
for P and show that for P = P∞ the curve X is indeed unique, while
for any other rational P the group Gal(F2(X

′)/F2(Y )) is trivial.

i) Let P = P∞ and t = y
x3 a uniformizer at P∞. Let S = {P0, P

′
0, P1, P

′
1}.

Consider the principal divisors

(y + x3) = 5P0 + P1 − 6P∞,

(x3) = 3P0 + 3P ′
0 − 6P∞.

Then the S-unit gP1 = y+x3

x3 generating the following principal divisor(y + x3

x3

)
= 2P0 + P1 − 3P ′

0,

is a uniformizer at P1. Its image in R is

y + x3

x3
= 1 + t mod t4.

This generates a subgroup of order 4 in R. Consider now the order 4
automorphism σ of Y

σ : Y → Y

(x, y) 7→ (x+ 1, y + x2 + 1),

fixing P∞ and acting transitively on S. Then σ(gP1), σ
2(gP1) are S-

units and uniformizers at P0 = σ(P1) and P ′
1 = σ2(P1) respectively.

Hence their image in R also generates the same subgroup of order 4.
Hence the quotient group of R by the S-units group generated by the
image of the three linearly independent S-units gP1 , σ(gP1) and σ2(gP1)
is a group of order 2. It cannot be trivial since also the image of the
uniformizer σ3(gP1) of P ′

0 is in the image of the S-units gP1 , σ(gP1) and
σ2(gP1).

ii) Let P = P0 and x a uniformizer at P0. Let S = {P∞, P ′
0, P1, P

′
1}.

Consider the principal divisors

(y + x3) = 5P0 + P1 − 6P∞,

(y + x2) = 2P0 + 3P1− 5P∞,

(y + 1) = 3P ′
0 + 2P ′

1 − 5P∞,

(y) = 3P0 + 2P1 − 5P∞.
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By means of Hensel lemma, we compute the local expansion of y at
P0: this is y = x5 + x3 + O(x6). Then the image of the S-unit y + 1
in R is given by x5 + x3 + 1 + O(x6) ≡ x3 + 1 modx4. This generates
a subgroup R′ of order 2 of R. Consider the S-unit hP0 generating the
principal divisor

(hP0) =
(y(y + x2)

y + x3

)
= 4(P1 − P ′

∞).

Its image in R is the element

hP0 =
y(y + x2)

y + x3
≡ (x5 + x3)(x5 + x3 + x2)

x5 + x3 + x3

≡ (x2 + 1)(x3 + x+ 1) ≡ x2 + x+ 1 mod x4

generating the complement subgroup of R′ in R of order 4. Hence the
image of y + 1 and hP0 generate the whole ray class group R and the
corresponding ray class field extension is trivial.

The other possibilities for P reduce to the case ii) by applying the automor-
phism σ.

We finally give a proof of Proposition 2.1.6 dealing with uniqueness of
optimal genus 6 curves.

Proof of Proposition 2.1.6. a) Let C be a genus 6 optimal curve defined
over F2 having Zeta function as in a). The real Weil polynomial of
such a curve C is t(t+ 2)(t4 + 5t3 + 5t2 − 5t− 5). The resultant of the
polynomials t+2 and t(t4 +5t3 +5t2−5t−5) is −2, hence, by Theorem
2.2.3, there exists a covering C → E of degree 2. For C to have 10
rational points, all of the 5 rational points of E have to split completely.
Moreover by the Hurwitz formula the degree of the different has to be
10. Now, since a2(C) = a3(C) = a4(C) = 0, the only possibility for a
place Q of E to ramify is to have degree at least five. This allows us to
conclude that, since the ramification has to be wild, the different has to
be precisely 2Q, where Q is a degree five point of E. Thus any optimal
genus 6 curve is a double covering of E of conductor 2Q, where Q is
a place of E of degree five, in which all rational points of E are split.
This is the class field theory construction we described in Proposition
2.3.8.
The elliptic curve E has actually 4 points of degree five. If we choose
a different degree five ramifying point of E for the construction, this
gives us an isomorphic genus 6 curve C ′ having the same Zeta function.
Indeed the elliptic curve has an F2-automorphism τ of order 4 acting
transitively on the four places of degree five, which in particular fixes
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the point at infinity and acts transitively on the other 4 rational points
of E:

