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Abstract

In this paper we consider polynomial cointegrating relationships

between stationary processes with long range dependence. We express

the regression functions in terms of Hermite polynomials and we con-

sider a form of spectral regression around frequency zero. For these

estimates, we establish consistency by means of a more general result

on continuously averaged estimates of the spectral density matrix at

frequency zero.
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1 Introduction

The extension of the standard cointegration paradigm to more general, frac-

tional circumstances has drawn growing attention in the time series litera-

ture over the last decade, prompting the development of many novel estima-

tion approaches. Robinson (1994) introduced the idea of using degenerating,

narrow band regression in a long memory context, establishing also consis-

tency for fractional cointegrating relationships in the stationary case. The

∗This paper is part of the first author PhD dissertation. We are grateful to Franco

Peracchi and an Associated Editor for useful comments.
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properties of this estimator (which has become known as NBLS) were then

investigated under nonstationary circumstances by Marinucci and Robinson

(2001), Robinson and Marinucci (2001, 2003). Chen and Hurvich (2003a,b)

considered principal components methods in the frequency domain, whereas

Velasco (2003), Robinson and Hualde (2003) advocate pseudo-maximum

likelihood methods which improve the efficiency of the estimates and yield

standard asymptotic properties. Cointegration among stationary processes

has also been considered, for instance by Marinucci (2000), Christensen and

Nielsen (2006).

All these papers have focused on the case of linear cointegration. Nev-

ertheless, the possibility of polynomial cointegrating relationships seems of

practical interest, for instance (but not exclusively) for applications to fi-

nancial data. Nonlinear cointegration has been considered in the literature

(most recently by Karlsen, Myklebust, and Tjostheim (2006)), but only in

non-fractional circumstances, to the best of our knowledge. In this paper, we

shall focus on nonlinear cointegrating relationships between stationary long

memory processes; the restriction to a stationarity framework is made neces-

sary by the need to exploit expansions into Hermite polynomials, a powerful

tool to investigate nonlinear transformations (see for instance Giraitis and

Surgailis (1985), Arcones (1994), Surgailis (2003)). Our general setting can

be explained as follows. Let {At} = {xt, et}, t ∈ Z be a stationary bivariate

time series with mean zero and covariance such that

EAtA
′
t+τ := Γ(τ) =

∫ 2π

0
f(λ)eiτλdλ ,

where

f(λ) =

[
fxx(λ) fxe(λ)

fex(λ) fee(λ)

]
,

is the spectral density matrix of {At}. We shall take {xt, et} to be long

memory, in the sense that

γab(τ) ≃ Gabτ
da+db−1 (1)

for a, b = x, e , 0 < da, db < 1
2 , Gxx, Gee > 0, |Gxe| ≥ 0. We write zt ∼ I(dz)

for long memory processes with memory parameter dz, and ≃ to denote that

the ratio of the left- and right-hand sides tends to 1.

Now assume there is a polynomial function g(·) such that E[g(xt)] = 0

and

yt = g(xt) + et, 0 < de < dy ≤ dx < 1/2 ; (2)

in this case, we say that yt, xt are nonlinearly cointegrated. Clearly, the

standard (stationary) fractional cointegrating relationship is obtained in the
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special case where dx = dy and g(·) is a linear function. It is very important

to stress that xt, et are allowed to be correlated, which entails Ordinary

Least Squares are typically inconsistent in these stationary circumstances

(Robinson (1994)).

Our main idea in this paper is to write g(·) as a sum of Hermite poly-

nomials; the coefficients of these polynomials will be estimated by means

of a spectral regression method, as in Robinson (1994), Marinucci (2000)

and Marinucci and Robinson (2001). We shall show that, by using a degen-

erating band of frequencies around the origin, then the estimator of these

coefficients is consistent, despite the lack of orthogonality between xt and

et.

In the sequel, C denotes a generic, positive, finite constant, which need

not to be the same all the time it is used; for two generic matrices A and

B, of equal dimension, we say that A ≃ B if, for each (i, j), the ratio of the

(i, j)-th elements of A and B tends to unity.

2 Nonlinear cointegration

There is now a well-established literature on the analysis of nonlinear trans-

formation of stationary Gaussian time series by means of Hermite polynomi-

als; see Taqqu (1975, 1979) and Dobrushin and Major (1979) and more re-

cently Dittmann and Granger (2002) and Dalla, Giratis, and Hidalgo (2006).

These polynomials are defined through the formula:

Hj(z; σ2) = (−1)jσ2j exp

(
z2

2σ2

)
dj

dzj
exp

(
−

z2

2σ2

)
, j = 1, 2, . . . .

It is well-known that, for any mean zero Gaussian random variables v and

u, we have:

E [Hp(u)Hq(v)] =

{
p! [E(uv)]p for p = q

0 for p 6= q
. (3)

The index of the first non null coefficient bk is termed Hermite rank of

g(.). Of course, yt is non-Gaussian unless g(·) is linear. For our aims, the

most important property of Hermite polynomials is their orthogonality. This

property allows us to characterize in a simple way the dependence structure

of a nonlinear transformation of a stationary Gaussian process that exhibit

long range dependence. Let zt ∼ I(dz); in view of (1) and (3) it is easy to

see that

E[Hk(z0)Hk(zτ )] = k!γk(τ) ≃ Cτk(2dz−1), as τ → ∞
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so the sequence Hk+1(zt) is “less” dependent then Hk(zt). More precisely,

if zt ∼ I(dz), then Hk(zt) can be viewed as a long memory series that is

fractional integrated of order dk ,

dk :=

{
k

(
dz −

1

2

)
+

1

2

}
∨ 0 ≤ dz . (4)

The above equation follows straightforwardly from the equality 2dk − 1 =

k(2dz − 1).

