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Abstract

Cosmology has entered the precision epoch thanks to sesgyadiccurate experiments.
Cosmologists now have access to an array of tools to testdbeaogical concor-

dance model and constrain its parameters; the Cosmic MaueBackground radiation
(CMB), in particular, has been playing a crucial role in thisbition. Many questions
remain nonetheless unanswered, especially concernimhifsgcs of the early Universe,
the inflationary mechanism which set the initial conditidoisthe Universe expansion
on one side, and, on the other, the nature of the late timdematien of the Universe

expansion.

My research contributes to both of these subjects, the canmgrmund being the de-
velopment of a statistical tool — needlets, a new frame onsfiteere — to analyse the
CMB. By means of needlets, we measure the Integrated Saclis ®ffect by cross-
correlating WMAP and NVSS datasets and characterise daiggiproperties using a
phenomenological fluid model. Motivated by our findings, Wwedy in detail a parame-
terisation of the dark components, dark matter and darkggnemich makes use of an
affine equation of state, constraining the parameters amnibeel by combining WMAP
and SDSS datasets.

We apply needlets to the WMAP 5-year data release testin@gthessianity of the
CMB perturbations. Our approach is twofold: we first focustba maps, detecting
anomalous spots located in the southern hemisphere ankl itteceffect on the angular
power spectrum. We next measure the needlet three-poirdlabon function (bispec-
trum) and characterise it in terms of its overall amplityolgtfing constraints on the pri-
mordial fx;, parameter, and considering its properties according tgd&oeetry of the
triangle configurations which contribute to the total pavw#e find a significant anomaly
in the isosceles configurations, again in the southern lpmars.

Finally we focus on the construction of an optimal estimdtorthe (needlets) bis-
pectrum, taking into account foreground residuals.
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Introduction

“Why in general is there some-thing
rather than no-thing?"[...]
The act of being and the thing are in a
relationship of identity and difference.
This double relationship has to be considered
not to forget either the difference,
whose oblivion determines the loss
of the meaning of being, as the western metaphysics has done,
or the identity, whose oblivion considers
the act of being as trascendent,
making the thing meaningless.

(Freely translated from “Il tramonto dell'occidente”, UalBnberti)

Since his first step on the Earth, man has looked at the sky evorgdwhat governs
the marvellous processes which astonished him. The anew@stquestion has been of-
ten found in the context of the natural philosophy or religi®@hanks to the extraordinary
improvement both on the theoretical and technical sidenotsgy is nowadays able to
provide, if not a conclusive answer, certainly a new and dempntary prospect, which
should be taken into consideration when approaching suchdamental question.

Since Galileo had the first look through the telescope, astrty has reached a high
degree of over-refinement which provides the scientific comity with very accurate
measurements of our Universe at many wavelengths, whickessgthe man of the street
and challenge the researcher. By skillfully combining histinformation, the cosmol-
ogists have derived the current cosmological model. Adogrdo this scenario, our
Universe began about fourteen billions years ago, out afya ¢ixtremely hot and dense
energy region. Since then, it has been expanding and coalimdergoing a series of
temporary equilibrium phases between the particles whatttribute to the total energy
content. The very early phase of the Universe’s evolutiostilsfar from being fully
understood and it is the subject of intense study. This is¢lhén where cosmology
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merges into high energy physics. Nonetheless we can atdkeetsth the processes which
occurred at this primordial stage, which produced the glargspecies we can probe in
the laboratory. From them, we can reconstruct the chemiedligon of our Universe
and the formation of the structures we observe. To this aienagtually have to combine
photon and baryon physics in an homogeneous and isotropvetde, together with two
more ingredients which contribute to the total energy cante'hese are named dark
matter and dark energy. The former creates the gravitdtmstantial wells and deter-
mines the growth of the baryon perturbations through gasieibal instability; the latter
is responsible for the late time acceleration of the Uneergpansion.

One reason for the success of the cosmological model isigries simplicity: by
means of an handful of parameters it is able to account foconeplexity we observe.
Conversely, this model lacks a solid theoretical basis,amby for what concerns the
early stages, but also regarding the explanation of thedarkponents.

The most powerful tool, which has tightened the constraimghe cosmological
parameters, is the Cosmic Microwave Background radiatibe,thermal relic of the
equilibrium condition in which the Universe was in its firgtgse of the expansion. We
Now possess a very precise measurement of this energy emasil we are going to
achieve an even better one with the upcoming experimenishwiill return a measure
very close to the theoretical limit.

During my Ph. D. | have been developing a statistical toahmelg needletsto max-
imise the amount of information which can be extracted fréw& ¢osmic microwave
background radiation, and | have applied it to some of thetnmbsresting open ques-
tions in cosmology. In particular, | focused on the issuehefhature of the dark energy
and on the characterisation of the energy fluctuationsiligion, testing its Gaussianity.

This work aims at being a review of my project, explaining eantly the results
my collaborators and | obtained. After a brief summary of ¢bemological model in
Chapterd, | discuss the dark energy problem and present the apprdalbbmed to probe
its properties in Chaptet. Part of this effort has been performed by means of needlets,
a new frame built on the sphere, which | describe in detailla@er3. In Chapters, |
show the results obtained when applying needlets to theoppand Gaussianity issue.
Finally, I will draw my conclusions in Chaptér.



Chapter 1

The Cosmological Model in a Nutshell

Let us suppose that an ichthyologist is exploring the lifdhefocean.
He casts a net into the water and brings up a fishy assortment.
Surveying his catch, he proceeds in the usual manner
of a scientist to systematise what it reveals.
He arrives at two generalisations:
(1) No sea-creature is less than two inches long.
(2) All sea-creatures have qgills.
These are both true of his catch, and he assumes tentathagly t
they will remain true however often he repeats it.

(“The Philosophy of Physical Science”, Sir A. Eddington)

Looking at the sky through the telescope, we observe a madéiof objects, different
in dimension, shape, luminosity, energy emitted. It is radtto look for relationships
between the various properties which characterise thasestes, and to try to interpret
them within an evolutionary theory. Indeed, the laws of pEg;swhich we assume to
govern the astrophysical processes, describe the fundahieteractions and suggest
dynamical models. However, it is only the last century whiels seen the development
of a cosmological model which depicts an evolving Universe.

In the next sections we first introduce the theoretical fraor& within which the cos-
mological model is built (Sed..1); we then describe the main features which characterise
it (Sec.1.2); finally we discuss a fundamental tool, the cosmic backgdoadiation, to
probe our Universe (Sedt.3).

1.1 The Metric of the Universe

In the 1929, Edwin Hubble observed a proportionality relatbetween the distance of
the nearby galaxies and their recession veloeity, H,D (Hubble law,Hubble(1929).
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4 CHAPTER 1. THE COSMOLOGICAL MODEL IN A NUTSHELL

The velocity was inferred from the redshift of the emitteghli: interpreting the shift as
the Doppler effect due to the motion of the soutce AX/\ ~ v/c, Hubble concluded
that the sources moved away from the Earth. Obviously thes @t mean the Earth, or
the Solar system, occupies any special position in the WsgveOn the contrary, this is
exactly what any observer would measure in an expandingtseyv

This measurement can be considered as a milestone on thérdamodern cos-
mology, and it represents indeed a fundamental tool to nmedise expansion rate widely
used today. See for exampheess et al(2009.

The modern cosmology is built on two pillars: i) the TheoryGdneral Relativity,
which Einstein developed early in the 20th century, andhi€) €Cosmological Principle,
which, at least in its first formulation, is due to Einsteirvesl. SeePeebleg1993 for
an interesting historical discussion. General relatidégcribes the mutual interaction
between matter (and more generally energy) and spacedssaming the validity of the
special relativity Einstein 1905 and postulating the Equivalence Principkeir(stein
1916,

The cosmological principle states that the Universe is lggmeous and isotropic
on large scaleX 100Mpc). This assumption, which seems pretty reasonable from a
theoretical point of view, since it implies that any obsemweasures the same physics in
any direction in the sky, has been indeed confirmed by therahisens of the galaxies’
distribution such as the 2dF Galaxy Redshift Survesoés et al.2001), the NRAO VLA
Sky Survey Condon et al.1998 and Sloan Digital Sky SurveyApazajian et al.2009.

General relativity begins with the line element defined as

ds* = Z G dat da” = g, dat* dz” (1.1)

1%

whereg,,, is the 4D (symmetric) metric tensor and the indices run olerrange 0-3.
The Einstein summation convention has been introducedtamti be assumed in what
follows. On a local inertial frame it is possible to exprgssas the sum of the underlying
Minkowski metric,n,, = Diag(—1, 1,1, 1), and a perturbatioh,, (Ma & Bertschinger
1995.

The equivalence principle can be rephrased withGemeral Covariance Principlevhich requires
an equation to hold in absence of a gravitational field andetinbariant under a general transformation
of coordinates. It is interesting to notice that the equimak principle defines somehow the effect of the
gravitation: by means of its general covariance, an egaatitch holds in absence of a gravitational field,
holds in the presence of a gravitational field. Assuming araginy sets constraints on the equation itself
(as in the case of the special relativity), or more propengg an interpretation to the metric tensor and
the affine connections: they are an effect of the gravitatiiald itself.

Any invariance principle which determines the propertiethe interaction of a given field is called a
dynamic symmetry. We find other examples of such symmetrpéoitetical physics in the Gauge and
Chiral symmetries\(yeinberg 1972 2008.



1.1. THE METRIC OF THE UNIVERSE 5

The cosmological principle allows us to simplify the exgies of the line element as
ds? = — [dt2 — a(t)2(dy? + S2(d6? + sin? 0d¢2))], (1.2)

which is the Friedmann-Robertson-Walker (FRW) metkRdddmann 1922 Lemaitre
1931, Robertson1935 Walker, 1937). ¢ is the cosmic time anly, 6, ¢} are the spherical
comoving coordinates. Isotropy allows us to choose the mabky symmetric frame and
homogeneity requiresto be a function of the cosmic time only,, is defined according
to the spatial curvature of the space-time as:

siny k=1
Se =14 ¥ k=0 (1.3)
sinhy k=-1

being respectively closed, flat and open geometri€s.is the scale factor and it basically
describes the evolution history of the Universe (at the pemknd level). It is then a
powerful tool to compare different evolution models. Letingoduce a very useful
quantity related to the scale factor: the redshift, whictiened ag = 1/a — 1.

Within this formalism it is easy to understand how the Hullbig follows directly
from the cosmological principle and the FRW metric. From EGg, the proper distance is
defined byr, = a(t)x, whereas its velocity is given by= dr,/dt = a/ar,. Defining
Hy = a(t)/a(t)|o, we obtain the Hubble law. The Hubble constant turns out tadbeally
a function evolving in time. Its measured value todaydis = 74 + 3.6Km/s/Mpc at
68% confidence levelRjess et al.2009; it is useful to normalisef,, expressing it
in terms of a dimensionless parameter= H,/100. The Hubble parameter naturally
introduces a characteristic time scale, which sets the afd@agnitude of the Universe
age,to = 1/Hy ~ 10h " 1Gyr.

As anticipated, Einstein’s equations describe the dynamidhe metric given the
matter content of the Universe. The differential equatiforsthe scale factor and the
matter density follow from Einstein’s equations

1
Gl = Ry — S0 = 87T}, (1.4)

whereG* is the Einstein tensor, an@ is the Ricci tensor, which depends on the metric
and its derivativesR is the Ricci scalar and’* is the energy momentum tensor. In the



6 CHAPTER 1. THE COSMOLOGICAL MODEL IN A NUTSHELL
FRW background (EdL.2) the curvature terms are given bgdlb & Turner, 1990

3a

R) = , (1.5)
a
Z. i 20 2k
.. .2
R=6(2+24+L), (1.7)
a a2 a2

where a dot denotes a derivative with respedt to
Let us consider an ideal perfect fluid as the source of theggmaomentum tensor
T*. In this case we have

Tsz = Dlag (_p7p7pap) ) (18)

wherep andp are the energy density and the pressure density of the fesgectively.
Then Eq.1.4 gives the two Friedmann equations

. 2
8tGp Kk
m=(2) = _ 1.9
() o (1.9)
H=—47G(p+p) + % , (1.10)

which describe the Hubble parameter and its time evolutjpiand p denote the total
energy density and pressure of all the species present umilierse at a given epoch.

The energy momentum tensor is conserved by virtue of thedBiadentities,V,G" =
0, and energy conservatiow, 7" = 0, leading to the continuity equation

p+3H(p+p) =0. (1.11)

Equationl.11can be derived from Eq4.9and1.10 which means that two of Eq&.9,
1.10and1.11are independent. Eliminating the/a® term from Egs.1.9and1.10 we
obtain

a 4G
- . 1.12
” 3 (p+3p) (1.12)

Hence the accelerated expansion occurgfer3p < 0. Notice that the derivation of the
Friedmann equations within the context of the Newtoniarspdsmwould lead to a similar
result for the acceleration equation but with the pressargribution missing. Pressure
effects are a peculiar feature of the relativistic equatibd, which are able to account
for the acceleration of the Universe expansiGogeland et a|20086.
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It is possible rewrite EqL.9in the form:

Q) —1= (QZ)z : (1.13)

whereQ)(t) = p(t)/p.(t) is the dimensionless density parameter anid) = 3H?(t) /87G
is the critical density. The matter and energy distributtearly determines the spatial
geometry of our universe, i.e.,

Q>1lorp>p. k=1, (1.14)
Q=1lorp=p. k=0, (1.15)
Q<lorp<p. —r=-—1. (1.16)

Observations have shown that the current universe is vesedb a spatially flat geom-
etry (2 ~ 1) (de Bernardis et 812000 Dunkley et al, 2009. This is actually a natural
result from inflation in the early universe: see Se@.3andLiddle & Lyth (2000 for a
more detailed discussion.

After the first three minutes of the Universe evolutiédeinberg 1993, the strong
and electroweak reactions between particles have frozeriadthe Universe expansion
(Alpher et al, 1948, and it is reasonable to consider the Universe filled witbtphs,
baryons (mainly hydrogen and helium) and leptons (actugfigible in terms of energy
density fraction). Let us consider the evolution of the ense filled with photons and
baryons (dust), described as a barotropic perfect fluids ttoimmon use to define the
equation of state parameter

w=p/p. (1.17)

w is generally assumed to be constant, and this is a corréetrgtat for radiation and
ordinary matter, whereas can be a function in the case of coupled fluids or more exotic
component, such as dark energy. Some examples are desoriBbdp.2.

By solving the Einstein equations given in E4sQand1.10with x = 0, we obtain

2
/= 1.18
3(1+w)(t—ty) (1.18)
alt) o« (t — to)50F (1.19)
p o< a”30Fw) (1.20)

wheret, is constant. We note that the above solution is validdcf —1. The radiation
dominated universe correspondswo= 1/3, whereas the pressure-less matter (dust)
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dominated universe correspondsitc= 0. In these cases we have

Radiation : a(t) o (t —to)"*, poca™, (1.21)
Dust : a(t) o< (t —t)*?, poca. (1.22)

Both cases correspond to a decelerated expansion of thers@ivfrom Eq.1.12 an
accelerated expansioia(¢) > 0) occurs for the equation of state given by

w<—1/3. (1.23)

As we will extensively discuss in Chap, in order to explain the current acceleration of
the Universe, we require an exotic energy, dubbed “darkgstiewith equation of state
satisfying Eql.23dominating the energy content of the Universe. Here we raenhiat
from Eq.1.11the energy density is constant forv = —1. In this case the Hubble rate
is also constant from Ed..9, giving the evolution of the scale factor:

a o eflt (1.24)

which is the de-Sitter universe. This exponential expansilso arises by including

a (cosmological) constanty, in the Einstein equations. Such a constant, compatible
with requirements of the general relativity formalism (Behi identities and conserva-
tion law), was first introduced by Einstein, when looking ostationary solution of the
equations. The result was a closed Universe; 1, with spatial curvature given bx

and a radius: = 1/v/A. For a detailed discussion sééeinberg(19893; a more recent
update on this topic may be found@opeland et al2006).

The description of the static universe was abandoned watdidtovery of the redshift
of distant stars, but it is intriguing that the cosmologicahstant should return in the
1990’s to explain the observed acceleration of the univ@Rgess et al.1998.

The modified Einstein equations in presence of a cosmolbgarcestant are given by

1
R, — égWR + Ag,, = 87GT), . (1.25)

Considering Newtonian gravity with metrig, = n,, + h,,, it is possible to approx-
imate the Poisson equations A9 = 47Gp — A. In order to reproduce the classical
equation we require that = 0 or A is sufficiently small relative to théxGp. Since
A has dimensions dfl.ength|~2, the scale corresponding to the cosmological constant
needs to be much larger than the scale of stellar objects achvilewtonian gravity
works well. In other words the cosmological constant becomgortant on very large
scales.
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In the FRW background, the modified Einstein equatidng4) give

e kA

H>=—""p—- =4+~ 1.26
4nG A

- _—7; (p+3p)+ 5 (1.27)

This clearly demonstrates that the cosmological constantributes negatively to the
pressure term and hence exhibits a repulsive effect.

This description follows the kinematics point of view, whidescribes\ as a geo-
metrical quantity; introducing a modified energy densitg anessure we can consider
as dynamical term, arising from a new energy contributiothéenergy tensor:

A

/):/H‘%’ P=P= g oo
where the negative contribution to the pressure is cleddyve. We find that Eqsl.26
andl.27reduce to Egsl.9and1.12 this is basically the approach behind the explanation
of the Universe acceleration by means of auxiliary scaldddiewhich appear on the
right-hand-side of the Einstein’s equations. This scenlaais been adopted when trying
to solve the fine-tuning problem. For a detailed discussemCopeland et al(2006
and references therein. In this context we mention that then problem connected
to the cosmological constant is the huge discrepancy betwweeneasured value\ ~
HZ = (2.13h x 107*2GeV)?, which correspond tp, = Agf’l ~ 10747 GeV*, and its
theoretical estimate from quantum considerations of tleeiwvan energy, which predict
Prac = L [ %\/m = 5 [0 dk VR m? & ’jz,? Herek,,.. is the cut-off
scale of the theory: for the extreme case of General Relgtive expect it to be valid to
just below the Planck scalez,; = 1.22 x 10! GeV. Hence, if we pick Uy = my,
we find that the vacuum energy density in this case is estirag@,,. ~ 107 GeV*
which is aboutl0'%! orders of magnitude larger than the observed value. Evea thke
an energy scale of QCD fd,,,,., we obtainp,,. ~ 1073 GeV*, which is still much larger
thanp,.

1.2 The Cosmological Model

An evolving homogeneous and isotropic Universe naturallygests the idea of a be-
ginning of the evolution. Even if, when extrapolating thaiation backwards in time,
we may enter regimes in which the validity of physics lawsakeedown, it is nonethe-
less reasonable to think of a tiny very hot and dense regiaefspace-time which
the expansion started from, and assuming it as a workingthggts. In this scenario -
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named ironically the Big Bang scenario by Fred Hdylene of its antagonists - after a
very short period of time, in which the fundamental pars¢lehich play a role in the

standard model, have formed, we are left with the Univergedfivith photons, leptons

and a small amount of protons and neutrons constantly tvemef through electroweak
interaction. Each reaction has a proper time scale set byatiele standard model pa-
rameters: in order to be at equilibrium, the time scale hdsetshorter than the Hubble
time scale at the epoch(~ 1/H(t)).

1.2.1 Primordial Nucleo-synthesis

At high temperature~ 102K, when the energy of the radiation was of the order of
kT ~ 86MeV, photons were hard enough to produce electron-positras,pai

e +et v+, (1.28)
which, interacting with neutrons and protons through

e +pentu,, (1.29)
allowed the production of the protons and neutrons in a takatundance ratio:

n/p=e kT ~ 1 (1.30)

where@ = (m, — m,)c* = 1.2934 MeV is the neutron-proton mass difference. The
neutrons and protons have a rapid rate for radiative capture

n+ped+y (1.31)

resulting in deuterium production. At high temperature itneerse reaction occurred
rapidly too; only when the cooling due to the Universe expamsowered the temper-
ature, the deuterium could accumulate. At T0'°K the time scales of reactioh29
exceeded the characteristic Hubble timescale. Moreoegltbton energy fell below the
1.022MeV necessary to produce electron-positron pairs and theareuvere destroyed
faster than they were formed. The neutron-to-proton réigm tfroze at/p ~ 0.223. It

is only when the temperature dropped beltWK, that deuterium could form and then
suddenly transform into helium and traces of light elemeptgo lithium. This chain

of reactions fixed indeed the primordial chemical elemebtsdances, with a helium
fraction of the order 022%, in excellent agreement with observations. The production

2http://lwww.nytimes.com/2001/08/22/obituaries/22HONImI?pagewanted=1
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of elements up to iron occurred through nuclear fusion incitve of giant stars, while
the heavier element production is due to SNe explosions la@ddprocessing of the
inter-stellar medium.

The thermal equilibrium lasted until the temperature felbw13.6 eV (~ 4000 K) —
z ~ 1100, which is the hydrogen ionisation energy. This marks thgc(mbination
epoch and the decoupling of matter and radiation. From thmet on, photons travelled
in a nearly transparent Universe following the geodesids|erbaryons started feeling
the gravitational instability, leading to structure fortoa. Detailed computations show
that the actual temperature at which the decoupling ocsuts(.6eV. The reason for
this is the long tail in the Boltzmann distribution of the ptw energy Planck 1901):
the temperature needs to drop below hydrogen ionisatiorggme order to have a low
number of photons energetic enough to excite bound elextron

1.2.2 The Cosmic Microwave Background Radiation

The reactions described above occurred in a Universe wherps drove the expan-
sion, accounting for almost the total energy content; theyewin a condition of thermal
equilibrium, well described by a blackbody spectrum. Thegerature of the radiation,
due to the mild interaction with matter and its high heat c#gacompared to that of
matter, scales with the expansionias) = 7,/ a(t) (Peebles1993, so that the spectral
shape of the radiation distribution is then conserved. Ehisdeed another result of the
homogeneity and isotropy, which translate into adiab@tici

As soon as such computations were attempted, cosmologalised that a ther-
mal relic of such radiation should be still measurable toolayhe microwave range,
i. e. characterised by a blackbody temperature-ob K (Gamow 1946 Alpher &
Herman 1948 1988. Indeed Penzias and Wilson in 1965 reported an excessranten
temperaturd/;, = 3.5 + 1.0K (Penzias & Wilson1965, which was interpreted as the
cosmic relic byDicke et al.(1965. This discovery was awarded with the Nobel Prize in
Physics in 1978. Another milestone on the road to the cosgntdbstandard model had
been set.

A further confirmation of the homogeneous and isotropic Erge came in 1992 with
the Cosmic Background Explorer (COBBI&ther et al. 1992, a satellite launched by
NASA to measure the cosmic background radiation. COBE wasgged with two com-
plementary experiments, the Far Infrared Absolute Spphttometer (FIRASMather
et al. (1990) and the Differential Microwave Radiometers (DM&noot et al(1992).
The former aimed at measuring accurately the blackbodytspeof the radiation, while
the latter was devoted to the detection of anisotropiesersgrectrum. Mather and col-
laborators measured a perfect blackbody spectrum chassteby the temperature of
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Ty = 2.735+0.06K, which definitely corroborated the Big Bang picture and theesd-
ing Universe scenario. In Fig.1we show the thermal spectrum measured by the COBE
satellite, where the agreement between data and theorgedienxt.

400F T T T T T T Ty
300 [ / =

200 [ =

MJy sr”

100 |- =

cm’

Figure 1.1:Thermal spectrum of the cosmic background radiation as unedsy the FIRAS
(COBE) satellite. Boxes are the experimental points witigegolid line is the theoretical black-
body spectrum fofl’ = 7. The agreement is impressiveiXsen et al.1996.

These measurements have been so important as to justifyénd af the Nobel prize
in 2006 to J. C. Mather and G. F. Smoot.

1.2.3 Structure formation and CMB anisotropies

The previous discussion aimed at introducing the formatexinthe general relativity
equations, and the global picture, the big bang scenanehioh the cosmological model
takes place, under the assumption that the cosmologicdaliple, i. e. the homogeneity
and isotropy of the Universe, holds. Obviously this smoe#isncan be valid on average
at large scales only, since in the nearby Universe we obstruetures — stars, globu-
lar clusters, galaxies and clusters of galaxies — which dappear homogeneous and
isotropic.

The cosmological model provides a natural explanation @fiesence of structures
in the Universe. Tiny perturbations to the homogeneousdracind quantities, metric
and energy density, were present from the beginning, arychi¢énee grown through gravi-
tational instability leading to the large complex objectsobserve in the neighbourhood
of our Galaxy. Such perturbations would be the quantum grférgtuations of the very
early stages of the Universe, stretched to a classical gin&lation. Inflation is a phase
of exponential expansion which the Universe underwent énfillst fractions of second
of its evolution, which determined the initial conditionstbe Big Bang scenario. The
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Figure 1.2:Slices through the SDSS 3-dimensional map of the distobubf galaxies. Earth is
at the centre, and each point represents a galaxy, typoatfitaining about 100 billion stars. The
outer circle is at a distance of two billion light years. Tkgion between the wedges was not
mapped by the SDSS because dust in our own Galaxy obscurgethef the distant universe
in these directions. Image taken from http://www.sdss.org

details of this phenomenon are not clear yet, and severaklm@dmpete to draw the
correct picture. A full description can be foundlirddle & Lyth (2000.

Unfortunately, there are few exact solutions of generaltngty which incorporate
spatially inhomogeneous and anisotropic matter and hesmmengtry. Therefore calcula-
tions are usually performed following a perturbative apgyig starting from the spatially
homogeneous and isotropic FRW model as a background soltib simple properties
and increasing the complexity of inhomogeneous pertuwhbatorder by order. Metric
perturbations can be distinguished into scalar, vectortandor contributions accord-
ing to their transformation properties on spatial hypdestes Bardeen198Q Stewarf
1990. The reason for splitting the metric perturbation intost¢hree types is that the
governing equations decouple at linear order, and henceawsave each perturbation
type separately. At higher order this is no longer tiNaKamura2006. For a detailed
discussion on this topic see for exampalik & Wands (2009 andMa & Bertschinger
(1995. At the first order, scalar perturbations can be describedifying the metric as

ds® = —a(7)[(1 + 2¢) d7? — (1 + 2¢) dz; da'] (1.32)

where we chose the conformal time- = dt/a and introduced the two scalar poten-
tials, which are related to the Bardeen potentiBlarfleen 1980. The energy tensor is
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modified as well according to

% = —(p+0p),
T% = (p+ P)v; =T,
Tij = (p + (SP)(SZJ + O'ij y O'ii = 0, (133)

wheredp andd P represent the density and pressure fluctuations resplgctvel v the
velocity field. We have allowed an anisotropic shear peegtion o; in 7%;. Notice
that we wrote the equation in the conformal Newtonian gaugere vector and tensor
modes are set to zero from the beginning. Bke& Bertschinger(1995 andMalik &
Wands(2009 for an exhaustive discussion on the gauge problem. Thisislynrelated
to the freedom of choosing a frame in which to perform the yybgtion expansion.
For instance, the synchronous gauge, defined as the gaudedh thie proper time for
observers at xed spatial coordinates coincides with cosmein the FRW background,
i.e. d7 = adt (v = 0in Eqg. 1.32and a new scalar perturbation would appear in
the spatial part of the metric), is widely used in numericaltBnann solvers, such as
cnbf ast 3 (Seljak & Zaldarriaga1996 and CAMB' (Lewis et al, 2000).

Solving Einstein equationk.32and1.33in Fourier space, we obtain the Friedmann
equationsl.9and1.10for the background quantities at the zeroth order, whilbafirst
order we have the metric fluctuations equations:

k¢ + 3% <q's + gz/;) = 4AnGad*TY, (1.34)
k2 (q's + gw) — 4nGad*(p+ P)9, (1.35)

. n 2
¢+ g(@z} +24) + (zg - %) b+ Eo-v) - %TG@Q&TZ , (1.36)
= 127Ga*(p+ P)o, (1.37)

The energy perturbations are described by:

§ o= —<1+w)(9—3¢)—39 (5—P—w)5,

a \ op
) a w oP/dp 4 2 2
- - _ — ) 1.
0 a( 3w)0 1+w9+1+wk5 k2o + k™ (1.38)

where we defined = ik - v. w is the equation of state parameter of the total Universe
fluid.

Shttp://www.cfa.harvard.edw/imzaldarr/CMBFAST/cmbfast.html
4http://camb.info/
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As we discussed in the previous section, until decouplinguoed at redshift ~
1100, the universe was in a condition of thermal equilibrium. Timg ripples in the
energy distribution should then be still present in therttigtion of the photons, which
have travelled in a almost transparent Universe. This istxavhat Smoot et al(1992
measured with the DMR experiment, who fousii/7" ~ 10~°. In Fig. 1.3 the cosmic
microwave background anisotropies detected by DMR are show

Figure 1.3: Cosmic microwave fluctuations as seen by COBélsat

After recombination, the perturbations of ordinary mattauld grow via gravitational
instability forming galaxies Jeans 1943 1961). Actually self-gravitation would not
have allowed baryons to form the structure distribution vesesve in the sky@ross
et al, 2001, Condon et a].1998 Abazajian et al.2009, in particular baryons would not
have had enough time to form large structures. To deal wit) theorists postulated a
new kind of pressure-less matter, which interacts graweitatly only. Such dark matter
decoupled earlier from radiation: that means that its pleations started to grow earlier
than baryons’ ones. After recombination, baryons fell thi® potential wells created by
dark matter leading to the formation of structure via hieingral clustering. A very good
discussion on cosmic microwave background perturbatiansbe found irHu (1995,
while for the theory of hierarchical clustering we redaddmanabha(l993. A recent
review on this topic can be found ifonini (2009.

Imagining a new species of particles seems a plausibleign]utince the particle
standard model and its supersymmetric extension offer thqie of candidates. The
challenge today is to (indirectly) measure effects of tlig-ordinary matter in the sky.
Two interesting and controversial examples are giveAdgani et al.(2009 andBern-
abei et al(2008. Moreover, independent evidence of the presence of areift&ind of
matter came from the galaxy cluster analysis. The total pvesish can be inferred from
the X-ray emission we observe, is larger than the mass is ataat gas we see. From
this and other detailed studies of the cluster propertiesmologists deduced the total
amount of mass in the Universe exceeds the baryon mass bioa dadew.
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1.3 CMB anisotropies analysis

The cosmic microwave background radiation can be certagggirded as one of the most
fruitful tool we possess to investigate our Universe. Amotiters, two main reasons are
worth mentioning: i) except a minor contribution from retisation at redshift> 12,
CMB photons have travelled in a nearly transparent Univesa recombination: they
carry detailed information of the early stages of the Urseezvolution; ii) the bulk of the
CMB physics can be described by means of the linear periorb#teory, even though
second order effectBartolo et al, 2006 2007 Nitta et al, 2009 are now becoming
important in view of the upcoming experiments like Plan¢auber 2001). Moreover,
the effect on re-ionisation is very important on its own cgirit contains details on the
processes involving the first generation of stars, the #eecpopulation Il stars.

One more advantage of the CMB is that it is naturally definedhensphere, and
then a 2-dimension analysis is computationally more efiiciban a full 3-dimensional
one. Strictly speaking recombination has not been an itestaous process, but spanned
a redshift intervalAz ~ 170; however, this range can be safely considered a fraction
compared to the recombination epoeh, 1100, so that the surface approximation is
correct. Even though the temperature measurement is pettermed in real space, the
harmonic space is the natural choice for the analysis of titesscal properties of the
CMB radiation. We decompose the radiation field onto the gspalharmonics basis

T(v) =Y Yon(y)tum (1.39)
Im

whereay,, are the spherical harmonic coefficients drid the multipole considered. An
approximated relation useful to keep in mind’is- 180/6, which relates the multipolé
and angular scal@é based on the spherical Bessel's functions expansion (eadynflat
Universe).

We are interested in the angular power distribution deedrily the quantitya,,,a},,)e-
We can deal with our Universe only and we can not perform sacknsemble average.
However, assuming the homogeneity and isotropy of the Wsé/eve can deduce the
rotational invariance of the CMB, and then replace the eleaverage with a sum over
m. We end up with an angular power distribution encoded in:

_ Wt Uy,
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characterised by an intrinsic uncertainty — cosmic vaeangiven by:

9
Ac, = 1/ . 1.41
Ce 2 + 1¢e (1.41)

Notice howA, is proportional to th€, and monotonically decreasing with the multipole
¢: this reflects the number of elements, we assume as indepaedésations of the same
sky, included in the surti.40. For a detailed discussion on the derivation of this refatio
and on the higher angular moments sg(2001); Komatsu(2002.

This approach is based on the assumption that the primaaahological perturba-
tions were nearly Gaussian as a result of the inflationargg@h# has resisted so far a
large number of tests, and its confirmation is one of the maaiggof the Planck experi-
ment.

An example of the angular power spectrum measured by thenewett CMB exper-
iments is shown in Figl.4, while the temperature map seen by the Wilkinson Microwave
Anisotropy Probe (WMAP) is reported in Fi@.5. The improvement with respect to the
first image of the CMB taken by the COBE satellite (Fiy.3) is impressive and now we
are able to detect tiny fluctuations, reaching multipdles 1500.
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Figure 1.4: Angular power spectrum obtained combining the datasetewfral experiments.
The image is taken fromlolta et al.(2009.

1.3.1 Acoustic Peaks

The angular power spectrum shows a characteristic peagtste,l which perfectly re-
flects the baryonic acoustic oscillations (BAO), which tt@{on-baryon plasma under-
went before the recombination epoch. Here we briefly commerhe main features of
this process, and refer tdu (1995 for a comprehensive study. We discussed that during
the first minutes of the Universe evolution, photons and dxasywere tightly coupled
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Figure 1.5:Internal linear combination map provided by WMAP team. leaaken fromHin-
shaw et al(2009.

through electroweak interaction, in particular, once thel@o-synthesis had finished,
electrons mediated the interactions. We have mentionddodirgon perturbations on
their own have vanishing pressure and would grow under thétgtional potential; be-
fore recombination, baryons felt the pressure contriloubidhe radiation, which counter-
balanced the gravitational force, producing an oscillattynamics of the perturbations.
This lasted until decoupling, when the pressure contrilpusitopped and baryons col-
lapsed, driven by the gravitational potential. These t#ains are those highlighted in
the angular power spectrum. The difference in power betvpeaks can be explained
taking into account that the dynamics of the cosmic fluid o@mliin an expanding uni-
verse. Events in the space-time are connected within agadiy H (¢), the Hubble hori-
zon, and consequently a perturbation participates in timamhycs sketched above only
when entering the horizon, i. e. when its size is smaller tharHubble radius. This is
what happened to small fluctuations, described at largeipoids in the angular power
spectrum. The first peak corresponds to the modes whicheehtke horizon close to
the decoupling epoch; they had just started the oscillabiemg in the first compression
phase and evolved mainly under the gravitational effecthig oscillation process, the
fluctuation at the last scattering surface determines tls®t@apy: odd peaks correspond
to compression phases, while even ones to rarefaction phase

The overall matter content sets the global gravitationaéipital and then the zero
point common to the oscillations; if the Universe were filledh pressure-less matter
only, the gravitational potential would be constant ang #ffect would result in a flat
plateaux at very large scale we can see in the angular powetrgm at small multipoles,
consisting in a nearly constant pow&achs & Wolfe 1967). In the case of an evolving
potential, as in the case of a radiation or cosmologicaltearislominated Universe, pho-
ton energy is shifted and we observe a bump in the angular pgpeetrum (Integrated
Sachs & Wolfe effect).