τ : E → E (2.17)

(x, y) 7→ (x+ 1, x+ y + 1)

P1 7→ P4

P2 7→ P3

P3 7→ P1

P4 7→ P2.

b) Let C be an optimal curve of genus 6 defined over F2 such that its
Zeta function is as in b). The real Weil polynomial of C is hence
given by (t − 1)(t + 2)(t2 + 3t + 1)2 and the parameters of C are
a(X) = [10, 0, 0, 0, 2, 15, . . . ]. Hence C satisfies all properties described
in Section 2.6. By Proposition 2.6.1 it is a non-Galois extension of
degree 3 of the optimal elliptic curve E. Consider as in the previous
setting, the curve C whose function field L is the Galois closure of the
function field L of C with respect to the function field K of E. The
Galois group Gal(L/K) is isomorphic to the symmetric group S3. By
Proposition 2.6.3 we have the following two cases:

I) All 5 rational points of E are b-points, i.e. they split over C into
2 rational points such that one has ramification index 2 and the
other one is unramified. Consider the morphism τ + 2 : E → E,
where τ ∈ Aut(E) as in (2.17). It is a surjective morphism of
degree 5 whose kernel consists of the F2-rational places of E. Let
C ′ be the curve whose function field is the quadratic subfield of the
function field of C. By Proposition 2.6.3 the curve C ′ has genus 6.
Hence by the Hurwitz formula the double covering C ′ → E must
have conductor

∑4
i=0 Pi, where the Pi’s are all 5 rational places

of E. They must ramify in C ′ by hypothesis. Moreover C ′ has 10
places of degree four. Hence all 5 places of degree four of E split
complitely over C ′. Consider now the covering C ′ → E → E. It is
stable under permutation of the rational places of E. Hence it is
Galois. The curve C has genus 16 by Proposition 2.6.3, hence the
degree 3 covering C → C ′ is unramified. Moreover since C has 15
rational places, all rational places of C ′ split completely. There is
a unique degree 3 such covering of C ′: indeed since |Pic0(C ′)| =
L(1) = 24 ·3·5, there is a unique degree 3 subgroup in the ray class
group. Here L(t) = (2t2 + 1)(2t2 + 2t + 1)(4t4 − t2 + 1)2 denotes
the numerator of the Zeta function of C ′ computed in Proposition
2.6.3. Thus also the morphism C → E → E corresponds to a
Galois extension of algebraic function fields. The Galois group G
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of this extension has a normal subgroup S3 of order 6 coprime to
the order 5 of the quotient group G/S3 ' Z5. The G fits in the
following split exact sequence

0 // S3
// G // Z/5Z // 0,

by Schur-Zassenhaus Theorem. In other words G is a semidi-
rect product of S3 and Z5. In this way one also has another
tower of function fields corresponding to the morphisms of curves
C → Z → E, such that the Galois group G′ of the function
fields extension corresponding to the morphism Z → E satisfies
G′ ' S3. Let τ ∈ S3 be a generator of the Galois group corre-
sponding to the covering C → C and consider invariant fields. We
obtain a Galois covering C → Z ′ of degree 5. This covering has to
be unramified. Indeed if a place Q of X lying over a place P of Z ′