We state here more precisely our full set of assumptions.

Assumption A

1) (xt, εt)
′ are jointly Gaussian and long memory, that is, as τ → ∞

γxx(τ) ≃ Gxxτ2dx−1, 0 < Gxx < ∞

γεε(τ) ≃ Gεετ
2dε−1, 0 < Gεε < ∞

γxε(τ) ≃ Gxετ
dx+dε−1, |Gxε| < ∞

for 0 ≤ dε, dx < 1
2 .

2) The following equation holds:

yt = g(xt) + et , (5)

where for t = 1, 2, ...

g(xt) =
∑K

k=k0
akx

k
t =

∑K
k=k0

bkHk(xt) , bk0
6= 0 ,

et =
∑ eKek=ek0

θekεekt =
∑ eKek=ek0

ξekHek(εt) , ξek0

6= 0 ,

3) The parameters K, k̃0 are such that

K(2dx − 1) >
{
−1 ∨ k̃0(2dε − 1)

}
.

Assumptions A1-A2 identify a polynomial cointegration model where the

residual is a Gaussian subordinated process. By assumption A2, the cointe-

grating relation (2) can be rewritten as

yt = β′H(xt) + et, where H(xt) = [H1(xt), ..., HK(xt)]
′ .

The possible correlation between xt and et leads to the inconsistency of OLS

and justifies the use of the spectral regression techniques. As it shall be

apparent from the proofs, in our arguments a great simplification occurs for

Gxe = 0. However, in our view, in general it seems difficult to assess a priori
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what sort of behavior will characterize the covariance between regressors and

residual at long lags (Gxe = 0 would entail these covariances to be eventually

zero). Therefore in this paper we focus on the general situation where the

value of this parameter is left unconstrained, abiding in some sense to the

traditional cointegration framework.

Assumption A3 ensures that HK(xt) is still a long memory process, with

stronger memory than et. This is also a necessary identification condition:

there are no means to distinguish Hk(xt) and et if they are not orthogonal

unless the former has stronger long range dependence. In this paper, we

take k0 and K to be known, whereas their estimation will be addressed in

a different work. Note that to implement our estimates we need no a priori

information on k̃0, K̃, although the value of k̃0(2dε − 1) does affect the rate

of consistency of our estimators.

Let us now define:

fHH(λ) =




f11(λ) 0 · · · · · ·

0 f22(λ) 0 · · ·
...

...
. . .

...

0
...

... fKK(λ)




, fHe(λ) =




f1e(λ)

f2e(λ)
...

fKe(λ)




and let also, for a, b = 1, 2, . . .K.

γab(τ) = E [Ha(xt)Hb(xt+τ )] = a!δb
a {E (xtxt+τ )}

a ,

γae(τ) = E [Ha(xt)et+τ ] = E


Ha(xt)

eK∑ek=ek0

ξekHek(εt)




=

{
a!ξa {E (xtεt+τ )}

a for a ≤ K̃

0 , otherwise
.

where δb
a represents the Kronecker delta function. Likewise

faz(λ) = (2π)−1
∞∑

τ=−∞

γaz(τ)e−iλτ

where z = a, y, e.

The Weighted Covariance Estimator (WCE) (see Marinucci (2000)) of

β′ = (β1, . . . , βK) is defined as

β̂M = f̂HH(0)−1f̂Hy(0) ,

whence

β̂M − β = f̂HH(0)−1f̂He(0) ;
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as usual, we assume f̂HH(0) is non-singular, where

f̂HH(0) =
1

2π




∑M
τ=−M k(τ/M)c11(τ) · · ·

∑M
τ=−M k(τ/M)c1K(τ)

...
. . .

...∑M
τ=−M k(τ/M)cK1(τ) · · ·

∑M
τ=−M k(τ/M)cKK(τ)


 ,

f̂Hz(0) =
1

2π




∑M
τ=−M k(τ/M)c1z(τ)

...∑M
τ=−M k(τ/M)cKz(τ)




and k(·) is a kernel function to be discussed later, M is a positive integer

representing a bandwidth parameter,

cab(τ) = n−1
n−τ∑

t=1

Ha(xt)Hb(xt+τ )

caz(τ) = n−1
n−τ∑

t=1

Ha(xt)zt+τ

for a, b = 1, 2, . . .K, z = y, e. and τ ≤ 0. For τ < 0, we have caw(τ) =

cwa(−|τ |), w = b, z.

β̂M can be interpreted as resulting from a continuously averaged lest

square regression of the discrete Fourier transform (DFT) of yt on the DFT

of H(xt) around a band of frequencies degenerating to zero as n goes to

infinity. It is thus a continuously averaged analogous of the NBLS estimator

considered for the linear case by Robinson (1994), Robinson and Marinucci

(2001); in both cases, the numerator and the denominator can be viewed as

spectral density estimates at zero frequency.

