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Abstract

Cosmology has entered the precision epoch thanks to severalvery accurate experiments.

Cosmologists now have access to an array of tools to test the cosmological concor-

dance model and constrain its parameters; the Cosmic Microwave Background radiation

(CMB), in particular, has been playing a crucial role in thisambition. Many questions

remain nonetheless unanswered, especially concerning thephysics of the early Universe,

the inflationary mechanism which set the initial conditionsfor the Universe expansion

on one side, and, on the other, the nature of the late time acceleration of the Universe

expansion.

My research contributes to both of these subjects, the common ground being the de-

velopment of a statistical tool – needlets, a new frame on thesphere – to analyse the

CMB. By means of needlets, we measure the Integrated Sachs Wolfe effect by cross-

correlating WMAP and NVSS datasets and characterise dark energy properties using a

phenomenological fluid model. Motivated by our findings, we study in detail a parame-

terisation of the dark components, dark matter and dark energy, which makes use of an

affine equation of state, constraining the parameters of themodel by combining WMAP

and SDSS datasets.

We apply needlets to the WMAP 5-year data release testing theGaussianity of the

CMB perturbations. Our approach is twofold: we first focus onthe maps, detecting

anomalous spots located in the southern hemisphere and check their effect on the angular

power spectrum. We next measure the needlet three-point correlation function (bispec-

trum) and characterise it in terms of its overall amplitude,putting constraints on the pri-

mordialfNL parameter, and considering its properties according to thegeometry of the

triangle configurations which contribute to the total power. We find a significant anomaly

in the isosceles configurations, again in the southern hemisphere.

Finally we focus on the construction of an optimal estimatorfor the (needlets) bis-

pectrum, taking into account foreground residuals.
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Introduction

“Why in general is there some-thing

rather than no-thing?”[...]

The act of being and the thing are in a

relationship of identity and difference.

This double relationship has to be considered

not to forget either the difference,

whose oblivion determines the loss

of the meaning of being, as the western metaphysics has done,

or the identity, whose oblivion considers

the act of being as trascendent,

making the thing meaningless.

(Freely translated from “Il tramonto dell’occidente”, U. Galimberti)

Since his first step on the Earth, man has looked at the sky wondering what governs

the marvellous processes which astonished him. The answer to this question has been of-

ten found in the context of the natural philosophy or religion. Thanks to the extraordinary

improvement both on the theoretical and technical side, cosmology is nowadays able to

provide, if not a conclusive answer, certainly a new and complementary prospect, which

should be taken into consideration when approaching such a fundamental question.

Since Galileo had the first look through the telescope, astronomy has reached a high

degree of over-refinement which provides the scientific community with very accurate

measurements of our Universe at many wavelengths, which impress the man of the street

and challenge the researcher. By skillfully combining all this information, the cosmol-

ogists have derived the current cosmological model. According to this scenario, our

Universe began about fourteen billions years ago, out of a tiny, extremely hot and dense

energy region. Since then, it has been expanding and cooling, undergoing a series of

temporary equilibrium phases between the particles which contribute to the total energy

content. The very early phase of the Universe’s evolution isstill far from being fully

understood and it is the subject of intense study. This is therealm where cosmology

1
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merges into high energy physics. Nonetheless we can at leastsketch the processes which

occurred at this primordial stage, which produced the particle species we can probe in

the laboratory. From them, we can reconstruct the chemical evolution of our Universe

and the formation of the structures we observe. To this aim, we actually have to combine

photon and baryon physics in an homogeneous and isotropic Universe, together with two

more ingredients which contribute to the total energy content. These are named dark

matter and dark energy. The former creates the gravitational potential wells and deter-

mines the growth of the baryon perturbations through gravitational instability; the latter

is responsible for the late time acceleration of the Universe expansion.

One reason for the success of the cosmological model is certainly its simplicity: by

means of an handful of parameters it is able to account for thecomplexity we observe.

Conversely, this model lacks a solid theoretical basis, notonly for what concerns the

early stages, but also regarding the explanation of the darkcomponents.

The most powerful tool, which has tightened the constraintson the cosmological

parameters, is the Cosmic Microwave Background radiation,the thermal relic of the

equilibrium condition in which the Universe was in its first phase of the expansion. We

now possess a very precise measurement of this energy emission and we are going to

achieve an even better one with the upcoming experiments, which will return a measure

very close to the theoretical limit.

During my Ph. D. I have been developing a statistical tool, namelyneedlets, to max-

imise the amount of information which can be extracted from the cosmic microwave

background radiation, and I have applied it to some of the most interesting open ques-

tions in cosmology. In particular, I focused on the issue of the nature of the dark energy

and on the characterisation of the energy fluctuations distribution, testing its Gaussianity.

This work aims at being a review of my project, explaining coherently the results

my collaborators and I obtained. After a brief summary of thecosmological model in

Chapter1, I discuss the dark energy problem and present the approach Ifollowed to probe

its properties in Chapter2. Part of this effort has been performed by means of needlets,

a new frame built on the sphere, which I describe in detail in Chapter3. In Chapter4, I

show the results obtained when applying needlets to the isotropy and Gaussianity issue.

Finally, I will draw my conclusions in Chapter5.



Chapter 1

The Cosmological Model in a Nutshell

Let us suppose that an ichthyologist is exploring the life ofthe ocean.

He casts a net into the water and brings up a fishy assortment.

Surveying his catch, he proceeds in the usual manner

of a scientist to systematise what it reveals.

He arrives at two generalisations:

(1) No sea-creature is less than two inches long.

(2) All sea-creatures have gills.

These are both true of his catch, and he assumes tentatively that

they will remain true however often he repeats it.

(“The Philosophy of Physical Science”, Sir A. Eddington)

Looking at the sky through the telescope, we observe a multitude of objects, different

in dimension, shape, luminosity, energy emitted. It is natural to look for relationships

between the various properties which characterise these structures, and to try to interpret

them within an evolutionary theory. Indeed, the laws of physics, which we assume to

govern the astrophysical processes, describe the fundamental interactions and suggest

dynamical models. However, it is only the last century whichhas seen the development

of a cosmological model which depicts an evolving Universe.

In the next sections we first introduce the theoretical framework within which the cos-

mological model is built (Sec.1.1); we then describe the main features which characterise

it (Sec.1.2); finally we discuss a fundamental tool, the cosmic background radiation, to

probe our Universe (Sec.1.3).

1.1 The Metric of the Universe

In the 1929, Edwin Hubble observed a proportionality relation between the distance of

the nearby galaxies and their recession velocity,v = H0D (Hubble law,Hubble(1929)).

3
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The velocity was inferred from the redshift of the emitted light: interpreting the shift as

the Doppler effect due to the motion of the sourcez = ∆λ/λ ≃ v/c, Hubble concluded

that the sources moved away from the Earth. Obviously this does not mean the Earth, or

the Solar system, occupies any special position in the Universe. On the contrary, this is

exactly what any observer would measure in an expanding universe.

This measurement can be considered as a milestone on the roadto the modern cos-

mology, and it represents indeed a fundamental tool to measure the expansion rate widely

used today. See for exampleRiess et al.(2009).

The modern cosmology is built on two pillars: i) the Theory ofGeneral Relativity,

which Einstein developed early in the 20th century, and ii) the Cosmological Principle,

which, at least in its first formulation, is due to Einstein aswell. SeePeebles(1993) for

an interesting historical discussion. General relativitydescribes the mutual interaction

between matter (and more generally energy) and space-time,assuming the validity of the

special relativity (Einstein, 1905) and postulating the Equivalence Principle (Einstein,

1916)1.

The cosmological principle states that the Universe is homogeneous and isotropic

on large scale (& 100Mpc). This assumption, which seems pretty reasonable from a

theoretical point of view, since it implies that any observer measures the same physics in

any direction in the sky, has been indeed confirmed by the observations of the galaxies’

distribution such as the 2dF Galaxy Redshift Survey (Cross et al., 2001), the NRAO VLA

Sky Survey (Condon et al., 1998) and Sloan Digital Sky Survey (Abazajian et al., 2009).

General relativity begins with the line element defined as

ds2 =
∑

µν

gµν dx
µ dxν = gµν dx

µ dxν (1.1)

wheregµν is the 4D (symmetric) metric tensor and the indices run over the range 0-3.

The Einstein summation convention has been introduced and it will be assumed in what

follows. On a local inertial frame it is possible to expressgµν as the sum of the underlying

Minkowski metric,ηµν = Diag(−1, 1, 1, 1), and a perturbationhµν (Ma & Bertschinger,

1995).

1The equivalence principle can be rephrased with theGeneral Covariance Principlewhich requires
an equation to hold in absence of a gravitational field and to be invariant under a general transformation
of coordinates. It is interesting to notice that the equivalence principle defines somehow the effect of the
gravitation: by means of its general covariance, an equation which holds in absence of a gravitational field,
holds in the presence of a gravitational field. Assuming a symmetry sets constraints on the equation itself
(as in the case of the special relativity), or more properly gives an interpretation to the metric tensor and
the affine connections: they are an effect of the gravitational field itself.

Any invariance principle which determines the properties of the interaction of a given field is called a
dynamic symmetry. We find other examples of such symmetry in theoretical physics in the Gauge and
Chiral symmetries (Weinberg, 1972, 2008).
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The cosmological principle allows us to simplify the expression of the line element as

ds2 = −
[
dt2 − a(t)2

(
dχ2 + S2

κ( dθ
2 + sin2 θ dφ2)

)]
, (1.2)

which is the Friedmann-Robertson-Walker (FRW) metric (Friedmann, 1922; Lemaı̂tre,

1931; Robertson, 1935; Walker, 1937). t is the cosmic time and{χ, θ, φ} are the spherical

comoving coordinates. Isotropy allows us to choose the maximally symmetric frame and

homogeneity requiresa to be a function of the cosmic time only.Sκ is defined according

to the spatial curvature of the space-time as:

Sκ =





sinχ κ = 1

χ κ = 0

sinhχ κ = −1

(1.3)

being respectively closed, flat and open geometries.a(t) is the scale factor and it basically

describes the evolution history of the Universe (at the background level). It is then a

powerful tool to compare different evolution models. Let usintroduce a very useful

quantity related to the scale factor: the redshift, which isdefined asz = 1/a− 1.

Within this formalism it is easy to understand how the Hubblelaw follows directly

from the cosmological principle and the FRW metric. From Eq.1.2, the proper distance is

defined byrp = a(t)χ, whereas its velocity is given byv = drp/ dt = ȧ/a rp. Defining

H0 = ˙a(t)/a(t)|0, we obtain the Hubble law. The Hubble constant turns out to beactually

a function evolving in time. Its measured value today isH0 = 74 ± 3.6Km/s/Mpc at

68% confidence level (Riess et al., 2009); it is useful to normaliseH0, expressing it

in terms of a dimensionless parameterh = H0/100. The Hubble parameter naturally

introduces a characteristic time scale, which sets the order of magnitude of the Universe

age,t0 = 1/H0 ≃ 10h−1Gyr.

As anticipated, Einstein’s equations describe the dynamics of the metric given the

matter content of the Universe. The differential equationsfor the scale factor and the

matter density follow from Einstein’s equations

Gµ
ν ≡ Rµ

ν −
1

2
δµνR = 8πGT µν , (1.4)

whereGµ
ν is the Einstein tensor, andRµ

ν is the Ricci tensor, which depends on the metric

and its derivatives,R is the Ricci scalar andT µν is the energy momentum tensor. In the
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FRW background (Eq.1.2) the curvature terms are given by (Kolb & Turner, 1990)

R0
0 =

3ä

a
, (1.5)

Ri
j =

(
ä

a
+

2ȧ2

a2
+

2κ

a2

)
δij , (1.6)

R = 6

(
ä

a
+
ȧ2

a2
+
κ

a2

)
, (1.7)

where a dot denotes a derivative with respect tot.

Let us consider an ideal perfect fluid as the source of the energy momentum tensor

T µν . In this case we have

T µν = Diag (−ρ, p, p, p) , (1.8)

whereρ andp are the energy density and the pressure density of the fluid, respectively.

Then Eq.1.4gives the two Friedmann equations

H2 ≡
(
ȧ

a

)2

=
8πGρ

3
− κ

a2
, (1.9)

Ḣ = −4πG(p+ ρ) +
κ

a2
, (1.10)

which describe the Hubble parameter and its time evolution.ρ andp denote the total

energy density and pressure of all the species present in theuniverse at a given epoch.

The energy momentum tensor is conserved by virtue of the Bianchi identities,∇νG
µν =

0, and energy conservation,∇νT
µν = 0, leading to the continuity equation

ρ̇+ 3H(ρ+ p) = 0 . (1.11)

Equation1.11can be derived from Eqs.1.9and1.10, which means that two of Eqs.1.9,

1.10and1.11are independent. Eliminating theκ/a2 term from Eqs.1.9 and1.10, we

obtain

ä

a
= −4πG

3
(ρ+ 3p) . (1.12)

Hence the accelerated expansion occurs forρ+ 3p < 0. Notice that the derivation of the

Friedmann equations within the context of the Newtonian physics would lead to a similar

result for the acceleration equation but with the pressure contribution missing. Pressure

effects are a peculiar feature of the relativistic equations 1.4, which are able to account

for the acceleration of the Universe expansion (Copeland et al., 2006).
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It is possible rewrite Eq.1.9 in the form:

Ω(t)− 1 =
κ

(aH)2
, (1.13)

whereΩ(t) ≡ ρ(t)/ρc(t) is the dimensionless density parameter andρc(t) = 3H2(t)/8πG

is the critical density. The matter and energy distributionclearly determines the spatial

geometry of our universe, i.e.,

Ω > 1 or ρ > ρc → κ = 1 , (1.14)

Ω = 1 or ρ = ρc → κ = 0 , (1.15)

Ω < 1 or ρ < ρc → κ = −1 . (1.16)

Observations have shown that the current universe is very close to a spatially flat geom-

etry (Ω ≃ 1) (de Bernardis et al., 2000; Dunkley et al., 2009). This is actually a natural

result from inflation in the early universe: see Sec.1.3.3andLiddle & Lyth (2000) for a

more detailed discussion.

After the first three minutes of the Universe evolution (Weinberg, 1993), the strong

and electroweak reactions between particles have frozen due to the Universe expansion

(Alpher et al., 1948), and it is reasonable to consider the Universe filled with photons,

baryons (mainly hydrogen and helium) and leptons (actuallynegligible in terms of energy

density fraction). Let us consider the evolution of the universe filled with photons and

baryons (dust), described as a barotropic perfect fluid. It is common use to define the

equation of state parameter

w = p/ρ . (1.17)

w is generally assumed to be constant, and this is a correct statement for radiation and

ordinary matter, whereasw can be a function in the case of coupled fluids or more exotic

component, such as dark energy. Some examples are describedin Chap.2.

By solving the Einstein equations given in Eqs.1.9and1.10with κ = 0, we obtain

H =
2

3(1 + w)(t− t0)
, (1.18)

a(t) ∝ (t− t0)
2

3(1+w) , (1.19)

ρ ∝ a−3(1+w) , (1.20)

wheret0 is constant. We note that the above solution is valid forw 6= −1. The radiation

dominated universe corresponds tow = 1/3, whereas the pressure-less matter (dust)
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dominated universe corresponds tow = 0. In these cases we have

Radiation : a(t) ∝ (t− t0)
1/2 , ρ ∝ a−4 , (1.21)

Dust : a(t) ∝ (t− t0)
2/3 , ρ ∝ a−3 . (1.22)

Both cases correspond to a decelerated expansion of the universe: from Eq.1.12 an

accelerated expansion (ä(t) > 0) occurs for the equation of state given by

w < −1/3 . (1.23)

As we will extensively discuss in Chap.2, in order to explain the current acceleration of

the Universe, we require an exotic energy, dubbed “dark energy”, with equation of state

satisfying Eq.1.23dominating the energy content of the Universe. Here we mention that

from Eq.1.11the energy densityρ is constant forw = −1. In this case the Hubble rate

is also constant from Eq.1.9, giving the evolution of the scale factor:

a ∝ eHt , (1.24)

which is the de-Sitter universe. This exponential expansion also arises by including

a (cosmological) constant,Λ, in the Einstein equations. Such a constant, compatible

with requirements of the general relativity formalism (Bianchi identities and conserva-

tion law), was first introduced by Einstein, when looking fora stationary solution of the

equations. The result was a closed Universe,κ = 1, with spatial curvature given byΛ

and a radiusa = 1/
√
Λ. For a detailed discussion seeWeinberg(1989a); a more recent

update on this topic may be found inCopeland et al.(2006).

The description of the static universe was abandoned with the discovery of the redshift

of distant stars, but it is intriguing that the cosmologicalconstant should return in the

1990’s to explain the observed acceleration of the universe(Riess et al., 1998).

The modified Einstein equations in presence of a cosmological constant are given by

Rµν −
1

2
gµνR + Λgµν = 8πGTµν . (1.25)

Considering Newtonian gravity with metricgµν = ηµν +hµν , it is possible to approx-

imate the Poisson equations as∆Φ = 4πGρ − Λ. In order to reproduce the classical

equation we require thatΛ = 0 or Λ is sufficiently small relative to the4πGρ. Since

Λ has dimensions of[Length]−2, the scale corresponding to the cosmological constant

needs to be much larger than the scale of stellar objects on which Newtonian gravity

works well. In other words the cosmological constant becomes important on very large

scales.
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In the FRW background, the modified Einstein equations (1.25) give

H2 =
8πG

3
ρ− κ

a2
+

Λ

3
, (1.26)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.27)

This clearly demonstrates that the cosmological constant contributes negatively to the

pressure term and hence exhibits a repulsive effect.

This description follows the kinematics point of view, which describesΛ as a geo-

metrical quantity; introducing a modified energy density and pressure we can considerΛ

as dynamical term, arising from a new energy contribution tothe energy tensor:

ρ̃ = ρ+
Λ

8πG
, p̃ = p− Λ

8πG
,

where the negative contribution to the pressure is clearly shown. We find that Eqs.1.26

and1.27reduce to Eqs.1.9and1.12: this is basically the approach behind the explanation

of the Universe acceleration by means of auxiliary scalar fields, which appear on the

right-hand-side of the Einstein’s equations. This scenario has been adopted when trying

to solve the fine-tuning problem. For a detailed discussion seeCopeland et al.(2006)

and references therein. In this context we mention that the main problem connected

to the cosmological constant is the huge discrepancy between its measured value,Λ ≈
H2

0 = (2.13h × 10−42GeV)2, which correspond toρΛ =
Λm2

pl

8π
≈ 10−47GeV4, and its

theoretical estimate from quantum considerations of the vacuum energy, which predict

ρvac =
1
2

∫∞
0

d3k
(2π)3

√
k2 +m2 = 1

4π2

∫∞
0

dk k2
√
k2 +m2 ≈ k4max

16π2 . Herekmax is the cut-off

scale of the theory: for the extreme case of General Relativity, we expect it to be valid to

just below the Planck scale:mpl = 1.22× 1019GeV. Hence, if we pick upkmax = mpl,

we find that the vacuum energy density in this case is estimated asρvac ≈ 1074GeV4

which is about10121 orders of magnitude larger than the observed value. Even if we take

an energy scale of QCD forkmax, we obtainρvac ≈ 10−3GeV4, which is still much larger

thanρΛ.

1.2 The Cosmological Model

An evolving homogeneous and isotropic Universe naturally suggests the idea of a be-

ginning of the evolution. Even if, when extrapolating the equation backwards in time,

we may enter regimes in which the validity of physics laws breaks down, it is nonethe-

less reasonable to think of a tiny very hot and dense region ofthe space-time which

the expansion started from, and assuming it as a working hypothesis. In this scenario -
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named ironically the Big Bang scenario by Fred Hoyle2, one of its antagonists - after a

very short period of time, in which the fundamental particles, which play a role in the

standard model, have formed, we are left with the Universe filled with photons, leptons

and a small amount of protons and neutrons constantly transformed through electroweak

interaction. Each reaction has a proper time scale set by theparticle standard model pa-

rameters: in order to be at equilibrium, the time scale has tobe shorter than the Hubble

time scale at the epoch (tH ≃ 1/H(t)).

1.2.1 Primordial Nucleo-synthesis

At high temperature,∼ 1012K, when the energy of the radiation was of the order of

kBT ∼ 86MeV, photons were hard enough to produce electron-positron pairs,

e− + e+ ↔ γ + γ , (1.28)

which, interacting with neutrons and protons through

e− + p↔ n + νe , (1.29)

allowed the production of the protons and neutrons in a thermal abundance ratio:

n/p = e−Q/kBT ≃ 1 (1.30)

whereQ = (mn − mp)c
2 = 1.2934MeV is the neutron-proton mass difference. The

neutrons and protons have a rapid rate for radiative capture

n + p↔ d+ γ (1.31)

resulting in deuterium production. At high temperature theinverse reaction occurred

rapidly too; only when the cooling due to the Universe expansion lowered the temper-

ature, the deuterium could accumulate. At T∼ 1010K the time scales of reaction1.29

exceeded the characteristic Hubble timescale. Moreover the photon energy fell below the

1.022MeV necessary to produce electron-positron pairs and the neutrons were destroyed

faster than they were formed. The neutron-to-proton ratio then froze atn/p ≃ 0.223. It

is only when the temperature dropped below109K, that deuterium could form and then

suddenly transform into helium and traces of light elementsup to lithium. This chain

of reactions fixed indeed the primordial chemical elements abundances, with a helium

fraction of the order of22%, in excellent agreement with observations. The production

2http://www.nytimes.com/2001/08/22/obituaries/22HOYL.html?pagewanted=1
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of elements up to iron occurred through nuclear fusion in thecore of giant stars, while

the heavier element production is due to SNe explosions and the reprocessing of the

inter-stellar medium.

The thermal equilibrium lasted until the temperature fell below13.6 eV (∼ 4000K) →
z ∼ 1100, which is the hydrogen ionisation energy. This marks the (re)combination

epoch and the decoupling of matter and radiation. From that time on, photons travelled

in a nearly transparent Universe following the geodesics, while baryons started feeling

the gravitational instability, leading to structure formation. Detailed computations show

that the actual temperature at which the decoupling occurs is∼ 0.6 eV. The reason for

this is the long tail in the Boltzmann distribution of the photon energy (Planck, 1901):

the temperature needs to drop below hydrogen ionisation energy in order to have a low

number of photons energetic enough to excite bound electrons.

1.2.2 The Cosmic Microwave Background Radiation

The reactions described above occurred in a Universe where photons drove the expan-

sion, accounting for almost the total energy content; they were in a condition of thermal

equilibrium, well described by a blackbody spectrum. The temperature of the radiation,

due to the mild interaction with matter and its high heat capacity compared to that of

matter, scales with the expansion asT (t) = T0/ a(t) (Peebles, 1993), so that the spectral

shape of the radiation distribution is then conserved. Thisis indeed another result of the

homogeneity and isotropy, which translate into adiabaticity.

As soon as such computations were attempted, cosmologists realised that a ther-

mal relic of such radiation should be still measurable todayin the microwave range,

i. e. characterised by a blackbody temperature of∼ 5K (Gamow, 1946; Alpher &

Herman, 1948, 1988). Indeed Penzias and Wilson in 1965 reported an excess antenna

temperatureT0 = 3.5 ± 1.0K (Penzias & Wilson, 1965), which was interpreted as the

cosmic relic byDicke et al.(1965). This discovery was awarded with the Nobel Prize in

Physics in 1978. Another milestone on the road to the cosmological standard model had

been set.

A further confirmation of the homogeneous and isotropic Universe came in 1992 with

the Cosmic Background Explorer (COBE) (Mather et al., 1992), a satellite launched by

NASA to measure the cosmic background radiation. COBE was provided with two com-

plementary experiments, the Far Infrared Absolute Spectrophotometer (FIRAS,Mather

et al.(1990)) and the Differential Microwave Radiometers (DMR,Smoot et al.(1992)).

The former aimed at measuring accurately the blackbody spectrum of the radiation, while

the latter was devoted to the detection of anisotropies in the spectrum. Mather and col-

laborators measured a perfect blackbody spectrum characterised by the temperature of
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T0 = 2.735±0.06K, which definitely corroborated the Big Bang picture and the expand-

ing Universe scenario. In Fig.1.1we show the thermal spectrum measured by the COBE

satellite, where the agreement between data and theory is excellent.

Figure 1.1:Thermal spectrum of the cosmic background radiation as measured by the FIRAS
(COBE) satellite. Boxes are the experimental points while the solid line is the theoretical black-
body spectrum forT = T0. The agreement is impressive (Fixsen et al., 1996).

These measurements have been so important as to justify the award of the Nobel prize

in 2006 to J. C. Mather and G. F. Smoot.

1.2.3 Structure formation and CMB anisotropies

The previous discussion aimed at introducing the formal context, the general relativity

equations, and the global picture, the big bang scenario, inwhich the cosmological model

takes place, under the assumption that the cosmological principle, i. e. the homogeneity

and isotropy of the Universe, holds. Obviously this smoothness can be valid on average

at large scales only, since in the nearby Universe we observestructures – stars, globu-

lar clusters, galaxies and clusters of galaxies – which do not appear homogeneous and

isotropic.

The cosmological model provides a natural explanation of the presence of structures

in the Universe. Tiny perturbations to the homogeneous background quantities, metric

and energy density, were present from the beginning, and they have grown through gravi-

tational instability leading to the large complex objects we observe in the neighbourhood

of our Galaxy. Such perturbations would be the quantum energy fluctuations of the very

early stages of the Universe, stretched to a classical size by inflation. Inflation is a phase

of exponential expansion which the Universe underwent in the first fractions of second

of its evolution, which determined the initial conditions of the Big Bang scenario. The
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Figure 1.2:Slices through the SDSS 3-dimensional map of the distribution of galaxies. Earth is
at the centre, and each point represents a galaxy, typicallycontaining about 100 billion stars. The
outer circle is at a distance of two billion light years. The region between the wedges was not
mapped by the SDSS because dust in our own Galaxy obscures theview of the distant universe
in these directions. Image taken from http://www.sdss.org

details of this phenomenon are not clear yet, and several models compete to draw the

correct picture. A full description can be found inLiddle & Lyth (2000).

Unfortunately, there are few exact solutions of general relativity which incorporate

spatially inhomogeneous and anisotropic matter and hence geometry. Therefore calcula-

tions are usually performed following a perturbative approach, starting from the spatially

homogeneous and isotropic FRW model as a background solution with simple properties

and increasing the complexity of inhomogeneous perturbations order by order. Metric

perturbations can be distinguished into scalar, vector andtensor contributions accord-

ing to their transformation properties on spatial hypersurfaces (Bardeen, 1980; Stewart,

1990). The reason for splitting the metric perturbation into these three types is that the

governing equations decouple at linear order, and hence we can solve each perturbation

type separately. At higher order this is no longer true (Nakamura, 2006). For a detailed

discussion on this topic see for exampleMalik & Wands(2009) andMa & Bertschinger

(1995). At the first order, scalar perturbations can be described modifying the metric as

ds2 = −a(τ)[(1 + 2ψ) dτ 2 − (1 + 2φ) dxi dx
i] (1.32)

where we chose the conformal timedτ = dt/a and introduced the two scalar poten-

tials, which are related to the Bardeen potentials (Bardeen, 1980). The energy tensor is
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modified as well according to

T 0
0 = −(ρ̄+ δρ) ,

T 0
i = (ρ̄+ P̄ )vi = −T i0 ,

T ij = (P̄ + δP )δij + σij , σii = 0 , (1.33)

whereδρ andδP represent the density and pressure fluctuations respectively, andv the

velocity field. We have allowed an anisotropic shear perturbation σij in T ij . Notice

that we wrote the equation in the conformal Newtonian gauge,where vector and tensor

modes are set to zero from the beginning. SeeMa & Bertschinger(1995) andMalik &

Wands(2009) for an exhaustive discussion on the gauge problem. This is mainly related

to the freedom of choosing a frame in which to perform the perturbation expansion.

For instance, the synchronous gauge, defined as the gauge in which the proper time for

observers at xed spatial coordinates coincides with cosmictime in the FRW background,

i.e. dτ = a dt (ψ = 0 in Eq. 1.32 and a new scalar perturbation would appear in

the spatial part of the metric), is widely used in numerical Boltzmann solvers, such as

cmbfast 3 (Seljak & Zaldarriaga, 1996) and CAMB4 (Lewis et al., 2000).

Solving Einstein equations1.32and1.33in Fourier space, we obtain the Friedmann

equations1.9and1.10for the background quantities at the zeroth order, while at the first

order we have the metric fluctuations equations:

k2φ+ 3
ȧ

a

(
φ̇+

ȧ

a
ψ

)
= 4πGa2δT 0

0 , (1.34)

k2
(
φ̇+

ȧ

a
ψ

)
= 4πGa2(ρ̄+ P̄ )θ , (1.35)

φ̈+
ȧ

a
(ψ̇ + 2φ̇) +

(
2
ä

a
− ȧ2

a2

)
ψ +

k2

3
(φ− ψ) =

4π

3
Ga2δT ii , (1.36)

k2(φ− ψ) = 12πGa2(ρ̄+ P̄ )σ , (1.37)

The energy perturbations are described by:

δ̇ = −(1 + w)
(
θ − 3φ̇

)
− 3

ȧ

a

(
δP

δρ
− w

)
δ ,

θ̇ = − ȧ
a
(1− 3w)θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ − k2σ + k2ψ . (1.38)

where we definedθ = ik · v. w is the equation of state parameter of the total Universe

fluid.
3http://www.cfa.harvard.edu/∼mzaldarr/CMBFAST/cmbfast.html
4http://camb.info/
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As we discussed in the previous section, until decoupling occurred at redshiftz ≃
1100, the universe was in a condition of thermal equilibrium. Thetiny ripples in the

energy distribution should then be still present in the distribution of the photons, which

have travelled in a almost transparent Universe. This is exactly whatSmoot et al.(1992)

measured with the DMR experiment, who foundδT/T ≃ 10−5. In Fig. 1.3 the cosmic

microwave background anisotropies detected by DMR are shown.

Figure 1.3: Cosmic microwave fluctuations as seen by COBE satellite.

After recombination, the perturbations of ordinary mattercould grow via gravitational

instability forming galaxies (Jeans, 1943, 1961). Actually self-gravitation would not

have allowed baryons to form the structure distribution we observe in the sky (Cross

et al., 2001; Condon et al., 1998; Abazajian et al., 2009), in particular baryons would not

have had enough time to form large structures. To deal with this, theorists postulated a

new kind of pressure-less matter, which interacts gravitationally only. Such dark matter

decoupled earlier from radiation: that means that its perturbations started to grow earlier

than baryons’ ones. After recombination, baryons fell intothe potential wells created by

dark matter leading to the formation of structure via hierarchical clustering. A very good

discussion on cosmic microwave background perturbations can be found inHu (1995),

while for the theory of hierarchical clustering we recallPadmanabhan(1993). A recent

review on this topic can be found inTonini (2009).

Imagining a new species of particles seems a plausible solution, since the particle

standard model and its supersymmetric extension offer a plethora of candidates. The

challenge today is to (indirectly) measure effects of this non-ordinary matter in the sky.

Two interesting and controversial examples are given byAdriani et al.(2009) andBern-

abei et al.(2008). Moreover, independent evidence of the presence of a different kind of

matter came from the galaxy cluster analysis. The total mass, which can be inferred from

the X-ray emission we observe, is larger than the mass in stars and gas we see. From

this and other detailed studies of the cluster properties, cosmologists deduced the total

amount of mass in the Universe exceeds the baryon mass by a factor of few.
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1.3 CMB anisotropies analysis

The cosmic microwave background radiation can be certainlyregarded as one of the most

fruitful tool we possess to investigate our Universe. Amongothers, two main reasons are

worth mentioning: i) except a minor contribution from re-ionisation at redshift≃ 12,

CMB photons have travelled in a nearly transparent Universefrom recombination: they

carry detailed information of the early stages of the Universe evolution; ii) the bulk of the

CMB physics can be described by means of the linear perturbation theory, even though

second order effects (Bartolo et al., 2006, 2007; Nitta et al., 2009) are now becoming

important in view of the upcoming experiments like Planck (Tauber, 2001). Moreover,

the effect on re-ionisation is very important on its own, since it contains details on the

processes involving the first generation of stars, the so-called population III stars.

One more advantage of the CMB is that it is naturally defined onthe sphere, and

then a 2-dimension analysis is computationally more efficient than a full 3-dimensional

one. Strictly speaking recombination has not been an instantaneous process, but spanned

a redshift interval∆z ≃ 170; however, this range can be safely considered a fraction

compared to the recombination epoch,z ∼ 1100, so that the surface approximation is

correct. Even though the temperature measurement is betterperformed in real space, the

harmonic space is the natural choice for the analysis of the statistical properties of the

CMB radiation. We decompose the radiation field onto the spherical harmonics basis

T (γ) =
∑

ℓm

Yℓm(γ)aℓm (1.39)

whereaℓm are the spherical harmonic coefficients andℓ is the multipole considered. An

approximated relation useful to keep in mind isℓ ∼ 180/θ, which relates the multipoleℓ

and angular scaleθ, based on the spherical Bessel’s functions expansion (in a nearly flat

Universe).

We are interested in the angular power distribution described by the quantity〈aℓma∗ℓm〉E.

We can deal with our Universe only and we can not perform such an ensemble average.

However, assuming the homogeneity and isotropy of the Universe, we can deduce the

rotational invariance of the CMB, and then replace the ensemble average with a sum over

m. We end up with an angular power distribution encoded in:

Cℓ = 4π
∑

m

aℓma
∗
ℓm

2ℓ+ 1
(1.40)
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characterised by an intrinsic uncertainty – cosmic variance – given by:

∆Cℓ =

√
2

2ℓ+ 1
Cℓ . (1.41)

Notice how∆Cℓ is proportional to theCℓ and monotonically decreasing with the multipole

ℓ: this reflects the number of elements, we assume as independent realisations of the same

sky, included in the sum1.40. For a detailed discussion on the derivation of this relation

and on the higher angular moments seeHu (2001); Komatsu(2002).

This approach is based on the assumption that the primordialcosmological perturba-

tions were nearly Gaussian as a result of the inflationary phase. It has resisted so far a

large number of tests, and its confirmation is one of the main goals of the Planck experi-

ment.

An example of the angular power spectrum measured by the mostrecent CMB exper-

iments is shown in Fig.1.4, while the temperature map seen by the Wilkinson Microwave

Anisotropy Probe (WMAP) is reported in Fig.1.5. The improvement with respect to the

first image of the CMB taken by the COBE satellite (Fig.1.3) is impressive and now we

are able to detect tiny fluctuations, reaching multipolesℓ ∼ 1500.

Figure 1.4:Angular power spectrum obtained combining the datasets of several experiments.
The image is taken fromNolta et al.(2009).

1.3.1 Acoustic Peaks

The angular power spectrum shows a characteristic peak structure, which perfectly re-

flects the baryonic acoustic oscillations (BAO), which the photon-baryon plasma under-

went before the recombination epoch. Here we briefly commenton the main features of

this process, and refer toHu (1995) for a comprehensive study. We discussed that during

the first minutes of the Universe evolution, photons and baryons were tightly coupled
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Figure 1.5:Internal linear combination map provided by WMAP team. Image taken fromHin-
shaw et al.(2009).

through electroweak interaction, in particular, once the nucleo-synthesis had finished,

electrons mediated the interactions. We have mentioned that baryon perturbations on

their own have vanishing pressure and would grow under the gravitational potential; be-

fore recombination, baryons felt the pressure contribution of the radiation, which counter-

balanced the gravitational force, producing an oscillatory dynamics of the perturbations.

This lasted until decoupling, when the pressure contribution stopped and baryons col-

lapsed, driven by the gravitational potential. These oscillations are those highlighted in

the angular power spectrum. The difference in power betweenpeaks can be explained

taking into account that the dynamics of the cosmic fluid occurred in an expanding uni-

verse. Events in the space-time are connected within a radius∼ 1/H(t), the Hubble hori-

zon, and consequently a perturbation participates in the dynamics sketched above only

when entering the horizon, i. e. when its size is smaller thanthe Hubble radius. This is

what happened to small fluctuations, described at large multipoles in the angular power

spectrum. The first peak corresponds to the modes which entered the horizon close to

the decoupling epoch; they had just started the oscillation, being in the first compression

phase and evolved mainly under the gravitational effect. Inthis oscillation process, the

fluctuation at the last scattering surface determines the anisotropy: odd peaks correspond

to compression phases, while even ones to rarefaction phases.

The overall matter content sets the global gravitational potential and then the zero

point common to the oscillations; if the Universe were filledwith pressure-less matter

only, the gravitational potential would be constant and this effect would result in a flat

plateaux at very large scale we can see in the angular power spectrum at small multipoles,

consisting in a nearly constant power (Sachs & Wolfe, 1967). In the case of an evolving

potential, as in the case of a radiation or cosmological constant dominated Universe, pho-

ton energy is shifted and we observe a bump in the angular power spectrum (Integrated

Sachs & Wolfe effect).
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Figure 1.6:Effect of the main contributions to the angular power spectrum. Image taken from
Hu (1995).

Another phenomenon, which contributes to the anisotropy pattern, is the Doppler

effect due to the motion of the photon-baryon fluid: it results anti-correlated with the

compression-rarefaction pattern. All these contributions to the angular power spectrum

are schematically summarised in Fig.1.6.

The position of the first peak sets then a characteristic scale, the horizon size at the

recombination, which can be used as a standard ruler in cosmology. Measuring the posi-

tion of the first peak, and then the angle under which we see it (projection effect), we can

infer the global geometry of the Universe. It is from such analysis, measuring the char-

acteristic size of CMB anisotropies, thatde Bernardis et al.(2000) claimed the flatness

of the Universe. This result has been confirmed later by theWMAP team (Spergel et al.,

2003) and it represents one of the main, and nonetheless challenging, properties of our

Universe (see Sec.1.3.3).