1.3. CMB ANISOTROPIES ANALYSIS 19

Smaller Angles—>»

Potential Env,

Power

I/\K |eq IA |D IogI
O Qn Q? Qa7
Ak 4 4 ° ° @-nnnnns e Late ISW
|eq T A 4 ° -———9o Early ISW
a 1 v ¥ A o———o Eff. Temp.
b 1 v ¥ 4 e -------e Doppler

Figure 1.6:Effect of the main contributions to the angular power speutr Image taken from
Hu (1995.

Another phenomenon, which contributes to the anisotroftepa is the Doppler
effect due to the motion of the photon-baryon fluid: it reswhti-correlated with the
compression-rarefaction pattern. All these contribugitmthe angular power spectrum
are schematically summarised in Fig6.

The position of the first peak sets then a characteristiesta¢ horizon size at the
recombination, which can be used as a standard ruler in doggmdeasuring the posi-
tion of the first peak, and then the angle under which we s@eajdction effect), we can
infer the global geometry of the Universe. It is from suchlgsia, measuring the char-
acteristic size of CMB anisotropies, thdg¢ Bernardis et al2000 claimed the flatness
of the Universe. This result has been confirmed later by MM¢AP team Spergel et a).
2003 and it represents one of the main, and nonetheless chedtgngoperties of our
Universe (see Sed.3.3.

1.3.2 Cosmological Parameters

The physics of the CMB that we have briefly recalled, has tothdied with rather

sophisticated numerical code in order to produce angulaepgpectra, which can be
compared to the observed one. The difficulty consists ingntgpmodelling the photon-
baryon fluid properties, fully taking into account the distaand propagating Einstein’s
equations, which on their own represent a big challengeesihey are non-linear. A
well-tested numerical code is CAMR.¢wis et al, 2000, which some of the results we
will discuss in the work are derived with.
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Despite its complexity, since the processes involved aré described by the law
of physics, the cosmological model is completely specifigcthandful of parameters
— and a few assumptions we have already commented on. Thedsameters of the
cosmological modelA\CDM model, are:

e thebaryon densitynormalised to the critical density toddW, = po1,/poc =~ 0.04,
wherepg. = 87G/3Hy ~ 1.879 x 107#h% gem™3;

¢ thecold dark matter density2cam = pedm/Poc = 0.2;
¢ the value of theHubble parametetoday, H, ~ 72 K'm/s/Mpc;

e the amplitudeof the primordial curvature perturbation power spectruxg,(k =
0.002hMpc™!) ~ 2.3 x 1079,

e thespectral indexf the primordial curvature perturbation power spectrupt- 1;

e theoptical depthr ~ 0.09, which describes the integrated effect of the re-ionigatio
on the CMB.

The photon density today is sub-dominant with respect tdotlvgon and cold dark
matter ones, and nonetheless crucial: it is set by the babtklspectrum as),,h? =
2.38 x 107°0,7, where®,; = T,/2.7K. Since the Universe turns out to be flat, the
critical density is achieved by introducing the cosmolagjimonstant, parameterised by
Qr =1 —Qqp, + Qocam. The cosmological constant fits surprisingly well into tlsmo-
logical model, since it allows us to explain the observatiofithe SNe, which suggest the
Universe expansion is now acceleratiiigss et al.2009 Riess et al.2004 Riess et al.
1998 Perlmutter et a).1999 Kowalski et al, 2008 Zhang & Wy 2009. The initial con-
ditions for the perturbations are set by inflation, whichdices adiabatic nearly Gaussian
scale invariant fluctuations. We will outline briefly the glia scalar field inflation model
in the next section (Sed..3.3.

Accurately measuring the angular power spectrum allow® &t tight constraints
on the cosmological parameteBunkley et al, 2009. Much more effective are the con-
straints put by combining CMB, SNe and Baryonic AcousticilDtons datasets. See
for exampleKomatsu et al(2009. In Fig. 1.7 we show the effect which each parameter
has on the angular power spectrum. The black solid line septe theACDM fiducial
model, the red dashed and blue dotted-dashed lines areettay changing each pa-
rameter by+2 o respectively. Increasing the baryon fraction enhancesdi® between
the first and the second peak; a greater amount of cold datenatreases the gravita-
tional potential and lowers the peaks. Increasing the sgldodex has a similar effect,
since this distributes more power to smaller scaleb.rescales the overall amplitude of
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Figure 1.7:Effect of the basit\ CDM parameters on the angular power spectrum.

the power spectrum, while the optical depth again affe@gptak feature with respect to
the Sachs & Wolfe plateau.

What clearly emerges from this exercise is that there is @mmgcy also between
the basic parameters of the models and a careful combinatiorany complementary
observations is necessary in order to tightly constraimt{@MB,SNe, BAO,...). A way
to resolve degeneracies among parameters is to add CMBgatian information, as
discussed ifCabella & Kamionkowsk(2004); Kamionkowski et al(1997).

1.3.3 Inflation

In the previous sections we have presented the cosmolagaradard model, underlining
the big successes it achieved in describing the cosmic elsnadundances, the cos-
mic microwave background radiation — both its smoothnesdstartiny roughness — the
structure formation, with the basic assumption of the hoemegty and isotropy of the



22 CHAPTER 1. THE COSMOLOGICAL MODEL IN A NUTSHELL

Universe. We have justified such an assumption as a reagpmabtty general and sim-
ple one, but we already mentioned that it comes naturallyrasat of the inflationary
phase which occurred at the very early stages of the Uniwexa@eation. Inflation would
be also responsible for the amplitude and the spectral infléhe primordial curvature
perturbations, which are basic parameters of the model.

Basic Ildea

Before discussing the main characteristics of inflationreveall why a mechanism very
similar to inflation is necessary to resolve a few unsattsfgdeatures of the cosmolog-
ical model.

According to what we learnt from general relativity, a plegdiscale\, today would
correspond to a proper length &f a(t)/aq in the past, scaling with some power of the
time,t". The characteristic expansion scale of the Universe, oattiex hand, is given by
the Hubble radiug/ —!(¢) = (a/a)~' = t/n. In realistic cosmological models,< 1 and
hence the ratia(¢)/H'(t) increases as we go to the earlier epochs. In other wa(dp,
would have been larger than the Hubble radius at sufficidngi redshifts. This leads
to the major difficulty in the conventional cosmology: notnpaysical processes act
coherently only over sizes smaller than the Hubble radm#)at it is hard to image which
process could have seeded the density perturbations aegésgenerate structures we
see in the Universe, whose scales were much bigger than thblélvadius at early
epochs.

Two more problems affect a Friedmann-Robertson-Walkevarse: the so-called
horizonandflatnessproblems. Let us focus on the former. To any time intetvakor-
responds a proper distance light can have travelled, wiaththe particle horizon and
the causal connected region to a given event. Without sudmanunication, there is
noa priori reason why two regions of the space-time should have a siemiaronment.
Computing the particle horizon at the recombination ep@aah pbtain roughly one de-
gree, much smaller than the entire sky on which we observEhB, characterised by
a nearly perfect blackbody spectrum (which means equilbrand uniformity). Within
the depicted scenario we are not able to justify the homatewe detect.

The second problem could be rephrased as a fine-tuning pnobWe measure a
Universe density today close to the critical one and we detine flat geometry of the
space-time. More quantitatively, we have from Ed.3for x # 0

Q) — 1= Z_é(m ~1). (1.42)
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Evaluating the expression above in terms of the temperatuies radiation dominated
era, we obtairf) — 1 ~ 1079 at the Planck scaleP@dmanabhari993, which in the
absence of any physical mechanism, requires an extremaufiinegg.

All these difficulties can be solved by introducing a phybmacess which makes
a(t) increase rapidly with (e. g. exponentially) for a brief period of time. Such a rapid
growth is callednflation. A universe with an inflationary phase which took place in the
radiation dominated era at ~ 10~%°, characterised by a constant Hubble parameter
H ~ 10 GeV, lasting a periodV H ! with N ~ 60 number of e-folds, would make the
job (namely a factoe®® att ~ 10~3°s lasting~ 10732s). A physical scalé. would grow
exponentially witha, while H remains constant; cross the horizon, becoming larger than
the Hubble radius, and finally re-enter the horizon durirgggcond radiation dominated
phase, when the Hubble radius “catches up” with the propeytlke\. Scales of cosmo-
logical interest were within the Hubble radius before inflat so that a physical process
could have operated at these scale: such process has tortierguaechanical by nature,
and quantum fluctuations in the matter fields can seed pettarts. Inflation solves the
horizon problem by bringing the entire region of the lasti®rang surface into a causally
connected patch; while the flatness problem is eliminatedumse the exponential growth
stretches the space-time, making it almost flat.

Notice that inflation extremely dilutes energy so that soebeating mechanism has
to happen in order to obtain the energy density necessathetstandard cosmological
evolution. Inflation suggests a classical solution to peoid, which probably find their
roots on a pure quantum ground, that, if consistently tceatey resolve those problems
coherently. Moreover, both the horizon and the flatnesslpnolare basically postponed,
and they may resurface.

A toy model

A very simple model for inflation is provided by a single scdlald, which slowly rolls
on a very flat potential towards the true minimum. Deriving tield equations we obtain
the density and the pressure of the field in terms of the lartetm and the potential as

po= 3 HVO), o= 5B V(o) (1.43)

Under the slow-roll assumption (2¢*> < V (¢)), the equation of state parameter,
results very close te-1; this implies a nearly constant Hubble rate, producing goex
nential expansion (see Ef.24). Once the scalar field approaches the minimum of the
potential, it oscillates and decays into relativistic gdes. This process is calledheat-

ing. The particle production, together with the Universe exgo@mdamp the oscillations.
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The details of the dynamics depend upon the specific modeflation, but so far none
of the single scalar field inflationary model can be conside@mpletely satisfactory.
Multiple scalar fields models are now becoming very popuhat fnd inspiration from
effective theories deriving from string and brane modelsie Gimple two scalar fields
model which has been widely investigated is the curvatonehgth & Wands 2002.

The generation of the density perturbations can be sketaksdming a de-Sitter
metric

ds? = —dt* + eZHtcSij dz; dz;

= a(n)[- dUQ + 05 da; day] a(n) = _H—ﬁ (1.44)

and defining the fluctuation in terms of the creation and alatibn operators as follows:

d3]€ ) .
56 = / s (DO + A3 (e, (1.45)

Solving the Einstein’s equations for the new variatble= ad¢y, we obtain, in terms of
the original variable, for a light field{? < H?)

Son(t) = %(1 + ikn)e =, (1.46)

The density power spectrum is defined as the expectatiore \@iuthe vacuum state,
which reads

o [ &k | HEnE k-
wseo) = [ (QW)?,P(k)—{ e (1.47)

2w

This means that on super-horizon scale the density powetrspeis independent of the
scale and function of the Hubble rate only. Once we have thsitygpower spectrum, itis
possible to compute the curvature power spectrum usinguimdar-of-efolds formalism
under the assumption that the perturbations become déssicsuper-horizon scales.

The curvature is given by
ON

—
(0] ¢
wheret,, is the time when the perturbation crosses the horizon anohbes classical. By
using the definition of the number of e-fold¥, = [ H dt, we deriveZ = £, which

leads to N 7o v ’
<R§>=(g) 067 o PR:(%)

Rc :5N‘tk —

(1.48)

i

(1.49)

tg
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The details of the computation depend upon the specific ioflaty model under
investigation, however the basic concepts we outlined @lase common to any early
universe scenario. Observationally it is not yet possibleet tight constraints on the in-
flaton potential; what it is generally done is to bound twawst inflationary parameters,
which describe the slow-roll condition:

M2 V/ 2
€ = —p<—> <1

160 \V
2
V//
n = 8—;’(7) <1 (1.50)

These parameters are useful because, within the slowadgm, there exist consis-
tency relations between inflation derived quantities, Wwiuan be tested. One of these is:

ne ~ 1 — 6e + 2n (1.51)

Finally, we have discussed the scalar perturbations ootyéry interesting is the treat-
ment of tensor perturbations, which should translate irgtoahastic gravitational wave
background. Properties of the tensor modes can be exprestedslow-roll scenario as

ng ~ —2e,

= 16€ = 8|ny| (1.52)

N~

The determination of the inflation parameters is very imgarto understand the inner
nature of our Universe and to start probing more exotic danliyerse scenarios, such as
the ekpyrotic onel(ehners & Steinhard2008, which get inspiration from high dimen-

sional theories. The Planck mission has considered thiecagg one of the main goals
(Popa et al.2009.

Conclusions

In this chapter we briefly outlined the cosmological modegsenting the main exper-
iments which have confirmed or inspired the theoretical pregg TheACDM model

describes an evolving Universe, that began about 14 bijlears ago out of a very hot
and dense region of the space-time. After a brief exponengmansion, which set the ini-
tial conditions of homogeneity and isotropy and seeded tisenological perturbations,
an interacting photon-baryon fluid governed the evolutmoducing the light chemical
elements, hydrogen, helium, lithium. When the photon teaipee dropped below the
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hydrogen ionisation value, protons and electrons combametidecoupled from radia-
tion. The small fluctuations in the baryon density grew tigtogravitational instabil-
ity forming galaxies, clusters of galaxies and the strieguwe observe in the Universe.
Two more ingredients are necessary to properly reprodwoeasmological observations:
dark matter and cosmological constant (or dark energy).foimer creates the gravita-
tional wells in which baryons fell; the latter is responsilidr the late time acceleration
of the Universe expansion.

All the processes which take place in th€ DM model are described by means of the
fundamental laws of physics and the addition of a few parametvhich are now well
constrained by very accurate experiments. However, opestiquis remain, in particular
concerning the nature of inflation, dark matter and darkgndn the next chapters we
will discuss some recent works, which can help in solving#scinating questions.



Chapter 2

The Dark Energy Problem: Theory and
CMB Data analysis

If there is something that appears
to lie beyond the natural world

as it is now imperfectly understood,

we hope eventually to understand it
and embrace it within the natural.

(“The god delusion”, R. Dawkins)

The most outstanding problem in modern cosmology is unakedatg the mechanism
that led to a recent epoch of accelerated expansion of thense. The evidence that
we live in an accelerating universe is now compelling. Thaihosity distance at high
redshift ¢ ~ 1) measured from distant type la supernovae is consistehtanitegative
deceleration parametejy(< 0 at~ 30) and shows strong evidence of a recent transition
from deceleration to acceleratioRiess et a].2009 Riess et al.2004 Riess et al.1998
Perlmutter et a).1999 Kowalski et al, 200§ Zhang & Wy 2009. The amount of
clustered matter in the universe, as detected from its @gtémnal signature through a
variety of large scale probes (redshift surveys, clustegataxies, etc.) cannot be more
than~ 1/3 of the total content of the univers&gringel et al.200§. Observations
of the cosmic microwave background (CMB) anisotropy havest@ined the value of
cosmological parameters with high precisidtir(shaw et al.2009 Brown et al, 2009
Reichardt et a).2009 Curto et al, 2008 Sievers et a).2007 Masi et al, 200§. The
recent WMAP dataHinshaw et al.2009 Komatsu et al.2009 Dunkley et al, 2009
have shown that the total density of the universe is veryectosts critical value. Taken
together, these results are a strong indication in favoarmmdn-null cosmological term,
which would at the same time explain the accelerated exparai the universe and
provide the remaining- 2/3 of its critical density.

27
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The precise nature of the cosmological term which drivesatttelerated expansion,
however, remains mysterious. The favoured working hymshis to consider a dynam-
ical, almost homogeneous component (terrdack energy with negative pressure (or,
equivalently, repulsive gravity) and an equation of state p/p < —1/3 (Peebles & Ra-
tra, 1988 Caldwell et al, 1998 Wang et al.200Q Peebles & Ratrg2003. See Secl.l
Such a framework helps alleviating a number of fundamentablpms arising when a
constant cosmological term is interpreted as the energyityast the vacuum\(Veinberg
1989h Copeland et al2006.

Very recently,Shafieloo et al(2009 refined the SNe analysis finding evidence for a
slow-down of the acceleration of the Universe. If confirmiis would surely favour a
dark energy based explanation, since a cosmological aunstauld not be able to ac-
count for such a decelerating behaviour. This result is lveweontroversial as discussed
in Serra et al(2009.

In this chapter we address the dark energy problem fromrdiftestandpoints. In
Sec.2.1we discuss the ISW effect and how it can be used to pin downdheehergy
properties. In Se@.2we attempt a global explanation of the dark sector, in teritiseo
two coupled fluids. We deduce that a very common scenario &fare behaviour, that
we tested against observations in S&6.

2.1 Integrated Sachs-Wolfe effect from the cross-correl&in
of WMAP 3 year and NVSS: new results and con-
straints on dark energy

One key indication of an accelerated phase in cosmic hissottye signature from the
integrated Sachs-Wolfe (ISW) effe@dchs & Wolfe 1967 in the CMB angular power
spectrum. This is directly related to variations in the gedional potential: in particular,
it traces the epoch of transition from a matter-dominatedarse to one dominated by
dark energy. This effect (which is usually calllede ISW as opposed to agarly ISW
generated during the radiation-matter transition), shogas a contribution in the low
multipole region of the CMB spectrum. A detection of a lat&Signal in a flat uni-
verse is, in itself, a direct evidence of dark energy. Furtioze, the details of the ISW
contribution depend on the physics of dark energy, and anetbre a powerful tool to
better understand its nature. Unfortunately, the low rpalé region of the angular power
spectrum is also the most affected by cosmic variance 1E), making the extraction
of the ISW signal a difficult task.
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A useful way to separate the ISW contribution from the toighal is to cross-
correlate the CMB anisotropy pattern (imprinted duringréeombination epoch at ~
1100) with tracers of the large scale structure (LSS) in the lagalerse Crittenden
& Turok, 1996. Detailed predictions of the ability to reconstruct th&\MSusing this
technique were obtained by a number of auth@saray 2002 Hu & Scranton 2004
Afshordi, 2004 Corasaniti et a).2003 Pogosian et al2005 Giannantonio et 412008
Ho et al, 2008. This kind of analysis has been performed several timesgdine past
few years, using different CMB data sets and various tramfasisistering. The first detec-
tion of the ISW Boughn & Crittenden2004 Boughn & Crittenden2005 was obtained
by combining the WMAP 1st year CMB data with the hard X-raykground observed
by the High Energy Astronomy Observatory-1 satellite (HEA(Boldt, 1987)) and with
the radio galaxies of the NRAO VLA Sky Survey (NVSSdndon et al.1998). The
positive correlation with NVSS was later confirmed by the WRIfeam Rolta et al,
2004. Other large scale structure tracers that led to similaitpe results were the
APM galaxy surveyMaddox et al.(1990, the Sloan Digital Sky Survey (SDSSdrk
et al, 2000) and the near infrared 2 Micron All Sky Survey eXtendendrSelCatalog
(2MASS XSC (arrett et a].2000) (Fosalba et al.2003 Scranton et al.2003 Fosalba
& Gaztanaga2004 Afshordi et al, 2004 Padmanabhan et 22005 Cabre et a|.20086.

A somewhat different strategy to attack the problem wasntc@adopted by other
authors, who attempted to seek the ISW signal in spaces thidnethe pixel space of the
maps or the harmonic space of the angular power specwietvé et al, 2006 McEwen
et al, 2007). This approach relies on spherical wavelets as a tool ttogxpe spatial
localisation of ISW (at large angular scales) in order toayetore significant detection
of the effect.

The purpose of the present section is twofold. On one sideyarg to perform a
further analysis of the CMB-LSS cross-correlation, in ortte obtain an independent
check on previous results. We combine the recent 3-yeaagelef WMAP CMB sky
maps with the radio galaxy NVSS catalogue, and carry outmuestigation in the new
spherical needlets frame whose properties will be extehsdiscussed in Cha. This
then represents at the same time a check on previous redgelis(et al, 2006 McEwen
et al, 2007 and a significant improvement of the statistical and tecdiraspects of the
problem. On the other side, we follow a rather general agtraa dark energy mod-
elling, as first proposed biu (1998. Within this framework the phenomenology of
dark energy is characterised by three physical parameitsreverall density)p g, its
equation of statev, and the sound speegl. This parameterisation has the advantage of
being model independent, allowing one to encompass a ratbhad set of fundamental
models, and of giving a more realistic description of thekdawergy fluid, for example
accounting for its clustering properties, a feature that slzown to have quite a strong
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effect on theoretical prediction¥\eller & Lewis, 2003. As shown byHu & Scranton
(2004); Bean & Dore(2004) andCorasaniti et al(2003 the ISW signature can in princi-
ple be able to set constraints on the parameters of this glesest dark energy scenario:
however, previous analyses of the ISW from CMB-LSS crossetation made a number
of unrealistic simplified assumptions on the dark energymmment and were only able
to either find confirmations for its existence by constragrits density, or to set limits on
its equation of state under restrictive hypotheses ontutsteting properties (one notable
exception being the analysis performed®grasaniti et al(2005 which applied a pa-
rameterisation similar to ours to make a likelihood analydithe cross-correlation data
points estimated baztanaga et a{2006). Our approach is more ambitious, as we at-
tempt a more realistic description of dark energy and dexorestraints on the combined
set of three above mentioned parameters.

2.1.1 Data

We trace the local distribution of matter in the universe bing the NVSS radio galaxy
catalogue Condon et al.1998. This dataset contains roughly8 x 10° point sources
observed at 1.4 GHz. The flux limit of the catalogue is~at.5 mJy, resulting in a
completeness of abot0%. The survey covers abo80% of the sky, aty > —40°. We
construct a point source map (after removal of alout10° resolved sources) using the
Ngqe = 64 HEALPIX pixelization Gorski et al, 2005. Such a map ha$9 152 pixels
of about 1 degree side, and guarantees a good sampling @iescomnts in each pixel.
We conservatively exclude from the map all sources with —37° since the coverage
becomes very poor when approaching that value of declimafide final map we use
has roughly 35 sources per pixel on average. It was pointebyoBoughn & Crittenden
(2002 that there is a declination dependence of the mean sounsgtylen the catalogue,
since the survey had different integration time in somedefined constant-declination
bands on the sky. As suggested in previous analydeld et al, 2004 Vielva et al,
2006 we correct for this spurious effect by subtracting the agersource count in each
constant-declination band.

Our CMB dataset consists of the internal linear combinatib@) temperature map
from the 3 year release of WMAR This map is produced by combining 5 smoothed
temperature maps, with weights chosen in such a way to peoshirtimal Galactic fore-
ground contamination while maintaining the CMB signal. éing to the WMAP
team Hinshaw et al.2007 Nolta et al, 2004 the ILC map gives a reliable estimate of
the CMB signal at low multipoles with negligible instrumahhoise. We believe this is
appropriate with respect to our goals, since the late IS\teft expected to peak exactly

LAvailable at http://lambda.gsfc.nasa.gov/
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Figure 2.1:CMB and galaxy map used in the analysis.

at such large angular scales. As an additional caution, wek rmat the Galactic plane
region of the map and bright point sources using one of thelaes produced by the
WMAP team, namely the conservative KPO intensity mask.

While the original map ILC was produced at a resolutify, = 512 in the HEALPix
pixelization scheme (consisting of 324, = 3, 145, 728 pixels) we degrade it to a reso-
lution of N4, = 64 to match the resolution of the NVSS. This resolution is appete
for the CMB as well, since we are not interested in the findesdatails of the map.

A joint mask, including both the KPO mask and the NVSS detlomdimit, is applied
to both maps used in the analysis. The CMB and galaxy map$iavensin Fig.2.1

There is no redshift information for the individual sour@ethe catalogue. Nonethe-
less, some knowledge of thEV/d= function is needed to connect the observed source
count fluctuationin to the underlying matter fluctuatian (as we will show later). We
then use a fit to thé N/dz estimated byDunlop & PeacocK1990 and already applied
to previous analysis of the NVSS cataloduelta et al.(2004). Since the fit byDunlop &
Peacock(1990 breaks down at low redshifts, we have approximated it wiGaaissian
dN/dZ centred around ~ 0.9 with a widthAz ~ 0.8, and normalised in order to give a
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unit integral. The resulting N/dz used in our analysis is shown in Fig2&. We have
verified that the difference at low z has negligible effectlomfinal results.

.............. Dunlop & Peacock 1990
Our fit

Figure 2.2:The function dN/dz used for the sources in the NVSS in ouryaisl The dotted
curve is the theoretical model froBunlop & Peacock1990, which has a spurious feature due
to the breakdown of the fit at low z. The continuous line is thadbpted in our analysis.

2.1.2 Cross-correlation between CMB and LSS

Itis common practice to expand the map of the CMB temperdluceuations into spher-
ical harmonicsY;,,) as:

0T = af,Yim(0,0) (2.1)
Ilm
in order to extract the angular power spectrum:
Gy = (lagn|”) (2.2)
which enters in the two-point auto-correlation functiorttod CMB as:
C™M (@) = (6T10Ty) =

20+1
= Z (TW)W%JCZTPACOS @) (2.3)
¢

where P, are the Legendre polynomials,is the angular separation between two given
points, and the functiow;, models the experimental beam response and the pixel win-
dow function of the map.
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In an equivalent way, given a projected source count map:

dN

on = /dzb(z)gé(z) (2.4)

(whered is the underlying matter fluctuation in a given directibis the bias parameter,
anddN/dz was discussed previously) we can define the source courdcautelation
function:

CNN((I) = <5TL15’I’L2>:

2041
- Z< 6447; )wf\,’éC’éVNPg(cosa). (2.5)

Finally, the cross-correlation between CMB and source toigidefined as:

C™(a) = (6Tydng) =

20 +1
— E ( 4+ >CUT7[CL)N7ZCZNPZ(COSO[) (2.6)
T
¢

with the usual definition

Ci™ = {agnaim) (2.7)

The theoretical auto and cross-correlation functions ivargcosmological model
can be calculated by numerically integrating the Boltzmaguation for photon bright-
ness coupled to the other relevant equations, includintirtear evolution of matter den-
sity perturbations and the evolution of gravitational pia fluctuations. We did this by
suitably modifying the CMBFast cod&éljak & Zaldarriagal996 in order to output
the needed angular power spectra. In particular, we cae W& angular cross-spectrum
in terms of CMBFast temperature and matter transfer funst{@, and NV;) as:

CIN = 47r/ d—:AQ(k)Tg(k)Ng(k) (2.8)

whereA? (k) = k*P(k)/27? and P(k) is the primordial power spectrum of fluctuations.
Our CMBFast modification also includes a full treatment okagyalised model of dark
energy.

Having extracted the needlets coefficiefifs from the CMB and source count maps,
which are nothing but the analogous of the spherical harosaroefficientsi,,, for the
expansion on the needlet basis, the cross-correlatiomaisti in needlets spacg;, can
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be calculated simply through E§.12
1 —N
pIN = — 5. (2.9)
D ik

whereN,«(j) is the number of pixels in the pixelization scheme. The tatcal predic-

tions for 3/~ and the corresponding error bars can be computed from trecteqt/
and their variance which lead to:

20+ 1 ¢ \1?
&TN:%}( - ) {b (g)] By By, O™ (2.10)

4 1/2
o= (R4 [ (5)] (e veren) e
l

More details on needlet estimators and their propertiepremaded in ChapteB.

2.1.3 Results
ISW detection

In Figure 2.3 we show the cross-correlation signal in needlet space @gtidrom the
WMAP and NVSS data. The data points shown in the Figure wetairmdxd following
the above described procedure, applying Equatién We chose the valu® = 1.5 in
the wavelet construction for our analysis. The excess bjggeks at valué < j < 9,
corresponding to angular scales betweand10°, as expected from theoretical studies
(Afshordi, 2004). We recall that the conversion betwegand the actual angular scale
can is easily made through the relation= B7.

In order to check that the observed signal was not producezhbyal alignment of
sources in the NVSS catalogue with the CMB pattern at deaogipie produced, 000
Monte Carlo simulations of the CMB sky with an underlyingdhetical fiducial LCDM
model corresponding to the WMAP 3 year best fit. The resultragps were processed
through our analysis pipeline, and the cross-correlatidth the real NVSS map was
calculated for each simulated data set. Figr&shows the resulting average cross-
correlation signal (continuous line), which is basicalra on all scales. The standard
deviation of the simulations is also shown in the same Figsihaded area). These er-
rors, calculated through the Monte Carlo procedure, aresistant with the analytical
estimates of Eq2.11. We want to stress that the error bars computed through CMB
Monte Carlo simulations only are accurate enough to ourgeemms demonstrated by
Giannantonio et al2008 who produced mock galaxy distribution maps.
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Figure 2.3:The needlet cross-correlation power spectrtiyrof the WMAP and NVSS maps.
The points represent the signal extracted from the real data error bars given by Eg2.11
The continuous line is the average of the cross-correlgtimmer spectra obtained when 1,000
simulated CMB fiducial data sets are correlated with the MBS map: this measures the
level of correlation expected from casual alignment. Thedskl area is théo dispersion of the
simulated spectra.

The cross-correlation signal extracted from the data isisogntly higher than the
expectation value of the simulated data. To quantify thiessial significance of the de-
tection, we computed the quantil = >~ (55> —(55™))?/AB7. We foundX* = 29.8.
AssumingX? is distributed as &2 with 12 degrees of freedom (corresponding to our 12
data points), we can exclude that thewere produced under the null hypothesis with
99.7% confidence. We stress again the fact that the very natureesflets guarantees
that the correlation between adjacent data points is vevydaen in the presence of sky
cuts. See Se@.2and Tab3.1-3.2for an detailed explanation.

Consequences for dark energy models

We have compared the cross-correlation estimated fromatzevdth the theoretical pre-
dictions in order to set constraints on dark energy modelBowing the phenomenology
described irHu (1998, we have modelled the dark energy component as a fluid char-
acterised by its density paramet®¥, z, its equation of statey = p/p, and the sound
speed:? = dp/dp. The latter, needs not be the usual adiabatic one, but atemats for
an entropic sound speed, so that~ p/p. For a more detailed discussion see Se8.
We have considered the above three quantities as the fraenptars of our analysis.
All the other cosmological parameters were held fixed at @& bt values estimated
using the WMAP 3 year data2 = 1, Hy = 73 km/s/Mpc, €, = 0.042, 7 = 0.088,
A =0.68 - A% ~ 235 x 1077 (or g = 0.74), n, = 0.951 (Spergel et aJ.2007).
When modeling the NVSS catalogue, we adopted a constanpbarasneteb = 1.6, a
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value suggested iDunlop & PeacocK1990 and already used in previous analysis, e.g.
Boughn & Crittender(2004); Boughn & Crittender(2005; Nolta et al.(2004); Vielva
et al.(20006.

We have computed the theoretical expectation for the aros®lation by using EQ.9
and the output of our modifiecimbf ast code. Our calculation fully takes into account
the clustering properties of dark energy. We restrictechoatysis to two different values
of ¢? corresponding to the limiting cases describing a scalat Eehaviour ¢ = 1) and
a matter behaviourf = 0).

The main results of our analysis are summarised in Figureshere we plot the joint
constraints on the dark energy paramefers: andw for the two cases of sound speed
considered here, and in Figuzes, where we show the separate marginalized likelihoods
for Qpr andw. The likelihood were computed under the Gaussian hypathes argue
that even though it may be fail in representing the true ilitad for the dark energy
model, it is nonetheless a first reasonable approximatiefuli extract the parameters
of the model and infer dark energy properties.

cs2 =0
0.0 T T T T 0.0

I I I I
0.0 0.2 0.4 0.6 0.8
Qpg Qpg

Figure 2.4:Constraints at 68%, 95% and 99% confidence level ifthg—w plane. The left
panel was obtained under the hypothesis that the dark espagd of sound i€ = 0; the right
panel was obtained fof = 1.

The first conclusion we can draw from our analysis is that théemce for non zero
dark energy density is rather robust: we find2 < Qpr < 0.78 for ¢2 = 1 and
0.36 < Qpr < 0.81 for ¢ = 0, both at 95% confidence level. A null value @f,x is
excluded at more thatw (see Figure2.5 upper panel), independently af. When we
model the dark energy as a cosmological constant (i.e. weresthe valuey = —1 for
its equation of state), the bounds on its density shrinks4d < Qpp < 0.79 at 95%
confidence level.

On the other hand, the constraintswomre strongly influenced by the assumed value
of ¢2, because of the different clustering behaviour of dark gnéFigure 2.5, right
panel). In particular, we find that the value of the equatibstate which corresponds to
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Figure 2.5:Marginalized likelihood function for the dark energy depsi, (left panel) and
equation of statev (right panel). In each panel, the continuous curve was obthunder the
hypothesis that? = 1, while the dotted curve is far? = 0.
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Figure 2.6: The cross-correlation data points estimated in our arsl§sg dots), with their
errors, are shown together with the theoretical predistifum a standard CDM model (without
dark energy, dotted curve), the best fit under the hypotlteats? = 1 (short-dashed curve), the
best fit under the hypothesis th&t= 0 (long-dashed curve) and the LCDM (= —1) that best
fits the WMAP 3 year data (dot-dashed curve).

a cosmological constanty(= —1) is well within the 95% c.l. when we assumg= 0.
In this case, we can only put an upper bound at 95% @.I< —0.54. Whenc? = 1 is
assumed, we find that phantom models are excluded and thebsh®ological constant
case performs comparatively worse than models with largkres ofw. Our bounds at
95% c.l. are—0.96 < w < —0.16. However, we emphasise that, for valueshf, ~
0.7, models withw = —1 are a good fit to the data, as it is evident from Figdré
(lower panel). In fact, the LCDM WMAP best fit (withpz = 0.76 andw = —1) has
x? = 9.35, with 12 data points. The predicted cross-correlation fone dark energy
models is shown together with our data points in Figui

We have analysed the WMAP 3 year CMB temperature data, inuootipn with
the NVSS radio galaxy survey, and found further evidence adreelation between the
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CMB fluctuation pattern and the local distribution of matteonsistent with an ISW
effect taking place at a late epoch of cosmic evolution. Oudlifigs are based on a
new construction of spherical wavelets that has a numbedweérgages with respect
to previous studies. The presence of a correlation betweerCMB and the LSS is
established with a high level of confidence.

We have also improved the treatment of the dark energy coemipmtroducing a
more general parameterisation than those used in simithereanalyses. Quite inter-
estingly, we find that although the case for a non zero darkggneontribution to the
total density is compelling and robust, the constraintsvothio depend on the assumed
clustering properties of the dark energy component, naiteesound speecf. Phantom
models, and also the ordinary cosmological constantease—1, perform worse when
a quintessence behaviatir= 1 is assumed. This is due to the fact that there exist models
with w ~ —0.4 which predict more correlation at larger angular scafles °).

Whether this is an indication of interesting physics takptare between the dark en-
ergy and dark matter components is a subject that requirdgefunvestigation. Clearly,
the observation of ISW is proving quite promising as a to@nswer the questions aris-
ing from the mysterious nature of dark energy. While the CMiBachave reached a great
degree of accuracy on the angular scales that are more mefevahe detection of ISW,
deeper redshift surveys and better catalogues can, in taeefumprove the tracing of
the local matter distribution, thus allowing us to reduceehrors on the cross-correlation
determination.

