AccBou(TRHPWN).tex

FOCK REPRESENTATION OF THE RENORMALIZED HIGHER POWERS OF WHITE NOISE AND THE VIRASORO-ZAMOLODCHIKOV $-w_{\infty} *-$ LIE ALGEBRA

LUIGI ACCARDI AND ANDREAS BOUKAS

Abstract

The identification of the $*$-Lie algebra of the renormalized higher powers of white noise (RHPWN) and the analytic continuation of the second quantized VirasoroZamolodchikov $-w_{\infty}{ }^{*}$-Lie algebra of conformal field theory and high-energy physics, was recently established in [3] based on results obtained in [1] and 2]. In the present paper we show how the RHPWN Fock kernels must be truncated in order to be positive definite and we obtain a Fock representation of the two algebras. We show that the truncated renormalized higher powers of white noise (TRHPWN) Fock spaces of order ≥ 2 host the continuous binomial and beta processes.

1. The RHPWN and Virasoro-Zamolodchikov- $w_{\infty} *$-Lie algebras

Let a_{t} and a_{s}^{\dagger} be the standard boson white noise functionals with commutator

$$
\left[a_{t}, a_{s}^{\dagger}\right]=\delta(t-s) \cdot 1
$$

where δ is the Dirac delta function. As shown in [1] and [2], using the renormalization

$$
\begin{equation*}
\delta^{l}(t-s)=\delta(s) \delta(t-s), \quad l=2,3, \ldots \tag{1.1}
\end{equation*}
$$

for the higher powers of the Dirac delta function and choosing test functions $f: \mathbb{R} \rightarrow \mathbb{C}$ that vanish at zero, the symbols

$$
\begin{equation*}
B_{k}^{n}(f)=\int_{\mathbb{R}} f(s) a_{s}^{\dagger^{n}} a_{s}^{k} d s ; n, k \in\{0,1,2, \ldots\} \tag{1.2}
\end{equation*}
$$

with involution

$$
\begin{equation*}
\left(B_{k}^{n}(f)\right)^{*}=B_{n}^{k}(\bar{f}) \tag{1.3}
\end{equation*}
$$

and

[^0]\[

$$
\begin{equation*}
B_{0}^{0}(f)=\int_{\mathbb{R}} f(s) d s \tag{1.4}
\end{equation*}
$$

\]

satisfy the RHPWN commutation relations

$$
\begin{equation*}
\left[B_{k}^{n}(g), B_{K}^{N}(f)\right]_{R H P W N}:=(k N-K n) B_{k+K-1}^{n+N-1}(g f) \tag{1.5}
\end{equation*}
$$

where for $n<0$ and/or $k<0$ we define $B_{k}^{n}(f):=0$. Moreover, for $n, N \geq 2$ and $k, K \in \mathbb{Z}$ the white noise operators

$$
\hat{B}_{k}^{n}(f):=\int_{\mathbb{R}} f(t) e^{\frac{k}{2}\left(a_{t}-a_{t}^{\dagger}\right)}\left(\frac{a_{t}+a_{t}^{\dagger}}{2}\right)^{n-1} e^{\frac{k}{2}\left(a_{t}-a_{t}^{\dagger}\right)} d t
$$

satisfy the commutation relations

$$
\begin{equation*}
\left[\hat{B}_{k}^{n}(g), \hat{B}_{K}^{N}(f)\right]_{w_{\infty}}:=((N-1) k-(n-1) K) \hat{B}_{k+K}^{n+N-2}(g f) \tag{1.6}
\end{equation*}
$$

of the Virasoro-Zamolodchikov- w_{∞} Lie algebra of conformal field theory with involution

$$
\left(\hat{B}_{k}^{n}(f)\right)^{*}=\hat{B}_{-k}^{n}(\bar{f})
$$

In particular, for $n=N=2$ we obtain

$$
\left[\hat{B}_{k}^{2}(g), \hat{B}_{K}^{2}(f)\right]_{w_{\infty}}=(k-K) \hat{B}_{k+K}^{2}(g f)
$$

which are the commutation relations of the Virasoro algebra. The analytic continuation $\left\{\hat{B}_{z}^{n}(f) ; n \geq 2, z \in \mathbb{C}\right\}$ of the Virasoro-Zamolodchikov- w_{∞} Lie algebra, and the RHPWN Lie algebra with commutator $[\cdot, \cdot]_{R H P W N}$ have recently been identified (cf. [3]) thus bridging quantum probability with conformal field theory and high-energy physics.
Notation 1. In what follows, for all integers n, k we will use the notation $B_{k}^{n}:=B_{k}^{n}\left(\chi_{I}\right)$ where I is some fixed subset of \mathbb{R} of finite measure $\mu:=\mu(I)>0$.
2. The action of the RHPWN operators on the Fock vacuum vector Φ
2.1. Definition of the RHPWN action on the Fock vacuum vector Φ. To formulate a reasonable definition of the action of the RHPWN operators on Φ, we go to the level of white noise.
Lemma 1. For all $t \geq s \geq 0$ and $n \in\{0,1,2, \ldots\}$

$$
\left(a_{t}^{\dagger}\right)^{n}\left(a_{s}\right)^{n}=\sum_{k=0}^{n} s_{n, k}\left(a_{t}^{\dagger} a_{s}\right)^{k} \delta^{n-k}(t-s)
$$

where $s_{n, k}$ are the Stirling numbers of the first kind with $s_{0,0}=1$ and $s_{0, k}=s_{n, 0}=0$ for all $n, k \geq 1$.

Proof. As shown in [4], if $\left[b, b^{\dagger}\right]=1$ then

$$
\begin{equation*}
\left(b^{\dagger}\right)^{k}(b)^{k}=\sum_{m=0}^{k} s_{k, m}\left(b^{\dagger} b\right)^{m} \tag{2.1}
\end{equation*}
$$

For fixed $t, s \in \mathbb{R}$ we define b^{\dagger} and b through

$$
\begin{equation*}
\delta(t-s)^{1 / 2} b^{\dagger}=a_{t}^{\dagger}, \text { and } \delta(t-s)^{1 / 2} b=a_{s} \tag{2.2}
\end{equation*}
$$

Then $\left[b, b^{\dagger}\right]=1$ and the result follows by substituting (2.2) into (2.1).
Proposition 1. For all integers $n \geq k \geq 0$ and for all test functions f

$$
\begin{equation*}
B_{k}^{n}(f)=\int_{\mathbb{R}} f(t)\left(a_{t}^{\dagger}\right)^{n-k}\left(a_{t}^{\dagger} a_{t}\right)^{k} d t \tag{2.3}
\end{equation*}
$$

Proof. For $n \geq k$ we can write

$$
\left(a_{t}^{\dagger}\right)^{n}\left(a_{s}\right)^{k}=\left(a_{t}^{\dagger}\right)^{n-k}\left(a_{t}^{\dagger}\right)^{k}\left(a_{s}\right)^{k}
$$

Multiplying both sides by $f(t) \delta(t-s)$ and then taking $\int_{\mathbb{R}} \int_{\mathbb{R}} \ldots d s d t$ of both sides of the resulting equation we obtain

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} f(t)\left(a_{t}^{\dagger}\right)^{n}\left(a_{s}\right)^{k} \delta(t-s) d s d t=\int_{\mathbb{R}} \int_{\mathbb{R}} f(t)\left(a_{t}^{\dagger}\right)^{n-k}\left(a_{t}^{\dagger}\right)^{k}\left(a_{s}\right)^{k} \delta(t-s) d s d t
$$

which, after applying (1.2) to its left and Lemma 1 to its right hand side, yields

$$
\begin{aligned}
B_{k}^{n}(f) & =\sum_{m=0}^{k} s_{k, m} \int_{\mathbb{R}} \int_{\mathbb{R}} f(t)\left(a_{t}^{\dagger}\right)^{n-k}\left(a_{t}^{\dagger} a_{s}\right)^{m} \delta^{k-m+1}(t-s) d s d t \\
& =s_{k, k} \int_{\mathbb{R}} \int_{\mathbb{R}} f(t)\left(a_{t}^{\dagger}\right)^{n-k}\left(a_{t}^{\dagger} a_{s}\right)^{k} \delta(t-s) d s d t \\
& +\sum_{m=0}^{k-1} s_{k, m} \int_{\mathbb{R}} \int_{\mathbb{R}} f(t)\left(a_{t}^{\dagger}\right)^{n-k}\left(a_{t}^{\dagger} a_{s}\right)^{m} \delta(s) \delta(t-s) d s d t \\
& =s_{k, k} \int_{\mathbb{R}} f(t)\left(a_{t}^{\dagger}\right)^{n-k}\left(a_{t}^{\dagger} a_{t}\right)^{k} d t+0 \\
& =\int_{\mathbb{R}} f(t)\left(a_{t}^{\dagger}\right)^{n-k}\left(a_{t}^{\dagger} a_{t}\right)^{k} d t
\end{aligned}
$$

where we have used the renormalization rule (1.1), $f(0)=0$, and $s_{k, k}=1$.