1.3.2 Cosmological Parameters

The physics of the CMB that we have briefly recalled, has to be studied with rather

sophisticated numerical code in order to produce angular power spectra, which can be

compared to the observed one. The difficulty consists in properly modelling the photon-

baryon fluid properties, fully taking into account the details, and propagating Einstein’s

equations, which on their own represent a big challenge since they are non-linear. A

well-tested numerical code is CAMB (Lewis et al., 2000), which some of the results we

will discuss in the work are derived with.
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Despite its complexity, since the processes involved are well described by the law

of physics, the cosmological model is completely specified by a handful of parameters

– and a few assumptions we have already commented on. The basic parameters of the

cosmological model,ΛCDM model, are:

• thebaryon density, normalised to the critical density today,Ωb ≡ ρ0b/ρ0c ≃ 0.04,

whereρ0c = 8πG/3H0 ≃ 1.879× 10−29h2 g cm−3;

• thecold dark matter density, Ωcdm ≡ ρcdm/ρ0c ≃ 0.2;

• the value of theHubble parametertoday,H0 ≃ 72Km/s/Mpc;

• the amplitudeof the primordial curvature perturbation power spectrum,∆2
R(k =

0.002 hMpc−1) ≃ 2.3× 10−9;

• thespectral indexof the primordial curvature perturbation power spectrum,ns ≃ 1;

• theoptical depth, τ ∼ 0.09, which describes the integrated effect of the re-ionisation

on the CMB.

The photon density today is sub-dominant with respect to thebaryon and cold dark

matter ones, and nonetheless crucial: it is set by the blackbody spectrum asΩ0γh
2 =

2.38 × 10−5Θ2.7, whereΘ2.7 ≡ T0/2.7K. Since the Universe turns out to be flat, the

critical density is achieved by introducing the cosmological constant, parameterised by

ΩΛ ≡ 1−Ω0b +Ω0cdm. The cosmological constant fits surprisingly well into the cosmo-

logical model, since it allows us to explain the observations of the SNe, which suggest the

Universe expansion is now accelerating (Riess et al., 2009; Riess et al., 2004; Riess et al.,

1998; Perlmutter et al., 1999; Kowalski et al., 2008; Zhang & Wu, 2009). The initial con-

ditions for the perturbations are set by inflation, which predicts adiabatic nearly Gaussian

scale invariant fluctuations. We will outline briefly the single scalar field inflation model

in the next section (Sec.1.3.3).

Accurately measuring the angular power spectrum allows us to set tight constraints

on the cosmological parameters (Dunkley et al., 2009). Much more effective are the con-

straints put by combining CMB, SNe and Baryonic Acoustic Oscillations datasets. See

for exampleKomatsu et al.(2009). In Fig. 1.7we show the effect which each parameter

has on the angular power spectrum. The black solid line represents theΛCDM fiducial

model, the red dashed and blue dotted-dashed lines are obtained by changing each pa-

rameter by±2 σ respectively. Increasing the baryon fraction enhances theratio between

the first and the second peak; a greater amount of cold dark matter increases the gravita-

tional potential and lowers the peaks. Increasing the spectral index has a similar effect,

since this distributes more power to smaller scales.∆2
R rescales the overall amplitude of
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Figure 1.7:Effect of the basicΛCDM parameters on the angular power spectrum.

the power spectrum, while the optical depth again affects the peak feature with respect to

the Sachs & Wolfe plateau.

What clearly emerges from this exercise is that there is a degeneracy also between

the basic parameters of the models and a careful combinationof many complementary

observations is necessary in order to tightly constrain them (CMB,SNe, BAO,...). A way

to resolve degeneracies among parameters is to add CMB polarisation information, as

discussed inCabella & Kamionkowski(2004); Kamionkowski et al.(1997).

1.3.3 Inflation

In the previous sections we have presented the cosmologicalstandard model, underlining

the big successes it achieved in describing the cosmic elements abundances, the cos-

mic microwave background radiation – both its smoothness and its tiny roughness – the

structure formation, with the basic assumption of the homogeneity and isotropy of the
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Universe. We have justified such an assumption as a reasonable, pretty general and sim-

ple one, but we already mentioned that it comes naturally as aresult of the inflationary

phase which occurred at the very early stages of the Universeevolution. Inflation would

be also responsible for the amplitude and the spectral indexof the primordial curvature

perturbations, which are basic parameters of the model.

Basic Idea

Before discussing the main characteristics of inflation, were-call why a mechanism very

similar to inflation is necessary to resolve a few unsatisfactory features of the cosmolog-

ical model.

According to what we learnt from general relativity, a physical scaleλ0 today would

correspond to a proper length ofλ0 a(t)/a0 in the past, scaling with some power of the

time,tn. The characteristic expansion scale of the Universe, on theother hand, is given by

the Hubble radiusH−1(t) = (ȧ/a)−1 = t/n. In realistic cosmological models,n < 1 and

hence the ratioλ(t)/H−1(t) increases as we go to the earlier epochs. In other words,λ(t)

would have been larger than the Hubble radius at sufficientlyhigh redshifts. This leads

to the major difficulty in the conventional cosmology: normal physical processes act

coherently only over sizes smaller than the Hubble radius, so that it is hard to image which

process could have seeded the density perturbations necessary to generate structures we

see in the Universe, whose scales were much bigger than the Hubble radius at early

epochs.

Two more problems affect a Friedmann-Robertson-Walker universe: the so-called

horizonandflatnessproblems. Let us focus on the former. To any time interval∆t cor-

responds a proper distance light can have travelled, which sets the particle horizon and

the causal connected region to a given event. Without such a communication, there is

noa priori reason why two regions of the space-time should have a similar environment.

Computing the particle horizon at the recombination epoch,we obtain roughly one de-

gree, much smaller than the entire sky on which we observe theCMB, characterised by

a nearly perfect blackbody spectrum (which means equilibrium and uniformity). Within

the depicted scenario we are not able to justify the homogeneity we detect.

The second problem could be rephrased as a fine-tuning problem. We measure a

Universe density today close to the critical one and we derive the flat geometry of the

space-time. More quantitatively, we have from Eq.1.13for κ 6= 0

Ω(t)− 1 =
ȧ20
ȧ2

(Ω0 − 1) . (1.42)
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Evaluating the expression above in terms of the temperaturein the radiation dominated

era, we obtainΩ − 1 ∼ 10−60 at the Planck scale (Padmanabhan, 1993), which in the

absence of any physical mechanism, requires an extreme fine-tuning.

All these difficulties can be solved by introducing a physical process which makes

a(t) increase rapidly witht (e. g. exponentially) for a brief period of time. Such a rapid

growth is calledinflation. A universe with an inflationary phase which took place in the

radiation dominated era att∗ ∼ 10−35, characterised by a constant Hubble parameter

H ∼ 1010GeV, lasting a periodNH−1 with N ∼ 60 number of e-folds, would make the

job (namely a factore60 at t ∼ 10−35s lasting∼ 10−32s). A physical scaleλ would grow

exponentially witha, whileH remains constant; cross the horizon, becoming larger than

the Hubble radius, and finally re-enter the horizon during the second radiation dominated

phase, when the Hubble radius “catches up” with the proper lengthλ. Scales of cosmo-

logical interest were within the Hubble radius before inflation, so that a physical process

could have operated at these scale: such process has to be quantum mechanical by nature,

and quantum fluctuations in the matter fields can seed perturbations. Inflation solves the

horizon problem by bringing the entire region of the last scattering surface into a causally

connected patch; while the flatness problem is eliminated because the exponential growth

stretches the space-time, making it almost flat.

Notice that inflation extremely dilutes energy so that some re-heating mechanism has

to happen in order to obtain the energy density necessary to the standard cosmological

evolution. Inflation suggests a classical solution to problems, which probably find their

roots on a pure quantum ground, that, if consistently treated, may resolve those problems

coherently. Moreover, both the horizon and the flatness problem are basically postponed,

and they may resurface.

A toy model

A very simple model for inflation is provided by a single scalar field, which slowly rolls

on a very flat potential towards the true minimum. Deriving the field equations we obtain

the density and the pressure of the field in terms of the kinetic term and the potential as

ρφ =
1

2
φ̇2 + V (φ) , pφ =

1

2
φ̇2 − V (φ). (1.43)

Under the slow-roll assumption (1/2φ̇2 ≪ V (φ)), the equation of state parameter,w,

results very close to−1; this implies a nearly constant Hubble rate, producing an expo-

nential expansion (see Eq.1.24). Once the scalar field approaches the minimum of the

potential, it oscillates and decays into relativistic particles. This process is calledreheat-

ing. The particle production, together with the Universe expansion damp the oscillations.
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The details of the dynamics depend upon the specific model of inflation, but so far none

of the single scalar field inflationary model can be considered completely satisfactory.

Multiple scalar fields models are now becoming very popular and find inspiration from

effective theories deriving from string and brane models. One simple two scalar fields

model which has been widely investigated is the curvaton model (Lyth & Wands, 2002).

The generation of the density perturbations can be sketchedassuming a de-Sitter

metric

ds2 = − dt2 + e2Htδij dxi dxj

= a(η)[− dη2 + δij dxi dxj ] , a(η) = − 1

Hη
(1.44)

and defining the fluctuation in terms of the creation and annihilation operators as follows:

δφ =

∫
d3k

(2π)3
[
âkδφk(t)e

ik·x + â†kδφ
∗
k(t)e

−ik·x]. (1.45)

Solving the Einstein’s equations for the new variableuk = aδφk, we obtain, in terms of

the original variable, for a light field (m2 ≪ H2)

δφk(t) =
iH√
2k3

(1 + ikη)e−ikη. (1.46)

The density power spectrum is defined as the expectation value on the vacuum state,

which reads

〈0|δφ2|0〉 =
∫

d3k

(2π)3
P (k) =

{
(Hη)2 k2

4π2 −kη → ∞
(H
2π
)2 −kη → 0

(1.47)

This means that on super-horizon scale the density power spectrum is independent of the

scale and function of the Hubble rate only. Once we have the density power spectrum, it is

possible to compute the curvature power spectrum using the number-of-efolds formalism

under the assumption that the perturbations become classical on super-horizon scales.

The curvature is given by

Rc = δN |tk =
∂N

∂φ
δφ
∣∣∣
tk

(1.48)

wheretk is the time when the perturbation crosses the horizon and becomes classical. By

using the definition of the number of e-folds,N =
∫
H dt, we derive∂N

∂φ
= H

φ̇
, which

leads to

〈R2
c〉 =

(H
φ̇

)2
〈δφ2〉 → PR =

( H

2πφ̇

)2∣∣∣
tk
. (1.49)
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The details of the computation depend upon the specific inflationary model under

investigation, however the basic concepts we outlined above are common to any early

universe scenario. Observationally it is not yet possible to set tight constraints on the in-

flaton potential; what it is generally done is to bound two derived inflationary parameters,

which describe the slow-roll condition:

ǫ ≡
M2

p

16π

(V ′

V

)2
≪ 1

η ≡
M2

p

8π

(V ′′

V

)
≪ 1 (1.50)

These parameters are useful because, within the slow-roll paradigm, there exist consis-

tency relations between inflation derived quantities, which can be tested. One of these is:

ns ≃ 1− 6ǫ+ 2η (1.51)

Finally, we have discussed the scalar perturbations only, but very interesting is the treat-

ment of tensor perturbations, which should translate into astochastic gravitational wave

background. Properties of the tensor modes can be expressedin the slow-roll scenario as

nt ≃ −2ǫ,
T

S
= 16ǫ = 8|nt| (1.52)

The determination of the inflation parameters is very important to understand the inner

nature of our Universe and to start probing more exotic earlyUniverse scenarios, such as

the ekpyrotic one (Lehners & Steinhardt, 2008), which get inspiration from high dimen-

sional theories. The Planck mission has considered this aspect as one of the main goals

(Popa et al., 2009).

Conclusions

In this chapter we briefly outlined the cosmological model, presenting the main exper-

iments which have confirmed or inspired the theoretical progress. TheΛCDM model

describes an evolving Universe, that began about 14 billionyears ago out of a very hot

and dense region of the space-time. After a brief exponential expansion, which set the ini-

tial conditions of homogeneity and isotropy and seeded the cosmological perturbations,

an interacting photon-baryon fluid governed the evolution,producing the light chemical

elements, hydrogen, helium, lithium. When the photon temperature dropped below the
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hydrogen ionisation value, protons and electrons combinedand decoupled from radia-

tion. The small fluctuations in the baryon density grew through gravitational instabil-

ity forming galaxies, clusters of galaxies and the structures we observe in the Universe.

Two more ingredients are necessary to properly reproduce the cosmological observations:

dark matter and cosmological constant (or dark energy). Theformer creates the gravita-

tional wells in which baryons fell; the latter is responsible for the late time acceleration

of the Universe expansion.

All the processes which take place in theΛCDM model are described by means of the

fundamental laws of physics and the addition of a few parameters, which are now well

constrained by very accurate experiments. However, open questions remain, in particular

concerning the nature of inflation, dark matter and dark energy. In the next chapters we

will discuss some recent works, which can help in solving these fascinating questions.



Chapter 2

The Dark Energy Problem: Theory and

CMB Data analysis

If there is something that appears

to lie beyond the natural world

as it is now imperfectly understood,

we hope eventually to understand it

and embrace it within the natural.

(“The god delusion”, R. Dawkins)

The most outstanding problem in modern cosmology is understanding the mechanism

that led to a recent epoch of accelerated expansion of the universe. The evidence that

we live in an accelerating universe is now compelling. The luminosity distance at high

redshift (z ∼ 1) measured from distant type Ia supernovae is consistent with a negative

deceleration parameter (q0 < 0 at∼ 3σ) and shows strong evidence of a recent transition

from deceleration to acceleration (Riess et al., 2009; Riess et al., 2004; Riess et al., 1998;

Perlmutter et al., 1999; Kowalski et al., 2008; Zhang & Wu, 2009). The amount of

clustered matter in the universe, as detected from its gravitational signature through a

variety of large scale probes (redshift surveys, clusters of galaxies, etc.) cannot be more

than∼ 1/3 of the total content of the universe (Springel et al., 2006). Observations

of the cosmic microwave background (CMB) anisotropy have constrained the value of

cosmological parameters with high precision (Hinshaw et al., 2009; Brown et al., 2009;

Reichardt et al., 2009; Curto et al., 2008; Sievers et al., 2007; Masi et al., 2006). The

recent WMAP data (Hinshaw et al., 2009; Komatsu et al., 2009; Dunkley et al., 2009)

have shown that the total density of the universe is very close to its critical value. Taken

together, these results are a strong indication in favour ofa non-null cosmological term,

which would at the same time explain the accelerated expansion of the universe and

provide the remaining∼ 2/3 of its critical density.

27
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The precise nature of the cosmological term which drives theaccelerated expansion,

however, remains mysterious. The favoured working hypothesis is to consider a dynam-

ical, almost homogeneous component (termeddark energy) with negative pressure (or,

equivalently, repulsive gravity) and an equation of statew ≡ p/ρ < −1/3 (Peebles & Ra-

tra, 1988; Caldwell et al., 1998; Wang et al., 2000; Peebles & Ratra, 2003). See Sec.1.1.

Such a framework helps alleviating a number of fundamental problems arising when a

constant cosmological term is interpreted as the energy density of the vacuum (Weinberg,

1989b; Copeland et al., 2006).

Very recently,Shafieloo et al.(2009) refined the SNe analysis finding evidence for a

slow-down of the acceleration of the Universe. If confirmed,this would surely favour a

dark energy based explanation, since a cosmological constant would not be able to ac-

count for such a decelerating behaviour. This result is however controversial as discussed

in Serra et al.(2009).

In this chapter we address the dark energy problem from different standpoints. In

Sec.2.1 we discuss the ISW effect and how it can be used to pin down the dark energy

properties. In Sec.2.2we attempt a global explanation of the dark sector, in terms of the

two coupled fluids. We deduce that a very common scenario is anaffine behaviour, that

we tested against observations in Sec.2.3.

2.1 Integrated Sachs-Wolfe effect from the cross-correlation

of WMAP 3 year and NVSS: new results and con-

straints on dark energy

One key indication of an accelerated phase in cosmic historyis the signature from the

integrated Sachs-Wolfe (ISW) effect (Sachs & Wolfe, 1967) in the CMB angular power

spectrum. This is directly related to variations in the gravitational potential: in particular,

it traces the epoch of transition from a matter-dominated universe to one dominated by

dark energy. This effect (which is usually calledlate ISW, as opposed to anearly ISW

generated during the radiation-matter transition), showsup as a contribution in the low

multipole region of the CMB spectrum. A detection of a late ISW signal in a flat uni-

verse is, in itself, a direct evidence of dark energy. Furthermore, the details of the ISW

contribution depend on the physics of dark energy, and are therefore a powerful tool to

better understand its nature. Unfortunately, the low multipole region of the angular power

spectrum is also the most affected by cosmic variance (Eq.1.41), making the extraction

of the ISW signal a difficult task.
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A useful way to separate the ISW contribution from the total signal is to cross-

correlate the CMB anisotropy pattern (imprinted during therecombination epoch atz ∼
1100) with tracers of the large scale structure (LSS) in the localuniverse (Crittenden

& Turok, 1996). Detailed predictions of the ability to reconstruct the ISW using this

technique were obtained by a number of authors (Cooray, 2002; Hu & Scranton, 2004;

Afshordi, 2004; Corasaniti et al., 2003; Pogosian et al., 2005; Giannantonio et al., 2008;

Ho et al., 2008). This kind of analysis has been performed several times during the past

few years, using different CMB data sets and various tracersof clustering. The first detec-

tion of the ISW (Boughn & Crittenden, 2004; Boughn & Crittenden, 2005) was obtained

by combining the WMAP 1st year CMB data with the hard X-ray background observed

by the High Energy Astronomy Observatory-1 satellite (HEAO-1 (Boldt, 1987)) and with

the radio galaxies of the NRAO VLA Sky Survey (NVSS (Condon et al., 1998)). The

positive correlation with NVSS was later confirmed by the WMAP team (Nolta et al.,

2004). Other large scale structure tracers that led to similar positive results were the

APM galaxy surveyMaddox et al.(1990), the Sloan Digital Sky Survey (SDSS (York

et al., 2000)) and the near infrared 2 Micron All Sky Survey eXtendend Source Catalog

(2MASS XSC (Jarrett et al., 2000)) (Fosalba et al., 2003; Scranton et al., 2003; Fosalba

& Gaztanaga, 2004; Afshordi et al., 2004; Padmanabhan et al., 2005; Cabre et al., 2006).

A somewhat different strategy to attack the problem was recently adopted by other

authors, who attempted to seek the ISW signal in spaces otherthan the pixel space of the

maps or the harmonic space of the angular power spectrum (Vielva et al., 2006; McEwen

et al., 2007). This approach relies on spherical wavelets as a tool to exploit the spatial

localisation of ISW (at large angular scales) in order to geta more significant detection

of the effect.

The purpose of the present section is twofold. On one side, wewant to perform a

further analysis of the CMB-LSS cross-correlation, in order to obtain an independent

check on previous results. We combine the recent 3-year release of WMAP CMB sky

maps with the radio galaxy NVSS catalogue, and carry out our investigation in the new

spherical needlets frame whose properties will be extensively discussed in Chap.3. This

then represents at the same time a check on previous results (Vielva et al., 2006; McEwen

et al., 2007) and a significant improvement of the statistical and technical aspects of the

problem. On the other side, we follow a rather general approach to dark energy mod-

elling, as first proposed byHu (1998). Within this framework the phenomenology of

dark energy is characterised by three physical parameters:its overall densityΩDE , its

equation of statew, and the sound speedc2s. This parameterisation has the advantage of

being model independent, allowing one to encompass a ratherbroad set of fundamental

models, and of giving a more realistic description of the dark energy fluid, for example

accounting for its clustering properties, a feature that was shown to have quite a strong
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effect on theoretical predictions (Weller & Lewis, 2003). As shown byHu & Scranton

(2004); Bean & Dore(2004) andCorasaniti et al.(2003) the ISW signature can in princi-

ple be able to set constraints on the parameters of this generalised dark energy scenario:

however, previous analyses of the ISW from CMB-LSS cross-correlation made a number

of unrealistic simplified assumptions on the dark energy component and were only able

to either find confirmations for its existence by constraining its density, or to set limits on

its equation of state under restrictive hypotheses on its clustering properties (one notable

exception being the analysis performed byCorasaniti et al.(2005) which applied a pa-

rameterisation similar to ours to make a likelihood analysis of the cross-correlation data

points estimated byGaztanaga et al.(2006)). Our approach is more ambitious, as we at-

tempt a more realistic description of dark energy and deriveconstraints on the combined

set of three above mentioned parameters.

2.1.1 Data

We trace the local distribution of matter in the universe by using the NVSS radio galaxy

catalogue (Condon et al., 1998). This dataset contains roughly1.8 × 106 point sources

observed at 1.4 GHz. The flux limit of the catalogue is at∼ 2.5 mJy, resulting in a

completeness of about50%. The survey covers about80% of the sky, atδ > −40◦. We

construct a point source map (after removal of about3× 105 resolved sources) using the

Nside = 64 HEALPix pixelization (Górski et al., 2005). Such a map has49 152 pixels

of about 1 degree side, and guarantees a good sampling of source counts in each pixel.

We conservatively exclude from the map all sources withδ > −37◦ since the coverage

becomes very poor when approaching that value of declination. The final map we use

has roughly 35 sources per pixel on average. It was pointed out by Boughn & Crittenden

(2002) that there is a declination dependence of the mean source density in the catalogue,

since the survey had different integration time in some well-defined constant-declination

bands on the sky. As suggested in previous analyses (Nolta et al., 2004; Vielva et al.,

2006) we correct for this spurious effect by subtracting the average source count in each

constant-declination band.

Our CMB dataset consists of the internal linear combination(ILC) temperature map

from the 3 year release of WMAP1. This map is produced by combining 5 smoothed

temperature maps, with weights chosen in such a way to produce minimal Galactic fore-

ground contamination while maintaining the CMB signal. According to the WMAP

team (Hinshaw et al., 2007; Nolta et al., 2004) the ILC map gives a reliable estimate of

the CMB signal at low multipoles with negligible instrumental noise. We believe this is

appropriate with respect to our goals, since the late ISW effect is expected to peak exactly

1Available at http://lambda.gsfc.nasa.gov/
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Figure 2.1:CMB and galaxy map used in the analysis.

at such large angular scales. As an additional caution, we mask out the Galactic plane

region of the map and bright point sources using one of the templates produced by the

WMAP team, namely the conservative KP0 intensity mask.

While the original map ILC was produced at a resolutionNside = 512 in the HEALPix

pixelization scheme (consisting of 12Nside = 3, 145, 728 pixels) we degrade it to a reso-

lution ofNside = 64 to match the resolution of the NVSS. This resolution is appropriate

for the CMB as well, since we are not interested in the fine-scale details of the map.

A joint mask, including both the KP0 mask and the NVSS declination limit, is applied

to both maps used in the analysis. The CMB and galaxy maps are shown in Fig.2.1.

There is no redshift information for the individual sourcesin the catalogue. Nonethe-

less, some knowledge of thedN/dz function is needed to connect the observed source

count fluctuationδn to the underlying matter fluctuationδρ (as we will show later). We

then use a fit to thedN/dz estimated byDunlop & Peacock(1990) and already applied

to previous analysis of the NVSS catalogueNolta et al.(2004). Since the fit byDunlop &

Peacock(1990) breaks down at low redshifts, we have approximated it with aGaussian

dN/dZ centred aroundz ≃ 0.9 with a width∆z ≃ 0.8, and normalised in order to give a
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unit integral. The resultingdN/dz used in our analysis is shown in Figure2.2. We have

verified that the difference at low z has negligible effect onthe final results.
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Our fit

Figure 2.2:The function dN/dz used for the sources in the NVSS in our analysis. The dotted
curve is the theoretical model fromDunlop & Peacock(1990), which has a spurious feature due
to the breakdown of the fit at low z. The continuous line is the fit adopted in our analysis.

2.1.2 Cross-correlation between CMB and LSS

It is common practice to expand the map of the CMB temperaturefluctuations into spher-

ical harmonics (Ylm) as:

δT =
∑

lm

aTℓmYℓm(θ, φ) (2.1)

in order to extract the angular power spectrum:

CTT
ℓ = 〈|aTℓm|2〉 (2.2)

which enters in the two-point auto-correlation function ofthe CMB as:

CTT (α) ≡ 〈δT1δT2〉 =

=
∑

ℓ

(2ℓ+ 1)

4π
ω2
T,ℓC

TT
ℓ Pℓ(cosα) (2.3)

wherePl are the Legendre polynomials,α is the angular separation between two given

points, and the functionωT,ℓ models the experimental beam response and the pixel win-

dow function of the map.
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In an equivalent way, given a projected source count map:

δn =

∫
dz b(z)

dN

dz
δ(z) (2.4)

(whereδ is the underlying matter fluctuation in a given direction,b is the bias parameter,

anddN/dz was discussed previously) we can define the source count auto-correlation

function:

CNN(α) ≡ 〈δn1δn2〉 =

=
∑

ℓ

(2ℓ+ 1)

4π
ω2
N,ℓC

NN
ℓ Pℓ(cosα). (2.5)

Finally, the cross-correlation between CMB and source counts is defined as:

CTN(α) ≡ 〈δT1δn2〉 =

=
∑

ℓ

(2ℓ+ 1)

4π
ωT,ℓωN,ℓC

TN
ℓ Pℓ(cosα) (2.6)

with the usual definition

CTN
ℓ ≡ 〈aTℓma∗Nℓm〉 (2.7)

The theoretical auto and cross-correlation functions in a given cosmological model

can be calculated by numerically integrating the Boltzmannequation for photon bright-

ness coupled to the other relevant equations, including thelinear evolution of matter den-

sity perturbations and the evolution of gravitational potential fluctuations. We did this by

suitably modifying the CMBFast code (Seljak & Zaldarriaga, 1996) in order to output

the needed angular power spectra. In particular, we can write the angular cross-spectrum

in terms of CMBFast temperature and matter transfer functions (Tl andNl) as:

CTN
ℓ = 4π

∫
dk

k
∆2(k)Tℓ(k)Nℓ(k) (2.8)

where∆2(k) ≡ k3P (k)/2π2 andP (k) is the primordial power spectrum of fluctuations.

Our CMBFast modification also includes a full treatment of a generalised model of dark

energy.

Having extracted the needlets coefficientsβjk from the CMB and source count maps,

which are nothing but the analogous of the spherical harmonics coefficientsaℓm for the

expansion on the needlet basis, the cross-correlation estimator in needlets space,βj, can
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be calculated simply through Eq.3.12:

βTN
j ≡

∑

k

1

Npix(j)
βTjkβ

N

jk (2.9)

whereNpix(j) is the number of pixels in the pixelization scheme. The theoretical predic-

tions forβTN
j and the corresponding error bars can be computed from the expectedCTN

l

and their variance which lead to:

βTN
j =

∑

ℓ

(2ℓ+ 1)

4π

[
b

(
ℓ

Bj

)]2
BT,ℓBN,ℓC

TN
ℓ (2.10)

∆βTN
j =

(
∑

ℓ

(2ℓ+ 1)

16π2

[
b

(
ℓ

Bj

)]4 ((
CTN
ℓ

)2
+ CT

ℓ C
N
ℓ

))1/2

(2.11)

More details on needlet estimators and their properties areprovided in Chapter3.

2.1.3 Results

ISW detection

In Figure2.3 we show the cross-correlation signal in needlet space extracted from the

WMAP and NVSS data. The data points shown in the Figure were obtained following

the above described procedure, applying Equation2.9. We chose the valueB = 1.5 in

the wavelet construction for our analysis. The excess signal peaks at value6 < j < 9,

corresponding to angular scales between2◦ and10◦, as expected from theoretical studies

(Afshordi, 2004). We recall that the conversion betweenj and the actual angular scale

can is easily made through the relationℓc = Bj .

In order to check that the observed signal was not produced bycasual alignment of

sources in the NVSS catalogue with the CMB pattern at decoupling, we produced1, 000

Monte Carlo simulations of the CMB sky with an underlying theoretical fiducial LCDM

model corresponding to the WMAP 3 year best fit. The resultingmaps were processed

through our analysis pipeline, and the cross-correlation with the real NVSS map was

calculated for each simulated data set. Figure2.3 shows the resulting average cross-

correlation signal (continuous line), which is basically zero on all scales. The standard

deviation of the simulations is also shown in the same Figure(shaded area). These er-

rors, calculated through the Monte Carlo procedure, are consistent with the analytical

estimates of Eq.2.11. We want to stress that the error bars computed through CMB

Monte Carlo simulations only are accurate enough to our purpose as demonstrated by

Giannantonio et al.(2008) who produced mock galaxy distribution maps.
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Figure 2.3:The needlet cross-correlation power spectrumβj of the WMAP and NVSS maps.
The points represent the signal extracted from the real data, with error bars given by Eq.2.11.
The continuous line is the average of the cross-correlationpower spectra obtained when 1,000
simulated CMB fiducial data sets are correlated with the realNVSS map: this measures the
level of correlation expected from casual alignment. The shaded area is the1σ dispersion of the
simulated spectra.

The cross-correlation signal extracted from the data is significantly higher than the

expectation value of the simulated data. To quantify the statistical significance of the de-

tection, we computed the quantityX2 ≡
∑

j(β
obs
j −〈βsim

j 〉)2/∆β2
j . We foundX2 = 29.8.

AssumingX2 is distributed as aχ2 with 12 degrees of freedom (corresponding to our 12

data points), we can exclude that theβj were produced under the null hypothesis with

99.7% confidence. We stress again the fact that the very nature of needlets guarantees

that the correlation between adjacent data points is very low, even in the presence of sky

cuts. See Sec.3.2and Tab.3.1-3.2for an detailed explanation.

Consequences for dark energy models

We have compared the cross-correlation estimated from the data with the theoretical pre-

dictions in order to set constraints on dark energy models. Following the phenomenology

described inHu (1998), we have modelled the dark energy component as a fluid char-

acterised by its density parameter,ΩDE , its equation of state,w = p/ρ, and the sound

speedc2s = δp/δρ. The latter, needs not be the usual adiabatic one, but also accounts for

an entropic sound speed, so thatc2s 6= ṗ/ρ̇. For a more detailed discussion see Sec.2.3.

We have considered the above three quantities as the free parameters of our analysis.

All the other cosmological parameters were held fixed at the best fit values estimated

using the WMAP 3 year data:Ω = 1, H0 = 73 km/s/Mpc,Ωb = 0.042, τ = 0.088,

A = 0.68 → ∆2
R ≃ 2.35 × 10−9 (or σ8 = 0.74), ns = 0.951 (Spergel et al., 2007).

When modeling the NVSS catalogue, we adopted a constant biasparameterb = 1.6, a
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value suggested inDunlop & Peacock(1990) and already used in previous analysis, e.g.

Boughn & Crittenden(2004); Boughn & Crittenden(2005); Nolta et al.(2004); Vielva

et al.(2006).

We have computed the theoretical expectation for the cross-correlation by using Eq.2.9

and the output of our modifiedcmbfast code. Our calculation fully takes into account

the clustering properties of dark energy. We restricted ouranalysis to two different values

of c2s corresponding to the limiting cases describing a scalar field behaviour (c2s = 1) and

a matter behaviour (c2s = 0).

The main results of our analysis are summarised in Figure2.4where we plot the joint

constraints on the dark energy parametersΩDE andw for the two cases of sound speed

considered here, and in Figure2.5, where we show the separate marginalized likelihoods

for ΩDE andw. The likelihood were computed under the Gaussian hypothesis: we argue

that even though it may be fail in representing the true likelihood for the dark energy

model, it is nonetheless a first reasonable approximation useful to extract the parameters

of the model and infer dark energy properties.

Figure 2.4:Constraints at 68%, 95% and 99% confidence level in theΩDE—w plane. The left
panel was obtained under the hypothesis that the dark energyspeed of sound isc2s = 0; the right
panel was obtained forc2s = 1.

The first conclusion we can draw from our analysis is that the evidence for non zero

dark energy density is rather robust: we find0.32 ≤ ΩDE ≤ 0.78 for c2s = 1 and

0.36 ≤ ΩDE ≤ 0.81 for c2s = 0, both at 95% confidence level. A null value ofΩDE is

excluded at more than4σ (see Figure2.5, upper panel), independently ofc2s. When we

model the dark energy as a cosmological constant (i.e. we assume the valuew = −1 for

its equation of state), the bounds on its density shrinks to0.41 ≤ ΩDE ≤ 0.79 at 95%

confidence level.

On the other hand, the constraints onw are strongly influenced by the assumed value

of c2s, because of the different clustering behaviour of dark energy (Figure2.5, right

panel). In particular, we find that the value of the equation of state which corresponds to
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Figure 2.5:Marginalized likelihood function for the dark energy density ΩDE (left panel) and
equation of statew (right panel). In each panel, the continuous curve was obtained under the
hypothesis thatc2s = 1, while the dotted curve is forc2s = 0.
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Figure 2.6: The cross-correlation data points estimated in our analysis (big dots), with their
errors, are shown together with the theoretical predictions for a standard CDM model (without
dark energy, dotted curve), the best fit under the hypothesisthatc2s = 1 (short-dashed curve), the
best fit under the hypothesis thatc2s = 0 (long-dashed curve) and the LCDM (w = −1) that best
fits the WMAP 3 year data (dot-dashed curve).

a cosmological constant (w = −1) is well within the 95% c.l. when we assumec2s = 0.

In this case, we can only put an upper bound at 95% c.l.:w ≤ −0.54. Whenc2s = 1 is

assumed, we find that phantom models are excluded and that thecosmological constant

case performs comparatively worse than models with larger values ofw. Our bounds at

95% c.l. are−0.96 ≤ w ≤ −0.16. However, we emphasise that, for values ofΩDE ∼
0.7, models withw = −1 are a good fit to the data, as it is evident from Figure2.4

(lower panel). In fact, the LCDM WMAP best fit (withΩDE = 0.76 andw = −1) has

χ2 = 9.35, with 12 data points. The predicted cross-correlation for some dark energy

models is shown together with our data points in Figure2.6.

We have analysed the WMAP 3 year CMB temperature data, in conjunction with

the NVSS radio galaxy survey, and found further evidence of acorrelation between the



38 CHAPTER 2. THE DARK ENERGY PROBLEM

CMB fluctuation pattern and the local distribution of matter, consistent with an ISW

effect taking place at a late epoch of cosmic evolution. Our findings are based on a

new construction of spherical wavelets that has a number of advantages with respect

to previous studies. The presence of a correlation between the CMB and the LSS is

established with a high level of confidence.

We have also improved the treatment of the dark energy component, introducing a

more general parameterisation than those used in similar earlier analyses. Quite inter-

estingly, we find that although the case for a non zero dark energy contribution to the

total density is compelling and robust, the constraints onw do depend on the assumed

clustering properties of the dark energy component, namelyits sound speedc2s. Phantom

models, and also the ordinary cosmological constant casew = −1, perform worse when

a quintessence behaviourc2s = 1 is assumed. This is due to the fact that there exist models

with w ∼ −0.4 which predict more correlation at larger angular scales (θ ∼ 2◦).

Whether this is an indication of interesting physics takingplace between the dark en-

ergy and dark matter components is a subject that requires further investigation. Clearly,

the observation of ISW is proving quite promising as a tool toanswer the questions aris-

ing from the mysterious nature of dark energy. While the CMB data have reached a great

degree of accuracy on the angular scales that are more relevant for the detection of ISW,

deeper redshift surveys and better catalogues can, in the future, improve the tracing of

the local matter distribution, thus allowing us to reduce the errors on the cross-correlation

determination.

An exhaustive updated analysis of the correlation between CMB and LSS is provided

by Giannantonio et al.(2008) andHo et al.(2008). We want to stress that a key ingredient

still missing in these analyses is the correct treatment of the galaxy bias. The bias is a

parameter, or more generally a function dependent both on redshift and scale, which

describes how the baryons trace the dark matter, and then incorporates all the complexity

of the baryons interactions.Raccanelli et al.(2008) have addressed this issue studying

the effect of a time dependent bias on the cross-correlationfunction for an underlying

ΛCDM model. A step further would imply a complete MCMC analysis, allowing both

dark energy and bias parameter to vary. A preliminary study has been performed by

Schaefer et al.(2009). The bias investigation is one of the hottest topics in cosmology

since it has been proven to be extremely important in the context of non-Gaussianity too

(Smith et al., 2009; Wands & Slosar, 2009; Slosar et al., 2008)

Motivated by our findings, which confirm at a high significancelevel the presence of a

mysterious component which drives the acceleration of the Universe expansion, we study

in the next two sections a couple of models which try to describe in a unified manner both

dark matter and dark energy. In Sec.2.2this is achieved by means of a coupling between
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the two components, whereas in Sec.2.3 we propose a unique description based on a

peculiar equation of state for the fluid.



40 CHAPTER 2. THE DARK ENERGY PROBLEM

2.2 Late universe dynamics with scale-independent lin-

ear couplings in the dark sector

As discussed in the introduction to this chapter, several cosmological observations such

as SuperNovae (SNe) (Riess et al., 2009; Riess, 2007; Riess et al., 1998; Perlmutter

et al., 1999), baryon acoustic oscillations (BAO) (Percival et al., 2009, 2007a; Eisenstein

et al., 2005), Integrated Sachs-Wolfe (ISW) measurements (Giannantonio et al., 2008;

Pietrobon et al., 2006; Ho et al., 2008), suggest the Universe expansion is accelerat-

ing. To explain this acceleration, cosmologists invoke theexistence of an unknown dark

component (Copeland et al., 2006), whose general properties have to be inferred by ob-

servations, i.e. a procedure which relies on indirect evidences. One possibility is that the

dark sector is accounted for, partly or in full, by a modified gravity theory2, while a more

conventional approach is to assume that gravity is well described by general relativity,

with the dark sector made up of an unusual energy momentum tensor.