ramifies, then it is totally ramified since the corresponding func-
tion field extension is cyclic. Thus any other ramification index in
the covering X → E → E has to be divided by 5. But this is im-
possible since E → E is unramified by construction and X → E
has degree 3. The curve Z ′ has genus gZ′ = 2 by the Hurwitz
formula 2 · 6− 2 = 5(2gZ′ − 2) + 0. Thus the real Weil polynomial
of Z ′ has to be a degree 2 factor of the real Weil polynomial of
X. Since Z ′ is also a degree 3 covering of E, the real Weil polyno-
mial of Z ′ is divisible by the real Weil polynomial t + 2 of E (cf.
[A-P]). Hence the only possibility for the real Weil polynomial of
Z ′ is to be h(t) = (t + 2)(t − 1). The curve Z ′ is thus a genus 2
curve having 4 rational places and 2 places of degree two over F2.
Over F2 any genus 2 smooth curve is a hyperelliptic curve. We
show that up to F2-isomorphism there exists a unique hyperellip-
tic curve having real Weil polynomial (t+2)(t− 1). For a genus 2
hyperelliptic curve Z ′ over F2 having 4 rational points the different
of the function fields extension associated to the double covering
Z ′ → P1 has to be 4P +2Q, where P and Q are rational points of
P1. Indeed by Hurwitz formula the degree of the different is 6 and
since Z ′ has 4 rational points, 2 of the rational points of P1 are
wildly ramified and one splits completely. By taking P = P∞ and
Q = (0, 0) any hyperelliptic curve over F2 is F2-isomorphic to a
projective curve of affine equation y2 + y = x3 +ax+1/x+ b with
a, b ∈ F2, according to the classification of Maisner and Nart in
[M-N] (pg. 327). There are 4 possibilities for the parameters a and
b but only the equation y2 +y = x3 +x+1/x+1 is the equation of
a projective curve having 4 rational points and 2 places of degree
two over F2. This curve is F2-isomorphic to the projective curve of
affine equation y2+xy = x5+x4+x2+x, appearing in Proposition
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2.4.3. The isomorphism is given by (x, y) 7→ (x, (y + x2)/x).
Consider now the covering C 7→ Z ′. Since C has 10 rational
points, two of the rational points of Z ′ have to split completely. If
we choose P∞ and P0 = (0, 0) of Z ′ to split completely we get the
same construction as in Proposition 2.4.3. On the other hand this
choice is the only possible one. Suppose one of the two splitting
rational places of Z ′ is not P∞. Then there are three possibilities
for the splitting pairs of points:

i) The points (1, 0) and (1, 1) are split. This is equivalent to say
that the divisor 2(1, 0) − 2(1, 1) is principal. Consider now
the principal divisor (x + 1) = 2(1, 0) + 2(1, 1) − 4P∞, then
2(1, 0)− 2(1, 1) + (x+ 1) = 4(1, 0)− 4P∞ is principal as well.
But this leads to a contradiction since P∞ would also be split.

ii) If the points (1, 0) and (0, 0) are split, then 2(1, 0) − 2(0, 0)
is principal. Similarly to the previous case, by adding the
principal divisor (x) = 2(0, 0) − 2P∞, then 2(1, 0) − 2P∞ is
principal and a contradiction follows.

iii) Symmetrically with (1, 1) and (0, 0) by supposing 2(1, 1) −
2(0, 0) is principal and adding (x).

If P∞ splits, then also does P0. On the other hand, if we assume
that the divisor 2P∞ − 2(1, 0), resp. 2P∞ − 2(1, 1), is principal,
by adding (x+ 1) we find three rational splitting places, which is
a contradiction.

II) Of the 5 rational points of E, one is an a-point, i.e. it splits
completely over C; 3 are b-points, i.e. they split over C into 2
rational points such that one has ramification index two and the
other one is unramified; one is a c-point, i.e. it is totally ramified
over X. The double covering C ′ → E is a genus g′ = 5 curve hav-
ing parameters a(C ′) = [5, 1, 0, 10, 4, . . .] and real Weil polynomial
h(t) = (t+2)(t2−5)(t2−2) by Proposition 2.6.3. There are three
rational places P , P ′ and P ′′ of E that ramify in C ′, one rational
place Q splitting completely, and one rational place R which is
inert by Proposition 2.5.1. By comparing the parameters of E
and C ′ one also has that all 5 places Qi, for i = 1, . . . , 5, of E
of degree four have to split completely over C ′. One can always
assume Q = P∞ by translating by P1. Moreover one can also
assume R = P1 = (1, 1) applying the order 4 automorphism τ of
E in (2.17) that fixes P∞ and permutes the other rational places
of E. Both automorphisms fix the set of degree four places of E.
By the Hurwitz formula the degree of the discriminant has to be
8. Hence the covering C ′ → E has conductor 4P + 2P ′ + 2P ′′,
where {P, P ′, P ′′} = {P1, P2, P3} with P1 = (0, 0), P2 = (0, 1) and
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P3 = (1, 0). Let C ′′ be a curve such that its function field F2(C
′′)

is the maximal abelian extension of the function field F2(E) of E
of conductor 4P+2P ′+2P ′′ where P∞ and all degree four places of
E split completely. If Gal(F2(C