An exhaustive updated analysis of the correlation betwédB @nd LSS is provided
by Giannantonio et a[2008 andHo et al.(2008. We want to stress that a key ingredient
still missing in these analyses is the correct treatmenhefgalaxy bias. The bias is a
parameter, or more generally a function dependent both dshi and scale, which
describes how the baryons trace the dark matter, and therpmr@ates all the complexity
of the baryons interactiond®Raccanelli et al(2008 have addressed this issue studying
the effect of a time dependent bias on the cross-correlétioction for an underlying
ACDM model. A step further would imply a complete MCMC ana$ysallowing both
dark energy and bias parameter to vary. A preliminary stualy lbeen performed by
Schaefer et al2009. The bias investigation is one of the hottest topics in casgy
since it has been proven to be extremely important in theesoiof non-Gaussianity too
(Smith et al, 2009 Wands & Slosar2009 Slosar et al.2008

Motivated by our findings, which confirm at a high significateeel the presence of a
mysterious component which drives the acceleration of thigeddse expansion, we study
in the next two sections a couple of models which try to désdn a unified manner both
dark matter and dark energy. In S@c2this is achieved by means of a coupling between
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the two components, whereas in SB3 we propose a unique description based on a
peculiar equation of state for the fluid.
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2.2 Late universe dynamics with scale-independent lin-
ear couplings in the dark sector

As discussed in the introduction to this chapter, seversinabogical observations such
as SuperNovae (SNeRiess et al.2009 Riess 2007 Riess et al. 1998 Perlmutter
et al, 1999, baryon acoustic oscillations (BAORércival et al.2009 20073 Eisenstein
et al, 2005, Integrated Sachs-Wolfe (ISW) measureme@s(inantonio et al.2008
Pietrobon et a).2006 Ho et al, 2008, suggest the Universe expansion is accelerat-
ing. To explain this acceleration, cosmologists invokedkistence of an unknown dark
componentCopeland et al. 2006, whose general properties have to be inferred by ob-
servations, i.e. a procedure which relies on indirect ewtds. One possibility is that the
dark sector is accounted for, partly or in full, by a modifiegwdty theory, while a more
conventional approach is to assume that gravity is well ilesd by general relativity,
with the dark sector made up of an unusual energy momentusorten

In the currently prevailing scenario, the dark sector ceissof two distinct contri-
butions. One componentpld dark mattefCDM), accounts for about one third of the
critical density Percival et al.2007h 2009 and is needed to explain the growth of in-
homogeneities that we observe up to very large scales, aasvalhost of other cosmo-
logical observations which goes from galactic scales, usters of galaxies, to redshift
surveys. The other contribution, dubbédrk energy accounts for the remaining two
thirds of the critical density, and it is required to expléne observed late time acceler-
ation of the universe expansioRdrimutter et a).1999 Riess 2007 Riess et al.2009.
CDM can be modelled as a pressureless perfect fluid, regnegemknown heavy parti-
cles, collisionless and cold, i.e. with negligible velgailispersion. In its simplest form,
dark energy consists of vacuum energy density, i.e. a cagyiwal constanf\. Taken
together,A and CDM make up the the so-called concordan€@DM model Spergel
et al, 2003 Tegmark et al.2004). This simple model fits observations reasonably well,
but lacks a sound explanation in terms of fundamental pBysind a number of alter-
natives have been proposed. In general, dark energy can thellswbas a perfect fluid
with an equation of state (EoS from now on) that violates theng energy condition
(namelyp + 3p > 0) (Visser, 1997, such that it can dominate at late times and have
sufficiently negative pressure to drive the observed acaielé expansion. Scalar fields
can also be formally represented as perfect fluids (seeBeugi et al.(1992 and refs.
therein). In a more exotic version, dubbpldantom energyCaldwell 2002 Caldwell
et al, 2003, the EoS also violates the null energy conditipnr{p > 0) (Visser, 1997,
leading to the growth in time of the energy density with thero@ expansion. Finally,

2See e.gDurrer & Maarteng2008); Durrer & Maarteng2008 and other articles in the same special
issue on dark energy.
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another rather radical alternative AdCDM is to assume a single unified dark matter
(UDM), able to mimic the essential features ®£DM which are necessary to build a
viable cosmology. For example, Balbi et al.(2007) we have considered observational
constraints on a UDM model with an “affine” EoS, i.e. such thatpressure satisfies the
affine® relation P = P, + ap with the energy densityAnanda & Brunj 2006 Ananda

& Bruni, 2006. This model is a one parameter)(generalisation oACDM, with the
latter recovered forv = 0. There is no need to assuraeoriori a A term in Einstein
equations, because the E6S= P, + ap leads to an effective cosmological constant
with Q, = —87GP,/[3H2(1 + «)]. The problem is thus shifted from justifying/a
term in Einstein equations to that of justifying the assurBe&: a possible justification
of this affine model can be given in terms of scalar fields,egithf quintessence or k-
essence typeJuercellini et al. 2007). This type of model escapes typical constrains on
many UDM models$andvik et al.2004) (but cf. e.g.Gorini et al.(2008) because, for a
given homogeneous isotropic background expansion, ivalloultiple phenomenologi-
cal choices for the speed of sound of the perturbati®nstobon et a).2008 (see also
for detailed discussion Seg.3).

In models of the dark sector consisting of two componentsk daatter and dark
energy are usually assumed to interact only through grawitlythey might exhibit other
interactions without violating observational constraifunz, 2007). Exploiting this
degeneracy, here we depart from the standard scenariosamcha a cosmological model
where the dark sector is made up of two coupled dark compspeath described as a
perfect fluid with its own constant EoS parameterThis choice allows for the possibility
that the observed evolution of the universe, although ressy well explained by the
ACDM model, is actually due to the dynamics of two rather gahavupled components,
possibly alleviating the so-called “coincidence problef?, ~ Qcpas, typical of the
standard modelGopeland et aj2006.

We first characterise the dynamics of our cosmological mudlél the two general
coupled components, taking into account general forms tefraction, parameterised
in terms of a late time functio) linear in the energy densities, Eq&.162.17). To
this end we will use standard dynamical system technigdigs\wsmith & Place 1992
Wainwright & Ellis, 1997, which are now rather common in the analysis of cosmo-
logical models, see e. gWands et al(1993; Bruni (1993; Amendola et al(1993;
Bruni & Piotrkowska(1994); Bruni et al.(1995ab) andCopeland et al(1998; Ananda
& Bruni (2006; Ananda & Bruni(2006; Bohmer et al(2008. To our knowledge, such
an exhaustive analysis has not been carried out yet, altheeigeral sub-cases have been
consideredviajerotto et al(2004); Olivares et al(2006; Guo et al(2007); Bohmer et al.

3The termaffineis a technical word used in maths to define a general lineadauate transformation.
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(2008; Quartin et al(2008; Pettorino & Baccigalup{2008; Barrow & Clifton (2006).

In our study, we restrict ourselves to the evolution of a hgereous, isotropic cosmo-
logical background, leaving aside the question of what ffeets of coupling could be in
anisotropic modelsAnanda & Brunj 2006, or when general perturbations are present
(Valiviita et al., 2008 Dunsby et al.1992. It is however worth noticing that, thanks
to the particular form of coupling we choose, our analysishef dynamics of the two
components is valid in any theory of gravity, because it ssloleonly on the conservation
equations, and not on specific field equations.

Secondly, as a way to gain some physical insight on the hkeld of some specific
coupling models, we also explore the constraints on theigtesti luminosity distance
modulus derived from type la Supernovae observationsgusivonte Carlo Markov
Chain (MCMC) approach. Needless to say, this is not interated full-fledged cos-
mological parameter estimation for these models, but oslg &rst exploration of the
parameter space to rule out those models which are magifestbntrast with observa-
tions. This analysis requires the use of the Friedmann emydtence general relativity
is assumed as the valid theory of gravity.

2.2.1 Dynamics of dark components
Linear scale-free coupling

In general relativity, assuming a a flat Robertson-Walkérense, the dynamics is subject
to the Friedmann constraint

H? = % T, (2.12)
where pr is the total energy density of the various components. EBebatyons and
radiation,ps includes any other component contributing to the dark seceo that part
of the total energy-momentum tensor that in the context okga relativity is needed
to explain the observed universe, in particular the CNBpdrgel et aJ.2007 Dunkley
et al, 2009, structure formationgpringel et al.2006 Khalil & Munoz, 2002 and the
late time acceleration of the expansidtid€ss et al.1998 Perlmutter et a).1999 Riess
2007 Riess et al.2009 Eisenstein et al2005 Percival et al.2007a Pietrobon et aJ.
2006 Ho et al, 2008 Giannantonio et 8l12008. The dynamics itself is described by the
evolution of the Hubble expansion scaldr= a/a, given by the Raychaudhuri equation

4rG

H=—-H? —— (1 +3wr)pr. (2.13)

This is coupled to the evolution equations for the energysitgrof each of the mat-
ter components contributing t@-. Since H + H? = i/a, with a(t) the usual metric
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scale-factor (which we assume normalised to its presentyahcceleration is achieved
whenevervr = Pr/pr < —1/3, as itis well known.

The standard CDM model assumes two dark components: the pressurelekdandd
matter (CDM), withwp,, = 0, and the cosmological constaftwith w, = —1. CDM
is needed to fill the gap between the baryon abundance andnitnend of matter that is
needed to explain the rotation curves of galaxies and strei¢brmation in general, as
well as to allow for a vanishing curvature model. In the caht# general relativity, and
under the Robertson-Walker homogeneous and isotropicrggin (see e.gCélérier
(2007 for alternatives), a cosmological constanis the simplest possible form of dark
energy (DE) needed to generate the observed low redshdteaation. While this simple
scenario is preferred from the point of view of model comgami and selectiorBalbi
et al, 2007, because of the low number of parameters, from a theol@@rapective it
is oversimplified, and it is worth exploring alternativeger if purely phenomenological.

Here we shall consider two general coupled dark componeitiisenergy densities
pa @andpp. Since we want to introduce a rather general type of coupfimgusing our
analysis on its effects, we shall assume the simplest degeitn for the EoS of these two
dark components, i.e. we will assume that the EoS parameteedw g are constant.
On the other hand, we shall natpriori restrict our study to the sub-class of models
where one of the two components represents CDM with, foams#,wg = 0.

Due to the presence of the coupling, the two dark componetishys the balance
equations

pa+3H(1+wa)pa = Q (2.14)

Even assuming the linear form for the coupligyiven in Eqs2.16and2.17below, this
model allows us to explore a large number of alternativese ke will focus on mod-
els for the homogeneous and isotropic background expanagsuming that for those
models that will fit current observational data it might aywde possible to construct an
appropriate perturbative scheme allowing for structureftdion, for instance by assum-
ing a vanishing effective speed of sound in one component.

The coupled dark componentg andpg could be in principle be taken to represent
DE only, i.e. they could be two extra dark components coutiily to pr in (2.12), in
addition to CDM. Leaving aside this possibility, and ignoring bargand radiation as
we will do in this Section, the sum of Eqs2.(42.15 gives the conservation equation
for pr = pg + pa. A positive coupling ternt) corresponds to a transfer of energy from
pg to p4, and vice versa, but in gener@ldoesn’t need to have a definite sign.
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An interaction term between two components has been caesideveral times in
the literature, starting frorvetterich(1988 1995, Wands et al(1993; Copeland et al.
(1998 in scalar field models, and has been analysed in dark enevgglsibyAmendola
(2000; Amendola & Tocchini-Valentin{2001); Amendola & Quercellin(2003 2004,
and for example recently iMajerotto et al.(2004); Olivares et al.(2009; Guo et al.
(2007); Bohmer et al(2008; Quartin et al(2008; Pettorino & Baccigalup(2008; de
la Macorra(2008; Manera & Mota(2008.

The coupling term) can take any possible for@ = Q(H, pa, pp,t). Here we
shall consider the case of an autonomausdependent) coupling with a factorized
dependence

Q= qu(pA,pB). (2.16)

As we shall see below, with this assumption the effects ottheling on the dynamics
of p, andpp become effectively independent of the evolution of the HeldzaleH.
For this reason, we may call this a “scale-independent” ogpThis choice has been
often adopted in literature mainly because it simplifies ¢benputation and allows to
investigate several phenomenological models which dyspleoupling between the dark
components. Furthermore, with the decoupling of the dyoarmf the two dark compo-
nents from that off{, the analysis of the next section is valid in any theory ovvigya
because it is based on the conservation equations only: wertked to use EqQ.12
2.13 i.e. the field equations of general relativity. Finally, wete that any coupling of
this type can be approximated at late times by a linear expans

q=qo+qapa+qspB , (2.17)

whereq,, qp are dimensionless coupling constants, anes a constant coupling term
with dimensions of an energy densityln the following we shall analyse the dynam-
ics arising from this general linear scale-independenpling. Obvious sub-cases are:
q x pr (g = 0,94 = qB); ¢ x pa (g0 = 0,gp = 0); etc. We will come back to this in
more detail in the next Section. Linear couplings have besguiently analysed in liter-
ature Metterich 1995 Amendola 2000 Majerotto et al. 2004 Guo et al, 2007),Mul-
tamaki et al.(2007); Mainini & Bonometto(2007); Bohmer et al(2008; Quartin et al.
(2008 both for mathematical simplicity, since they retain theehrity of systen®.14
2.15with no coupling, and because they can arise from stringyh@oBrans-Dicke-like
Lagrangians after a conformal transformation of the metric

4Strictly speaking, an expansion about today would leag40dy + G4 (pa — pao) + ds(pB — PBO),
but constants can always be re-defined in order to put theliogupin the form?2.17.
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2.2.2 Analysis of the scale-free linear dynamics
The linear dynamical system

In order to proceed with the analysis of the dynamics of th& damponents, let us
change variables, using the total dengity= p5 + p4 and the differencé\ = pp — pa.
We also set

wy = (wp+wa)/2, w_ = (wp —wa)/2, (2.18)
4+ = (g8 +q4)/2, q- = (g8 —qa)/2. (2.19)

One reason for this choice is that ultimately the evolutibpis the one that governs
the general expansion law through Eql2and2.13 In addition, thanks to the partic-
ular form of the coupling (Eg2.16 and assumind? > 0, the dynamics can be made
explicitly scale-independent, eliminatirtf) by adoptingV = In (a), thee-folding, as the
independent variable. Then, denoting with a prime the dévig with respect tav, the
system R.14-2.15 is transformed into

pp+3pr(1+wy)+3w_ A = 0 (2.20)
A +3A1+wy) +3w_pr = —=3(qepr + A+ q). (2.21)

An effective EoS parameter. s, is implicitly defined from Eq2.20 whenw_ = 0 the
two EoS coincide giving rise to a constant;; = w, = w4 andpy scales accordingly,
as a standard barotropic perfect fluid, but in general

A
Weff = Wy +w_— (222)
Pr
changes with time. Notice that we can also define, usingx2.17) in (2.14), the effec-

tive EoS parameters for the two components:

qo +4¢ qa
Wpeff = WA — EUR Ll prpB - 7, (223)
+
wBeff = w3+%+q§ (224)

From now on we will characterise the cosmological evolubbany of the energy densi-
ties as standard/phantom behaviour. As mentioned in thednttion, standard/phantom
respectively correspond to an energy density which is eélieecreasing or an increasing
function of time (the scale factor or theefolding N). The phantom behaviour arises in
the presence of coupling from an effective EoS parameterl, which corresponds to
the violation of the null energy conditiorVisser, 1997 for that given energy density.
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Thus, it follows from Eq2.22and2.232.24that we can have a phantom behaviour in
the total energy density; as well as in one or both of the single componentandpg,
and that in principle the effective EoS parameter of eachede¢ can pass through thé
value, from phantom to standard or vice versa. On the othed,hae will also refer to
constant parameters suchiagandwz as having a standard/phantom value, respectively
wa/p > —10rwy p < —1, because the corresponding fluid would evolve in that way in
the case of no coupling.

We will also refer to an “affine” evolution. As said in the iattuction, for an un-
coupled component with energy densitythis arises from an affine EoS of the form
P = P, + ap. Inserted in the energy conservation equation this leads to

p = pa+ porra 0T (2.25)

Therefore, starting from the Friedmann equati@ris>2.13with no cosmological con-
stant term, the affine EoS and energy conservation lead tdfectiee cosmological
constantp, plus an effective matter-like component with constant Eatameter (a
barotropic perfect fluid) and today’s density;, (cf. Ananda & Bruni(2006; Ananda &
Bruni (2006; Balbi et al.(2007); Quercellini et al.(2007) for a detailed analysis of the
cosmological dynamics arising in this case). As we will segjrns out that there are
solutions of the systen2(20-2.21) that evolve according to EQ.25

In order to proceed with the analysis of E¢s20-2.21 using standard dynamical
system techniqueg\(rowsmith & Place 1992, it is convenient to write it as

X' =JX+C, (2.26)

where the phase-space state veXand the constar® are

X:(’”), cz< 0 ) (2.27)
A —3q0

and the matrix of coefficient$ is given by

J= ( —3(+wy) - ) . (2.28)
=3(w-+¢q1) —3(1+wy+q-)

Fixed points, if they exist, are solution§, of the equation] X, + C = 0 and, given
that the system(26) is linear,J is also the Jacobian of the system at these fixed points.
These fixed points correspond to constant valugs-adnd A and in turn ofp, andpg,

that is to the emergence of an effective cosmological congtehenpr # 0, see below).
Every constant form of energy is indeed alike the cosmobdgionstant\, and plays
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exactly the same cosmological role: when it dominates tléuéon of the background,
it drives an exponentially accelerated expansion, withfeecve EoS parameter close
to —1. Notice that - unlike the case with no coupling - there isanpriori guarantee
from the equations above that and/orpg, as well asr, will always be non-negative.
However, one has to keep in mind thatmust be non-negative because of the Friedmann
constraint (Eq2.12). This means that if is vanishing for some value d6f (a), then at
that point the assumptioH > 0, on the basis of which EQ.26is derived, is violated,
and the solutions of EQ.26 no longer correspond to solutions of the original coupled
system of Eq®.13and2.142.15

We refer to App.?? for the solution of the linear system and a detailed discunsst
its properties. An insight of the physical consequencesefstability properties of the
system Eg2.26may be achieved considering the solution of the second ditferential
equation forpr, which can be easily derived from the linear system. Theildetéd
the computation are fully described in App?;, here we report the main results, useful
to understand the investigation of the parameter spaceeofmihdel discussed in the
following sections. The total energy density can be descrés:

o — tr(J) pir + det(J) pr = Yw_qo,

(1+84) 14+8-)

pr = prya”’ + pr_a ) 4 py

wheref. = By ++/D/3, with 3y = w, +¢_/2andD = 9 [(%‘)2 +w_(q+ +w_)|.
The total energy density is made up of two evolving compasiant an effective cosmo-
logical constantp,, function of the parameters of the model, which may arisewtog
to the dynamics of the system.

Here we focus on a less general solution, for which we perfanparameter space
viability study through a Monte Carlo approach.

2.2.3 Analysis of specific couplings
Dynamics of density parameters

Introducing an interaction between two fluids can lead teredting solutions for the
energy densities, like attractor points in the phase spdw¥ermhe contributions of the
two fluids to the total energy density are constants. In thpsets the value of the
normalised energy densities depends only on the paranoétins model and, since they
are attractors, they are reached from a wide range of icibiadlitions, thereby alleviating
the coincidence problem. These are usually called “scamigtions” {MVands et al.
1993 Copeland et aJ.1998 and are characterised by constant fractions of the energy
density parameters, namely, g = pa /(3H?) (in units87G = 1, c = 1).
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In order to analyse the dynamics of the system, let us defsadiv variables:

PA PB . PA (2.29)

sp2’ YT 3H2 T 3EY

where together with the coupled fluids we also include ramhab include the era when
it's the dominating component, when initial conditions aseially set. Note that = (2 4,

y = (1 and(), are constrained by + y + (1, = 1, z is the energy density parameter of
the total effective cosmological constant, and we neglezbiryons contribution, which
is always subdominant. The systet1(4-2.15 then becomes

!/

R [3(1 Fwy —w)+ 2ﬁ] (2.30)
+ g [(CJ+ —q-)z+ (¢4 +g- )y + dSZE”Z]

y = —y [3(1 +wy +w_)+ 2%/] (2.31)
- 3[(€I+ —q-)z+ (¢4 + - )y + dgtT('_I)Z]

N i

Z = =2z A (2.32)

where
H’ 1
7 - 1 —§[$(1+3(w+—w—))

+y(1+3(wy +w-)) +2(1 —z —y)] (2.33)

is a rewriting of the Raychaudhuri equatich13) for the Hubble expansion scalar.

The fixed points, namely the points satisfying= ¢y = 2/ = 0, are presented in
Table 2.1, labelled by capital letters, together with the correspogatigenvalues. To
the best of our knowledge, this is the first complete analykthe dynamics of a three
components cosmological system where two of the barotrityids are coupled via a
general linear coupling function of the for.(7). The effective EoS parameters at each
of the fixed pointsuv. s = piot/ pror 1S also listed, wherg,,, = pa+ pp + p, and therefore
Wepp = (wy —w_)x + (wy +w_)y + Q,/3.

All the fixed points shown in Tabl2.1 exist forw_ # 0, when the EoS parameters
of the two fluids are the different. The only physically reaable fixed point for system
(2.202.27) corresponding taw_ = 0 is Case 2a (see Sex?), wheredet(J) = 0, and we
end up with an infinite number of solutions, characterisedbhy= wp = —1.

The fixed points A corresponds to the radiation dominatedwhdle B, C and D
represent epochs that are dominated by the two fluids, asecarfdsred by looking at
the values of the effective equation of state parametgr;. In particular, at the fixed



Points T Y 2| Wesy Ay Ay A,
A 0 0 0] = 4 1—38, 1—38_
B ¢ —2w_+2VD/3 (q,—2w,+2\/5/?)(q++2)w,+2\/5/3) ol 8y [3014+8,) ] - 1=3(B+—28-+q-)+/Fr | 1=3(8+ 28 +q-)—y/F;
Jw_ dw_(g++q— 2 2
C g —2w_-2VD/3 (q,—2w,—2\/5/(3)(q++2)w,—2@/3) 0l 8 3(1 +8 ) _1-3(8- 28449 )+/F- _1—3(67—25++q7)—\/1~1
dw_ dw_ (g4 +g— - - 2 2
D T — L -1 4 —3(1+4:) —3(1+5.)

Table 2.1: Fixed points of systen?(30-2.32), the corresponding effective EoS and eigenvalues, whgre: 9¢% /2 — 3¢_(1++/D — 3w, ) + ¢, w_ +

w? — (1+2vD — 3wy )(—1+ 3wy).
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point D the constant energy densitieszodndy (pax andpg,) cause the accelerated
expansion withu. ;s = —1. From the expression farandy at this latter fixed point it is
easy to see that= —x(1 + w,)/(1 + wp): this represents an example of the so-called
scaling solutionsby virtue of the proportionality relation between the gyetensity of
the two fluids see Case 1 and Case 2c discussed at the end oPBpphis point is
characterised by the final domination of an effective cosmiochl constant, either driven
by ¢y (Case 1, see Fig2.8) or not (Case 2c, see Fig.9). In the first case whenever
|f+] < 1 D is always an attractor, while in the second case it is noabrse one of the
eigenvalues is null. Notice that its existence is compjetetiependent oy, andq_.
Whenever the system settles into the fixed points B or C tleeaob, andj_ is exactly
that of effective E0S parameters (see Tahty which allows for phantom line crossing
at late time (see Fig2.7), i.e. the line for which the effective total EoS parameter i
Wepp = —1.

In the following we will examine in more detail three speakdsses of the coupling
function and in Se.2.4we will make a first comparison of the models to the data using
MCMC applied to type la SNe distance modulus.

l. g+ =q-

Imposingq, = ¢_ is equivalent to choosing, = 0 andgg = ¢; therefore among the
range of possible couplings represented by Ed.7 we are restricting to the class of
models where)/ H is proportional solely to the energy density of one fluid (ur oase
e.g.pg), and it reads

% = %(QPB + qo)- (2.34)

This assumption also includes models wjth= —¢q_ since the coefficientg, andgg

can be either negative of positive. In this case the dynamittee same as faor, = ¢_,

the roles ofr andy being simply interchanged. We will refer to this subclassholdels
as model I.

In this model/D is automatically real, sinc® = 9(¢/2 + wg — w4)?/4; as a
consequence the scaling functic??( always drives a power law expansion, with =
q/24+wpandf_ = wy if Sy > 0 (i.e.(wp+wa+q/2) > 0), vice versa if3, < 0. Hence
the total fluid ends up as if it was made up pfa component scaling as the original fluid
p4 With no coupling,i) a second component characterised by a new EoS parameter and
iii) an effective cosmological constant tepq Moreover a pure affine behaviol.25),
or its improper modification®?), is obtained in three casd$:q = —2(wp — w4 ), which
gives (?); i) ¢ = —2(1 + wg), that corresponds t6,,- = —1 (even forp, = 0,
i.e.q = 0, an effective cosmological constant is generatéd)w, = —1, where one
of the two fluids isab initio a constant term. Notice however that generally, because



2.2. LINEAR COUPLING IN THE SECTOR 51

By = f_ 4+ 2v/D/3, models withs, = —1 andj3_ > —1 are not feasible. In particular,
the ACDM evolution is exactly recovered in casg for w, = 0, that is if one of the
fluidsis dust; in casdi) for gg = —2wp.

The fixed point D is characterised by the domination of thestamt part of the total
energy density,; along it, the values of andy are both positive only if eithew, or
wp have phantom values, i.e, < —1 orwg < —1. This statement holds true also for
models Il and Ill. However, ifv, < —1 D is no longer an attractor, &g = —3(1 +w4)
is greater than zero. On the other hangd < —1 requiresq > —2(1 + wp) to let the
fixed point be an attractor: in this cagés positive. A strong and positivecorresponds
to a transfer of energy fromy to the other fluid withwg < —1. Therefore in order to
fall at late time into the cosmological constant dominatedaefluid with a phantom EoS
parametetvz must absorb energy from the other non-phantom fluid. It igkveiressing
that the effective cosmological constant, igg, is somewhat redundant whenever the
fixed point D is not an attractor (see Fig)7). In Fig. (2.7) an example of this dynamics
of the background is shown; the effective cosmological tamtss not noticeable, since,
after the evolution on the saddle point B, the system is &dpp the attractor point C.

Il g_=0

If ¢_ = 0 the resulting coupling functiofy/H is linearly dependent on the sum of the
energy densities of the two fluids, approximately equiviaterthe total energy density
(these models have been examined for exampldiirares et al(2006 andAbdalla et al.

(2009) and is as follows

% = ;(QPT + qo)- (2.35)

With this assumption, = ¢z = ¢4 = ¢ andBy = w, = v/D/3 whereD = 9(wp —
wa)(2¢ + wp — wy)/4. If ¢ is positive these effective EoS are real fog > wy or
wp < wy —2q, while if ¢ is negative the same relations hold but with opposite inkEgua
signs. We will label this model Il.

In this model the affine evolution is recovered fop = (qua + 2wa + 2)/(q —

2w, — 2), corresponding t@_ = —1. In this case, which is indeed Case 2c of Section
??, an effective cosmological constant arises evernpfor= 0. Again, because, =
G- +2v/D, models with3, = —1 andS_ > —1 are not feasible. From a cosmological

point of view this means that a matter-like evolution canmetgenerated together with
a cosmological constant. THeCDM limit is achieved ifw, = (=1 + ¢ + /¢ +1)/2
andwp = —1 — wy. The evolution of the energy densities for a special chofdh®
parameters is illustrated in Fig.8 the effective cosmological constaf?j arises at late
time, driving the acceleration, and is caused by a non-zerg (25 # 0).
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Figure 2.7: Upper panel: evolutions of the energy density paraméergthin solid line),Q g
(dotted line) and?, (thick solid line) for a model withy, = ¢_ = 0.25; for comparison, the
dashed lines are the valuesao@indy at the fixed points B (thin short-dashed lines) and C (thick
long-dashed lines). For this model the parameters@gg: = Qx4 = 0.5, wq = 0, wg = —1.5,

B+ = 0andp_ = —1.25. Lower panel: the total effective EoS parameter for the samodel :
weys evolves from the valué/3 in the radiation dominated era, approaches the vdlie the
matter dominated era and then asymptotically evolves thwaronstant phantom value, in this
cases_ = —1.25.

M. ¢, =0

The subgroup of models witl, = 0 ( from now on model Ill) includes the couplings
that are proportional to the difference of the energy desssik (for example recently
analysed irChimento et al(2009). With this assumptiog_ = ¢z = —g4 = ¢ and the
discriminantD = 9(¢” + (wp — w4)?) /4 is always positive, so that oscillating solutions
(??) are never permitted. The coupling function reads

Q 3

— = —(¢qA . 2.36

q 2(@ + o) ( )
As before, the affine expansiol.25 may only be generated if one of the two effective
EoS parameters assumes the value of the EoS of a cosmologitsthnt, that is either
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Figure 2.8: Upper panel: evolutions for the energy density parametera imodel withg_ = 0
andq, = —0.5; for comparison, the dashed lines are the values ahdy at the fixed points

B (thin short-dashed lines) and D (thick long-dashed lin€ég)r this model the parameters are:
Qoa = 24 =05, wa = —1.1, wg = 0.2. Lower panel: effective EoS for the same model; for
comparison, we plot the EoS parameter of the fixed point,B= —0.14.

By = —1lorf_ = —1. Inparticular if3, = —1, f_ = —1 —2v/D/3 is always phantom.
In this case none of the terms in EG?) can play the role of matter. On the other hand
if 3. = —1 (corresponding tavy = (—1 — g+ /1 —¢2)/2), B+ = —1 +2V/D/3 is
always grater than-1, i.e. always standard. An example of this dynamics is shawn i
Fig. 2.9, where the effective cosmological constaPi?)(arises at late time with no need
of qo, driving the acceleration (Case 2c). Then typicallydgy = —g — w4 — 1 we have
thats, = 0 and theACDM model is recovered.

2.2.4 Markov chains with supernovae
Methods

Given the large number of parameters, the task of finding tinenmum y? and mapping
its distribution in the entire parameter space can be coatipn@lly expensive. To this
end we adopt a MCMC approach. In this work we only want to testrnodels as a
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Figure 2.9: Upper panel: evolutions for the energy density parametera model withg, = 0
andq_ = —0.18; for comparison, the dashed lines are the values ahdy at the fixed point
B (thin short-dashed lines) and D (thick long-dashed lin€g)r this model the parameters are:
Qoa =0.5,04 =0, ws = —0.9, wg = 0. (dust). The EoS parameters at B gre= —0.08 and
B_ = —1. Lower panel: effective EoS for the same model.

description of the homogeneous isotropic background esiparfregardless of perturba-
tions), hence supernovae are ideal for this purpose. WehasER type la SNe distance
modulus data set provided Davis et al.(2007). In particular we want to see whether
supernovae can qualitatively distinguish different kirfccouplings, included what we
called model I, Il and IlI.

Type la SNe light curves allow a determination of an extmaicorrected distance
moduli,

o = m — M = 5log (d;,/Mpc) + 25 (2.37)

whered;, = (L/AnF)'* = (1+2) [; d2'/H(%') is the luminosity distance. We compare
our theoretical predictions to the valueg@fwith % = 87G/3(pa+pp+p,+ps), Where
we account also for the baryon energy dengijtyWe fix the value of the dimensionless
Hubble constant to b = 0.72 (Freedman et 312001) and the baryon energy density
at present),h? = 0.02229 according toSpergel et al(2007. The smaller is the EoS
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parameter of a single fluid the later can be the dominatiorfarshis fluid. Hence,
counting the role of3.. as effective EoS parameters, wheneder> 0 a baryonic era
might emerge at recent time. The absolute distance modudlisintrinsically affected
by uncertainty; therefore we treat it as a nuisance pararaatemarginalize over it. The
distance modulus for the models shown in Eigi-2.9 together with the 192 SNe data
points are displayed in Fig.10

50 T T

e ﬁ%:'ftzifiiittfi:ti”’jm

i  Mod. 1 |
301 Mod. II | |

: I - Mod. III
25 L ‘ ‘

0.0 0.5 1.0 1.5 2.0

Figure 2.10: Comparison of the distance modulus for theetlu®upling models in
Fig. 2.7-2.9to the 192 SNe dataset used in the MCMC analysis.

The parameters that are representative of the modelare Qa, ga, g5, wa, wp},
or otherwise{04, 24, ¢+, ¢, wy,w_} and, as functions of these, the two effective EoS
introduced in Eq.??): 5, and5_. For the ensuing analysis it is worth recalling our
classification of models: 1) model with a coupling functioroportional to only one of
the two energy densities; 1) model with a coupling functmoportional to the sum of
the energy densities; Ill) model with a coupling functiooportional to the difference of
the energy densities.

We shall now focus our analysis on the case= 0, i.e. pp would represent standard
CDM if it wasn'’t for the coupling with the DE component.

Results: CDM - DE coupled models

The first result we obtain is th&t, is completely unconstrained, independently of which
model we consider. This means that SNe are not sensitiveetodhstant term of the
coupling. The dynamics of the system can easily generatadbeleration settling on
fixed points D, wherev.;; = —1 (see Tab2.1), even for2, = 0 (see Fig2.9), or B and
C, where the total energy density can also exhibit phantastugoens.

In Fig.2.11and2.12we present MCMC chains in a two-dimensional diagfam ¢_|
([qa, 5] onthe right hand side). As said above, we consider a modekndre of the two



56 CHAPTER 2. THE DARK ENERGY PROBLEM

fluids represents a CDM component, iug; = 0, a reasonable assumption considering
all the other cosmological probes pointing towards theterise of a form of cold dark
matter (see e.Khalil & Munoz (2002), and we letw, assume three different values
that characterisp, as a DE component (phantom-like behaviour is shown in the top
panels, cosmological constant-like in the second row gasuadl non-phantom model in
the bottom panels).

Note that the case whetg, = 0 andpg is DE can be easily derived from the previous
one, corresponding in the diagram to a reflection with resgethe linegg = —q4. In
fact, interchanging the two EoS and swapping the roles oftleecnergy densities, and
applying the transformatiorny{ — —q5, g8 — —qu, 1.€.q¢. — —q., ¢ — q_), one
recovers the aforementioned model.

In addition, the straight lines corresponding to modeld Bnd IIl are drawn, and
diagrams of Fig2.12 are derived from the same choice of parameters as inZigd.
except forQ2, # 0 (it is by eye easily verifiable that there is no dependencégh
Finally, the short-dashed curves represent the impropiereatvolution £?), while the
short-dashed straight line represents affine modekH(with 5, ,_ = —1 (Case 2c).

As a first step we derived the unidimensional likelihood{f@p 4, ¢, ¢ }. The best fit
of the energy density parameter for the three classes ofIs\pdesented in Fig2.11and
2.12is respectively2y, = 0.63,0.65,0.76 with an error of2c = 0.1; this best fit does
not change includin§,. In the diagrams, 4 is therefore fixed to these best fit values.
It is worth stressing that here we are not just analysing ype&al models considered
in the literature (namely I, 1l and IIl) but the results inporateall the possible linear
couplings, and, we might say, all the possible expansiomecant times of a generic
coupling function@ (Eq.2.16. Hence we are not interested in deriving constraints on
single parameters, a route that might be hard to follow withI& in view the high
number of parameters and their degeneracies. We insteddwsee what kind of linear
couplings are preferred by the data and provide a quaktatay to distinguish the type
and the direction of the interaction.