In the currently prevailing scenario, the dark sector consists of two distinct contri-

butions. One component,cold dark matter(CDM), accounts for about one third of the

critical density (Percival et al., 2007b, 2009) and is needed to explain the growth of in-

homogeneities that we observe up to very large scales, as well as a host of other cosmo-

logical observations which goes from galactic scales, to clusters of galaxies, to redshift

surveys. The other contribution, dubbeddark energy, accounts for the remaining two

thirds of the critical density, and it is required to explainthe observed late time acceler-

ation of the universe expansion (Perlmutter et al., 1999; Riess, 2007; Riess et al., 2009).

CDM can be modelled as a pressureless perfect fluid, representing unknown heavy parti-

cles, collisionless and cold, i.e. with negligible velocity dispersion. In its simplest form,

dark energy consists of vacuum energy density, i.e. a cosmological constantΛ. Taken

together,Λ and CDM make up the the so-called concordanceΛCDM model (Spergel

et al., 2003; Tegmark et al., 2004). This simple model fits observations reasonably well,

but lacks a sound explanation in terms of fundamental physics, and a number of alter-

natives have been proposed. In general, dark energy can be modelled as a perfect fluid

with an equation of state (EoS from now on) that violates the strong energy condition

(namelyρ + 3p > 0) (Visser, 1997), such that it can dominate at late times and have

sufficiently negative pressure to drive the observed accelerated expansion. Scalar fields

can also be formally represented as perfect fluids (see e.g.Bruni et al.(1992) and refs.

therein). In a more exotic version, dubbedphantom energy(Caldwell, 2002; Caldwell

et al., 2003), the EoS also violates the null energy condition (ρ + p > 0) (Visser, 1997),

leading to the growth in time of the energy density with the cosmic expansion. Finally,

2See e.g.Durrer & Maartens(2008); Durrer & Maartens(2008) and other articles in the same special
issue on dark energy.
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another rather radical alternative toΛCDM is to assume a single unified dark matter

(UDM), able to mimic the essential features ofΛCDM which are necessary to build a

viable cosmology. For example, inBalbi et al.(2007) we have considered observational

constraints on a UDM model with an “affine” EoS, i.e. such thatthe pressure satisfies the

affine3 relationP = Po + αρ with the energy density (Ananda & Bruni, 2006; Ananda

& Bruni, 2006). This model is a one parameter (α) generalisation ofΛCDM, with the

latter recovered forα = 0. There is no need to assumea-priori a Λ term in Einstein

equations, because the EoSP = Po + αρ leads to an effective cosmological constant

with ΩΛ = −8πGPo/[3H
2
o (1 + α)]. The problem is thus shifted from justifying aΛ

term in Einstein equations to that of justifying the assumedEoS: a possible justification

of this affine model can be given in terms of scalar fields, either of quintessence or k-

essence type (Quercellini et al., 2007). This type of model escapes typical constrains on

many UDM models (Sandvik et al., 2004) (but cf. e.g.Gorini et al.(2008)) because, for a

given homogeneous isotropic background expansion, it allows multiple phenomenologi-

cal choices for the speed of sound of the perturbations (Pietrobon et al., 2008) (see also

for detailed discussion Sec.2.3).

In models of the dark sector consisting of two components, dark matter and dark

energy are usually assumed to interact only through gravity, but they might exhibit other

interactions without violating observational constraints (Kunz, 2007). Exploiting this

degeneracy, here we depart from the standard scenario, and assume a cosmological model

where the dark sector is made up of two coupled dark components, each described as a

perfect fluid with its own constant EoS parameterw. This choice allows for the possibility

that the observed evolution of the universe, although reasonably well explained by the

ΛCDM model, is actually due to the dynamics of two rather general coupled components,

possibly alleviating the so-called “coincidence problem”, ΩΛ ≈ ΩCDM , typical of the

standard model (Copeland et al., 2006).

We first characterise the dynamics of our cosmological modelwith the two general

coupled components, taking into account general forms of interaction, parameterised

in terms of a late time functionQ linear in the energy densities, Eqs. (2.16-2.17). To

this end we will use standard dynamical system techniques (Arrowsmith & Place, 1992;

Wainwright & Ellis, 1997), which are now rather common in the analysis of cosmo-

logical models, see e. g.Wands et al.(1993); Bruni (1993); Amendola et al.(1993);

Bruni & Piotrkowska(1994); Bruni et al.(1995a,b) andCopeland et al.(1998); Ananda

& Bruni (2006); Ananda & Bruni(2006); Böhmer et al.(2008). To our knowledge, such

an exhaustive analysis has not been carried out yet, although several sub-cases have been

consideredMajerotto et al.(2004); Olivares et al.(2006); Guo et al.(2007); Böhmer et al.

3The termaffineis a technical word used in maths to define a general linear coordinate transformation.



42 CHAPTER 2. THE DARK ENERGY PROBLEM

(2008); Quartin et al.(2008); Pettorino & Baccigalupi(2008); Barrow & Clifton (2006).

In our study, we restrict ourselves to the evolution of a homogeneous, isotropic cosmo-

logical background, leaving aside the question of what the effects of coupling could be in

anisotropic models (Ananda & Bruni, 2006), or when general perturbations are present

(Valiviita et al., 2008; Dunsby et al., 1992). It is however worth noticing that, thanks

to the particular form of coupling we choose, our analysis ofthe dynamics of the two

components is valid in any theory of gravity, because it is based only on the conservation

equations, and not on specific field equations.

Secondly, as a way to gain some physical insight on the likelihood of some specific

coupling models, we also explore the constraints on the predicted luminosity distance

modulus derived from type Ia Supernovae observations, using a Monte Carlo Markov

Chain (MCMC) approach. Needless to say, this is not intendedas a full-fledged cos-

mological parameter estimation for these models, but only as a first exploration of the

parameter space to rule out those models which are manifestly in contrast with observa-

tions. This analysis requires the use of the Friedmann equation, hence general relativity

is assumed as the valid theory of gravity.

2.2.1 Dynamics of dark components

Linear scale-free coupling

In general relativity, assuming a a flat Robertson-Walker universe, the dynamics is subject

to the Friedmann constraint

H2 =
8πG

3
ρT , (2.12)

whereρT is the total energy density of the various components. Beside baryons and

radiation,ρT includes any other component contributing to the dark sector, i.e. that part

of the total energy-momentum tensor that in the context of general relativity is needed

to explain the observed universe, in particular the CMB (Spergel et al., 2007; Dunkley

et al., 2009), structure formation (Springel et al., 2006; Khalil & Munoz, 2002) and the

late time acceleration of the expansion (Riess et al., 1998; Perlmutter et al., 1999; Riess,

2007; Riess et al., 2009; Eisenstein et al., 2005; Percival et al., 2007a; Pietrobon et al.,

2006; Ho et al., 2008; Giannantonio et al., 2008). The dynamics itself is described by the

evolution of the Hubble expansion scalarH = ȧ/a, given by the Raychaudhuri equation

Ḣ = −H2 − 4πG

3
(1 + 3wT )ρT . (2.13)

This is coupled to the evolution equations for the energy density of each of the mat-

ter components contributing toρT . SinceḢ + H2 = ä/a, with a(t) the usual metric
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scale-factor (which we assume normalised to its present value), acceleration is achieved

wheneverwT = PT/ρT < −1/3, as it is well known.

The standardΛCDM model assumes two dark components: the pressureless cold dark

matter (CDM), withwDM = 0, and the cosmological constantΛ with wΛ = −1. CDM

is needed to fill the gap between the baryon abundance and the amount of matter that is

needed to explain the rotation curves of galaxies and structure formation in general, as

well as to allow for a vanishing curvature model. In the context of general relativity, and

under the Robertson-Walker homogeneous and isotropic assumption (see e.g.Célérier

(2007) for alternatives), a cosmological constantΛ is the simplest possible form of dark

energy (DE) needed to generate the observed low redshift acceleration. While this simple

scenario is preferred from the point of view of model comparison and selection (Balbi

et al., 2007), because of the low number of parameters, from a theoretical perspective it

is oversimplified, and it is worth exploring alternatives, even if purely phenomenological.

Here we shall consider two general coupled dark components with energy densities

ρA andρB. Since we want to introduce a rather general type of coupling, focusing our

analysis on its effects, we shall assume the simplest possible form for the EoS of these two

dark components, i.e. we will assume that the EoS parameterswA andwB are constant.

On the other hand, we shall nota priori restrict our study to the sub-class of models

where one of the two components represents CDM with, for instance,wB = 0.

Due to the presence of the coupling, the two dark components satisfy the balance

equations

ρ̇A + 3H(1 + wA)ρA = Q (2.14)

ρ̇B + 3H(1 + wB)ρB = −Q . (2.15)

Even assuming the linear form for the couplingQ given in Eqs.2.16and2.17below, this

model allows us to explore a large number of alternatives. Here we will focus on mod-

els for the homogeneous and isotropic background expansion, assuming that for those

models that will fit current observational data it might always be possible to construct an

appropriate perturbative scheme allowing for structure formation, for instance by assum-

ing a vanishing effective speed of sound in one component.

The coupled dark componentsρA andρB could be in principle be taken to represent

DE only, i.e. they could be two extra dark components contributing to ρT in (2.12), in

addition to CDM. Leaving aside this possibility, and ignoring baryons and radiation as

we will do in this Section, the sum of Eqs. (2.14-2.15) gives the conservation equation

for ρT = ρB + ρA. A positive coupling termQ corresponds to a transfer of energy from

ρB to ρA, and vice versa, but in generalQ doesn’t need to have a definite sign.
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An interaction term between two components has been considered several times in

the literature, starting fromWetterich(1988, 1995), Wands et al.(1993); Copeland et al.

(1998) in scalar field models, and has been analysed in dark energy models byAmendola

(2000); Amendola & Tocchini-Valentini(2001); Amendola & Quercellini(2003, 2004),

and for example recently inMajerotto et al.(2004); Olivares et al.(2006); Guo et al.

(2007); Böhmer et al.(2008); Quartin et al.(2008); Pettorino & Baccigalupi(2008); de

la Macorra(2008); Manera & Mota(2006).

The coupling termQ can take any possible formQ = Q(H, ρA, ρB, t). Here we

shall consider the case of an autonomous (t independent) coupling with a factorizedH

dependence

Q =
3

2
Hq(ρA, ρB). (2.16)

As we shall see below, with this assumption the effects of thecoupling on the dynamics

of ρA andρB become effectively independent of the evolution of the Hubble scaleH.

For this reason, we may call this a “scale-independent” coupling. This choice has been

often adopted in literature mainly because it simplifies thecomputation and allows to

investigate several phenomenological models which display a coupling between the dark

components. Furthermore, with the decoupling of the dynamics of the two dark compo-

nents from that ofH, the analysis of the next section is valid in any theory of gravity,

because it is based on the conservation equations only: we don’t need to use Eqs.2.12-

2.13, i.e. the field equations of general relativity. Finally, wenote that any coupling of

this type can be approximated at late times by a linear expansion:

q = q0 + qAρA + qBρB , (2.17)

whereqA, qB are dimensionless coupling constants, andq0 is a constant coupling term

with dimensions of an energy density4. In the following we shall analyse the dynam-

ics arising from this general linear scale-independent coupling. Obvious sub-cases are:

q ∝ ρT (q0 = 0, qA = qB); q ∝ ρA (q0 = 0, qB = 0); etc. We will come back to this in

more detail in the next Section. Linear couplings have been frequently analysed in liter-

ature (Wetterich, 1995; Amendola, 2000; Majerotto et al., 2004; Guo et al., 2007),Mul-

tamaki et al.(2007); Mainini & Bonometto(2007); Böhmer et al.(2008); Quartin et al.

(2008) both for mathematical simplicity, since they retain the linearity of system2.14-

2.15with no coupling, and because they can arise from string theory or Brans-Dicke-like

Lagrangians after a conformal transformation of the metric.

4Strictly speaking, an expansion about today would lead toq = q̂0 + q̂A(ρA − ρA0) + q̂B(ρB − ρB0),
but constants can always be re-defined in order to put the coupling q in the form2.17.
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2.2.2 Analysis of the scale-free linear dynamics

The linear dynamical system

In order to proceed with the analysis of the dynamics of the dark components, let us

change variables, using the total densityρT = ρB + ρA and the difference∆ = ρB − ρA.

We also set

w+ = (wB + wA)/2 , w− = (wB − wA)/2 , (2.18)

q+ = (qB + qA)/2 , q− = (qB − qA)/2 . (2.19)

One reason for this choice is that ultimately the evolution of ρT is the one that governs

the general expansion law through Eq.2.12and2.13. In addition, thanks to the partic-

ular form of the coupling (Eq.2.16) and assumingH > 0, the dynamics can be made

explicitly scale-independent, eliminatingH by adoptingN = ln (a), thee-folding, as the

independent variable. Then, denoting with a prime the derivative with respect toN , the

system (2.14-2.15) is transformed into

ρ′T + 3ρT (1 + w+) + 3w−∆ = 0 (2.20)

∆′ + 3∆(1 + w+) + 3w−ρT = −3(q+ρT + q−∆+ q0). (2.21)

An effective EoS parameterweff is implicitly defined from Eq.2.20: whenw− = 0 the

two EoS coincide giving rise to a constantweff = w+ = wA andρT scales accordingly,

as a standard barotropic perfect fluid, but in general

weff = w+ + w−
∆

ρT
(2.22)

changes with time. Notice that we can also define, using (2.16-2.17) in (2.14), the effec-

tive EoS parameters for the two components:

wAeff = wA − q0 + qBρB
2ρA

− qA
2
, (2.23)

wBeff = wB +
q0 + qAρA

2ρB
+
qB
2
. (2.24)

From now on we will characterise the cosmological evolutionof any of the energy densi-

ties as standard/phantom behaviour. As mentioned in the introduction, standard/phantom

respectively correspond to an energy density which is either a decreasing or an increasing

function of time (the scale factor or thee-folding N). The phantom behaviour arises in

the presence of coupling from an effective EoS parameter< −1, which corresponds to

the violation of the null energy condition (Visser, 1997) for that given energy density.
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Thus, it follows from Eq.2.22and2.23-2.24that we can have a phantom behaviour in

the total energy densityρT as well as in one or both of the single componentsρA andρB,

and that in principle the effective EoS parameter of each of these can pass through the−1

value, from phantom to standard or vice versa. On the other hand, we will also refer to

constant parameters such aswA andwB as having a standard/phantom value, respectively

wA/B > −1 orwA/B < −1, because the corresponding fluid would evolve in that way in

the case of no coupling.

We will also refer to an “affine” evolution. As said in the introduction, for an un-

coupled component with energy densityρ this arises from an affine EoS of the form

P = Po + αρ. Inserted in the energy conservation equation this leads to

ρ = ρΛ + ρ0Ma
−3(1+α) . (2.25)

Therefore, starting from the Friedmann equations2.12-2.13with no cosmological con-

stant term, the affine EoS and energy conservation lead to an effective cosmological

constantρΛ plus an effective matter-like component with constant EoS parameterα (a

barotropic perfect fluid) and today’s densityρ0M (cf. Ananda & Bruni(2006); Ananda &

Bruni (2006); Balbi et al.(2007); Quercellini et al.(2007) for a detailed analysis of the

cosmological dynamics arising in this case). As we will see,it turns out that there are

solutions of the system (2.20-2.21) that evolve according to Eq.2.25.

In order to proceed with the analysis of Eqs.2.20-2.21 using standard dynamical

system techniques (Arrowsmith & Place, 1992), it is convenient to write it as

X′ = JX+C , (2.26)

where the phase-space state vectorX and the constantC are

X =

(
ρT

∆

)
, C =

(
0

−3q0

)
, (2.27)

and the matrix of coefficientsJ is given by

J =

(
−3(1 + w+) −3w−

−3(w− + q+) −3(1 + w+ + q−)

)
. (2.28)

Fixed points, if they exist, are solutionsX∗ of the equationJX∗ + C = 0 and, given

that the system (2.26) is linear,J is also the Jacobian of the system at these fixed points.

These fixed points correspond to constant values ofρT and∆ and in turn ofρA andρB,

that is to the emergence of an effective cosmological constant (whenρT 6= 0, see below).

Every constant form of energy is indeed alike the cosmological constantΛ, and plays
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exactly the same cosmological role: when it dominates the evolution of the background,

it drives an exponentially accelerated expansion, with an effective EoS parameter close

to −1. Notice that - unlike the case with no coupling - there is noa priori guarantee

from the equations above thatρA and/orρB, as well asρT , will always be non-negative.

However, one has to keep in mind thatρT must be non-negative because of the Friedmann

constraint (Eq.2.12). This means that ifρT is vanishing for some value ofN (a), then at

that point the assumptionH > 0, on the basis of which Eq.2.26is derived, is violated,

and the solutions of Eq.2.26no longer correspond to solutions of the original coupled

system of Eqs.2.13and2.14-2.15.

We refer to App.?? for the solution of the linear system and a detailed discussion of

its properties. An insight of the physical consequences of the stability properties of the

system Eq.2.26may be achieved considering the solution of the second orderdifferential

equation forρT, which can be easily derived from the linear system. The details of

the computation are fully described in App.??; here we report the main results, useful

to understand the investigation of the parameter space of the model discussed in the

following sections. The total energy density can be described as:

ρ′′T − tr(J) ρ′T + det(J) ρT = 9w−q0,

ρT = ρT+a
−3(1+β+) + ρT−a

−3(1+β−) + ρΛ,

whereβ± = β0 ±
√
D/3, with β0 = w+ + q−/2 andD = 9

[(
q−
2

)2
+ w−(q+ + w−)

]
.

The total energy density is made up of two evolving components and an effective cosmo-

logical constant,ρΛ, function of the parameters of the model, which may arise according

to the dynamics of the system.

Here we focus on a less general solution, for which we performa parameter space

viability study through a Monte Carlo approach.

2.2.3 Analysis of specific couplings

Dynamics of density parameters

Introducing an interaction between two fluids can lead to interesting solutions for the

energy densities, like attractor points in the phase space where the contributions of the

two fluids to the total energy density are constants. In thesepoints the value of the

normalised energy densities depends only on the parametersof the model and, since they

are attractors, they are reached from a wide range of initialconditions, thereby alleviating

the coincidence problem. These are usually called “scalingsolutions” (Wands et al.,

1993; Copeland et al., 1998) and are characterised by constant fractions of the energy

density parameters, namelyΩA,B = ρA,B/(3H
2) (in units8πG = 1, c = 1).
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In order to analyse the dynamics of the system, let us define the new variables:

x =
ρA
3H2

; y =
ρB
3H2

; z =
ρΛ
3H2

, (2.29)

where together with the coupled fluids we also include radiation to include the era when

it’s the dominating component, when initial conditions areusually set. Note thatx = ΩA,

y = ΩB andΩγ are constrained byx+ y + Ωγ = 1; z is the energy density parameter of

the total effective cosmological constant, and we neglect the baryons contribution, which

is always subdominant. The system (2.14-2.15) then becomes

x′ = −x
[
3(1 + w+ − w−) + 2

H ′

H

]
(2.30)

+
3

2

[
(q+ − q−)x+ (q+ + q−)y +

det(J)

9w−
z
]

y′ = −y
[
3(1 + w+ + w−) + 2

H ′

H

]
(2.31)

− 3
[
(q+ − q−)x+ (q+ + q−)y +

det(J)

9w−
z
]

z′ = −2z
H ′

H
, (2.32)

where

H ′

H
= −1 − 1

2
[x(1 + 3(w+ − w−))

+y(1 + 3(w+ + w−)) + 2(1− x− y)] (2.33)

is a rewriting of the Raychaudhuri equation (2.13) for the Hubble expansion scalar.

The fixed points, namely the points satisfyingx′ = y′ = z′ = 0, are presented in

Table2.1, labelled by capital letters, together with the corresponding eigenvalues. To

the best of our knowledge, this is the first complete analysisof the dynamics of a three

components cosmological system where two of the barotropicfluids are coupled via a

general linear coupling function of the form (2.17). The effective EoS parameters at each

of the fixed pointsweff = ptot/ρtot is also listed, whereρtot = ρA+ρB+ργ and therefore

weff = (w+ − w−)x+ (w+ + w−)y + Ωγ/3.

All the fixed points shown in Table2.1 exist forw− 6= 0, when the EoS parameters

of the two fluids are the different. The only physically reasonable fixed point for system

(2.20-2.21) corresponding tow− = 0 is Case 2a (see Sec.??), wheredet(J) = 0, and we

end up with an infinite number of solutions, characterised bywA = wB = −1.

The fixed points A corresponds to the radiation dominated era, while B, C and D

represent epochs that are dominated by the two fluids, as can be inferred by looking at

the values of the effective equation of state parameter,weff . In particular, at the fixed
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Points x y z weff λx λy λz
A 0 0 0 1

3
4 1− 3β+ 1− 3β−

B − q−−2w−+2
√
D/3

4w−

(q−−2w−+2
√
D/3)(q++2w−+2

√
D/3)

4w−(q++q−)
0 β+ 3(1 + β+) −1−3(β+−2β−+q−)+

√
F+

2
−1−3(β+−2β−+q−)−

√
F+

2

C − q−−2w−−2
√
D/3

4w−

(q−−2w−−2
√
D/3)(q++2w−−2

√
D/3)

4w−(q++q−)
0 β− 3(1 + β−) −1−3(β−−2β++q−)+

√
F−

2
−1−3(β−−2β++q−)−

√
F−

2

D 1+w−+w+

2w−

−1−w−+w+

2w−

1 −1 −4 −3(1 + β+) −3(1 + β−)

Table 2.1: Fixed points of system (2.30-2.32), the corresponding effective EoS and eigenvalues, whereF± = 9q2−/2− 3q−(1±
√
D− 3w+) + 9q+w− +

9w2
− − (1± 2

√
D − 3w+)(−1 + 3w+).



50 CHAPTER 2. THE DARK ENERGY PROBLEM

point D the constant energy densities ofx andy (ρAΛ andρBΛ) cause the accelerated

expansion withweff = −1. From the expression forx andy at this latter fixed point it is

easy to see thaty = −x(1 + wA)/(1 + wB): this represents an example of the so-called

scaling solutions, by virtue of the proportionality relation between the energy density of

the two fluids see Case 1 and Case 2c discussed at the end of App.??). This point is

characterised by the final domination of an effective cosmological constant, either driven

by q0 (Case 1, see Fig.2.8) or not (Case 2c, see Fig.2.9). In the first case whenever

|β±| < 1 D is always an attractor, while in the second case it is not because one of the

eigenvalues is null. Notice that its existence is completely independent ofq+ andq−.

Whenever the system settles into the fixed points B or C the role ofβ+ andβ− is exactly

that of effective EoS parameters (see Table2.1) which allows for phantom line crossing

at late time (see Fig.2.7), i.e. the line for which the effective total EoS parameter is

weff = −1.

In the following we will examine in more detail three specialclasses of the coupling

function and in Sec.2.2.4we will make a first comparison of the models to the data using

MCMC applied to type Ia SNe distance modulus.

I. q+ = q−

Imposingq+ = q− is equivalent to choosingqA = 0 andqB = q; therefore among the

range of possible couplings represented by Eq.2.17 we are restricting to the class of

models whereQ/H is proportional solely to the energy density of one fluid (in our case

e.g.ρB), and it reads
Q

H
=

3

2
(qρB + q0). (2.34)

This assumption also includes models withq+ = −q− since the coefficientsqA andqB
can be either negative of positive. In this case the dynamicsis the same as forq+ = q−,

the roles ofx andy being simply interchanged. We will refer to this subclass ofmodels

as model I.

In this model
√
D is automatically real, sinceD = 9(q/2 + wB − wA)

2/4; as a

consequence the scaling function (??) always drives a power law expansion, withβ+ =

q/2+wB andβ− = wA if β0 > 0 (i.e.(wB+wA+q/2) > 0), vice versa ifβ0 < 0. Hence

the total fluid ends up as if it was made up of:i) a component scaling as the original fluid

ρA with no coupling,ii) a second component characterised by a new EoS parameter and

iii) an effective cosmological constant termρΛ. Moreover a pure affine behaviour (2.25),

or its improper modification (??), is obtained in three cases:i) q = −2(wB−wA), which

gives (??); ii ) q = −2(1 + wB), that corresponds toβ+/− = −1 (even forρΛ = 0,

i.e. q0 = 0, an effective cosmological constant is generated);iii ) wA = −1, where one

of the two fluids isab initio a constant term. Notice however that generally, because
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β+ = β− + 2
√
D/3, models withβ+ = −1 andβ− > −1 are not feasible. In particular,

theΛCDM evolution is exactly recovered in caseii ) for wA = 0, that is if one of the

fluids is dust; in caseiii ) for qB = −2wB.

The fixed point D is characterised by the domination of the constant part of the total

energy densityρΛ; along it, the values ofx andy are both positive only if eitherwA or

wB have phantom values, i.e.wA < −1 or wB < −1. This statement holds true also for

models II and III. However, ifwA < −1 D is no longer an attractor, asλy = −3(1 +wA)

is greater than zero. On the other handwB < −1 requiresq > −2(1 + wB) to let the

fixed point be an attractor: in this caseq is positive. A strong and positiveq corresponds

to a transfer of energy fromρA to the other fluid withwB < −1. Therefore in order to

fall at late time into the cosmological constant dominated era a fluid with a phantom EoS

parameterwB must absorb energy from the other non-phantom fluid. It is worth stressing

that the effective cosmological constant, i.e.q0, is somewhat redundant whenever the

fixed point D is not an attractor (see Fig.2.7). In Fig. (2.7) an example of this dynamics

of the background is shown; the effective cosmological constant is not noticeable, since,

after the evolution on the saddle point B, the system is trapped in the attractor point C.

II. q− = 0

If q− = 0 the resulting coupling functionQ/H is linearly dependent on the sum of the

energy densities of the two fluids, approximately equivalent to the total energy density

(these models have been examined for example inOlivares et al.(2006) andAbdalla et al.

(2009)) and is as follows
Q

H
=

3

2
(qρT + q0). (2.35)

With this assumptionqA = qB = q+ = q andβ± = w+ ±
√
D/3 whereD = 9(wB −

wA)(2q + wB − wA)/4. If q is positive these effective EoS are real forwB > wA or

wB ≤ wA−2q, while if q is negative the same relations hold but with opposite inequality

signs. We will label this model II.

In this model the affine evolution is recovered forwB = (qwA + 2wA + 2)/(q −
2wA − 2), corresponding toβ− = −1. In this case, which is indeed Case 2c of Section

??, an effective cosmological constant arises even forρΛ = 0. Again, becauseβ+ =

β− + 2
√
D, models withβ+ = −1 andβ− > −1 are not feasible. From a cosmological

point of view this means that a matter-like evolution cannotbe generated together with

a cosmological constant. TheΛCDM limit is achieved ifwA = (−1 + q ±
√
q2 + 1)/2

andwB = −1 − wA. The evolution of the energy densities for a special choice of the

parameters is illustrated in Fig.2.8: the effective cosmological constant (??) arises at late

time, driving the acceleration, andρΛ is caused by a non-zeroq0 (ΩΛ 6= 0).
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Figure 2.7: Upper panel: evolutions of the energy density parametersΩA (thin solid line),ΩB
(dotted line) andΩγ (thick solid line) for a model withq+ = q− = 0.25; for comparison, the
dashed lines are the values ofx andy at the fixed points B (thin short-dashed lines) and C (thick
long-dashed lines). For this model the parameters are:Ω0A = ΩΛ = 0.5, wA = 0, wB = −1.5,
β+ = 0 andβ− = −1.25. Lower panel: the total effective EoS parameter for the samemodel :
weff evolves from the value1/3 in the radiation dominated era, approaches the value0 in the
matter dominated era and then asymptotically evolves toward a constant phantom value, in this
caseβ− = −1.25.

III. q+ = 0

The subgroup of models withq+ = 0 ( from now on model III) includes the couplings

that are proportional to the difference of the energy densities∆ (for example recently

analysed inChimento et al.(2009)). With this assumptionq− = qB = −qA = q and the

discriminantD = 9(q2 + (wB − wA)
2)/4 is always positive, so that oscillating solutions

(??) are never permitted. The coupling function reads

Q

H
=

3

2
(q∆+ q0). (2.36)

As before, the affine expansion (2.25) may only be generated if one of the two effective

EoS parameters assumes the value of the EoS of a cosmologicalconstant, that is either
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Figure 2.8: Upper panel: evolutions for the energy density parameters for a model withq− = 0
andq+ = −0.5; for comparison, the dashed lines are the values ofx andy at the fixed points
B (thin short-dashed lines) and D (thick long-dashed lines). For this model the parameters are:
Ω0A = ΩΛ = 0.5, wA = −1.1, wB = 0.2. Lower panel: effective EoS for the same model; for
comparison, we plot the EoS parameter of the fixed point B,β+ = −0.14.

β+ = −1 or β− = −1. In particular ifβ+ = −1, β− = −1−2
√
D/3 is always phantom.

In this case none of the terms in Eq. (??) can play the role of matter. On the other hand

if β− = −1 (corresponding towA = (−1 − q ±
√

1− q2)/2), β+ = −1 + 2
√
D/3 is

always grater than−1, i.e. always standard. An example of this dynamics is shown in

Fig. 2.9, where the effective cosmological constant (??) arises at late time with no need

of q0, driving the acceleration (Case 2c). Then typically forwB = −q −wA− 1 we have

thatβ+ = 0 and theΛCDM model is recovered.

2.2.4 Markov chains with supernovae

Methods

Given the large number of parameters, the task of finding the minimumχ2 and mapping

its distribution in the entire parameter space can be computationally expensive. To this

end we adopt a MCMC approach. In this work we only want to test our models as a
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Figure 2.9: Upper panel: evolutions for the energy density parameters for a model withq+ = 0
andq− = −0.18; for comparison, the dashed lines are the values ofx andy at the fixed point
B (thin short-dashed lines) and D (thick long-dashed lines). For this model the parameters are:
Ω0A = 0.5, ΩΛ = 0, wA = −0.9, wB = 0. (dust). The EoS parameters at B areβ+ = −0.08 and
β− = −1. Lower panel: effective EoS for the same model.

description of the homogeneous isotropic background expansion (regardless of perturba-

tions), hence supernovae are ideal for this purpose. We use the 192 type Ia SNe distance

modulus data set provided inDavis et al.(2007). In particular we want to see whether

supernovae can qualitatively distinguish different kind of couplings, included what we

called model I, II and III.

Type Ia SNe light curves allow a determination of an extinction-corrected distance

moduli,

µ0 = m−M = 5 log (dL/Mpc) + 25 (2.37)

wheredL = (L/4πF )1/2 = (1+z)
∫ z
0
dz′/H(z′) is the luminosity distance. We compare

our theoretical predictions to the values ofµ0 withH2 = 8πG/3(ρA+ρB+ργ+ρb), where

we account also for the baryon energy densityρb. We fix the value of the dimensionless

Hubble constant to beh = 0.72 (Freedman et al., 2001) and the baryon energy density

at presentΩbh2 = 0.02229 according toSpergel et al.(2007). The smaller is the EoS
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parameter of a single fluid the later can be the domination erafor this fluid. Hence,

counting the role ofβ± as effective EoS parameters, wheneverβ± > 0 a baryonic era

might emerge at recent time. The absolute distance modulusM is intrinsically affected

by uncertainty; therefore we treat it as a nuisance parameter and marginalize over it. The

distance modulus for the models shown in Fig.2.7-2.9 together with the 192 SNe data

points are displayed in Fig.2.10.

Figure 2.10: Comparison of the distance modulus for the three coupling models in
Fig. 2.7-2.9to the 192 SNe dataset used in the MCMC analysis.

The parameters that are representative of the models are{Ω0A,ΩΛ, qA, qB, wA, wB},

or otherwise{Ω0A,ΩΛ, q+, q−, w+, w−} and, as functions of these, the two effective EoS

introduced in Eq. (??): β+ andβ−. For the ensuing analysis it is worth recalling our

classification of models: I) model with a coupling function proportional to only one of

the two energy densities; II) model with a coupling functionproportional to the sum of

the energy densities; III) model with a coupling function proportional to the difference of

the energy densities.

We shall now focus our analysis on the casewB = 0, i.e.ρB would represent standard

CDM if it wasn’t for the coupling with the DE component.

Results: CDM - DE coupled models

The first result we obtain is thatΩΛ is completely unconstrained, independently of which

model we consider. This means that SNe are not sensitive to the constant term of the

coupling. The dynamics of the system can easily generate theacceleration settling on

fixed points D, whereweff = −1 (see Tab.2.1), even forΩΛ = 0 (see Fig.2.9), or B and

C, where the total energy density can also exhibit phantom evolutions.

In Fig.2.11and2.12we present MCMC chains in a two-dimensional diagram[q+, q−]

([qA, qB] on the right hand side). As said above, we consider a model where one of the two
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fluids represents a CDM component, i.e.wB = 0, a reasonable assumption considering

all the other cosmological probes pointing towards the existence of a form of cold dark

matter (see e.g.Khalil & Munoz (2002)), and we letwA assume three different values

that characteriseρA as a DE component (phantom-like behaviour is shown in the top

panels, cosmological constant-like in the second row panels and non-phantom model in

the bottom panels).

Note that the case wherewA = 0 andρB is DE can be easily derived from the previous

one, corresponding in the diagram to a reflection with respect to the lineqB = −qA. In

fact, interchanging the two EoS and swapping the roles of thetwo energy densities, and

applying the transformation (qA → −qB, qB → −qA, i.e. q+ → −q+, q− → q−), one

recovers the aforementioned model.

In addition, the straight lines corresponding to models I, II and III are drawn, and

diagrams of Fig.2.12 are derived from the same choice of parameters as in Fig.2.11

except forΩΛ 6= 0 (it is by eye easily verifiable that there is no dependence onΩΛ).

Finally, the short-dashed curves represent the improper affine evolution (??), while the

short-dashed straight line represents affine models (2.25) with β+/− = −1 (Case 2c).

As a first step we derived the unidimensional likelihood for{Ω0A, q+, q−}. The best fit

of the energy density parameter for the three classes of models presented in Fig.2.11and

2.12is respectivelyΩ0A = 0.63, 0.65, 0.76 with an error of2σ = 0.1; this best fit does

not change includingΩΛ. In the diagramsΩ0A is therefore fixed to these best fit values.

It is worth stressing that here we are not just analysing the typical models considered

in the literature (namely I, II and III) but the results incorporateall the possible linear

couplings, and, we might say, all the possible expansions atrecent times of a generic

coupling functionQ (Eq. 2.16). Hence we are not interested in deriving constraints on

single parameters, a route that might be hard to follow with SN Ia in view the high

number of parameters and their degeneracies. We instead want to see what kind of linear

couplings are preferred by the data and provide a qualitative way to distinguish the type

and the direction of the interaction.

The first noticeable thing in the[qA, qB] diagram is that the points lie almost on a hor-

izontal branch of the diagram, close to the line representing model I, in particular with

Q ∝ ρA. So if we allow the interaction term to be strong and move out of the weak

coupling regime (i.e.|qA,B| > 1), the most “frequent” linear coupling function emerg-

ing from the chains is the one proportional to the DE density (ρA). In addition, strong

couplings are favoured for positive value ofqA (see Fig.2.11and2.12): the energy is

transferred from dark matter to DE (as a consequence of the sign in Eqs.2.14-2.15). In-

creasing the value ofwA, that is moving from phantom-like values towards quintessence-

like ones (going downwards in the right hand side column of fig. (2.11)), this horizontal

branch tends to negative values ofqB. Models with a phantomwA show an increasing
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energy density with the scale factor,a, while for a DE model characterised bywA > −1

the energy density is diluted with the universe expansion: this second kind of model re-

quires a lower transfer of energy from CDM to DE. Apart from a small spot in the origin

of the axis (weak couplings), the coupling or type II does notseem to be favoured by SN

data, the effect increasing with higher values ofwA, i.e. for non-phantom values. Another

piece of evidence that arises from diagrams Fig.2.11and2.12is that for non-phantom

values ofwA (third row in figures) the uncoupled case (namely[qA, qB] = [0, 0]) falls

almost outside the border of the likelihood.

Since todayρ0B ≃ ρ0A we can say that the sign of the coupling function (Q ≃
qAρ0A + qBρ0B) changes along the straight lineqB = −qA (long dashed line): above

this line the exchange term reverses the energy transfer from CDM to DE (i.e. positive

Q), while below it is the opposite (negativeQ). Again, the higherwA, the bigger is

the number of points that we can find below this line. Therefore for DE components

with wA < −1 an exchange of energy from DE to CDM is less probable, independently

of the type of linear coupling. This reflects the fact that an increasing energy density

(characteristic of phantom behaviour) favours more and more absorbing and positive DE

couplings at present, while non-phantom values ofwA seem to need a negative exchange

term, most of all for weak couplings, to explain supernovae data. It is worth stressing

that eventually the likelihood seems to exclude the uncoupled case.

The connection between where the points lie in the diagrams,i.e. the region favoured

by the likelihood, and where the cosmological background evolution is affine is an in-

teresting issue; this directly connects coupled DE models to an effective evolution of

the total energy density that is completely equivalent to a cosmological constant plus

a component with constant EoS parameterα, Eq. (2.25). If one looks at the left side

diagrams of Fig.2.12, a short-dashed curve and a short-dashed straight line are drawn

on it. The former corresponds to the improper affine evolution (??), obtained forq− =

±
√

−4w−(q+ + w−). Hence the only affine models are those that correspond to the

straight line for whichβ+/− = −1 (for the model withwA = −1 this coincides with

the line representing model II, the only possibility to recover the affine evolution with no

coupling). For a DE model with a phantomwA the affine evolution coexisting with a non-

zeroΩΛ is somewhat ruled out and, among the models indicated in the last Section, is

more compatible with a coupling function proportional toρA (DE, model I) and possibly

to ∆ (model III). For DE models withwA > −1 the situation is different: the data seem

to favour an affine evolution generated in models with a coupling function proportional

to ρB (matter, model I) and again model III. In addition, for DE models with standardwA
an improper affine evolution together with a non-vanishingq0 (ΩΛ) is allowed, in a region

where the coupling function shifts towards negative sign, thus representing a transfer of

energy from DE to CDM.
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Figure 2.11: Coupling diagrams with two-dimensional likelihood for models withΩΛ = 0.
Apart from the short-dashed line that represents an affine evolution with β+/− = −1, all the
other lines are labelled with the corresponding type of coupling function (e.g. the solid line on
the left side diagrams represents a coupling functionQ ∝ ρB (model I), while on the right side
diagrams it representsQ ∝ ρT (model II)). The energy density parameter at present is fixedat its
best fit value, respectivelyΩ0A = 0.63, 0.65, 0.76.