Proposition 2. Suppose that for all $n, k \in\{0,1,2, \ldots\}$ and test functions f,

$$
B_{k}^{n}(f) \Phi:= \begin{cases}0 & \text { if } n<k \text { or } n \cdot k<0 \tag{2.4}\\ B_{0}^{n-k}\left(f \sigma_{k}\right) \Phi & \text { if } n>k \geq 0 \\ \int_{\mathbb{R}} f(t) \rho_{k}(t) d t \Phi & \text { if } n=k\end{cases}
$$

where σ_{k} and ρ_{k} are complex valued functions. Then for all $n \in\{0,1,2, \ldots\}$

$$
\begin{equation*}
\sigma_{n}=\sigma_{1}^{n} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{n}=\frac{\sigma_{1}^{n}}{n+1} \tag{2.6}
\end{equation*}
$$

Proof. By (2.4) and (1.2) for $k=0$, and by (1.4) for $n=k=0$ it follows that $\sigma_{0}=\rho_{0}=1$. For $n \geq 1$ we have

$$
\begin{aligned}
\left\langle B_{0}^{n}(f) \Phi, B_{1}^{n+1}(g) \Phi\right\rangle & =\left\langle B_{0}^{n}(f) \Phi, B_{0}^{n}\left(g \sigma_{1}\right) \Phi\right\rangle \\
& =\left\langle\Phi, B_{n}^{0}(\bar{f}) B_{0}^{n}\left(g \sigma_{1}\right) \Phi\right\rangle \\
& =\left\langle\Phi,\left(B_{0}^{n}\left(g \sigma_{1}\right) B_{n}^{0}(\bar{f})+\left[B_{n}^{0}(\bar{f}), B_{0}^{n}\left(g \sigma_{1}\right)\right]\right) \Phi\right\rangle \\
& \left.=\left\langle\Phi,\left(0+n^{2} B_{n-1}^{n-1}\left(\bar{f} g \sigma_{1}\right)\right]\right) \Phi\right\rangle \\
& =n^{2} \int_{\mathbb{R}} \rho_{n-1}(t) \sigma_{1}(t) \bar{f}(t) g(t) d t
\end{aligned}
$$

and also

$$
\begin{aligned}
\left\langle B_{0}^{n}(f) \Phi, B_{1}^{n+1}(g) \Phi\right\rangle & =\left\langle\Phi, B_{n}^{0}(\bar{f}) B_{1}^{n+1}(g) \Phi\right\rangle \\
& =\left\langle\Phi,\left(B_{1}^{n+1}(g) B_{n}^{0}(\bar{f})+\left[B_{n}^{0}(\bar{f}), B_{1}^{n+1}(g)\right]\right) \Phi\right\rangle \\
& \left.=\left\langle\Phi,\left(0+n(n+1) B_{n}^{n}(\bar{f} g)\right]\right) \Phi\right\rangle \\
& =n(n+1) \int_{\mathbb{R}} \rho_{n}(t) \bar{f}(t) g(t) d t
\end{aligned}
$$

i.e., for all test functions h

$$
n^{2} \int_{\mathbb{R}} \rho_{n-1}(t) \sigma_{1}(t) h(t) d t=n(n+1) \int_{\mathbb{R}} \rho_{n}(t) h(t) d t
$$

which implies that

$$
\begin{equation*}
\rho_{n}=\frac{n}{n+1} \sigma_{1} \rho_{n-1}=\ldots=\frac{\sigma_{1}^{n}}{n+1} \tag{2.7}
\end{equation*}
$$

thus proving (2.6). Similarly,

$$
\begin{aligned}
\int_{\mathbb{R}} \rho_{n}(t) f(t) g(t) d t & =\left\langle\Phi, B_{n}^{n}(f g) \Phi\right\rangle=\frac{1}{n+1}\left\langle\Phi,\left[B_{n}^{n-1}(f), B_{1}^{2}(g)\right] \Phi\right\rangle \\
& =\frac{1}{n+1}\left\langle\Phi,\left(B_{n}^{n-1}(f) B_{1}^{2}(g)-B_{1}^{2}(g) B_{n}^{n-1}(f)\right) \Phi\right\rangle \\
& =\frac{1}{n+1}\left\langle\Phi, B_{n}^{n-1}(f) B_{1}^{2}(g) \Phi\right\rangle=\frac{1}{n+1}\left\langle B_{n-1}^{n}(\bar{f}) \Phi, B_{1}^{2}(g) \Phi\right\rangle \\
& =\frac{1}{n+1}\left\langle B_{0}^{1}\left(\sigma_{n-1} \bar{f}\right) \Phi, B_{0}^{1}\left(\sigma_{1} g\right) \Phi\right\rangle=\frac{1}{n+1}\left\langle\Phi, B_{1}^{0}\left(\bar{\sigma}_{n-1} f\right) B_{0}^{1}\left(\sigma_{1} g\right) \Phi\right\rangle \\
& =\frac{1}{n+1}\left\langle\Phi,\left[B_{1}^{0}\left(\bar{\sigma}_{n-1} f\right) B_{0}^{1}\left(\sigma_{1} g\right)\right] \Phi\right\rangle=\frac{1}{n+1}\left\langle\Phi, B_{0}^{0}\left(\bar{\sigma}_{n-1} f \sigma_{1} g\right) \Phi\right\rangle \\
& =\frac{1}{n+1} \int_{\mathbb{R}} \bar{\sigma}_{n-1}(t) \sigma_{1}(t) f(t) g(t) d t
\end{aligned}
$$

Thus, for all test functions h

$$
\int_{\mathbb{R}} \rho_{n}(t) h(t) d t=\frac{1}{n+1} \int_{\mathbb{R}} \bar{\sigma}_{n-1}(t) \sigma_{1}(t) h(t) d t
$$

therefore

$$
\begin{equation*}
(n+1) \rho_{n}=\bar{\sigma}_{n-1} \sigma_{1} \tag{2.8}
\end{equation*}
$$

which combined with (2.6) implies

$$
\bar{\sigma}_{n-1}=\sigma_{1}^{n-1}
$$

which in turn implies that the σ_{n} 's are real and yields (2.5).

In view of the interpretation of a_{t}^{\dagger} and a_{t} as creation and annihilation densities respectively, it makes sense to assume that in the definition of the action of B_{k}^{n} on Φ it is only the difference $n-k$ that matters. Therefore we take the function σ_{1} (and thus by (2.5) all the $\sigma_{n}{ }^{\prime}$ s) appearing in Proposition 2 to be identically equal to 1 and we arrive to the following definition of the action of the RHPWN operators on Φ.

Definition 1. For $n, k \in \mathbb{Z}$ and test functions f

$$
B_{k}^{n}(f) \Phi:= \begin{cases}0 & \text { if } n<k \text { or } n \cdot k<0 \tag{2.9}\\ B_{0}^{n-k}(f) \Phi & \text { if } n>k \geq 0 \\ \frac{1}{n+1} \int_{\mathbb{R}} f(t) d t \Phi & \text { if } n=k\end{cases}
$$

2.2. The n-th order RHPWN $*-$ Lie algebras \mathcal{L}_{n}.

Definition 2. (i) \mathcal{L}_{1} is the $*$-Lie algebra generated by B_{0}^{1} and B_{1}^{0} i.e., \mathcal{L}_{1} is the linear span of $\left\{B_{0}^{1}, B_{1}^{0}, B_{0}^{0}\right\}$.
(ii) \mathcal{L}_{2} is the $*-L i e ~ a l g e b r a ~ g e n e r a t e d ~ b y ~ B_{0}^{2}$ and B_{2}^{0} i.e., \mathcal{L}_{2} is the linear span of $\left\{B_{0}^{2}, B_{2}^{0}, B_{1}^{1}\right\}$.
(iii) For $n \in\{3,4, \ldots\}, \mathcal{L}_{n}$ is the $*$-Lie algebra generated by B_{0}^{n} and B_{n}^{0} through repeated commutations and linear combinations. It consists of linear combinations of creation/annihilation operators of the form B_{y}^{x} where $x-y=k n, k \in \mathbb{Z}-\{0\}$, and of number operators B_{x}^{x} with $x \geq n-1$.
2.3. The Fock representation no-go theorem. We will show that if the RHPWN action on Φ is that of Definition 1 then the Fock representation no-go theorems of [5] and [2] can be extended to the RHPWN $*-$ Lie algebras \mathcal{L}_{n} where $n \geq 3$.

Lemma 2. For all $n \geq 3$ and with the action of the RHPWN operators on the vacuum vector Φ given by Definition [1, if a Fock space \mathcal{F}_{n} for \mathcal{L}_{n} exists then it contains both $B_{0}^{n} \Phi$ and $B_{0}^{2 n} \Phi$.