While there is certainly scope to consider discretely averaged estimates

in this framework, we stick to the continuous case because we believe a

time-domain expression can be appealing for practitioners and in view of

the greater transparency of the proofs. Also, an explicit allowance for a

general kernel grants more flexibility in the analysis of real data.

The last two assumptions concern the kernel and the bandwidth condi-

tion.

Assumption B: The kernel k(·) is a real-valued, symmetric Lebesgue

measurable function that, for υ ∈ R, satisfies

∫ 1

−1
k(υ)dυ = 1 0 ≤ k(υ) ≤ ∞, k(υ) = 0 for |υ| > 1.
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Assumption C: Let η = K ∨ k̃0; as n → ∞ ,

1

M
+

M3∨(η−2)

n
→ 0 .

Assumption B is common for spectral estimates, and it is satisfied by

(normalized version of) truncated lag windows such as Bartlett, modified

Bartlett, Parzen, and many others, see Brillinger (1981) for a review.

Assumption C imposes a minimal lower bound and a significant upper

bound on the behaviour of the user-chosen bandwidth parameter M. The

need for this bandwidth condition is made clear by inspection of the proof

in the appendix; heuristically, as K grows the signal in HK(xt) decreases,

which makes the estimation harder; on the other hand an increase in k̃0

makes the convergence rates in Lemma 1 and Theorem 1 faster, whence the

need for tighter bandwidth conditions. We are not claiming Assumption C

is sharp, however an inspection of the Proof of Lemma 1 reveals that any

improvement is likely to require at least almost unmanageable computations.

The following lemma is the main tool for our consistency result, compare

Lemma 1 in Marinucci (2000). By (4) we write

da := a

(
dx −

1

2

)
+

1

2
, de =

{
k̃0

(
dε −

1

2

)
+

1

2

}
∨ 0 ;

by Assumption A3 we have da > 0, a = k0, ..., K.

LEMMA 1 Under Assumptions A-C, as n → ∞ we have:

M∑

τ=−M

k
( τ

M

)
{cab(τ) − γab(τ)} = op(M

da+db) (6)

M∑

τ=−M

k
( τ

M

)
{cae(τ) − γae(τ)} = op(M

da+de) (7)

for a, b = 1, 2, . . .K

Proof See Appendix

We are now ready to state the main result of this paper. Let

Bab : = a!Ga
xxδb

a

∫ 1

−1
k(υ)|υ|a(2dx−1)dυ < ∞ ,

Bae : = a!ξa {Gxε}
a

∫ 1

−1
k(υ)|υ|a(dx+dε−1)dυ < ∞ , for a ≤ K̃ ,

7



see also Assumption B, a, b = k0, ..., K. Let

BHH = diag {B11, . . . BKK} , BHe = {B1e, ..., BKe} , M = diag
{

M−d1 , . . .M−dK

}
.

Note that Bae = 0 unless a ≤ K̃, due to the orthogonality of Hermite

polynomials.

Theorem 1 Under the Assumptions A-C, as n → ∞




Md1−de 0 0

0
. . . 0

0 0 MdK−de



(
β̂M − β

)
= B−1

HHBHe + op(1) .

Proof By the dominated convergence theorem, as M → ∞

M−(da+db)
M∑

τ=−M

k
( τ

M

)
γab(τ) =

M∑

τ=−M

k
( τ

M

) γab(τ)

Mda+db−1

1

M
→ Bab

M−(da+de)
M∑

τ=−M

k
( τ

M

)
γae(τ) =

M∑

τ=−M

k
( τ

M

) γ1e(τ)

Mda+de−1

1

M
→ Bae

From Lemma 1, it follows easily that

f̂HH(0) =




ζ1 + op(M
2d1) op(M

d1+d2) · · · op(M
d1+dp)

op(M
d2+d1) ζ2 + op(M

2d2) · · · op(M
d2+dp)

...
...

. . .
...

op(M
dK+d1) · · · · · · ζK + op(M

2dK )




where

ζa :=
1

2π

M∑

τ=−M

k(
τ

M
)γaa(τ) .

Moreover

Mf̂HH(0)M =




B11 + op(1) · · · op(1)
...

. . .
...

op(1) · · · BKK + op(1)


→ BHH .

Therefore, for M → ∞

f̂HH(0) = M−1BHHM−1 + op(1) = BHHM−2 + op(1) ,

since BHH is diagonal and hence commutes with M−1. Using the same

arguments, it follows easily that:

M−deMf̂he(0) → BHe , as n → ∞ .
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Finally, as n → ∞ ,

M−deM−1
{

β̂M − β
}

=
{
Mf̂hh(0)M

}−1
MM−de f̂he(0) → B−1

HHBHe ,

which completes the proof of Theorem 1.