2.2.5 Conclusions

We have analysed the dynamics of two coupled dark componentsrepresented by two

barotropic perfect fluids characterised by constant EoS parameterswA andwB. We have

assumed a flat, homogeneous and isotropic cosmology and a general linear coupling be-

tween the two barotropic perfect fluids. This scale-independent coupling takes a linear

form proportional to the single energy densities plus a constant term: any coupling of this

type can approximate at late time a more general coupling function. We have studied the

stability of the system and shown that an effective cosmological constant can arise both

from the constant partq0 of the functionQ and from an effective cosmological constant-

like EoS. We have also examined the dynamics of the energy density parameters, and

evaluated the fixed points and the corresponding eigenvalues, for the most general form

of linear coupling. We have then restricted the analysis to some specific linear couplings

previously considered in the literature (model I, II, III).Since we are restricting to the

background expansion and we have modelled the coupling function as a late time first

order Taylor expansion, a comparison with distance modulusfrom SN Ia data appeared

as our natural step further. We have presented a MCMC analysis for a model with dark
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Figure 2.12: Coupling diagrams with two-dimensional likelihood for models withΩΛ = 0.7.
All the lines are labelled with the corresponding type of coupling function (e.g. the solid line on
the left side diagrams represents a coupling functionQ ∝ ρB (model I), while on the right side
diagrams it representsQ ∝ ρT (model II)). The short-dashed line represents affine evolution with
β+/− = −1 and the short-dashed curve represents affine evolution withβ+ = β− . The energy
density parameter at present is fixed at its best fit value, respectivelyΩ0A = 0.63, 0.65, 0.76.

matter plus DE using the data set provided inDavis et al.(2007). Considering two rep-

resentative specific values of the DE parameterwA, one standard (wA > −1) and the

other phantom (wA < −1), we have condensed our results in coupling diagrams, where

the points arising from the MCMC chains are drawn together with lines for model I, II

and III and for the improper affine (??) affine (2.25) evolutions, the latter including the

ΛCDM model as a subcase. Couplings proportional to the DE density seem favoured,

mostly for strong couplings|qA| > 1. The total sign of the exchange term sets the di-

rection of the interaction: models with phantomwA definitely prefer positive coupling,

i.e. an energy transfer from dark matter to DE. On the other hand, models with non-

phantomwA not only allow for negativeQ, but force the uncoupled model to fall at the

border of the likelihood. For further and stronger constraints more complementary data

are required, like CMB spectra or matter power spectra. These observables necessitate an

accurate relativistic perturbation analysis which is neither obvious nor uniquely defined

in phenomenological coupled models as those considered here. Moreover, simplified ob-

servables that make no use of perturbation analysis, like the CMB shift parameter, can be

strongly model-dependent and, although straightforward,should not be used in models
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where the evolution, even just that of the unperturbed background, detaches significantly

from that of theΛCDM model. These extended investigations can only be settled with

future work.
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2.3 Affine parameterisation of the dark sector: constraints

from WMAP5 and SDSS

In the previous section we have introduced a generic coupling between two dark com-

ponents, which may eventually account for dark matter and dark energy. We studied the

fluid dynamics and put constraints on the coupling parameters from SNe data. We also

concluded that an affine EoS model is likely to arise for a widerange of the parameters.

The affine model has been constrained byBalbi et al.(2007) using SNe, BAO and CMB

datasets. The peculiarity of this model is its parameterisation of the equation of state

(Ananda & Bruni, 2006):

pX = P0 + αρX , (2.38)

wherepX is the pressure,ρX is the energy density, andP0 andα are constant parameters;

this leads to a time dependent equation of state parameter

wX =
P0

ρX
+ α. (2.39)

An interesting property of this parameterisation is that itresults in a constant energy den-

sity term mimicking an effective cosmological constant, with ΩΛ = −P0/ [ρc(1 + α)],

plus an evolving term that can reproduce a dark matter behaviour for certain choices of

the parameterα. This allows one to either treat the affine fluid as a single unified dark

component, or to use it to model dark energy alone.

As shown inQuercellini et al.(2007), whenα is negative, this description can be seen

as the attractor solution for a quintessence scalar field dynamics. Alternatively, when

treating perturbations, a barotropic affine fluid can be interpreted as a k-essence scalar

field (naturally describing an effective cosmological constant plus dark matter), while

a scalar field with sound speedc2s = 1 acts as a dark energy component. In addition,

an affine fluid description can also be interpreted as the result of two interacting dark

components (one of them being a cold dark matter component),as we discussed in detail

in the previous section (Quercellini et al., 2008). In order to be realistic, every model must

include the perturbation theory and fit well enough the structure formation history we can

reconstruct from galaxy surveys (Abazajian et al., 2009; Cross et al., 2001; Condon et al.,

1998). The aim of this section is to complete the study performed by Balbi et al.(2007);

Quercellini et al.(2007) andQuercellini et al.(2008) by addressing the perturbations

issue in the framework of the affine EoS. Since it has been proven that several scalar field

models may lead to such EoS dynamics, we follow a more phenomenological approach,

modelling the dark sector as a perfect fluid characterised bythe EoS parameterw and the

sound speed,c2s. We consider two classes of models: one where the affine fluid describes
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a unified dark component, the other containing a cold dark matter component as well.

For each class, we also study three separate subcases, identified by the value of the speed

of sound: the barotropic case, withc2eff = α, the casec2eff = 1, and the “silent” case (Bruni

et al., 1995b,a) with c2eff = 0.

To study the properties of the model, we calculate the evolution of scalar perturbations

in the affine fluid by modifying the publicly available CAMB code, and set constraints to

the parameters of the model by performing a Monte Carlo Markov Chain analysis using

the cosmic microwave background anisotropy WMAP 5 year data(Komatsu et al., 2009)

and the large-scale matter distribution derived from the Sloan Digital Sky Survey (SDSS)

Luminous Red Galaxy (LRG) 4 year data (Tegmark et al., 2004).

2.3.1 Affine fluid model

General framework

We perform our calculations in the context of a flat, homogeneous and isotropic universe,

whose unperturbed evolution is described by the Friedman equation

H2 ≡
( ȧ
a

)2
=

8πG

3
ρ (2.40)

whereρ is the total energy density, the sum of the densities of all the components

in the universe, each of them satisfying a continuity equation that, in the case of non-

interacting components, reads

ρ̇(i) + 3H(ρ(i) + p(i)) = 0. (2.41)

According to the specific properties of each component one has different scaling be-

haviour: for example, for photons and baryonsργ ∝ a−4 andρB ∝ a−3, respectively. We

will refer to the decaying in time of the energy density as “standard” behaviour; when

the energy density grows in time, i.e. whenρ(i) + p(i) < 0 (the null energy condition is

violated), the behaviour is called “phantom” (Caldwell et al., 2003).

When treating perturbations of the background line element, we adopt the synchronous

gauge (Ma & Bertschinger, 1995). The perturbed metric then reads:

ds2 = a(τ)2(dτ 2 − (δij + hij(x, τ))dxidxj) (2.42)

whereτ is the conformal time and|hij | ≪ 1 is the metric perturbation. We then compute

the Einstein’s equations at first order from the metric givenabove and from the perturbed
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energy-momentum tensor

Tµν =
∑

i

T (i)
µν (2.43)

where the indexi runs over the components in the universe, photons, baryons,and dark

components. The perturbed energy-momentum tensor components are

T (i)0
0 = ρ

(i)
b (1 + δ(i)),

T (i)0
k = ρ

(i)
b (1 + w(i))V

(i)
k ,

T (i)j
k = (p

(i)
b + δp(i))δjk, (2.44)

whereδ(i) is the density contrast for thei component,V (i) is the velocity,w(i) is the

equation of state parameter (not necessarily constant) andthe subscriptb refers to the

background (i.e. unperturbed) quantities.

Background evolution

The basic property of the phenomenological model we consider is the affine form of the

pressure as a function of the density of the dark component, Eq. (2.38). Even if the EoS

parameter of the dark component is not constant, a simple solution for the Eq. (2.41)

exists and it is given by

ρX = ρΛ + (ρX0 − ρΛ)a
−3(1+α), α 6= −1; (2.45)

ρX = ρX0 − 3P0 ln a, α = −1. (2.46)

whereρX0 is the density of the dark component at the present time (i.e.a = 1) and

ρΛ ≡ −P0/(1 + α), with α andP0 free parameters of the model. This density evolves

in time in a way that can be either standard or phantom, depending on the particular

choice of the parameters. A full description of the background properties of such a dark

component is given inBalbi et al.(2007). Here we want to stress that, in the absence of

cold dark matter, this component should both be able to create the gravitational potential

necessary to form structures at high redshifts, and to drivethe late time acceleration of the

universe. With respect to a flatΛCDM model, we have an additional degree of freedom,

α, which is the square of the barotropic sound speed, that allows us to investigate the

effective equation of state of the clustering part of the component.

Since the perturbation equations of the dark component willbe written in terms of

its equation of state parameter, Eq. (2.39), it is interesting to explicitly consider the time

evolution ofwX .

We first comment on the caseρX0−ρΛ > 0 (Fig.2.13). In this case, ifα > −1,wX(a)

evolves from the valueα approaching the value−1; conversely, ifα < −1, it approaches
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the valueα moving away fromw = −1. In the former situation,−3(1 + α) < 0 and

the dynamical part of the affine component dominates at earlytimes. Whenα < −1,

then−3(1 + α) > 0, so that the evolving dark component increases in time, i.e.it has a

phantom behaviour, becoming dominant at late times. The slope of the curve obviously

depends onρX0, P0 andα.

Let us now consider the case whenρX0 − ρΛ < 0 (Fig. 2.14). The behaviour is

opposite to the previous case, with the phantom evolution appearing whenα > −1. In

this case there is a divergence ofw in the past, making this choice of parameters more

problematic. In this paper we will restrict the analysis only to cases withρX0 − ρΛ > 0.

Figure 2.13:Evolution of the dark component energy density (top) and equation of state pa-
rameter (bottom), for two values ofα: α = −0.01 (left) andα = −1.5 (right). In both cases,
ρX0 − ρΛ > 0: in this case,α < −1 results in a phantom regime, characterised by an energy
density which increases in time.

Fluid perturbations

Einstein’s equations in the synchronous gauge and in Fourier space give the following

system of coupled equations

δ̇(i) = −(1 + w(i))
(
θ(i) +

ḣ

2

)
+ 3H

(dp(i)
dρ(i)

− w(i)

)
δ(i), (2.47)

θ̇(i) = −H(1− 3w(i))θ −
ẇ(i)

1 + w(i)

θ(i) +
dp(i)/dρ(i)
1 + w(i)

k2δ(i), (2.48)

where we definedikV(i) ≡ θ(i).

A pure barotropic fluid with a negative EoS parameter has imaginary adiabatic sound

speed that causes a runaway growth of perturbations. Not only does this have unpleasant
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Figure 2.14:Evolution of the dark component energy density (top) and equation of state pa-
rameter (bottom): for two values ofα: α = −0.01 (left) andα = −1.5 (right). In both cases,
ρX0 − ρΛ < 0: in this case,α > −1 results in a phantom regime, characterised by an energy
density which increases in time.

consequences for structure formation, but it also creates an instability in the set of coupled

perturbation equations (2.47), (2.48). A viable way to overcome this inconvenience is to

allow for entropy perturbations in the dark component, assuming that the effective speed

of sound, the sum of the adiabatic and entropic one, is positive or null. We follow the

formalism developed in the context of generalised dark matter (Hu, 1998), where

c2X,eff ≡
δpX
δρX

= c2X,ad +
wX
δX,rest

ΓX , (2.49)

c2X,ad ≡ ṗX
ρ̇X

= α. (2.50)

HereΓX is a constant parameter we will not use since we prefer to specify the more

fundamental quantityc2eff; δX,rest is the density contrast in the rest frame of the dark

component, defined as

δX,rest = δX + 3
ȧ

a

θX
k2

. (2.51)

The fact that, in our fluid description, the effective speed of sound is a free parameter

not tied to the behaviour of equation of state parameterwX , allows us to evade the tight

constraints on unified dark matter models pointed out inSandvik et al.(2004) and arising

from the runaway growth of perturbations.

To perform numerical predictions for the evolution of perturbations, we modified

the publicly available code CAMB5 adding a new component whose perturbations are

5http://camb.info/
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described by the following equations in the synchronous gauge:

δ̇X = −(1 + wX)(θX +
ḣ

2
)− 3

ȧ

a
(c2X,eff − α)δX,rest

+
ẇ

(1 + w)
δX , (2.52)

θ̇X = − ȧ
a
θX +

c2X,eff

(1 + w)
k2δX,rest. (2.53)

We adopt adiabatic initial conditions for the dark component (Doran et al., 2003; Amen-

dola, 2004). We first investigate the constraints coming from the CMB anisotropy power

spectrum on a single dark component governed by an affine equation of state. As we al-

ready mentioned, this can account for both dark matter with anon-vanishing EoS param-

eter and a cosmological constant; we label this unified modelasαDM model. The affine

component can also be employed as a pure dark energy component, if standard CDM

is present. We denominate this model asαCDM model. In addition to comparing our

CMB anisotropy predictions with actual data from the WMAP 5 year observations, we

improve our results by adding the SDSS dataset in order to remove degeneracies among

parameters. In fact,α affects the CMB angular power spectrum in two ways: it shifts

the peak position by modifying the Universe evolution through the Hubble rate, and, as

barotropic sound speed, it influences the relative amplitude of the peaks, by changing

the balance between the pressure and gravitational forces (according to its sign). These

effects occur mainly before decoupling, when photons feel the gravitational potential

through the interaction with baryons. It is by measuring thematter power spectrum at

much lower redshift, which we can indeed improved the constraints on the sound speed,

since even a tiny negative or positive sound speed is clearlyvisible as a rapidly increasing

or decreasing matter power spectrum. This effect is shown inFigg.2.16and2.17.

In the next section we discuss the results obtained for bothαDM andαCDM models.

2.3.2 Results

Methods

We performed a full analysis of the two classes of models arising from an affine equa-

tion of state (i.e. theαDM andαCDM models) using the Monte Carlo Markov Chain

(MCMC) approach implemented in a modified version of the public CosmoMC software6

(Lewis & Bridle, 2002). We span the parameter space defined by the baryon density,

Ωbh
2, the cold dark matter density,Ωch2, the current expansion rate of the universe,H0,

6http://cosmologist.info/cosmomc/
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the reionization optical depth,τ , the spectral indexns and the normalisation amplitude

As that parametrise the primordial curvature fluctuation power spectrum

P (k) = As(k/k0)
ns. (2.54)

This results in a galaxy power spectrumPg(k) = b2L9/25P (k), wherebL is the galaxy

bias set constant and the factor9/25 comes form the relation between density and curva-

ture fluctuations. The affine dark component is characterised by the two parametersΩΛ

(defined, as usual, as8πGρΛ/3H2
0 ) andα. Its effective sound speed squared has been

fixed to three different values, namely 0, 1 andα, in order to consider the three pos-

sible clustering possibilities, namely cold dark matter-like behaviour, scalar field limit

and barotropic fluid. We assumed a flat universe and set a Gaussian prior on the Hub-

ble parameter with mean value and standard deviation consistent with the Hubble Space

Telescope Key Project,72 ± 8 km/sec/Mpc (Freedman et al., 2001). SeeRiess et al.

(2009) for a recent Hubble constant measure.

We computed the likelihood function of the data using the public code provided by

WMAP team7 that includes both the temperature and the polarisation CMBpower spec-

trum (the main effect of the latter being a tighter constraint on the optical depthτ ).

Even if at the background level theαDM model is equivalent to a dark matter with

non-vanishing EoS parameter plus a cosmological constant,there are differences at the

perturbation level; moreover, the difference is conceptual, since theαDM model treats

the dark sector as a whole, and can even be the result of interacting dark components

(Quercellini et al., 2008).

αDM Models

In this section we investigate the properties of a single dark component described by an

affine equation of state. The parameters of this model are(Ωbh
2, θ, τ, ln 1010As,ΩΛ, α).

We expect the model with sound speedc2eff = 1 to be ruled out by the current cosmo-

logical datasets: a quintessence scalar field able to drive the late time acceleration of

the universe expansion prevents structure formation (Quercellini et al., 2007). We tested

our pipeline in the limit of standardΛCDM model, i.e. for the choiceα = 0, obtaining

results that are in excellent agreement with the 5-year WMAPrelease (Komatsu et al.,

2009; Dunkley et al., 2009). In the following we describe the results obtained for the

three sub-classes of models we analysed.

7http://lambda.gsfc.nasa.gov/product/map/dr2/likelihoodget.cfm



68 CHAPTER 2. THE DARK ENERGY PROBLEM

αDM - c2eff = α We investigated the barotropic model, namely the one withc2eff =

c2ad = α, which does not require any assumption concerning entropy perturbations. As

we mentioned earlier, this model has an equivalent description in terms of a k-essence

scalar field. Our findings are shown in Fig.2.15.
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Figure 2.15:αDM - c
2
eff = α: Parameter likelihoods computed for theαDM model under the

assumption of barotropic fluid, i.e. a fluid that fulfils the relation c2eff = α. The left panel is CMB
alone, the right panel is CMB combined with the matter power spectrum. When the matter power
spectrum is taken into account the constraints on the equation of state parameter are much tighter.
The other parameters are fully consistent with the results of 5 years WMAP release.

With this choice of the sound speed we tested the equation of state of dark matter.

Our best fit model from the 5 year WMAP CMB data hasα = (8±11)×10−4 andΩΛ =

0.76 ± 0.04: we confirm that an almost pressureless component is the mostlikely one.

Since we know that the effect of a non-vanishing sound speed is to strongly modify the

clustering properties, we investigated the constraints which the matter power spectrum

data put on this specific model. As expected, the constraint onα shrinks to|α| . 10−7, in

excellent agreement with what found inMuller (2005). ForΩΛ we findΩΛ = 0.73±0.02.

In Figs.2.16and2.17the effect of even such a tiny barotropic EoS parameter is shown.

αDM - c2eff = 0 The parameter likelihoods for the case ofc2eff = 0 are shown in Fig.2.18.

The main difference with respect to the barotropic model is aweaker constraint onα, due

to the presence of a vanishing effective sound speed that cancels the pressure term in the

perturbation equations, guaranteeing the clustering properties of the dark component.
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Figure 2.16:Matter power spectrum dependence onα. The black solid line is the matter power
spectrum computed forα = 0, i.e. for the concordanceΛCDM model. The dashed curve is for
the valueα = −1× 10−6; the dot-dashed curve is forα = 1× 10−6. The perturbation instability
is clear when a negative EoS parameter is chosen.

Figure 2.17:To further illustrate the point, for the barotropicαDM model we plot against real
data the power spectra for values ofα at2σ from the best fit. It is clear that the data constrain the
value ofα in two ways: 1) the theoretical curve has to fit the overall shape of the data distribution;
2) the data points at smaller scales pin down the value of|α|, constraining it to be small enough to
i) give a small enough Jeans scaleλJ for α > 0, such that enough power is produced forλ > λJ ,
and ii) for α < 0, to produce an explosive growth of perturbations only at small enough scales,
again such that above the Jeans length, where gravity dominates against the pressure effects, the
spectrum is undisturbed. It is clear from the figure that the second effect is dominant, in that it is
extremely sensitive to the value ofα.

We getα = (−1.5 ± 3) × 10−3 andΩΛ = 0.70 ± 0.09. When the matter power spec-

trum is considered, the limit on the square of the barotropicsound speedα shrinks to

(−2 ± 2)× 10−3 at 1σ level, andΩΛ = 0.69± 0.05.
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Figure 2.18:αDM - c
2
eff = 0: Parameter likelihoods for theαDM model with sound speed

c2eff = 0. The left panel is for CMB alone, the right panel is for CMB combined with the matter
power spectrum. The barotropic sound speed squaredα is still consistent with0, but the con-
straints are weaker than in the case of a pure barotropic fluid. The other parameters do not change
significantly with respect to the concordance model.

αDM - c2eff = 1 For completeness, we also performed the analysis in the weakly clus-

tering limit, described byc2eff = 1; as expected, the model fails completely in fitting the

observational data. A fluid with a luminal speed of sound prevents the clustering at scales

even close to the horizon (Quercellini et al., 2007).

αCDM Models

In what follows we present the results we obtained for theαCDM model, i.e. when we

consider a flat universe filled with baryons, cold dark matterand a dark energy component

described by the affine equation of state Eq. (2.38). The choice can help to distinguish

the cosmological constant from a more general dynamical field. In this framework the

most natural value for the speed of sound isc2eff = 1: with this choice, our fluid descrip-

tion represents well the attractor dynamics of a quintessence scalar field, whenα < 0

Quercellini et al.(2007).

αCDM - c2eff = 1 In Fig. 2.19we show the results for theαCDM model withc2eff = 1.

Also this case, as the previous one, has an equivalent description in terms of a scalar

field, but with a standard kinetic term. The main effect of dark energy is to modify

the low multipoles region of the CMB power spectrum, unfortunately the one where

high cosmic variance prevents a precise determination of the cosmological parameters.
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Even worse, the model suffers from intrinsic degeneracies.At zeroth order, i.e. in the

background, 1) ifα ∼ 0 the dynamical part of the affine component behaves like dark

matter, while, 2) ifα ∼ −1 it can replace the cosmological constant. Since we fixed the

speed of sound equal to1, the first degeneracy is not present because dark matter and

the affine component are different at the perturbation level. We are left with the second

degeneracy, that is clearly visible in the flat likelihood for ΩΛ and the broad likelihood for

α. We obtain a rather loose constraint onα, i.e.α = −1.2± 0.4, whileΩΛ = 0.5± 0.2.

When we add the matter power spectrum, theΩΛ − α degeneracy is partially removed.

The result is a slightly tighter constraint onα, which isα = −1.1 ± 0.2.
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Figure 2.19:αCDM - c2eff = 1: Parameter likelihoods computed for theαCDM model when the
sound speed is fixed toc2eff = 1. The left panel is CMB alone, the right panel is CMB combined
with the matter power spectrum. The almost flat likelihood for ΩΛ together with the broad one
for α reflect the degeneracies of the model. Adding matter power spectrum data helps to break
this degeneracy since it forcesΩch2 to be of the order of0.11 andα ∼ −1. However,ΩΛ remains
essentially unconstrained.

αCDM - c2eff = 0 The results are only marginally affected by the value of the sound

speed of the dark component (fig.2.20), since the CMB is basically insensitive to the

sound speed of dark energy. We findα = −1.1 ± 0.4 andΩΛ = 0.5 ± 0.2. When the

matter power spectrum is included in the analysis these change toα = −1.0 ± 0.3 and

ΩΛ = 0.3± 0.2
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Figure 2.20:αCDM - c
2
eff = 0: Parameter likelihoods for theαCDM model when the sound

speed is fixed toc2eff = 0. The left panel is from CMB alone, the right panel is from CMB
combined with the matter power spectrum. The results are very close to those obtained in the
case of sound speed equal to 1.

αCDM - c2eff = α When the dark component is forced to be barotropic the only de-

generacy we are left with is the first degeneracy mentioned above, sinceα ∼ 0. The

result isΩΛ = 0.76± 0.03 while Ωc andα are badly constrained (α = (6 ± 9)× 10−3):

a lower value ofΩc can be balanced by the dynamical part of the affine component.

When the matter power spectrum is added we obtain a slightly tighter constraint onΩΛ

(ΩΛ = 0.74 ± 0.02), whileΩc is determined by the shape of the spectrum. This implies

actually a broad likelihood for the parameterα, since the coefficient(ρX0−ρΛ) ≃ 0. We

obtainα = (1.9± 1.4)× 10−2. The figure2.21summarises the results described above.

2.3.3 Conclusions

We studied the effect of an affine EoS fluid model applied to thedark sector, both as a

unified description of dark matter and an effective cosmological constant, and as a pure

dark energy component. Our model makes use of a dynamical parameterisation relating

p andρ, as opposed to the usual kinematics description of the EoS parameter in terms of

its current value and its first derivative. In a previous paper Balbi et al.(2007) we carried

out a comparison of the background evolution of this model with existing cosmological

observations. In the present work, we focused on the behaviour of cosmological pertur-

bations, and compared the theoretical predictions with theCMB WMAP 5 year data, and

with the SDSS large scale structure data.
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Table 2.2:Best fit parameter values forαDM.
models/params ΛCDM + αDM - bar αDM - c2eff = 0

SNe & BAO (WMAP5) CMB MPS CMB MPS
Ωbh

2 0.02265± 0.00059 0.0223± 0.0007 0.0223± 0.0006 0.0224± 0.0006 0.0224± 0.0003
Ωch

2 0.1143± 0.0034 - - - -
H0 70.1± 1.3 75± 5 71± 2 69± 6 67± 4
τ 0.084± 0.016 0.090± 0.018 0.083± 0.016 0.086± 0.017 0.085± 0.017
ns 0.960± 0.014 0.99± 0.03 0.960± 0.014 0.959± 0.015 0.957± 0.014

log(1010As)|k=0.002 3.20± 0.08 3.10± 0.08 3.19± 0.04 3.19± 0.05 3.19± 0.04
ΩΛ 0.721± 0.015 0.76± 0.04 0.73± 0.02 0.70± 0.09 0.69± 0.05
α - (8± 11)× 10−4 (0.2± 4)× 10−7 (−1.5± 3)× 10−3 (−2± 2)× 10−3
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Table 2.3:Best fit parameter values forαCDM.
models/params αCDM - bar αCDM - c2eff = 0 αCDM - c2eff = 1

CMB MPS CMB MPS CMB MPS
Ωbh

2 0.0224± 0.0007 0.0220± 0.0007 0.0223± 0.0006 0.0224± 0.0006 0.0224± 0.0006 0.0224± 0.0006
Ωch

2 0.07± 0.03 0.106± 0.004 0.109± 0.006 0.107± 0.006 0.109± 0.006 0.107± 0.006
H0 74± 4 72± 2 71± 6 73± 3 73± 5 74± 3
τ 0.087± 0.017 0.083± 0.017 0.085± 0.018 0.088± 0.017 0.086± 0.016 0.085± 0.018
ns 0.975± 0.019 0.964± 0.015 0.962± 0.014 0.964± 0.014 0.963± 0.014 0.963± 0.015

log(1010As)|k=0.002 3.15± 0.06 3.19± 0.05 3.18± 0.05 3.17± 0.04 3.18± 0.05 3.17± 0.05
ΩΛ 0.76± 0.03 0.74± 0.02 0.5± 0.2 0.3± 0.2 0.5± 0.2 0.2± 0.2
α (6± 9)× 10−3 (1.9± 1.4)× 10−2 −1.1± 0.4 −1.0 ± 0.3 −1.2± 0.4 −1.1± 0.2
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Figure 2.21:αCDM - c
2
eff = α: CMB alone, left panel, and CMB combined with MPS, right

panel, likelihoods for the pure barotropicαCDM model (c2eff = α). The CMB alone likelihoods
show the degeneracy betweenΩch2 andΩΛ, beingα close to 1. Adding the matter power spec-
trum Ωch

2 andΩΛ are better constrained, but we lost any information onα (this is because we
assume a flat universe).

As a first result, we obtained much tighter constraints on theparameters of the model

with respect to the analysis carried out the background observables inBalbi et al.(2007),

confirming that perturbations should be properly included in the calculations when de-

veloping effective models for the dark sectorValiviita et al. (2008).

In the case when the fluid is treated as a unified dark component, we get values of the

effective cosmological constantΩΛ ≃ 0.7, essentially independent of the speed of sound.

For the equation of state parameterα, the constraints vary when the fluid is treated as

barotropic (resulting in a slightly positiveα) or a vanishing speed of sound is assumed

(resulting in a slightly negativeα). Both cases are however compatible withα = 0 at one

sigma confidence level. The inclusion of the matter power spectrum in the analysis has

generally the effect of shrinking the confidence interval onthe parameters, in particular

in the barotropic case, due to the effect ofα on the Jeans length of the perturbations

Quercellini et al.(2007).

When standard dark matter is included, the effects ofα on the clustering process is

less relevant, because the matter-like component of the unified fluid is forced to mimic

the cosmological constant behaviour. This is apparent fromthe fact that theα best fit

value moves toα ∼ −1 which is typical of a cosmological constant. The constraints

in the barotropic case remain quite tight, but get larger when the sound speed is set to

zero. We also considered the case with a sound of speed equal to unity, which describes

a scalar field behaviour. Also in this case the constraints onα are rather loose.
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It is important to remember that these results are achieved within the context of a

constant speed of sound. This represents a strong constraint and it is the main reason why

we obtained nearly pressure-less components. We need a vanishing sound speed during

the structure formation epoch. An extension of this scenario is attempted inPiattella et al.

(2010) where time-dependent sound speed models are discussed.

Conclusions

In this chapter we have discussed in detail some issues related to the dark energy prob-

lem. Dark energy is a new component of the Universe, surprisingly the largest one, which

theorists have introduced to explain the late time acceleration of the Universe expansion.

The evidence for such behaviour is now compelling. We found further evidence for dark

energy by measuring the ISW effect cross-correlating CMB and LSS datasets at a high

confidence level. Although there are no significant evidences of departures from the

simplest kind of dark energy, i. e. a cosmological constant,it is tempting to explore

other scenarios, with more complicated models, since this can help to solve the coinci-

dence problem and possible candidates can be found in fundamental particle theories.

We discussed an example involving two coupled scalar fields and constrained the model

parameters using several observables. Nonetheless the nature of the dark energy remains

a mystery and more accurate experiments are required when trying to rule out models.



Chapter 3

Statistical Toolbox: Needlets Frame

...reality is not external.

Reality exists in the human mind,

and nowhere else.

Not in the individual mind,

which can make mistakes,

and in any case soon perishes:...

(“Nineteen Eighty-Four”, G. Orwell)

Cosmic microwave background radiation represents a fundamental tool to probe the

Universe and test our theories. Its analysis is naturally performed both in real space,

where we measure the temperature anisotropies and it is easier to deal with the partial sky

coverage and the experimental noise, and in the harmonic domain, where beam treatment

and cosmological parameters estimation are more effective. Both spaces have advantages

and disadvantages. In this chapter we introduce a new wavelet basis on the sphere, more

properly a frame, calledneedlets, which combines the virtues of the two spaces on which

the temperature anisotropies decomposition is particularly fruitful.

Astronomical data generally give rise to complex hierarchical structures, eventually

described as fractals, which require a multi-scale investigation. The wavelet transform

represents then a very useful tool to CMB and astrophysical data analysis in general, since

it provides a frequency decomposition of the field, keeping trace of the local features in

pixel space where the field is defined. For this reason wavelets perform very well in

constraining statistical properties of a given field (such as isotropy and Gaussianity), as

well as its morphology; moreover they can be used for reconstruction algorithms such

asshrinkageor thresholding. See for exampleWiaux et al.(2005); Anestis(2007) and

references therein.

77
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Over the last few years, wavelets have emerged as one of the most powerful tools

of CMB data analysis, finding applications in virtually all areas where statistical meth-

ods are required; a very incomplete list of references should include testing for non-

Gaussianity (seeVielva et al.(2004); Cabella et al.(2004)), foreground subtraction (Hansen

et al.(2006)), point source detection (Sanz et al.(2006)), component separation (Moud-

den et al.(2005); Starck et al.(2006)), polarisation analysis (Cabella et al.(2007)), de-

noising (Sanz et al., 1999) and many others. The reason for such a strong interest is

easily understood. As it is well-known, CMB models are best analysed in the frequency

domain, where the behaviour at different multipoles can be investigated separately; on the

other hand, partial sky coverage and other missing observations make the evaluation of

exact spherical harmonic transforms troublesome. The combination of these two features

makes the time-frequency localisation properties of wavelets most valuable.

In Sec.3.1we introduce the needlets formalism, while in Sec.3.2we discuss in detail

their properties, comparing them with other filter constructions. In Sec.3.3 we develop

the estimators we will use in the following analysis, and finally we conclude presenting

the numerical implementation we adopt.

3.1 Operative Definition of a Spherical Needlets Frame

Despite the wide agreement on their importance as a data analysis instrument, the deriva-

tion of a wavelets basis on the sphere is still an open issue for research. Many efforts

have been undertaken in this area, most of them being based upon the so-called tan-

gent plane approach (Antoine & Vandergheynst, 1999). In this framework, a flat sky

approximation is entertained locally, and then some form ofstandard plane wavelets are

implemented. Directional wavelets have been advocated byMcEwen et al.(2006, 2007),

again by means of a tangent plane approximation. An interesting attempt to overcome

the tangent plane approximation is due toSanz et al.(2006). A detailed study of the

wavelets construction in terms of group theory is discussedin Wiaux et al.(2007, 2008).

A new approach to spherical wavelets was introduced in the statistical literature by

Baldi et al.(2006), adapting tools proposed in the functional analysis literature byNar-

cowich et al.(2006); the first application to CMB data is due toPietrobon et al.(2006),

where needlets are used to estimate (cross-)angular power spectra in order to search for

dark energy imprints on the correlation between large scalestructures and CMB (Sachs

& Wolfe, 1967). A detailed description of the results obtained are discussed in Sec.2.1.

Guilloux et al.(2007) investigates the effect of different window functions in needlets

constructions; whereasBaldi et al.(2007) provides further mathematical results on their

behaviour for partially observed sky-maps. Needlets applications have been applied to
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angular power spectrum estimation in the presence of noise (Fay et al., 2008; Faÿ &

Guilloux, 2008), estimation of the bispectrum (Lan & Marinucci, 2008b) applied to the

WMAP 5-year data release byPietrobon et al.(2009) andRudjord et al.(2009a) to con-

strain the primordial non-Gaussianity parameter (see Sec.4.2). The bispectrum formal-

ism has been further exploited byPietrobon et al.(2009) and Rudjord et al.(2009b)

who addressed the sky asymmetry issue within the three-point correlation function (see

Sec.4.3) and the primordial non-Gaussianity parameter. Foreground component separa-

tion has been studied byDelabrouille et al.(2009), while analysis of directional data are

described inBaldi et al.(2008). Recently, the needlet formalism has been extended to

the polarisation field, as discussed byGeller & Marinucci(2008); Geller et al.(2008) and

Geller et al.(2009).

Needlets enjoy several features which are not in general granted by other spherical

wavelets construction; we anticipate some of these features, which we shall investigate

more deeply in the Sections to come. More precisely:

a) they do not rely on any tangent plane approximation (compare Sanz et al. 2006),

and take advantage of the manifold structure of the sphere;

b) being defined in harmonic space, they are computationallyvery convenient, and

natively adapted to standard packages such as HEALPix1 (Górski et al., 2005);

c) they allow for a simple reconstruction formula (see Eq.3.5), where the same

needlets functions appear both in the direct and the inversetransform (see also

Kerkyacharian et al.(2007)). This property is the same as for spherical harmonics

but it is not shared by other wavelets systems such as the well-known Spherical

Mexican Hat Wavelet (hereafter SMHW);

d) they are quasi-exponentially (i.e. faster than any polynomial) concentrated in pixel

space, see Eq.3.6below;

e) they are exactly localised on a finite number of multipoles; the width of this support

is explicitly known and can be specified as an input parameter(see Eq.3.1);

f) random needlets coefficients can be shown to be asymptotically uncorrelated (and

hence, in the Gaussian case, independent) at any fixed angular distance, when the

frequency increases. This capital property can be exploited in several statistical

procedures, as it allows us to treat needlets coefficients asa sample of independent

and identically distributed coefficients on small scales, at least under the Gaussian-

ity assumption.

1http://healpix.jpl.nasa.gov
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The following discussion can be found inMarinucci et al.(2008) and Pietrobon

(2009) where a numerical code is provided. Complementary mathematical analyses can

be found inGeller & Mayeli (2007); Lan & Marinucci(2008a) andMayeli (2008).

We start by outlining briefly the construction of a needlets basis. More details can be

found inNarcowich et al.(2006), and inBaldi et al.(2006). We shall discuss the details

of the construction step by step, in order to provide to potential users a clear recipe for

needlets implementation.

We first recall that the spherical needlet (function) is defined as

ψjk(γ̂) =
√
λjk
∑

ℓ

b(
ℓ

Bj
)

ℓ∑

m=−ℓ
Y ℓm(γ̂)Yℓm(ξjk); (3.1)

whereγ and ξjk are directions on the sphere,Yℓm is a spherical harmonic function,

with Y ℓm identifying its complex conjugate, andb(x) is a filter function defined for

x ∈ [1/B,B], which the entire needlet construction relies on. Here, we use{ξjk} to

denote a set ofcubature pointson the sphere, corresponding to frequencyj; in practice,

we shall identify these points with the pixel centres in HEALPix. Also, λjk denotes

the cubature weights, which for simplicity can be envisagedas1/Np, Np denoting the

number of pixels for the chosenHEALPix resolution (seePietrobon et al.(2006) and

Sec.2.1).

Figure 3.1:Needlets in pixel space.B = 2, j = 8



3.1. SPHERICAL NEEDLETS FRAME 81

Intuitively, needlets should be viewed as a convolution of the projection operator
∑ℓ

m=−ℓ Y ℓm(γ̂)Yℓm(ξjk) with a suitably chosen window functionb(.). Special properties

of b(.) ensure that the needlets enjoy quasi-exponential localisation properties in pixel

space. Formally, we must ensure that (Narcowich et al., 2006; Baldi et al., 2006):

• b2(.) has support in[ 1
B
, B], and henceb( ℓ

Bj ) has support inℓ ∈ [Bj−1, Bj+1]

• the functionb(.) is infinitely differentiable in(0,∞).