The first noticeable thing in the, ¢z] diagram is that the points lie almost on a hor-
izontal branch of the diagram, close to the line represgntiodel |, in particular with
@ x pa. So if we allow the interaction term to be strong and move duhe weak
coupling regime (i.elg4 5| > 1), the most “frequent” linear coupling function emerg-
ing from the chains is the one proportional to the DE densify).( In addition, strong
couplings are favoured for positive value @f (see Fig.2.11and2.12): the energy is
transferred from dark matter to DE (as a consequence of gimaisiEqs.2.142.15. In-
creasing the value af 4, that is moving from phantom-like values towards quintasse
like ones (going downwards in the right hand side column of(figl 1), this horizontal
branch tends to negative valuesqf. Models with a phantorw 4 show an increasing
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energy density with the scale factar,while for a DE model characterised by, > —1
the energy density is diluted with the universe expansibis. 2econd kind of model re-
quires a lower transfer of energy from CDM to DE. Apart frormaadl spot in the origin
of the axis (weak couplings), the coupling or type Il doessesm to be favoured by SN
data, the effect increasing with higher valuesqf i.e. for non-phantom values. Another
piece of evidence that arises from diagrams Bigland?2.12is that for non-phantom
values ofw, (third row in figures) the uncoupled case (namkgly, ¢z] = [0, 0]) falls
almost outside the border of the likelihood.

Since todaypop ~ poa We can say that the sign of the coupling functi@n ¢
qapoa + qepos) changes along the straight ligg = —q¢4 (long dashed line): above
this line the exchange term reverses the energy transfer @M to DE (i.e. positive
@), while below it is the opposite (negativ@). Again, the higherv,, the bigger is
the number of points that we can find below this line. Theeeflor DE components
with w, < —1 an exchange of energy from DE to CDM is less probable, indeeatty
of the type of linear coupling. This reflects the fact that acréasing energy density
(characteristic of phantom behaviour) favours more ancerabsorbing and positive DE
couplings at present, while non-phantom values gfseem to need a negative exchange
term, most of all for weak couplings, to explain supernovagd It is worth stressing
that eventually the likelihood seems to exclude the unamipase.

The connection between where the points lie in the diagraenshe region favoured
by the likelihood, and where the cosmological backgrourmlwgion is affine is an in-
teresting issue; this directly connects coupled DE modelant effective evolution of
the total energy density that is completely equivalent tamsnwlogical constant plus
a component with constant EoS parameteiEq. 2.25. If one looks at the left side
diagrams of Fig2.12 a short-dashed curve and a short-dashed straight lineranend
on it. The former corresponds to the improper affine evolu(it?), obtained forg_ =
++/—4w_(q+ +w_). Hence the only affine models are those that correspond to the

straight line for whichg, ,- = —1 (for the model withw, = —1 this coincides with
the line representing model Il, the only possibility to reeothe affine evolution with no
coupling). For a DE model with a phantam, the affine evolution coexisting with a non-
zero(, is somewhat ruled out and, among the models indicated inateSection, is
more compatible with a coupling function proportionapto(DE, model I) and possibly
to A (model Ill). For DE models withv, > —1 the situation is different: the data seem
to favour an affine evolution generated in models with a cdogpiunction proportional
to pp (matter, model I) and again model Ill. In addition, for DE netgiwith standara 4

an improper affine evolution together with a non-vanishjing?,) is allowed, in a region
where the coupling function shifts towards negative sigostrepresenting a transfer of
energy from DE to CDM.
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Figure 2.11: Coupling diagrams with two-dimensional likelihood for nedel with Q4 = 0.
Apart from the short-dashed line that represents an affiotuton with 5, ,_ = —1, all the
other lines are labelled with the corresponding type of togpgfunction (e.g. the solid line on
the left side diagrams represents a coupling functiorx pp (model 1), while on the right side
diagrams it represent3 « py (model 11)). The energy density parameter at present is fatets
best fit value, respectivey4 = 0.63,0.65, 0.76.

2.2.5 Conclusions

We have analysed the dynamics of two coupled dark compomeptesented by two
barotropic perfect fluids characterised by constant Eo&metersv, andwg. We have
assumed a flat, homogeneous and isotropic cosmology anceeagi@near coupling be-
tween the two barotropic perfect fluids. This scale-indeleen coupling takes a linear
form proportional to the single energy densities plus a tartderm: any coupling of this
type can approximate at late time a more general couplingtiiom We have studied the
stability of the system and shown that an effective cosmoddgonstant can arise both
from the constant parg, of the function@) and from an effective cosmological constant-
like EoS. We have also examined the dynamics of the energsitggrarameters, and
evaluated the fixed points and the corresponding eigernsalaethe most general form
of linear coupling. We have then restricted the analysi®toesspecific linear couplings
previously considered in the literature (model I, 1l, lI§ince we are restricting to the
background expansion and we have modelled the couplingifumas a late time first
order Taylor expansion, a comparison with distance modutus SN la data appeared
as our natural step further. We have presented a MCMC asdtysa model with dark



2.2. LINEAR COUPLING IN THE SECTOR 59

wy=—1.2, wg=0, 0,=0.7 wy=—1.2, wg=0, 0,=0.7
R qea
] o Qe 5 ! Qepr

Q%pp R
—5.00 | \

2.00

& | QR :
LE7 \\'kti 1 LE7[ ~ ]

—1.87

q-

=5.00

.00

—5.00 —=1 5 ¥ —5.00 -1.6% 1.6% 5.00

Figure 2.12: Coupling diagrams with two-dimensional likelihood for netsl with 2, = 0.7.
All the lines are labelled with the corresponding type ofng function (e.g. the solid line on
the left side diagrams represents a coupling funcfiorx pg (model 1), while on the right side
diagrams it representg « pp (model Il)). The short-dashed line represents affine eiaiutith
B4/~ = —1 and the short-dashed curve represents affine evolutiongyitk= 5 . The energy
density parameter at present is fixed at its best fit valupemselyy4 = 0.63,0.65, 0.76.

matter plus DE using the data set providedDiavis et al.(2007). Considering two rep-
resentative specific values of the DE parametgr one standardufy, > —1) and the
other phantom«(4 < —1), we have condensed our results in coupling diagrams, where
the points arising from the MCMC chains are drawn togethéh Wunes for model I, II
and 1l and for the improper affine€?®) affine .25 evolutions, the latter including the
ACDM model as a subcase. Couplings proportional to the DEityessem favoured,
mostly for strong couplingg;4| > 1. The total sign of the exchange term sets the di-
rection of the interaction: models with phantam definitely prefer positive coupling,
i.e. an energy transfer from dark matter to DE. On the othedhahodels with non-
phantomw 4 not only allow for negative), but force the uncoupled model to fall at the
border of the likelihood. For further and stronger consiiaimore complementary data
are required, like CMB spectra or matter power spectra. @bbservables necessitate an
accurate relativistic perturbation analysis which is m&itobvious nor uniquely defined
in phenomenological coupled models as those considered Mereover, simplified ob-
servables that make no use of perturbation analysis, [k€MB shift parameter, can be
strongly model-dependent and, although straightforwsinduld not be used in models
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where the evolution, even just that of the unperturbed backyl, detaches significantly
from that of theACDM model. These extended investigations can only be dettlth

future work.
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2.3 Affine parameterisation of the dark sector: constraints
from WMAPS and SDSS

In the previous section we have introduced a generic cogfletween two dark com-
ponents, which may eventually account for dark matter amkl elaergy. We studied the
fluid dynamics and put constraints on the coupling pararedtem SNe data. We also
concluded that an affine EoS model is likely to arise for a wadege of the parameters.
The affine model has been constrainedBabi et al.(2007) using SNe, BAO and CMB

datasets. The peculiarity of this model is its parametgoisaof the equation of state
(Ananda & Brunj 2006):

px = Fo + apx, (2.38)

wherepy is the pressuregyx is the energy density, and anda are constant parameters;
this leads to a time dependent equation of state parameter

wx = £} + a. (2.39)

Px

An interesting property of this parameterisation is the¢sults in a constant energy den-
sity term mimicking an effective cosmological constantthi2y, = — P,/ [p.(1 + a)],
plus an evolving term that can reproduce a dark matter betafor certain choices of
the parameten. This allows one to either treat the affine fluid as a singldieshidark
component, or to use it to model dark energy alone.

As shown inQuercellini et al(2007), whena is negative, this description can be seen
as the attractor solution for a quintessence scalar fielémiycs. Alternatively, when
treating perturbations, a barotropic affine fluid can berprited as a k-essence scalar
field (naturally describing an effective cosmological dans plus dark matter), while
a scalar field with sound speedl = 1 acts as a dark energy component. In addition,
an affine fluid description can also be interpreted as thdtreftwo interacting dark
components (one of them being a cold dark matter comporaswye discussed in detail
in the previous sectiorQuercellini et al.2008. In order to be realistic, every model must
include the perturbation theory and fit well enough the stnecformation history we can
reconstruct from galaxy surveyAljazajian et al.2009 Cross et a].2001, Condon et al.
1998. The aim of this section is to complete the study performe8albi et al.(2007);
Quercellini et al.(2007) and Quercellini et al.(2008 by addressing the perturbations
issue in the framework of the affine EoS. Since it has beengprtvat several scalar field
models may lead to such EoS dynamics, we follow a more phenological approach,
modelling the dark sector as a perfect fluid characterisetid¥0S parameter and the
sound speed;?. We consider two classes of models: one where the affine fegdribes
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a unified dark component, the other containing a cold darkemabmponent as well.
For each class, we also study three separate subcase#iaddnt the value of the speed
of sound: the barotropic case, wit}y = «a, the case?; = 1, and the “silent” caseBruni
et al, 1995ha) with ¢Z; = 0.

To study the properties of the model, we calculate the emoiuif scalar perturbations
in the affine fluid by modifying the publicly available CAMB de, and set constraints to
the parameters of the model by performing a Monte Carlo MafKoain analysis using
the cosmic microwave background anisotropy WMAP 5 year (ldanatsu et a].2009
and the large-scale matter distribution derived from tlwa8Digital Sky Survey (SDSS)
Luminous Red Galaxy (LRG) 4 year dateegmark et al.2004).

2.3.1 Affine fluid model

General framework

We perform our calculations in the context of a flat, homogeiseand isotropic universe,
whose unperturbed evolution is described by the Friedmaatem

N2 811G
H? = <9> =, (2.40)
a 3
wherep is the total energy density, the sum of the densities of &ldbmponents
in the universe, each of them satisfying a continuity equmathat, in the case of non-
interacting components, reads

pa) + 3H (pay + py) = 0. (2.41)

According to the specific properties of each component orsediféerent scaling be-
haviour: for example, for photons and barygnsx a«=* andps o a3, respectively. We
will refer to the decaying in time of the energy density asafstard” behaviour; when
the energy density grows in time, i.e. wheg + p;) < 0 (the null energy condition is
violated), the behaviour is called “phantonC4ldwell et al, 2003.

When treating perturbations of the background line elepvestidopt the synchronous
gauge Ma & Bertschinger1995. The perturbed metric then reads:

ds® = a(7)*(dr* — (845 + hij (X, 7))dz"da?) (2.42)

wherer is the conformal time anfh,;| < 1 is the metric perturbation. We then compute
the Einstein’s equations at first order from the metric gi@baove and from the perturbed
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energy-momentum tensor
T =) T, (2.43)

where the index runs over the components in the universe, photons, bargoisgdark
components. The perturbed energy-momentum tensor comjsosue

T, = pi (1 + 6@,
T, — p(1 4wV,
TO7 ) = (pi? + 6p™)ai, (2.44)

where§® is the density contrast for thecomponent,V® is the velocity,w is the
equation of state parameter (not necessarily constantjhendubscript refers to the
background (i.e. unperturbed) quantities.

Background evolution

The basic property of the phenomenological model we congdee affine form of the
pressure as a function of the density of the dark component2E39. Even if the EoS
parameter of the dark component is not constant, a simplgisolfor the Eq. 2.41)
exists and it is given by

px = pa+ (pxo — pa)a >0 £ 1 (2.45)
px = pxo — 3P Ina, a=-1. (2.46)

where px, is the density of the dark component at the present time(i.e. 1) and
px = —Fy/(1 + «), with a and P, free parameters of the model. This density evolves
in time in a way that can be either standard or phantom, depgrah the particular
choice of the parameters. A full description of the backgbproperties of such a dark
component is given iBalbi et al.(2007). Here we want to stress that, in the absence of
cold dark matter, this component should both be able toetbatgravitational potential
necessary to form structures at high redshifts, and to thivéate time acceleration of the
universe. With respect to a flAtCDM model, we have an additional degree of freedom,
«, which is the square of the barotropic sound speed, thawsalic to investigate the
effective equation of state of the clustering part of the ponent.

Since the perturbation equations of the dark componentbgiritten in terms of
its equation of state parameter, EB.39), it is interesting to explicitly consider the time
evolution ofwy.

We first comment on the cagg,—px > 0 (Fig.2.13. Inthis case, ifv > —1, wx(a)
evolves from the value approaching the value1; conversely, il < —1, it approaches
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the valuea moving away fromw = —1. In the former situation;-3(1 + «) < 0 and
the dynamical part of the affine component dominates at ¢iankgys. Whenn < —1,
then—3(1 + «) > 0, so that the evolving dark component increases in timeitibas a
phantom behaviour, becoming dominant at late times. Theesbd the curve obviously
depends omyg, Py anda.

Let us now consider the case whgry — px < 0 (Fig. 2.14). The behaviour is
opposite to the previous case, with the phantom evolutigeapng whernv > —1. In
this case there is a divergencewfin the past, making this choice of parameters more
problematic. In this paper we will restrict the analysisyotdl cases withvxy — pa > 0.

10.00 10.00

1.00F 1 o008
2 2

px/p.
px/p.

0.10F 3 0.10F

0.01 0.01

0.5 0.5

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Figure 2.13:Evolution of the dark component energy density (top) andagqo of state pa-
rameter (bottom), for two values of o = —0.01 (left) anda = —1.5 (right). In both cases,
pxo — pa > 0:in this casepr < —1 results in a phantom regime, characterised by an energy
density which increases in time.

Fluid perturbations

Einstein’s equations in the synchronous gauge and in FHosjpigce give the following
system of coupled equations

: h dp(;
5(@ = —(1 -+ w(i))<0(i) + 5) + 3H(d @ _ w(i)>5(i), (2.47)
Pi)
' () dpay/dpa) , o
by = —H(1— 3w — — 2 g+ LOT 25 2.48
) (1= 3uwa)f = 7, 00 T 7 7R %0 (2.48)

where we definedkV;) = 6.
A pure barotropic fluid with a negative EoS parameter has inzag adiabatic sound
speed that causes a runaway growth of perturbations. Nyptdoels this have unpleasant
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Figure 2.14:Evolution of the dark component energy density (top) andagqo of state pa-
rameter (bottom): for two values of: o« = —0.01 (left) anda = —1.5 (right). In both cases,
pxo — pa < 0:in this casepr > —1 results in a phantom regime, characterised by an energy
density which increases in time.

consequences for structure formation, but it also createsséability in the set of coupled
perturbation equation(47), (2.48. A viable way to overcome this inconvenience is to
allow for entropy perturbations in the dark component, agag that the effective speed
of sound, the sum of the adiabatic and entropic one, is pesuti null. We follow the
formalism developed in the context of generalised dark endttu, 1998, where

Opx Wx

2 _ 2

_ 0px _ WX 2.49

CXeft = 5 oy Cx,ad T Dot X ( )

Cxad = Px _ . (2.50)
Px

HereI'y is a constant parameter we will not use since we prefer toifypée more
fundamental quantity?;; dx .. iS the density contrast in the rest frame of the dark
component, defined as '
S reet = O + 320X (2.51)
’ a k2

The fact that, in our fluid description, the effective speédaund is a free parameter
not tied to the behaviour of equation of state parameterallows us to evade the tight
constraints on unified dark matter models pointed o&&andvik et al(2004) and arising
from the runaway growth of perturbations.

To perform numerical predictions for the evolution of péptations, we modified

the publicly available code CAMBadding a new component whose perturbations are

Shttp://camb.info/
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described by the following equations in the synchronouggau

: h.  a
ox = _(1 + wX)(HX + 5) - 3E(C§(,eff - a)5X,rest
w
+ 5y, 252
G = g, Cxen s (2.53)
X a X (1+w) X, rest- .

We adopt adiabatic initial conditions for the dark compdr{®oran et al.2003 Amen-
dola 2004. We first investigate the constraints coming from the CMBaimopy power
spectrum on a single dark component governed by an affindgiequd state. As we al-
ready mentioned, this can account for both dark matter withrevanishing EoS param-
eter and a cosmological constant; we label this unified masleDM model. The affine
component can also be employed as a pure dark energy conipdreandard CDM
is present. We denominate this modelc@3DM model. In addition to comparing our
CMB anisotropy predictions with actual data from the WMAP éay observations, we
improve our results by adding the SDSS dataset in order toverdegeneracies among
parameters. In facty affects the CMB angular power spectrum in two ways: it shifts
the peak position by modifying the Universe evolution tigbuahe Hubble rate, and, as
barotropic sound speed, it influences the relative ammitoidthe peaks, by changing
the balance between the pressure and gravitational foacesrding to its sign). These
effects occur mainly before decoupling, when photons feelgravitational potential
through the interaction with baryons. It is by measuring riregtter power spectrum at
much lower redshift, which we can indeed improved the caists on the sound speed,
since even a tiny negative or positive sound speed is cleasilyle as a rapidly increasing
or decreasing matter power spectrum. This effect is showAigg. 2.16and2.17.

In the next section we discuss the results obtained for bbbt and«CDM models.

2.3.2 Results
Methods

We performed a full analysis of the two classes of modelsrayifom an affine equa-
tion of state (i.e. thexDM and «CDM models) using the Monte Carlo Markov Chain
(MCMC) approach implemented in a modified version of the m®bsmoMC software
(Lewis & Bridle, 2002. We span the parameter space defined by the baryon density,
O,h?, the cold dark matter densit§).42, the current expansion rate of the universg,

Shttp://cosmologist.info/cosmomc/
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the reionization optical depth, the spectral index, and the normalisation amplitude
A, that parametrise the primordial curvature fluctuation pospectrum

Pk) = Ay(k/ko)™. (2.54)

This results in a galaxy power spectrum(k) = b79/25P(k), whereb,, is the galaxy
bias set constant and the facg25 comes form the relation between density and curva-
ture fluctuations. The affine dark component is characiitisethe two parameters,
(defined, as usual, asrGp,/3HZ) anda. Its effective sound speed squared has been
fixed to three different values, namely 0, 1 andin order to consider the three pos-
sible clustering possibilities, namely cold dark mattkelbehaviour, scalar field limit
and barotropic fluid. We assumed a flat universe and set a {aayssor on the Hub-
ble parameter with mean value and standard deviation densiwith the Hubble Space
Telescope Key Project;2 + 8 km/sec/Mpc Ereedman et gl2001). SeeRiess et al.
(2009 for a recent Hubble constant measure.

We computed the likelihood function of the data using thelisulnde provided by
WMAP teant that includes both the temperature and the polarisation @mbEer spec-
trum (the main effect of the latter being a tighter constramthe optical depth).

Even if at the background level theDM model is equivalent to a dark matter with
non-vanishing EoS parameter plus a cosmological condtesre are differences at the
perturbation level; moreover, the difference is concdptiace theaDM model treats
the dark sector as a whole, and can even be the result of ctiteyadark components
(Quercellini et al.2008.

aDM Models

In this section we investigate the properties of a singl& damponent described by an
affine equation of state. The parameters of this mode{@B?, 0, 7, In 101°A,, Q). ).

We expect the model with sound spe€g = 1 to be ruled out by the current cosmo-
logical datasets: a quintessence scalar field able to dnivdate time acceleration of
the universe expansion prevents structure formatiurefcellini et al.2007). We tested
our pipeline in the limit of standard CDM model, i.e. for the choice: = 0, obtaining
results that are in excellent agreement with the 5-year WN&€ase Komatsu et al.
2009 Dunkley et al, 2009. In the following we describe the results obtained for the
three sub-classes of models we analysed.

’http://lambda.gsfc.nasa.gov/product/map/dr2/likeditiget.cfm
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aDM - ¢%; = a We investigated the barotropic model, namely the one with=
c2, = «, which does not require any assumption concerning entrepyifpations. As
we mentioned earlier, this model has an equivalent desmnift terms of a k-essence
scalar field. Our findings are shown in Fi15
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Figure 2.15:aDM - ¢Z; = a: Parameter likelihoods computed for th&M model under the
assumption of barotropic fluid, i.e. a fluid that fulfils théateon cgﬁ = «. The left panel is CMB
alone, the right panel is CMB combined with the matter povpecsrum. When the matter power
spectrum is taken into account the constraints on the emuatistate parameter are much tighter.
The other parameters are fully consistent with the restifisyears WMAP release.

With this choice of the sound speed we tested the equatiotatd ef dark matter.
Our best fit model from the 5 year WMAP CMB data has- (8+11) x 10~* andQ2, =
0.76 + 0.04: we confirm that an almost pressureless component is the likelst one.
Since we know that the effect of a non-vanishing sound speéalstrongly modify the
clustering properties, we investigated the constraintEvthe matter power spectrum
data put on this specific model. As expected, the constraiatghrinks tola| < 1077, in
excellent agreement with what foundMuller (2005. For2, we find2, = 0.73+0.02.

In Figs.2.16and2.17the effect of even such a tiny barotropic EoS parameter iesho

aDM- c¢%; = 0 The parameter likelihoods for the case:$f = 0 are shown in Fig2.18
The main difference with respect to the barotropic modemM®aker constraint on, due
to the presence of a vanishing effective sound speed thaélsatihe pressure term in the

perturbation equations, guaranteeing the clusteringestigs of the dark component.
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Figure 2.16:Matter power spectrum dependencecarThe black solid line is the matter power
spectrum computed far = 0, i.e. for the concordancACDM model. The dashed curve is for
the valuen = —1 x 10~9; the dot-dashed curve is far= 1 x 10~5. The perturbation instability
is clear when a negative EoS parameter is chosen.
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Figure 2.17:To further illustrate the point, for the barotropiM model we plot against real
data the power spectra for valuescoéit 20 from the best fit. It is clear that the data constrain the
value ofa in two ways: 1) the theoretical curve has to fit the overalpghaf the data distribution;
2) the data points at smaller scales pin down the value|ptonstraining it to be small enough to
i) give a small enough Jeans scalgfor o« > 0, such that enough power is produced for ),
andii) for o < 0, to produce an explosive growth of perturbations only atlker@ugh scales,
again such that above the Jeans length, where gravity dtesiagainst the pressure effects, the
spectrum is undisturbed. It is clear from the figure that tread effect is dominant, in that it is
extremely sensitive to the value af

We geta = (—1.5 £ 3) x 1072 and2, = 0.70 £ 0.09. When the matter power spec-
trum is considered, the limit on the square of the barotrgpiend speed shrinks to
(—2+2) x 1072 at 1o level, and2, = 0.69 + 0.05.



70 CHAPTER 2. THE DARK ENERGY PROBLEM

0.021 0022, 0023 0.024 55 60 65 70 75 80 85 0.021 0022 0023 0.024 55 60 65 70 75 80
Q. n H Q. n
b b

002 004 006 008 01 012 014 05 0.6 07 0.8 0.02 004 006 008 01 012 014 055 06 065 07 075 08
Q
T T 3

-10 -5 0 5 092 094 096 098 1 -10 -5 0 5 092 094 096 098 1
n n
s s

305 31 315 32 325 33 305 31 315 32 325 33
log10™ A ] log[10™ A ]

Figure 2.18:aDM - c2; = 0: Parameter likelihoods for theDM model with sound speed
cgﬁ = 0. The left panel is for CMB alone, the right panel is for CMB daimed with the matter
power spectrum. The barotropic sound speed squarisdstill consistent with), but the con-
straints are weaker than in the case of a pure barotropic flind other parameters do not change
significantly with respect to the concordance model.

aDM - ¢%; =1 For completeness, we also performed the analysis in thelyekis-
tering limit, described by2; = 1; as expected, the model fails completely in fitting the
observational data. A fluid with a luminal speed of sound prés the clustering at scales
even close to the horizo®Qercellini et al. 2007).

«CDM Models

In what follows we present the results we obtained ford@M model, i.e. when we
consider a flat universe filled with baryons, cold dark mattet a dark energy component
described by the affine equation of state Ej38. The choice can help to distinguish
the cosmological constant from a more general dynamical.fill this framework the
most natural value for the speed of sound?js= 1: with this choice, our fluid descrip-
tion represents well the attractor dynamics of a quintessaecalar field, when < 0
Quercellini et al(2007).

aCDM - ¢% =1 In Fig. 2.19we show the results for theCDM model withcZ; = 1.
Also this case, as the previous one, has an equivalent geeorin terms of a scalar
field, but with a standard kinetic term. The main effect ofkdanergy is to modify
the low multipoles region of the CMB power spectrum, unfoetely the one where
high cosmic variance prevents a precise determinationeottismological parameters.
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Even worse, the model suffers from intrinsic degeneracfgszeroth order, i.e. in the
background, 1) ilv ~ 0 the dynamical part of the affine component behaves like dark
matter, while, 2) ifa. ~ —1 it can replace the cosmological constant. Since we fixed the
speed of sound equal tq the first degeneracy is not present because dark matter and
the affine component are different at the perturbation |ew are left with the second
degeneracy, that is clearly visible in the flat likelihood b, and the broad likelihood for

«. We obtain a rather loose constrainten.e.ao = —1.2 + 0.4, whileQ, = 0.5 +£0.2.
When we add the matter power spectrum, the— o degeneracy is partially removed.
The result is a slightly tighter constraint apwhich isa = —1.1 +0.2.
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Figure 2.19:aCDM - cZ; = 1: Parameter likelihoods computed for ta€ DM model when the
sound speed is fixed t@ﬁ = 1. The left panel is CMB alone, the right panel is CMB combined
with the matter power spectrum. The almost flat likelihood (g together with the broad one
for « reflect the degeneracies of the model. Adding matter powextgpm data helps to break
this degeneracy since it forc&sh? to be of the order 0f.11 anda ~ —1. However$), remains
essentially unconstrained.

aCDM - ¢% =0 The results are only marginally affected by the value of thensl
speed of the dark component (fig.20, since the CMB is basically insensitive to the
sound speed of dark energy. We find= —1.1 +£ 0.4 andQ2, = 0.5 £+ 0.2. When the
matter power spectrum is included in the analysis thesegghtonr = —1.0 4+ 0.3 and
Oy =03+£0.2
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Figure 2.20:aCDM - cZ; = 0: Parameter likelihoods for theCDM model when the sound
speed is fixed ta2; = 0. The left panel is from CMB alone, the right panel is from CMB
combined with the matter power spectrum. The results arng dese to those obtained in the
case of sound speed equal to 1.

aCDM - c¢%; = a When the dark component is forced to be barotropic the only de
generacy we are left with is the first degeneracy mentionedealsincen ~ 0. The
result is2, = 0.76 + 0.03 while Q2. and« are badly constrainedv(= (6 4= 9) x 1073):

a lower value of(2. can be balanced by the dynamical part of the affine component.
When the matter power spectrum is added we obtain a slightiyetr constraint o2,

(24 = 0.74 £ 0.02), while Q. is determined by the shape of the spectrum. This implies
actually a broad likelihood for the parametersince the coefficier(ipxo — pa) ~ 0. We
obtaina = (1.94+1.4) x 1072, The figure2.21summarises the results described above.

2.3.3 Conclusions

We studied the effect of an affine EoS fluid model applied tod&ek sector, both as a
unified description of dark matter and an effective cosmickigconstant, and as a pure
dark energy component. Our model makes use of a dynamicaingderisation relating
p andp, as opposed to the usual kinematics description of the EcBrygder in terms of
its current value and its first derivative. In a previous pdpabi et al.(2007) we carried
out a comparison of the background evolution of this modéhwkisting cosmological
observations. In the present work, we focused on the betawfocosmological pertur-
bations, and compared the theoretical predictions witlCid& WMAP 5 year data, and
with the SDSS large scale structure data.



Table 2.2:Best fit parameter values faDM.

models/params

ACDM +

SNe & BAO (WMAP5)

aDM - bar

CMB

MPS

aDM - cZ =0

CMB

MPS

Q,h? 0.02265 £ 0.00059 | 0.0223 = 0.0007 | 0.0223 & 0.0006 | 0.0224 & 0.0006 | 0.0224 & 0.0003
Q.2 0.1143 + 0.0034 - - - -
Hy 70.1+ 1.3 75£5 71+£2 69 £ 6 67+ 4
T 0.084 £ 0.016 0.090 £0.018 | 0.083+0.016 0.086 £ 0.017 0.085 £ 0.017
g 0.960 £ 0.014 0.99 £0.03 0.960 £ 0.014 0.959 £ 0.015 0.957 £ 0.014
log(10" A,)[k=0.002 3.20+0.08 3.10£0.08 3.19+0.04 3.1940.05 3.19£0.04
N 0.721 £ 0.015 0.76 £ 0.04 0.73+0.02 0.70 £ 0.09 0.69 + 0.05
o - B+11) x 107 [ (02+£4)x 107 [ (=15£3)x 103 | (—2£2) x 1077
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Table 2.3:Best fit parameter values fatlCDM.

models/params aCDM - bar aCDM -c2 =0 aCDM -2 =1
CMB MPS CMB MPS CMB MPS
Qyh? 0.0224 4+ 0.0007 | 0.0220 4+ 0.0007 | 0.0223 4+ 0.0006 | 0.0224 £ 0.0006 | 0.0224 4+ 0.0006 | 0.0224 £ 0.0006
Q.h? 0.07 £0.03 0.106 £ 0.004 0.109 £ 0.006 0.107 £ 0.006 0.109 £ 0.006 0.107 £ 0.006
Hy 74+4 72+2 7146 73£3 73£5 7443
T 0.087 £0.017 0.083 £0.017 0.085 £ 0.018 0.088 £0.017 0.086 £ 0.016 0.085 £ 0.018
N 0.975£0.019 0.964 £ 0.015 0.962 £0.014 0.964 £+ 0.014 0.963 £ 0.014 0.963 £ 0.015
log(10A)[k—0.002 | 3.15£0.06 319+ 0.05 318 £0.05 317 +0.04 318 £0.05 317 £0.05
Qp 0.76 £0.03 0.74 £0.02 0.5+0.2 0.3+0.2 0.5+0.2 0.2+0.2
«@ (6+9)x1073 | (1.9+1.4) x 1072 —-1.1+04 —-1.0£0.3 —-1.2+£04 —1.14+0.2
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Figure 2.21:a4CDM - c¢Z; = o: CMB alone, left panel, and CMB combined with MPS, right
panel, likelihoods for the pure barotropicCDM model @gﬁ = «). The CMB alone likelihoods
show the degeneracy betwe@ph? and(2,, beinga close to 1. Adding the matter power spec-
trum Q.h% and(2, are better constrained, but we lost any informatiomofthis is because we
assume a flat universe).

As a first result, we obtained much tighter constraints orprameters of the model
with respect to the analysis carried out the backgroundrelbkes inBalbi et al.(2007),
confirming that perturbations should be properly includethie calculations when de-
veloping effective models for the dark secu@liviita et al. (2008.

In the case when the fluid is treated as a unified dark comppwerget values of the
effective cosmological constafity, ~ 0.7, essentially independent of the speed of sound.
For the equation of state parameterthe constraints vary when the fluid is treated as
barotropic (resulting in a slightly positiwe) or a vanishing speed of sound is assumed
(resulting in a slightly negative). Both cases are however compatible with= 0 at one
sigma confidence level. The inclusion of the matter powectspm in the analysis has
generally the effect of shrinking the confidence intervallos parameters, in particular
in the barotropic case, due to the effectcobn the Jeans length of the perturbations
Quercellini et al(2007).

When standard dark matter is included, the effecta oh the clustering process is
less relevant, because the matter-like component of tHeedrfluid is forced to mimic
the cosmological constant behaviour. This is apparent fiteerfact that thex best fit
value moves tax ~ —1 which is typical of a cosmological constant. The constsint
in the barotropic case remain quite tight, but get largermtie sound speed is set to
zero. We also considered the case with a sound of speed equaity, which describes
a scalar field behaviour. Also in this case the constraints are rather loose.



76 CHAPTER 2. THE DARK ENERGY PROBLEM

It is important to remember that these results are achievédnathe context of a
constant speed of sound. This represents a strong consinalit is the main reason why
we obtained nearly pressure-less components. We needshiransound speed during
the structure formation epoch. An extension of this scernamttempted ifiattella et al.
(2010 where time-dependent sound speed models are discussed.

Conclusions

In this chapter we have discussed in detail some issuegddiatthe dark energy prob-
lem. Dark energy is a new component of the Universe, sungligthe largest one, which
theorists have introduced to explain the late time accttgraf the Universe expansion.
The evidence for such behaviour is now compelling. We foumthér evidence for dark
energy by measuring the ISW effect cross-correlating CM& [28S datasets at a high
confidence level. Although there are no significant evidermiedepartures from the
simplest kind of dark energy, i. e. a cosmological constans tempting to explore
other scenarios, with more complicated models, since #imshelp to solve the coinci-
dence problem and possible candidates can be found in fuerdatrparticle theories.
We discussed an example involving two coupled scalar fieldscanstrained the model
parameters using several observables. Nonetheless tive oathe dark energy remains
a mystery and more accurate experiments are required wyiag to rule out models.



Chapter 3

Statistical Toolbox: Needlets Frame

...reality is not external.
Reality exists in the human mind,
and nowhere else.
Not in the individual mind,
which can make mistakes,
and in any case soon perishes....

(“Nineteen Eighty-Four”, G. Orwell)

Cosmic microwave background radiation represents a fuedéahtool to probe the
Universe and test our theories. Its analysis is naturalljop@ed both in real space,
where we measure the temperature anisotropies and it & ¢asieal with the partial sky
coverage and the experimental noise, and in the harmoniaidomhere beam treatment
and cosmological parameters estimation are more effe®wth spaces have advantages
and disadvantages. In this chapter we introduce a new wawdes on the sphere, more
properly a frame, calledeedletswhich combines the virtues of the two spaces on which
the temperature anisotropies decomposition is partiguiiarntful.

Astronomical data generally give rise to complex hierazahstructures, eventually
described as fractals, which require a multi-scale ingaston. The wavelet transform
represents then a very useful tool to CMB and astrophysatal@halysis in general, since
it provides a frequency decomposition of the field, keepragé of the local features in
pixel space where the field is defined. For this reason waveletform very well in
constraining statistical properties of a given field (sushsatropy and Gaussianity), as
well as its morphology; moreover they can be used for recocisbn algorithms such
asshrinkageor thresholding See for exampl&Viaux et al.(2009; Anestis(2007) and
references therein.

77
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Over the last few years, wavelets have emerged as one of teepowerful tools
of CMB data analysis, finding applications in virtually atbas where statistical meth-
ods are required; a very incomplete list of references shodlude testing for non-
Gaussianity (se¥ielva et al.(2004); Cabella et al(2004), foreground subtractiorHansen
et al.(2006), point source detectiors@nz et al(2006), component separatioMpud-
den et al(2009; Starck et al(2006), polarisation analysisGabella et al(2007)), de-
noising Sanz et al.1999 and many others. The reason for such a strong interest is
easily understood. As it is well-known, CMB models are bestiyased in the frequency
domain, where the behaviour at different multipoles cambestigated separately; on the
other hand, partial sky coverage and other missing obsensmake the evaluation of
exact spherical harmonic transforms troublesome. The gmatibn of these two features
makes the time-frequency localisation properties of wetgaihost valuable.