�

Remark In Theorem 1 we have proved the consistency of the WCE estima-

tor of the cointegrating vector, β̂M
p
→ β. In a very loose sense, this result

follows from consistency of a continuously averaged estimate of the spectral

density at frequency zero, see Lemma 1. It is also possible to use Lemma

1 to derive a robust estimate for the memory parameter of an observed,

Gaussian subordinated series wt := g(xt), (k0(dx − 1
2) + 1

2 =: dw, say). We

use a very similar idea to the averaged periodogram estimate advocated by

Robinson (1994). More precisely, with an obvious notation we can consider

d̃w : =
log
∣∣∣
∑M

τ=−M k( τ
M

)cww(τ)
∣∣∣

2 log M
= dw +

log Bww

2 log M
+ op(1) ,

= dw + op(1) ,

where we have used Lemma 1. This estimate converges at a mere logarithmic

rate and it is not asymptotically centered around zero; it is however consis-

tent under broader circumstances than usually allowed for in the literature

(see Velasco (2006) for a recent survey).

3 Comments and conclusions

We view this paper as a first step in a new research direction, and as such

we are well aware that it leaves several questions unresolved and open for

future research. A first issue relates to the choice of the Hermite rank k0 and

of K. As far as the former is concerned, we remark that for the great ma-

jority of practical applications, k0 can be taken a priori as 1 or 2. Under the

assumption that k0 = 1, the equality dx = dy holds; this trivial observation

immediately suggests a naive test for k0 = 1, which can be simply imple-

mented by testing for equality of the two memory parameters. It should be

noted, however, that when xt and yt are cointegrated the standard asymp-

totic results on multivariate long memory estimation (for instance Robinson

(1995)) do not hold. Incidentally, we note that the nonlinear framework

allows to cover the possibility of cointegration between time series with dif-

ferent integration orders, a significant extension over the standard paradigm.
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For K, we can take as an identifying assumption

K := argmax(k : k(2dx − 1) > (2de − 1)) ; (8)

higher order terms can be thought of as included by definition in the resid-

uals, to make identification possible. Indeed, it is natural to suggest to view

g(.) as a general nonlinear function and envisage K as growing with n; we

expect, however, that only the projection coefficients bk with k satisfying

(8) could be consistently estimated in this broader framework. On the other

hand, we note that the it is also possible to estimate consistently K∗ < K

regression coefficients, by simply dropping the higher order regressors: it is

immediate to see that their inclusion in the residual would not alter any of

our asymptotic result (there may be an effect in finite samples, however).

We stress that a lower number of regressors allows in general a weaker band-

width condition, see Assumption C.

The extension to multivariate regressors does not seem to pose any new

theoretical problem: multivariate generalizations of Hermite expansions are

well known to the literature. The non-Gaussian case is more complicated

to consider, even if some results using Appell polynomials are provided by

Surgailis (2000).

Of course, much more challenging seems to be the possibility to allow

for multiple cointegrating relationships. An important point to remark is

the following. In standard cointegration theory, the role of the variables on

the left and on on the right-hand sides is, by all means, symmetric: this is

no longer the case when nonlinear relationships are allowed. In particular,

it should be noted that the memory parameter of the dependent variable yt

is always smaller or equal than dx; this information can be exploited in an

obvious way to decide the form of the regression, provided that first step

estimates of the long memory parameters are available. We also remark

that our procedure requires a preliminary knowledge on the variance of the

regressor xt; such knowledge can clearly be derived from first step estimates,

and we leave for future research the analysis of its consequences in finite

samples.

In this paper, we restricted ourselves to consistency results, and gave no

hint on asymptotic distributions. The latter are likely to be non-Gaussian,

at least if the Hermite rank is larger than one and/or the memory of the

raw series is such to make their autocovariances not square summable (see

for instance Fox and Taqqu (1985, 1986). A much wider issue relates to the

possible extension to nonstationary circumstances. Here, a major techni-

cal difficulty arises: the higher order terms in Hermite expansions need no

longer be of smaller order in the presence of nonstationarity. We believe,
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however, that the stationary framework considered in this paper is of suf-

ficient interest by itself for applications to real data, see again Christensen

and Nielsen (2006) for examples on how fractional cointegration between

stationary variables may be implied by some models of volatility, based on

the Black-Scholes formula for option pricing.

Appendix

Proof of Lemma 1 Recall we have

γab(τ) ≃ G|τ |da+db−1 as τ → ∞ ,

where for a, b = 1, ..., K, da is such that

da :=

{
a
2 (2dx − 1) + 1

2 for a(2dx − 1) > −1

0 for a(2dx − 1) < −1
. (9)

The first part of the proof follows closely Marinucci (2000). For (6), it is

sufficient to show that

V ar

{
M−1∑

τ=−M+1

k
( τ

M

)
cab(τ)

}
= E

{
M−1∑

τ=−M+1

k
( τ

M

) [
cab(τ) −

(
1 −

τ

n

)
γab(τ)

]}2

≤ C
M∑

p=−M

M∑

q=−M

|Cov{cab(p), cab(q)}| = o(M2da+2db)

From Hannan (1970), p.210 we have:

Cov{cab(p), cab(q)}

=
1

n

n−1∑

r=−n+1

(
1 −

|r|

n

)
{γaa(r)γbb(r+q−p) + γab(r+q)γba(r−p)} (10)

+
1

n2

n−1∑

r=−n+1

n−r∑

s=1−r

cumabab (s, s + p, s + r, s + r + q) , (11)

where

cumabab (s, s + p, s + r, s + r + q) = cum {Ha(xs), Hb(xs+p), Ha(xs+r), Hb(xs+r+q)} .