Proof. For simplicity we restrict to a single interval I of positive measure $\mu:=\mu(I)$. We have

$$
B_{n}^{0} B_{0}^{n} \Phi=\left(B_{0}^{n} B_{n}^{0}+\left[B_{n}^{0}, B_{0}^{n}\right]\right) \Phi=B_{0}^{n} B_{n}^{0} \Phi+n^{2} B_{n-1}^{n-1} \Phi=0+n^{2} \frac{\mu}{n} \Phi=n \mu \Phi
$$

and

$$
\begin{aligned}
B_{n}^{0}\left(B_{0}^{n}\right)^{2} \Phi & =B_{n}^{0} B_{0}^{n} B_{0}^{n} \Phi=\left(B_{0}^{n} B_{n}^{0}+n^{2} B_{n-1}^{n-1}\right) B_{0}^{n} \Phi \\
& =B_{0}^{n} n \mu \Phi+n^{2}\left(B_{0}^{n} B_{n-1}^{n-1}+\left[B_{n-1}^{n-1}, B_{0}^{n}\right]\right) \Phi \\
& =n \mu B_{0}^{n} \Phi+n^{2} B_{0}^{n} \frac{\mu}{n} \Phi+n^{2} n(n-1) B_{n-2}^{2 n-2} \Phi \\
& =2 n \mu B_{0}^{n} \Phi+n^{3}(n-1) B_{0}^{n} \Phi \\
& =\left(2 n \mu+n^{3}(n-1)\right) B_{0}^{n} \Phi
\end{aligned}
$$

and also

$$
\begin{aligned}
B_{n}^{0}\left(B_{0}^{n}\right)^{3} \Phi= & \left(B_{0}^{n} B_{n}^{0}+n^{2} B_{n-1}^{n-1}\right)\left(B_{0}^{n}\right)^{2} \Phi \\
= & B_{0}^{n}\left(2 n \mu+n^{3}(n-1)\right) B_{0}^{n} \Phi+n^{2}\left(B_{0}^{n} B_{n-1}^{n-1}+n(n-1) B_{n-2}^{2 n-2}\right) B_{0}^{n} \Phi \\
= & \left(2 n \mu+n^{3}(n-1)\right)\left(B_{0}^{n}\right)^{2} \Phi+n^{2} B_{0}^{n}\left(B_{0}^{n} B_{n-1}^{n-1}+n(n-1) B_{n-2}^{2 n-2}\right) \Phi \\
& +n^{3}(n-1)\left(B_{0}^{n} B_{n-2}^{2 n-2}+n(n-2) B_{n-3}^{3 n-3}\right) \Phi \\
= & \left(2 n \mu+n^{3}(n-1)\right)\left(B_{0}^{n}\right)^{2} \Phi+n^{2} \frac{\mu}{n}\left(B_{0}^{n}\right)^{2} \Phi+n^{3}(n-1)\left(B_{0}^{n}\right)^{2} \Phi \\
& +n^{3}(n-1)\left(B_{0}^{n}\right)^{2} \Phi+n^{4}(n-1)(n-2) B_{0}^{2 n} \Phi \\
= & 3 n\left(\mu+n^{2}(n-1)\right)\left(B_{0}^{n}\right)^{2} \Phi+n^{4}(n-1)(n-2) B_{0}^{2 n} \Phi
\end{aligned}
$$

Since $B_{n}^{0}\left(B_{0}^{n}\right)^{3} \Phi \in \mathcal{F}_{n}$ and $\left(B_{0}^{n}\right)^{2} \Phi \in \mathcal{F}_{n}$ it follows that $B_{0}^{2 n} \Phi \in \mathcal{F}_{n}$.

Theorem 1. Let $n \geq 3$. If the action of the RHPWN operators on the vacuum vector Φ is given by Definition 1, then \mathcal{L}_{n} does not admit a Fock representation.

Proof. If a Fock representation of \mathcal{L}_{n} existed then we should be able to define inner products of the form

$$
\left\langle\left(a B_{0}^{2 n}+b\left(B_{0}^{n}\right)^{2}\right) \Phi,\left(a B_{0}^{2 n}+b\left(B_{0}^{n}\right)^{2}\right) \Phi\right\rangle
$$

where $a, b \in \mathbb{R}$ and the RHPWN operators are defined on the same interval I of arbitrarily small positive measure $\mu(I)$. Using the notation $\langle x\rangle=\langle\Phi, x \Phi\rangle$ this amounts to the positive semi-definiteness of the matrix

$$
A=\left[\begin{array}{cc}
\left\langle B_{2 n}^{0} B_{0}^{2 n}\right\rangle & \left\langle B_{2 n}^{0}\left(B_{0}^{n}\right)^{2}\right\rangle \\
\left\langle B_{2 n}^{0}\left(B_{0}^{n}\right)^{2}\right\rangle & \left\langle\left(B_{n}^{0}\right)^{2}\left(B_{0}^{n}\right)^{2}\right\rangle
\end{array}\right]
$$

Using (1.6) and Definition 1 we find that

$$
\left.\left\langle B_{2 n}^{0} B_{0}^{2 n}\right\rangle=4 n^{2}<B_{2 n-1}^{2 n-1}\right\rangle=4 n^{2} \frac{1}{2 n} \mu(I)=2 n \mu(I)
$$

and

$$
\begin{aligned}
\left\langle B_{2 n}^{0}\left(B_{0}^{n}\right)^{2}\right\rangle & =\left\langle B_{0}^{2 n} \Phi,\left(B_{0}^{n}\right)^{2} \Phi\right\rangle=\left\langle B_{n}^{0} B_{0}^{2 n} \Phi, B_{0}^{n} \Phi\right\rangle \\
& =2 n^{2}\left\langle B_{n-1}^{2 n-1} \Phi, B_{0}^{n} \Phi\right\rangle=2 n^{2}\left\langle B_{0}^{n} \Phi, B_{0}^{n} \Phi\right\rangle \\
& =2 n^{2}\left\langle B_{n}^{0} B_{0}^{n}\right\rangle=2 n^{2} n^{2}\left\langle B_{n-1}^{n-1}\right\rangle \\
& =2 n^{4} \frac{1}{n} \mu(I)=2 n^{3} \mu(I)
\end{aligned}
$$

and also

$$
\begin{aligned}
\left\langle\left(B_{n}^{0}\right)^{2}\left(B_{0}^{n}\right)^{2}\right\rangle & =\left\langle B_{0}^{n} \Phi, B_{n}^{0}\left(B_{0}^{n}\right)^{2} \Phi\right\rangle=\left\langle B_{0}^{n} \Phi,\left(B_{n}^{0} B_{0}^{n}\right) B_{0}^{n} \Phi\right\rangle \\
& =\left\langle B_{0}^{n} \Phi,\left(B_{0}^{n} B_{n}^{0}+n^{2} B_{n-1}^{n-1}\right) B_{0}^{n} \Phi\right\rangle \\
& =\left\langle B_{0}^{n} \Phi, B_{0}^{n} B_{n}^{0} B_{0}^{n} \Phi\right\rangle+n^{2}\left\langle B_{0}^{n} \Phi, B_{n-1}^{n-1} B_{0}^{n} \Phi\right\rangle \\
& =\left\langle B_{n}^{0} B_{0}^{n} \Phi, B_{n}^{0} B_{0}^{n} \Phi\right\rangle+n^{2}\left\langle B_{0}^{n} \Phi,\left(B_{0}^{n} B_{n-1}^{n-1}+n(n-1) B_{n-2}^{2 n-2}\right) \Phi\right\rangle \\
& =n^{4}\left\langle B_{n-1}^{n-1} \Phi, B_{n-1}^{n-1} \Phi\right\rangle+n \mu(I)\left\langle B_{0}^{n} \Phi, B_{0}^{n} \Phi\right\rangle+n^{3}(n-1)\left\langle B_{0}^{n} \Phi, B_{n-2}^{2 n-2} \Phi\right\rangle \\
& =n^{2} \mu(I)^{2}+n \mu(I)\left\langle B_{n}^{0} B_{0}^{n}\right\rangle+n^{3}(n-1)\left\langle B_{n}^{0} B_{n-2}^{2 n-2}\right\rangle \\
& =n^{2} \mu(I)^{2}+n^{3} \mu(I)\left\langle B_{n-1}^{n-1}\right\rangle+n^{4}(n-1)(2 n-2)\left\langle B_{2 n-3}^{2 n-3}\right\rangle \\
& =n^{2} \mu(I)^{2}+n^{2} \mu(I)^{2}+n^{4}(n-1) \mu(I) \\
& =2 n^{2} \mu(I)^{2}+n^{4}(n-1) \mu(I)
\end{aligned}
$$

Thus

$$
A=\left[\begin{array}{cc}
2 n \mu(I) & 2 n^{3} \mu(I) \\
2 n^{3} \mu(I) & 2 n^{2} \mu(I)^{2}+n^{4}(n-1) \mu(I)
\end{array}\right] .
$$

A is a symmetric matrix, so it is positive semi-definite if and only if its minors are nonnegative. The minor determinants of A are

$$
d_{1}=2 n \mu(I)
$$

which is always nonnegative, and

$$
d_{2}=2 n^{3} \mu(I)^{2}\left(2 \mu(I)-n^{2}-n^{3}\right)
$$

which is nonnegative if and only if

$$
\mu(I) \geq \frac{n^{2}(n+1)}{2}
$$

Thus the interval I cannot be arbitrarily small.