In Sec.3.1we introduce the needlets formalism, while in S&@€we discuss in detail
their properties, comparing them with other filter condtiares. In Sec3.3we develop
the estimators we will use in the following analysis, andlfinave conclude presenting
the numerical implementation we adopt.

3.1 Operative Definition of a Spherical Needlets Frame

Despite the wide agreement on their importance as a datgsaadstrument, the deriva-
tion of a wavelets basis on the sphere is still an open issueesgarch. Many efforts
have been undertaken in this area, most of them being basmdtbp so-called tan-
gent plane approactAf(toine & Vandergheynstl999. In this framework, a flat sky
approximation is entertained locally, and then some forrstafndard plane wavelets are
implemented. Directional wavelets have been advocatdddiywen et al (2006 2007),
again by means of a tangent plane approximation. An integesttempt to overcome
the tangent plane approximation is dueSanz et al(2006. A detailed study of the
wavelets construction in terms of group theory is discuss&tliaux et al.(2007, 2008.

A new approach to spherical wavelets was introduced in tgsstal literature by
Baldi et al.(2006, adapting tools proposed in the functional analysisdiere byNar-
cowich et al.(2006); the first application to CMB data is due Rietrobon et al(2006),
where needlets are used to estimate (cross-)angular ppeetra in order to search for
dark energy imprints on the correlation between large sstaleetures and CMBSachs
& Wolfe, 1967). A detailed description of the results obtained are disedsn Sec2.1
Guilloux et al.(2007) investigates the effect of different window functions ieedllets
constructions; wheredaldi et al.(2007) provides further mathematical results on their
behaviour for partially observed sky-maps. Needlets appbns have been applied to
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angular power spectrum estimation in the presence of néiag ét al, 2008 Fay &
Guilloux, 2008, estimation of the bispectrunbén & Marinucci 20081 applied to the
WMAP 5-year data release Bietrobon et al(2009 andRudjord et al (20093 to con-
strain the primordial non-Gaussianity parameter (see4S8c.The bispectrum formal-
ism has been further exploited Bietrobon et al(2009 and Rudjord et al.(2009h
who addressed the sky asymmetry issue within the thred-porrelation function (see
Sec.4.3) and the primordial non-Gaussianity parameter. Foregtmamponent separa-
tion has been studied yelabrouille et al(2009, while analysis of directional data are
described irBaldi et al.(2008. Recently, the needlet formalism has been extended to
the polarisation field, as discussed®gller & Marinucci(2008; Geller et al (2008 and
Geller et al.(2009.

Needlets enjoy several features which are not in generatepieby other spherical
wavelets construction; we anticipate some of these festuvkich we shall investigate
more deeply in the Sections to come. More precisely:

a) they do not rely on any tangent plane approximation (coepanz et al. 2006
and take advantage of the manifold structure of the sphere;

b) being defined in harmonic space, they are computationally convenient, and
natively adapted to standard packages such as HEAI(Biarski et al, 2005

c) they allow for a simple reconstruction formula (see Bd), where the same
needlets functions appear both in the direct and the inveassform (see also
Kerkyacharian et al2007)). This property is the same as for spherical harmonics
but it is not shared by other wavelets systems such as the well-knowrri§ahe
Mexican Hat Wavelet (hereafter SMHW));

d) they are quasi-exponentially (i.e. faster than any patyial) concentrated in pixel
space, see E@.6below;

e) they are exactly localised on a finite number of multipaies width of this support
is explicitly known and can be specified as an input paranf{ets Eq3.1);

f) random needlets coefficients can be shown to be asymaligtincorrelated (and
hence, in the Gaussian case, independent) at any fixed awijgtEnce, when the
frequency increases. This capital property can be exploiteseveral statistical
procedures, as it allows us to treat needlets coefficierassample of independent
and identically distributed coefficients on small scal¢ast under the Gaussian-
ity assumption.

http://healpix.jpl.nasa.gov
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The following discussion can be found Marinucci et al.(2008 and Pietrobon
(2009 where a numerical code is provided. Complementary mathieahanalyses can
be found inGeller & Mayeli (2007); Lan & Marinucci(20083 andMayeli (2008.

We start by outlining briefly the construction of a needledsib. More details can be
found inNarcowich et al(2006, and inBaldi et al.(2006. We shall discuss the details
of the construction step by step, in order to provide to pidénsers a clear recipe for
needlets implementation.

We first recall that the spherical needlet (function) is dedias

l
Ul3) = VA b)Yl ¥im € (3.1)
J4 m=—/{

wherey and &, are directions on the spher&y,, is a spherical harmonic function,
with Y ,,,, identifying its complex conjugate, andz) is a filter function defined for
x € [1/B, B], which the entire needlet construction relies on. Here, se{yg;} to
denote a set afubature point®on the sphere, corresponding to frequemncin practice,
we shall identify these points with the pixel centres in HEA. Also, \;;, denotes
the cubature weights, which for simplicity can be envisaged/N,, N, denoting the
number of pixels for the choseHEALPIx resolution (sedietrobon et al(2006 and
Sec.2.1).

Needlet shape: B = 2, J = 8
1.5 T T T T T T T T T T T T T
1.0— —
° L i
<
S L i
st
= 05— -
=%
g L i
< L 4
0.0
050 o0
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
afrad]

Figure 3.1:Needlets in pixel space3 = 2, j = 8
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Intuitively, needlets should be viewed as a convolutionha projection operator
Zf;l:fz Y 0 (9)Yem(€1) With a suitably chosen window functidit.). Special properties
of b(.) ensure that the needlets enjoy quasi-exponential lotalsaroperties in pixel
space. Formally, we must ensure thidafcowich et al.2006 Baldi et al, 2006):

e b%(.) has support i+, B], and hencé(-; ) has supportif € [BI~!, Bi+!]
e the functiond(.) is infinitely differentiable in(0, co).

e we have
- l
2 _
E 1 b (E) =1forall ¢ > B. (3.2)
J:

It is immediate to see that property (i) ensures the neelibate bounded support in
the harmonic domain; property (ii) is the crucial elementhia derivation of the local-
isation properties, which we shall illustrate in the foliogy section. Finally, property
(i) is necessary to establish the reconstruction fornwitech we shall discuss below;
functions such a&*(.) are calledpartitions of unity

There are of course many possible constructions satisf{yiny indeed an interest-
ing theme for future research is the derivation of optimaldaws satisfying these three
conditions (comparé&uilloux et al. 200]. We expect, however, that the choicebof)
will only exert second-order effects on the final estimates (& Marinucci 20083. An
explicit recipe for the construction of.) is as follows.

1. Construct the function

0, otherwise

f(t):{ exp(—p), —1<t<l

It is immediate to check that the functigii.) is C*> and compactly supported in
the interval(—1,1)

2. Construct the function

L ()t

L fdr

The functiony(.) is againC*; it is moreover non-decreasing and normalised so
thaty)(—1) =0,(1) =1

()
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3. Construct the function

1 if 0< t <3
p(t)=9q v1-g5t—5) if <t <1
0 if t >1

Here we are simply implementing a change of variable so tieatdsulting function
©(.) is constant o0, B~') and monotonically decreasing to zero in the interval
(B7',1). Indeed it can be checked that

B -1 B —1 for t=
and
1
o(5) = (1) =1
p(l) = Y(=1)=0
4. Construct
B () = o) — 0(6)

The expression fo?(.) is meant to ensure that the function satisfies the partition-
of-unity property of Eq3.2 Needless to say, fdi(¢) = {o(5) — @(5)}1/2 we
take the positive root.

In Fig. 3.2we show the set of filter functions ihspace for the choic& = 2. They
result in a homogeneous binninglisg /.
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Figure 3.2:Filter function in/-space which the needlet construction relies on. Set ceedfot
B =2.

Needlets coefficients for an arbitrary temperature fieldn@sky are hence given by
Bjr = / T(x)(z)dx
S2

-/ {z > amnm<x>}wjk<x>dx
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It is very important to stress that, although the needletsatonake up an orthonor-
mal basis for square integrable functions on the spherg,dbeepresent ight frame.
In general, a tight frame on the sphere is a countable senetifins{e;} such that, for
all square integrable functions on the sphgre L?(5?), we have

D (fe)?= | f(3)%0

i 5
so that the norm is preserved. Of course, this norm-presgmioperty is shared by all
orthonormal systems; however, frames do not in general mplkebasis, as they admit
redundant elements. They can be viewed as the closer systanbasis, for a given
redundancy, seelernandez & Weis$1996, Baldi et al.(2006 andBaldi et al.(2007)
for further definitions and discussion.
In our framework, the norm-preserving property becomes

Zm:Z%f@, (3.4)

where

is the raw angular power spectrum of the rﬂé(p}). Identity 3.4 has indeed been verified
by means of numerical simulations and implicitly providies torrect normalisation for
needlets. It is basically a consequence of the peculiaitiparbf-unity property ofb(-)
(Eq. 3.2). Of course this property is not generally shared by othastractions such as
SMHW, where the wavelets functions are normalised to unitye real domain. EQ.4
is related to a much more fundamental result, i.e. the rénactgon formula

T(H) = Bintie(7) (3.5)
7.k

which in turn is a non-trivial consequence of the carefulstaurction leading to E.2
As mentioned before, the simple reconstruction formula @f E5 is typical of tight
frames but does not hold in general for other wavelets systdins easy to envisage
many possible applications of this result when handlingkedslata and we hence view
Eq.3.5as a clear advantage of the needlets over their competitors.
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3.2 Localisation properties

The following quasi-exponential localisation propertynaedlets is due tblarcowich
et al. (2006 and motivates their name:
ForanyM = 1,2, ... there exists a positive constafnf such that for any point € S?

we have ,
CMB]

(1+ BJarccos(< x, & >)M

[i(9)] < (3.6)

We recall thatirccos(< z, §;;, >) is just the natural distance on the unit sphere between
the points(z, ;). The meaning of E¢3.6is then clear: for any fixed angular distance,
the value ofy;, (%) goes to zero quasi-exponentially in the paraméteiThis clearly
establishes an excellent localisation behaviour in pigats. Note that the constantg

do depend on the form of the weight functidf), and in particular on the value of the
bandwidth parametds; typically a better localisation in multipole space (i&yvalue of

B very close to unity) will entail a larger value of;, that is, less concentration in pixel
space for any fixegl. The resulting trade-off in the behaviour over the harmamid real
spaces is expected: smaller valuesBotorrespond to a tighter localisation in harmonic
space (less multipoles entering into any needlet), whdezgsr values ensure a faster
decay in real space.

Due to their localisation properties, needlets are esfheciaeful in the analysis of
partial sky coverage. In fact, in view of E.6 we expect the value of needlets co-
efficients to be mildly affected by the presence of gaps inntfags. To illustrate this
important feature, we plot the quantity

< (ﬁjk,mask - ﬁjk)Q >
p)
< B3 >

Xjk = (3.7)

in Fig. 3.3, where the Kp0 mask, that is used to remove Galactic emission and point
sources from WMAP data (roughiip% of the sky), is applied. The expected values of
Eqg. 3.7 are again evaluated by means of 100 Monte Carlo simulatiarsrticular we
focus on needlets coefficients correspondin@te 2.72 and;j = 5, which amounts to a
range in multipoles space in the ordeéf< ¢ < 398. To put our results in perspective,
in the same Figure we show analogous findings with the use @b-&at binning filter
and SMHW. We recall the SMHW formula

v R) = e[ (5)] - [2- (R) Jew otremd

2See LAMBDA website, http://lambda.gsfc.nasa.gov/
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wherey = 2tan 6/2 (6 is the polar angle)R is the scale of convolution anti( R) a nor-
malisation factor Martinez-Gonzalez et aR002. Under these circumstances, needlets

KpO mask effect on needlets coefficients — B = 2.72, j = 5

0.0 e— 1.0

KpO mask effect on tophat binning coefficients

00 e— 1.0

KpO mask effect on SMHW coefficients — R = 28 arcmin

Figure 3.3: Effect of KpO on needlets coefficients, visualised by phaition a sky map the
quantity defined in E¢3.7. From top to bottom, the result for needlets, flat binning) SMHW
(28arcmin).

coefficients are well localised, but slightly sensitive be@ tmask. Indeed, only6% of

the pixel are changed by less than; SMHW coefficients perform a bit better3%)
while a simple top-hat binning fails completely (ort§:). The difference between the
two wavelets bases can be due to the different power thatgiveyto multipoles (see
fig. 3.95). In fact the performance of needlets can be improved chgadsie appropriate
BY, that defines the optimal shape for the windef), given the multipoles range of
interest. For details sg@uilloux et al.(2007). In the same paper, the authors argue that
an optimal filter can be adapted to deconvolve a specific maskproperty provides a
further degree of flexibility to the needlets toolbox.
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In Baldi et al.(2006, another relevant property of needlets coefficients wesudised,
namely their asymptotic uncorrelation at any fixed angulstatice, for growing frequen-
ciesj. More explicitly, at high frequency needlets coefficienés e approximated as
a sample of identically distributed and independent (uikarssianity) coefficients, and
this property opens the way to a huge toolbox of statisticat@dures for CMB data
analysis (for instance, for testing Gaussianity, Se8.and isotropy, Sect.1). Also, in
view of Eq. 3.3, for full sky maps and in the absence of any mask we shouldattpe
theoretical correlation to be identically zero wheneyer js| > 2.

The probabilistic properties of the coefficients, have been established Baldi
et al.(2007); in that paper, it is shown that for any two (sequence ofglsig; ., £ such
that their angular distance is larger than a positivier all j, we have

irliw) oM torali =123, (3.8)
(B2)(6%,) — ()M
thus proving wavelets coefficients are asymptotically uredated asj — oo for any
fixed angular distance; E§.8is clearly a probabilistic counterpart of E§)6. To the best
of our knowledge, this is the first example of such kind of lessior any type of spherical
wavelets: asymptotic uncorrelation (i.e. independenchénGaussian case) simplifies
enormously any statistical inference procedure. In paldic EQ.3.8 is used inBaldi
et al. (2007 to derive analytically the asymptotic behaviour of a numifeprocedures
based on needlets, including tests on angular power spactests for Gaussianity and
isotropy.
In order to test this property, let us define the realizedetation between two differ-
ent scaleg, j; as

Piviy = Zk; <6j1k5j2k> . (39)
VB2 Y82

By using Eg.3.30ne has that:

BirbBiak) = Y b(E/B)b(¢/B"=) Cy ) " Ketmm (3.10)

4
(3.11)

where(C, is the underlying CMB angular power spectrum and the cogiernelK ...,/
is defined in terms of the observed magK+) (see e.gHivon et al.(2002):

mmz/mmmmwwm
SQ

Note that, in the absence of gaps (I(7) = 1), > . Kumm reduces simply t¢2/+1).
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Table 3.1:Needlets correlation parametéd?. = 2.72 without gaps

JlJ 1 2 3 4 5
1 1000 0.275 0.001 0.001 0.003
2 - 1.000 0.248 0.001 0.001
3 - - 1.000 0.268 0.001
4 - - - 1.000 0.242
5 - - - - 1.000

Table 3.2:Needlets correlation parameté?. = 2.72 with gaps

i1 2 3 4 5

1 1.000 0.420 0.140 0.040 0.060
2 - 1.000 0.335 0.023 0.001
3 - - 1.000 0.291 0.004
4 - - - 1.000 0.252
5 - - - - 1.000

Equation3.9 can not be expected to be reproduced exactly, due to nurhapipeox-
imations; in particular, we should stress that theoretieallts are derived under the
assumption that needlets coefficients are evaluatedadtcubature points, so that the
{a;,n} are precisely reconstructed from the maps. Of course,shistithe case in prac-
tice; however, we do expect small and vanishing valueg,fex. j,. At the same time, we
expect this correlation to increase on the presence of disy but less so than for other
bases. Here, we want to illustrate the practical relevahtde®mathematical results by
means of simulations on the correlation coefficient. Morecgely, we computed the
guantity3.9 by performing a Monte Carlo ovaf0 simulations. Our findings are shown
in Tables3.1, 3.2

We view these results as very encouraging. In the absencenafsi, the correla-
tion coefficient is by any practical means virtually nedbigi for all frequency distances
greater or equal than 2, while at distak¢ = 1 the correlation is around 0.25 in good
agreement with Eq3.9 which predict9).22 for our input parameters. In the presence of
sky cuts, the performance deteriorates as expected onbyvat Where it exceeds a few
percentage points, as shown for our simulations in the dabe &p0 mask. A computa-
tion analogous t8.9yields for SMHW the theoretical results reported in Tabl& note
how we have no-zero values at all distances. NumericaltseeBukupport the theoreti-
cal findings are provided by Tabl@&s4, 3.5. We believe these compared results strongly
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Table 3.3:Theoretical correlation for Needlets and SMHW

corr/Aj 0 1 2 3 4
Needlets 1.000 0.220 0.000 0.000 0.000
SMHW 1.000 0.500 0.100 0.014 0.002

Table 3.4:SMHW correlation parameter without gaps. The sdalis given in arcmin.

R/R 1792 896 448 224 112 56 28

1792 1.000 0.503 0.109 0.016 0.002 0.0002 0.00003
896 - 1.000 0.500 0.099 0.014 0.002 0.0002
448 - - 1.000 0.510 0.103 0.014 0.002
224 - - - 1.000 0.511 0.104 0.014
112 - - - - 1.000 0.513 0.107
56 - - - - - 1.000 0.519
28 - - - - - - 1.000

support the potential of needlets for the implementatidrstatistical procedures, where
uncorrelation properties are clearly a very valuable asset

As a further comparison, we evaluated the domains in harereomil real spaces for
needlets, top-hat binning and SMHW. In particular we norsedl the three bases to have
roughly an equal area in the harmonic domain, paying atietiti have the maximum of
the power in a similar range of multipoles. Results are ptbth Fig.3.5, 3.6. It is ev-
ident how SMHW and needlets outperform top-hat binning by baders of magnitude
in terms of localisation in real space: indeed in this dontheatwo wavelets construc-
tions perform quite similarly. Moreover, in Fi§.8 we computed the angle where the
integral of the filter functions in pixel space reacli®$s, 95% and 99% of the total

Table 3.5:SMHW correlation parameter with gaps. The sc&les given in arcmin.

R/R" 1792 896 448 224 112 56 28
1792 1.000 0.496 0.113 0.022 0.005 0.002 0.0007

896 - 1.000 0.520 0.115 0.021 0.005 0.002
448 - - 1.000 0.523 0.114 0.021 0.005
224 - - - 1.000 0.520 0.114 0.020
112 - - - - 1.000 0.522 0.116
56 - - - - - 1.000 0.527

28 - - - - - - 1.000
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Figure 3.4:The correlation for needlets (top panels) and SMHW (bott@mets) is plotted as
a function of the scale, in absence (left panels) and in paeséright panel) of sky cuts (KpO
mask).

area, respectively. Again, it is immediate to check how argscale needlets outper-
form very clearly a simple binning approach; on the otherdh&MHW seems slightly
more concentrated in this setting. The linear trend for letedn the log-log plot is a
direct consequence of their construction, and in partroofldhe functional dependence
on//B7.

On the other hand the advantage of needlets over SMHW emauigesclearly in
the harmonic domain. More precisely, after normalisingtthe methods to be centred
at the same angular scale, with roughly the same total poneeneedlets support seems
clearly more concentrated than SMHW. In particular we sttesv SMHW suffer from
“leakage” by the very low multipoles, i.e. exactly those malected by sky cuts and
cosmic variance. No such leakage occurs for needlets.

3.3 Building Needlets Estimators: 2- and 3- point corre-
lation functions

In the previous sections we have introduced the spherielats frame, and discussed
its properties which we tested by means of simulations. \&e ebmpared needlets to
alternative binning choices (top-hat, SMHW) concludingtttihere is a wide number of
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Figure 3.5:The red solid line represents needlets window functﬁn()lg%) in harmonic space for
B =2.72, 7 = 5. The blue dashed and green dot-dashed lines provide tHeatagod the SMHW
window functions, respectively. The SMHW corresponds toaesk = 28/ in pixel space.

applications in CMB data analysis where needlets perfortremely well. We now want
to describe the statistical techniques which lay behind G analysis achievable with
needlets. We will discuss specific problems and the reswdtsbtained in more details
in the following chapters (see ChapSec.2.1and Chap4).

The needlet coefficients of a field 7) defined on the sphere are given by the projec-
tion of the field itself on the corresponding needlet(7), as stated by EQ.3:

l
Bjk = \/@Zb(é) > amYom(Er)
l m=—/{
wherea,,,s are the spherical harmonics expansion coefficients. In3Fgve show the
needlet coefficients of WMAP 5-year temperature map for fhecsic choiceB = 2
andj; = 4. A remarkable aspect of this construction is that the neexiefficients
can be represented easily as a mollweide projection irHBALPix framework. This
makes dealing with needlets particularly handy, since gdsy to encode a needlets
analysis usingHEALPIx routines Pietrobon 2009. We assume¥; = {{ju},_,
to be the pixelization of the unit sphe$é provided byHEALPix , with N4, such that
Imax = [B711] < 2Ng4. (With [-] denoting the integer part arigl > 1). We then computed
the g}, coefficients for eaclt position given by theHEALPix scheme evaluating the
projection operators, namely the productof, Y;,,Y i,y for each pair of pixels s,
by means of thédEALPiIx software package.
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Filter profiles 1n real space
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Figure 3.6:Behaviour of needlets (solid red), SMHW (dot-dashed gresw) top-hat binning
(blue dashed) in pixel space. The angle in horizontal axisdasured in radians.
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Figure 3.7:Here in this figure we provide details of the behaviour in psgace over the relevant
range, i.e. the region where the three functions exée@l. Lines have the same meaning as in
the previous figures.

(Cross-) Power Spectrum

Having extracted the needlets coefficiets from a map (e. g. the CMB or source

count map), we can use Eg.4to build a (cross-)correlation estimator in wavelet space,
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Figure 3.8:The three lines represent the angle at which the area ofeteatdted, or the top-hat,
in blue, filter reaches th&9%, 95%, 68% of the total area as a function of the peak multipole in
each window function. The latter corresponds directly tivarg; for needlets and to the scale
for SMHW; for the top-hat window the centrélin the band is given.

B, as:

g’ = Z - 0B (3.12)

p1x

where N,i«(j) is the number of pixels in the pixelization scheme (givenMy, =
12N2,.) with | and J denoting the two chosen maps. The theoretialiption for 3;
can be computed from the expectel as:

o (20+1) ANE
6}‘—2} - {b(E)} v (3.13)

where we recalCy’ = (aj,,ajy) = 3., 5755 Al G-

B; provides then an unbiased estimator for the (cross-) angal@er spectrum within

the needlets framework. The analytic relation betwgeandC, underlines a few more
advantages in using needlets with respect to other wavebetstructions. Indeed this
can be used as a check for the simulations andHBALPix implementation we gave,
and it makes extremely easy and straightforward dealinly lngam profiles and experi-
mental window functions, which have to be taken into acceumgn analysing real data
(seePietrobon et al(2006 and Sec2.1l). The duality which needlets embed, namely
the localisation both in pixel and harmonic domain, allovgstal handle the noise too
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QVW Needlets Coefficients j=4
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Figure 3.9:Needlet coefficients of the combined Q, V, W map at the reswolut = 4. The B
parameter is fixed t@. Notice the anomalous bright spots found Rigtrobon et al(2008 are
clearly visible.

(see Sec4.2, Sec.4.3andPietrobon et al(2009 andPietrobon et al(2009 for direct
applications to/MAP 5-year data.)

Computing the 4-point correlation function for thg,, it can be easily shown that the
analytical expression for the dispersion of the estimatesiszcorrelation power spectrum
in needlet space is:

1/2

ABY = (zé: (2166;1) {b (é)r ((C,?)2 + CéGg‘)) (3.14)

which, of course, must be only taken as an approximation vaeating with real data,
when the window functions, noise and partial sky coverage lta taken into proper
account.

It is important to stress that E§.12generalises for a any pair gf j, into

Birgs = ﬁ Zk: BirkBjaks (3.15)
which describes the needlets coefficients covariance anmasitboeen used iRietrobon
et al. (2008 to determine the degree of anomaly of the few hot and coltsspond in
the CMB temperature map (see Séd).

We have shown that the needlets formalism may be suitablthéoangular power
spectrum estimation and therefore the parameters estimaiti particular the applica-

tion of needlets to th&VMAP 3-year data led to interesting constraints on the dynamics
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of dark energy (see Sez.1andPietrobon et al(2006) and to the measure of the differ-
ence in power between the two estimates of the power specoomputed on the north
and south CMB skiesRjetrobon et a).2008. A detailed discussion on the needlets
application to power spectrum can be foundray et al.(2008.

Needlets Bispectrum

In the previous section we described how needlets can tigtbeapplied to the esti-
mation of the 2-point correlation function and how, thank#te reconstruction formula
(Egs.3.2and3.4), it relates to the usual angular power spectrum. It is eagxtend the
formalism to the higher order correlation functions.

In this section we focus on the 3-point correlation functimore often called bispec-
trum, which plays a crucial role in CMB data analysis to detaty departure from the
Gaussian assumption, pointing towards new physics of inflaiVe will discuss widely
this topic in Chap4.We next briefly review the properties of the needlet bispestand
how it relates to the usual bispectrum. An extensive disonss provided inLan &
Marinucci(2008h; Rudjord et al(20093. See alsdietrobon et al(2009.

The needlet estimator is defined as follows:

Sivjejs = Nl

pix

_ b(il)b(jQ)b(js) (261 + 1)(262 + 1)(263 + 1)
- Z Ly Yy VA3 AT

> BikBiakBisk (3.16)
k

014203
0 by ls )\ -
X B
(0 0 o ) e

Bflfzfs = <a51m1a52m2a53m3> = E Qtymy Qlams Alzms (317)

m

where

is the estimated bispectrum, averaged owgs. S}, ;,;, can be seen askinned bispec-
trum, a smooth and combined component of the angular bispectrum.

The bispectrum is supposed to be vanishing for a Gaussiaiibdison. The standard
inflation mechanismGuth, 1981, Satq 19817, Linde, 1982 Albrecht & Steinhardt1982
predicts a tiny non-Gaussianity in the cosmological pédtions: this is why a great
effort has been spent to measure a bispectrum amplitudgetiff from zero in the CMB
data which would provide an extraordinary handle on theyaarlverse physics3mith
et al, 2009 Curto et al, 2008 Komatsu et al.2009 De Troia et al. 2007). This kind
of study is usually performed in terms of the non-linear peaater fx;, (see for example
(Komatsu & Spergel2001; Bartolo et al, 2004). A more detailed discussion will be
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provided in Chap4. Here we want to introduce that the bispectrum allows a riche
analysis: by splitting for example equilateral and isosseonfigurations it is possible to
distinguish two kinds of non-Gaussianity, equilateral &ywl respectively, according to
the triangle shapes which they affe€réminelli et al, 2006).

We will use largely this feature in Se¢.3where we address the bispectrum asymme-
tries. For the purpose of this section it is enough to defiegjthantities we are interested
in. The bispectrum can be divided into four classes baseddeingeometries: equilateral
(equi configurations have three equalalues, isosceles configurationsdj have two
legs equal (e.gj1 = j» # j3), While scalene configurationsdal) have three different
legs. Finally we also consideipenconfigurations, for which, j, andj; do not form a
triangle (e.g.j;1 > j2+73); naively these might be expected to be zero, but since gimeh
cludes a range dfvalues, these could include signals arising frqn, and/; which just
satisfy the triangle relations. Thus open configurationrsespond to the most co-linear
geometries. In principle, since the analytic relation lesmn; and/ is given for eachs,
it would be possible to select the non-vanishing configarationly. However, keeping
them represents a strong consistency check of our numengémentation. The link
between the angular scaleand the needlet resolution must be kept in mind for all the
configurations; e.g., while the equilatefatonfigurations will be dominated by triangles
roughly equilateral ir?, they will also have contributions from other geometriesp&
rating the needlet bispectrum by the above described caafigns may provide insight
into the physical origin of possible anomalies. For inseafickerman et al(2007) and
Erickcek et al(2008 suggest early Universe models which could produce a statily
anisotropic CMB sky.

Before discussing some needlets applications in CMB dalysis, it is important to
recall that the skewness of the needlets coefficients caneuted via E@.16as

1 2
o Fik. 1
S, o Ek = (3.18)

One of the key properties of a needlets frame is that the suheaiquared filter functions
in harmonic spacéy;, is 1 (see Eq3.2). This means that, even if we group multipoles
and each needlet peaks at a certain multipole range, theptmieer is conserved: this
property is peculiar to the needlets and it is not shared bgrotavelet constructions.
Therefore, in the case of full sky maps, the needlets powertsgpm analysis can be in
principle performed with any choice of the parameBemwith the total power conserved,
and only the correlation and localisation properties affédy different width oft,;.
Obviously when dealing with real data, this is not completale due to the presence of
the beam, noise and sky cuts.
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This does not hold any more when the the cubic power of the filtections con-
tributes to the estimator used, which is indeed the caseeo$kbwness expression and
more generally of the bispectrum one. This fact is displapdelg. 3.10 where we plot
the sum of square and cube of the filters functions. The ndbumisampling of the
multipoles for a n-power estimator suggests that the chafitkee B parameter is crucial
for the analysis and must be driven by insight on the rangeudfipoles to be probed.
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Figure 3.10:Solid line sum of thé?; dot-dashed line sum of thg. While the former is equal
to 1 for the entire range of multipole, the latter is not.

3.4 The Numerical Implementation of Needlets

We have released a public numerical code, which computesabélets filter functions
in harmonic space and the needlets coefficients, given afggrameters. The code
implements the construction described in this chapter arxhsed on the public avail-
able HEALPix packagé (Gorski et al, 2009, which is required for the installation. The
needlets software is composed by two programgnéed and “ananeed, which, fol-
lowing theHEALPix structure, respectively deconvolves a given map to obtagedlets
frame decomposition, and reconstructs the original maga,néedlets basis is given as
input.

Both programs accept the same parsing file in which the fuedéhparameters are
provided by the user. A list of such parameters is given in. Bad The maximum

3http://healpix.jpl.nasa.gov/
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Table 3.6:Parameters required by the codes “syneed” and “ananeed”.

Parameter Test value
Crax 250
B 2.0
computeneedlets T
mapfile input/tesilc_RING_512.fits
mapnside 512
maskfile input/wmapkq75.maskRING_512.fits
bl2_root testbl2
needroot Itestneedlet
factor 1

number of multipoles4,..,) and theB parameter are required. Those given, the codes
computes the maximurm necessary to keep all the information in the map. Thg.
of the needlets coefficients is then determined accordingaaelation/ ., < 2Ngqe.
The filter functionsh,; are computed by default, while it is possible to choose wdreth
to perform the needlets coefficients, which actually is tleeshtime consuming part, by
setting the keyword¢omputeneedlets It is necessary then to specify the map and its
resolution. A sky mask can be applied filling thedskfilé variable. The last two key-
words set the output files. It is possible to re-scale the nyagelting ‘factor’ different
from 1.
The code currently accepts “RING” ordering only.

All the analysis described in this chapter and in the follogvbnes has been per-
formed by using this software.

Conclusions

In this chapter we have introduced and studied in detail @&heavelet construction,
called needlets, which distinguishes from the others mdiatause it is has a finite sup-
port in harmonic domain. This translates to a sharp lodabisan pixel space, shared by
other wavelets renditions, and to excellent propertiesoofcorrelation among the func-
tions of the set. This aspect is crucial when building estimsafor CMB data analysis
as we discussed extensively. Needlets result then in a wveryiping tool for the next
generation of cosmological experiments; waiting for theife data releases, we applied
the formalism we developed to the WMAP dataset and a large staicture surveys,
namely NVSS, as we discussed in the previous chapter. Weexplbit further needlet
application in the following chapter, focusing on the isply and Gaussianity issues.



Chapter 4

Non-Gaussianity in the CMB Sky: a
WMAP 5-year data analysis

Sometimes, after long absence, you return to a place
which has painful associations,
and this can be an unpredictable experience.
You have certain expectations:
that a particular street, or room, or céaf
once visited, will inspire a particular feeling,
and you are surprised when it fails to do so.

(“A touch of love”, J. Coe)

In this chapter we discuss the non-Gaussianity of cosmcébgierturbations from
different and complementary points of view. As discusseth&introduction, nearly
Gaussian fluctuations are a general prediction of a broas ofeearly Universe models.
A detailed study of the statistical properties of the cosigmal fluctuations is necessary
to discriminate between several plausible models and geisaght to the physics which
drives the first stages of the Universe evolution. Focusirgg fin the CMB tempera-
ture map on large scales, we find anomalous spots barely ¢iimepaith the Gaussian
hypothesis and describe their impact on the CMB power spectBec4. 1

Then we address the primordial non-Gaussianity issue ilogua the bispectrum
analysis. We constrain the primordial non-Gaussianitapester fy, in Sec.4.2 while
Sec.4.3is devoted to the study of the bispectrum itself and its asgines.

Finally we perform an analysis of the impact of the foregmuesiduals in the CMB
maps which may dilute they;, signal (Sec4.4). The application of needlets is the
rationale behind these complementary studies.

99



100 CHAPTER 4. NON-GAUSSIANITY IN THE WMAP5 CMB SKY

4.1 Needlet Detection of Features in WMAP CMB Sky
and the Impact on Anisotropies and Hemispherical
Asymmetries

Beyond the angular power spectrum of the cosmic microwagkdraund (CMB) anisotropies,
the high sensitivity all-sky CMB maps produced by the Widam Microwave Anisotropy
Probe (WMAPJ (Hinshaw et al.2009 have enabled detailed statistical studies to extract
higher-order information. These studies include chareagon of asymmetries in the
CMB sky (Groeneboom & Erikser20093 and the search for anomalous features in the
anisotropy field. Previous analyses have shown evidencesigpments Copi et al,
2007, asymmetry in the CMB statistics between northern andheyatGalactic hemi-
sphereskriksen et al.2007), and features such as the “cold spot”, a significant negativ
feature in the CMB map first identified with wavele@Gr(iz et al, 2005.

In this section, we make use of needlets to further studyfeatin the WMAP CMB
maps. We focus on the large angular scales or equivalemtlgpdtipoles smaller than
200. We recover the cold spot that was previously detecté¢NtAP data with wavelets,
and we also detect other features, including two hot sploés,iHave so far received less
attention. By masking these features, we study how the angolver spectrum of CMB
anisotropies is modified. Given that these features aréddc¢a the southern hemisphere,
we also discuss the extent to which these features couldspemsible for the north-south
asymmetry in WMAP dataew (2008; Groeneboom & Erikse(20093; Hansen et al.
(2009. As well-known, this asymmetry has also drawn much intarethe theoretical
community, since it could entail strong implications on ggsical nature of primordial
perturbations, including inflatioBrickcek et al(2008. By masking the lowt features,
we find that the difference in the CMB anisotropy variancevaen the two hemispheres
is reduced by a factor 2, reducing the significance of pres/artections.

We finally explore the evidence that statistically significAumps and dips in the
CMB anisotropy power spectrum at multipoles of 20 and 40 ¢ da related to features
in the CMB sky. We did not locate any particular feature in $kg that dominates the
power spectrum at these multipoles; masking the signifieattres detected by needlets
tuned to these multipoles did not change the power spectrara than~5%.