Likewise, for (7) we shall show that

V ar

{
M−1∑

τ=−M+1

k
( τ

M

)
cae(p)

}

≤ C

M∑

p=−M

M∑

q=−M

|Cov{cae(p), cae(q)}| = o(M2da+2de) (12)
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For (10) we have

M∑

p=−M

M∑

q=−M

1

n

∣∣∣∣∣

n−1∑

r=−n+1

(
1 −

|r|

n

)
{γaa(r)γbb(r + q − p)}

∣∣∣∣∣

≤ C
M

n

2M∑

τ=−2M



∑

|r|≤2M

(|r| + 1)2da−1(|r + τ | + 1)2db−1+

+
∑

|r|>2M

(|r| + 1)2da−1(|r + τ | + 1)2db−1




= C
M

n



∑

|r|≤2M

(
(|r| + 1)2da−1

2M∑

τ=−2M

(|r + τ | + 1)2db−1

)

+

2M∑

τ=−2M




∑

2M<|r|<n

(|r| + 1)2da−1(|r + τ | + 1)2db−1






= O(Mn−1M2daM2db) + O(M2n−1n2da+2db−1) = o(M2da+2db) .

As usual, summations over empty sets are taken to be equal to zero. For

the second term we have:

M∑

p=−M

M∑

q=−M

1

n

∣∣∣∣∣

n−1∑

r=−n+1

(
1 −

|r|

n

)
γab(r + p)γba(r − q)

∣∣∣∣∣

≤ C
M∑

p=−M

M∑

q=−M

1

n

n−1∑

r=−n+1

(
1 −

|r|

n

)
1

2

∣∣γ2
ab(r + p) + γ2

ba(r − q)
∣∣

≤
C

n

∑

|r|≤2M




M∑

p=−M

(|r + p| + 1)2da+2db−2 +
M∑

q=−M

(|r − q| + 1)2da+2db−2




+C
M2

n

∑

2M<|r|<n

[
(|r + p| + 1)2da+2db−2 + (|r − q| + 1)2da+2db−2

]

= O(Mn−1M2da+2db) + O(M2n−1n2da+2db−1) = o(M2da+2db) .

The argument for (11) is entirely analogous, but simpler, to that we are

giving below for (12). More precisely, to bound (12) we need to focus on

cumaeae (s, s + p, s + r, s + r + q)

= cum {Ha(xs), es+p, Ha(xs+r), es+r+q}

=

eK∑
k=ek0

eK∑
k′=ek0

cum {Ha(xs), Hk(εs+p)Ha(xs+r), Hk′ , (εs+r+q)} .
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The orders of magnitude of the cumulants are investigated by means of

the diagram formula (see Arcones (1994), Surgailis (2003); some diagrams

emerging from our arguments are represented in Figures 1 to 7). The proof

is quite tedious. From the diagram formula it follows easily that, for any

finite k, k′ ≥ k̃0eK∑
k=ek0

eK∑
k′=ek0

|cum {Ha(xs), Hk(εs+p), Ha(xs+r), Hk′(εs+r+q)}|

≤ C
∣∣∣cum

{
Ha(xs), Hek0

(εs+p), Ha(xs+r), Hek0

(εs+r+q)
}∣∣∣ . (13)

Indeed, increasing the value of k̃0 to k, k′ entails including more products of

covariances in the cumulant, and these covariances are bounded. In order

to simplify the presentation, we divide it in three parts, that is

1) a = 1, k̃0 ≥ 2 or a ≥ 2, k̃0 = 1

2) a = 2, k̃0 ≥ 2 or a ≥ 2, k̃0 = 2

3) a, k̃0 ≥ 3.

Throughout the proof, we shall assume for brevity’s sake k̃0(2dε − 1) >

−1; it is simple to check that for k̃0(2dε − 1) ≤ −1 the proof is analogous,

indeed slightly simpler.

Part I: a = 1, k̃0 ≥ 2 or a ≥ 2, k̃0 = 1

For a = 1, k̃0 = 2 we have

M∑

p=−M

M∑

q=−M

1

n2
|cum {xs, H2(εs+p), xs+r, H2(εs+r+q)}|

≤

M∑

p=−M

M∑

q=−M

C

n2

∣∣∣∣∣

n−1∑

r=−n+1

n−r∑

s=1−r

γxε(p)γxε(q)γεε(r + q − p)

+γεε(r + q − p)γεx(r − p)γxε(r + q)|

≤
C

n

M∑

p=−M

(|p| + 1)dx+dε−1
M∑

q=−M

(|q| + 1)dx+dε−1



∑

|r|≤3M

(|r + q − p| + 1)2dε−1

+
∑

3M<|r|≤n

(|r + q − p| + 1)2dε−1




+
C

n

M∑

p=−M

M∑

q=−M



∑

|r|≤3M

(|r+q−p|+1)2dε−1(|r−p|+1)dx+dε−1(|r+q| + 1)dx+dε−1

13



+
∑

3M<|r|≤n

(|r + q − p| + 1)2dε−1(|r − p| + 1)dx+dε−1(|r + q| + 1)dx+dε−1




= O(n−1Mdx+dεMdx+dεM2dε) + O(n−1M2dx+2dεn2dε)

+O(n−1MMdx+dεM2dε) + O(n−1M2n2dx+4dε−3)

= O

(
M

n
M2dx+4dε−1

)
+ o(M4dε+2dx) + O

(
M2

n
Mdx+3dε−1) + o(M4dε+2dx

)

= o(M2dx+4dε−1) = o(M2dx+2de) because 2de = 4dε − 1 .