′′)/F2(E)) ' Z2, then C ′ coincides
with C ′′, since C ′′ is unique by class field theory. The class group of

conductor 4P +2P ′+2P ′′ is isomorphic to R =
(
F2[[tP ]]/(t4P )

)∗
⊕(

F2[[t
′
P ]]/(t′P

2)
)∗
⊕
(
F2[[t

′′
P ]]/(t′′P

2)
)∗
' Z4×Z2×Z2×Z2, where tP ,

t′P and t′′P are uniformizers at P , P ′ and P ′′ respectively. By class
field theory, the group Gal(F2(C

′′)/F2(E)) is isomorphic to a quo-
tient of R by the group generated by the images of the S-units,
where S is the set of splitting places. We consider all possible
choices for P , P ′ and P ′′ and show that for P = P2 the curve C ′

is unique since Gal(F2(C
′′)/F2(E)) has order 2, while for P = P1

or P = P3 the group Gal(F2(X
′)/F2(Y )) is trivial.

Let S = {Q1, Q2, Q3, Q4, Q5, P∞}, where the Qi’s are the 5 places
of degree four of E as listed at page 48, for i = 1, . . . , 5. The
divisors generated by the uniformizers of the Qi’s are as follows

(y + x3) = Q1 + P1 + P4 − 8P∞,

(y + x3 + 1) = Q2 + P2 + P3 − 8P∞,

(y + x3 + x2) = Q3 + P1 + P3 − 8P∞,

(y + x3 + x2 + 1) = Q4 + P2 + P4 − 8P∞,

(x2 + x+ 1) = Q5 − 4P∞.

Form these and the divisors listed in (2.7) we compute the divisors

(u1) = (x4 + x3 + x2 + x+ 1) = Q1 +Q2 − 8P∞,

(u2) = (x4 + x3 + 1) = Q3 +Q4 − 8P∞,

(u3) = (x2 + x+ 1) = Q5 − 4P∞,

(u4) =

(
(y + x3)(y + x3 + x2)2

y(y + x)(x2 + x+ 1)3

)
= Q1 + 2Q3 − 3Q5,

(u5) =

(
(y + x3)2(y + x3 + x2 + 1)

(y + 1)(y + x)(x2 + x+ 1)3

)
= Q4 + 2Q1 − 3Q5.

generated by S-units ui, for i = 1, . . . , 5. The ui’s are F2-linearly
independent. Moreover by Hensel lemma we compute the local
expansion yPi

of y at Pi for i = 1, 2, 3:

yP1 = x+ x2 + x3 + x4 + x6 +O(x7),

yP2 = 1 + x+ x2 + x3 + x4 + x6 +O(x7),

yP3 = t2 + t3 + t4 + t6 +O(t7), where t = x+ 1.
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i) Let P = P2. We compute the images of the S-units in R.
One has that

u1 = x4+x3+x2+x+1≡


1 + x mod x2,
1+x+x2+x3 ≡ (1+x)3 mod x4,
1 mod t2;

u2 = x4 + x3 + 1 ≡


1 mod x2,
1 + x3 mod x4,
1 + t mod t2;

u3 = x2 + x + 1 ≡


1 + x mod x2,
1+x+x2 ≡ (1+x)3(1+x3) mod x4,
1 + t mod t2;

and hence the images of u1, u2 and u3 are (1 + tP1)(1 + tP2)
3,

(1 + t3P2
)(1 + tP3) and (1 + tP1)(1 + tP2)