4.1.1 Maps

We decomposed the Internal Linear Combination (ILC) WMA#RPea temperature map
by means of needlet functions correspondingte- 1.8. The choice o8B must be driven

Ihttp://lambda.gsfc.nasa.gov/product/map/current/
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by the insight on the range of multipoles to be probed: thexHdj choice provides us
needlets at eleven frequencigsvhich span properly the low multipoles we are interested
in. Eight frequencies span multipoles up#e= 200, while the information at smallest
scales is concentrated on just three frequencies. The cdmgeltipoles covered by each
needlet is given by the relatighe [B’~!, B/*!] and it is summarised in Tal. 1.

Three clarifying examples of the WMAP 5-year ILC map decosifjon onj = 3,
j = 4 andj = 5 needlets by making use of the functiolsdepicted in Figurel.1are
shown in Fig4.3.

by Profiles — B=1.8 Needlet on the sphere: B=1.8, j=4
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Figure 4.1: Left: Profile of the functionb(z) in ¢-space for the choicé& = 1.8. The black
solid line representg = 4, the red dot-dashed ling = 3 and the blue dot-long-dashed line
J = 5. Right: needlets on the sphere foe= 4. At each cubature poing;;, the needlet is sharply
localised.

J

1

2

3 4-10

4 6-18

5 11-33
6 20-60
7  35-108
8 63-196
9 113-352
10 203-635
11 365-1143

Table 4.1:Range of multipoles spanned by needletsBot 1.8.

We first applied our procedure to the WMAP map with the extenaask KQ5
from the WMAP team. Such a large mask, however, entails atgrearrelation for
multipoles corresponding to large angular scales; for lales ofj, this could poten-
tially impact the needlets coefficients as well. Any detattof significant features in
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the CMB anisotropy map using the large mask, however, caedmnfirmed at a higher
significance level with a smaller mask. After studying theperature map using K@,
we repeated all the analysis applying 8% which is the mask currently favoured for
cosmological data analysis, including power spectrum oreasents. We find that our
results related to statistically significant features a\MMAP map are fully consistent
in the two cases.

Hot/Cold spot maps

In Figure4.3, we represent the needlet coefficients for the casg¢s-08 to j = 5. These
three frequencies are particularly interesting since firepe the low-multipole region,
highlighting a peculiar pattern of anisotropies in the seah hemisphere. When= 4,
we recognise two spots, one hotter and one colder than thhages€MB fluctuations.
While the latter is a detection of the so-callenld spot a feature studied in detail in the
literature as a source of non-Gaussianity in the CMB maglya et al, 2004 Larson &
Wandelt 2004 Cruz et al, 2005 Vielva et al, 2007 Cruz et al, 2007, 2008 Smith &
Huterer 2008, the hot spot has not had the same scrutiny with only a miasciption
in Naselsky et al(2007) andVielva et al.(2007).

In fact, the; = 3 andj = 5 needlet coefficients represent a cross-validation of the ex
isting literature, as they also highlight a second hot spatred at g, = 173, g, = —46)
(as pointed out itNaselsky et al(2007)) and a minor cold spot centred @ = 80, g, =
—33) (observed invielva et al.(2007)), that actually appears with an adjacent hot spot. In
figure4.2the three spots we will use in the angular power spectrunysisahre shown.
We stress that our identification follows uniform criterigtwthe same technique, quite
differently from some of the existing literature. Moreovas explained above we are
also able to identify exactly the range of multipoles whéese features contribute to the
angular power spectrum of CMB anisotropies, due to the §pewedlet properties. To
establish the significance of the features we detected, wsider a Monte-Carlo analy-
sis by performing a large set simulations (1,000) of a Gans€iMB sky with the same
angular power spectrum as the WMAP 5-year best-fit cosmoddbpgarameterdomatsu
et al, 2009; we then compute the average and the standard deviatidwe afistribution
for each needlet coefficient. The expected distributionas$sian with zero mean, ( see
Baldi et al.(2006), in good agreement with our simulations. We focus on thastic

Sy = Bin— < B> | (4.1)

OBk

whereog,, is the usual standard deviation of the distribution. In FeglL3 we show
that the hot and cold spots exceed three sigma levgl-at4. The cold spot appears
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Figure 4.2:Detail of the spots. From the left, the cold spot @t = 209, g, = —57), the hot
spot at(g; = 320, g, = —34) present aj = 4, and the second hot one @t = 173, g, = —46)
measure aj = 3. The true colours are altered by the use of the masks we estplioythe
analysis to highlight the region above three sigma level.

Property / Spots Cold Spot Hot Spot  Hot Spot
(91: gv) (209, —57) (320, —34) (173, —46)
J 4 4 3
Sk (—)3.72 3.56 3.24

Table 4.2:Main properties of the spots highlighted in our analysis.

significantly both in the needlet coefficients fpr= 4 and; = 5, and thus its impact
can be reckoned to span the range betweent and? = 33 (Table 1). In Tablet.2the
significance values of the three anomalous spots are quoted.

It may be suspected that the hot spot we located could be #ospueffect due to
oscillations in the needlet function. See Fgl, right panel. We considered this expla-
nation, but we concluded that the angular distance at whielot and cold spot appear
is greater than the needlet oscillation range.

As a test for the joint significance of needlet coefficients,a@nsider the statistic

_ B Bie— < Bjk Birk >

.,

7 _
k i’
k

(4.2)

wherex/?" is the second moment of the distribution. Of course, thessil distribu-

used again a set of Monte Carlo simulations with the undeglyiCDM best fit model
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WMAP 5yr Temperature map Needlets coefficients Significance: j = 3

WMAP 5yr Temperature map Needlets coefficients Significance: j = 4
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Figure 4.3:Needlet coefficients of the WMAP 5-year CMB temperature n@p the left, from
topj = 3,7 = 4andj = 5 are plotted. The set of needlets is characterised®by 1.8. Each
pixel represents the coefficient for the needlet functiompoted at¢;;, wherek identifies the
pixel in the Healpix ordering. The effect of the applied KQmask is clearly visible, setting
to zero the value of each pixel that belongs to the mask. hterésting to notice that needlet
coefficients highlight the presence of the well known coldtsp the Southern hemisphere, as
well as a hot spot localised in the Southern hemisphere rctodbe mask. Needlet coefficients
for j = 5 show the cold spot pretty well, while the hot spot is weakerother couple of hot-cold
spots appear above the Galactic plane. On the right, frontoghesignificance of the needlet
coefficients forj = 3, j = 4 andj = 5. The three maps show the significangg above the
threshold of3. This allows us to localise if-space the contribution of the hot spot that results to
be in the range of multipoles betweénr= 6 and/ = 18. Computing the coefficients fgr = 6
and observing that the cold spot, if present, does not havwghastatistical significance, we can
deduce the range of multipoles covered by the cold spot: dmt@v= 6 and/ = 33.
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Figure 4.4:T statistics forj = 3 andj = 4 (left-hand side) and with = 4 andj = 5,
(right-hand side). Both the cold spot and the hot spot amrlgievisible in the maps, but when a
threshold ofl*}” > 7.5 is applied their signal is strong only on thie= 4 — j = 5 maps.

(Komatsu et al.2009 and derive the statistics described in Eq. Figure4.4shows the
values ofl';;, for the pairj = 3 andj’ = 4, upper panels, and fogr = 4 andj’ = 5,
lower panels. Results are expressed directly in terms dftttestic defined in Eg}.21in
the upper panels; in the lower panels a threshold . »ffor F{j' is adopted to underline
the fact that the hot and cold spots identified by the njask4 are the most significant.

[11.B North-South Asymmetry

We now wish to investigate the extent to which masking theiptesly found features
affects the asymmetry between the northern and the soutienmsphere of the CMB
sky. To see this, we recall that Baldi et al.(2006; Pietrobon et al(2006; Marinucci
et al.(2008) it is shown that

(36 = 3 T ()

whences; = >, fk is an unbiased estimator for the weighted angular power-spec
trum (see Sec3.3). In Baldi et al.(2009, Section 7 it is also shown that this statistic is
approximately Gaussian (after centring and normalisa@bimigh frequencies, see also
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Delabrouille et al(2009; Fay & Guilloux (2008 for extensions and related work. De-
veloping this idea, we computed here the total power in e&chisphere by taking the
sum of squares of the needlet coefficientg at 3 and; = 4 extracted from the masked
ILC temperature map
4 4
C3a= Z Z ]2k = Z Bj- (4.3)
j=3 k j=3
We label the mask associated with the- 3 and;j = 4 features we found agj3;4”, and
we include it in addition to standard WMAP masks.
The difference is measured by computing

1

D
v

(C5,—C3) (4.4)

whereCs ,, i = S, N is the quantity in Eq4.3, where the needlet coefficients are re-
stricted to either the northern or the southern hemisphar¢éhé Galactic coordinate
system), normalised to the varianteof the whole sky. The latter actually turn out to
be the cosmic variance of the CMB power spectrum binned ifith In some sense,
D is measuring the difference between two local versionk@fiower spectrum estima-
tor; such local estimators can indeed be rigorously justifie view of the uncorrelation
properties of needlets in pixel space (8s=ddi et al.(2007). In practice, we defined the
pixels in the northern hemisphere as those outside the nfeskaerised by < 7/2
and pixels in the southern hemisphere as those outside tsie mih 0 > 7 /2.

In Fig. 4.5we plot3; as defined in Eqt.3extracted from the whole sky as well those
measured in each hemisphere, both including the spots askimgehem. The southern
hemisphere shows an excess of power compared to the nodherthat is reduced by a
factor 2 when the “j3j4” mask is applied. Notice that, as estpd, the power measured in
the north region is not affected by the masking procedur¢hériower panel of Figd.5
we quantify this effect computing the differenﬁjé — BN, normalised to the variance of
the estimator. The results are summarised in #ab. Our findings are sensitive to the
chosen sky-cut: when the KQ mask is used, the asymmetry, measured in terms of a
difference in the variance of power, decreases fro?G without the ;354 needlet mask
to 1.97 with needlet mask. When the more aggressive maskXi® applied to CMB
data (together with thg3j4 mask), the difference is larger and the global asymmetry is
further reduced: from.37 to 2.0. Note that the north-south power variance difference
with just the WMAP team’s masks, KQ75 and KQ85, is rather $(dak6 vs. 4.37); this
suggests that the hemispherical asymmetry cannot be egglay simply extending the
galactic plane mask. With thgj4 mask we introduced (which cuts roughly 0.5% of the
sky), we find a significant reduction of a factor 2.
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Figure 4.5:In the left panel3; extracted from WMAP data when different sky cuts are applied
are shown. The black solid line shows the signal for the wiB sky (kq85 is applied). The
blue and red dashed lines show how the power is split betweetwio hemispheres. When the
cold and hot spots detected are masked the excess of power gotithern region is decreased
(light blue and orange dot-dashed lines). In the right parekignificance of the differende is
plotted.

Mask 03’4 C?]’\Ll 035:4 D

kg85 766 556 974 4.26
kqs5+3j4 673 544 802 1.97

kq75 703 502 908 4.37
Kq75+3/4 655 492 728 2.0

Table 4.3:We report the values of total power (E43) carried by needlets gt= 3 andj = 4
extracted on the ILC map. Four cases, corresponding to fferatit masks we applied in this
analysis. The last column reports the significaizes defined in Eg4.4. It is interesting to
notice how masking the hot and cold spots reduces the asymimet factor greater than two,
being the;j3;j4 mask the).5% of the sky only.

Given that we mask a smaller area on the sky than the 10%aeliiterbetween KQ85
and KQ75, it seems rather likely that the hemispherical asgtry can be credited to
features in the southern hemisphere. While we have loch(seme of) these features,
this does not establish by itself whether the asymmetryimmgndial or associated with
fluctuations in our local universe. There exist already sdvextended studies on the
nature of the cold spoMasina & Notari(2009; Sakai & Inoue(2008; Granett et al.
(2008; Cembranos et a{2008; Génova-Santos et d2008; Cruz et al(2008; Hansen
et al.(2007); for further statistical studies we make publicly avhlathe;3;4 mask.

[1I.C Further statistical analysis

As a further statistical cross-check, we chose randomlgleeeoefficients at different
locations on the map and fit their distribution to the oneatifrom 1000 simulations
where the K@5 mask was applied. The simulated results are in excellergeagent
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j=3 i=4 i=5
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Figure 4.6:From left to right, distribution of the needlet coefficieot fi = 3, j = 4 andj = 5.
The blue (on the left-hand side) and red (on the right-hadé)siertical lines mark the values of
the cold and hot spot respectively. They are both well beytbneke sigma level foj = 4. At

j = 3 the significance is basically zero, whilejat= 5 only the cold spot is still visible.
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Figure 4.7:Distribution of T statistic for(j, ;') = (3,4) (left) and(j,5’) = (4,5) (right). The
two vertical lines mark the values of the hot and cold spoidpéhe latter the more significant.
As expected, this is non-Gaussian, and is characteriseartpy hon-Gaussian tails.

with a zero-mean Gaussian distribution, as shown in FiguseThis result is of course
expected, as the needlet coefficients are a linear fundtodtiae underlying temperature
map. However, we report the figure as a further check to erthateghe procedure we
followed to compute the significance of the spots is wellifiest.

We followed the same procedure also to quantify the sigmiﬁea)fF{j'. Of course,
in this case simulations are indeed necessary, bedgisis a non-linear statistic and
hence non-Gaussian. In Figude7 we provide some evidence on the significance of
the statistics we measured in the regions where the anomalmts are located. The
curve is the fit to the distribution of needlet coefficientssimulated maps, while the
vertical lines mark the value measured in the WMAP tempeeateedlet coefficients.
The simulated distribution has rather large tails; thasttaal significance ot‘{j’ at the
locations corresponding to the spots is neverthelessrratgl, with an estimated p-
value of0.5% for the cold spot and of.65% for the hot spot. We can still confirm that
the signal is mostly peaked in the correlation betwgen4 and; = 5.
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Figure 4.8:Joint K85 and hot/cold spots mask applied to the WMAP ILC temperatuap.m

4.1.2 Impact on the CMB power spectrum

The purpose of this section is to investigate the extent t@hvimasking the hot and
cold regions we found affects the CMB power spectriviagina & Notarj 2009. To
address this issue, we first estimate the angular powerrspeéitom the ILC WMAP 5
year map after applying the K& mask. We then compare this result with the angular
power spectrum resulting from a wider mask: the sum oRK@Ilus the regions above
three sigma level we discovered when performing our tentperanalysis. We report in
Figure4.8the resulting mask.

The effect of the different masking is not negligible, reagtthe value ofi2% at low
multipoles. To check against systematics, we performed @at&Garlo simulation of 200
CMB maps with the underlying WMAP 5 year best fit mode€b(natsu et al.2009), in
order to estimate the mean effect of the joint mask. We coetptiie average and the
standard deviation to quantify the hot/cold spots effette Tesults are shown in Figure
4.9,

Quite remarkably, the region where the signal is strongexactly the one where
the cold spot is localised. This may be interpreted as a coafion of the localisation
properties of needlets in pixel and harmonic spaces. We\sethe use of the ILC map is
justified here, because our signal peaks at low multipoleseler for completeness we
computed the same quantity from both the W and V bands of WMAB&B, as well as
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Effect of HOT/COLD spots
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Figure 4.9:Effect on the angular power spectrum due to the subtracfitimechot and cold spots
in the CMB temperature map. The red solid line shows the rdiffee in theC,, the gray dashed-
dotted line represents the average modification of the sition, while the solid lines mark the
one sigma level. In the region betweénr- 8 and/ = 30 the effect exceeds one sigma level: that
region is the one where the effect of the cold spot is stronger

using the map obtained lme Oliveira-Costa et a{20082. The result is fully consistent
with what we found using ILC, thus validating the procedueefallowed. The signal is
shown in Figuret.10

The next step has been to evaluate the effect that the chartge engular power
spectrum induces on cosmological parameter estimatese 8ie low multipole region
is affected by the largest variation, we expect that changght occur on the spectral
index, ng, the optical depthy and possibly on the primordial fluctuation normalisation
amplitudeA,. Actually, since the variation is at maximut2% in a handful of multi-
poles, we expect a global variation on the power spectrunowghly few parts in one
thousand.

The WMAP team performed the temperature analysis splitiireglow multipoles
and the high multipoles regions. The former is probed by d&#ampling based Monte
Carlo analysiskriksen et al.2004). The high moments are instead investigated fitting
the angular power spectrum extracted from the W and V bar@taKE into account the
modifications due to the new masking we replaced th& KiQask used at low resolution
with the joint mask K@5 plus the hot and cold spots (Fig.8), and multiplied the
angular power spectrum used for the analysis by the ratwdsst theC, computed with

2http://space.mit.edu/home/angelica/gsm/
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Mask effect: map comparison — kq85
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Figure 4.10:Ratio of two CMB power spectra computed from a given map with kq85 and
kg85+j3j4: ILC the yellow curve, W the black curve, V the bloee, WV the light blue curve,
and that extracted by the map reconstructedarOliveira-Costa et a{2008 in orange. Except

for the WMAP ILC map at > 200, the difference on the angular power spectrum is consistent
among a variety of maps. Beyord= 200 ILC power spectrum shows features not compatible
with other spectra, probably due to the way the different WZhannels are combined.
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parameter WMAP5 Hot/Cold spot masked ) j3-74 mask
Qph? 0.0227 £+ 0.0006 0.0228 + 0.0006 0.0228 + 0.0006
Q.h? 0.110 £ 0.006 0.109 £+ 0.006 0.109 £+ 0.006
04 1.040 4+ 0.003 1.040 4 0.003 1.040 4 0.003
T 0.089 +0.018 0.091 +0.017 0.089 +0.017
ng 0.965 4+ 0.014 0.966 +0.014 0.966 - 0.014
In(10"°A,)  3.18 +0.05 3.17£0.05 3.17+0.05

Table 4.4:Effect of the wider mask on th&CDM six parameters. The difference due to the sum
of KQ&5 mask plus HOT/Cold spot mask is small.
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Figure 4.11:Left panel, profile of the functiom(x) in ¢-space for the choic® = 1.2. The
red dot-dashed line represerjts= 17 and the blue long dashed line= 20. Right panel, power
spectrum modification due to the structures measured usinggtt of needlets shown in Figl12

the wider mask and, obtained with the unmodified K€ mask applied to ILC, in the
range of multipoleg — 200 (see Fig4.10.

The results are shown is Tablel. In short, we do not observe a significant variation
in any of the cosmological parameters.

It is well known that the angular power spectrum measurechbyWMAP collabo-
ration shows some interesting features at low multipotepairticular the range between
¢ = 20 and/ = 24 has a deficit in power with respect to the prediction of the-fies
ACDM theoretical model, while that betweén= 37 to ¢ = 44 shows excess power. To
investigate these issues, we chose needlets correspdodrequencies that match those
two intervals and we looked for coefficients exceeding tihheghold of three sigma. More
precisely, we selecB = 1.2 and we takg = 17, j = 20 to span the relevant ranges of
multipoles. Figuret.11 (upper panel) and figuré.12 show (respectively) thé, profile
employed for this purpose and the corresponding need|éiceats.

We find that the effect on the angular power spectrum is dgtrether small (overall
less than one sigma). However it does follow the expecten, sigcreasing the deficit
and the excess of power in the selected ranges. The effdubwansn the lower panel of
Figure4.11
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Figure 4.12:Needlet coefficients and their significancejat 17 and;j = 20 for B = 1.2.

4.1.3 Conclusions

We apply spherical needlets to the Wilkinson Microwave Atrigpy Probe 5-year cosmic
microwave background (CMB) dataset, to search for impmfitson-isotropic features
in the CMB sky.

After calibration by means of a large set of mock simulatimnsompute the expected
correlation for aACDM model, the analysis of needlet coefficients highlights pres-
ence of the now well-known “cold spot” of the CMB map in the gwrn hemisphere,
and in addition two hot spots at significance greater than 88tidence level, again in
the southern hemisphere and closer to the Galactic planée Wik cold spot primarily
contributes to the anisotropy power spectrum in the mukipbetweerd = 6 to ¢ = 33,
the hot spots are found to be dominating the anisotropy povtee range betweeh= 6
and/ = 18.

We also studied the effect the two spots have on the CMB popesrtaum, by build-
ing 1,000 mock CMB simulations. We conclude that, especially at lowtipales, the
effect is measurable: masking both the cold and the two hatsgesults in an increase
in the quadrupole amplitude of 10%, whilefat 10 power is reduced by 12%. To inves-
tigate the effect of this difference on the value of cosmmalgparameters, we modified
the WMAP 5-year CMB fiducial power spectrum and the 8&Qnask used to perform
the analysis by cutting out the contribution of the two spatsl we repeated the param-
eter estimation analysis. The results we obtain are sjightierent, but fully consistent
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within the 1o errors on parameters published by the WMAP team. We may eneid
tally notice that we found a significant anomaly localisethege angular scales, but the
overall CMB power spectrum is consistent with the standasiological model.

Since all three spots appear in the southern hemispherelseestaidied the power
spectrum asymmetry between the two hemispheres, whichdwasgyeviously found to
be statistically significant. When the features detecteddmdlets are masked, we find
that the difference in the power, measured in terms of theoémpy variance between
¢ =4 and/ = 18, is reduced by a factar. This decreases the significance of the previ-
ously claimed north-south asymmetry. We make the masktnegditom needlet features
available for future, more detailed studies on the asymeeetn the CMB anisotropy

sky®.

Shttp://www.fisica.uniroma2.itbcosmo/masks
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4.2 Constraints on Primordial Non-Gaussianity from a
Needlet Analysis of the WMAP-5 Data

With the increasing amount of high-quality observationggrened in the last decade
(Hinshaw et al(2009; Reichardt et al(2009; Sievers et al(2007); Wu et al.(2009);
Pryke et al.(2009; Hinderks et al(2009; Masi et al.(2009; Johnson et al(2007),
statistical tests of the CMB temperature anisotropy patéee getting more and more
accurate. This has made it possible to test one of the bamtstef the standard cosmo-
logical scenario, i.e. that the primordial density peraiitins follow a Gaussian distribu-
tion. This is a definite prediction of the simplest inflationanodels Guth 1981 Satq
1987 Linde, 1982 Albrecht & Steinhardt1982: the detection of primordial deviations
from Gaussianity would be a smoking gun for more complicatgalementations of the
inflationary mechanism, such as those of multi-fieldgtlf & Wands 2002 Linde &
Mukhanoy 2006 Alabidi & Lyth, 2006, ekpyrotic Mizuno et al, 2008 Khoury, 2002
or cyclic scenariosteinhardt & Turok2002 Lehners & Steinhard2008.

When dealing with the search for non-Gaussian statisticeahdata, two major is-
sues have to be addressed. One has to do with the statisbtzalsed to analyse the data
and detect deviations from Gaussianity: not only can thes@atons be very subtle and
elusive, but they could be generated by processes that akractly related to the pri-
mordial density perturbations — such as unremoved astpalforegroundsGooray
et al, 2008 Serra & Cooray2008 or instrumental systematics. The other issue is theo-
retical, and relates to the way the non-Gaussianity is par@amsed: while there is only
one way to realize a Gaussian distribution, non-Gaussatissts can be produced in
countless ways. One then has to assume a non-Gaussian farsatien which relates
in some sensible way to an underlying early universe socenari

The latter issue is usually addressed by introducing a patexrfy;,, which quantifies
the amplitude of non-Gaussianity as a quadratic deviatidim rgspect to the primordial
Gaussian gravitational potentid},, i.e.:

O(x) = Pr(2) + far. [P (2) — (PL(2))] (4.5)

The major advantage of this parameterisation is that, dégss of the specific underlying
early universe model, it can represent the second-ordepaippation of any non linear
deviation from Gaussianity. For an excellent review ontiysc seeBartolo et al(2004).
From the point of view of data analysis, a number of techrsdue/e been proposed
in the past few years to quantify the level of deviation frormuSsian statistics in the
data. The most used one in harmonic space is the bispedtuonl994 Heavens1998
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Spergel & Goldbergl999 Komatsu & Spergel2001 Cabella et al.2006. The bispec-
trum is defined as the three-point correlation function, ancestimate offyy, through
the bispectrum requires the sum over all the triangle cordigans. Since this is ex-
tremely time-consuming, regardless whether the computtasgi performed in harmonic
space or pixel spac&omatsu et al(2005 have proposed a fast cubic estimator based
on the Wiener filter matching, which reduces consideraldycibmputational challenge.
This estimator has been further developeddsgminelli et al.(2006 introducing a lin-
ear correction which allows the correct treatment of thes@nopic noise, and finally
optimised {fadav et al. 2007 and extended to polarisation measuremeYiéslav et al.
2008. Recently,Yadav & Wandelt(2008 applied the cubic estimator to the WMAP 3-
year data, finding a detection of a primordial non-Gauss@mesat more than 2.5 sigma.
An indication of a primordial non-Gaussian signal has bdea tound by the WMAP
collaboration in the analysis of the 5-year dataset, atjhawith a lower confidence level
(Komatsu et al.2009. An interesting discussion on optimal and sub-optimahestors
can be found irsmith & Zaldarriagg2006. See for further detailsu & Lu (2008 and
Babich(2005.

Concerning the methods in pixel spabe Troia et al(2007); Reichardt et al2009);
Hikage et al.(2006; Curto et al.(2008 2007); Natoli (2009 applied Minkowski func-
tionals to several CMB datasetSabella et al(2005 applied local curvature on WMAP
1-year data anonteserin et al(2006 developed scalar statistics using the Laplacian
as a tool to test Gaussianity. Alternative indicators basedkewness and kurtosis have
been proposed bBernui & Rebouca$2009. Tests based on wavelets were applied to
WMAP 1-year dataVielva et al, 2004 Mukherjee & Wang2004), and WMAP 5-year
data byCurto et al.(2009 and McEwen et al.(2008. Wavelets have been also used
in CMB studies Martinez-Gonzalez et al2002 to identify anomalies in WMAP data
(McEwen et al. 2008 Wiaux et al, 2008 Cruz et al, 2008 2007 Vielva et al, 2007,
Wiaux et al, 2006 Cruz et al, 2005 Vielva et al, 2004 Pietrobon et a).2008, denois-
ing (Sanz et al.1999 Hammond et aJ.2009, point sources extractiorCayon et al.
200Q Gonzalez-Nuevo et al2006. Very recentlyVielva & Sanz (2008 constrained
primordial non-Gaussianity by means of N-point probaypfiistribution functions.

The signature of non-Gaussianity appears in the higher mtared a distribution,
which are no longer completely specified by the first momeet (he mean value of
the distribution) and the second moment (i.e. the standawvthtion). For a Gaussian
distribution, all odd moments are vanishing, while the evees can be expressed in
terms of the first two only. We then look for a non-vanishingwhkess of the distribution
of the needlet coefficients, applying a cubic statistic.
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4.2.1 WMAP-5 needlet analysis

In the following we describe the statistical techniques simaulations used in order to
constrainfyr..

We started by producing simulations of non-Gaussian CMBawéph the WMAP-5
characteristics, for varyingjy;,. For each channel [Q1, Q2, V1, V2, W1, W2, W3, W4],
we used as input a realization of a simulated primordial Gaussian mag_{guori et al,
2007); these maps were convolved with the respective beam wiridoetions for each
channel and a random noise realization was added to each dogtireg the nominal
sensitivities and number of hits provided by the WMAP téghtinshaw et al. 2009.
From these single-channel maps we constructed an optingaladarosik et al(2007):

T(v) =Y Ton(7)wen(7) (4.6)
ch

wherey represents a direction on the sky (which, in practice, igtified with a specific
pixel in the Healpix schemeQorski et al, 2009), andw., = nn(y)/0%,/ > o Wen-
wheren,, is the number of observations of a given pixel angthe nominal sensitivity
of the channel, estimated by WMAP team. We finally appliedAi@AP mask Kq85 and
degraded the resulting map to the resolutioVof 256. At the end of this procedure we
were left with realistic Monte Carlo simulations of the CMBysas seen from WMAP-5,
containing different levels of primordial non-Gaussigiparameterised by the value of
S

Then, we extracted the needlet coefficiefifs from the simulated maps for a given
B. For eachyj resolution, the needlet coefficients can be visualised &y enap, where
k is the pixel number. We calculated the skewness of the récmted coefficients maps
over the unmasked region, as:

1 (Bjw — (Bw))’
S; = A kz - (4.7)
where N, denotes the number of pixels outside the mask @nis the variance of the
needlet coefficients at thgresolution. This procedure allows us to build an empiri-
cal statistical distribution of the skewness as a functibrf\g,. Finally, we calculated
the skewness from the real data of the foreground-reducedAWBtyear Q, V and W
channels data, using the same procedure applied to thesggduhaps. The comparison
of the real data skewness to the simulated distributiormsvalll us to set limits on the
non-Gaussian signal in the data.

“http://lambda.gsfc.nasa.gov/product/map/drphmducts.cfm
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A non-vanishing skewness represents a deviation from aseauslistribution and
could give a fundamental handle on the physics responsiblmfiation and the gener-
ation of primordial fluctuations. In general we expect thedliet coefficients to pick up
signal at different angular scales as a function of bp#nd B, making different sets
sensitive to non-Gaussianity in specific ways. This coulthdeed a powerful tool when
looking for imprint of specific models of non-Gaussianityhig feature is enhanced by
the statistics itself we consider in our analysis. As désctin Chap3, sinceS « Bj?”k we
have an intrinsic modulation in the power of the cube of thedhet coefficients. Figure
3.10shows this effect compared to the square oftihfeinction.

For this reason it does make sense to compute the statigticeed in Eq.4.7 for
several sets of needlets. In particular we employed valiésfoom 1.8 to 4.5, choosing
the step in order to span as homogeneously as possible tine emge of multipoles
¢ =2to ¢ = 500. The set ofB we have considered is [1.8, 1.9, 2.0, 2.15, 2.5, 3.0, 3.5,
4.0, 4.5]. We also tried finer samplings Bf but no additional information resulted for
the sampling considered.

x? analysis

In order to estimatgy;, we minimised the quantity:

() = (X7 = (X (fan)TOHX? = (X (fxr))- (4.8)

Here X is a vector composed by the set of skewness of outBej). The averages
(X (fnr)) were calculated via Monte Carlo simulation over 100 prinndon-Gaussian
maps. FormallyC~! is dependent orfy;, as well but it has been showSgergel &
Goldberg 1999 Komatsu & Spergel001) that for the mild level of non-Gaussianity we
expect this dependence is weak and can be estimated by &aassulations. We found
that calculating”~! from 10,000 Monte Carlo simulations gives a very stableestt.

The result is shown in Figt.13 the curves deviating from zero corresponds to the
effect due to the primordial non-Gaussianity for positidaghed lines) and negative (dot-
ted lines) values ofy,, while the yellow and orange bands correspond tolthand2o
levels respectively. Diamonds represent the results of VIPNBAyear data.fyy, is esti-
mated to be20 with —30 < fxr, < 70 and—80 < fx1, < 120 at 1 and20 respectively.
These results show no significant deviation from the Gandsjaothesis. This is not in
contrast with the values found MMadav & Wandel{2008), since we have performed our
analysis on maps with the maximum multipole corresponding,t. = 500, whereas
Yadav & Wandelt(2008 clearly showed that their results crucially depend on tlae-m
imum multipole considered. The reducgtiof WMAP data is1.53 with 85 degrees of
freedom.
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As a further consistency check, we performed a goodne§is4eft by calculating
the quantile of the WMAP data from the non-Gaussian reatimatwith fx;, = 20. We
found that 21% of the simulations had a largérof the WMAP 2, confirming that the
specifications of our Monte Carlo simulations well desctie experimental setting of
WMAP 5-year data.
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Figure 4.13:Skewness of needlet coefficients for the entire set of paamieas a function of
multipole /. Shaded areas represents 1 amdcdnfidence levels calculated from 10000 Gaussian
Monte Carlo simulations with beam, noise level, and mark8WAAP 5-year data. Dashed
(dotted) lines correspond to the averages over 100 primlondin-Gaussian maps witfr, =
200,400 (—200,400). Diamond are the WMAP 5-year data.

A skewness basedy;, estimator

Since the primordial non-Gaussianity is a second ordecgffecontributes linearly to
the skewness througfi;,. This means that it is possible to compute from the non-
Gaussian simulations the skewnétg) for fyr, = 1 and use it as a template to build
a filter-matching estimator of the non-linear coupling paeter. Assuming that9™> =

fxu S| e=1, Where “th” means the average over the non-Gaussian siiongatwe

obtain . Lot
oDs -
> i Sj Covjj,Sj,

h —1 ¢th
255 55 GOV Sy
where we dropped the subscrifit;, = 1. This estimator is built following the same
approach agomatsu et al(2009), i. e. a filter matching one, translated into the needlet

far =

(4.9)
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Figure 4.14:The Ax? of WMAP 5-year data as a function gkr,. fni is estimated to be
fnL = 20 + 50 and fx1, = 20 4+ 100 at 10 and 20 level respectively.

framework: we bispectrum of the data and we hit it on the tegcal prediction, weight-
ing it with the covariance of the primordial signal, whicls@altakes into account the in-
strumental noise. The theoretical skewness computefkfoe= 1 is shown in Fig4.15
We checked that the pipeline applied to simulated non-GammssMB maps does not
affect the linear relation: in particular we verified tha¢ thverage signal we obtain for
a given fyr, scales linearly withfyy, itself, meaning for example that we can mimic the
signal for fx1, = £400 by taking the double of that fofx, = 4-200.

The main contribution to the covariance mat@ov;;; comes from the Gaussian
part of gravitational potential; this allows us to estim#te covariance from random
Gaussian simulations. According to this assumption, wienes¢ the error bars on the
primordial non-linear coupling parameter computing tteendtird deviation of the 10000
fxL estimates resulting from a fresh set of Gaussian simulsitiea Eq.4.9. We find
fnxL = 21 4+ 54 at 1 sigma confidence level, which is fully consistent withetwve found
applying they? statistic. This corroborates the robustness of our praeeaid confirms
needlets as a suitable tool to study primordial non-Gaoggia

Our limits on primordial non-Gaussianity are slightly larghan those achieved by
Curto et al(2009 being ourlo confidence level{30 < fy1, < 70) slightly broader than
—8 < fn1, < —111 at95% confidence level. However we were limited in our analysis
to multipoles lower thad,, .. = 500, while the strongest constraints on primordial non-
Gaussianity make use of higher angular scales.
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Figure 4.15: Skewness fgk;, = +1, respectively dashed and dotted line, derived from
non-Gaussian simulations. Theoretical curvesfigr = 10, 20, 30 (from bottom to top)
are shown too.

Our limits on fyr, are quite promising for future experiments such as Plangkere
sensitivity and angular resolution will be enormously ioyed.

Further analysis: binned bispectrum

The analysis we performed in the previous sections, basdte@kewness of the needlets
coefficientss;;,, is mainly sensitive to the equilateral configurationsgsiit is propor-
tional to the primordial bispectrum computed fgr ~ ¢, ~ ¢35 summed over all the
multipoles up to/,,.. = 500. This can be easily understood by direct inspection of
Eq.4.7as discussed in Chap.