• we have ∞∑

j=1

b2(
ℓ

Bj
) ≡ 1 for all ℓ > B. (3.2)

It is immediate to see that property (i) ensures the needletshave bounded support in

the harmonic domain; property (ii) is the crucial element inthe derivation of the local-

isation properties, which we shall illustrate in the following section. Finally, property

(iii) is necessary to establish the reconstruction formulawhich we shall discuss below;

functions such asb2(.) are calledpartitions of unity.

There are of course many possible constructions satisfying(i-iii); indeed an interest-

ing theme for future research is the derivation of optimal windows satisfying these three

conditions (compareGuilloux et al. 2007). We expect, however, that the choice ofb(.)

will only exert second-order effects on the final estimates (Lan & Marinucci, 2008a). An

explicit recipe for the construction ofb(.) is as follows.

1. Construct the function

f(t) =

{
exp(− 1

1−t2 ) , −1 ≤ t ≤ 1

0, otherwise
.

It is immediate to check that the functionf(.) is C∞ and compactly supported in

the interval(−1, 1)

2. Construct the function

ψ(u) =

∫ u
−1
f(t)dt

∫ 1

−1
f(t)dt

.

The functionψ(.) is againC∞; it is moreover non-decreasing and normalised so

thatψ(−1) = 0 , ψ(1) = 1
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3. Construct the function

ϕ(t) =





1 if 0 ≤ t ≤ 1
B

ψ(1− 2B
B−1

(t− 1
B
)) if 1

B
≤ t ≤ 1

0 if t > 1

Here we are simply implementing a change of variable so that the resulting function

ϕ(.) is constant on(0, B−1) and monotonically decreasing to zero in the interval

(B−1, 1). Indeed it can be checked that

1− 2B

B − 1
(t− 1

B
) =

{
1 for t = 1

B

−1 for t = 1

and

ϕ(
1

B
) = ψ(1) = 1

ϕ(1) = ψ(−1) = 0

4. Construct

b2(ξ) = ϕ(
ξ

B
)− ϕ(ξ)

The expression forb2(.) is meant to ensure that the function satisfies the partition-

of-unity property of Eq.3.2. Needless to say, forb(ξ) =
{
ϕ( ξ

B
)− ϕ(ξ)

}1/2
we

take the positive root.

In Fig. 3.2we show the set of filter functions inℓ space for the choiceB = 2. They

result in a homogeneous binning inlog ℓ.
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Figure 3.2:Filter function inℓ-space which the needlet construction relies on. Set computed for
B = 2.

Needlets coefficients for an arbitrary temperature field on the sky are hence given by

βjk =

∫

S2

T (x)ψjk(x)dx

=

∫

S2

{ ∞∑

ℓ=1

ℓ∑

m=−ℓ
aℓmYℓm(x)

}
ψjk(x)dx

=

∫

S2

∞∑

ℓ=1

ℓ∑

m=−ℓ
aℓmYℓm(x)×

×





[Bj+1]∑

ℓ′=[Bj−1]

b

(
ℓ′

Bj

) ℓ′∑

m′=−ℓ′
Y l′m′(x)Yℓ′m′(ξjk)




dx

=

[Bj+1]∑

ℓ′=[Bj−1]

b

(
ℓ′

Bj

) ∞∑

ℓ=1

ℓ∑

m=−ℓ
aℓm ×

×
ℓ′∑

m′=−ℓ′
Y ℓ′m′(ξjk)

{∫

S2

Yℓm(x)Y ℓ′m′(x)dx

}

=

[Bj+1]∑

ℓ=[Bj−1]

b

(
ℓ

Bj

) l∑

m=−ℓ
aℓmYℓm(ξjk) ; (3.3)
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It is very important to stress that, although the needlets donot make up an orthonor-

mal basis for square integrable functions on the sphere, they do represent atight frame.

In general, a tight frame on the sphere is a countable set of functions{ej} such that, for

all square integrable functions on the spheref ∈ L2(S2), we have

∑

j

〈f, ej〉2 ≡
∫

S2

f(γ̂)2dΩ,

so that the norm is preserved. Of course, this norm-preserving property is shared by all

orthonormal systems; however, frames do not in general makeup a basis, as they admit

redundant elements. They can be viewed as the closer system to a basis, for a given

redundancy, seeHernández & Weiss(1996), Baldi et al.(2006) andBaldi et al.(2007)

for further definitions and discussion.

In our framework, the norm-preserving property becomes

∑

j,k

β2
jk ≡

∞∑

ℓ=1

2ℓ+ 1

4π
Ĉℓ , (3.4)

where

Ĉℓ =
4π

2ℓ+ 1

∑

m

|aℓm|2

is the raw angular power spectrum of the mapT (γ̂). Identity3.4has indeed been verified

by means of numerical simulations and implicitly provides the correct normalisation for

needlets. It is basically a consequence of the peculiar partition-of-unity property ofb(·)
(Eq. 3.2). Of course this property is not generally shared by other constructions such as

SMHW, where the wavelets functions are normalised to unity in the real domain. Eq.3.4

is related to a much more fundamental result, i.e. the reconstruction formula

T (γ̂) ≡
∑

j,k

βjkψjk(γ̂) (3.5)

which in turn is a non-trivial consequence of the careful construction leading to Eq.3.2.

As mentioned before, the simple reconstruction formula of Eq. 3.5 is typical of tight

frames but does not hold in general for other wavelets systems. It is easy to envisage

many possible applications of this result when handling masked data and we hence view

Eq.3.5as a clear advantage of the needlets over their competitors.
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3.2 Localisation properties

The following quasi-exponential localisation property ofneedlets is due toNarcowich

et al.(2006) and motivates their name:

For anyM = 1, 2, ... there exists a positive constantcM such that for any pointx ∈ S2

we have

|ψjk(γ̂)| ≤
cMB

j

(1 +Bj arccos(< x, ξjk >)M
. (3.6)

We recall thatarccos(< x, ξjk >) is just the natural distance on the unit sphere between

the points(x, ξjk). The meaning of Eq.3.6 is then clear: for any fixed angular distance,

the value ofψjk(γ̂) goes to zero quasi-exponentially in the parameterB. This clearly

establishes an excellent localisation behaviour in pixel space. Note that the constantscM
do depend on the form of the weight functionb(·), and in particular on the value of the

bandwidth parameterB; typically a better localisation in multipole space (i.e.,a value of

B very close to unity) will entail a larger value ofcM , that is, less concentration in pixel

space for any fixedj. The resulting trade-off in the behaviour over the harmonicand real

spaces is expected: smaller values ofB correspond to a tighter localisation in harmonic

space (less multipoles entering into any needlet), whereaslarger values ensure a faster

decay in real space.

Due to their localisation properties, needlets are especially useful in the analysis of

partial sky coverage. In fact, in view of Eq.3.6 we expect the value of needlets co-

efficients to be mildly affected by the presence of gaps in themaps. To illustrate this

important feature, we plot the quantity

χjk =
< (βjk,mask − βjk)

2 >

< β2
jk >

(3.7)

in Fig. 3.3, where the Kp0 mask2, that is used to remove Galactic emission and point

sources from WMAP data (roughly75% of the sky), is applied. The expected values of

Eq. 3.7 are again evaluated by means of 100 Monte Carlo simulations;in particular we

focus on needlets coefficients corresponding toB = 2.72 andj = 5, which amounts to a

range in multipoles space in the order of58 < ℓ < 398. To put our results in perspective,

in the same Figure we show analogous findings with the use of a top-hat binning filter

and SMHW. We recall the SMHW formula

Ψ(y, R) =
1√

2πN(R)

[
1 +

(y
2

)2]2
·
[
2−

( y
R

)2]
exp (−y2/2R2)

2See LAMBDA website, http://lambda.gsfc.nasa.gov/
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wherey = 2 tan θ/2 (θ is the polar angle),R is the scale of convolution andN(R) a nor-

malisation factor (Martı́nez-González et al., 2002). Under these circumstances, needlets

Figure 3.3: Effect of Kp0 on needlets coefficients, visualised by plotting on a sky map the
quantity defined in Eq.3.7. From top to bottom, the result for needlets, flat binning, and SMHW
(28arcmin).

coefficients are well localised, but slightly sensitive to the mask. Indeed, only56% of

the pixel are changed by less than0.1; SMHW coefficients perform a bit better (73%)

while a simple top-hat binning fails completely (only6%). The difference between the

two wavelets bases can be due to the different power that theygive to multipoles (see

fig. 3.5). In fact the performance of needlets can be improved choosing the appropriate

Bj , that defines the optimal shape for the windowb(·), given the multipoles range of

interest. For details seeGuilloux et al.(2007). In the same paper, the authors argue that

an optimal filter can be adapted to deconvolve a specific mask:this property provides a

further degree of flexibility to the needlets toolbox.
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In Baldi et al.(2006), another relevant property of needlets coefficients was discussed,

namely their asymptotic uncorrelation at any fixed angular distance, for growing frequen-

ciesj. More explicitly, at high frequency needlets coefficients can be approximated as

a sample of identically distributed and independent (underGaussianity) coefficients, and

this property opens the way to a huge toolbox of statistical procedures for CMB data

analysis (for instance, for testing Gaussianity, Sec.4.3 and isotropy, Sec.4.1). Also, in

view of Eq.3.3, for full sky maps and in the absence of any mask we should expect the

theoretical correlation to be identically zero whenever|j1 − j2| ≥ 2.

The probabilistic properties of the coefficientsβjk have been established inBaldi

et al.(2007); in that paper, it is shown that for any two (sequence of) pixelsξjk, ξjk′ such

that their angular distance is larger than a positiveε, for all j, we have

〈βjkβjk′〉√
〈β2

jk〉〈β2
jk′〉

≤ cM
(sjε)M−1

for all M = 1, 2, 3, . . . (3.8)

thus proving wavelets coefficients are asymptotically uncorrelated asj → ∞ for any

fixed angular distance; Eq.3.8is clearly a probabilistic counterpart of Eq.3.6. To the best

of our knowledge, this is the first example of such kind of results for any type of spherical

wavelets: asymptotic uncorrelation (i.e. independence inthe Gaussian case) simplifies

enormously any statistical inference procedure. In particular, Eq.3.8 is used inBaldi

et al. (2007) to derive analytically the asymptotic behaviour of a number of procedures

based on needlets, including tests on angular power spectraor tests for Gaussianity and

isotropy.

In order to test this property, let us define the realized correlation between two differ-

ent scalesj1, j2 as

ρj1j2 =

∑
k〈βj1kβj2k〉√∑

k〈β2
j1k

〉
∑

k〈β2
j2k

〉
. (3.9)

By using Eq.3.3one has that:

〈βj1kβj2k〉 =
∑

ℓ

b(ℓ/Bj1) b(ℓ/Bj2)Cℓ
∑

m

Kℓℓmm (3.10)

(3.11)

whereCℓ is the underlying CMB angular power spectrum and the coupling kernelKℓℓ′mm′

is defined in terms of the observed maskW (γ̂) (see e.g.Hivon et al.(2002)):

Kℓℓ′mm′ =

∫

S2

Yℓm(γ̂)Yℓ′m′(γ̂)W (γ̂)dΩ

Note that, in the absence of gaps (i.e.W (γ̂) = 1),
∑

mKℓℓmm reduces simply to(2ℓ+1).
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Table 3.1:Needlets correlation parameter.B = 2.72 without gaps

j/j′ 1 2 3 4 5

1 1.000 0.275 0.001 0.001 0.003
2 - 1.000 0.248 0.001 0.001
3 - - 1.000 0.268 0.001
4 - - - 1.000 0.242
5 - - - - 1.000

Table 3.2:Needlets correlation parameter.B = 2.72 with gaps

j/j′ 1 2 3 4 5

1 1.000 0.420 0.140 0.040 0.060
2 - 1.000 0.335 0.023 0.001
3 - - 1.000 0.291 0.004
4 - - - 1.000 0.252
5 - - - - 1.000

Equation3.9can not be expected to be reproduced exactly, due to numerical approx-

imations; in particular, we should stress that theoreticalresults are derived under the

assumption that needlets coefficients are evaluated atexactcubature points, so that the

{alm} are precisely reconstructed from the maps. Of course, this is not the case in prac-

tice; however, we do expect small and vanishing values forj1 ≪ j2. At the same time, we

expect this correlation to increase on the presence of sky cuts, but less so than for other

bases. Here, we want to illustrate the practical relevance of this mathematical results by

means of simulations on the correlation coefficient. More precisely, we computed the

quantity3.9by performing a Monte Carlo over100 simulations. Our findings are shown

in Tables3.1, 3.2.

We view these results as very encouraging. In the absence of amask, the correla-

tion coefficient is by any practical means virtually negligible for all frequency distances

greater or equal than 2, while at distance∆j = 1 the correlation is around∼ 0.25 in good

agreement with Eq.3.9which predicts0.22 for our input parameters. In the presence of

sky cuts, the performance deteriorates as expected only at low j where it exceeds a few

percentage points, as shown for our simulations in the case of the Kp0 mask. A computa-

tion analogous to3.9yields for SMHW the theoretical results reported in Table3.3; note

how we have no-zero values at all distances. Numerical results to support the theoreti-

cal findings are provided by Tables3.4, 3.5. We believe these compared results strongly
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Table 3.3:Theoretical correlation for Needlets and SMHW

corr/∆j 0 1 2 3 4

Needlets 1.000 0.220 0.000 0.000 0.000
SMHW 1.000 0.500 0.100 0.014 0.002

Table 3.4:SMHW correlation parameter without gaps. The scaleR is given in arcmin.

R/R′ 1792 896 448 224 112 56 28

1792 1.000 0.503 0.109 0.016 0.002 0.0002 0.00003
896 - 1.000 0.500 0.099 0.014 0.002 0.0002
448 - - 1.000 0.510 0.103 0.014 0.002
224 - - - 1.000 0.511 0.104 0.014
112 - - - - 1.000 0.513 0.107
56 - - - - - 1.000 0.519
28 - - - - - - 1.000

support the potential of needlets for the implementations of statistical procedures, where

uncorrelation properties are clearly a very valuable asset.

As a further comparison, we evaluated the domains in harmonic and real spaces for

needlets, top-hat binning and SMHW. In particular we normalised the three bases to have

roughly an equal area in the harmonic domain, paying attention to have the maximum of

the power in a similar range of multipoles. Results are plotted in Fig.3.5, 3.6. It is ev-

ident how SMHW and needlets outperform top-hat binning by two orders of magnitude

in terms of localisation in real space: indeed in this domainthe two wavelets construc-

tions perform quite similarly. Moreover, in Fig.3.8, we computed the angle where the

integral of the filter functions in pixel space reaches68%, 95% and 99% of the total

Table 3.5:SMHW correlation parameter with gaps. The scaleR is given in arcmin.

R/R′ 1792 896 448 224 112 56 28

1792 1.000 0.496 0.113 0.022 0.005 0.002 0.0007
896 - 1.000 0.520 0.115 0.021 0.005 0.002
448 - - 1.000 0.523 0.114 0.021 0.005
224 - - - 1.000 0.520 0.114 0.020
112 - - - - 1.000 0.522 0.116
56 - - - - - 1.000 0.527
28 - - - - - - 1.000
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Figure 3.4:The correlation for needlets (top panels) and SMHW (bottom panels) is plotted as
a function of the scale, in absence (left panels) and in presence (right panel) of sky cuts (Kp0
mask).

area, respectively. Again, it is immediate to check how at every scale needlets outper-

form very clearly a simple binning approach; on the other hand, SMHW seems slightly

more concentrated in this setting. The linear trend for needlets in the log-log plot is a

direct consequence of their construction, and in particular of the functional dependence

on ℓ/Bj.

On the other hand the advantage of needlets over SMHW emergesquite clearly in

the harmonic domain. More precisely, after normalising thetwo methods to be centred

at the same angular scale, with roughly the same total power,the needlets support seems

clearly more concentrated than SMHW. In particular we stress how SMHW suffer from

“leakage” by the very low multipoles, i.e. exactly those most affected by sky cuts and

cosmic variance. No such leakage occurs for needlets.

3.3 Building Needlets Estimators: 2- and 3- point corre-

lation functions

In the previous sections we have introduced the spherical needlets frame, and discussed

its properties which we tested by means of simulations. We also compared needlets to

alternative binning choices (top-hat, SMHW) concluding that there is a wide number of
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Figure 3.5:The red solid line represents needlets window function,b( ℓ
Bj ) in harmonic space for

B = 2.72, j = 5. The blue dashed and green dot-dashed lines provide the top-hat and the SMHW
window functions, respectively. The SMHW corresponds to a scaleR = 28′ in pixel space.

applications in CMB data analysis where needlets perform extremely well. We now want

to describe the statistical techniques which lay behind CMBdata analysis achievable with

needlets. We will discuss specific problems and the results we obtained in more details

in the following chapters (see Chap.2 Sec.2.1and Chap.4).

The needlet coefficients of a fieldT (γ̂) defined on the sphere are given by the projec-

tion of the field itself on the corresponding needletψjk(γ̂), as stated by Eq.3.3:

βjk =
√
λjk
∑

ℓ

b
( ℓ
Bj

) ℓ∑

m=−ℓ
aℓmYℓm(ξjk)

whereaℓms are the spherical harmonics expansion coefficients. In Fig. 3.9 we show the

needlet coefficients of WMAP 5-year temperature map for the specific choiceB = 2

and j = 4. A remarkable aspect of this construction is that the needlet coefficients

can be represented easily as a mollweide projection in theHEALPix framework. This

makes dealing with needlets particularly handy, since it iseasy to encode a needlets

analysis usingHEALPix routines (Pietrobon, 2009). We assumeXj = {ξjk}k=1,2,...,

to be the pixelization of the unit sphereS2 provided byHEALPix , with Nside such that

lmax ≡ [Bj+1] ≤ 2Nside (with [·] denoting the integer part andB > 1). We then computed

the βjk coefficients for eachk position given by theHEALPix scheme evaluating the

projection operators, namely the product of
∑

ℓℓ′ YℓmY ell′m′ for each pair of pixelsξjk,

by means of theHEALPix software package.
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Figure 3.6:Behaviour of needlets (solid red), SMHW (dot-dashed green)and top-hat binning
(blue dashed) in pixel space. The angle in horizontal axis ismeasured in radians.

Figure 3.7:Here in this figure we provide details of the behaviour in pixel space over the relevant
range, i.e. the region where the three functions exceed0.001. Lines have the same meaning as in
the previous figures.

(Cross-) Power Spectrum

Having extracted the needlets coefficientsβjk from a map (e. g. the CMB or source

count map), we can use Eq.3.4 to build a (cross-)correlation estimator in wavelet space,
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Figure 3.8:The three lines represent the angle at which the area of needlet, in red, or the top-hat,
in blue, filter reaches the99%, 95%, 68% of the total area as a function of the peak multipole in
each window function. The latter corresponds directly to a given j for needlets and to the scaleR
for SMHW; for the top-hat window the centralℓ in the band is given.

βj , as:

βIJ
j ≡

∑

k

1

Npix(j)
βI
jkβ

J

jk (3.12)

whereNpix(j) is the number of pixels in the pixelization scheme (given byNpix =

12N2
side) with I and J denoting the two chosen maps. The theoretical prediction forβj

can be computed from the expectedCIJ
l as:

βIJ
j =

∑

ℓ

(2ℓ+ 1)

4π

[
b

(
ℓ

Bj

)]2
CIJ
ℓ (3.13)

where we recallCIJ
ℓ ≡ 〈aIℓmaJ∗ℓm〉 =

∑
m

4π
2ℓ+1

aIℓma
J∗
ℓm.

βj provides then an unbiased estimator for the (cross-) angular power spectrum within

the needlets framework. The analytic relation betweenβj andCℓ underlines a few more

advantages in using needlets with respect to other waveletsconstructions. Indeed this

can be used as a check for the simulations and theHEALPix implementation we gave,

and it makes extremely easy and straightforward dealing with beam profiles and experi-

mental window functions, which have to be taken into accountwhen analysing real data

(seePietrobon et al.(2006) and Sec.2.1). The duality which needlets embed, namely

the localisation both in pixel and harmonic domain, allows us to handle the noise too
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Figure 3.9:Needlet coefficients of the combined Q, V, W map at the resolution j = 4. TheB
parameter is fixed to2. Notice the anomalous bright spots found byPietrobon et al.(2008) are
clearly visible.

(see Sec.4.2, Sec.4.3 andPietrobon et al.(2009) andPietrobon et al.(2009) for direct

applications toWMAP 5-year data.)

Computing the 4-point correlation function for theaℓm, it can be easily shown that the

analytical expression for the dispersion of the estimated cross-correlation power spectrum

in needlet space is:

∆βIJ
j =

(
∑

ℓ

(2ℓ+ 1)

16π2

[
b

(
ℓ

Bj

)]4 ((
CIJ
ℓ

)2
+ CI

ℓC
J
ℓ

))1/2

(3.14)

which, of course, must be only taken as an approximation whendealing with real data,

when the window functions, noise and partial sky coverage have to taken into proper

account.

It is important to stress that Eq.3.12generalises for a any pair ofj1 j2 into

βj1j2 =
1

Npix

∑

k

βj1kβj2k, (3.15)

which describes the needlets coefficients covariance and ithas been used inPietrobon

et al.(2008) to determine the degree of anomaly of the few hot and cold spots found in

the CMB temperature map (see Sec.4.1).

We have shown that the needlets formalism may be suitable forthe angular power

spectrum estimation and therefore the parameters estimation. In particular the applica-

tion of needlets to theWMAP 3-year data led to interesting constraints on the dynamics
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of dark energy (see Sec.2.1andPietrobon et al.(2006)) and to the measure of the differ-

ence in power between the two estimates of the power spectrumcomputed on the north

and south CMB skies (Pietrobon et al., 2008). A detailed discussion on the needlets

application to power spectrum can be found inFay et al.(2008).

Needlets Bispectrum

In the previous section we described how needlets can naturally be applied to the esti-

mation of the 2-point correlation function and how, thanks to the reconstruction formula

(Eqs.3.2and3.4), it relates to the usual angular power spectrum. It is easy to extend the

formalism to the higher order correlation functions.

In this section we focus on the 3-point correlation function, more often called bispec-

trum, which plays a crucial role in CMB data analysis to detect any departure from the

Gaussian assumption, pointing towards new physics of inflation. We will discuss widely

this topic in Chap.4.We next briefly review the properties of the needlet bispectrum and

how it relates to the usual bispectrum. An extensive discussion is provided inLan &

Marinucci(2008b); Rudjord et al.(2009a). See alsoPietrobon et al.(2009).

The needlet estimator is defined as follows:

Sj1j2j3 =
1

Npix

∑

k

βj1kβj2kβj3k (3.16)

=
∑

ℓ1ℓ2ℓ3

b
(j1)
ℓ1
b
(j2)
ℓ2
b
(j3)
ℓ3

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

×
(
ℓ1 ℓ2 ℓ3

0 0 0

)
B̂ℓ1ℓ2ℓ3

where

B̂ℓ1ℓ2ℓ3 ≡ 〈aℓ1m1aℓ2m2aℓ3m3〉 =
∑

m

aℓ1m1aℓ2m2aℓ3m3 (3.17)

is the estimated bispectrum, averaged overmis. Sj1j2j3 can be seen as abinned bispec-

trum, a smooth and combined component of the angular bispectrum.

The bispectrum is supposed to be vanishing for a Gaussian distribution. The standard

inflation mechanism (Guth, 1981; Sato, 1981; Linde, 1982; Albrecht & Steinhardt, 1982)

predicts a tiny non-Gaussianity in the cosmological perturbations: this is why a great

effort has been spent to measure a bispectrum amplitude different from zero in the CMB

data which would provide an extraordinary handle on the early universe physics (Smith

et al., 2009; Curto et al., 2008; Komatsu et al., 2009; De Troia et al., 2007). This kind

of study is usually performed in terms of the non-linear parameterfNL (see for example

(Komatsu & Spergel, 2001; Bartolo et al., 2004)). A more detailed discussion will be
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provided in Chap.4. Here we want to introduce that the bispectrum allows a richer

analysis: by splitting for example equilateral and isosceles configurations it is possible to

distinguish two kinds of non-Gaussianity, equilateral andlocal respectively, according to

the triangle shapes which they affect (Creminelli et al., 2006).

We will use largely this feature in Sec.4.3where we address the bispectrum asymme-

tries. For the purpose of this section it is enough to define the quantities we are interested

in. The bispectrum can be divided into four classes based on their geometries: equilateral

(equi) configurations have three equalj values, isosceles configurations (iso) have two

legs equal (e.g.j1 = j2 6= j3), while scalene configurations (scal) have three different

legs. Finally we also consideropenconfigurations, for whichj1, j2 andj3 do not form a

triangle (e.g.j1 > j2+j3); naively these might be expected to be zero, but since eachj in-

cludes a range ofℓ values, these could include signals arising fromℓ1, ℓ2 andℓ3 which just

satisfy the triangle relations. Thus open configurations correspond to the most co-linear

geometries. In principle, since the analytic relation betweenj andℓ is given for eachB,

it would be possible to select the non-vanishing configurations only. However, keeping

them represents a strong consistency check of our numericalimplementation. The link

between the angular scaleℓ and the needlet resolution must be kept in mind for all the

configurations; e.g., while the equilateralj-configurations will be dominated by triangles

roughly equilateral inℓ, they will also have contributions from other geometries. Sepa-

rating the needlet bispectrum by the above described configurations may provide insight

into the physical origin of possible anomalies. For instance Ackerman et al.(2007) and

Erickcek et al.(2008) suggest early Universe models which could produce a statistically

anisotropic CMB sky.

Before discussing some needlets applications in CMB data analysis, it is important to

recall that the skewness of the needlets coefficients can be computed via Eq.3.16as

Sj =
1

Npix

∑

k

β3
jk

σ3
j

. (3.18)

One of the key properties of a needlets frame is that the sum ofthe squared filter functions

in harmonic space,bℓj, is 1 (see Eq.3.2). This means that, even if we group multipoles

and each needlet peaks at a certain multipole range, the total power is conserved: this

property is peculiar to the needlets and it is not shared by other wavelet constructions.

Therefore, in the case of full sky maps, the needlets power spectrum analysis can be in

principle performed with any choice of the parameterB, with the total power conserved,

and only the correlation and localisation properties affected by different width ofbℓj .

Obviously when dealing with real data, this is not completely true due to the presence of

the beam, noise and sky cuts.
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This does not hold any more when the the cubic power of the filter functions con-

tributes to the estimator used, which is indeed the case of the skewness expression and

more generally of the bispectrum one. This fact is displayedin Fig. 3.10, where we plot

the sum of square and cube of the filters functions. The not uniform sampling of the

multipoles for a n-power estimator suggests that the choiceof the B parameter is crucial

for the analysis and must be driven by insight on the range of multipoles to be probed.

Figure 3.10:Solid line sum of theb2ℓ ; dot-dashed line sum of theb3ℓ . While the former is equal
to 1 for the entire range of multipole, the latter is not.

3.4 The Numerical Implementation of Needlets

We have released a public numerical code, which computes theneedlets filter functions

in harmonic space and the needlets coefficients, given a set of parameters. The code

implements the construction described in this chapter and is based on the public avail-

ableHEALPix package3 (Górski et al., 2005), which is required for the installation. The

needlets software is composed by two programs, “syneed” and “ananeed”, which, fol-

lowing theHEALPix structure, respectively deconvolves a given map to obtain aneedlets

frame decomposition, and reconstructs the original map, ifa needlets basis is given as

input.

Both programs accept the same parsing file in which the fundamental parameters are

provided by the user. A list of such parameters is given in Tab. 3.6. The maximum

3http://healpix.jpl.nasa.gov/



98 CHAPTER 3. STATISTICAL TOOLBOX: NEEDLETS FRAME

Table 3.6:Parameters required by the codes “syneed” and “ananeed”.
Parameter Test value

ℓmax 250
B 2.0

computeneedlets T
mapfile input/testilc RING 512.fits

mapnside 512
maskfile input/wmap5kq75 maskRING 512.fits
bl2 root testbl2

needroot !testneedlet
factor 1

number of multipoles (ℓmax) and theB parameter are required. Those given, the codes

computes the maximumj necessary to keep all the information in the map. TheNside

of the needlets coefficients is then determined according tothe relationℓmax ≤ 2Nside.

The filter functionsbℓj are computed by default, while it is possible to choose whether

to perform the needlets coefficients, which actually is the most time consuming part, by

setting the keyword “computeneedlets”. It is necessary then to specify the map and its

resolution. A sky mask can be applied filling the “maskfile” variable. The last two key-

words set the output files. It is possible to re-scale the map by setting “factor” different

from 1.

The code currently accepts “RING” ordering only.

All the analysis described in this chapter and in the following ones has been per-

formed by using this software.

Conclusions

In this chapter we have introduced and studied in detail a novel wavelet construction,

called needlets, which distinguishes from the others mainly because it is has a finite sup-

port in harmonic domain. This translates to a sharp localisation in pixel space, shared by

other wavelets renditions, and to excellent properties of non-correlation among the func-

tions of the set. This aspect is crucial when building estimators for CMB data analysis

as we discussed extensively. Needlets result then in a very promising tool for the next

generation of cosmological experiments; waiting for the future data releases, we applied

the formalism we developed to the WMAP dataset and a large scale structure surveys,

namely NVSS, as we discussed in the previous chapter. We willexploit further needlet

application in the following chapter, focusing on the isotropy and Gaussianity issues.



Chapter 4

Non-Gaussianity in the CMB Sky: a

WMAP 5-year data analysis

Sometimes, after long absence, you return to a place

which has painful associations,

and this can be an unpredictable experience.

You have certain expectations:

that a particular street, or room, or café,

once visited, will inspire a particular feeling,

and you are surprised when it fails to do so.

(“A touch of love”, J. Coe)

In this chapter we discuss the non-Gaussianity of cosmological perturbations from

different and complementary points of view. As discussed inthe introduction, nearly

Gaussian fluctuations are a general prediction of a broad class of early Universe models.

A detailed study of the statistical properties of the cosmological fluctuations is necessary

to discriminate between several plausible models and get aninsight to the physics which

drives the first stages of the Universe evolution. Focusing first on the CMB tempera-

ture map on large scales, we find anomalous spots barely compatible with the Gaussian

hypothesis and describe their impact on the CMB power spectrum, Sec.4.1.

Then we address the primordial non-Gaussianity issue focusing on the bispectrum

analysis. We constrain the primordial non-Gaussianity parameterfNL in Sec.4.2 while

Sec.4.3is devoted to the study of the bispectrum itself and its asymmetries.

Finally we perform an analysis of the impact of the foreground residuals in the CMB

maps which may dilute thefNL signal (Sec.4.4). The application of needlets is the

rationale behind these complementary studies.

99
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4.1 Needlet Detection of Features in WMAP CMB Sky

and the Impact on Anisotropies and Hemispherical

Asymmetries

Beyond the angular power spectrum of the cosmic microwave background (CMB) anisotropies,

the high sensitivity all-sky CMB maps produced by the Wilkinson Microwave Anisotropy

Probe (WMAP)1 (Hinshaw et al., 2009) have enabled detailed statistical studies to extract

higher-order information. These studies include characterisation of asymmetries in the

CMB sky (Groeneboom & Eriksen, 2009a) and the search for anomalous features in the

anisotropy field. Previous analyses have shown evidences for alignments (Copi et al.,

2007), asymmetry in the CMB statistics between northern and southern Galactic hemi-

spheres (Eriksen et al., 2007), and features such as the “cold spot”, a significant negative

feature in the CMB map first identified with wavelets (Cruz et al., 2005).

In this section, we make use of needlets to further study features in the WMAP CMB

maps. We focus on the large angular scales or equivalently, on multipoles smaller than

200. We recover the cold spot that was previously detected inWMAP data with wavelets,

and we also detect other features, including two hot spots, that have so far received less

attention. By masking these features, we study how the angular power spectrum of CMB

anisotropies is modified. Given that these features are located in the southern hemisphere,

we also discuss the extent to which these features could be responsible for the north-south

asymmetry in WMAP dataLew (2008); Groeneboom & Eriksen(2009a); Hansen et al.

(2004). As well-known, this asymmetry has also drawn much interest in the theoretical

community, since it could entail strong implications on thephysical nature of primordial

perturbations, including inflationErickcek et al.(2008). By masking the low-ℓ features,

we find that the difference in the CMB anisotropy variance between the two hemispheres

is reduced by a factor 2, reducing the significance of previous detections.

We finally explore the evidence that statistically significant bumps and dips in the

CMB anisotropy power spectrum at multipoles of 20 and 40 could be related to features

in the CMB sky. We did not locate any particular feature in thesky that dominates the

power spectrum at these multipoles; masking the significantfeatures detected by needlets

tuned to these multipoles did not change the power spectrum more than∼5%.

4.1.1 Maps

We decomposed the Internal Linear Combination (ILC) WMAP 5-year temperature map

by means of needlet functions corresponding toB = 1.8. The choice ofB must be driven

1http://lambda.gsfc.nasa.gov/product/map/current/
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by the insight on the range of multipoles to be probed: this specific choice provides us

needlets at eleven frequenciesj, which span properly the low multipoles we are interested

in. Eight frequencies span multipoles up toℓ = 200, while the information at smallest

scales is concentrated on just three frequencies. The rangeof multipoles covered by each

needlet is given by the relationℓ ∈ [Bj−1, Bj+1] and it is summarised in Tab.4.1.

Three clarifying examples of the WMAP 5-year ILC map decomposition onj = 3,

j = 4 andj = 5 needlets by making use of the functionsbℓ depicted in Figure4.1 are

shown in Fig.4.3.

Figure 4.1: Left: Profile of the functionb(x) in ℓ-space for the choiceB = 1.8. The black
solid line representsj = 4, the red dot-dashed linej = 3 and the blue dot-long-dashed line
j = 5. Right: needlets on the sphere forj = 4. At each cubature point,ξjk, the needlet is sharply
localised.

j ℓ-range

1 2
2 2-5
3 4-10
4 6-18
5 11-33
6 20-60
7 35-108
8 63-196
9 113-352
10 203-635
11 365-1143

Table 4.1:Range of multipoles spanned by needlets forB = 1.8.

We first applied our procedure to the WMAP map with the extended mask KQ75

from the WMAP team. Such a large mask, however, entails a greater correlation for

multipoles corresponding to large angular scales; for low values ofj, this could poten-

tially impact the needlets coefficients as well. Any detection of significant features in
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the CMB anisotropy map using the large mask, however, can be reconfirmed at a higher

significance level with a smaller mask. After studying the temperature map using KQ75,

we repeated all the analysis applying KQ85, which is the mask currently favoured for

cosmological data analysis, including power spectrum measurements. We find that our

results related to statistically significant features on the WMAP map are fully consistent

in the two cases.

Hot/Cold spot maps

In Figure4.3, we represent the needlet coefficients for the cases ofj = 3 to j = 5. These

three frequencies are particularly interesting since theyprobe the low-multipole region,

highlighting a peculiar pattern of anisotropies in the southern hemisphere. Whenj = 4,

we recognise two spots, one hotter and one colder than the average CMB fluctuations.

While the latter is a detection of the so-calledcold spot, a feature studied in detail in the

literature as a source of non-Gaussianity in the CMB map (Vielva et al., 2004; Larson &

Wandelt, 2004; Cruz et al., 2005; Vielva et al., 2007; Cruz et al., 2007, 2008; Smith &

Huterer, 2008), the hot spot has not had the same scrutiny with only a minor description

in Naselsky et al.(2007) andVielva et al.(2007).

In fact, thej = 3 andj = 5 needlet coefficients represent a cross-validation of the ex-

isting literature, as they also highlight a second hot spot centred at(gl = 173, gb = −46)

(as pointed out inNaselsky et al.(2007)) and a minor cold spot centred at(gl = 80, gb =

−33) (observed inVielva et al.(2007)), that actually appears with an adjacent hot spot. In

figure4.2 the three spots we will use in the angular power spectrum analysis are shown.

We stress that our identification follows uniform criteria with the same technique, quite

differently from some of the existing literature. Moreover, as explained above we are

also able to identify exactly the range of multipoles where these features contribute to the

angular power spectrum of CMB anisotropies, due to the specific needlet properties. To

establish the significance of the features we detected, we consider a Monte-Carlo analy-

sis by performing a large set simulations (1,000) of a Gaussian CMB sky with the same

angular power spectrum as the WMAP 5-year best-fit cosmological parameters (Komatsu

et al., 2009); we then compute the average and the standard deviation of the distribution

for each needlet coefficient. The expected distribution is Gaussian with zero mean, ( see

Baldi et al.(2006)), in good agreement with our simulations. We focus on the statistic

Sjk =
|βjk− < βjk > |

σβjk
. (4.1)

whereσβjk is the usual standard deviation of the distribution. In Figure 4.3, we show

that the hot and cold spots exceed three sigma level atj = 4. The cold spot appears
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Figure 4.2:Detail of the spots. From the left, the cold spot at(gl = 209, gb = −57), the hot
spot at(gl = 320, gb = −34) present atj = 4, and the second hot one at(gl = 173, gb = −46)
measure atj = 3. The true colours are altered by the use of the masks we employed in the
analysis to highlight the region above three sigma level.

Property / Spots Cold Spot Hot Spot Hot Spot

(gl, gb) (209,−57) (320,−34) (173,−46)
j 4 4 3

Smaxjk (−)3.72 3.56 3.24

Table 4.2:Main properties of the spots highlighted in our analysis.

significantly both in the needlet coefficients forj = 4 andj = 5, and thus its impact

can be reckoned to span the range betweenℓ = 6 andℓ = 33 (Table 1). In Table4.2 the

significance values of the three anomalous spots are quoted.

It may be suspected that the hot spot we located could be a spurious effect due to

oscillations in the needlet function. See Fig.4.1, right panel. We considered this expla-

nation, but we concluded that the angular distance at which the hot and cold spot appear

is greater than the needlet oscillation range.