The extension to k̃0 > 2 is trivial:

cum
{

xs, Hek0

(εs+p), xs+r, Hek0

(εs+r+q)
}

=
M∑

p=−M

M∑

q=−M

C

n2

∣∣∣∣∣

n−1∑

r=−n+1

n−r∑

s=1−r

γxε(p)γxε(q)γ
ek0−1
εε (r + q − p)

+γ
ek0−1
εε (r + q − p)γεx(r − p)γxε(r + q)

∣∣∣∣∣

= O(n−1M2dx+2dεM
e(k

0
−1)(2dε−1)+1) + O(n−1M2dx+2dεn

e(k
0
−1)(2dε−1)+1)

+O(n−1Mdx+dε+1M
e(k

0
−1)(2dε−1)+1) + O(n−1M2n2dx+2dε−2+ e(k

0
−1)(2dε−1)+1)

= O

(
M

n
M2dx+2dε−1M

e(k
0
−1)(2dε−1)+1

)
+ o(M2dx+ek0(2dε−1)+1)

+O

(
M2

n
Mdx+dε−1M

e(k
0
−1)(2dε−1)+1

)
+ O(n−1M2n2dx+ek0(2dε−1))

= o(M2dx+2de),

by the same argument as before. The proof for a ≥ 2, k̃0 = 1 is entirely

analogous and hence omitted.

Part II: a = 2, k̃0 ≥ 2 or a ≥ 2, k̃0 = 2

For a = 2, k̃0 = 2 we have

M∑

p=−M

M∑

q=−M

1

n2

∣∣∣∣∣

n−1∑

r=−n+1

n−r∑

s=1−r

cum{H2(xs)H2(εs+p)H2(xs+r)H2(εs+r+q)}

∣∣∣∣∣

≤
M∑

p=−M

M∑

q=−M

C

n2

∣∣∣∣∣

n−1∑

r=−n+1

n−r∑

s=1−r

γxε(p)γxε(q)γxx(r)γεε(r + q − p)

+γxε(p)γxε(r + q)γεx(r − p)γxε(q)

+γxx(r)γεε(r + q − p)γεx(r − p)γxε(r + q)

∣∣∣∣∣
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≤
C

n





M∑

p=−M

M∑

q=−M

∑

|r|≤3M

[
(|p|+1)dx+dε−1(|q|+1)dx+dε−1(|r|+1)2dx−1(|r+q−p|+1)2dε−1

+(|p|+1)dx+dε−1(|q|+1)dx+dε−1(|r+q|+1)dx+dε−1(|r − p| + 1)dx+dε−1

+ (|r|+1)2dx−1(|r+q−p|+1)2dε−1(|r−p|+1)dx+dε−1(|r+q|+1)dx+dε−1
]}

+
C

n





M∑

p=−M

M∑

q=−M

∑

3M<r≤n

[
(|p|+1)dx+dε−1(|q|+1)dx+dε−1(|r|+1)2dx−1(|r+q−p| + 1)2dε−1

+(|p|+1)dx+dε−1(|q|+1)dx+dε−1(|r+q|+1)dx+dε−1(|r−p|+1)dx+dε−1

+ (|r|+1)2dx−1(|r+q−p|+1)2dε−1(|r−p|+1)dx+dε−1(|r+q|+1)dx+dε−1
]}

= O(n−1M2dx+2dεM2dε) + O(n−1Mdx+dεMdx+dεMdx+dε) + O(n−1M3dε+3dx)

+O(n−1M2dx+2dεn2dx+2dε−1) + O(n−1M2dx+2dεn2dx+2dε−1) + O(M2n−1n4dx+4dε−3)

= O

(
M2

n
M2dx+4dε−2

)
+ O

(
M2

n
M2dx+4dε−2

)
+ o(M4dx+4dε−2)

= o(M2d2+2de) because 2d2 = 4dx − 1 and 2de = 4dε − 1 .

For k̃0 > 2 the argument is very much the same:

M∑

p=−M

M∑

q=−M

1

n2

∣∣∣∣∣

n−1∑

r=−n+1

n−r∑

s=1−r

cum{H2(xs)Hek0

(εs+p)H2(xs+r)Hek0

(εs+r+q)}

∣∣∣∣∣

≤
M∑

p=−M

M∑

q=−M

C

n2

∣∣∣∣∣

n−1∑

r=−n+1

n−r∑

s=1−r

γxε(p)γxε(q)γxx(r)γ
ek0−1
εε (r + q − p)

+γxε(p)γxε(q)γxε(r + q)γεx(r − p)γ
ek0−2
εε (r + q − p)

+γxx(r)γεx(r − p)γxε(r + q)γ
ek0−1
εε (r + q − p)