3. The n-th order truncated RHPWN (or TRHPWN) Fock space \mathcal{F}_{n}

3.1. Truncation of the RHPWN Fock kernels. The generic element of the $*$-Lie algebras \mathcal{L}_{n} of Definition 2 is B_{0}^{n}. All other elements of \mathcal{L}_{n} are obtained by taking adjoints, commutators, and linear combinations. It thus makes sense to consider $\left(B_{0}^{n}(f)\right)^{k} \Phi$ as basis vectors for the n-th particle space of the Fock space \mathcal{F}_{n} associated with \mathcal{L}_{n}. A calculation of the "Fock kernel" $\left\langle\left(B_{0}^{n}\right)^{k} \Phi,\left(B_{0}^{n}\right)^{k} \Phi\right\rangle$ reveals that it is the terms containing $B_{0}^{2 n} \Phi$ that prevent the kernel from being positive definite. The $B_{0}^{2 n} \Phi$ terms appear either directly or by applying Definition 1 to terms of the form $B_{y}^{x} \Phi$ where $x-y=2 n$. Since \mathcal{L}_{1} and \mathcal{L}_{2} do not contain B_{0}^{2} and B_{0}^{4} respectively, that problem exists for $n \geq 3$ only and the Fock spaces
\mathcal{F}_{1} and \mathcal{F}_{2} are actually not truncated. In what follows we will compute the Fock kernels by applying Definition 1 and by truncating "singular" terms of the form

$$
\begin{equation*}
\left\langle\left(B_{0}^{n}\right)^{k} \Phi,\left(B_{0}^{n}\right)^{m} B_{y}^{x} \Phi\right\rangle \tag{3.1}
\end{equation*}
$$

where $n k=n m+x-y$ and $x-y=2 n$ i.e., $k-m=2$. This amounts to truncating the action of the principal \mathcal{L}_{n} number operator B_{n-1}^{n-1} on the "number vectors" $\left(B_{0}^{n}\right)^{k} \Phi$, which by commutation relations (1.5) and Definition 1 is of the form

$$
B_{n-1}^{n-1}\left(B_{0}^{n}\right)^{k} \Phi=\left(\frac{\mu}{n}+k n(n-1)\right)\left(B_{0}^{n}\right)^{k} \Phi+\sum_{i \geq 1} \prod_{j \geq 1} c_{i, j} B_{0}^{\lambda_{i, j} n} \Phi
$$

(where for each i not all positive integers $\lambda_{i, j}$ are equal to 1) by omitting the $\sum_{i \geq 1} \prod_{j \geq 1} c_{i, j} B_{0}^{\lambda_{i, j} n} \Phi$ part. We thus arrive to the following:
Definition 3. For integers $n \geq 1$ and $k \geq 0$,

$$
\begin{equation*}
B_{n-1}^{n-1}\left(B_{0}^{n}\right)^{k} \Phi:=\left(\frac{\mu}{n}+k n(n-1)\right)\left(B_{0}^{n}\right)^{k} \Phi \tag{3.2}
\end{equation*}
$$

i.e., the number vectors $\left(B_{0}^{n}\right)^{k} \Phi$ are eigenvectors of the principal \mathcal{L}_{n} number operator B_{n-1}^{n-1} with eigenvalues $\left(\frac{\mu}{n}+k n(n-1)\right)$.
In agreement with Definition 1, for $k=0$ Definition 3 yields $B_{n-1}^{n-1} \Phi:=\frac{\mu}{n} \Phi$.
3.2. Outline of the Fock space construction method. We will construct the TRHPWN Fock spaces by using the following method (cf. Chapter 3 of [13]):
(i) Compute

$$
\left\|\left(B_{0}^{n}\right)^{k} \Phi\right\|^{2}=\left\langle\left(B_{0}^{n}\right)^{k} \Phi,\left(B_{0}^{n}\right)^{k} \Phi\right\rangle:=\pi_{n, k}(\mu)
$$

where $k=0,1,2, \ldots, \Phi$ is the RHPWN vacuum vector, and $\pi_{n, k}(\mu)$ is a polynomial in μ of degree k.
(ii) Using the fact that if $k \neq m$ then $\left\langle\left(B_{0}^{n}\right)^{k} \Phi,\left(B_{0}^{n}\right)^{m} \Phi\right\rangle=0$, for $a, b \in \mathbb{C}$ compute

$$
\begin{aligned}
\left\langle e^{a B_{0}^{n}} \Phi, e^{b B_{0}^{n}} \Phi\right\rangle & =\sum_{k=0}^{\infty} \frac{(\bar{a} b)^{k}}{(k!)^{2}}\left\langle\left(B_{0}^{n}\right)^{k} \Phi,\left(B_{0}^{n}\right)^{k} \Phi\right\rangle \\
& =\sum_{k=0}^{\infty} \frac{(\bar{a} b)^{k}}{k!} \frac{\pi_{n, k}(\mu)}{k!} \\
& =\sum_{k=0}^{\infty} \frac{(\bar{a} b)^{k}}{k!} h_{n, k}(\mu)
\end{aligned}
$$

where

$$
\begin{equation*}
h_{n, k}(\mu):=\frac{\pi_{n, k}(\mu)}{k!} \tag{3.3}
\end{equation*}
$$

(iii) Look for a function $G_{n}(u, \mu)$ such that

$$
\begin{equation*}
G_{n}(u, \mu)=\sum_{k=0}^{\infty} \frac{u^{k}}{k!} h_{n, k}(\mu) \tag{3.4}
\end{equation*}
$$

Using the Taylor expansion of $G_{n}(u, \mu)$ in powers of u

$$
\begin{equation*}
G_{n}(u, \mu)=\left.\sum_{k=0}^{\infty} \frac{u^{k}}{k!} \frac{\partial^{k}}{\partial u^{k}} G_{n}(u, \mu)\right|_{u=0} \tag{3.5}
\end{equation*}
$$

by comparing (3.5) and (3.4) we see that

$$
\begin{equation*}
\left.\frac{\partial^{k}}{\partial u^{k}} G_{n}(u, \mu)\right|_{u=0}=h_{n, k}(\mu) \tag{3.6}
\end{equation*}
$$

Equation (3.6) plays a fundamental role in the search for G_{n} in what follows.
(iv) Reduce to single intervals and extend to step functions: For $u=\bar{a} b$, assuming that

$$
\begin{equation*}
G_{n}(u, \mu)=e^{\mu \hat{G}_{n}(u)} \tag{3.7}
\end{equation*}
$$

which is typical for "Bernoulli moment systems" (cf. Chapter 5 of [13]), equation (3.4) becomes

$$
\begin{equation*}
e^{\mu \hat{G}_{n}(\bar{a} b)}=\sum_{k=0}^{\infty} \frac{(\bar{a} b)^{k}}{k!} h_{n, k}(\mu) \tag{3.8}
\end{equation*}
$$

Take the product of (3.8) over all sets I, for test functions $f:=\sum_{i} a_{i} \chi_{I_{i}}$ and $g:=\sum_{i} b_{i} \chi_{I_{i}}$ with $I_{i} \cap I_{j}=\oslash$ for $i \neq j$, and end up with an expression like

$$
\begin{equation*}
e^{\int_{\mathbb{R}} \hat{G}_{n}(f(t) g(t)) d t}=\prod\left\langle e^{a B_{0}^{n}} \Phi, e^{b B_{0}^{n}} \Phi\right\rangle \tag{3.9}
\end{equation*}
$$

which we take as the definition of the inner product $\left\langle\psi_{n}(f), \psi_{n}(g)\right\rangle_{n}$ of the "exponential vectors"

$$
\begin{equation*}
\psi_{n}(f):=\prod_{i} e^{a_{i} B_{0}^{n}\left(\chi_{I_{i}}\right)} \Phi \tag{3.10}
\end{equation*}
$$

of the TRHPWN Fock space \mathcal{F}_{n}. Notice that $\Phi=\psi_{n}(0)$.

3.3. Construction of the TRHPWN Fock spaces \mathcal{F}_{n}.

Lemma 3. Let $n \geq 1$ be fixed. Then for all integers $k \geq 0$

$$
\begin{equation*}
B_{n}^{0}\left(B_{0}^{n}\right)^{k+1} \Phi:=n(k+1)\left(\mu+k \frac{n^{2}(n-1)}{2}\right)\left(B_{0}^{n}\right)^{k} \Phi \tag{3.11}
\end{equation*}
$$

Proof. For $k=0$ we have

$$
\begin{aligned}
B_{n}^{0} B_{0}^{n} \Phi & =\left(B_{0}^{n} B_{n}^{0}+\left[B_{n}^{0}, B_{0}^{n}\right]\right) \Phi=0+n^{2} B_{n-1}^{n-1} \Phi \\
& =n^{2} \frac{\mu}{n} \Phi=n \mu \Phi=n(0+1)\left(\mu+0 \frac{n^{2}(n-1)}{2}\right)\left(B_{0}^{n}\right)^{0} \Phi
\end{aligned}
$$

Assuming (3.11) to be true for k we have

$$
\begin{aligned}
& B_{n}^{0}\left(B_{0}^{n}\right)^{k+2} \Phi=\left(B_{n}^{0} B_{0}^{n}\right)\left(B_{0}^{n}\right)^{k+1} \Phi=\left(B_{0}^{n} B_{n}^{0}+n^{2} B_{n-1}^{n-1}\right)\left(B_{0}^{n}\right)^{k+1} \Phi \\
& =B_{0}^{n} B_{n}^{0}\left(B_{0}^{n}\right)^{k+1} \Phi+n^{2} B_{n-1}^{n-1}\left(B_{0}^{n}\right)^{k+1} \Phi \\
& =B_{0}^{n} n(k+1)\left(\mu+k \frac{n^{2}(n-1)}{2}\right)\left(B_{0}^{n}\right)^{k} \Phi+n^{2} B_{n-1}^{n-1}\left(B_{0}^{n}\right)^{k+1} \Phi \\
& =\left(n(k+1)\left(\mu+k \frac{n^{2}(n-1)}{2}\right)+n^{2}\left(\frac{\mu}{n}+(k+1) n(n-1)\right)\right)\left(B_{0}^{n}\right)^{k+1} \Phi \\
& =n(k+2)\left(\mu+(k+1) \frac{n^{2}(n-1)}{2}\right)\left(B_{0}^{n}\right)^{k+1} \Phi
\end{aligned}
$$

which proves (3.11) to be true for $k+1$ also, thus completing the induction.