3(1 + t3P2
)(1 + tP3)

respectively. Moreover

u4 ≡


1 mod x2,
1 + x+ x2 ≡ (1 + x)3(1 + x3) mod x4,
1 mod t2;

u5 ≡


1 mod x2,
1 + x3 mod x4,
1 + t mod t2;

so that the images of u4 and u5 are (1 + tP2)
3(1 + t3P2

) and
(1+t3P2

)(1+tP3) respectively. The subgroup of R generated by
the images of the ui’s for i = 1, . . . , 5 is hence a subgroup of
index 2. It coincides with the group generated by the images
of the S-units u1, u2 and u3.

ii) Let P = P1. Similarly to the previous case one can compute
the images of the S-units ui’s in the class group R. In par-
ticular, since they depend only on the variable x, the images
of ui for i = 1, 2, 3, are easily computed as (1 + tP1)

3(1 + tP2),
(1 + t3P1

)(1 + tP3) and (1 + tP1)
3(1 + tP1)(1 + tP2)(1 + tP3) re-

spectively, by replacing P1 by P2 and viceversa. On the other
hand one has

u4 ≡


1 + x2 + x3 mod x4, at P1,
1 + x ≡ (1 + x)3(1 + x3) mod x2, at P2,
1 mod t2;

u5 ≡


1 mod x4, at P1,
1 mod x2, at P2,
1 + t mod t2;
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Hence the images of u4 and u5 are (1 + tP1)
2(1 + t3P1

)(1 + tP2)
and (1 + tP3) respectively. The images of u1, u2, u4 and u5

are independent generators of R. The first has order 4, while
the images of u2, u4, u5 have order 2. Thus they generate the
whole class group R.

iii) In case P = P3 we have

u1 = x4 + x3 + x2 + x+ 1 ≡
{

1 + x mod x2,
1 + t3 mod t4;

u2 = x4 + x3 + 1 ≡
{

1 mod x2,
1 + t+ t2 + t3 ≡ (1 + t)3 mod t4;

u3 = x2 + x + 1 ≡
{

1 + x mod x2,
1 + t+ t2 ≡ (1 + t)3(1 + t3) mod t4;

and hence the images of u1, u2 and u3 are (1 + tP1)(1 + t3P3
)(1+

tP2), (1 + tP3)
3 and (1 + tP1)(1 + tP3)

3(1 + t3P3
)(1 + tP2) respec-

tively. Moreover

u4 ≡


1 mod x2, at P1,
1 + x mod x2, at P2,
1 mod t4;

u5 ≡


1 mod x2, at P1,
1 mod x2, at P2,
1 + t+ t2 ≡ (1 + t)3(1 + t3) mod t4;

so that the images of u4 and u5 are (1+ tP2) and (1+ tP3)
3(1+

t3P3
) respectively. The images of u1, u2, u4 and u5 generate

the whole ray class group R.

The rational place P4 = (1, 1) of E is inert in C ′. Let P ′
4 denote the

place of degree 2 of C ′ lying over P4. Then the genus 15 curve C,
having parameters a(C) = [15, 1, 0, 0, 0, . . .] by Proposition 2.6.3,
is a degree 3 Galois covering of C ′ where all rational places of
C ′ are split and the degree two place P ′

4 ramifies. Then by the
Hurwitz formula the different has to be 2P ′

4 and the function field
of C is the ray class field of conductor 2P ′

4 where all rational places
of C ′ split completely. A computer calculation performed by Claus
Fieker in MAGMA shows that the associated ray class group is
always trivial. Hence the curve C does not exists.
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2.8 An example of two genus 7 optimal curves

having different Zeta functions

In this last section we want to present a construction of a ray class field having
among its subfields the algebraic function fields of two genus 7 optimal curves.
We combine methods of the previous sections in order to compute the Zeta
functions associated to these curves: they turn out to be different, providing
existence of two non-isomorphic genus 7 optimal curves.