∣∣∣∣∣

= O(n−1M2dx+2dεM
e(k

0
−1)(2dε−1)+1) + O(n−1M2dx+2dεM

e(k
0
−2)(2dε−1)+1)

+O(n−1M2dxMdx+dεM
e(k

0
−1)(2dε−1)+1) + O(n−1M2dx+2dεn2dx−1+ e(k

0
−1)(2dε−1)+1)

+O(n−1M2dx+2dεn2dx+2dε−1+ e(k
0
−2)(2dε−1)) + O(M2n−1n4dx+2dε−2+ e(k

0
−1)(2dε−1))

= O

(
M2

n
M2dx−1M

ek0(2dε−1)+1

)
+ o

(
M2

n
M2dx+2dε−1+ek0(2dε−1)+1

)

+O

(
M2

n
M3dx−1−dεM

ek0(2dε−1)+1

)
+ O

(
M2

n
M4dx−1M

ek0(2dε−1)+1

)

= o(M2d2+2de) , because 2de = k̃0(2dε − 1) + 1 .
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Part III: a ≥ 3, k̃0 ≥ 3

We note that, by the diagram formula (as in (13))
∣∣∣cum

[
Ha(xs)Hek0

(εs+p)Ha(xs+r)Hek0

(εs+r+q)
]∣∣∣

≤ C |cum [H3(xs)H3(εs+p)H3(xs+r)H3(εs+r+q)]| .

It suffices then to focus on a = k̃0 = 3. There are seven different kinds of

connected diagrams, which are represented in Figures 1 to 7. We have

M∑

p=−M

M∑

q=−M

1

n2

∣∣∣∣∣

n−1∑

r=−n+1

n−r∑

s=1−r

cum{H3(xs)H3(εs+p)H3(xs+r)H3(εs+r+q)}

∣∣∣∣∣

=
M∑

p=−M

M∑

q=−M

C

n2

∣∣∣∣∣

n−1∑

r=−n+1

n−r∑

s=1−r

γ2
xε(p)γ2

xε(q)γεx(r − p)γxε(r + q)+

+ γxε(p)γxx(r)γxε(r + q)γεε(r + q − p)γεx(r − p)γxε(q)

+ γ2
xx(r)γ2

εε(r + q − p)γεx(r − p)γxε(r + q)

+ γ2
xε(p)γ2

xε(q)γxx(r)γεε(r + q − p)

+ γ2
xx(r)γ2

εε(r + q − p)γxε(p)γxε(q)

+ γ2
xε(r − p)γ2

xε(r + q)γxε(p)γxε(q)

+ γ2
xε(r − p)γ2

xε(r + q)γxx(r)γεε(r + q − p)
∣∣

≤
C

n

M∑

p=−M

(|p| + 1)2(dx+dε−1)
M∑

q=−M

(|q| + 1)2(dx+dε−1)

×



∑

|r|≤2M

(|r − p| + 1)dx+dε−1(|r + q| + 1)dx+dε−1

+
∑

2M<|r|≤n

(|r − p| + 1)dx+dε−1(|r + q| + 1)dx+dε−1


 (14)

+
C

n

M∑

p=−M

(|p| + 1)dx+dε−1
M∑

q=−M

(|q| + 1)dx+dε−1

×



∑

|r|≤3M

(|r| + 1)2dx−1(|r + q − p| + 1)2dε−1(|r − p| + 1)dx+dε−1(|r + q| + 1)dx+dε−1

+
∑

3M<|r|≤n

(|r|+1)2dx−1(|r+q−p|+1)2dε−1(|r−p|+1)dx+dε−1(|r+q|+1)dx+dε−1


 (15)

16



+
C

n





∑

|r|≤3M

(|r| + 1)2(2dx−1)
M∑

p=−M

M∑

q=−M

(|r + q − p| + 1)2(2dε−1)

×(|r−p|+1)dx+dε−1(|r+q|+1)dx+dε−1
)

+

M∑

p=−M

M∑

q=−M




∑

3M<|r|≤n

(|r|+1)2(2dx−1)

× |r + q − p| + 1)2(2dε−1)(|r − p| + 1)dx+dε−1(|r + q| + 1)dx+dε−1
)]

(16)

+
C

n

M∑

p=−M

(|p| + 1)2(dx+dε−1)
M∑

q=−M

(|q| + 1)2(dx+dε−1)





∑

|r|≤3M

(|r| + 1)2dx−1

× (|r+q−p|+1)2dx−1
)

+
∑

3M<|r|≤n

(|r|+1)2dx−1(|r+q−p|+1)2dx−1


 (17)

+
C

n

M∑

p=−M

(|p| + 1)dx+dε−1
M∑

q=−M

(|q| + 1)dx+dε−1





∑

|r|≤3M

(|r| + 1)2(2dx−1)

× (|r+q−p|+1)2(2dε−1)
)

+
∑

3M<|r|≤n

(|r|+1)2(2dx−1)(|r+q−p| + 1)2(2dε−1)


 (18)

+
C

n

M∑

p=−M

(|p| + 1)dx+dε−1
M∑

q=−M

(|q| + 1)dx+dε−1





∑

|r|≤3M

(|r + q| + 1)2(dx+dε−1)

× (|r−p|+1)2(dx+dε−1)
)