Proposition 3. For all $n \geq 1$

$$
\begin{equation*}
\pi_{n, k}(\mu):=\left\langle\left(B_{0}^{n}\right)^{k} \Phi,\left(B_{0}^{n}\right)^{k} \Phi\right\rangle=k!n^{k} \prod_{i=0}^{k-1}\left(\mu+\frac{n^{2}(n-1)}{2} i\right) \tag{3.12}
\end{equation*}
$$

Proof. Let $n \geq 1$ be fixed. Define

$$
a_{k}:=k!n^{k} \prod_{i=0}^{k-1}\left(\mu+\frac{n^{2}(n-1)}{2} i\right)
$$

Then

$$
a_{1}=n \mu
$$

and for $k \geq 1$

$$
a_{k+1}=n(k+1)\left(\mu+k \frac{n^{2}(n-1)}{2}\right) a_{k}
$$

Similarly, define

$$
b_{k}:=\left\langle\left(B_{0}^{n}\right)^{k} \Phi,\left(B_{0}^{n}\right)^{k} \Phi\right\rangle
$$

Then

$$
b_{1}=\left\langle B_{0}^{n} \Phi, B_{0}^{n} \Phi\right\rangle=\left\langle\Phi, B_{n}^{0} B_{0}^{n} \Phi\right\rangle=n^{2}\left\langle\Phi, B_{n-1}^{n-1} \Phi\right\rangle=n^{2} \frac{\mu}{n}=n \mu
$$

and for $k \geq 1$, using Lemma 3

$$
\begin{aligned}
b_{k+1} & =\left\langle\left(B_{0}^{n}\right)^{k} \Phi, B_{n}^{0}\left(B_{0}^{n}\right)^{k+1} \Phi\right\rangle=n(k+1)\left(\mu+k \frac{n^{2}(n-1)}{2}\right)\left\langle\left(B_{0}^{n}\right)^{k} \Phi,\left(B_{0}^{n}\right)^{k} \Phi\right\rangle \\
& =n(k+1)\left(\mu+k \frac{n^{2}(n-1)}{2}\right) b_{k}
\end{aligned}
$$

Thus $a_{k}=b_{k}$ for all $k \geq 1$.

Corollary 1. The functions $h_{n, k}$ appearing in (3.3) are given by

$$
\begin{equation*}
h_{1, k}=\mu^{k} \tag{3.13}
\end{equation*}
$$

and for $n \geq 2$

$$
\begin{equation*}
h_{n, k}=n^{k} \prod_{i=0}^{k-1}\left(\mu+\frac{n^{2}(n-1)}{2} i\right) \tag{3.14}
\end{equation*}
$$

Proof. The proof follows from Proposition 3 and (3.3).
Corollary 2. The functions G_{n} appearing in (3.4) are given by

$$
\begin{equation*}
G_{1}(u, \mu)=e^{u \mu} \tag{3.15}
\end{equation*}
$$

and for $n \geq 2$

$$
\begin{equation*}
G_{n}(u, \mu)=\left(1-\frac{n^{3}(n-1)}{2} u\right)^{-\frac{2}{n^{2}(n-1)} \mu}=e^{-\frac{2}{n^{2}(n-1)} \mu \ln \left(1-\frac{n^{3}(n-1)}{2} u\right)} \tag{3.16}
\end{equation*}
$$

where \ln denotes logarithm with base e.

Proof. The proof follows from the fact that for G_{n} given by (3.15) and (3.16), in accordance with (3.6), we have

$$
\left.\frac{\partial^{k}}{\partial u^{k}} G_{n}(u, \mu)\right|_{u=0}=n^{k} \prod_{i=0}^{k-1}\left(\mu+{\left.\frac{n^{2}(n-1)}{2} i\right) .}^{2}\right)
$$

Corollary 3. The functions \hat{G}_{n} appearing in (3.5) are given by

$$
\begin{equation*}
\hat{G}_{1}(u)=u \tag{3.17}
\end{equation*}
$$

and for $n \geq 2$

$$
\begin{equation*}
\hat{G}_{n}(u)=-\frac{2}{n^{2}(n-1)} \ln \left(1-\frac{n^{3}(n-1)}{2} u\right) \tag{3.18}
\end{equation*}
$$

Proof. The proof follows directly from Corollary 2.

Corollary 4. The \mathcal{F}_{n} inner products are given by

$$
\begin{equation*}
\left\langle\psi_{1}(f), \psi_{1}(g)\right\rangle_{1}=e^{\int_{\mathbb{R}} \bar{f}(t) g(t) d t} \tag{3.19}
\end{equation*}
$$

and for $n \geq 2$

$$
\begin{equation*}
\left\langle\psi_{n}(f), \psi_{n}(g)\right\rangle_{n}=e^{-\frac{2}{n^{2}(n-1)} \int_{\mathbb{R}} \ln \left(1-\frac{n^{3}(n-1)}{2} \bar{f}(t) g(t)\right) d t} \tag{3.20}
\end{equation*}
$$

where $|f(t)|<\frac{1}{n} \sqrt{\frac{2}{n(n-1)}}$ and $|g(t)|<\frac{1}{n} \sqrt{\frac{2}{n(n-1)}}$.
Proof. The proof follows from (3.9) and Corollary 2.
The function G_{1} of (3.15) and the Fock space inner product (3.19) are associated with the Heisenberg-Weyl algebra and the quantum stochastic calculus of [15]. For $n=2$ the function G_{n} of (3.16) and the associated Fock space inner product (3.20) have appeared in the study of the Finite-Difference algebra and the Square of White Noise algebra in [8], 9], [11], and [12]. The functions G_{n} of (3.16) can also be found in Proposition 5.4.2 of Chapter 5 of [13].

Definition 4. The n-th order TRHPWN Fock space \mathcal{F}_{n} is the Hilbert space completion of the linear span of the exponential vectors $\psi_{n}(f)$ of (3.10) under the inner product $\langle\cdot, \cdot\rangle_{n}$ of Corollary 4. The full TRHPWN Fock space \mathcal{F} is the direct sum of the \mathcal{F}_{n} 's.

3.4. Fock representation of the TRHPWN operators.

Proposition 4. For all test functions $f:=\sum_{i} a_{i} \chi_{I_{i}}$ and $g:=\sum_{i} b_{i} \chi_{I_{i}}$ with $I_{i} \cap I_{j}=\oslash$ for $i \neq j$, and for all $n \geq 1$

$$
\begin{equation*}
B_{n}^{0}(f) \psi_{n}(g)=n \int_{\mathbb{R}} f(t) g(t) d t \psi_{n}(g)+\left.\frac{n^{3}(n-1)}{2} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}\left(g+\epsilon f g^{2}\right) \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
B_{0}^{n}(f) \psi_{n}(g)=\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}(g+\epsilon f) \tag{3.22}
\end{equation*}
$$

Proof. By (3.10), the fact that $\left[B_{n}^{0}\left(\chi_{I_{i}}\right), e^{B_{0}^{n}\left(\chi_{I_{j}}\right)}\right]=0$ whenever $I_{i} \cap I_{j}=\oslash$, and by Lemma 3 we have