A qualitative improvement in constraining the paramefgr can be achieved by
adding in the estimator the effect of the squeezed configumstconsidering the product
of three;;, with j; # j, # js3. The skewness of needlet coefficients can be generalised
into

Sy = S Lokt (4.10)
Np k 05105203

We repeated the needlet analysis applying this new estintatthe same set of

WMAP 5-year data and simulations for the choice of the neéqudeameterB = 3.5,

Shttp://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESE1(2005)1. pdf



122 CHAPTER 4. NON-GAUSSIANITY IN THE WMAP5 CMB SKY

which has the highest signal-to-noise ratio among the setarhin the previous analysis.
The minimisation of the? gives fx;, = 30 &40, which is consistent with what we found
applyingS;. The x? for WMAP 5-year data is shown in Fig.16

Tot Bispectrum chi?2

2.0
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T S A —

0.5

-40 -20 0 20 40 60 80 100

Figure 4.16:The Ax? of WMAP 5-year data as a function gf;, computed from the binned
bispectrum.B is choserB.50 which had the highest signal-to-noise ratio among thossarhi
the previous analysisfyy, is estimated to bgxr, = 30 + 40 and fy;, = 30 +£ 80 at 1o and 20
level respectively.

Recently an analysis based on a cubic estimator analogatis;ig has been per-
formed byCurto et al.(2009?) who include the effect of squeezed configurations in the
Spherical Mexican Hat Wavelet; and IRudjord et al.(20093 using a set of needlets
characterised by a differet parameter obtainingi;, = 84 + 40. While the difference
in the value offy;, can be due to the higher number of multipoles considereceimutial-
ysis, (. = 1000, and it is consistent with the result ¥adav & Wandelt(2008), it is
important that the estimated error bars are fully consistat ours.

In a following papeRudjord et al(2009h checked the dependence of thg param-
eter on the direction in the sky. They computed the needispebtrum on 48 different
regions of the CMB sky finding no significant deviation frone thull-sky measurement,
as expected for a primordial signal such as the local norsSanity. Very recentlmidt
et al. (2009 improved the constraints ofy;, = 11 + 23 by using the skewness power
spectrum on WMAP 5-year data.
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4.2.2 Conclusions

Primordial non-Gaussianity is becoming one of the keys tdeustand the physics of
the early Universe. Several tests have been developed gliecapo WMAP data to
constrain the non-linear coupling paramefgr,. Recently, different methodsrédav
& Wandelt 2008 Curto et al, 2009 found different constraints offiy;, using similar
datasets, WMAP 3-year and WMAP 5-year respectively. Thedpmoaches have been
shown to have the same power in constraining primordial Ganssianity, while they
obtained different best fit values fgx;,. Whereas this might be due to the masks applied
to the datasets, it certainly underlines the complexitydifittulty of measuringfxr,. The
next generation of experiments will provide data with elargl angular resolution and
signal-to-noise ratio which will be decisive to confirm oméate the measurements of
fn1, of the references above. In this respect, it will be even irtgo to constrairfyy, with
different methods in order to get a more robust detectioro @pbt spurious presences
of non-Gaussian signal. Moreover, integrated estimatmishased on Wiener filters, are
differently sensitive to the non-linear coupling and carubeful to address exotic non-
Gaussian models which predict high valuesf@f and whose bispectrum evaluation,
for instance, may require prohibitive computational timeedo the convolution in the
bispectrum formula.

We constrained the primordial non-Gaussianity paramgterby developing the
needlets formalism and applying it to the WMAP 5-year CMBadatVe estimatedyy,
to be20 with =30 < fxr, < 70 and—80 < fxr, < 120 at 1 and 2 sigma respectively,
then consistent with the Gaussian hypothesis. We perfotmedlifferent analyses, the
x? statistics and an estimator based on the skewness of thendiahnon-Gaussian
sky, finding an excellent agreement between the two reduéedlets have been proven
to be a well understood tool for CMB data analysis, sensiiivéhe primordial non-
Gaussianity. Since the skewness of the needlets coefciemhainly sensitive to the
equilateral triangle configurations, we improved our eatmncomputing the three point
correlation function in needlet space which indeed recotlee signal due to squeezed
triangle configurations. We obtajix;, = 30+40 at68% confidence level, consistent with
the previous analysis. Our constraints are slightly bro#iten those achieved yurto
et al.(20097?) and not in contrast with the values foundYgdav & Wandel{2008 since
we were limited by a smaller range of multipoles due to the-@aussian simulations we
had, whereas the tighter constraintsfaf crucially depend on the maximum multipole
considered.

Our limits on fy;, are quite promising for future experiments like Planck, séo
sensitivity and angular resolution will be enormously ioyed.
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4.3 Needlet Bispectrum Asymmetries in the WMAP 5-
year Data

Since the first release of the WMAP satellite d&arfnett et a].2003h, there have been
many claims of anomalies in the statistical distributiofCdB temperature fluctuations

in the sky (see e.gEriksen et al(2004). For example, there appear to be localised
areas which are hotter or colder than would be expected indheordancé\ CDM cos-
mological model with Gaussian statistics ($&riz et al.(2005). Also, power seems

to be preferentially aligned along a certain direction (oed the ‘axis of evil,Land

& Magueijo (2007) and the quadrupole and octopole power appears to be atzuel
(de Oliveira-Costa et gl2004). These anomalies were subsequently confirmed with new
releases of the WMAP dat&pergel et a).2007 Nolta et al, 2009.

Many other studies have highlighted a marked differencherstatistics of the north-
ern and southern galactic skiézark(2004 found an asymmetry in the Minkowski func-
tionals values in the northern and southern galactic hémigs Eriksen et al(2005 de-
tected anomalies at large angular scales comparing thetadgd of temperature power
spectra in the two hemispheres and confirmed the anomaégsrasent in the n-point
correlation function.Vielva et al.(2004) studied the kurtosis of Spherical Mexican Hat
Wavelets coefficients, discovering a strong non-Gaussgmakin the southern hemi-
sphere.Hansen et al(2004) reported that the local curvature of the CMB sky exhibited
asymmetric behaviour as welMcEwen et al.(2008 and Pietrobon et al(2008 ap-
plied two different wavelets constructions to the 5-year WRMdata, confirming many
of these results; they have also been seen using scalirgeg@iossmanith et gl2009.
Copi et al.(2007) pointed out a lack of power in the north hemisphere in the pomt
correlation function. The presence of these anomalies ées tested against mask ef-
fect and foreground contamination Bernui et al.(2007). Lew (2008 constrains the
direction of the anomaly axis using a generic maximum a pastenethod. Very re-
cently,Hansen et ali2008 reported that the power asymmetry spans a very large range
of angular scales (corresponding to multipates ¢ < 600): this result is based on an
angular power spectrum analysis of the WMAP sky maps. A sumimianost of these
anomalies can be found Bernui & Rebouca$2009.

Here, we investigate the CMB anomalies using the needlsfebtrumitan & Mar-
inucci, 2008h to the WMAP 5-year data; this technique was recently usembistrain
primordial non-Gaussianity in the same datasePBtrobon et al(2009 andRudjord
et al.(20093. For the first time, we analyse the contribution of diffédrefangle config-
urations, grouped according to their size and shape.
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4.3.1 Statistical Analysis and Results for WMAP 5-year Data

We processed the WMAP 5-year data and the simulations inaime svay discussed in
Sec.4.2.1 To test the Gaussianity of WMAP 5-year data, we compare istelalition
of the y? = XC X7 of the simulated dataset to the value obtained from datarevhe
X is the array consisting of the needlet bispectrum valuesutated via Eq3.16 We
consider the needlet bispectrum values (indicateddly in the tables)’ and, to iden-
tify where the anomalies are concentrated, we split theyaisgaln different branches
according to the geometry of the triangles. For the chdsen 2.0, we have 115 which
satisfy the requirements: 9 equilateral, 56 isoscelescalese. We define the remain-
ing 50 configurations as open: we would expect them to be khangsxcept for those
which combine multipoles which fulfill the Wigner selectianles. The correspondence
between each needlet scaland its multipole range is shown in Tablés.

Large Scales

i 1 2 3 4 5
[01,05]  [2,3] 3,7] [5, 15] 9,31]  [17,63]

Small Scales

3 6 7 8 9
[61,02] [33,127] [65,255] [132,500] [263,500] -

Table 4.5:Correspondence between angular scale and needlet scate-far.0.

On the full CMB sky, they? of the data is compatible with the distribution we ob-
tain from 20,000 Gaussian simulations. When we calculatethon the northern and
southern hemispheres separately, we find a significantti@mvimom Gaussianity in the
southern hemisphere while the northern hemisphere ap@earssian, having a bispec-
trum generally somewhat smaller than expected (see TaBl#®. The results are shown
in the histogram plots in Figl.17. Furthermore, considering the triangle configurations
as classified above, we found that this behaviour is conatatiin all triangle configu-
rations separately except for the equilateral ones. Trse&es triangles are perhaps the
most interesting ones since they probe the correlation dmivine large and the small
angular scales (the so-called ‘squeezed’ configuratiavtsih should reflect a non-local
type of non-Gaussianity. A comparable degree of asymmstshown by scalene and
open configurations, which confirm the global lack of poweahmnorth hemisphere: the
points in the northern hemisphere show a lower scatter. Alaimsymmetric behaviour
was found byHansen et al(2004); Land & Magueijo(2005; Eriksen et al(2004 and
recently confirmed byoftuft et al. (2009; Hansen et al(2008; Groeneboom & Erik-
sen(2009h. In our analysis we already mask the big anomalous feaforesent in
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Figure 4.17:Needlet bispectruny? distribution of the three WMAP 5-year temperature data.
The southern hemisphere is barely compatible with the Gau$ypothesis, being the blue line
which marks the real datg? in the tail of the distribution.

the southern hemisphere (Sdcl), responsible for about 50% of the power asymme-
try in the angular power spectrurRietrobon et a.2008. The results are summed in
Table4.3.1and plotted in Fig4.18 where we plot the bispectrum as a function of the
variable X ., = 1/(j172)® + 1/(j3j2)® + 1/(j1J3)®. Note that equilateral configurations

conf. FULL SKY NORTH SOUTH

all (115) 29% 96% 2%
equi (9) 20% 11% 45%
iso (56) 5% 96% 0.5%
scal (50) 60% 90% 7%
open (50) 3% 85% 2%

Table 4.6:Percentage of the simulations with@ larger than WMAP 5-year data for the dif-
ferent triangular configurations of the needlets bispeciruAn asymmetry is present in each
triangle configuration except for the equilateral, and gmsicant when all the configurations are
combined.

are directly related to the skewness of the needlet coetffidistributions: the fact that
on the whole sky we do not find a strong deviation from Gaudyigin agreement with
the previous literature, where only the kurtosis of thertbstions showed an anomalous
behaviour (se&/ielva et al.(2004).
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Figure 4.18:Needlet bispectrum for each triangle configuratieguilateral (top-left), isosceles
(top-right), scalene(bottom-left) andopen (bottom-right). The red triangles show the full sky
analysis, the green crosses are the northern hemisphetbeltight blue plusses are the south.
The northern hemisphere shows a global lack of signal. Taésh region represents the 1-sigma
level.

Large-Small Scale Analysis. Going more deeply, we focused on small and large an-
gular scales separately. In particular, with the chaite= 2, we define the subset of
needletsj = 1toj = 5 as large scale, corresponding roughly to scales largerthan
degree; while the subsgt= 6 to j = 9 corresponds to the sub-degree scales (see Ta-
ble 4.5). We then perform the same analysis we carried out the whedelat set. The
results are shown in Table7. The isosceles configurations still show a large difference
between the two hemispheres but the significance is lower tthewhole set analysis.
The open configuration result is still anomalous. No operfigarations exist for the
small scale subsét < ; < 9; however for the large scales these co-linear configura-
tions are most significantly non-zero for the biggest cbuation of the power. For the
sub-degree set we did not find an high degree of anomaly, amatised in Tab4.7,
though the isosceles configurations are still significaditigrent between the two hemi-
spheres. Dividing the analysis between the two sets at targesmall scales, we miss the
important contribution given by the correlation betweeativo, which is indeed crucial
for the squeezed triangles. We then consider two more satsfaymed by a triangle
which has one sidg < 5 and two sides belonging to the small scale ggj{ > 6). We
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conf. Large Scales{ < 5)
FULL SKY NORTH SOUTH
all (28) 61% 93% 14%
equi (5) 86% 26% 45%
iso (16) 70% 90% 22%
scal (7) 37% 62% 15%
open (7) 3% 38% 2%
conf. Small Scales{ > 6)
FULL SKY NORTH SOUTH
all (20) 11% 60% 21%
equi (4) 4% 10% 36%
iso (12) 5% 63% 8%
scal (4) 64% 61% 48%

Table 4.7:y? for the WMAP 5-year QVW data compared to simulations. Topgbéarge scale
study; bottom panel small scale one.

label this set as LSS and are predominantly squeezed. Thadset, labelled as LLS,
is formed by triangles which havg,j» < 5 andj; > 6 and are predominantly co-linear.
We report the results in Tald.8 The isosceles triangles belonging to the LSS set are

conf. Correlation (L-S-S)
FULL SKY NORTH SOUTH
iso (20) 23% 78% 0.4%
scal (26) 76% 40% 51%
open (4) 32% 35% 54%
conf. Correlation (L-L-S)
FULL SKY NORTH SOUTH
iso (8) 47% 94% 20%
scal (13) 62% 98% 15%
open (39) 3% 88% 2%

Table 4.8:x? for the WMAP 5-year QVW data compared to simulations: catieh large-small
scale. Top panel LSS set; bottom panel LLS set.

very anomalous in the south hemisphere. The LLS set in cteaised by an anomaly
in the open configurations. Interestingly the lack of signahe northern hemisphere is
evident in the LLS, while the LSS distribution appears mgpedal.

Influence on fy;, estimation. Inthe following section we address the issue of the effect
of the sky asymmetries on the measure of the primordial naans&anity parameter. A
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complete review on the nature of this parameter may be fauBditolo et al (2004 and
Fergusson & Shellar009; recent constraints from CMB experiments can be found in
Smith et al.(2009; Curto et al.(2008; Komatsu et al(2009; De Troia et al.(2007)
while Slosar et al(2008 constrainedy;, through the galaxy distribution. Limits ofy;,
using wavelets are discussedGuirto et al.(2009; Cabella et al(2004; Mukherjee &
Wang (2004. In order to estimatégy;, we generate two sets of simulations. The first
one consists in 20,000 Gaussian simulations consistehttivit WMAP 5-year best fit
angular power spectrum and the second one consists of ghiahoion Gaussian maps
(Liguori et al, 2007. Both sets where then passed through the procedure dedcrib
above. We then computefd;, from the estimator introduced Rietrobon et al(2009:

Xch—lXth

s = rrosixm (4.11)

Here X is a vector composed by the values of needlets bispadur a given triangu-
lar configuration according to E}16 The covariance matrig' is calculated from the
Gaussian simulations since its dependencyanis negligible (e.g. seSpergel & Gold-
berg(1999). The theoretical non-Gaussian templité was calculated via Monte Carlo
simulations over the 100 primordial non-Gaussian map<eSive know the CMB sky is
asymmetric, showing more non-Gaussianity in the southemisphere, we carried out
the full sky analysis and also split north-south one to seabdfasymmetry extends to
differences in thefy;, estimate. In practice we computsg ;,;, on the pixels outside the
extended ¥5-j,"Kq75 mask in the northern and southern hemispheres. RecEntiyp
et al. (2009 targeted the same issue within the Spherical Mexican HaeWts frame-
work, finding no evidence ofy;, varying on the sky. The values shown in TaBlé do
not indicate a significant deviation between the two henasgsdy the error bars become
significantly larger due to the reduced number of pixels usexlculate the needlet bis-
pectrum. It will be interesting to repeat the same test wid ipcoming experiments
like Planck where the error bars are expected to be dragtiealuced. Combining all
configurations we find'x;, = —25 & 75 in the northern hemisphere arfd;, = 75 4= 75

in the south, which are consistent with the null hypothe&isy differences compared to
the results byCurto et al.(2009 are most likely primarily due to the broader mask: if we
use the Kg75 mask provided by the WMAP team we obtain in théhspy, = 25 + 75.
We stress that the fact we do not observe a sky asymmetry sunotising since we do
not expect such asymmetry for a primordial signal like tha-@aussian one left over
after inflation.
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conf. FULL SKY  NORTH SOUTH

all 0+45 —25+£75 7575
equi  —60+£200 —130£260 —90 =+ 260
ISO —20 £ 50 —30 £ 80 80 %= 85
scal 0£55 —50 £ 80 110 =90

open 120400 —650=£600 770+ 600

Table 4.9: fx1, estimates with the 1-sigma confidence levels for each tieasighset calculated
from full sky, northern and southern hemispheres.

4.3.2 Conclusions

We used the needlets bispectrum to investigate the preséar®malies in the WMAP
5-year data. For the first time we exploited the bispectrurmédism analysing the tri-
angle configurations according to their shape. By splittivegy? analysis of the needlets
bispectrum for the northern and southern hemispheres welfthat the southern sky is
barely compatible with the Gaussian hypothesis while thitheon hemisphere is char-
acterised by a lack of global bispectrum signal. This is clementary to what found
by applying different statistics: power specttdafisen et al.2008, bispectrum l(and

& Magueijo, 2005 and n-point correlation function&(iksen et al.2005. We distin-
guished equilateral, isosceles, scalene and open cortf@wsand compared the power
present in the data to random Gaussian simulations. Theanosbalous signals in the
southern galactic hemisphere arise in the squeezed caaigns (isosceles, large-small-
small) and in the very co-linear configurations (open, ldegge-small). This kind of
information should be useful as a means to find out the phlysican of the anomalies.
While the large squeezed signal hints at a local type of nansSianity, this is not bourne
out when a more optimal estimator tuned specifically to tetof non-Gaussianity is
used. We investigated the effect of hemispherical asymnwirthe measurement of
fx1 finding no significant discrepancy between north and southilllbe interesting to
test with the next generation of CMB experiments, when therdyars onfy, will be
drastically reduced, to see if a north-south asymmetryesiiis thefy;, estimates. As a
consistency check, we performed the same tests (anomaliega estimates) with a
different needlets parameteB (= 3.5) and for the channels Q,V and W separately and
found consistent results.
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4.4 Foreground Influence on Primordial non-Gaussianity
Estimates: Needlets Analysis of WMAP 5-year Data

As we discussed in the previous sections, there has beerdeaaisde activity in con-
straining the amount of non-Gaussianity present in CMB.dH##s is motivated, on one
side, by the theoretical interest into deviations from Gearsstatistics of primordial fluc-
tuations — which is predicted in several implementationthefinflationary scenario, and
then it can be used to rule out specific models; on the othatt,hmn-Gaussianity can
be produced by undetected systematics, which may suggssieprs in the dataset, or
by late-time anomalies, which may point out inconsistemche standard cosmological
model.

The primordial non-Gaussianity produced by inflation isalljucharacterised by the
fx1, parameter (see e. g.Luo (1994); Heavens(1998; Spergel & Goldberg1999);
Komatsu & Sperge(2001). Since the release of the first year WMAP daBerinett
et al, 2003a Komatsu et al.2003, there has been a drastic reduction of the upper limits
of fxr,. The most recent constraints coming from different techesgcan be found in
Komatsu et al(2009; Smith et al.(2009; Yadav & Wandelt(2008; Curto et al.(2009
2008; De Troia et al.(2007); Pietrobon et al(2009; Rudjord et al.(20093; Natoli
(2009; Rudjord et al(2009h; Smidt et al.(2009).

One particular class of non-Gaussian behaviours whichtipnimordial in nature,
is the one expected from unremoved contamination from pisysical sources, or fore-
grounds. When component separation techniques are appledB data (e. g.Maino
et al.(2002), residual foregrounds can, albeit subdominant, be asmfmon-Gaussianity,
which can be confused with a primordial signature and atfeetconstraints orfyr,. In
this section we aim at generalising the needlet bispectrstimator Pietrobon et aJ.
2009 in the presence of such foreground residu@lalfella et al.2009.

4.4.1 Analysis

In constraining primordial non-Gaussianity, one can est@yiy;, by minimising the chi-
square:
X(fa) =YTCTY, (4.12)

whereY = Y — (Y (fx1)) is the difference between an ordered array of det&§ and
the corresponding theoretical predictibiifx,), as, for instance, the values of Minkowski
functionals for the relatives thresholddikage et al.2006), the densities of lakes or hills
when using the local curvatu@ébella et al.2005 or finally the values of needlet bis-
pectrum Pietrobon et a).2009 Rudjord et al.2009ab). In the presence of the expected
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weak non-Gaussianity the covariance mattixs calculated via Gaussian simulations
with the same experimental setup of the data. It has beenrs{iRietrobon et aJ.2009
Rudjord et al.20093 that an unbiased estimator ffi¢;, is given by

obs h
ZP«P« S CHH S:L (413)
> SHC, LSt

B

far =

wherey runs over the triplet$j, j,j3} and S;h stands for the ensemble average of pri-
mordial non-Gaussian realisations. Although the procéssreground reduction could
make things more complicated, the minimum assumption tleatan make is that the
final map, contaminated by foreground residuals, can be headas:

() = TOG) + T ()
+ aw DY) +ag F(Y) + agme S(9), (4.14)

whereD, F' andS mean thermal dust, free-free emission and synchrotroatiadimap
respectively. Eg4.12can be easily generalised as follows:

X* = (S = Sulfn) = Si(a:))C b
(S — S (far) — Siu(a)), (4.15)

wherei refers to the i-th foreground template with the Einstein swation convention
assumed, anSL is the needlet bispectrum of the relative foreground. Gatmg the
needlets coefficients from E4.14we obtain

Bir = B+ Boy, + fnBie + aaBh + a8l + o83 (4.16)

In Figure4.20we show the needlet coefficients in the caseBot= 2 andj = 6 for
the three foregrounds templates — dust, free-free and sytnoh — once they have been
masked. The maps were converted into thermodynamic tetopefar each channel and
combined to form one single map. Each template was dividedfagtor 10, which is the
level of residuals expected. This factor, and then the lgakd the non-CMB component
in the foreground reduced map we used, was estimated thilfpnte Carlo Markov
Chain. The angular power spectrum of the foreground redowguihave been compared
to a linear combination of CMB, noise, synchrotron, freeefiand Galactic dust. 100
realisations of CMB maps have been generated in order toitadieaccount also the
uncertainty due to the cosmic variance. We also created ddlsations of noise with
variance consistent with the data and then fitted the angalitoefficient,, of each
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componenty, such that
tot vacv+cCMB+Ne’

where N, is the detector noise. We findy,, < 0.1 X 1071, pause < 1.0 x 107! and
pr < 0.6 x 107!, The coefficienty, provide an indication of the power spectrum
contamination percentage by the foreground residuals. effieet on the bispectrum is
estimated to be of the order f 10~3. This is indeed confirmed by the best fit values of
the amplitudesy; computed through Edt.20 which are of the order of the unity.

If we compute the expectation value of the needlet bispectan a map ensemble as
given in Eq.4.14we obtain:

Siigags ™ Z(fNLBNG ]C;k J3k+ad6]1k 2k ﬁ,k
+ Oéffﬁ ﬁ]gkﬁﬁ’)k+async6 ﬁjSQkﬁngk)a (4.17)

where we kept the leading term of primordial non-Gaussyagxpansion only and con-
sidered the correlations among foreground residuals gibfgi We do not expect any
correlation between the primordial non-Gaussianity aedlibtribution of the foregrounds
residuals: this justifies why we ignored the terms |iR€' 31 52 (I={D,F,S}). The mixed
contributions3" 32 5% have been considered as higher order corrections to ourasti
Siiinis» DECAUSEST) = 0. If we were able to produce foregrounds maps we would expect
these terms to vanish. Moreover, for the same reason, siacd®wot simulate different
realisations of the foregrounds but we consider them asletes we do not know the
correlation matrix to properly model these cross-contidns. Finally we are interested
in the foreground residuals whose correlation propertiag be hidden by the CMB map
cleaning procedure itself.

With this assumption the theoretical needlet bispectrsipir( presence of foreground
residuals can be linearly decomposed as follows:

D S
.71]2.73 fNL ]1]2]3 + ADSJl]Q]S + AFS]I]Q]S + ASS]I]Q]S’ (418)
where
G G GNG
NG __ § : J1RT)2R17 3 X
SJIJZ,]S _ + perms;
03105203

k

SI Z ﬁjllkﬁjlzkﬁjlsk

Jij2j3 . . .
03105203

Here for simplicity reason we have replacetwith A; for the foreground amplitudes.



134

CHAPTER 4. NON-GAUSSIANITY IN THE WMAP5 CMB SKY

Local NG |]
— — — — Dust i
L Free—free | |
Synch

51

Sj1j2j3

2
log X

Figure 4.19Bispectrum templates for the primordial non-Gaussianaignd the three WMAP
data foregrounds normalised according to the proceduribed by a factod0—3.

In Figure 4.19 we show the bispectrum for the primordial non-Gaussianiith w
fxr, = 50 and for the foreground templates of WMAP data normalisedmaliog to
prescription discussed previously. The bispectrum is shasva function of the quantity
X =1/j1j2 + 1/j1js + 1/ jsjo-
Minimising Eq.4.15with respect tar = (fx1, A4, Af, As) we obtain:

NG (—1 Qobs
Si Cz’j Sj
JNL

sxec;s!
= SNGGToNG ~ > GG 1gNe GCifng Ay (4.19)
7 17 g I ? Y
—1 Qobs
_sKCysy

KM—1ql
~ OKC—1oK _Z S;CileIj(AI
S;PCL S — 5 C S
whereK = {D, F,S}.

The solution of the previous system provide us with the et of fx;, with the

needlet bispectrum in presence of foreground residuakhelfollowing we present data
and simulations where this estimator has been applied.

4.4.2 Data set, simulations and results

In the following, the needlets of the simulations and dathlva calculated for B=2 un-
less specified otherwise. We used W&JAP 5-year dataklinshaw et al.2009 publicly

availablé combining all channels according to Eg6 (see Sec4.2.1). The foregrounds
Shttp://lambda.gsfc.nasa.gov/product/map/drphoducts.cfm
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Figure 4.20:Thermal dust (top left) free-free (top right) synchrotrdsottom left) and non-
Gaussian foifxt, = 100 (bottom right) needlet coefficients fé& = 2 andj = 6. The wide K5
mask is applied.

considered are the 3-yedMAP data templates of dust, free-free and synchrotron emis-
sion at the resolution o4, = 256, corrected by the conversion factors from antenna
to thermodynamic temperature of the respective channethem combined them as in
Eq. 4.6to have one single map for each template. Data and foregrmumplates have
been then masked with K§ mask (degraded as well to the saHEALPiIx resolution),
which leaves uncovered roughly the% of the sky. We obtained our final constraints on
fx1 by applying the estimator in its improved fashion to i®1AP 5-year data where:

e the covariance matri€ ' was calibrated over 20,000 Gaussian simulations

e the needlet foreground bispect$®, S*, S5 were calculated on the templates de-
scribed above

e the primordial needlet bispectrus™“ was calculated over 100 primordial non-
Gaussian mapd.{guori et al, 2007 convolved with the beams and combined as
done for the Gaussian simulations.

Figure4.21shows the data we used, superimposed to thete¥teconfidence level
region. The error bars of\;, were computed through the distribution of its estimates for
20,000 Gaussian realizations.

In Figure4.22we show our results, where in each panel we reported the astiof
fxL with and without marginalizing over the foreground temesatWithout marginaliz-
ing, we foundfyr, = 30 4 40, 80 at 1o and 2r respectively. The marginalization over all
foregrounds brings the constraint fg, = 36 + 47, 94 with an increase of the error bars
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Figure 4.21:Needlets bispectrum measured from the WMAP 5-year temyerabap. The

yellow shaded region marks tti&% confidence level region computed from the 20,000 maps
ensemble.

of about15% and a positive shift of the mean value. This could be an hitlhefreason
for some positive detection present in literature (eYgdav & Wandel{2008; Rudjord
et al.(2009ab)).

More information can be obtained by looking at the estimafef,;, marginalizing
over the three foregrounds separately. The enlargemeriteoéitror bars due to each
foreground is of the same order of magnitude, but the shithefestimate seems to be
due more to the dust component.

As a further check we carried out a Fisher analysis. So farev®pned a maximum
likelihood method to find a good estimate f3f;, in the presence of foreground contami-
nation and quantified the scatter around this evaluatiothdhimit of a large dataset, the
maximum likelihood estimate is the one for which the Crafan inequality becomes
an equality. Since the estimates of the parameters arergljid®rrelated, the latter can
be written asry = 1/(F*1)i1i/2, which is the marginal error and indeed the relevant error
to quote. For a quick-start guide to the Fisher matrixGee(2009.

The Fisher matrix is defined as:

asT _ 9sT
Fay=)  —CL—t (4.20)
p!
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Figure 4.22:Unidimensional likelihood for thenr, parameter. Solid lines represent marginal-
ized likelihoods, whereas the dashed ones refer to the gligg, = 0. The top left panel shows
the analysis including all the three foregrounds, whiledtiers are derived for a two dimensional
analysis where dust (top right), free-free (bottom leftl aynchrotron (bottom right) emission
are considered.

where S is the signal described in E4.18 and x4, x4/, a and b run over the triplets
{Jj1, j2, j3} and the parameter s€fx1,, Ap, Ar, As}. In detail we have:

SNGC—ISNG SNGC—ISD SNGcflsF SNGC—ISS

F o < SDC—ISNG sPg—1gD sPg—1gF SDC—ISS )
i SFcflsNG sFo—1gD sFo—1gF SFcflsS
SscflsNG SSC—ISD SSC—ISF SSC—ISS

where we have omitted the sum over the triplets.

The marginal error orfyy, arising from this Fisher analysis iSfxr, = 42, very close
to the limits obtained with the Monte Carlo approach; thisfaons the efficiency of
our estimation method. In Fig..23we show the & and 2r error ellipses together with
the output from simulations; here each plot presents thafgignce regions in the case
where the other parameters are fixed at their fiducial vafug(s particular case the null
hypothesis). It can be seen that the free-free componentssskghtly anti-correlated
with fxr,, the cross-correlation coefficient beipg= —0.26. The other foreground com-
ponents, i.e. dust and synchrotron, show a positive caioalarepresented by the ori-
entation of the ellipses, with = 0.19 andp = 0.10, respectively. The scatter of the
over-plotted distribution of Gaussian simulations on tameAk- fx1, plane is in excel-
lent agreement with the ellipses, which confirms again tmsistency of our procedure.
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Figure 4.23: Scatter plots for a two dimensional analydgtainto account one fore-
ground separately. Thier and20 confidence level derived from a Fisher matrix analysis
are superimposed.

Notice that the three correlation coefficients nearly sumeim,+0.03: this reflects the
small positive shift in the mean value (from 30 to 36) and & onsequence of the linear
ansatz given by Egt.18

4.4.3 Conclusions

In this section we have presented a procedure to margindleeesidual foregrounds
when estimatingfy, in the needlet bispectrum framework. However it is impadrtan
stress that this algorithm does not strictly rely on neadbebperties and it can be eas-
ily applied to any linear estimator. With the foreground giaalization, we found, for
WMAP 5-year data, that the estimate @iy, is positively shifted byA fx;, = 6 and
the error bars are enlarged of abadats with respect to the estimate obtained without
marginalizing. Foreground residuals can play differedésan different estimators of
primordial non-Gaussianity. In fact, compared to otheefwound analysis, our results
seem to agree with those obtained Ygdav & Wandelt(2008, who argued that fore-
grounds negatively bias th&;, value. HoweversSmith et al.(2009 draw another con-
clusion, showing that the sign of the bias could depend orfrégechoices of weighting
in the construction of pipeline to estimafg;,. Since substantially needlets coefficients
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are a rebinning of the filtered harmonic coefficients,, this could explain the differ-
ent behaviours. This study needs to be extended to eachfteshdsaussianity, since
different tests act on different spaces (e.g. harmoni®lpiavelet), leading to the con-
clusion that the influence of foregrounds on estimaffigis not unique. Moreover, we
have showed that each foreground has a different effectnuthe taken separately. A
split analysis like this could be crucial, for instance, ghhmultipoles, where the fore-
ground behaviour is currently poorly understood. All tregiforces the argument that a
careful analysis combining different tests is crucial tecdiminate between primordial
non-Gaussianity and spurious effects.

Our procedure could be improved by taking into account tfegimation on the intra-
pixel covariance matrix of each single foreground residual the cross correlation be-
tween them. This would allow a more accurate analysis viat®l@arlo realizations,
instead of simply assuming a rigid pixel-independent favegd residual template. A
similar approach could be fundamental for the next expertsydike Planck, for which
the error bars orfy;, are expected to be drastically reducedf(;, ~ 3 — 5 Babich
(2005) and the uncertainties introduced by foregrounds becategant.

Conclusions

In this chapter we have analysed in detail the Gaussianiyegties of the CMB as mea-
sured by the WMAP team by means of needlets. Actually we fedws two comple-
mentary aspects of this topic. First, we analysed the mapctieg anomalous features
at large scale structures, hot and cold spots, which deteremhemispherical asymmetry
in the sky. We then checked the effect of such asymmetry ongkdlets power spectrum
and bispectrum. On the former, the spots account for roug®¥y of the total difference
power, while on the latter we detect still a strong anomalyisnomaly is particularly
significant when looking at isosceles configurations.

Moreover, the bispectrum formalism allows us to set veryrpsing constraints on
the primordial non-Gaussianity parameter, in particutarview of the Planck experi-
ments. Finally we included the effect of spurious unremdeeeground residuals in the
CMB on the fy;, estimator, which is thought to be relevant for the next gatien of
cosmological experiments.
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Chapter 5

Conclusions

Facts come in pairs at the very least,
for a single body is inconceivable
apart from a space in which it hangs.
Definition, setting bounds, delineation:
these are always acts of division

and thus of duality,
for as soon as a boundary is defined,

it has two sides.

(“The way of Zen”, A. Watts)

This work reviews the studies | carried out during my Ph. Dodused on two main
guestions which still remain unanswered within the framéwaf the standard cosmo-
logical model: the characterisation of dark energy andskee of non-Gaussianity.

Very recently we discovered that the Universe expansionaslarating. This repre-
sents a challenging puzzle for theorists. The more likeptaxation invokes a new fluid,
dubbed dark energy, which has peculiar density-pressopepties. | investigated some
of these properties assuming a few phenomenological masai&ble in literature, and
constrained their parameters combining the most recent @htBlarge scale structure
observations. Results are discussed in Chagterconfirmed the ISW effect detection
at more than 3 level.

The study of the CMB anisotropies distribution requireshssicated tools, which
are continuously improved. | contributed to this activeeggsh topic introducing a new
rendition of wavelets, needlets, which have nice propgriaitable to study fields on the
sphere. Detailed discussion has been provided in Ch&med needlet application to
CMB data analysis is the underlying common ground of my PiprDject.