As a test for the joint significance of needlet coefficients, we consider the statistic

Γjj
′

k =
βjk βj′k− < βjk βj′k >

Σjj
′

k

(4.2)

whereΣjj
′

k is the second moment of the distribution. Of course, the statistical distribu-

tion of Γ cannot be taken as Gaussian. Hence, to analyse its statistical significance we

used again a set of Monte Carlo simulations with the underlyingΛCDM best fit model
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Figure 4.3:Needlet coefficients of the WMAP 5-year CMB temperature map.On the left, from
top j = 3, j = 4 andj = 5 are plotted. The set of needlets is characterised byB = 1.8. Each
pixel represents the coefficient for the needlet function computed atξjk, wherek identifies the
pixel in the Healpix ordering. The effect of the applied KQ75 mask is clearly visible, setting
to zero the value of each pixel that belongs to the mask. It is interesting to notice that needlet
coefficients highlight the presence of the well known cold spot in the Southern hemisphere, as
well as a hot spot localised in the Southern hemisphere closer to the mask. Needlet coefficients
for j = 5 show the cold spot pretty well, while the hot spot is weaker. Another couple of hot-cold
spots appear above the Galactic plane. On the right, from thetop, significance of the needlet
coefficients forj = 3, j = 4 andj = 5. The three maps show the significanceSjk above the
threshold of3. This allows us to localise inℓ-space the contribution of the hot spot that results to
be in the range of multipoles betweenℓ = 6 andℓ = 18. Computing the coefficients forj = 6
and observing that the cold spot, if present, does not have a high statistical significance, we can
deduce the range of multipoles covered by the cold spot: betweenℓ = 6 andℓ = 33.
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Figure 4.4: Γ statistics forj = 3 and j = 4 (left-hand side) and withj = 4 and j = 5,
(right-hand side). Both the cold spot and the hot spot are clearly visible in the maps, but when a
threshold ofΓjj

′

k > 7.5 is applied their signal is strong only on thej = 4 – j = 5 maps.

(Komatsu et al., 2009) and derive the statistics described in Eq.4.2. Figure4.4shows the

values ofΓjj′ for the pairj = 3 andj′ = 4, upper panels, and forj = 4 andj′ = 5,

lower panels. Results are expressed directly in terms of thestatistic defined in Eq.4.2 in

the upper panels; in the lower panels a threshold of7.5 for Γjj
′

k is adopted to underline

the fact that the hot and cold spots identified by the maskj = 4 are the most significant.

III.B North-South Asymmetry

We now wish to investigate the extent to which masking the previously found features

affects the asymmetry between the northern and the southernhemisphere of the CMB

sky. To see this, we recall that inBaldi et al.(2006); Pietrobon et al.(2006); Marinucci

et al.(2008) it is shown that

〈∑

k

β2
jk

〉
=
∑

ℓ

(2ℓ+ 1)

4π
b2
( ℓ

Bj

)
Cℓ

whenceβj ≡ ∑
k β

2
jk is an unbiased estimator for the weighted angular power spec-

trum (see Sec.3.3). In Baldi et al.(2006), Section 7 it is also shown that this statistic is

approximately Gaussian (after centring and normalisation) at high frequencies, see also
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Delabrouille et al.(2009); Faÿ & Guilloux (2008) for extensions and related work. De-

veloping this idea, we computed here the total power in each hemisphere by taking the

sum of squares of the needlet coefficients atj = 3 andj = 4 extracted from the masked

ILC temperature map

C3,4 =
4∑

j=3

∑

k

β2
jk =

4∑

j=3

βj. (4.3)

We label the mask associated with thej = 3 andj = 4 features we found as “j3j4”, and

we include it in addition to standard WMAP masks.

The difference is measured by computing

D ≡ 1

V

(
CS

3,4 − CN
3,4

)
, (4.4)

whereC i
3,4, i = S,N is the quantity in Eq.4.3, where the needlet coefficients are re-

stricted to either the northern or the southern hemisphere (in the Galactic coordinate

system), normalised to the varianceV of the whole sky. The latter actually turn out to

be the cosmic variance of the CMB power spectrum binned withb2ℓ,34. In some sense,

D is measuring the difference between two local versions of the power spectrum estima-

tor; such local estimators can indeed be rigorously justified, in view of the uncorrelation

properties of needlets in pixel space (seeBaldi et al.(2007)). In practice, we defined the

pixels in the northern hemisphere as those outside the mask characterised byθ < π/2

and pixels in the southern hemisphere as those outside the mask, withθ > π/2.

In Fig.4.5we plotβj as defined in Eq.4.3extracted from the whole sky as well those

measured in each hemisphere, both including the spots and masking them. The southern

hemisphere shows an excess of power compared to the northernone that is reduced by a

factor 2 when the “j3j4” mask is applied. Notice that, as expected, the power measured in

the north region is not affected by the masking procedure. Inthe lower panel of Fig.4.5

we quantify this effect computing the differenceβSj − βNj , normalised to the variance of

the estimator. The results are summarised in Tab.4.3. Our findings are sensitive to the

chosen sky-cut: when the KQ85 mask is used, the asymmetry, measured in terms of a

difference in the variance of power, decreases from4.26 without thej3j4 needlet mask

to 1.97 with needlet mask. When the more aggressive mask KQ75 is applied to CMB

data (together with thej3j4 mask), the difference is larger and the global asymmetry is

further reduced: from4.37 to 2.0. Note that the north-south power variance difference

with just the WMAP team’s masks, KQ75 and KQ85, is rather small (4.26 vs. 4.37); this

suggests that the hemispherical asymmetry cannot be explained by simply extending the

galactic plane mask. With thej3j4 mask we introduced (which cuts roughly 0.5% of the

sky), we find a significant reduction of a factor 2.
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Figure 4.5:In the left panelβj extracted from WMAP data when different sky cuts are applied
are shown. The black solid line shows the signal for the wholeCMB sky (kq85 is applied). The
blue and red dashed lines show how the power is split between the two hemispheres. When the
cold and hot spots detected are masked the excess of power in the southern region is decreased
(light blue and orange dot-dashed lines). In the right panelthe significance of the differenceD is
plotted.

Mask C3,4 CN
3,4 CS

3,4 D

kq85 766 556 974 4.26
kq85+j3j4 673 544 802 1.97

kq75 703 502 908 4.37
kq75+j3j4 655 492 728 2.0

Table 4.3:We report the values of total power (Eq.4.3) carried by needlets atj = 3 andj = 4
extracted on the ILC map. Four cases, corresponding to the different masks we applied in this
analysis. The last column reports the significanceD as defined in Eq.4.4. It is interesting to
notice how masking the hot and cold spots reduces the asymmetry by a factor greater than two,
being thej3j4 mask the0.5% of the sky only.

Given that we mask a smaller area on the sky than the 10% difference between KQ85

and KQ75, it seems rather likely that the hemispherical asymmetry can be credited to

features in the southern hemisphere. While we have localised (some of) these features,

this does not establish by itself whether the asymmetry is primordial or associated with

fluctuations in our local universe. There exist already several extended studies on the

nature of the cold spot (Masina & Notari(2009); Sakai & Inoue(2008); Granett et al.

(2008); Cembranos et al.(2008); Génova-Santos et al.(2008); Cruz et al.(2008); Hansen

et al.(2007)); for further statistical studies we make publicly available thej3j4 mask.

III.C Further statistical analysis

As a further statistical cross-check, we chose randomly needlet coefficients at different

locations on the map and fit their distribution to the one derived from 1000 simulations

where the KQ85 mask was applied. The simulated results are in excellent agreement
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Figure 4.6:From left to right, distribution of the needlet coefficient for j = 3, j = 4 andj = 5.
The blue (on the left-hand side) and red (on the right-hand side) vertical lines mark the values of
the cold and hot spot respectively. They are both well beyondthree sigma level forj = 4. At
j = 3 the significance is basically zero, while atj = 5 only the cold spot is still visible.

Figure 4.7:Distribution ofΓ statistic for(j, j′) = (3, 4) (left) and(j, j′) = (4, 5) (right). The
two vertical lines mark the values of the hot and cold spot, being the latter the more significant.
As expected, this is non-Gaussian, and is characterised by large non-Gaussian tails.

with a zero-mean Gaussian distribution, as shown in Figure4.6. This result is of course

expected, as the needlet coefficients are a linear functional of the underlying temperature

map. However, we report the figure as a further check to ensurethat the procedure we

followed to compute the significance of the spots is well justified.

We followed the same procedure also to quantify the significance ofΓjj
′

k . Of course,

in this case simulations are indeed necessary, becauseΓjj
′

k is a non-linear statistic and

hence non-Gaussian. In Figure4.7 we provide some evidence on the significance of

the statistics we measured in the regions where the anomalous spots are located. The

curve is the fit to the distribution of needlet coefficients insimulated maps, while the

vertical lines mark the value measured in the WMAP temperature needlet coefficients.

The simulated distribution has rather large tails; the statistical significance ofΓjj
′

k at the

locations corresponding to the spots is nevertheless rather high, with an estimated p-

value of0.5% for the cold spot and of1.65% for the hot spot. We can still confirm that

the signal is mostly peaked in the correlation betweenj = 4 andj = 5.
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Figure 4.8:Joint KQ85 and hot/cold spots mask applied to the WMAP ILC temperature map.

4.1.2 Impact on the CMB power spectrum

The purpose of this section is to investigate the extent to which masking the hot and

cold regions we found affects the CMB power spectrum (Masina & Notari, 2009). To

address this issue, we first estimate the angular power spectrum from the ILC WMAP 5

year map after applying the KQ85 mask. We then compare this result with the angular

power spectrum resulting from a wider mask: the sum of KQ85 plus the regions above

three sigma level we discovered when performing our temperature analysis. We report in

Figure4.8the resulting mask.

The effect of the different masking is not negligible, reaching the value of12% at low

multipoles. To check against systematics, we performed a Monte Carlo simulation of 200

CMB maps with the underlying WMAP 5 year best fit model (Komatsu et al., 2009), in

order to estimate the mean effect of the joint mask. We computed the average and the

standard deviation to quantify the hot/cold spots effect. The results are shown in Figure

4.9.

Quite remarkably, the region where the signal is stronger isexactly the one where

the cold spot is localised. This may be interpreted as a confirmation of the localisation

properties of needlets in pixel and harmonic spaces. We believe the use of the ILC map is

justified here, because our signal peaks at low multipoles; however for completeness we

computed the same quantity from both the W and V bands of WMAP 5year, as well as
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Figure 4.9:Effect on the angular power spectrum due to the subtraction of the hot and cold spots
in the CMB temperature map. The red solid line shows the difference in theCℓ, the gray dashed-
dotted line represents the average modification of the simulation, while the solid lines mark the
one sigma level. In the region betweenℓ = 8 andℓ = 30 the effect exceeds one sigma level: that
region is the one where the effect of the cold spot is stronger.

using the map obtained byde Oliveira-Costa et al.(2008)2. The result is fully consistent

with what we found using ILC, thus validating the procedure we followed. The signal is

shown in Figure4.10

The next step has been to evaluate the effect that the change in the angular power

spectrum induces on cosmological parameter estimates. Since the low multipole region

is affected by the largest variation, we expect that changesmight occur on the spectral

index,ns, the optical depth,τ and possibly on the primordial fluctuation normalisation

amplitudeAs. Actually, since the variation is at maximum12% in a handful of multi-

poles, we expect a global variation on the power spectrum of roughly few parts in one

thousand.

The WMAP team performed the temperature analysis splittingthe low multipoles

and the high multipoles regions. The former is probed by a Gibbs-sampling based Monte

Carlo analysis (Eriksen et al., 2004). The high moments are instead investigated fitting

the angular power spectrum extracted from the W and V bands. To take into account the

modifications due to the new masking we replaced the KQ85 mask used at low resolution

with the joint mask KQ85 plus the hot and cold spots (Fig.4.8), and multiplied the

angular power spectrum used for the analysis by the ratio between theCℓ computed with

2http://space.mit.edu/home/angelica/gsm/
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Figure 4.10:Ratio of two CMB power spectra computed from a given map with the kq85 and
kq85+j3j4: ILC the yellow curve, W the black curve, V the blueone, WV the light blue curve,
and that extracted by the map reconstructed inde Oliveira-Costa et al.(2008) in orange. Except
for the WMAP ILC map atℓ > 200, the difference on the angular power spectrum is consistent
among a variety of maps. Beyondℓ = 200 ILC power spectrum shows features not compatible
with other spectra, probably due to the way the different WMAP channels are combined.
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parameter WMAP5 Hot/Cold spot masked (j4) j3-j4 mask

Ωbh
2 0.0227± 0.0006 0.0228± 0.0006 0.0228± 0.0006

Ωch
2 0.110± 0.006 0.109± 0.006 0.109± 0.006

θA 1.040± 0.003 1.040± 0.003 1.040± 0.003
τ 0.089± 0.018 0.091± 0.017 0.089± 0.017
ns 0.965± 0.014 0.966± 0.014 0.966± 0.014

ln(1010As) 3.18± 0.05 3.17± 0.05 3.17± 0.05

Table 4.4:Effect of the wider mask on theΛCDM six parameters. The difference due to the sum
of KQ85 mask plus HOT/Cold spot mask is small.

Figure 4.11:Left panel, profile of the functionb(x) in ℓ-space for the choiceB = 1.2. The
red dot-dashed line representsj = 17 and the blue long dashed linej = 20. Right panel, power
spectrum modification due to the structures measured using the set of needlets shown in Fig.4.12.

the wider mask andCℓ obtained with the unmodified KQ85 mask applied to ILC, in the

range of multipoles2− 200 (see Fig.4.10).

The results are shown is Table4.4. In short, we do not observe a significant variation

in any of the cosmological parameters.

It is well known that the angular power spectrum measured by the WMAP collabo-

ration shows some interesting features at low multipoles; in particular the range between

ℓ = 20 andℓ = 24 has a deficit in power with respect to the prediction of the best-fit

ΛCDM theoretical model, while that betweenℓ = 37 to ℓ = 44 shows excess power. To

investigate these issues, we chose needlets correspondingto frequencies that match those

two intervals and we looked for coefficients exceeding the threshold of three sigma. More

precisely, we selectB = 1.2 and we takej = 17, j = 20 to span the relevant ranges of

multipoles. Figure4.11(upper panel) and figure4.12show (respectively) thebℓ profile

employed for this purpose and the corresponding needlet coefficients.

We find that the effect on the angular power spectrum is actually rather small (overall

less than one sigma). However it does follow the expected sign, decreasing the deficit

and the excess of power in the selected ranges. The effect is shown in the lower panel of

Figure4.11.
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Figure 4.12:Needlet coefficients and their significance atj = 17 andj = 20 for B = 1.2.

4.1.3 Conclusions

We apply spherical needlets to the Wilkinson Microwave Anisotropy Probe 5-year cosmic

microwave background (CMB) dataset, to search for imprintsof non-isotropic features

in the CMB sky.

After calibration by means of a large set of mock simulationsto compute the expected

correlation for aΛCDM model, the analysis of needlet coefficients highlights the pres-

ence of the now well-known “cold spot” of the CMB map in the southern hemisphere,

and in addition two hot spots at significance greater than 99%confidence level, again in

the southern hemisphere and closer to the Galactic plane. While the cold spot primarily

contributes to the anisotropy power spectrum in the multipoles betweenℓ = 6 to ℓ = 33,

the hot spots are found to be dominating the anisotropy powerin the range betweenℓ = 6

andℓ = 18.

We also studied the effect the two spots have on the CMB power spectrum, by build-

ing 1, 000 mock CMB simulations. We conclude that, especially at low multipoles, the

effect is measurable: masking both the cold and the two hot spots results in an increase

in the quadrupole amplitude of 10%, while atℓ = 10 power is reduced by 12%. To inves-

tigate the effect of this difference on the value of cosmological parameters, we modified

the WMAP 5-year CMB fiducial power spectrum and the KQ85 mask used to perform

the analysis by cutting out the contribution of the two spots, and we repeated the param-

eter estimation analysis. The results we obtain are slightly different, but fully consistent
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within the 1σ errors on parameters published by the WMAP team. We may inciden-

tally notice that we found a significant anomaly localised atlarge angular scales, but the

overall CMB power spectrum is consistent with the standard cosmological model.

Since all three spots appear in the southern hemisphere, we also studied the power

spectrum asymmetry between the two hemispheres, which has been previously found to

be statistically significant. When the features detected byneedlets are masked, we find

that the difference in the power, measured in terms of the anisotropy variance between

ℓ = 4 andℓ = 18, is reduced by a factor2. This decreases the significance of the previ-

ously claimed north-south asymmetry. We make the mask resulting from needlet features

available for future, more detailed studies on the asymmetries in the CMB anisotropy

sky3.

3http://www.fisica.uniroma2.it/∼cosmo/masks
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4.2 Constraints on Primordial Non-Gaussianity from a

Needlet Analysis of the WMAP-5 Data

With the increasing amount of high-quality observations performed in the last decade

(Hinshaw et al.(2009); Reichardt et al.(2009); Sievers et al.(2007); Wu et al.(2009);

Pryke et al.(2009); Hinderks et al.(2009); Masi et al.(2006); Johnson et al.(2007)),

statistical tests of the CMB temperature anisotropy pattern are getting more and more

accurate. This has made it possible to test one of the basic tenets of the standard cosmo-

logical scenario, i.e. that the primordial density perturbations follow a Gaussian distribu-

tion. This is a definite prediction of the simplest inflationary models (Guth, 1981; Sato,

1981; Linde, 1982; Albrecht & Steinhardt, 1982): the detection of primordial deviations

from Gaussianity would be a smoking gun for more complicatedimplementations of the

inflationary mechanism, such as those of multi-fields (Lyth & Wands, 2002; Linde &

Mukhanov, 2006; Alabidi & Lyth, 2006), ekpyrotic (Mizuno et al., 2008; Khoury, 2002)

or cyclic scenarios (Steinhardt & Turok, 2002; Lehners & Steinhardt, 2008).

When dealing with the search for non-Gaussian statistics inreal data, two major is-

sues have to be addressed. One has to do with the statistical tools used to analyse the data

and detect deviations from Gaussianity: not only can these deviations be very subtle and

elusive, but they could be generated by processes that are not directly related to the pri-

mordial density perturbations — such as unremoved astrophysical foregrounds (Cooray

et al., 2008; Serra & Cooray, 2008) or instrumental systematics. The other issue is theo-

retical, and relates to the way the non-Gaussianity is parameterised: while there is only

one way to realize a Gaussian distribution, non-Gaussian statistics can be produced in

countless ways. One then has to assume a non-Gaussian parameterisation which relates

in some sensible way to an underlying early universe scenario.

The latter issue is usually addressed by introducing a parameterfNL, which quantifies

the amplitude of non-Gaussianity as a quadratic deviation with respect to the primordial

Gaussian gravitational potentialΦL, i.e.:

Φ(x) = ΦL(x) + fNL

[
Φ2

L(x)− 〈Φ2
L(x)〉

]
(4.5)

The major advantage of this parameterisation is that, regardless of the specific underlying

early universe model, it can represent the second-order approximation of any non linear

deviation from Gaussianity. For an excellent review on thistopic seeBartolo et al.(2004).

From the point of view of data analysis, a number of techniques have been proposed

in the past few years to quantify the level of deviation from Gaussian statistics in the

data. The most used one in harmonic space is the bispectrum (Luo, 1994; Heavens, 1998;
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Spergel & Goldberg, 1999; Komatsu & Spergel, 2001; Cabella et al., 2006). The bispec-

trum is defined as the three-point correlation function, andan estimate offNL through

the bispectrum requires the sum over all the triangle configurations. Since this is ex-

tremely time-consuming, regardless whether the computation is performed in harmonic

space or pixel space,Komatsu et al.(2005) have proposed a fast cubic estimator based

on the Wiener filter matching, which reduces considerably the computational challenge.

This estimator has been further developed byCreminelli et al.(2006) introducing a lin-

ear correction which allows the correct treatment of the anisotropic noise, and finally

optimised (Yadav et al., 2007) and extended to polarisation measurements (Yadav et al.,

2008). Recently,Yadav & Wandelt(2008) applied the cubic estimator to the WMAP 3-

year data, finding a detection of a primordial non-Gaussian signal at more than 2.5 sigma.

An indication of a primordial non-Gaussian signal has been also found by the WMAP

collaboration in the analysis of the 5-year dataset, although with a lower confidence level

(Komatsu et al., 2009). An interesting discussion on optimal and sub-optimal estimators

can be found inSmith & Zaldarriaga(2006). See for further detailsYu & Lu (2008) and

Babich(2005).

Concerning the methods in pixel space,De Troia et al.(2007); Reichardt et al.(2009);

Hikage et al.(2006); Curto et al.(2008, 2007); Natoli (2009) applied Minkowski func-

tionals to several CMB datasets;Cabella et al.(2005) applied local curvature on WMAP

1-year data andMonteserı́n et al.(2006) developed scalar statistics using the Laplacian

as a tool to test Gaussianity. Alternative indicators basedon skewness and kurtosis have

been proposed byBernui & Reboucas(2009). Tests based on wavelets were applied to

WMAP 1-year data (Vielva et al., 2004; Mukherjee & Wang, 2004), and WMAP 5-year

data byCurto et al.(2009) andMcEwen et al.(2008). Wavelets have been also used

in CMB studies (Martı́nez-González et al., 2002) to identify anomalies in WMAP data

(McEwen et al., 2008; Wiaux et al., 2008; Cruz et al., 2008, 2007; Vielva et al., 2007;

Wiaux et al., 2006; Cruz et al., 2005; Vielva et al., 2004; Pietrobon et al., 2008), denois-

ing (Sanz et al., 1999; Hammond et al., 2009), point sources extraction (Cayón et al.,

2000; González-Nuevo et al., 2006). Very recentlyVielva & Sanz(2008) constrained

primordial non-Gaussianity by means of N-point probability distribution functions.

The signature of non-Gaussianity appears in the higher moments of a distribution,

which are no longer completely specified by the first moment (i.e. the mean value of

the distribution) and the second moment (i.e. the standard deviation). For a Gaussian

distribution, all odd moments are vanishing, while the evenones can be expressed in

terms of the first two only. We then look for a non-vanishing skewness of the distribution

of the needlet coefficients, applying a cubic statistic.
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4.2.1 WMAP-5 needlet analysis

In the following we describe the statistical techniques andsimulations used in order to

constrainfNL.

We started by producing simulations of non-Gaussian CMB maps with the WMAP-5

characteristics, for varyingfNL. For each channel [Q1, Q2, V1, V2, W1, W2, W3, W4],

we used as input a realization of a simulated primordial non-Gaussian map (Liguori et al.,

2007); these maps were convolved with the respective beam windowfunctions for each

channel and a random noise realization was added to each map adopting the nominal

sensitivities and number of hits provided by the WMAP team4 (Hinshaw et al., 2009).

From these single-channel maps we constructed an optimal map viaJarosik et al.(2007):

T (γ) =
∑

ch

Tch(γ)wch(γ) (4.6)

whereγ represents a direction on the sky (which, in practice, is identified with a specific

pixel in the Healpix scheme (Górski et al., 2005)), andwch = nh(γ)/σ
2
ch/
∑

chwch.

wherenh is the number of observations of a given pixel andσch the nominal sensitivity

of the channel, estimated by WMAP team. We finally applied theWMAP mask Kq85 and

degraded the resulting map to the resolution ofN = 256. At the end of this procedure we

were left with realistic Monte Carlo simulations of the CMB sky as seen from WMAP-5,

containing different levels of primordial non-Gaussianity parameterised by the value of

fNL.

Then, we extracted the needlet coefficientsβjk from the simulated maps for a given

B. For eachj resolution, the needlet coefficients can be visualised as a sky map, where

k is the pixel number. We calculated the skewness of the reconstructed coefficients maps

over the unmasked region, as:

Sj =
1

Ñp

∑

k′

(βjk′ − 〈βjk′〉)3
σ3
j

(4.7)

whereÑp denotes the number of pixels outside the mask andσj is the variance of the

needlet coefficients at thej resolution. This procedure allows us to build an empiri-

cal statistical distribution of the skewness as a function of fNL. Finally, we calculated

the skewness from the real data of the foreground-reduced WMAP 5-year Q, V and W

channels data, using the same procedure applied to the simulated maps. The comparison

of the real data skewness to the simulated distributions allowed us to set limits on the

non-Gaussian signal in the data.

4http://lambda.gsfc.nasa.gov/product/map/dr3/mproducts.cfm
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A non-vanishing skewness represents a deviation from a Gaussian distribution and

could give a fundamental handle on the physics responsible for inflation and the gener-

ation of primordial fluctuations. In general we expect the needlet coefficients to pick up

signal at different angular scales as a function of bothj andB, making different sets

sensitive to non-Gaussianity in specific ways. This could beindeed a powerful tool when

looking for imprint of specific models of non-Gaussianity. This feature is enhanced by

the statistics itself we consider in our analysis. As described in Chap.3, sinceS ∝ β3
jk we

have an intrinsic modulation in the power of the cube of the needlet coefficients. Figure

3.10shows this effect compared to the square of thebℓ function.

For this reason it does make sense to compute the statistics defined in Eq.4.7 for

several sets of needlets. In particular we employed values of B from 1.8 to 4.5, choosing

the step in order to span as homogeneously as possible the entire range of multipoles

ℓ = 2 to ℓ = 500. The set ofB we have considered is [1.8, 1.9, 2.0, 2.15, 2.5, 3.0, 3.5,

4.0, 4.5]. We also tried finer samplings ofB, but no additional information resulted for

the sampling considered.

χ2 analysis

In order to estimatefNL we minimised the quantity:

χ2(fNL) = (Xd − 〈X(fNL)〉)TC−1(Xd − 〈X(fNL)〉). (4.8)

HereX is a vector composed by the set of skewness of our set(B, j). The averages

〈X(fNL)〉 were calculated via Monte Carlo simulation over 100 primordial non-Gaussian

maps. Formally,C−1 is dependent onfNL as well but it has been shown (Spergel &

Goldberg, 1999; Komatsu & Spergel, 2001) that for the mild level of non-Gaussianity we

expect this dependence is weak and can be estimated by Gaussian simulations. We found

that calculatingC−1 from 10,000 Monte Carlo simulations gives a very stable estimate.

The result is shown in Fig.4.13: the curves deviating from zero corresponds to the

effect due to the primordial non-Gaussianity for positive (dashed lines) and negative (dot-

ted lines) values offNL, while the yellow and orange bands correspond to the1σ and2σ

levels respectively. Diamonds represent the results of WMAP 5-year data.fNL is esti-

mated to be20 with −30 < fNL < 70 and−80 < fNL < 120 at 1 and2σ respectively.

These results show no significant deviation from the Gaussian hypothesis. This is not in

contrast with the values found byYadav & Wandelt(2008), since we have performed our

analysis on maps with the maximum multipole corresponding to ℓmax = 500, whereas

Yadav & Wandelt(2008) clearly showed that their results crucially depend on the max-

imum multipole considered. The reducedχ2 of WMAP data is1.53 with 85 degrees of

freedom.
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As a further consistency check, we performed a goodness-of-fit test by calculating

the quantile of the WMAP data from the non-Gaussian realizations withfNL = 20. We

found that 21% of the simulations had a largerχ2 of the WMAPχ2, confirming that the

specifications of our Monte Carlo simulations well describethe experimental setting of

WMAP 5-year data.

Figure 4.13:Skewness of needlet coefficients for the entire set of parameter B as a function of
multipoleℓ. Shaded areas represents 1 and 2σ confidence levels calculated from 10000 Gaussian
Monte Carlo simulations with beam, noise level, and marks ofWMAP 5-year data. Dashed
(dotted) lines correspond to the averages over 100 primordial non-Gaussian maps withfNL =
200, 400 (−200, 400). Diamond are the WMAP 5-year data.

A skewness basedfNL estimator

Since the primordial non-Gaussianity is a second order effect, it contributes linearly to

the skewness throughfNL. This means that it is possible to compute from the non-

Gaussian simulations the skewnessS(j) for fNL = 1 and use it as a template to build

a filter-matching estimator of the non-linear coupling parameter. Assuming thatSobs
j =

fNL Sth
j |fNL=1, where “th” means the average over the non-Gaussian simulations, we

obtain

fNL =

∑
jj′ S

obs
j Cov−1

jj′S
th
j′∑

jj′ S
th
j Cov−1

jj′S
th
j′

(4.9)

where we dropped the subscriptfNL = 1. This estimator is built following the same

approach asKomatsu et al.(2005), i. e. a filter matching one, translated into the needlet
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Figure 4.14:The ∆χ2 of WMAP 5-year data as a function offNL. fNL is estimated to be
fNL = 20± 50 andfNL = 20± 100 at 1σ and 2σ level respectively.

framework: we bispectrum of the data and we hit it on the theoretical prediction, weight-

ing it with the covariance of the primordial signal, which also takes into account the in-

strumental noise. The theoretical skewness computed forfNL = 1 is shown in Fig.4.15.

We checked that the pipeline applied to simulated non-Gaussian CMB maps does not

affect the linear relation: in particular we verified that the average signal we obtain for

a givenfNL scales linearly withfNL itself, meaning for example that we can mimic the

signal forfNL = ±400 by taking the double of that forfNL = ±200.

The main contribution to the covariance matrixCovjj′ comes from the Gaussian

part of gravitational potential; this allows us to estimatethe covariance from random

Gaussian simulations. According to this assumption, we estimate the error bars on the

primordial non-linear coupling parameter computing the standard deviation of the 10000

fNL estimates resulting from a fresh set of Gaussian simulations, via Eq.4.9. We find

fNL = 21± 54 at 1 sigma confidence level, which is fully consistent with what we found

applying theχ2 statistic. This corroborates the robustness of our procedure and confirms

needlets as a suitable tool to study primordial non-Gaussianity.

Our limits on primordial non-Gaussianity are slightly larger than those achieved by

Curto et al.(2009) being our1σ confidence level (−30 < fNL < 70) slightly broader than

−8 < fNL < −111 at 95% confidence level. However we were limited in our analysis

to multipoles lower thanℓmax = 500, while the strongest constraints on primordial non-

Gaussianity make use of higher angular scales.
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Figure 4.15: Skewness forfNL = ±1, respectively dashed and dotted line, derived from
non-Gaussian simulations. Theoretical curves forfNL = 10, 20, 30 (from bottom to top)
are shown too.

Our limits onfNL are quite promising for future experiments such as Planck5, where

sensitivity and angular resolution will be enormously improved.

Further analysis: binned bispectrum

The analysis we performed in the previous sections, based onthe skewness of the needlets

coefficientsβjk, is mainly sensitive to the equilateral configurations, since it is propor-

tional to the primordial bispectrum computed forℓ1 ≃ ℓ2 ≃ ℓ3 summed over all the

multipoles up toℓmax = 500. This can be easily understood by direct inspection of

Eq.4.7as discussed in Chap.3.

A qualitative improvement in constraining the parameterfNL can be achieved by

adding in the estimator the effect of the squeezed configurations, considering the product

of threeβjk with j1 6= j2 6= j3. The skewness of needlet coefficients can be generalised

into

Sj1j2j3 =
1

Ñp

∑

k

βj1kβj2kβj3k
σj1σj2σj3

(4.10)

We repeated the needlet analysis applying this new estimator to the same set of

WMAP 5-year data and simulations for the choice of the needlet parameterB = 3.5,

5http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1.pdf



122 CHAPTER 4. NON-GAUSSIANITY IN THE WMAP5 CMB SKY

which has the highest signal-to-noise ratio among the set chosen in the previous analysis.

The minimisation of theχ2 givesfNL = 30±40, which is consistent with what we found

applyingSj. Theχ2 for WMAP 5-year data is shown in Fig.4.16

Figure 4.16:The∆χ2 of WMAP 5-year data as a function offNL computed from the binned
bispectrum.B is chosen3.50 which had the highest signal-to-noise ratio among those chosen in
the previous analysis.fNL is estimated to befNL = 30 ± 40 andfNL = 30 ± 80 at 1σ and 2σ
level respectively.

Recently an analysis based on a cubic estimator analogous toSj1j2j3 has been per-

formed byCurto et al.(2009,?) who include the effect of squeezed configurations in the

Spherical Mexican Hat Wavelet; and byRudjord et al.(2009a) using a set of needlets

characterised by a differentB parameter obtainingfNL = 84± 40. While the difference

in the value offNL can be due to the higher number of multipoles considered in the anal-

ysis,ℓmax = 1000, and it is consistent with the result ofYadav & Wandelt(2008), it is

important that the estimated error bars are fully consistent with ours.

In a following paperRudjord et al.(2009b) checked the dependence of thefNL param-

eter on the direction in the sky. They computed the needlets bispectrum on 48 different

regions of the CMB sky finding no significant deviation from the full-sky measurement,

as expected for a primordial signal such as the local non-Gaussianity. Very recentlySmidt

et al. (2009) improved the constraints onfNL = 11 ± 23 by using the skewness power

spectrum on WMAP 5-year data.
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4.2.2 Conclusions

Primordial non-Gaussianity is becoming one of the keys to understand the physics of

the early Universe. Several tests have been developed and applied to WMAP data to

constrain the non-linear coupling parameterfNL. Recently, different methods (Yadav

& Wandelt, 2008; Curto et al., 2009) found different constraints onfNL using similar

datasets, WMAP 3-year and WMAP 5-year respectively. The twoapproaches have been

shown to have the same power in constraining primordial non-Gaussianity, while they

obtained different best fit values forfNL. Whereas this might be due to the masks applied

to the datasets, it certainly underlines the complexity anddifficulty of measuringfNL. The

next generation of experiments will provide data with excellent angular resolution and

signal-to-noise ratio which will be decisive to confirm or confute the measurements of

fNL of the references above. In this respect, it will be even important to constrainfNL with

different methods in order to get a more robust detection or to spot spurious presences

of non-Gaussian signal. Moreover, integrated estimators,not based on Wiener filters, are

differently sensitive to the non-linear coupling and can beuseful to address exotic non-

Gaussian models which predict high values offNL and whose bispectrum evaluation,

for instance, may require prohibitive computational time due to the convolution in the

bispectrum formula.

We constrained the primordial non-Gaussianity parameterfNL by developing the

needlets formalism and applying it to the WMAP 5-year CMB data. We estimatedfNL

to be20 with −30 < fNL < 70 and−80 < fNL < 120 at 1 and 2 sigma respectively,

then consistent with the Gaussian hypothesis. We performedtwo different analyses, the

χ2 statistics and an estimator based on the skewness of the primordial non-Gaussian

sky, finding an excellent agreement between the two results.Needlets have been proven

to be a well understood tool for CMB data analysis, sensitiveto the primordial non-

Gaussianity. Since the skewness of the needlets coefficients is mainly sensitive to the

equilateral triangle configurations, we improved our estimator computing the three point

correlation function in needlet space which indeed recovers the signal due to squeezed

triangle configurations. We obtainfNL = 30±40 at68% confidence level, consistent with

the previous analysis. Our constraints are slightly broader than those achieved byCurto

et al.(2009,?) and not in contrast with the values found byYadav & Wandelt(2008) since

we were limited by a smaller range of multipoles due to the non-Gaussian simulations we

had, whereas the tighter constraints onfNL crucially depend on the maximum multipole

considered.

Our limits on fNL are quite promising for future experiments like Planck, whose

sensitivity and angular resolution will be enormously improved.
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4.3 Needlet Bispectrum Asymmetries in the WMAP 5-

year Data

Since the first release of the WMAP satellite data (Bennett et al., 2003b), there have been

many claims of anomalies in the statistical distribution ofCMB temperature fluctuations

in the sky (see e.g.Eriksen et al.(2004)). For example, there appear to be localised

areas which are hotter or colder than would be expected in theconcordanceΛCDM cos-

mological model with Gaussian statistics (seeCruz et al.(2005)). Also, power seems

to be preferentially aligned along a certain direction (dubbed the ‘axis of evil,’Land

& Magueijo (2007)) and the quadrupole and octopole power appears to be correlated

(de Oliveira-Costa et al., 2004). These anomalies were subsequently confirmed with new

releases of the WMAP data (Spergel et al., 2007; Nolta et al., 2009).

Many other studies have highlighted a marked difference in the statistics of the north-

ern and southern galactic skies.Park(2004) found an asymmetry in the Minkowski func-

tionals values in the northern and southern galactic hemispheres.Eriksen et al.(2005) de-

tected anomalies at large angular scales comparing the amplitudes of temperature power

spectra in the two hemispheres and confirmed the anomalies are present in the n-point

correlation function.Vielva et al.(2004) studied the kurtosis of Spherical Mexican Hat

Wavelets coefficients, discovering a strong non-Gaussian signal in the southern hemi-

sphere.Hansen et al.(2004) reported that the local curvature of the CMB sky exhibited

asymmetric behaviour as well.McEwen et al.(2008) andPietrobon et al.(2008) ap-

plied two different wavelets constructions to the 5-year WMAP data, confirming many

of these results; they have also been seen using scaling indices (Rossmanith et al., 2009).

Copi et al.(2007) pointed out a lack of power in the north hemisphere in the twopoint

correlation function. The presence of these anomalies has been tested against mask ef-

fect and foreground contamination byBernui et al.(2007). Lew (2008) constrains the

direction of the anomaly axis using a generic maximum a posteriori method. Very re-

cently,Hansen et al.(2008) reported that the power asymmetry spans a very large range

of angular scales (corresponding to multipoles2 ≤ ℓ ≤ 600): this result is based on an

angular power spectrum analysis of the WMAP sky maps. A summary of most of these

anomalies can be found inBernui & Reboucas(2009).

Here, we investigate the CMB anomalies using the needlets bispectrum(Lan & Mar-

inucci, 2008b) to the WMAP 5-year data; this technique was recently used toconstrain

primordial non-Gaussianity in the same dataset byPietrobon et al.(2009) andRudjord

et al.(2009a). For the first time, we analyse the contribution of different triangle config-

urations, grouped according to their size and shape.
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4.3.1 Statistical Analysis and Results for WMAP 5-year Data

We processed the WMAP 5-year data and the simulations in the same way discussed in

Sec.4.2.1. To test the Gaussianity of WMAP 5-year data, we compare the distribution

of theχ2 = XC−1XT of the simulated dataset to the value obtained from data, where

X is the array consisting of the needlet bispectrum values calculated via Eq.3.16. We

consider the needlet bispectrum values (indicated by “all” in the tables)’ and, to iden-

tify where the anomalies are concentrated, we split the analysis in different branches

according to the geometry of the triangles. For the chosenB = 2.0, we have 115 which

satisfy the requirements: 9 equilateral, 56 isosceles, 50 scalene. We define the remain-

ing 50 configurations as open: we would expect them to be vanishing except for those

which combine multipoles which fulfill the Wigner selectionrules. The correspondence

between each needlet scalej and its multipole range is shown in Table4.5.