Example 2.8.1. Let Q denote a degree six place of uniformizer t = x6+x5+1
of the optimal elliptic curve E defined over F2. The maximal ray class field
L of conductor 2Q, in which all 5 rational points of the function field K of
E are totally split, is an extension of K with Galois group G ' Z2⊕Z2. The
three subgroups of G of order 2 correspond to three genus 7 coverings X1, X2

and X3 of E having 10 rational points over F2:
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The Zeta function of Xi has the form

Z(t) =
(2t2 + 2t+ 1)Pi(t)

(1− 2t)(1− t)
,

for i = 1, 2, 3, where

P1(t) = P3(t) = 64t12 + 160t11 + 240t10 + 280t9 + 276t8 + 238t7

+180t6 + 119t5 + 69t4 + 35t3 + 15t2 + 5t+ 1, (2.18)

while

P2(t) = (4t4 + 6t3 + 5t2 + 3t+ 1)(16t8 + 16t7 + 16t6

+14t5 + 10t4 + 7t3 + 4t2 + 2t+ 1). (2.19)

Proof. Remark 2.3.2 states that the elliptic curve E has 10 places of degree
six. Repeating the construction of Proposition 2.3.8 with the place Q of
degree six rather than five, we obtain a degree 4 extension L of the function
field K of E. By class field theory, the Galois group of L/K isomorphic to
R = F26 [[t]]∗/{u : u ≡ 1 mod t2} modulo the image of the S-unit group
O∗
S = 〈x, x + 1, y, y + x〉 of E, where S is the set of 5 rational points of
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E. Similarly to Proposition 2.3.8, we let α be a root of x6 + x5 + 1. Then
P = (a, a4 + a3 + a2 + 1) and P ′ = (a, a4 + a3 + a2) are F26-rational points
of E. The prime ideal of the coordinate ring of E corresponding to P is
p = (x6 + x5 + 1, y + x4 + x3 + x2 + 1). Consider the divisor (x6 + x5 + 1) =
P + P ′ − 12P∞ and take t = x6 + x5 + 1 as uniformizer at Q, the place of
which the point P is representative. In order to compute the image of the
S-units in R, we first observe that the image of the S-unit x has order 63
modulo t and hence it generates the 63-part of R. Thus we compute

x63 − 1 ≡ (x+ 1)t mod t2,

(x+ 1)63 − 1 ≡ xt mod t2,

y63 − 1 ≡ (x5 + x2)t mod t2,

(y + x)63 − 1 ≡ (x5 + x4 + x3 + x2)t mod t2,

and the Galois group of L/K is isomorphic to the quotient group F2[x]/(x
6 +

x5 + 1)H, where H = 〈x + 1, x, x5 + x2, x5 + x4 + x3 + x2〉 is a subgroup of
index 4. Since all elements in this quotient group have order 2, the Galois
group of L/K is isomorphic to Z2 ⊕ Z2. Its three subgroups of order 2
correspond to three coverings X1, X2 and X3 of E having each 10 rational
points over F2 since all five rational places of S split completely over each
curve. They all have genus g = 7: indeed by the Hurwitz formula one has
2g − 2 = 2(2 · 1− 2) + 2 degQ, since each of the three non-trivial characters
of Z2 × Z2 has conductor 2Q. Hence we have three genus 7 curves over F2

with 10 rational places. They are optimal by Serre’s estimate.
We compute the Zeta function of each curve Xi. To this end we consider
the places of degree d = 2, . . . , 7 of E. Since the rational points of E are
all split and E has no places of degree two nor three, none of the three Xi

has places of degree two or three either. In each curve Xi a place of degree
four must lie over one of the places of degree four of E that split completely.
Similarly for a place of Xi of degree five. By class field theory, a place P of
E splits completely over Xi if and only if the image of the uniformizer of P
is trivial in the ray class group corresponding to the covering Xi 7→ E. We
start considering uniformizers for the degree four places of E as in the proof
of Proposition 2.3.8 and computing their images in F2[x]/(x

6 + x5 + 1) as
done above for the S-units of E. One has

(y + x3)63 − 1 ≡ (x5 + x)t mod t2,

(y + x3 + 1)63 − 1 ≡ x4t mod t2,

(y + x3 + x2)63 − 1 ≡ (x5 + x3 + x)t mod t2,

(y + x3 + x2 + 1)63 − 1 ≡ (x4 + x2)t mod t2,

(x2 + x+ 1)63 − 1 ≡ (x5 + x3 + x2)t mod t2.