$$
\begin{aligned}
& B_{n}^{0}(f) \psi_{n}(g)=\sum_{i=1}^{m} a_{i} B_{n}^{0}\left(\chi_{I_{i}}\right) \prod_{j=1}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)} \Phi \\
& \quad=\sum_{i=1}^{m} a_{i} \prod_{j=1}^{m} B_{n}^{0}\left(\chi_{I_{i}}\right) e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)} \Phi \\
& \quad=\sum_{i=1}^{m} a_{i}\left(\prod_{\substack{j=1 \\
j \neq i}}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) B_{n}^{0}\left(\chi_{I_{i}}\right) e^{b_{i} B_{0}^{n}\left(\chi_{I_{i}}\right)} \Phi \\
& \quad=\sum_{i=1}^{m} a_{i}\left(\prod_{\substack{j=1 \\
j \neq i}}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) \sum_{k=0}^{\infty} \frac{b_{i}^{k}}{k!} B_{n}^{0}\left(\chi_{I_{i}}\right)\left(B_{0}^{n}\left(\chi_{I_{i}}\right)\right)^{k} \Phi
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{m} a_{i}\left(\prod_{\substack{j=1 \\
j \neq i}}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) \sum_{k=0}^{\infty} \frac{b_{i}^{k}}{k!} n k\left(\mu\left(I_{i}\right)+(k-1) \frac{n^{2}(n-1)}{2}\right)\left(B_{0}^{n}\left(\chi_{I_{i}}\right)\right)^{k-1} \Phi \\
& =\sum_{i=1}^{m} a_{i}\left(\prod_{\substack{j=1 \\
j \neq i}}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) \sum_{k=1}^{\infty} \frac{b_{i}^{k}}{(k-1)!} n \mu\left(I_{i}\right)\left(B_{0}^{n}\left(\chi_{I_{i}}\right)\right)^{k-1} \Phi \\
& +\sum_{i=1}^{m} a_{i}\left(\prod_{\substack{j=1 \\
j \neq i}}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) \sum_{k=2}^{\infty} \frac{b_{i}^{k}}{(k-2)!} \frac{n^{3}(n-1)}{2}\left(B_{0}^{n}\left(\chi_{I_{i}}\right)\right)^{k-1} \Phi \\
& =n \sum_{i=1}^{m} a_{i} b_{i} \mu\left(I_{i}\right)\left(\prod_{\substack{j=1 \\
j \neq i}}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) e^{b_{i} B_{0}^{n}\left(\chi_{I_{i}}\right)} \Phi \\
& +\frac{n^{3}(n-1)}{2} \sum_{i=1}^{m} a_{i} b_{i}^{2} B_{0}^{n}\left(\chi_{I_{i}}\right)\left(\prod_{\substack{j=1 \\
j \neq i}}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) e^{b_{i} B_{0}^{n}\left(\chi_{I_{i}}\right)} \Phi \\
& =n \sum_{i=1}^{m} a_{i} b_{i} \mu\left(I_{i}\right)\left(\prod_{j=1}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) \Phi \\
& +\frac{n^{3}(n-1)}{2} \sum_{i=1}^{m} a_{i} b_{i}^{2} B_{0}^{n}\left(\chi_{I_{i}}\right) e^{b_{i} B_{0}^{n}\left(\chi_{I_{i}}\right)}\left(\prod_{\substack{j=1 \\
j \neq i}}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) \Phi \\
& =n \int_{\mathbb{R}} f(t) g(t) d t \psi_{n}(g)+\left.\frac{n^{3}(n-1)}{2} \sum_{i=1}^{m} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} e^{\left(\epsilon a_{i} b_{i}^{2}+b_{i}\right) B_{0}^{n}\left(\chi_{I_{i}}\right)}\left(\prod_{\substack{j=1 \\
j \neq i}}^{m} e^{b_{j} B_{0}^{n}\left(\chi_{I_{j}}\right)}\right) \Phi \\
& =n \int_{\mathbb{R}} f(t) g(t) d t \psi_{n}(g)+\left.\frac{n^{3}(n-1)}{2} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0}\left(\prod_{i=1}^{m} e^{\left(\epsilon a_{i} b_{i}^{2}+b_{i}\right) B_{0}^{n}\left(\chi_{I_{i}}\right)}\right) \Phi \\
& =n \int_{\mathbb{R}} f(t) g(t) d t \psi_{n}(g)+\left.\frac{n^{3}(n-1)}{2} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}\left(g+\epsilon f g^{2}\right)
\end{aligned}
$$

To prove (3.22) we notice that for $n=1$ (3.21) yields

$$
B_{1}^{0}(f) \psi_{1}(g)=\int_{\mathbb{R}} f(t) g(t) d t \psi_{1}(g)
$$

i.e., $B_{1}^{0}(f)=A(f)$ where $A(f)$ is the annihilation operator of Hudson-Parthasarathy calculus (cf. [15]) and so

$$
B_{0}^{1}(f) \psi_{1}(g)=A^{\dagger}(f) \psi_{1}(g)=\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{1}(g+\epsilon f)
$$

where $A^{\dagger}(f)$ is the creation operator of Hudson-Parthasarathy calculus thus proving (3.22) for $n=1$. To prove (3.22) for $n \geq 2$ we notice that by the duality condition (1.3) for all test functions f, g, ϕ

$$
\begin{aligned}
&\left\langle B_{0}^{n}(f) \psi_{n}(\phi), \psi_{n}(g)\right\rangle_{n}=\left\langle\psi_{n}(\phi), B_{n}^{0}(\bar{f}) \psi_{n}(g)\right\rangle_{n} \\
&=n \int_{\mathbb{R}} \bar{f}(t) g(t) d t\left\langle\psi_{n}(\phi), \psi_{n}(g)\right\rangle_{n}+\left.\frac{n^{3}(n-1)}{2} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0}\left\langle\psi_{n}(\phi), \psi_{n}\left(g+\epsilon \bar{f} g^{2}\right)\right\rangle_{n} \\
&=n \int_{\mathbb{R}} \bar{f}(t) g(t) d t\left\langle\psi_{n}(\phi), \psi_{n}(g)\right\rangle_{n} \\
&+\left.\frac{n^{3}(n-1)}{2} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} e^{-\frac{2}{n^{2}(n-1)} \int_{\mathbb{R}} \ln \left(1-\frac{n^{3}(n-1)}{2} \bar{\phi}(t)\left(g+\epsilon \bar{f} g^{2}\right)(t)\right) d t} \\
&=n \int_{\mathbb{R}} \bar{f}(t) g(t) d t\left\langle\psi_{n}(\phi), \psi_{n}(g)\right\rangle_{n} \\
&+\frac{n^{3}(n-1)}{2}\left\langle\psi_{n}(\phi), \psi_{n}(g)\right\rangle_{n}\left(-\frac{2}{n^{2}(n-1)} \int_{\mathbb{R}} \frac{-\frac{n^{3}(n-1)}{2} \bar{\phi} \bar{f} g^{2}}{1-\frac{n^{3}(n-1)}{2} \bar{\phi} g}(t) d t\right) \\
&=\left(n \int_{\mathbb{R}} \bar{f}(t) g(t) d t+\frac{n^{4}(n-1)}{2} \int_{\mathbb{R}} \frac{\bar{\phi} \bar{f} g^{2}}{1-\frac{n^{3}(n-1)}{2} \bar{\phi} g}(t) d t\right)\left\langle\psi_{n}(\phi), \psi_{n}(g)\right\rangle_{n} \\
&=n \int_{\mathbb{R}} \frac{\bar{f} g}{1-\frac{n^{3}(n-1)}{2} \bar{\phi} g}(t) d t\left\langle\psi_{n}(\phi), \psi_{n}(g)\right\rangle_{n} \\
&=\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} e^{-\frac{2}{n^{2}(n-1)} \int_{\mathbb{R}} \ln \left(1-\frac{n^{3}(n-1)}{2}(\bar{\phi}+\epsilon \bar{f})(t) g(t)\right) d t} \\
&=\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0}\left\langle\psi_{n}(\phi+\epsilon f), \psi_{n}(g)\right\rangle_{n} \\
&=\left\langle\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}(\phi+\epsilon f), \psi_{n}(g)\right\rangle_{n}
\end{aligned}
$$

which implies (3.22).

Corollary 5. For all $n \geq 1$ and test functions f, g, h

$$
\begin{align*}
& B_{n-1}^{n-1}(f g) \psi_{n}(h)=\frac{1}{n} \int_{\mathbb{R}} f(t) g(t) \psi_{n}(h) \tag{3.23}\\
& \quad+\left.\frac{n(n-1)}{2} \frac{\partial^{2}}{\partial \epsilon \partial \rho}\right|_{\epsilon=\rho=0}\left(\psi_{n}\left(h+\epsilon g+\rho f(h+\epsilon g)^{2}\right)-\psi_{n}\left(h+\epsilon f h^{2}+\rho g\right)\right)
\end{align*}
$$

Proof.

$$
\begin{aligned}
& B_{n-1}^{n-1}(f g) \psi_{n}(h)=\frac{1}{n^{2}}\left[B_{n}^{0}(f), B_{0}^{n}(g)\right] \psi_{n}(h) \\
&=\frac{1}{n^{2}}\left(B_{n}^{0}(f) B_{0}^{n}(g)-B_{0}^{n}(g) B_{n}^{0}(f)\right) \psi_{n}(h) \\
&=\frac{1}{n^{2}}\left(\left.B_{n}^{0}(f) \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}(h+\epsilon g)-B_{0}^{n}(g)\left(n \int_{\mathbb{R}} f(t) h(t) d t \psi_{n}(h)\right.\right. \\
&\left.\left.+\left.\frac{n^{3}(n-1)}{2} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}\left(h+\epsilon f h^{2}\right)\right)\right) \\
&=\left.\frac{1}{n^{2}} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} B_{n}^{0}(f) \psi_{n}(h+\epsilon g)-\frac{1}{n} \int_{\mathbb{R}} f(t) h(t) d t B_{0}^{n}(g) \psi_{n}(h) \\
&-\left.\frac{n(n-1)}{2} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} B_{0}^{n}(g) \psi_{n}\left(h+\epsilon f h^{2}\right) \\
&=\left.\frac{1}{n^{2}} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0}\left(n \int_{\mathbb{R}} f(t)(h+\epsilon g)(t) d t \psi_{n}(h+\epsilon g)\right. \\
&\left.+\left.\frac{n^{3}(n-1)}{2} \frac{\partial}{\partial \rho}\right|_{\rho=0} \psi_{n}\left(h+\epsilon g+\rho f(h+\epsilon g)^{2}\right)\right) \\
&-\left.\frac{1}{n} \int_{\mathbb{R}} f(t) h(t) d t \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}(h+\epsilon g)-\left.\left.\frac{n(n-1)}{2} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \frac{\partial}{\partial \rho}\right|_{\rho=0} \psi_{n}\left(h+\epsilon f h^{2}+\rho g\right) \\
&=\frac{1}{n}\left(\int_{\mathbb{R}} f(t) g(t) d t \psi_{n}(h)+\left.\int_{\mathbb{R}} f(t) h(t) d t \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}(h+\epsilon g)\right) \\
&+\left.\frac{n(n-1)}{2} \frac{\partial^{2}}{\partial \epsilon \partial \rho}\right|_{\epsilon=\rho=0} \psi_{n}\left(h+\epsilon g+\rho f(h+\epsilon g)^{2}\right) \\
&-\left.\frac{1}{n} \int_{\mathbb{R}} f(t) h(t) d t \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}(h+\epsilon g) \\
&-\left.\frac{n(n-1)}{2} \frac{\partial^{2}}{\partial \epsilon \partial \rho}\right|_{\epsilon=\rho=0} \psi_{n}\left(h+\epsilon f h^{2}+\rho g\right) \\
&= \frac{1}{n} \int_{\mathbb{R}} f(t) g(t) d t \psi_{n}(h) \\
&+\left.\frac{n(n-1)}{2} \frac{\partial^{2}}{\partial \epsilon \partial \rho}\right|_{\epsilon \epsilon \rho=0}\left(\psi_{n}\left(h+\epsilon g+\rho f(h+\epsilon g)^{2}\right)-\psi_{n}\left(h+\epsilon f h^{2}+\rho g\right)\right)
\end{aligned}
$$

Using the method described in Corollary 5, i.e., using the prescription

$$
B_{k+K-1}^{n+N-1}(g f):=\frac{1}{k N-K n}\left(B_{k}^{n}(g) B_{K}^{N}(f)-B_{K}^{N}(f) B_{k}^{n}(g)\right)
$$

and suitable linear combinations, we obtain the representation of the B_{y}^{x} (and therefore of the RHPWN and Virasoro-Zamolodchikov- w_{∞} commutation relations) on the appropriate Fock space \mathcal{F}_{n}.