Large Scales

j 1 2 3 4 5
[ℓ1, ℓ2] [2, 3] [3, 7] [5, 15] [9, 31] [17, 63]

Small Scales

j 6 7 8 9
[ℓ1, ℓ2] [33, 127] [65, 255] [132, 500] [263, 500] -

Table 4.5:Correspondence between angular scale and needlet scale forB = 2.0.

On the full CMB sky, theχ2 of the data is compatible with the distribution we ob-

tain from 20,000 Gaussian simulations. When we calculate the χ2 on the northern and

southern hemispheres separately, we find a significant deviation from Gaussianity in the

southern hemisphere while the northern hemisphere appearsGaussian, having a bispec-

trum generally somewhat smaller than expected (see Table4.3.1). The results are shown

in the histogram plots in Fig.4.17. Furthermore, considering the triangle configurations

as classified above, we found that this behaviour is concentrated in all triangle configu-

rations separately except for the equilateral ones. The isosceles triangles are perhaps the

most interesting ones since they probe the correlation between the large and the small

angular scales (the so-called ‘squeezed’ configurations),which should reflect a non-local

type of non-Gaussianity. A comparable degree of asymmetry is shown by scalene and

open configurations, which confirm the global lack of power inthe north hemisphere: the

points in the northern hemisphere show a lower scatter. A similar asymmetric behaviour

was found byHansen et al.(2004); Land & Magueijo(2005); Eriksen et al.(2004) and

recently confirmed byHoftuft et al.(2009); Hansen et al.(2008); Groeneboom & Erik-

sen(2009b). In our analysis we already mask the big anomalous featurespresent in
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Figure 4.17:Needlet bispectrumχ2 distribution of the three WMAP 5-year temperature data.
The southern hemisphere is barely compatible with the Gaussian hypothesis, being the blue line
which marks the real dataχ2 in the tail of the distribution.

the southern hemisphere (Sec.4.1), responsible for about 50% of the power asymme-

try in the angular power spectrum (Pietrobon et al., 2008). The results are summed in

Table4.3.1and plotted in Fig.4.18where we plot the bispectrum as a function of the

variableXvar ≡ 1/(j1j2)
3 + 1/(j3j2)

3 + 1/(j1j3)
3. Note that equilateral configurations

conf. FULL SKY NORTH SOUTH

all (115) 29% 96% 2%
equi (9) 20% 11% 45%
iso (56) 5% 96% 0.5%
scal (50) 60% 90% 7%
open (50) 3% 85% 2%

Table 4.6:Percentage of the simulations with aχ2 larger than WMAP 5-year data for the dif-
ferent triangular configurations of the needlets bispectrum. An asymmetry is present in each
triangle configuration except for the equilateral, and is significant when all the configurations are
combined.

are directly related to the skewness of the needlet coefficient distributions: the fact that

on the whole sky we do not find a strong deviation from Gaussianity is in agreement with

the previous literature, where only the kurtosis of the distributions showed an anomalous

behaviour (seeVielva et al.(2004)).
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Figure 4.18:Needlet bispectrum for each triangle configuration:equilateral(top-left), isosceles
(top-right), scalene(bottom-left) andopen(bottom-right). The red triangles show the full sky
analysis, the green crosses are the northern hemisphere andthe light blue plusses are the south.
The northern hemisphere shows a global lack of signal. The shadow region represents the 1-sigma
level.

Large-Small Scale Analysis. Going more deeply, we focused on small and large an-

gular scales separately. In particular, with the choiceB = 2, we define the subset of

needletsj = 1 to j = 5 as large scale, corresponding roughly to scales larger than1

degree; while the subsetj = 6 to j = 9 corresponds to the sub-degree scales (see Ta-

ble 4.5). We then perform the same analysis we carried out the whole needlet set. The

results are shown in Table4.7. The isosceles configurations still show a large difference

between the two hemispheres but the significance is lower than the whole set analysis.

The open configuration result is still anomalous. No open configurations exist for the

small scale subset6 ≤ j ≤ 9; however for the large scales these co-linear configura-

tions are most significantly non-zero for the biggest contribution of the power. For the

sub-degree set we did not find an high degree of anomaly, as summarised in Tab.4.7,

though the isosceles configurations are still significantlydifferent between the two hemi-

spheres. Dividing the analysis between the two sets at largeand small scales, we miss the

important contribution given by the correlation between the two, which is indeed crucial

for the squeezed triangles. We then consider two more sets: one formed by a triangle

which has one sidej1 ≤ 5 and two sides belonging to the small scale set (j2,j3 ≥ 6). We
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conf. Large Scales (j ≤ 5)
FULL SKY NORTH SOUTH

all (28) 61% 93% 14%
equi (5) 86% 26% 45%
iso (16) 70% 90% 22%
scal (7) 37% 62% 15%
open (7) 3% 38% 2%

conf. Small Scales (j ≥ 6)
FULL SKY NORTH SOUTH

all (20) 11% 60% 21%
equi (4) 4% 10% 36%
iso (12) 5% 63% 8%
scal (4) 64% 61% 48%

Table 4.7:χ2 for the WMAP 5-year QVW data compared to simulations. Top panel large scale
study; bottom panel small scale one.

label this set as LSS and are predominantly squeezed. The second set, labelled as LLS,

is formed by triangles which havej1,j2 ≤ 5 andj3 ≥ 6 and are predominantly co-linear.

We report the results in Tab.4.8. The isosceles triangles belonging to the LSS set are

conf. Correlation (L-S-S)
FULL SKY NORTH SOUTH

iso (20) 23% 78% 0.4%
scal (26) 76% 40% 51%
open (4) 32% 35% 54%

conf. Correlation (L-L-S)
FULL SKY NORTH SOUTH

iso (8) 47% 94% 20%
scal (13) 62% 98% 15%
open (39) 3% 88% 2%

Table 4.8:χ2 for the WMAP 5-year QVW data compared to simulations: correlation large-small
scale. Top panel LSS set; bottom panel LLS set.

very anomalous in the south hemisphere. The LLS set in characterised by an anomaly

in the open configurations. Interestingly the lack of signalin the northern hemisphere is

evident in the LLS, while the LSS distribution appears more typical.

Influence onfNL estimation. In the following section we address the issue of the effect

of the sky asymmetries on the measure of the primordial non-Gaussianity parameter. A
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complete review on the nature of this parameter may be found in Bartolo et al.(2004) and

Fergusson & Shellard(2009); recent constraints from CMB experiments can be found in

Smith et al.(2009); Curto et al.(2008); Komatsu et al.(2009); De Troia et al.(2007)

while Slosar et al.(2008) constrainedfNL through the galaxy distribution. Limits onfNL

using wavelets are discussed inCurto et al.(2009); Cabella et al.(2004); Mukherjee &

Wang(2004). In order to estimatefNL we generate two sets of simulations. The first

one consists in 20,000 Gaussian simulations consistent with the WMAP 5-year best fit

angular power spectrum and the second one consists of primordial non Gaussian maps

(Liguori et al., 2007). Both sets where then passed through the procedure described

above. We then computedfNL from the estimator introduced inPietrobon et al.(2009):

fNL =
Xd TC−1Xth

XthTC−1Xth
. (4.11)

Here X is a vector composed by the values of needlets bispectrum for a given triangu-

lar configuration according to Eq.3.16. The covariance matrixC is calculated from the

Gaussian simulations since its dependency onfNL is negligible (e.g. seeSpergel & Gold-

berg(1999)). The theoretical non-Gaussian templateX th was calculated via Monte Carlo

simulations over the 100 primordial non-Gaussian maps. Since we know the CMB sky is

asymmetric, showing more non-Gaussianity in the southern hemisphere, we carried out

the full sky analysis and also split north-south one to see ifthe asymmetry extends to

differences in thefNL estimate. In practice we computedSj1j2j3 on the pixels outside the

extended “j3-j4”Kq75 mask in the northern and southern hemispheres. RecentlyCurto

et al.(2009) targeted the same issue within the Spherical Mexican Hat Wavelets frame-

work, finding no evidence offNL varying on the sky. The values shown in Table4.9do

not indicate a significant deviation between the two hemispheres; the error bars become

significantly larger due to the reduced number of pixels usedto calculate the needlet bis-

pectrum. It will be interesting to repeat the same test with the upcoming experiments

like Planck where the error bars are expected to be drastically reduced. Combining all

configurations we findfNL = −25 ± 75 in the northern hemisphere andfNL = 75 ± 75

in the south, which are consistent with the null hypothesis.Any differences compared to

the results byCurto et al.(2009) are most likely primarily due to the broader mask: if we

use the Kq75 mask provided by the WMAP team we obtain in the south fNL = 25± 75.

We stress that the fact we do not observe a sky asymmetry is notsurprising since we do

not expect such asymmetry for a primordial signal like the non-Gaussian one left over

after inflation.
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conf. FULL SKY NORTH SOUTH

all 0± 45 −25± 75 75± 75
equi −60± 200 −130± 260 −90 ± 260
iso −20 ± 50 −30± 80 80± 85
scal 0± 55 −50± 80 110± 90
open 120± 400 −650± 600 770± 600

Table 4.9:fNL estimates with the 1-sigma confidence levels for each triangle subset calculated
from full sky, northern and southern hemispheres.

4.3.2 Conclusions

We used the needlets bispectrum to investigate the presenceof anomalies in the WMAP

5-year data. For the first time we exploited the bispectrum formalism analysing the tri-

angle configurations according to their shape. By splittingtheχ2 analysis of the needlets

bispectrum for the northern and southern hemispheres we found that the southern sky is

barely compatible with the Gaussian hypothesis while the northern hemisphere is char-

acterised by a lack of global bispectrum signal. This is complementary to what found

by applying different statistics: power spectra (Hansen et al., 2008), bispectrum (Land

& Magueijo, 2005) and n-point correlation functions (Eriksen et al., 2005). We distin-

guished equilateral, isosceles, scalene and open configurations and compared the power

present in the data to random Gaussian simulations. The mostanomalous signals in the

southern galactic hemisphere arise in the squeezed configurations (isosceles, large-small-

small) and in the very co-linear configurations (open, large-large-small). This kind of

information should be useful as a means to find out the physical origin of the anomalies.

While the large squeezed signal hints at a local type of non-Gaussianity, this is not bourne

out when a more optimal estimator tuned specifically to this type of non-Gaussianity is

used. We investigated the effect of hemispherical asymmetry on the measurement of

fNL finding no significant discrepancy between north and south. It will be interesting to

test with the next generation of CMB experiments, when the error bars onfNL will be

drastically reduced, to see if a north-south asymmetry arises in thefNL estimates. As a

consistency check, we performed the same tests (anomalies and fNL estimates) with a

different needlets parameter (B = 3.5) and for the channels Q,V and W separately and

found consistent results.
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4.4 Foreground Influence on Primordial non-Gaussianity

Estimates: Needlets Analysis of WMAP 5-year Data

As we discussed in the previous sections, there has been considerable activity in con-

straining the amount of non-Gaussianity present in CMB data. This is motivated, on one

side, by the theoretical interest into deviations from Gaussian statistics of primordial fluc-

tuations – which is predicted in several implementations ofthe inflationary scenario, and

then it can be used to rule out specific models; on the other hand, non-Gaussianity can

be produced by undetected systematics, which may suggest problems in the dataset, or

by late-time anomalies, which may point out inconsistency in the standard cosmological

model.

The primordial non-Gaussianity produced by inflation is usually characterised by the

fNL parameter (see e. g.Luo (1994); Heavens(1998); Spergel & Goldberg(1999);

Komatsu & Spergel(2001)). Since the release of the first year WMAP data (Bennett

et al., 2003a; Komatsu et al., 2003), there has been a drastic reduction of the upper limits

of fNL. The most recent constraints coming from different techniques can be found in

Komatsu et al.(2009); Smith et al.(2009); Yadav & Wandelt(2008); Curto et al.(2009,

2008); De Troia et al.(2007); Pietrobon et al.(2009); Rudjord et al.(2009a); Natoli

(2009); Rudjord et al.(2009b); Smidt et al.(2009)).

One particular class of non-Gaussian behaviours which is not primordial in nature,

is the one expected from unremoved contamination from astrophysical sources, or fore-

grounds. When component separation techniques are appliedto CMB data (e. g.Maino

et al.(2002)), residual foregrounds can, albeit subdominant, be a source of non-Gaussianity,

which can be confused with a primordial signature and affectthe constraints onfNL. In

this section we aim at generalising the needlet bispectrum estimator (Pietrobon et al.,

2009) in the presence of such foreground residuals (Cabella et al., 2009).

4.4.1 Analysis

In constraining primordial non-Gaussianity, one can estimatefNL by minimising the chi-

square:

χ2(fNL) = Y TC−1Y, (4.12)

whereY = Y obs−〈Y (fNL)〉 is the difference between an ordered array of data (Y obs) and

the corresponding theoretical predictionY (fNL), as, for instance, the values of Minkowski

functionals for the relatives thresholds (Hikage et al., 2006), the densities of lakes or hills

when using the local curvature(Cabella et al., 2005) or finally the values of needlet bis-

pectrum (Pietrobon et al., 2009; Rudjord et al., 2009a,b). In the presence of the expected
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weak non-Gaussianity the covariance matrixC is calculated via Gaussian simulations

with the same experimental setup of the data. It has been shown (Pietrobon et al., 2009;

Rudjord et al., 2009a) that an unbiased estimator forfNL is given by

fNL =

∑
µµ′ S

obs
µ C−1

µµ′S
th
µ′∑

µµ′ S
th
µ C−1

µµ′S
th
µ′
, (4.13)

whereµ runs over the triplets{j1j2j3} andSth
µ stands for the ensemble average of pri-

mordial non-Gaussian realisations. Although the process of foreground reduction could

make things more complicated, the minimum assumption that we can make is that the

final map, contaminated by foreground residuals, can be modelled as:

T sim(γ̂) = TG(γ̂) + fNLT
NG(γ̂)

+ αtdD(γ̂) + αff F(γ̂) + αsync S(γ̂), (4.14)

whereD, F andS mean thermal dust, free-free emission and synchrotron radiation map

respectively. Eq.4.12can be easily generalised as follows:

χ2 =
(
Sobsµ − Sµ(fNL)− Siµ(αi)

)
C−1
µµ′(

Sobsµ′ − Sµ′(fNL)− Siµ′(αi)
)T
, (4.15)

wherei refers to the i-th foreground template with the Einstein summation convention

assumed, andS i
µ is the needlet bispectrum of the relative foreground. Calculating the

needlets coefficients from Eq.4.14we obtain

βjk = βG
jk + βN

jk + fNLβ
NG
jk + αdβ

D
jk + αfβ

ff
jk + αsβ

S
jk. (4.16)

In Figure4.20 we show the needlet coefficients in the case ofB = 2 and j = 6 for

the three foregrounds templates – dust, free-free and synchrotron – once they have been

masked. The maps were converted into thermodynamic temperature for each channel and

combined to form one single map. Each template was divided bya factor 10, which is the

level of residuals expected. This factor, and then the leakage of the non-CMB component

in the foreground reduced map we used, was estimated througha Monte Carlo Markov

Chain. The angular power spectrum of the foreground reducedmap have been compared

to a linear combination of CMB, noise, synchrotron, free-free and Galactic dust. 100

realisations of CMB maps have been generated in order to takeinto account also the

uncertainty due to the cosmic variance. We also created 100 realisations of noise with

variance consistent with the data and then fitted the amplitude coefficientspγ of each
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componentγ, such that

Ctotℓ =
∑

γ

pγCγℓ + CCMB
ℓ +Nℓ,

whereNℓ is the detector noise. We findpsynch < 0.1 × 10−1, pdust < 1.0 × 10−1 and

pff < 0.6 × 10−1. The coefficientspγ provide an indication of the power spectrum

contamination percentage by the foreground residuals. Theeffect on the bispectrum is

estimated to be of the order of∼ 10−3. This is indeed confirmed by the best fit values of

the amplitudesαi computed through Eq.4.20, which are of the order of the unity.

If we compute the expectation value of the needlet bispectrum for a map ensemble as

given in Eq.4.14we obtain:

Sj1j2j3 ∼
∑

k

(
fNLβ

NG
j1kβ

G
j2kβ

G
j3k + α3

dβ
D
j1kβ

D
j2kβ

D
j3k

+ α3
ffβ

F
j1kβ

F
j2kβ

F
j3k + α3

syncβ
S
j1kβ

S
j2kβ

S
j3k

)
, (4.17)

where we kept the leading term of primordial non-Gaussianity expansion only and con-

sidered the correlations among foreground residuals negligible. We do not expect any

correlation between the primordial non-Gaussianity and the distribution of the foregrounds

residuals: this justifies why we ignored the terms likeβNGβI1βI2 (I={D,F,S}). The mixed

contributionsβI1βI2βI3 have been considered as higher order corrections to our estimator

Sj1j2j3, because〈βI〉 = 0. If we were able to produce foregrounds maps we would expect

these terms to vanish. Moreover, for the same reason, since we do not simulate different

realisations of the foregrounds but we consider them as templates, we do not know the

correlation matrix to properly model these cross-contributions. Finally we are interested

in the foreground residuals whose correlation properties may be hidden by the CMB map

cleaning procedure itself.

With this assumption the theoretical needlet bispectrum (S) in presence of foreground

residuals can be linearly decomposed as follows:

Sj1j2j3 = fNLS
NG
j1j2j3 + ADS

D
j1j2j3 + AFS

F
j1j2j3 + ASS

S
j1j2j3, (4.18)

where

SNG
j1j2j3

=
∑

k

βG
j1k
βG
j2k
βNG
j3k

σj1σj2σj3
+ perms;

SI
j1j2j3

=
∑

k

βI
j1k
βI
j2k
βI
j3k

σj1σj2σj3
.

Here for simplicity reason we have replacedα3
i with Ai for the foreground amplitudes.
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Figure 4.19:Bispectrum templates for the primordial non-Gaussian signal and the three WMAP
data foregrounds normalised according to the procedure described by a factor10−3.

In Figure 4.19 we show the bispectrum for the primordial non-Gaussianity with

fNL = 50 and for the foreground templates of WMAP data normalised according to

prescription discussed previously. The bispectrum is shown as a function of the quantity

X = 1/j1j2 + 1/j1j3 + 1/j3j2.

Minimising Eq.4.15with respect tox = (fNL, Ad, Af , As) we obtain:

fNL =
SNG
i C−1

ij S
obs
j

SNG
i C−1

ij S
NG
j

−
∑

I

SNG
i C−1

ij S
I
j

SNG
i C−1

ij S
NG
j

AI (4.19)

AK =
SK
i C

−1
ij S

obs
j

SK
i C

−1
ij S

K
j

−
∑

I

SK
i C

−1
ij S

I
j

SK
i C

−1
ij S

K
j

AI

whereK = {D,F, S}.

The solution of the previous system provide us with the estimates offNL with the

needlet bispectrum in presence of foreground residuals. Inthe following we present data

and simulations where this estimator has been applied.

4.4.2 Data set, simulations and results

In the following, the needlets of the simulations and data will be calculated for B=2 un-

less specified otherwise. We used theWMAP 5-year data (Hinshaw et al., 2009) publicly

available6 combining all channels according to Eq.4.6(see Sec.4.2.1). The foregrounds

6http://lambda.gsfc.nasa.gov/product/map/dr3/mproducts.cfm
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Figure 4.20:Thermal dust (top left) free-free (top right) synchrotron (bottom left) and non-
Gaussian forfNL = 100 (bottom right) needlet coefficients forB = 2 andj = 6. The wide Kq75
mask is applied.

considered are the 3-yearWMAP data templates of dust, free-free and synchrotron emis-

sion at the resolution ofNside = 256, corrected by the conversion factors from antenna

to thermodynamic temperature of the respective channel; wethen combined them as in

Eq. 4.6 to have one single map for each template. Data and foregroundtemplates have

been then masked with Kq75 mask (degraded as well to the sameHEALPix resolution),

which leaves uncovered roughly the30% of the sky. We obtained our final constraints on

fNL by applying the estimator in its improved fashion to theWMAP 5-year data where:

• the covariance matrixC−1 was calibrated over 20,000 Gaussian simulations

• the needlet foreground bispectraSD, SF, SS were calculated on the templates de-

scribed above

• the primordial needlet bispectrumSNG was calculated over 100 primordial non-

Gaussian maps (Liguori et al., 2007) convolved with the beams and combined as

done for the Gaussian simulations.

Figure4.21shows the data we used, superimposed to the one68% confidence level

region. The error bars onfNL were computed through the distribution of its estimates for

20,000 Gaussian realizations.

In Figure4.22we show our results, where in each panel we reported the estimate of

fNL with and without marginalizing over the foreground templates. Without marginaliz-

ing, we foundfNL = 30± 40, 80 at 1σ and 2σ respectively. The marginalization over all

foregrounds brings the constraint tofNL = 36± 47, 94 with an increase of the error bars
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Figure 4.21: Needlets bispectrum measured from the WMAP 5-year temperature map. The
yellow shaded region marks the68% confidence level region computed from the 20,000 maps
ensemble.

of about15% and a positive shift of the mean value. This could be an hint ofthe reason

for some positive detection present in literature (e. g.Yadav & Wandelt(2008); Rudjord

et al.(2009a,b)).

More information can be obtained by looking at the estimatesof fNL marginalizing

over the three foregrounds separately. The enlargement of the error bars due to each

foreground is of the same order of magnitude, but the shift ofthe estimate seems to be

due more to the dust component.

As a further check we carried out a Fisher analysis. So far we performed a maximum

likelihood method to find a good estimate offNL in the presence of foreground contami-

nation and quantified the scatter around this evaluation. Inthe limit of a large dataset, the

maximum likelihood estimate is the one for which the Cramer-Rao inequality becomes

an equality. Since the estimates of the parameters are evidently correlated, the latter can

be written asσθ = 1/(F−1)
1/2
ii , which is the marginal error and indeed the relevant error

to quote. For a quick-start guide to the Fisher matrix seeCoe(2009).

The Fisher matrix is defined as:

Fab =
∑

µµ′

∂ST
µ

∂a
C−1
µµ′

∂ST
µ′

∂b
(4.20)
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Figure 4.22:Unidimensional likelihood for thefNL parameter. Solid lines represent marginal-
ized likelihoods, whereas the dashed ones refer to the sliceAforeg = 0. The top left panel shows
the analysis including all the three foregrounds, while theothers are derived for a two dimensional
analysis where dust (top right), free-free (bottom left) and synchrotron (bottom right) emission
are considered.

whereS is the signal described in Eq.4.18 and µ, µ′, a and b run over the triplets

{j1, j2, j3} and the parameter set{fNL, AD, AF, AS}. In detail we have:

F =

(
SNG

C
−1SNG SNG

C
−1SD SNG

C
−1SF SNG

C
−1SS

SD
C

−1SNG SD
C

−1SD SD
C

−1SF SD
C

−1SS

SF
C

−1SNG SF
C

−1SD SF
C

−1SF SF
C

−1SS

SS
C

−1SNG SS
C

−1SD SS
C

−1SF SS
C

−1SS

)

where we have omitted the sum over the triplets.

The marginal error onfNL arising from this Fisher analysis is∆fNL = 42, very close

to the limits obtained with the Monte Carlo approach; this confirms the efficiency of

our estimation method. In Fig.4.23we show the 1σ and 2σ error ellipses together with

the output from simulations; here each plot presents the significance regions in the case

where the other parameters are fixed at their fiducial value (in this particular case the null

hypothesis). It can be seen that the free-free component seems slightly anti-correlated

with fNL, the cross-correlation coefficient beingρ = −0.26. The other foreground com-

ponents, i.e. dust and synchrotron, show a positive correlation, represented by the ori-

entation of the ellipses, withρ = 0.19 andρ = 0.10, respectively. The scatter of the

over-plotted distribution of Gaussian simulations on the sameAK-fNL plane is in excel-

lent agreement with the ellipses, which confirms again the consistency of our procedure.
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Figure 4.23: Scatter plots for a two dimensional analysis taking into account one fore-
ground separately. The1σ and2σ confidence level derived from a Fisher matrix analysis
are superimposed.

Notice that the three correlation coefficients nearly sum tozero,+0.03: this reflects the

small positive shift in the mean value (from 30 to 36) and it isa consequence of the linear

ansatz given by Eq.4.18.

4.4.3 Conclusions

In this section we have presented a procedure to marginalizethe residual foregrounds

when estimatingfNL in the needlet bispectrum framework. However it is important to

stress that this algorithm does not strictly rely on needlets properties and it can be eas-

ily applied to any linear estimator. With the foreground marginalization, we found, for

WMAP 5-year data, that the estimate onfNL is positively shifted by∆fNL = 6 and

the error bars are enlarged of about15% with respect to the estimate obtained without

marginalizing. Foreground residuals can play different roles in different estimators of

primordial non-Gaussianity. In fact, compared to other foreground analysis, our results

seem to agree with those obtained byYadav & Wandelt(2008), who argued that fore-

grounds negatively bias thefNL value. However,Smith et al.(2009) draw another con-

clusion, showing that the sign of the bias could depend on thefree choices of weighting

in the construction of pipeline to estimatefNL. Since substantially needlets coefficients
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are a rebinning of the filtered harmonic coefficientsaℓm, this could explain the differ-

ent behaviours. This study needs to be extended to each test of non-Gaussianity, since

different tests act on different spaces (e.g. harmonic, pixel, wavelet), leading to the con-

clusion that the influence of foregrounds on estimatingfNL is not unique. Moreover, we

have showed that each foreground has a different effect, when it is taken separately. A

split analysis like this could be crucial, for instance, at high multipoles, where the fore-

ground behaviour is currently poorly understood. All this reinforces the argument that a

careful analysis combining different tests is crucial to discriminate between primordial

non-Gaussianity and spurious effects.

Our procedure could be improved by taking into account the information on the intra-

pixel covariance matrix of each single foreground residualand the cross correlation be-

tween them. This would allow a more accurate analysis via Monte Carlo realizations,

instead of simply assuming a rigid pixel-independent foreground residual template. A

similar approach could be fundamental for the next experiments, like Planck, for which

the error bars onfNL are expected to be drastically reduced (∆fNL ∼ 3 − 5 Babich

(2005)) and the uncertainties introduced by foregrounds become relevant.

Conclusions

In this chapter we have analysed in detail the Gaussianity properties of the CMB as mea-

sured by the WMAP team by means of needlets. Actually we focused on two comple-

mentary aspects of this topic. First, we analysed the map, detecting anomalous features

at large scale structures, hot and cold spots, which determine a hemispherical asymmetry

in the sky. We then checked the effect of such asymmetry on theneedlets power spectrum

and bispectrum. On the former, the spots account for roughly50% of the total difference

power, while on the latter we detect still a strong anomaly. This anomaly is particularly

significant when looking at isosceles configurations.

Moreover, the bispectrum formalism allows us to set very promising constraints on

the primordial non-Gaussianity parameter, in particular in view of the Planck experi-

ments. Finally we included the effect of spurious unremovedforeground residuals in the

CMB on thefNL estimator, which is thought to be relevant for the next generation of

cosmological experiments.
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Chapter 5

Conclusions

Facts come in pairs at the very least,

for a single body is inconceivable

apart from a space in which it hangs.

Definition, setting bounds, delineation:

these are always acts of division

and thus of duality,

for as soon as a boundary is defined,

it has two sides.

(“The way of Zen”, A. Watts)

This work reviews the studies I carried out during my Ph. D. I focused on two main

questions which still remain unanswered within the framework of the standard cosmo-

logical model: the characterisation of dark energy and the issue of non-Gaussianity.

Very recently we discovered that the Universe expansion is accelerating. This repre-

sents a challenging puzzle for theorists. The more likely explanation invokes a new fluid,

dubbed dark energy, which has peculiar density-pressure properties. I investigated some

of these properties assuming a few phenomenological modelsavailable in literature, and

constrained their parameters combining the most recent CMBand large scale structure

observations. Results are discussed in Chapter2. I confirmed the ISW effect detection

at more than 3σ level.

The study of the CMB anisotropies distribution requires sophisticated tools, which

are continuously improved. I contributed to this active research topic introducing a new

rendition of wavelets, needlets, which have nice properties, suitable to study fields on the

sphere. Detailed discussion has been provided in Chapter3 and needlet application to

CMB data analysis is the underlying common ground of my Ph. D.project.

A crucial feature of the Big Bang scenario is the homogeneityand isotropy of the

Universe, which results after the inflationary phase the Universe underwent in the very
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early epoch of its evolution. Together with smoothness, inflation predicts small pertur-

bations which follow a nearly Gaussian distribution. The tiny deviation from the normal

distribution contains important details on the inflation process itself. Non-Gaussianity

may reveal itself also in a different fashion due to more recent processes which leave a

footprint on large scales. I have addressed this issue in Sec. 4.1, where a study of anoma-

lous CMB spots and its consequences on CMB data analysis is performed. The power

spectrum asymmetry itself is reduced by 50%, while the cosmological parameters are

basically unaffected.

I spent lots of effort to characterise the primordial bispectrum of the CMB fluctua-

tions, constraining its amplitude, namely thefNL parameter findingfNL = 30 ± 40 at

68% c.l. (Sec.4.2), and its shape (Sec.4.3). We found a striking asymmetry between the

estimates of the bispectrum, measured in the northern and inthe southern hemisphere.

The former exhibits a general lack of power, whereas the latter as results are anomalous,

especially in the isosceles configurations,suggesting that perhaps the origin of this

asymmetry depends upon a large-small scale correlation. I also developed an esti-

mator to measure such a bispectrum and improved it by describing a procedure to take

into account unremoved foreground residuals (Sec.4.4). As expected, the foregrounds

residuals enlarge the error bars of a 15% and result mildly correlated to the primordial

signal.

All these studies are particularly important in view of the new generation of upcoming

experiments, which will provide datasets of extraordinaryquality, which, as scientists,

we have to skillfully combine to make the best of our theories. In the next decades,

cosmology is going to be a fascinating but challenging field of research I am glad to

belong to.

“We are at the very beginning of time for the human race. It is not unreasonable that

we grapple with problems. But there are tens of thousands of years in the future. Our

responsibility is to do what we can, learn what we can, improve the solutions, and pass

them on.”1

1R. Feynman, ’What Do You Care About What Other People Think?’, 1988
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Böhmer C. G., Caldera-Cabral G., Lazkoz R., Maartens R., 2008, Phys. Rev. D, 78,

023505

Boldt E., 1987, Phys. Rep., 146, 215

Boubekeur L., Lyth D. H., 2006, Phys. Rev. D, 73, 021301



BIBLIOGRAPHY 145

Boughn S., Crittenden R., 2004, Nature, 427, 45

Boughn S. P., Crittenden R. G., 2002, Phys. Rev. Lett., 88, 021302

Boughn S. P., Crittenden R. G., 2005, New Astron. Rev., 49, 75

Brown . M. L., et al., 2009, arXiv: 0906.1003 (astro-ph CO)

Bruni M., 1993, Phys. Rev. D, 47, 738

Bruni M., Ellis G. F. R., Dunsby P. K. S., 1992, Class. Quant. Grav., 9, 921

Bruni M., Matarrese S., Pantano O., 1995a, ApJ, 445, 958

Bruni M., Matarrese S., Pantano O., 1995b, Phys. Rev. Lett.,74, 1916

Bruni M., Piotrkowska K., 1994, MNRAS, 270, 630

Cabella P., Hansen F., Marinucci D., Pagano D., Vittorio N.,2004, Phys. Rev. D, 69,

063007

Cabella P., Hansen F. K., Liguori M., Marinucci D., Matarrese S., Moscardini L., Vittorio

N., 2006, MNRAS, 369, 819

Cabella P., Kamionkowski M., 2004, arXiv: 0403392 (astro-ph CO)

Cabella P., Liguori M., Hansen F. K., Marinucci D., Matarrese S., Moscardini L., Vittorio

N., 2005, MNRAS, 358, 684

Cabella P., Natoli P., Silk J., 2007, Phys. Rev. D, 76, 123014

Cabella P., Pietrobon D., Veneziani M., Balbi A., Crittenden R., de Gasperis G., Quer-

cellini C., Vittorio N., 2009, arXiv: 0910.XXXX

Cabre A., Gaztanaga E., Manera M., Fosalba P., Castander F.,2006, MNRAS, 372, L23

Caldwell R. R., 2002, Phys. Lett. B, 545, 23

Caldwell R. R., Dave R., Steinhardt P. J., 1998, Phys. Rev. Lett., 80, 1582

Caldwell R. R., Kamionkowski M., Weinberg N. N., 2003, Phys.Rev. Lett., 91, 071301

Cayón L., Sanz J. L., Barreiro R. B., Martı́nez-González E., Vielva P., Toffolatti L., Silk

J., Diego J. M., Argüeso F., 2000, MNRAS, 315, 757
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Faÿ G., Guilloux F., 2008, arXiv: 0807.2162

Fergusson J. R., Shellard E. P. S., 2009, Phys. Rev. D, 80, 043510

Fixsen D. J., Cheng E. S., Gales J. M., Mather J. C., Shafer R. A., Wright E. L., 1996,

ApJ, 473, 576

Fosalba P., Gaztanaga E., 2004, MNRAS, 350, L37

Fosalba P., Gaztanaga E., Castander F., 2003, ApJ, 597, L89

Freedman W. L., et al., 2001, ApJ, 553, 47

Friedmann A., 1922, Zeitschrift fr Physik A, 10, 377386

Gamow G., 1946, Phys. Rev., 70, 572

Gaztanaga E., Manera M., Multamaki T., 2006, MNRAS, 365, 171

Geller D., Hansen F. K., Marinucci D., Kerkyacharian G., Picard D., 2008, Phys. Rev. D,

78, 123533

Geller D., Lan X., Marinucci D., 2009, arXiv: 0907.3369 (astro-ph CO)

Geller D., Marinucci D., 2008, arXiv: 0811.2935 (math ST)

Geller D., Mayeli A., , 2007, Nearly Tight Frames and Space-Frequency Analysis on

Compact Manifolds

Génova-Santos R., et al., 2008, MNRAS, 391, 1127

Giannantonio T., et al., 2008, Phys. Rev. D, 77, 123520



BIBLIOGRAPHY 149
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Appendix A

Beyond the Standard non-Gaussianity

“The third planet is incapable”

“of supporting life[...]”

“Our scientists have said”

“there’s far too much oxygen in their atmosphere.”

(“The Martian Chronicles”, R. Bradbury)

In the previous chapter we discussed the issue of non-Gaussianity, mainly from the

point of view of the detection of a small deviation of the CMB fluctuation distribution

from the Normal one. Such a small non-Gaussianity is indeed expected from theoretical

arguments (Guth, 1981; Sato, 1981; Linde, 1982) and second order effects (Bartolo et al.,

2004). Motivated by the upcoming cosmological experiments which will provide us with

very precise datasets, and by the detection of a positivefNL by Yadav & Wandelt(2008),

a plethora of early Universe models has been proposed which may produce a measurable

non-Gaussianity. SeeLyth & Wands(2002); Linde & Mukhanov(2006); Alabidi & Lyth

(2006); Mizuno et al.(2008); Khoury (2002); Steinhardt & Turok(2002); Lehners &

Steinhardt(2008) for an incomplete list.

In this chapter we propose a new two fields inflationary model (Boubekeur & Lyth,

2006), which gets inspiration from the curvaton scenario (Lyth & Wands, 2002; Lyth

et al., 2003), where the new degree of freedom, the auxiliary field, may significantly

contribute to the cosmological perturbations, and then reflect into a high level of non-

Gaussianity which does not violate the constraints of homogeneity and isotropy which

are well satisfied by the dynamics of the standard inflaton field.

We first briefly describe the inflation formalism and then discuss the peculiarities of

our model, focusing in particular on the 2- and 3-point correlation functions.
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A.1 Motivation for the model

The local expectation values of canonical, weakly coupled scalar fields,

φI(t,x) = φ̄I(t) + δφI(t,x) , (A.1)

whose effective mass is less than the Hubble scale during inflation, acquire an effectively

classical distribution on large (super-Hubble) scales.

Quantum vacuum fluctuations on small scales (k ≫ aH) lead to a distribution at

Hubble-exit (k∗ = aH) which is well described by independent Gaussian random fields

〈δφI∗(k)δφJ∗(k′)〉 = (2π)3δIJP∗(k)δ
3(k + k′) , (A.2)

with a dimensionless power spectrum

P∗(k) =
4πk3

(2π)3
P∗(k) . (A.3)

During slow-roll inflation we have

P∗(k) ≃
(
H

2π

)2

. (A.4)

Non-linear evolution on large scales (after Hubble exit) leads to non-Gaussianity in

the distribution of the scalar fields during inflation and as aresult the primordial den-

sity perturbation during the radiation dominated era, which we will characterise by the

dimensionless variableζ . At linear order we have

ζ = −Hδρ
ρ̇

, (A.5)

whereδρ is the density perturbation evaluated on spatially-flat hyper-surfaces. At non-

linear order it is more convenient to defineζ in terms of the perturbation in the local

integrated logarithmic expansion,N =
∫
Hdt, from an initial spatially-flat hyper-surface

during inflation to a uniform-density hyper-surface (Lyth & Rodriguez, 2005; Malik &

Wands, 2009)

ζ = δN . (A.6)

Because the expansion on large (super-Hubble) scales is a function of the initial local

value of the scalar fields at Hubble exit, the non-linear primordial density perturbation
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can simply be expressed as a Taylor series expansion (Lyth & Rodriguez, 2005)

ζ =
∑

I

N,IδφI∗ +
1

2

∑

I,J

N,IJδφI∗δφJ∗ + . . . , (A.7)

whereN,I = ∂N/∂φI∗. It can be shown that the second (and higher) derivatives along

the inflaton trajectory are suppressed by slow-roll parameters,N ′′/N ′2 = O(ǫ). Non-

Gaussianity generating during single-field, slow-roll inflation is thus suppressed.