A crucial feature of the Big Bang scenario is the homogenaitg isotropy of the
Universe, which results after the inflationary phase thevense underwent in the very

141



142 CHAPTER 5. CONCLUSIONS

early epoch of its evolution. Together with smoothnessaiith predicts small pertur-
bations which follow a nearly Gaussian distribution. Thy tileviation from the normal
distribution contains important details on the inflatiomgess itself. Non-Gaussianity
may reveal itself also in a different fashion due to more me@eocesses which leave a
footprint on large scales. | have addressed this issue iMdSeevhere a study of anoma-
lous CMB spots and its consequences on CMB data analysisfarped. The power
spectrum asymmetry itself is reduced by 50%, while the cdsgical parameters are
basically unaffected.

| spent lots of effort to characterise the primordial bigpgam of the CMB fluctua-
tions, constraining its amplitude, namely tlig, parameter findingy;, = 30 & 40 at
68% c.l. (Sec4.2), and its shape (Sed.3). We found a striking asymmetry between the
estimates of the bispectrum, measured in the northern atiteisouthern hemisphere.
The former exhibits a general lack of power, whereas therla§ results are anomalous,
especially in the isosceles configuratiossggesting that perhaps the origin of this
asymmetry depends upon a large-small scale correlationl also developed an esti-
mator to measure such a bispectrum and improved it by désgrébprocedure to take
into account unremoved foreground residuals (8ef). As expected, the foregrounds
residuals enlarge the error bars of a 15% and result mildisetaied to the primordial
signal.

All these studies are particularly important in view of tlewgeneration of upcoming
experiments, which will provide datasets of extraordinqugality, which, as scientists,
we have to skillfully combine to make the best of our theoriés the next decades,
cosmology is going to be a fascinating but challenging fidldesearch | am glad to
belong to.

“We are at the very beginning of time for the human race. ltasunmreasonable that
we grapple with problems. But there are tens of thousandgaisyin the future. Our
responsibility is to do what we can, learn what we can, imprthe solutions, and pass
them on?

!R. Feynman, 'What Do You Care About What Other People Thiyka88
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Appendix A

Beyond the Standard non-Gaussianity

“The third planet is incapable”
“of supporting life[...]”
“Our scientists have said”
“there’s far too much oxygen in their atmosphere.”

(“The Martian Chronicles”, R. Bradbury)

In the previous chapter we discussed the issue of non-Gauitgsimainly from the
point of view of the detection of a small deviation of the CMBdiuation distribution
from the Normal one. Such a small non-Gaussianity is indepdated from theoretical
arguments@uth 1981, Satq 1981, Linde, 1982 and second order effectB4rtolo et al,
2004). Motivated by the upcoming cosmological experiments Wihidl provide us with
very precise datasets, and by the detection of a positivdy Yadav & Wandelt{2008),

a plethora of early Universe models has been proposed whagtpnoduce a measurable
non-Gaussianity. Sdeyth & Wands(2002; Linde & Mukhanov(2006); Alabidi & Lyth
(2006; Mizuno et al.(2008; Khoury (2002; Steinhardt & Turok(2002; Lehners &
Steinhard{(2008 for an incomplete list.

In this chapter we propose a new two fields inflationary moBelupekeur & Lyth
20006, which gets inspiration from the curvaton scenaligtfi & Wands 2002 Lyth
et al, 2003, where the new degree of freedom, the auxiliary field, mayiscantly
contribute to the cosmological perturbations, and themcefhto a high level of non-
Gaussianity which does not violate the constraints of ha@medy and isotropy which
are well satisfied by the dynamics of the standard inflatod.fiel

We first briefly describe the inflation formalism and then d&sthe peculiarities of
our model, focusing in particular on the 2- and 3-point datren functions.
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160 APPENDIX A. BEYOND THE STANDARD NON-GAUSSIANITY

A.1 Moaotivation for the model
The local expectation values of canonical, weakly couptedes fields,
¢I (t7 X) = a)l(t) + 5¢I(t7 X) ) (Al)

whose effective mass is less than the Hubble scale durirggionl acquire an effectively
classical distribution on large (super-Hubble) scales.

Quantum vacuum fluctuations on small scalesx aH) lead to a distribution at
Hubble-exit &, = aH) which is well described by independent Gaussian randoutsfiel

(601.(k)00 1. (K)) = (2m)?0; 7P (k)63 (k + k'), (A.2)

with a dimensionless power spectrum

4mk?
P.(k) = (2ﬂ)3P*(k). (A.3)
During slow-roll inflation we have
H 2
p= (L) e

Non-linear evolution on large scales (after Hubble exide to non-Gaussianity in
the distribution of the scalar fields during inflation and agsult the primordial den-
sity perturbation during the radiation dominated era, Whi@ will characterise by the
dimensionless variable At linear order we have

Hop
P

(= , (A.5)
wheredp is the density perturbation evaluated on spatially-flatdmgurfaces. At non-
linear order it is more convenient to defigan terms of the perturbation in the local
integrated logarithmic expansioN, = [ Hdt, from an initial spatially-flat hyper-surface
during inflation to a uniform-density hyper-surfadgyih & Rodriguez 2005 Malik &
Wands 2009

(=0N. (A.6)

Because the expansion on large (super-Hubble) scales iscéidn of the initial local
value of the scalar fields at Hubble exit, the non-linear pruinal density perturbation
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can simply be expressed as a Taylor series expankytin & Rodriguez 2005

1
(= Nibr+ 5 > N1ndbs. + ..., (A.7)
I I,J

whereN ; = ON/0¢r.. It can be shown that the second (and higher) derivativemalo
the inflaton trajectory are suppressed by slow-roll paramseiN” /N2 = O(¢). Non-
Gaussianity generating during single-field, slow-rollatithn is thus suppressed.

Itis informative to perform a rotation in field space along ihflaton trajectory during
inflation (the adiabatic perturbationsy) and orthogonal directions (the entropy pertur-
bationsgs;). In the simplest case of two fields, E4.7 reduces tol(anglois et al.2008

1
¢ = N,b0.+ N0s, + 51\(5855,% - (A.8)

where we have dropped second-derivatives which involveledic field perturbations
as these are suppressed during slow-roll inflation. Anyisagmt non-Gaussianity from
slow-roll inflation is due to second order termslioming from entropy field perturba-
tions during inflationgs,.

This § N-formalism can also be extended to describe non-lineaursature matter
perturbations. To linear order we have

5= 0m 300y (A.9)
Pm 4 py
Beyond linear order we definédnglois et al. 2008
1 1
;5= ; AN 131+ 5 ; AN 17061600+ ..., (A.10)

whereAN describes the difference in the integrated expansion legtwaiform-matter-
density hyper-surfaces and uniform-radiation-densityemsurfaces. For adiabatic pri-
mordial perturbations the uniform-matter and uniformiaéidn hyper-surfaces coincide
and isocurvature perturbations vanish= 0. Thus adiabatic field perturbations during
inflation do not contribute to isocurvature matter perttidres, AN, = 0, and in the
simplest case of two fields we haveafiglois et al.2008

1 1
gs = AN 05, + §AN73355*2 +. (A.11)
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Observational constraints to date have focussed upon #eeafaadiabatic perturba-
tions which are a local function of a single Gaussian randeid,f{;, such that

C=Cot 2 (G~ () (r12)

This comes from a single fields model, where we have droppeduldratic term in the
number-of-efolds expansion.

9 N s

<G ,858 ) fNL 6N782

(A.13)

This is a good description of the type of non-Gaussianityeeigd in models such as the
original curvaton model where a single curvaton field dec@yse time after inflation to
produce an adiabatic density perturbation. The curvatodeinmay also leave residual
isocurvature perturbations (dependent upon the processedton decay and the origin
of the matter or CDM abundance) and these are correlatedthattadiabatic density
perturbation i(yth et al, 2003.

However it is clear that at second order the non-linear esgioa ( Eq.A.7) for
¢ in the presence of more than one scalar field includes neaslinontributions from
field perturbations which are independentgf Similarly the isocurvature perturbation
(Eqg. A.10) contains non-linear terms some of which are uncorrelatéu tive first order
curvature or isocurvature perturbation. In particulathé first-order part of the adiabatic
density perturbation is dominated by the adiabatic fieldysbations during inflation,
(¢ = N 00, then this is uncorrelated with the entropy field pertudraiduring infla-
tion which give rise to non-Gaussianity in the adiabaticgignperturbation or isocur-
vature matter perturbations. Such a situation may occurnmxad inflaton-curvaton
model Canglois et al.2008.

In what follows we will consider the non-Gaussianity due @s@d-order perturba-
tions in either the adiabatic density perturbationor in the isocurvature perturbation,
S, which is uncorrelated with the first-order density peratitn, (:

3

¢=(c+ gFNL (x& — (&) (A.14)
15 = Fi (¢~ (&) (A15)

where we choose the normalisatiomx@f such that

Py, = P, . (A.16)
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In the extended N-formalism we can identify

Ing =~ A.1l7

NL 6 Nﬁ? ) ( )
o OAN

R =5 (A.18)

A simple example is provided by a scalar field, whose mass is much less than
the Hubble scale during inflatiom;,, < H,, which begins to oscillate some time after
inflation, once the Hubble rate has dropped below the niass m,. If the spatially
averaged value of the field after inflation is smglk« H., then the oscillating field has
a highly non-Gaussian local energy density

Py miéXQ : (A.19)

If it decays before primordial nucleosynthesis, and itssgigmroducts thermalise into full
thermal equilibrium, then we have an adiabatic densityypbétion at second-order of
the form given in EgA.14. If the decay leaves a residual isocurvature perturbakien t
it will be of the form given in EqA.15.

This model can be seen as a particular case of a multi-fielddyiflation described
in Alabidi & Lyth (2006 with the choiceg = 0 in the expression of the mass of the
inflation driving field (their Eq. 2,m?p = [P + goex + hx?).

A.2 Power spectrum

Within the setup discussed above, Egl4 and Eq.A.15 become

(o) = Cole) + 2 ielC) — (GEN] + 2 Fre [xl@)? — (V@)
15() = Fl) - (@) (A.20)

where( is the curvature, which up to a sign is equal to the gravitetipotentiakb. In
the following analysis we assume the variables to be defindgdnthe comoving gauge.
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We quote also the expressionkrspace, where the quadratic term turns into a con-
volution integral:

) = ol + 3| [ aCopIGalle—p) - (2 R)(cE )
+ gFNL[ / gTz;gx(p)x(k—p) — (2m)* 9 (k) (@) (A.21)

5500 = Fii[ [ Gtk p) - o000 (¢ )] (.22

The additionaly field affects in the same way both the source of the adiabatitifba-
tions and that of the isocurvature ones; in terms of the tieflactuations the difference
arises from the two proportionality factorBy;, and Fi¢ respectively, and the different
evolutions described by the transfer functions.

The statistical properties of the fields are usually studwuti the 2-point correla-
tion function (2pcf) in harmonic space, the power spectr@ased on the homogeneity
assumption we write the auto-correlation functicas

(X*) = (x(@1)x(2z2)) g = (X(@)x(x 4+ 7)), (A.23)

which translated into Fourier space becomes

<X($C)X(SC + T)>E = / (;iﬁl;g eik-x/ ((2177-]{):; ok (z+r) <X(k)X<k/)>E

_ [Pk
= /(%)3 P, (k) (A.24)
where
(x(K)x(K))p = (27)°0(k + K') P, (k) (A.25)

We define the power spectra for the two inflationary fieldsoetiag to the standard
definition, as

k |n¢,—4

Pak) = Aga|io| (A.26)
k 1nx—4

P (k) = Al (A.27)

Notice that the above definition reflects the ergodic liméttensures

= / Cay(@)x(@ +7) = @)X + )
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Since in principle the two fields are independent, we alloes spectral indices to be
different and normalise the two power spectra to be equdleastalée;, interesting for
the CMB. Adopting this convention we obtain a nearly consgawer per logarithmic
interval (P(k) = 4wk?®/(2n)*P(k)) whenn,, ,, = 1. We stress that since the two fields
are independent the spectral indices are not bound to bé& dogitatest constraints from
WMAP 5-yearsKomatsu et al(2009 apply ton,, whilen, could span the entire range.
This actually is a specific and interesting feature of our ehod

The 2pcf for the quantity leads to a term proportional to the power spectrum of
¢z and a second one which is a function of the power spectrug? ofAny cross term
vanishes since both the two primordial fields are chosenactlieir ensemble average
is zero. We are interested in evaluating the 2pcf forsthiethat represents the source for
the matter density perturbations. Computing the 4pcf fentiield in Fourier space and
applying Wick’s theorem we obtain the following result:

Bk, [ BPF , ,
— Q/Wek /pr(k)Px(k—k) (A.28)

According to the definition of the power spectrum, Eq25, we identify the explicit
form of the power spectrum foy

P9 =2 [ ST PPk p) (A.29)
(2m)?

which results a convolution integral of the power spectrdrtine primordial inflationary

light field.

The curvature and the isocurvature sources seed diredlyle¢hsity field: indeed
we can express the density inspace as a superposition of adiabatic and isocurvature
modes, each of those with the proper transfer functionialrabnditions for¢ andS are
set in the early radiation epoch, while the matter densigeiserally defined in the matter
domination era like

2 k 2 curv 1 1S0
b, t) = = (=) (T (e )G () + 5T (k. )5 (1)) (A.30)
where the subscriptc” reminds the comoving perturbation. Substituting Bg80 into

Eqg. A.30 we obtain the expression of the density as a function of thmegrdial sources:

5l 1) = 2 () [0 0) (o0 + 2 a0 + 2 Fa T s, ) (k)|

S5\aH
(A.31)
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where we defined:

_ 15 .
Fyi T (k) = [Py T (b ) + 5 NPT (k. 1) (A.32)

We explicitly factorise out the dependence on the scal®faotd the Hubble parameter
to match the usual normalisation of the transfer functioteoge scales]"/*** = 1.

We simply mention that when dealing with matter density yiddtions one compli-
cation arises since we do not measure the dark matter detisttly, but only through
a tracer which shows a bias in the growth of the perturbatidriee bias may be scale
dependent, making the full treatment much more challengingvhat follows we will
ignore this contribution.

Once we compute the 2pcf for the primordial sources it isgttéorward to write the
power spectrum for the density field via Eg.31
Pl 1) = o () [ (e )2 (Pe () o oy () + o Fie (17 (. 1)) Py ()|

e 25 \aH ’ 25 G 25 ’ X
(A.33)
WherePCé is defined analogously to E4.29. Notice that the cross term betwegnand
x? vanishes becausg is a Gaussian field with mean value vanishing.

In the next section we address thgoint correlation function (3pcf) formalism.

A.3 Bispectrum

For a Normal distribution the odd moments are vanishing evthie even ones can be
given as function of the first and second moment, i.e. the meahre and the standard
deviation. The first term one has to look at in order to meadawation from the Gaus-
sian distribution is the third moment.

The 3pcf for¢ picks up contributions both frord; and x, but none from the cross
term. The reason can be found again in the zero mean value éttds. The first non-
linear bit is proportional tgy;, and has been first proposedkgmatsu & Sperge|2001)
and it has become the standard approach in the literature.

For Fiy;, = 0 we obtain the standard non-Gaussian term, given by:

(C(ki)C(kao)C(ks)) = 2(2m)30P) (ky + Ko + Ks) fur[Pee, (k1) P, (ko)
+ Peg (k1) Peg(ks) + Peg (k3) Peg (K2)] (A.34)
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In order to help the comparison in the following, we repog tton-linear correction to
the shape of 3pcf for the density field in the standard scenari

8 skiN2/ky\2/ ks \2
_ 35(3) S (et T e Y (i
bt = 202eo b oo () (52) ()
X Tcum}<k1)Tcurv(kz)Tcurv(kg)<<G<k1)<g(k2)gg<k3)>(A.35)
For Fiy;, # 0 and fxr, = 0 we need th&-point correlation function for thg? field. Once
again we start with thé-point correlation function for the primordial field and apply
the Wick’s theorem. Here we summarise the results.

8

(C(k1)C(ko)C (k) = o5 v (O (k1) x (ko) x P (ks)) =

8 8 3 d3k
_ 3503) e _—
= (27’(’) ) (k1 + k2 +k3)3 195 (FNL> / (27T)3PX(k)

x [Py(ky + k) Py(ky — k) + Py (ks + k) Py (ks — k) +
+ Py(ks + k)P, (k) — k)] (A.36)

where we have explicitly symmetrised with respeckto

The main difference with respect to the standard non-Gangerm arises from the
convolution integral present in Ed.36 which makes the computation rather compli-
cated. Moreover in the standard case the paranyfgieappears linearly in the expres-
sion, while the 3pcf for? is proportional toFy ;.

It is possible to derive the 3pcf for the density field thattes

(0e(ker)0c(ka)de(ks)) - = %(afﬁﬁ) (af'}’g:[2> (af'}’g:[2> (§>3F]%L

T (k) T (ko) T (ks ) (X% (ki) X2 (ko) X2 (ks XA.37)

Numerical Evaluation

Assuming for the power spectrum the shapgk) = A}k/ko}"%, we can approximate
the integral ovek in Eg. A.36, under the assumption that the most contribution comes
from the poles, as

/ Lk, (k) P, (ks — k)P, (ks + k) ~

(2m)3 ¥

= (Pk)Pyh) + PP (k) + P(ka) k) [ 5Ptk =

= (X (x)) (Py(k) Py (k2) + P(kn) Py (ks) + Py(ka) Py (ks)) (A.38)
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where we used the resyli®(x)) = [ %Px(k) (see Eq??). Itis worth stressing that
this derivation is valid under the assumption aoéd power spectrum, i.e2 = 1 — ¢ with

e > 0, that requires an infra-red (IR) cut-off in order to keept@rthe two point corre-
lation function, namely the mean value of the squared fieidhis case the majority of
the contribution to the integral comes from two poles, ag las the scales which we are
interested in are greater than the IR cut-off. Notice thatdivergence is present only at
the level of the power spectrum, since the two-point andetip@nt correlation functions
in x? are finite, since they come from four-point and six-pointretation functions for
the fieldy. More interesting with this approximation we obtain an @gsion very close
to Eg.A.34, allowing us to implement the standard estimator develtyyd¢bmatsu et al.
(2009; Creminelli et al(2006. This is the basic assumption on which most of the recent
worksEngvist & Takahash{2008; Ichikawa et al(2008; Kawasaki et al(2008 2009
on non-Gaussianity are built. It is perfectly reasonabtééf spectral index,, is bound
to be close toy,, which indeed has been tightly constrained from the WMARe&fg
data analysig&omatsu et al(2009 to ben, = 0.960 4+ 0.013.

Even in the case of Bluepower spectrum, i.en = 1 + ¢ the divergence is present at
the level of the power spectrum only, this time an ultra-®i¢UV) divergence. We need
a high-k cut-off in order to keep finite the two-point cortéa function iny.

It is possible to obtain a simple expression for the two-poorrelation function in

2, given by

(k) o 2 / %Px<p>zﬂx<kl—p>, I
Y s / (;;; P(z)P,(k; — z). (A.39)

where we used the rescalikg= zk;. The integral in the equation above is simply a
number that can be computed numerically, while the scalert#gnce is factorised.

Not as simple is the case of tBepoint correlation function, since we still factorise
the dependence on one single scale, narkelyput we are left with an integral function
of the two anglesy and 3, as can be seen in the following expression:

<X2(k1)X2(k2)X2(k3)> X /(SWI;BP(k)P(kQ —k)P(k3+k) =
3(n—4)43 d3k . sine. - .
= ki 8 / iR )P<sin(a—|—ﬁ)k2 )
sinfg -~



A.3. BISPECTRUM 169

wherek; is one of the three scales which build the triangle andnd 5 are the two
angles that the other two scales form wkh. The formula above is actually rather
complicated since the expressionscofind § are non-linear functions dt;, with the
constraintv+ 3 # 0, 7, that actually is anything else than the closed trianglairegqent.
Nevertheless, the limi& + 5 < 7 is particularly interesting, because it represents the
squeezed configurations. The configuration in which theeth¢are aligned is described
by a = 8 = 0, for which the expression above is well defined. Itis possibldistinguish
the equilateralconfiguration and thequeezeane. The former has, = ky, = k3 and

a = =~ = x/3; the latter is characterised By << ko ~ k3, which is translated into
a~ [ < 7m/2. The caser ~ v << § < m represents co-linear configurations.

« andr parameterisation In order to compute the integrah (40) we choose a specific
reference frame: the triangle lies in the— z,, plane, beinds; = z, along the horizontal
axis. To completely describe the configuration it is neagssespecify the ratio between
the two sides, namely = k3 /k;. Using this parameterisation it is possible to span with
continuity the whole parameter space.

In order to find which of the described configurations coniiés mainly to the inte-
gral, we perform a numerical computation of Eq38 using the above parameterisation.
Results are shown for both our model and the standard nossanity in Fig.A.1.
The two plots look pretty similar. In order to understand tsagoing on, we re-write

Figure A.1: Left panel: power of theonvolution integral middle panel: power of the 3pcf in
standard non-Gaussianityl he two quantities are expressed as functionsafidr and computed
for ny, = 1.1 (blue tilt). The third panel shows the ratio between the timoeed it is very close
to 1, with small deviations due to numerical accuracy.

Eg.A.34in terms of the variables andr:

<CG(k1)CG(k2)CG(k1>> X PCG (kl)PCG (kZ) + PCG (k?))PCG (k2) + PCG (kl)PCG<k3)
= P2 S(ky)[(L+ 7" = 2rcos )" 4/2 4yt
+ (rV1472 —2rcosa)" (A.41)
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Figure A.2: Left panel: power of theonvolution integral middle panel: power of the 3pcf in
standard non-Gaussianityl he two quantities are expressed as functionsafidr and computed
for ng = 3.0 (strong blue tilt). The third panel shows the ratio betwdentwo which turns out
to be quite far froml as expected.

The first important thing to notice is that the dependenck;aa different from ours, and
they agree only in the peculiar case= 1. Looking at the expressioh.41 the behaviour
for r ~ 1 anda = 0 becomes clear: two poles tend to coincide and then, even #reve
studying a blue power spectrum that does not require an I®ftuthe square of such a
blue spectrum is red and needs an IR cut off. The higher powver, independently of
the anglen can be explained in the same way: two poles tend to coincidaad his
explain also why the power is a little bit higher for> 0 then fora < 7: the contribution
from the third pole is slightly higher. Basically the effeet see is the contribution of the
poles. Probably on smaller power intensity it is possibldigtinguish specific features
characteristic of the chosen spectral index.

A.4  fx estimator

The optimal estimator for a quantit®*” is generically given by the product & by the
observed quantity°** normalised to the square of the theoretical value. In the oés
the non-linear parametgk;, we can then write

Zk50b5< ) ( )5obs( )Cov_l((sth(k’)5th(k”)5th(k”’)>
Dk 0t (1 )02 (kez ) 011 (ks ) Cov ™ (627 (K, )3tk (kg ) 62 (k')

IaL = (A.42)

whereo is a suitable observabl€ov is the covariance matrix given by the 6-point cor-
relation function times the transfer function for the colesed observable. The standard
choices foro are the CMB fluctuationskomatsu et al.2005 and the baryon density
ones Glosar et al.2008.

A.4.1 Primordial Bispectrum

We are interested in computing the bispectrum for non standéationary models, like
the curvaton moddlyth & Wands (2002, in which the contribution to density pertur-
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bations coming from the non linear potential con be largethis context large means
fxL ~ 100, that seems to be very exciting especially because it woallth agreement
with the recent claimyxy, ~ 90 stated byYadav & Wandelt{2008.

The primordial scalar fluctuations can be constrained byattadysis of the Cosmic
Microwave Background (CMB) radiation. This analysis is aibucarried on expanding
the relative temperature fluctuations on the Spherical ldaras basis

AT (¥ . ATH) e a
T(E ):Zafmnm(’)/)aém:/dg T( )nm(7)7

m

The coefficients of the expansiamn,, can be express in term of the primordial potential
® of the inflationary fields that determines the primordialvature perturbations, both
adiabatic and isocurvature ones.

~

3
o =1n(=0)" [ 55 [cratt + sk |Vl (A4

where g%/ o are the radiation transfer functions for adiabatic anduseature modes

respectively.

The non-linear part of the potentials transfers iatQ, introducing a non-Gaussian
contribution into the temperature fluctuations. The CMBw@agbispectrum is defined
as

BZLéznng = <a51m1 Atymy a53m3>7 (A44)

It is useful to define the angular averaged bispectrum, dwyen

by by S
Bglfz@g = Z < ! 2 3 >B€1é2é3 3’ (A45)

allm \ 1M1 T2 M3

where the matrix is the Wignexs symbol. Since the bispectrum satisfies the triangle
conditions and parity invariancez; +mq+ms = 0, {1 + o+ {3 = even, and|(; — (;| <

0, < ;4 ¢; for all permutations of indexes, it basically consists af thaunt integral,

G, 2™ times an arbitrary real symmetric function@f ¢, and/s, by, s,

Bitis " = G0tats Vertatss (A.46)
Gz = [ 3, () Yo () Vi (3) (A47)

G2 is real, and satisfies all the rotational invariance coadgimentioned above.
This allows us to focus on the so-callestiucedbispectrumpy, .., Komatsu & Spergel
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(200)). The angle-averaged bispectrum can be expressed in teitva céduced one as

200+ 1)(2ls + 1) (213 + 1 oIy 1
Bl1l2l3:\/( : )( 247'(' )( ’ )<01 g g)bl1l2l37 (A48)

where we used the relatiat?.

The bispectrum looks like

mimams
l1lals - <a’€1mla’52m2 53m3>

e [ Pk [ Ay [ Bk
= e [G5 [ oo |
gTél(kl)gTez(’f2)gTés(k3)YZml(Rl)YZ;m2(R2)YZ§m3(Rs)
(C(k1)C(ka)C(ks)) (A.49)

where in the standard case the 3pcf for the curvature is diyefq. A.34, while in our
model it is given by Ecp.36. By means of the Rayleigh’s formula we can expand the
5 function which is hidden in the 3pcf for the curvature pdsations in the expression
above. The crucial step in performing the computation isaeding Dirac’s delta in the
Fourier basis, expressing the exponential in terms of tres@&& functions and spherical
harmonics. We can perform the integrals over the angulamgach lead to three Gaunt’s
integrals. One of these describes the invariance propétiye dispectrum under rotations
and the requirements of parity symmetry and triangle m@hatimply (EgA.46), while
the others take into account the coupling betwkenodes, which in the standard case
is vanishing. In this particular case, it is possible to dyrfprther the expression of
the bispectrum exploiting the orthogonality of the sphariarmonics. We obtained the
usual form of the bispectrum:

B = 2pagnm [ o
(e, () B, () Bey () + perms] (A.50)
where
ade) = 2 [ dhgr(k)iha):
Bi(z) = % / k? dk gre(k)jo(kz) Pe. (k) (A.51)
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To make explicit the link with the formalism described abowve can identify the integral
over the radial coordinate as the reduced bispectrum:

sty = 2 / 22 Ao, (2) ey (2) ey (2) + Bos (2)tey () By () + ey (2) ey () vty ()]

In the model we are considering, due to the coupling betweerrodes induced by the
3pcf of the perturbation sources, we obtain for the bispecthe following expression:

144 é
s L R E e
é’ 0L

2 .

;/kf dk1gre, (k1) je, (k1)

2 ~ ‘ g
= [ 1 dhaga (k) Py G iy () ()

2 ~ .
;/kg dksgre, (ks) I(k’g,p)]g%(kgl‘)( i)t~ b +perms] (A.52)

where we decomposed the power spectrum into spherical Mmandffgfgf’ is de-
fined in the Appendix and is function 8§ and6; Wigner symbols. Notice that the three
integrals overdk; would reduce tay(z) if there was not; dependence of the quantities
ﬁf(ki,p). This effect is due to the coupling between different moae®duced by the
convolution integral in 3pcf. Nonetheless we are able t@ssp the dependence o1
which would break the rotational invariance of the bispactr

Bispectrum estimator

Our aim is to find a computationally fast estimator for thekrstrum, following the one
that was first proposed omatsu et al(20095 and subsequently improved I&rem-
inelli et al. (2006 taking into account anisotropic partial sky coverage, ainally ex-
tended to include properly CMB polarisation (Ségdav et al.(2007) and Yadav et al.
(2008).

We go through the fundamental steps again that lead to theudbg estimator in or-
der to define quantities that will enter in our formalism faie. A very natural definition
of a,,, that comes straight-forwardly from the above calculatisrtbe following

o = wr [ @ Qo [Gon(@)a(@) + Sin (D) (@)] 41 (AS3)

whereS,,,(z)s are the harmonic coefficients of the fluctuations at givenaong dis-
tancez = |x|, w, represents the beam effect angd, the instrumental noise that for
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simplicity reasons we assume to be approximaterby,n,,,) ~ agégg,émm,. The func-
tions as are defined in E.51. Naively, an unbiased estimator of the angle-averaged
bispectrum can be constructed by the obsemgdas follows:

. b, by Y
B&sza = Z( ' ? ’ >af1m1a€2m2a€3m3 (A54)

m my Mz Mg

For a full description of the estimator s8pergel & Goldber§1999; Komatsu & Spergel
(200)). The covariance matrix of the estimator can be computeth®gix points corre-
lation function fora,.,,, provided that non-Gaussianity is weak, i{@3,s,¢,) ~ 0, Luo
(1999; Heaveng1998. The diagonal terms faf; £ 0 and/; + ¢, + {3 = even are

(B t205) = (Ct.){C, ) (City) Aty ot (A.55)
A41£2£3 = (1 + 25@14254243 + 54142 + 54243 + 54341)'

The variance is amplified by a factor of 2 or 6, when two oi’alare same, respectively.
In presence of sky cuts the previous results4gy,,,, do not hold anymore and a numer-
ical simulation has to be performed in order to obtain réialiglues for the coefficients

in front of Cys. Some hints can be found Komatsu(2002.

Standard non-Gaussianity estimator. We are interested in the best estimator for the
primordial non-Gaussianity bispectrum of which we know #ipecific shape. We can
then think it as a Wiener filter that satisfies the relation

0
805(37)

(|Oc(z)apm — Cem(x)]) =0 (A.56)

and we find

we | da'zay(2') (G (2) G (2))
C

where(,,, () is the coefficient of the spherical harmonics expansion efgtimordial

curvature perturbation. In the simple case of standard@aussianity we can express

the 2pcf of(,,,(x) like

Oy(r) = (A.57)

<Cgm(l‘)gglm/ (l‘,)> = 5&’5mm’% //{32 dkp(k)jg(k?l‘)jg(k‘l‘/) = 5@(/5mm/D(l‘,fL‘/) (A58)

which substituted back into E.57 gives

Oy() = : (A.59)
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where the functiom,(z) is given again by Ed\.51 and we used the completeness relation
of the Bessel's functions, EQ?. A useful summary of the relations which link/(z),
Be(x) and D(x, 2"), which is the integral in E&\.58, are given inBabich(2005; Yu &

Lu (2008.

Here we implicitly assume that adiabatic and isocurvatuoel@s are not correlated
and we can focus on one of the two separately. ISsaatsu et al(2005 for a detailed
discussion.

We can recognise in the previous definitions some of the giempresent in the
expression of the bispectrum, E4.50. The fast cubic estimators built filtering the
measured.,,,, in order to obtain two maps, A and B, given by

A, 5) =) %jwaemnm(&) (A.60)
m

B(z,4)=) B Z(EZW o Yom (7) (A.61)
Im

and computing the integral

Sprim E47r/x2 dx/%A(m,&)Bz(x,&) (A.62)
T

By direct inspection it can be verified that 62 reduces to

Sprim - Z

01 <l<tl3

Bt Biiey (A63)
Ce, Ce,Cey
whereB”; , is the observed bispectrum corrected for the beam eﬁf@canng’fg’zg is
the theoretical one derived in E4.50 averaged ovem and computed fofx;, = 1. The
C, at the denominator of Egh.63 are those extracted from the observed sky, given by
Co = wiCp+ o}.

We can then derive the value ¢f;, simply computing the ratio between tlig,;,, in
Eq.A.63 and the theoretical expectation for the same quantity, as:

Sprim
prim
E (Bﬂlfz L3 )2
£y <tz <Z3 Cﬂl C@2 C@B

far =

(A.64)

For a generalisation of this estimator which takes into antdoth temperature and
polarisation se&adav et al(2007).
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Estimator for the non-standard Term.  In order to build a similar estimator for our
model we have to compare E4.52 with Eq.A.50. As already mentioned the three point
correlation function for a curvaton-like model shows anwdagdependence that prevents
us computing the product of several spherical harmonics.

The above estimator is build following the prescription éomatching filter: basi-
cally the real signal is multiplied by the theoretical one &me product is weighted with
the variance of the quantity under consideration, in thiedae three point correlation
function.

As a first step we can try to apply the standard estimator tooadel to see how
sensitive it is. Formally we simply substitute the theaatibispectrum computed for
fnr, = 1in Eq.A.64 with the one computed for the one underlying our theoryHor, =

1. We obtain

obs rim
Z Bflfgfg,B?lZng‘FNL 1
£y <la<l3 CZICZQCZS

F3 = (A.65)

S Biliges =)
0 <lp<l3 Ce1CoyCoq

We can not computeyy, directly by means of,,.;,, because the,(r) andg,(r) functions
have been obtained under the standard non-linear cougmgmptions. Nonetheless, if
the approximation we discussed in SEc3 lasts, it is possible to apply the fast cubic
estimator, once replacing the power spectrun(fpby P, (k).

A more rigorous approach would require the computation efdptimum filterOQ,
starting from the same definition given in E§56.

Flat sky and large scales (SW) approximations. The fast cubic estimator can be eas-
ily computed making use of temperature maps. Inspired lsydbnsideration we try to
build an estimator for our model in real space. We simplifigfar the system using the
flat sky approximation under the assumption that the ramhdtansfer function is a Dirac
delta in space. A bispectrum estimator, under the previssisraptions, looks like

S = /d2 /d2 /d2 /d2k//d2k// i(k+k’+k”)n

1;
T . " P.(lp k")(s M+ perms = (A.66)

P(p)ﬁpx(\ —k’l) o
= /d2 /dsz p,n)B(p,n)C(p,n)
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where we defined

A(p,n) E/koe“"“PX(p)%

Cr
0Ty

Blp.n) = [ KR (fp~ K Y

17/ T "
Clom) = [ WP, (p+ 1K) G

Now we recognise that it is possible to identify the aboveregpions as Fourier compo-
nents:

A(y,n) = / d*pA(p,n)e®Y = M(n)P>’<(y)
Bly.n) = [ EpB(pmery = Mn + y)P(y)

C(y,n) = / d’pA(p,n)e®Y = M(n — y)P;(y)

where P'(y) is the Fourier transform of the power spectrum avidx) is real map
weighted with its variance.

Now in order to simplify the computation we write the Fougemponents EqQ#.67
in terms of the EqsA.67. To clarify this we write only the first map

A(p,n) = / d*xe~"P*M (n) P} (x) (A.67)

Substituting into EQA.66 and using the resulting Dirac’s delta function to perforne on
spatial integral we obtain

S = / d2n/ d2x/ d*yM(n)P(x)M (n+y)P,(y)Mmn+x+y)P(—x—y)
(A.68)
This basically is a product in real space of all possible coatibns between pixels
related by a triangle relation. This scales as the numbeixefpcube and then is com-
putationally challenging.

A.5 Conclusion

In this chapter we introduced a viable early Universe modelebl on a curvaton-like
scenario and computed the two and three point correlatioctions, both in real and k-
space. Due to the quadratic term in the curvature expangierhispectrum estimators
become rather complicated and their treatment in the CMBexbms computationally
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prohibitive. We studied these functions in a regime veryselto the scale invariance,
where the standard approach can be resembled. We testezhdsibur by means of
a numerical code, which actually confirmed the theoreticalition: when the power

spectrum of the auxiliary field is far from being invariarietapproximations breaks
down and a different analysis is necessary. We attemptedili &n estimator suitable
for this new model, but its numerical evaluation turns oub&extremely long. An

improvement of such formalism is currently under invedima
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