Similarly for the places of degree five we take uniformizers as follows and
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compute

(y + x4)63 − 1 ≡ (x3 + x+ 1)t mod t2,

(y + x4 + 1)63 − 1 ≡ (x5 + x4 + x)t mod t2,

(y + x4 + x)63 − 1 ≡ (x4 + x3 + x2 + 1)t mod t2,

(y + x4 + x+ 1)63 − 1 ≡ (x5 + x4 + x3 + 1)t mod t2.

We consider now the index two subgroups H1 = H · 〈x3〉, H2 = H · 〈x2〉 and
H3 = H · 〈x3 + x2〉 of F2[x]/(x

6 + x5 + 1), for which the ray class groups
associated to the genus 7 curve Xi is isomorphic to F2[x]/(x

6 +x5 +1)Hi, for
i = 1, . . . , 3. The images in F2[x]/(x

6 + x5 + 1)Hi of the above uniformizers
are the following:

1) Among the places of degree four only the images x4 and x5 + x3 + x2

of the places of uniformizers y + x3 + 1 and x2 + x+ 1 respectively lie
in H1. Hence the curve X1 has 4 places of degree four. Of the places
of degree five only the place of uniformizer y+ x4 has image x3 + x+ 1
lying in H1: the curve X1 has hence 2 places of degree five. We sum
up the recovered information in the vector a(X1) = [10, 0, 0, 4, 2, . . .].

2) In the case i = 2, there is only one place of degree four whose uni-
formizer y + x3 has image x5 + x lying in H2. Among the places of
degree five, the places of uniformizers y+x4 +x and y+x4 +x+1 split
completely over X2: indeed these are the only two places for which the
images x4 + x3 + x2 + 1 and x5 + x4 + x3 + 1 of their uniformizers lie
in H2. The curve X2 has hence 2 places of degree four and 4 places of
degree five. Summing up a(X2) = [10, 0, 0, 2, 4, . . .].

3) Also in the case i = 3 there are 2 places of degree four, namely the
places of uniformizers y + x3 + x2 + 1 and y + x3 + x2, and only one
place of degree five, having uniformizer y + x4 + 1, whose images lie in
H3. Hence the curve X3 has a(X3) = [10, 0, 0, 4, 2, . . .], the same as X1

up to the 5-th entry.

Since the degree six placeQ of E ramifies in every curveXi for all i = 1, . . . , 3,
the number a6(Xi) of degree six places of Xi has to be odd, while the number
a7(Xi) of degree seven places of Xi, has to be even. We can now determine
a parametric form for the real Weil polynomial of each curve Xi from the
information we have:

i) For the curves X1 and X3 the common values of N = a1 = 10, a2 =
a3 = 0, a4 = 4 and a5 = 2 allow to determine a parametric form
common to the real Weil polynomials of both curves:

hα,β(t) = t7 + 7t6 + 13t5 − 9t4 − 45t3 − 21t2 + αt+ β.



78 2. Uniqueness of optimal curves over F2

One can check that only for the values of (α, β) = (26, 16) and (α, β) =
(27, 18) both hα,β(t) and its derivative have all roots in the interval
[−2

√
2, 2

√
2]. But while the first pair of values (26, 16) gives a6(Xi) = 5

and a7(Xi) = 18, the second pair gives a6(Xi) = 6, which is even. Hence
both X1 and X3 have the same Zeta function an it is determined by
the polynomial (2.18).

ii) For the curve X2 the values a(X2) = [10, 0, 0, 2, 4, . . .] give the para-
metric real Weil polynomial

hα,β(t) = t7 + 7t6 + 13t5 − 9t4 − 47t3 − 33t2 + αt+ β.

In this case there are three pairs of values of (α, β) for which both
hα,β(t) and its derivative have all roots in the interval [−2

√
2, 2

√
2]:

i) the pair (3, 2), which gives a6 = 10,

ii) the pair (4, 4), which gives a6 = 11 and a7=12,

iii) and the pair (5, 7), for which a6 = 12.

Hence the Zeta fuction ofX2 corresponds to the only pair (α, β) = (4, 4)
for which a6 is non even. This Zeta function is hence determined by
the polynomial (2.18).
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