4. Classical stochastic processes on \mathcal{F}_{n}

Definition 5. A quantum stochastic process $x=\{x(t) / t \geq 0\}$ is a family of Hilbert space operators. Such a process is said to be classical if for all $t, s \geq 0, x(t)=x(t)^{*}$ and $[x(t), x(s)]:=x(t) x(s)-x(s) x(t)=0$.
Proposition 5. Let $m>0$ and let a quantum stochastic process $x=\{x(t) / t \geq 0\}$ be defined by

$$
\begin{equation*}
x(t):=\sum_{n, k \in \Lambda} c_{n, k} B_{k}^{n}(t) \tag{4.1}
\end{equation*}
$$

where $c_{n, k} \in \mathbb{C}-\{0\}, \Lambda$ is a finite subset of $\{0,1,2, \ldots\}$ and

$$
B_{k}^{n}(t):=B_{k}^{n}\left(\chi_{[0, t]}\right) \in \mathcal{F}_{m}
$$

If for each $n, k \in \Lambda$

$$
\begin{equation*}
c_{n, k}=\bar{c}_{k, n} \tag{4.2}
\end{equation*}
$$

then the process $x=\{x(t) / t \geq 0\}$ is classical.
Proof. By (1.3), $x(t)=x^{*}(t)$ for all $t \geq 0$. Moreover, by (1.5), $[x(t), x(s)]=0$ for all $t, s \geq 0$ since each term of the form $c_{N, K} c_{n, k}\left[B_{K}^{N}(t), B_{k}^{n}(s)\right]$ is canceled out by the corresponding term of the form $c_{n, k} c_{N, K}\left[B_{k}^{n}(t), B_{K}^{N}(s)\right]$. Thus the process $x=\{x(t) / t \geq 0\}$ is classical.

In the remaining of this section we will study the classical process $x=\{x(t) / t \geq 0\}$ whose Fock representation as a family of operators on \mathcal{F}_{n} is

$$
x(t):=B_{0}^{n}(t)+B_{n}^{0}(t)
$$

By Proposition 4

$$
\begin{align*}
B_{0}^{n}(t) \psi_{n}(g) & =\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}\left(g+\epsilon \chi_{[0, t]}\right) \tag{4.3}\\
B_{n}^{0}(t) \psi_{n}(g) & =n \int_{0}^{t} g(s) d s \psi_{n}(g)+\left.\frac{n^{3}(n-1)}{2} \frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}\left(g+\epsilon \chi_{[0, t]} g^{2}\right) \tag{4.4}
\end{align*}
$$

In particular, for $g=0$

$$
\begin{align*}
B_{0}^{n}(t) \psi_{n}(0) & =\left.\frac{\partial}{\partial \epsilon}\right|_{\epsilon=0} \psi_{n}\left(\epsilon \chi_{[0, t]}\right) \tag{4.5}\\
B_{n}^{0}(t) \psi_{n}(0) & =0 \tag{4.6}
\end{align*}
$$

Lemma 4 (Splitting formula). Let $s \in \mathbb{R}$. Then for $n=1$

$$
\begin{equation*}
e^{s\left(B_{0}^{1}+B_{1}^{0}\right)} \Phi=e^{\frac{s^{2}}{2} \mu} e^{s B_{0}^{1}} \Phi \tag{4.7}
\end{equation*}
$$

and for $n \geq 2$

$$
\begin{equation*}
e^{s\left(B_{0}^{n}+B_{n}^{0}\right)} \Phi=\left(\sec \left(\sqrt{\frac{n^{3}(n-1)}{2}} s\right)\right)^{\frac{2 n \mu}{n^{3}(n-1)}} e^{\sqrt{\frac{2}{n^{3}(n-1)}} \tan \left(\sqrt{\frac{n^{3}(n-1)}{2}} s\right) B_{0}^{n}} \Phi \tag{4.8}
\end{equation*}
$$

Proof. We will use the "differential method" of Proposition 4.1.1, Chapter 1 of [13]. So let

$$
\begin{equation*}
E \Phi:=e^{s\left(B_{0}^{n}+B_{n}^{0}\right)} \Phi:=e^{V(s) B_{0}^{n}} e^{W(s)} \Phi \tag{4.9}
\end{equation*}
$$

where W, V are real-valued functions with $W(0)=V(0)=0$. Then,

$$
\begin{equation*}
\frac{\partial}{\partial s} E \Phi=\left(B_{0}^{n}+B_{n}^{0}\right) E \Phi=B_{0}^{n} E \Phi+B_{n}^{0} E \Phi \tag{4.10}
\end{equation*}
$$

By Lemma 3 we have

$$
\begin{aligned}
& B_{n}^{0} E \Phi=B_{n}^{0} e^{V(s) B_{0}^{n}} e^{W(s)} \Phi=e^{W(s)} B_{n}^{0} e^{V(s) B_{0}^{n}} \Phi \\
& =e^{W(s)} \sum_{k=0}^{\infty} \frac{V(s)^{k}}{k!} B_{n}^{0}\left(B_{0}^{n}\right)^{k} \Phi \\
& =e^{W(s)} \sum_{k=0}^{\infty} \frac{V(s)^{k}}{k!} n k\left(\mu+(k-1) \frac{n^{2}(n-1)}{2}\right)\left(B_{0}^{n}\right)^{k-1} \Phi \\
& \left(n \mu V(s)+\frac{n^{3}(n-1)}{2} V(s)^{2} B_{0}^{n}\right) e^{V(s) B_{0}^{n}} e^{W(s)} \Phi \\
& \quad\left(n \mu V(s)+\frac{n^{3}(n-1)}{2} V(s)^{2} B_{0}^{n}\right) E \Phi
\end{aligned}
$$

Thus (4.10) becomes

$$
\begin{equation*}
\frac{\partial}{\partial s} E \Phi=\left(B_{0}^{n}+n \mu V(s)+\frac{n^{3}(n-1)}{2} V(s)^{2} B_{0}^{n}\right) E \Phi \tag{4.11}
\end{equation*}
$$

From (4.9) we also have

$$
\begin{equation*}
\frac{\partial}{\partial s} E \Phi=\left(V^{\prime}(s) B_{0}^{n}+W^{\prime}(s)\right) E \Phi \tag{4.12}
\end{equation*}
$$

From (4.11) and (4.12), by equating coefficients of 1 and B_{0}^{n}, we have

$$
\begin{align*}
W^{\prime}(s) & =n \mu V(s) \tag{4.13}\\
V^{\prime}(s) & =1+\frac{n^{3}(n-1)}{2} V(s)^{2}(\text { Riccati equation }) \tag{4.14}
\end{align*}
$$

For $n=1$ we find $V(s)=s$ and $W(s)=\frac{s^{2}}{2} \mu$. For $n \geq 2$ by separating the variables we find

$$
V(s)=\sqrt{\frac{2}{n^{3}(n-1)}} \tan \left(\sqrt{\frac{n^{3}(n-1)}{2}} s\right)
$$

and so

$$
W(s)=-\frac{2 n \mu}{n^{3}(n-1)} \ln \left(\cos \left(\sqrt{\frac{n^{3}(n-1)}{2}} s\right)\right)
$$

which implies that

$$
e^{W(s)}=\left(\sec \left(\sqrt{\frac{n^{3}(n-1)}{2}} s\right)\right)^{\frac{2 n \mu}{n^{3}(n-1)}}
$$

thus completing the proof.

In the theory of Bernoulli systems and the Fock representation of finite-dimensional Lie algebras (cf. Chapter 5 of [13]) the Riccati equation (4.14) has the general form

$$
V^{\prime}(s)=1+2 \alpha V(s)+\beta V(s)^{2}
$$

and the values of α and β determine the underlying classical probability distribution and the associated special functions. For example, for $\alpha=1-2 p$ and $\beta=-4 p q$ we have the binomial process and the Krawtchouk polynomials, for $\alpha=p^{-1}-\frac{1}{2}$ and $\beta=q p^{-2}$ we have the negative binomial process and the Meixner polynomials, for $\alpha \neq 0$ and $\beta=0$ we have the Poisson process and the Poisson-Charlier polynomials, for $\alpha^{2}=\beta$ we have the exponential process and the Laguerre polynomials, for $\alpha=\beta=0$ we have Brownian motion with moment generating function $e^{\frac{s^{2}}{2} t}$ and associated special functions the Hermite polynomials, and for $\alpha^{2}-\beta<0$ we have the continuous binomial and Beta processes (cf. Chapter 5 of [13] and also [14]) with moment generating function $(\sec s)^{t}$ and associated special functions the Meixner-Pollaczek polynomials. In the infinite-dimensional TRHPWN case the underlying classical probability distributions are given in the following.