It is informative to perform a rotation in field space along the inflaton trajectory during

inflation (the adiabatic perturbations,δσ) and orthogonal directions (the entropy pertur-

bations,δsJ ). In the simplest case of two fields, Eq.A.7 reduces to (Langlois et al., 2008)

ζ = N,σδσ∗ +N,sδs∗ +
1

2
N,ssδs

2
∗ + . . . , (A.8)

where we have dropped second-derivatives which involve adiabatic field perturbations

as these are suppressed during slow-roll inflation. Any significant non-Gaussianity from

slow-roll inflation is due to second order terms inζ coming from entropy field perturba-

tions during inflation,δs∗.

This δN-formalism can also be extended to describe non-linear isocurvature matter

perturbations. To linear order we have

S =
δρm
ρm

− 3

4

δργ
ργ

. (A.9)

Beyond linear order we define (Langlois et al., 2008)

1

3
S =

∑

I

∆N,IδφI∗ +
1

2

∑

I,J

∆N,IJδφI∗δφJ∗ + . . . , (A.10)

where∆N describes the difference in the integrated expansion between uniform-matter-

density hyper-surfaces and uniform-radiation-density hyper-surfaces. For adiabatic pri-

mordial perturbations the uniform-matter and uniform-radiation hyper-surfaces coincide

and isocurvature perturbations vanish,S = 0. Thus adiabatic field perturbations during

inflation do not contribute to isocurvature matter perturbations,∆Nσ = 0, and in the

simplest case of two fields we have (Langlois et al., 2008)

1

3
S = ∆N,sδs∗ +

1

2
∆N,ssδs

2
∗ + . . . . (A.11)



162 APPENDIX A. BEYOND THE STANDARD NON-GAUSSIANITY

Observational constraints to date have focussed upon the case of adiabatic perturba-

tions which are a local function of a single Gaussian random field,ζG, such that

ζ = ζG +
3

5
fNL

(
ζ2G − 〈ζ2G〉

)
. (A.12)

This comes from a single fields model, where we have dropped the quadratic term in the

number-of-efolds expansion.

ζG = N,sδs∗ , fNL =
5

6

N,ss

N 2
,s

. (A.13)

This is a good description of the type of non-Gaussianity expected in models such as the

original curvaton model where a single curvaton field decayssome time after inflation to

produce an adiabatic density perturbation. The curvaton model may also leave residual

isocurvature perturbations (dependent upon the process ofcurvaton decay and the origin

of the matter or CDM abundance) and these are correlated withthe adiabatic density

perturbation (Lyth et al., 2003).

However it is clear that at second order the non-linear expression ( Eq.A.7) for

ζ in the presence of more than one scalar field includes non-linear contributions from

field perturbations which are independent ofζG. Similarly the isocurvature perturbation

(Eq.A.10) contains non-linear terms some of which are uncorrelated with the first order

curvature or isocurvature perturbation. In particular, ifthe first-order part of the adiabatic

density perturbation is dominated by the adiabatic field perturbations during inflation,

ζG = N,σδσ∗, then this is uncorrelated with the entropy field perturbations during infla-

tion which give rise to non-Gaussianity in the adiabatic density perturbation or isocur-

vature matter perturbations. Such a situation may occur in amixed inflaton-curvaton

model (Langlois et al., 2008).

In what follows we will consider the non-Gaussianity due to second-order perturba-

tions in either the adiabatic density perturbation,ζ , or in the isocurvature perturbation,

S, which is uncorrelated with the first-order density perturbation,ζG:

ζ = ζG +
3

5
FNL

(
χ2
G − 〈χ2

G〉
)
, (A.14)

1

3
S = F iso

NL

(
χ2
G − 〈χ2

G〉
)
, (A.15)

where we choose the normalisation ofχG such that

PχG
= PζG . (A.16)
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In the extendedδN-formalism we can identify

FNL =
5

6

N,ss

N 2
,σ

, (A.17)

F iso
NL =

5

6

∆N,ss

N 2
,σ

. (A.18)

A simple example is provided by a scalar field,χ, whose mass is much less than

the Hubble scale during inflation,mχ ≪ H∗, which begins to oscillate some time after

inflation, once the Hubble rate has dropped below the massH < mχ. If the spatially

averaged value of the field after inflation is small,χ̄ ≪ H∗, then the oscillating field has

a highly non-Gaussian local energy density

ρχ ≃ m2
χδχ

2 . (A.19)

If it decays before primordial nucleosynthesis, and its decay products thermalise into full

thermal equilibrium, then we have an adiabatic density perturbation at second-order of

the form given in Eq.A.14. If the decay leaves a residual isocurvature perturbation then

it will be of the form given in Eq.A.15.

This model can be seen as a particular case of a multi-field hybrid inflation described

in Alabidi & Lyth (2006) with the choiceg = 0 in the expression of the mass of the

inflation driving fieldψ (their Eq. 2,m2
ψ = fφ2

e + gφeχ+ hχ2).

A.2 Power spectrum

Within the setup discussed above, Eq.A.14 and Eq.A.15 become

ζ(x) = ζG(x) +
3

5
fNL

[
ζ2G(x)− 〈ζ2G(x)〉

]
+

3

5
FNL

[
χ(x)2 − 〈χ2(x)〉

]

1

3
S(x) = F iso

NL

[
χ2(x)− 〈χ2(x)〉

]
(A.20)

whereζG is the curvature, which up to a sign is equal to the gravitational potentialΦ. In

the following analysis we assume the variables to be defined within the comoving gauge.
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We quote also the expression ink-space, where the quadratic term turns into a con-

volution integral:

ζ(k) = ζG(k) +
3

5
fNL

[ ∫ d3p

(2π)3
ζG(p)ζG(k− p)− (2π)3δ(3)(k)〈ζ2G(x)〉

]

+
3

5
FNL

[ ∫ d3p

(2π)3
χ(p)χ(k− p)− (2π)3δ(3)(k)〈χ2(x)〉

]
(A.21)

1

3
S(k) = F iso

NL

[ ∫ d3p

(2π)3
χ(p)χ(k− p)− (2π)3δ(3)(k)〈χ2(x)〉

]
(A.22)

The additionalχ field affects in the same way both the source of the adiabatic perturba-

tions and that of the isocurvature ones; in terms of the density fluctuations the difference

arises from the two proportionality factors,FNL andF iso
NL respectively, and the different

evolutions described by the transfer functions.

The statistical properties of the fields are usually studiedwith the 2-point correla-

tion function (2pcf) in harmonic space, the power spectrum.Based on the homogeneity

assumption we write the auto-correlation function1 as

〈χ2〉 ≡ 〈χ(x1)χ(x2)〉E = 〈χ(x)χ(x+ r)〉E, (A.23)

which translated into Fourier space becomes

〈χ(x)χ(x+ r)〉E =

∫
d3k

(2π)3
eik·x

∫
d3k′

(2π)3
eik

′·(x+r)〈χ(k)χ(k′)〉E

≡
∫

d3k

(2π)3
eikrPχ(k) (A.24)

where

〈χ(k)χ(k′)〉E ≡ (2π)3δ(k+ k′)Pχ(k) (A.25)

We define the power spectra for the two inflationary fields, according to the standard

definition, as

PζG(k) = AζG

∣∣∣ k
k0

∣∣∣
nζG

−4

(A.26)

Pχ(k) = Aχ

∣∣∣ k
k0

∣∣∣
nχ−4

. (A.27)

1Notice that the above definition reflects the ergodic limit that ensures

1

V

∫
d3xχ(x)χ(x + r) → 〈χ(x)χ(x + r)〉E
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Since in principle the two fields are independent, we allow the spectral indices to be

different and normalise the two power spectra to be equal at the scalek0 interesting for

the CMB. Adopting this convention we obtain a nearly constant power per logarithmic

interval (P(k) = 4πk3/(2π)3P (k)) whennζG/χ = 1. We stress that since the two fields

are independent the spectral indices are not bound to be equal; the latest constraints from

WMAP 5-yearsKomatsu et al.(2009) apply tonζG , whilenχ could span the entire range.

This actually is a specific and interesting feature of our model.

The 2pcf for the quantityζ leads to a term proportional to the power spectrum of

ζG and a second one which is a function of the power spectrum ofχ2. Any cross term

vanishes since both the two primordial fields are chosen so that their ensemble average

is zero. We are interested in evaluating the 2pcf for theδχ2 that represents the source for

the matter density perturbations. Computing the 4pcf for theχ field in Fourier space and

applying Wick’s theorem we obtain the following result:

〈
χ2(x)χ2(x+ r)

〉
= 2

∫
d3k

(2π)3
d3k′

(2π)3
P (k)P (k′)ei(k+k′)·r =

= 2

∫
d3k

(2π)3
eik·r

∫
d3k′

(2π)3
Pχ(k

′)Pχ(k− k′) (A.28)

According to the definition of the power spectrum, Eq.A.25, we identify the explicit

form of the power spectrum forχ

Pχ2(k) ≡ 2

∫
d3p

(2π)3
Pχ(p)Pχ(k− p) (A.29)

which results a convolution integral of the power spectrum of the primordial inflationary

light field.

The curvature and the isocurvature sources seed directly the density field: indeed

we can express the density ink-space as a superposition of adiabatic and isocurvature

modes, each of those with the proper transfer function. Initial conditions forζ andS are

set in the early radiation epoch, while the matter density isgenerally defined in the matter

domination era like

δc(k, t) =
2

5

( k

aH
)2(

T curv(k, t)ζ(k) +
1

3
T iso(k, t)S(k)

)
(A.30)

where the subscript “c” reminds the comoving perturbation. Substituting Eqs.A.20 into

Eq.A.30 we obtain the expression of the density as a function of the primordial sources:

δc(k, t) =
2

5

( k

aH
)2[

T curv(k, t)
(
ζG(k) +

3

5
fNLζ

2
G(k)

)
+

3

5
FNLT

mix(k, t)χ2(k)
]

(A.31)
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where we defined:

FNLT
mix(k, t) ≡ [FNLT

curv(k, t) +
1

3

5

3
F iso
NLT

iso(k, t)] (A.32)

We explicitly factorise out the dependence on the scale factor and the Hubble parameter

to match the usual normalisation of the transfer function onlarge scales,T curv/isok→0 = 1.

We simply mention that when dealing with matter density perturbations one compli-

cation arises since we do not measure the dark matter densitydirectly, but only through

a tracer which shows a bias in the growth of the perturbations. The bias may be scale

dependent, making the full treatment much more challenging. In what follows we will

ignore this contribution.

Once we compute the 2pcf for the primordial sources it is straightforward to write the

power spectrum for the density field via Eq.A.31

Pδc(k, t) =
4

25

( k

aH
)4[

(T curv(k, t))2(PζG(k)+
9

25
fNLPζ2

G
(k))+

9

25
F 2
NL(T

mix(k, t))2Pχ2(k)
]

(A.33)

wherePζ2
G

is defined analogously to Eq.A.29. Notice that the cross term betweenζG and

χ2 vanishes becauseζG is a Gaussian field with mean value vanishing.

In the next section we address the3-point correlation function (3pcf) formalism.

A.3 Bispectrum

For a Normal distribution the odd moments are vanishing while the even ones can be

given as function of the first and second moment, i.e. the meanvalue and the standard

deviation. The first term one has to look at in order to measuredeviation from the Gaus-

sian distribution is the third moment.

The 3pcf forζ picks up contributions both fromζG andχ, but none from the cross

term. The reason can be found again in the zero mean value of the fields. The first non-

linear bit is proportional tofNL and has been first proposed byKomatsu & Spergel(2001)

and it has become the standard approach in the literature.

ForFNL = 0 we obtain the standard non-Gaussian term, given by:

〈
ζ(k1)ζ(k2)ζ(k3)

〉
= 2(2π)3δ(3)(k1 + k2 + k3)fNL[PζG(k1)PζG(k2)

+ PζG(k1)PζG(k3) + PζG(k3)PζG(k2)] (A.34)
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In order to help the comparison in the following, we report the non-linear correction to

the shape of 3pcf for the density field in the standard scenario:

〈δc(k1)δc(k2)δc(k3)〉 = 2(2π)3δ(3)(k1 + k2 + k3)
8

125

( k1

aH
)2( k2

aH
)2( k3

aH
)2
fNL

× T curv(k1)T
curv(k2)T

curv(k3)
〈
ζG(k1)ζG(k2)ζG(k3)

〉
(A.35)

ForFNL 6= 0 andfNL = 0 we need the3-point correlation function for theχ2 field. Once

again we start with the6-point correlation function for the primordial fieldχ and apply

the Wick’s theorem. Here we summarise the results.

〈
ζ(k1)ζ(k2)ζ(k3)

〉
=

8

125
F 3
NL

〈
χ2(k1)χ

2(k2)χ
2(k3)

〉
=

= (2π)3δ(3)(k1 + k2 + k3)
8

3

8

125

(
FNL

)3 ∫ d3k

(2π)3
Pχ(k)

×
[
Pχ(k1 + k)Pχ(k2 − k) + Pχ(k2 + k)Pχ(k3 − k) +

+ Pχ(k3 + k)Pχ(k1 − k)
]

(A.36)

where we have explicitly symmetrised with respect toki.

The main difference with respect to the standard non-Gaussian term arises from the

convolution integral present in Eq.A.36 which makes the computation rather compli-

cated. Moreover in the standard case the parameterfNL appears linearly in the expres-

sion, while the 3pcf forχ2 is proportional toF 3
NL.

It is possible to derive the 3pcf for the density field that results

〈δc(k1)δc(k2)δc(k3)〉 =
8

125

( k21
a2H2

)( k23
a2H2

)( k23
a2H2

)(3
5

)3
F 3
NL

× Tmix(k1)T
mix(k2)T

mix(k3)
〈
χ2(k1)χ

2(k2)χ
2(k3)

〉
(A.37)

Numerical Evaluation

Assuming for the power spectrum the shapePχ(k) = A
∣∣k/k0

∣∣n−4
, we can approximate

the integral overk in Eq. A.36, under the assumption that the most contribution comes

from the poles, as

∫
d3k

(2π)3
Pχ(k)Pχ(k2 − k)Pχ(k3 + k) ≃

= (Pχ(k1)Pχ(k2) + Pχ(k1)Pχ(k3) + Pχ(k2)Pχ(k3))

∫
d3k

(2π)3
Pχ(k) =

= 〈χ2(x)〉(Pχ(k1)Pχ(k2) + Pχ(k1)Pχ(k3) + Pχ(k2)Pχ(k3)) (A.38)
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where we used the result〈χ2(x)〉 =
∫

d3k
(2π)3

Pχ(k) (see Eq.??). It is worth stressing that

this derivation is valid under the assumption of ared power spectrum, i.e.n = 1−ε with

ε > 0, that requires an infra-red (IR) cut-off in order to keep finite the two point corre-

lation function, namely the mean value of the squared field. In this case the majority of

the contribution to the integral comes from two poles, as long as the scales which we are

interested in are greater than the IR cut-off. Notice that the divergence is present only at

the level of the power spectrum, since the two-point and three-point correlation functions

in χ2 are finite, since they come from four-point and six-point correlation functions for

the fieldχ. More interesting with this approximation we obtain an expression very close

to Eq.A.34, allowing us to implement the standard estimator developedby Komatsu et al.

(2005); Creminelli et al.(2006). This is the basic assumption on which most of the recent

worksEnqvist & Takahashi(2008); Ichikawa et al.(2008); Kawasaki et al.(2008, 2009)

on non-Gaussianity are built. It is perfectly reasonable ifthe spectral indexnχ is bound

to be close tonζG , which indeed has been tightly constrained from the WMAP 5-years

data analysisKomatsu et al.(2009) to bens = 0.960± 0.013.

Even in the case of abluepower spectrum, i.e.n = 1+ ε the divergence is present at

the level of the power spectrum only, this time an ultra-violet (UV) divergence. We need

a high-k cut-off in order to keep finite the two-point correlation function inχ.

It is possible to obtain a simple expression for the two-point correlation function in

χ2, given by

〈χ2(k)χ2(k1)〉 ∝ 2

∫
d3p

(2π)3
Pχ(p)Pχ(k1 − p), n = 1 + ε

= 2 k−2n+3
1

∫
d3z

(2π)3
Pχ(z)Pχ(k̂1 − z). (A.39)

where we used the rescalingk = zk1. The integral in the equation above is simply a

number that can be computed numerically, while the scale dependence is factorised.

Not as simple is the case of the3-point correlation function, since we still factorise

the dependence on one single scale, namelyk1, but we are left with an integral function

of the two anglesα andβ, as can be seen in the following expression:

〈χ2(k1)χ
2(k2)χ

2(k3)〉 ∝
∫

d3k

(2π)3
P (k)P (k2 − k)P (k3 + k) =

= k
3(n−4)+3
1 ×

∫
d3k

(2π)3
P (z)P

( sinα

sin(α+ β)
k̂2 − z

)

P
( sin β

sin(α + β)
k̂3 + z

)
(A.40)
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wherek1 is one of the three scales which build the triangle andα andβ are the two

angles that the other two scales form withk1. The formula above is actually rather

complicated since the expressions ofα andβ are non-linear functions ofki, with the

constraintα+β 6= 0, π, that actually is anything else than the closed triangle requirement.

Nevertheless, the limitα + β . π is particularly interesting, because it represents the

squeezed configurations. The configuration in which the threeks are aligned is described

byα = β = 0, for which the expression above is well defined. It is possible to distinguish

the equilateralconfiguration and thesqueezedone. The former hask1 = k2 = k3 and

α = β = γ = π/3; the latter is characterised byk1 << k2 ∼ k3, which is translated into

α ∼ β . π/2. The caseα ∼ γ << β . π represents co-linear configurations.

α and r parameterisation In order to compute the integral (A.40) we choose a specific

reference frame: the triangle lies in theẑx− ẑy plane, beingk1 = ẑx along the horizontal

axis. To completely describe the configuration it is necessary to specify the ratio between

the two sides, namelyr ≡ k3/k1. Using this parameterisation it is possible to span with

continuity the whole parameter space.

In order to find which of the described configurations contributes mainly to the inte-

gral, we perform a numerical computation of Eq.A.38 using the above parameterisation.

Results are shown for both our model and the standard non-Gaussianity in Fig.A.1.

The two plots look pretty similar. In order to understand what is going on, we re-write

Figure A.1: Left panel: power of theconvolution integral; middle panel: power of the 3pcf in
standard non-Gaussianity. The two quantities are expressed as functions ofα andr and computed
for ns = 1.1 (blue tilt). The third panel shows the ratio between the two:indeed it is very close
to 1, with small deviations due to numerical accuracy.

Eq.A.34 in terms of the variablesα andr:

〈ζG(k1)ζG(k2)ζG(k1)〉 ∝ PζG(k1)PζG(k2) + PζG(k3)PζG(k2) + PζG(k1)PζG(k3)

= P 2n−8
ζG

(k1)[(1 + r2 − 2r cosα)(n−4)/2 + rn−4

+ (r
√
1 + r2 − 2r cosα)n−4] (A.41)
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Figure A.2: Left panel: power of theconvolution integral; middle panel: power of the 3pcf in
standard non-Gaussianity. The two quantities are expressed as functions ofα andr and computed
for ns = 3.0 (strong blue tilt). The third panel shows the ratio between the two which turns out
to be quite far from1 as expected.

The first important thing to notice is that the dependence onk1 is different from ours, and

they agree only in the peculiar casen = 1. Looking at the expressionA.41 the behaviour

for r ≃ 1 andα = 0 becomes clear: two poles tend to coincide and then, even if weare

studying a blue power spectrum that does not require an IR cut-off, the square of such a

blue spectrum is red and needs an IR cut off. The higher power for r, independently of

the angleα can be explained in the same way: two poles tend to coincide again. This

explain also why the power is a little bit higher forα & 0 then forα . π: the contribution

from the third pole is slightly higher. Basically the effectwe see is the contribution of the

poles. Probably on smaller power intensity it is possible todistinguish specific features

characteristic of the chosen spectral index.

A.4 fNL estimator

The optimal estimator for a quantityQth is generically given by the product ofQ by the

observed quantity,Qobs normalised to the square of the theoretical value. In the case of

the non-linear parameterfNL we can then write

fNL =

∑
k
δobsc (k1)δ

obs
c (k2)δ

obs
c (k3)Cov−1〈δthc (k′

1)δ
th
c (k′′

2)δ
th
c (k′′′

3 )〉∑
k δ

th
c (k1)δthc (k2)δthc (k3)Cov−1〈δthc (k′

1)δ
th
c (k′′

2)δ
th
c (k′′′

3 )〉
(A.42)

whereo is a suitable observable,Cov is the covariance matrix given by the 6-point cor-

relation function times the transfer function for the considered observable. The standard

choices foro are the CMB fluctuations (Komatsu et al., 2005) and the baryon density

ones (Slosar et al., 2008).

A.4.1 Primordial Bispectrum

We are interested in computing the bispectrum for non standard inflationary models, like

the curvaton modelLyth & Wands(2002), in which the contribution to density pertur-
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bations coming from the non linear potential con be large. Inthis context large means

fNL ∼ 100, that seems to be very exciting especially because it would be in agreement

with the recent claimfNL ∼ 90 stated byYadav & Wandelt(2008).

The primordial scalar fluctuations can be constrained by theanalysis of the Cosmic

Microwave Background (CMB) radiation. This analysis is usually carried on expanding

the relative temperature fluctuations on the Spherical Harmonics basis

∆T (γ̂)

T0
=
∑

ℓm

aℓmYℓm(γ̂)aℓm =

∫
dΩ

∆T (γ̂)

T
Y ∗
ℓm(γ̂),

The coefficients of the expansion,aℓm can be express in term of the primordial potential

Φ of the inflationary fields that determines the primordial curvature perturbations, both

adiabatic and isocurvature ones.

aℓm = 4π(−i)ℓ
∫

d3k

(2π)3

[
ζad(k)gadTℓ + Siso(k)gisoT ℓ

]
Y ∗
ℓm(k̂) (A.43)

wheregad/isoT ℓ are the radiation transfer functions for adiabatic and isocurvature modes

respectively.

The non-linear part of the potentials transfers intoaℓm, introducing a non-Gaussian

contribution into the temperature fluctuations. The CMB angular bispectrum is defined

as

Bm1m2m3
ℓ1ℓ2ℓ3

≡ 〈aℓ1m1aℓ2m2aℓ3m3〉, (A.44)

It is useful to define the angular averaged bispectrum, givenby

Bℓ1ℓ2ℓ3 =
∑

all m

(
ℓ1 ℓ2 ℓ3

m1 m2 m3

)
Bm1m2m3
ℓ1ℓ2ℓ3

, (A.45)

where the matrix is the Wigner-3j symbol. Since the bispectrum satisfies the triangle

conditions and parity invariance:m1+m2+m3 = 0, ℓ1+ℓ2+ℓ3 = even, and|ℓi − ℓj| ≤
ℓk ≤ ℓi + ℓj for all permutations of indexes, it basically consists of the Gaunt integral,

Gm1m2m3

ℓ1ℓ2ℓ3
times an arbitrary real symmetric function ofℓ1, ℓ2 andℓ3, bℓ1ℓ2ℓ3:

Bm1m2m3

ℓ1ℓ2ℓ3
= Gm1m2m3

ℓ1ℓ2ℓ3
bℓ1ℓ2ℓ3 , (A.46)

Gm1m2m3
ℓ1ℓ2ℓ3

≡
∫
d2γ̂Yℓ1m1(γ̂)Yℓ2m2(γ̂)Yℓ3m3(γ̂) (A.47)

Gm1m2m3
ℓ1ℓ2ℓ3

is real, and satisfies all the rotational invariance conditions mentioned above.

This allows us to focus on the so-calledreducedbispectrum,bℓ1ℓ2ℓ3 Komatsu & Spergel
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(2001). The angle-averaged bispectrum can be expressed in term ofthe reduced one as

Bl1l2l3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)
bl1l2l3, (A.48)

where we used the relation??.

The bispectrum looks like

Bm1m2m3
ℓ1ℓ2ℓ3

=
〈
aNL
ℓ1m1

aNL
ℓ2m2

aNL
ℓ3m3

〉

= (4π)3(−i)ℓ1+ℓ2+ℓ3
∫

d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3

gTℓ1(k1)gTℓ2(k2)gTℓ3(k3)Y
∗
ℓ1m1

(k̂1)Y
∗
ℓ2m2

(k̂2)Y
∗
ℓ3m3

(k̂3)
〈
ζ(k1)ζ(k2)ζ(k3)

〉
(A.49)

where in the standard case the 3pcf for the curvature is givenby Eq.A.34, while in our

model it is given by Eq.A.36. By means of the Rayleigh’s formula we can expand the

δ(3) function which is hidden in the 3pcf for the curvature perturbations in the expression

above. The crucial step in performing the computation is expanding Dirac’s delta in the

Fourier basis, expressing the exponential in terms of the Bessel’s functions and spherical

harmonics. We can perform the integrals over the angular part which lead to three Gaunt’s

integrals. One of these describes the invariance property of the bispectrum under rotations

and the requirements of parity symmetry and triangle relations imply (Eq.A.46), while

the others take into account the coupling betweenk-modes, which in the standard case

is vanishing. In this particular case, it is possible to simply further the expression of

the bispectrum exploiting the orthogonality of the spherical harmonics. We obtained the

usual form of the bispectrum:

Bm1m2m3

ℓ1ℓ2ℓ3
= 2fNLGm1m2m3

ℓ1ℓ2ℓ3

∫
x2 dx

[
αℓ1(x)βℓ2(x)βℓ3(x) + perms

]
(A.50)

where

αℓ(x) ≡ 2

π

∫
k2 dkgTℓ(k)jℓ(kx);

βℓ(x) ≡ 2

π

∫
k2 dk gTℓ(k)jℓ(kx)PζG(k) (A.51)
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To make explicit the link with the formalism described above, we can identify the integral

over the radial coordinate as the reduced bispectrum:

bℓ1ℓ2ℓ3 = 2fNL

∫
x2 dx

[
αℓ1(x)βℓ2(x)βℓ3(x)+βℓ1(x)αℓ2(x)βℓ3(x)+βℓ1(x)βℓ2(x)αℓ3(x)

]

In the model we are considering, due to the coupling betweenk-modes induced by the

3pcf of the perturbation sources, we obtain for the bispectrum the following expression:

Bm1m2m3

ℓ1ℓ2ℓ3
= Gm1m2m3

ℓ1ℓ2ℓ3

8

3
F 3
NL

∫
x2 dx

∫
p2 dpP (p)

[ ∑

ℓ′2ℓ
′

3L

F ℓ1ℓ2ℓ3
ℓ′2ℓ

′

3L

2

π

∫
k21 dk1gTℓ1(k1)jℓ1(k1x)

2

π

∫
k22 dk2gTℓ2(k2)P̃

−
L (k2, p)jℓ′2(k2x)(−i)

ℓ2−ℓ′2

2

π

∫
k23 dk3gTℓ3(k3)P̃

+
L (k3, p)jℓ′3(k3x)(−i)

ℓ3−ℓ′3 + perms
]

(A.52)

where we decomposed the power spectrum into spherical harmonics andF ℓ1ℓ2ℓ3
ℓ′2ℓ

′

3L
is de-

fined in the Appendix and is function of3j and6j Wigner symbols. Notice that the three

integrals overdki would reduce toα(x) if there was notki dependence of the quantities

P̃±
L (ki, p). This effect is due to the coupling between different modes introduced by the

convolution integral in 3pcf. Nonetheless we are able to separate the dependence onmi

which would break the rotational invariance of the bispectrum.

Bispectrum estimator

Our aim is to find a computationally fast estimator for the bispectrum, following the one

that was first proposed byKomatsu et al.(2005) and subsequently improved byCrem-

inelli et al. (2006) taking into account anisotropic partial sky coverage, andfinally ex-

tended to include properly CMB polarisation (seeYadav et al.(2007) andYadav et al.

(2008)).

We go through the fundamental steps again that lead to the fast cubic estimator in or-

der to define quantities that will enter in our formalism later on. A very natural definition

of aℓm that comes straight-forwardly from the above calculationsis the following

aℓm = wℓ

∫
x2 dx

[
ζℓm(x)α

ad
ℓ (x) + Sℓm(x)α

iso
ℓ (x)

]
+ nℓm (A.53)

whereSℓm(x)s are the harmonic coefficients of the fluctuations at given comoving dis-

tancex = |x|, wℓ represents the beam effect andnℓm the instrumental noise that for
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simplicity reasons we assume to be approximate by〈nℓmnℓ′m′〉 ≃ σ2
0δℓℓ′δmm′ . The func-

tionsαs are defined in Eq.A.51. Naively, an unbiased estimator of the angle-averaged

bispectrum can be constructed by the observedaℓm as follows:

B̂ℓ1ℓ2ℓ3 =
∑

m

(
ℓ1 ℓ2 ℓ3

m1 m2 m3

)
aℓ1m1aℓ2m2aℓ3m3 (A.54)

For a full description of the estimator seeSpergel & Goldberg(1999); Komatsu & Spergel

(2001). The covariance matrix of the estimator can be computed by the six points corre-

lation function foraℓm, provided that non-Gaussianity is weak, i.e.
〈
Bℓ1ℓ2ℓ3

〉
∼ 0, Luo

(1994); Heavens(1998). The diagonal terms forℓi 6= 0 andℓ1 + ℓ2 + ℓ3 = even are

〈B2
ℓ1ℓ2ℓ3

〉 = 〈Cℓ1〉〈Cℓ2〉〈Cℓ3〉∆ℓ1ℓ2ℓ3 (A.55)

∆ℓ1ℓ2ℓ3 ≡ (1 + 2δℓ1ℓ2δℓ2ℓ3 + δℓ1ℓ2 + δℓ2ℓ3 + δℓ3ℓ1).

The variance is amplified by a factor of 2 or 6, when two or alll’s are same, respectively.

In presence of sky cuts the previous results for∆ℓ1ℓ2ℓ3 do not hold anymore and a numer-

ical simulation has to be performed in order to obtain realistic values for the coefficients

in front ofCℓs. Some hints can be found inKomatsu(2002).

Standard non-Gaussianity estimator. We are interested in the best estimator for the

primordial non-Gaussianity bispectrum of which we know thespecific shape. We can

then think it as a Wiener filter that satisfies the relation

∂

∂Oℓ(x)
〈|Oℓ(x)aℓm − ζℓm(x)|〉 = 0 (A.56)

and we find

Oℓ(x) =
wℓ
∫

dx′x′2αℓ(x
′)〈ζℓm(x′)ζ∗ℓm(x)〉
Cℓ

(A.57)

whereζℓm(x) is the coefficient of the spherical harmonics expansion of the primordial

curvature perturbation. In the simple case of standard non-Gaussianity we can express

the 2pcf ofζℓm(x) like

〈ζℓm(x)ζ∗ℓ′m′(x′)〉 = δℓℓ′δmm′

2

π

∫
k2 dkP (k)jℓ(kx)jℓ(kx

′) ≡ δℓℓ′δmm′D(x, x′) (A.58)

which substituted back into Eq.A.57 gives

Oℓ(x) =
βℓ(x)wℓ

Cℓ
, (A.59)
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where the functionβℓ(x) is given again by Eq.A.51and we used the completeness relation

of the Bessel’s functions, Eq.??. A useful summary of the relations which linkαℓ(x),

βℓ(x) andD(x, x′), which is the integral in Eq.A.58, are given inBabich(2005); Yu &

Lu (2008).

Here we implicitly assume that adiabatic and isocurvature modes are not correlated

and we can focus on one of the two separately. SeeKomatsu et al.(2005) for a detailed

discussion.

We can recognise in the previous definitions some of the quantities present in the

expression of the bispectrum, Eq.A.50. The fast cubic estimatoris built filtering the

measuredaℓm in order to obtain two maps, A and B, given by

A(x, γ̂) ≡
∑

ℓm

αℓ(x)wℓ
Cℓ

aℓmYℓm(γ̂) (A.60)

B(x, γ̂) ≡
∑

ℓm

βℓ(x)wℓ
Cℓ

aℓmYℓm(γ̂) (A.61)

and computing the integral

Sprim ≡ 4π

∫
x2 dx

∫
dΩ

4π
A(x, γ̂)B2(x, γ̂) (A.62)

By direct inspection it can be verified that Eq.A.62 reduces to

Sprim =
∑

ℓ1≤ℓ2≤ℓ3

Bobs
ℓ1ℓ2ℓ3

Bprim
ℓ1ℓ2ℓ3

Cℓ1Cℓ2Cℓ3
(A.63)

whereBobsℓ1ℓ2ℓ3 is the observed bispectrum corrected for the beam effect,wℓ, andBprim
ℓ1ℓ2ℓ3

is

the theoretical one derived in Eq.A.50 averaged overm and computed forfNL = 1. The

Cℓ at the denominator of Eq.A.63 are those extracted from the observed sky, given by

Cℓ = w2
ℓCℓ + σ2

0.

We can then derive the value offNL simply computing the ratio between theSprim in

Eq.A.63 and the theoretical expectation for the same quantity, as:

fNL =
Sprim

∑
ℓ1<ℓ2<ℓ3

(Bprim
ℓ1ℓ2ℓ3

)2

Cℓ1Cℓ2Cℓ3

(A.64)

For a generalisation of this estimator which takes into account both temperature and

polarisation seeYadav et al.(2007).
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Estimator for the non-standard Term. In order to build a similar estimator for our

model we have to compare Eq.A.52with Eq.A.50. As already mentioned the three point

correlation function for a curvaton-like model shows an angular dependence that prevents

us computing the product of several spherical harmonics.

The above estimator is build following the prescription fora matching filter: basi-

cally the real signal is multiplied by the theoretical one and the product is weighted with

the variance of the quantity under consideration, in this case the three point correlation

function.

As a first step we can try to apply the standard estimator to ourmodel to see how

sensitive it is. Formally we simply substitute the theoretical bispectrum computed for

fNL = 1 in Eq.A.64 with the one computed for the one underlying our theory forFNL =

1. We obtain

F 3
NL =

∑
ℓ1<ℓ2<ℓ3

Bobs
ℓ1ℓ2ℓ3

Bprim
ℓ1ℓ2ℓ3

|FNL=1

Cℓ1Cℓ2Cℓ3
∑

ℓ1<ℓ2<ℓ3

(Bprim
ℓ1ℓ2ℓ3

|fNL=1)2

Cℓ1Cℓ2Cℓ3

(A.65)

We can not computeFNL directly by means ofSprim because theαℓ(r) andβℓ(r) functions

have been obtained under the standard non-linear coupling assumptions. Nonetheless, if

the approximation we discussed in Sec.A.3 lasts, it is possible to apply the fast cubic

estimator, once replacing the power spectrum forζG by Pχ(k).

A more rigorous approach would require the computation of the optimum filterOℓ

starting from the same definition given in Eq.A.56.

Flat sky and large scales (SW) approximations. The fast cubic estimator can be eas-

ily computed making use of temperature maps. Inspired by this consideration we try to

build an estimator for our model in real space. We simplify further the system using the

flat sky approximation under the assumption that the radiation transfer function is a Dirac

delta in space. A bispectrum estimator, under the previous assumptions, looks like

S =

∫
d2n

∫
d2p

∫
d2k

∫
d2k′

∫
d2k′′ei(k+k′+k′′)·n

Pχ(p)
δTk
Ck

Pχ(|p− k′|)δTk′
Ck′

Pχ(|p+ k′′)
δTk′′

Ck′′
+ perms = (A.66)

=

∫
d2n

∫
d2pA(p,n)B(p,n)C(p,n)
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where we defined

A(p,n) ≡
∫

d2keik·nPχ(p)
δTk
Ck

B(p,n) ≡
∫

d2k′eik
′·nPχ(|p− k′|)δTk′

Ck′

C(p,n) ≡
∫

d2k′′eik
′′·nPχ(|p+ k′′|)δTk′′

Ck′′

Now we recognise that it is possible to identify the above expressions as Fourier compo-

nents:

A(y,n) =

∫
d2pA(p,n)eip·y =M(n)P ′

χ(y)

B(y,n) =

∫
d2pB(p,n)eip·y =M(n+ y)P ′

χ(y)

C(y,n) =

∫
d2pA(p,n)eip·y =M(n− y)P ′

χ(y)

whereP ′(y) is the Fourier transform of the power spectrum andM(x) is real map

weighted with its variance.

Now in order to simplify the computation we write the Fouriercomponents Eqs.A.67

in terms of the Eqs.A.67. To clarify this we write only the first map

A(p,n) =

∫
d2xe−ip·xM(n)P ′

χ(x) (A.67)

Substituting into Eq.A.66 and using the resulting Dirac’s delta function to perform one

spatial integral we obtain

S =

∫
d2n

∫
d2x

∫
d2yM(n)P ′

χ(x)M(n + y)P ′
χ(y)M(n+ x+ y)P ′

χ(−x− y)

(A.68)

This basically is a product in real space of all possible combinations between pixels

related by a triangle relation. This scales as the number of pixels cube and then is com-

putationally challenging.

A.5 Conclusion

In this chapter we introduced a viable early Universe model based on a curvaton-like

scenario and computed the two and three point correlation functions, both in real and k-

space. Due to the quadratic term in the curvature expansion,the bispectrum estimators

become rather complicated and their treatment in the CMB context is computationally
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prohibitive. We studied these functions in a regime very close to the scale invariance,

where the standard approach can be resembled. We tested its behaviour by means of

a numerical code, which actually confirmed the theoretical intuition: when the power

spectrum of the auxiliary field is far from being invariant, the approximations breaks

down and a different analysis is necessary. We attempted to build an estimator suitable

for this new model, but its numerical evaluation turns out tobe extremely long. An

improvement of such formalism is currently under investigation.
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