+
∑

3M<|r|≤n

(|r+q|+1)2(dx+dε−1)(|r−p|+1)2(dx+dε−1)


 (19)

+
C

n

∑

|r|≤3M

(|r| + 1)2dx−1
M∑

p=−M

M∑

q=−M

(|r + p − q| + 1)2dε−1

×(|r − p| + 1)2(dx+dε−1)(|r + q| + 1)2(dx+dε−1) +
∑

3M<|r|≤n

(|r| + 1)2dx−1

×
M∑

p=−M

M∑

q=−M

(|r+p−q|+1)2dε−1(|r−p|+1)2(dx+dε−1)(|r+q|+1)2(dx+dε−1).(20)
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After lengthy but straightforward computations, it is not difficult to see that

(14) = O(n−1M2dx+2dε−1M2dx+2dε−1Mdx+dε) + O(n−1M4dx−1M4dε−1n2dx+2dε−1)

= o

(
M4dx+4dε−1

n

)
+ O(M4dx−1M4dε−1n2dx+2dε−2)

(15) = O(n−1Mdx+dεMdx+dεM2dx+2dε−1) + O(n−1Mdx+dεMdx+dεn4dx+4dε−3)

= O

(
M4dx+4dε−1

n

)
+ o(M4dx−1M4dε−1n2dx+2dε−2)

(16) = O(n−1M4dx−1M4dε) + O(n−1M2n6dx+6dε−5)

= O

(
M4dx+4dε−1

n

)
+ o(M4dx−1M4dε−1n2dx+2dε−2)

(17) = O(n−1M2dx+2dε−1M2dx+2dε−1M2dx) + O(n−1M4dx−1M4dε−1n2dx+2dε−1)

= o

(
M4dx+4dε−1

n

)
+ O(M4dx−1M4dε−1n2dx+2dε−2)

(18) = O(n−1Mdx+dεMdx+dεM4dε−1) + O(n−1M2dxM2dxn4dx+4dε−3)

= O

(
M4dx+4dε−1

n

)
+ o(M4dx−1M4dε−1n2dx+2dε−2)

(19) = O(n−1Mdx+dεMdx+dεM2dx+2dε−1) + O(n−1M2dx+2dεn4dx+4dε−3)

= O

(
M4dx+4dε−1

n

)
+ o(M4dx−1M4dε−1n2dx+2dε−2)

(20) = O(n−1M2dxM2dx+2dε) + O(n−1M2n6dx+6dε−5)

= o(
M4dx+4dε−1

n
) + o(M4dx−1M4dε−1n2dx+2dε−2)

= O(
M4dx+4dε−1

n
) + o(M4dx−1M4dε−1n2dx+2dε−2) .

In view of the previous results, our proof will be completed if we show that

M4dx+4dε−1

n
+ M4dx−1M4dε−1n2dx+2dε−2 = o(M2da+2de) ,

where

2da + 2de = 2adx + 2k̃0dε − (a + k̃0) + 2 .

We note first that

M4dx+4dε−1

nM2da+2de
=

M4dx+4dε−1

n(M2adx+2ek0dε−(a+ek0)+2)
=

M2(2−a)dx+2(2−ek0)dε−3+a+ek0

n
.

From (9) and de > 0 it follows that

dx >
1

2
−

1

2a
and dε >

1

2
−

1

2k̃0

,

18



whence, because a, k̃0 ≥ 2 we have

M2(2−a)dx+2(2−ek0)dε−3+a+ek0

n
≤

M
2(2−a)( 1

2
− 1

2a
)+2(2−ek0)( 1

2
− 1

2k0

)−3+a+ek0

n

= o

(
M3

n

)
= o(1) ,

in view of Assumption C. To complete the proof, note that, again from

Assumption C, for some α > a − 2, k̃0 − 2 we have Mα = O(n), whence

M4dx+4dε−2n2dx+2dε−2

M2adx+2ek0dε−(a+ek0)+2
= o(M (2−a+α)(2dx−1)+(2−ek0+α)(2dε−1)) = o(1) as n → ∞ .

Thus the proof is completed. �
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Figure 1: γ2
xε(p)γ2

xε(q)γxε(r + q)γεx(r − p)

xs
xs+rxs

xs+r

εs+p

εs+r+q εs+r+qεs+p

Figure 2: γxε(r + q)γεx(r − p)γ2
xx(r)γ2

εε(r + q − p)

xs
xs+rxs

xs+r

εs+p

εs+r+q εs+r+qεs+p

Figure 3: γxε(p)γxε(q)γ
2
xε(r + q)γ2

εx(r − p)γxx(r)γεε(r + q − p)

xs
xs+rxs

xs+r

εs+p

εs+r+q εs+r+qεs+p

Figure 4: γ2
xε(p)γ2

xε(q)γxx(r)γεε(r + q − p)
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Figure 5: γ2
xε(p)γ2

xε(q)γ
2
xx(r)γ2

εε(r + q − p)
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Figure 6: γxε(p)γxε(q)γ
2
xε(r + q)γ2

εx(r − p)

xs
xs+rxs
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εs+r+q εs+r+qεs+p

Figure 7: γxx(r)γεε(r + q − p)γ2
xε(r + q)γ2

εx(r − p)
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