Proposition 6 (Moment generating functions). For all $s \geq 0$

$$
\begin{equation*}
\left\langle e^{s\left(B_{0}^{1}(t)+B_{1}^{0}(t)\right)} \Phi, \Phi\right\rangle_{1}=e^{\frac{s^{2}}{2} t} \tag{4.15}
\end{equation*}
$$

i.e., $\left\{B_{0}^{1}(t)+B_{1}^{0}(t) / t \geq 0\right\}$ is Brownian motion (cf. [13], [15]) while for $n \geq 2$

$$
\begin{equation*}
\left\langle e^{s\left(B_{0}^{n}(t)+B_{n}^{0}(t)\right)} \Phi, \Phi\right\rangle_{n}=\left(\sec \left(\sqrt{\frac{n^{3}(n-1)}{2}} s\right)\right)^{\frac{2 n t}{n^{3}(n-1)}} \tag{4.16}
\end{equation*}
$$

i.e., $\left\{B_{0}^{n}(t)+B_{n}^{0}(t) / t \geq 0\right\}$ is for each n a continuous binomial/Beta process (see Appendix)

Proof. The proof follows from Lemma 园, $\mu([0, t])=t$, and the fact that for all $n \geq 1$ we have $B_{n}^{0}(t) \Phi=0$.

5. Appendix: The continuous Binomial and Beta Processes

Let

$$
b(n, k)=\binom{n}{k} x^{k}(1-x)^{n-k} ; n, k \in\{0,1,2, \ldots\}, n \geq k, x \in(0,1)
$$

be the standard Binomial distribution. Using the Gamma function we can analytically extend from $n, k \in\{0,1,2, \ldots\}$ to $z, w \in \mathbb{C}$ with $\Re z \geq \Re w>-1$ and we have

$$
\begin{aligned}
b(z, w) & =\frac{\Gamma(z+1)}{\Gamma(z-w+1) \Gamma(w+1)} x^{w}(1-x)^{z-w} \\
& =\frac{1}{z+1} \frac{\Gamma(z+2)}{\Gamma(z-w+1) \Gamma(w+1)} x^{w}(1-x)^{z-w} \\
& =\frac{1}{z+1} \frac{\Gamma(z+2)}{\Gamma(z-w+1) \Gamma(w+1)} x^{(w+1)-1}(1-x)^{(n-w+1)-1} \\
& =\frac{1}{z+1} \beta(w+1, z-w+1)
\end{aligned}
$$

where $\beta(w+1, z-w+1)$ is the analytic continuation to $\Re a>0$ and $\Re c>0$ of the standard Beta distribution

$$
\beta(a, c)=\frac{\Gamma(a+c)}{\Gamma(a) \Gamma(c)} x^{a-1}(1-x)^{c-1} ; a>0, c>0
$$

Proposition 7. For each $t>0$ let X_{t} be a random variable with distribution given by the density

$$
p_{t}(x)=\frac{2^{t-1}}{2 \pi} \beta\left(\frac{t+i x}{2}, \frac{t-i x}{2}\right)
$$

Then the moment generating funcion of X_{t} is

$$
\begin{equation*}
\left\langle e^{s X_{t}}\right\rangle:=\int_{-\infty}^{\infty} e^{s x} p_{t}(x) d x=(\sec s)^{t} \quad ; \quad \forall t>0, s \in \mathbb{R} \tag{5.1}
\end{equation*}
$$

Proof. See Proposition 4.1.1, Chapter 5 of [13].
Corollary 6. With X_{t} and p_{t} as in Proposition 7, let

$$
Y_{t}:=\sqrt{\frac{n^{3}(n-1)}{2}} X_{t}
$$

Then the moment generating funcion of Y_{t} with respect to the density

$$
q_{t}:=p_{\frac{2 n}{n^{3}(n-1)}} t
$$

where $n \in\{1,2, \ldots\}$, is

$$
\left\langle e^{s Y_{t}}\right\rangle=\left(\sec \left(\sqrt{\frac{n^{3}(n-1)}{2}} s\right)\right)^{\frac{2 n t}{n^{3}(n-1)}}
$$

Proof. Since p_{t} is for each $t>0$ a probability density function we have

$$
\int_{-\infty}^{\infty} p_{t}(x) d x=1 \quad ; \quad \forall t>0
$$

and so for $t:=\frac{2 n}{n^{3}(n-1)} t$

$$
\int_{-\infty}^{\infty} p_{\frac{2 n}{n^{3}(n-1)}} t(x) d x=1 \quad ; \quad \forall t>0
$$

i.e.,

$$
\int_{-\infty}^{\infty} q_{t}(x) d x=1 \quad ; \quad \forall t>0
$$

so q_{t} is for each $t>0$ a probability density function. Moreover, letting $t:=\frac{2 n}{n^{3}(n-1)} t$ and $s:=\sqrt{\frac{n^{3}(n-1)}{2}} s$ in (5.1) we obtain

$$
\int_{-\infty}^{\infty} e^{s \sqrt{\frac{n^{3}(n-1)}{2}} x} q_{t}(x) d x=\left(\sec \left(\sqrt{\frac{n^{3}(n-1)}{2}} s\right)\right)^{\frac{2 n t}{n^{3}(n-1)}}
$$

which is precisely the moment generating function $\left\langle e^{s Y_{t}}\right\rangle$ of Y_{t} with respect to q_{t}.

References

[1] Accardi, L., Boukas, A.: Renormalized higher powers of white noise (RHPWN) and conformal field theory, Infinite Dimensional Anal. Quantum Probab. Related Topics 9, No. 3, (2006) 353-360.
[2] _ : The emergence of the Virasoro and w_{∞} Lie algebras through the renormalized higher powers of quantum white noise, International Journal of Mathematics and Computer Science, 1, No.3, (2006) 315-342.
[3] _ : Renormalized Higher Powers of White Noise and the Virasoro-Zamolodchikov- w_{∞} Algebra, submitted (2006), http://arxiv.org/hep-th/0610302.
[4] __ Lie algebras associated with the renormalized higher powers of white noise, to appear in Communications on Stochastic Analysis (2006).
[5] Accardi, L., Boukas, A., Franz, U.: Renormalized powers of quantum white noise, Infinite Dimensional Analysis, Quantum Probability, and Related Topics, 9, No. 1, 129-147, (2006).
[6] Accardi, L., Franz, U., and Skeide, M.: Renormalized squares of white noise and non- Gaussian noises as Levy processes on real Lie algebras; Comm. Math. Phys. 228, No. 1, (2002) 123-150.
[7] Accardi, L., Lu, Y.G., Volovich, I. V.: White noise approach to classical and quantum stochastic calculi, Lecture Notes of the Volterra International School of the same title, Trento, Italy, 1999, Volterra Center preprint 375.
[8] Accardi, L., Skeide, M.: Hilbert module realization of the square of white noise and finite difference algebras, Math. Notes 68(5-6), 683-694, (2000).
[9] Accardi, L., Skeide, M.: On the relation of the square of white noise and the finite difference algebra, Infinite dimensional analysis, quantum probability and related topics, vol. 3, no. 1, 185-189 (2000).
[10] Bakas, I., Kiritsis, E.B.: Structure and representations of the W_{∞} algebra, Prog. Theor. Phys. Supp. 102 (1991) 15.
[11] Boukas, A.: An Example of a Quantum Exponential Process, Mh. Math., 112, 209-215(1991).
[12] Feinsilver, P. J.: Discrete analogues of the Heisenberg-Weyl algebra, Mh. Math., 104:89-108 (1987).
[13] Feinsilver, P. J., Schott, R.: Algebraic structures and operator calculus. Volumes I and III, Wiley, 1971.
[14] Feller, W.: Introduction to probability theory and its applications. Volumes I and II, Kluwer, 1993.
[15] Hudson R.L., Parthasarathy K.R.: Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys. 93 (1984), 301-323.
[16] Ketov, S. V.: Conformal field theory, World Scientific, 1995.
[17] Zamolodchikov, A.B.: Infinite additional symmetries in two-dimensional conformal quantum field theory, Teo. Mat. Fiz. 65 (1985), 347-359.

Centro Vito Volterra, Universitá di Roma Tor Vergata, via Columbia 2, 00133 Roma, Italy

E-mail address: volterra@volterra.mat.uniroma2.it
URL: http://volterra.mat.uniroma2.it
Department of Mathematics and Natural Sciences, American College of Greece, Aghia
Paraskevi 15342, Athens, Greece
E-mail address: andreasboukas@acgmail.gr

[^0]: Date: June 26, 2007.
 1991 Mathematics Subject Classification. 60H40, 81S05, 81T30, 81T40.
 Key words and phrases. Renormalized powers of white noise, second quantization, w_{∞}-algebra, Virasoro algebra, Zamolodchikov algebra, Fock space, moment systems, continuous binomial distribution.

