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Abstract

We consider a general sample selection model where unit and item nonresponse simulta-
neously affect a regression relationship of interest, and both types of nonresponse are poten-
tially correlated. We estimate both parametric and semiparametric specifications of the model.
The parametric specification assumes that the errors in the latent regression equations follow
a trivariate Gaussian distribution. The semiparametric specification avoids distributional as-
sumptions about the underlying regression errors. In our empirical application, we estimate
Engel curves for consumption expenditure using data from the first wave of SHARE (Survey on
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Keywords: Unit nonresponse, item nonresponse, cross-sectional surveys, sample selection
models, Engel curves.

JEL classification: C14, C31, C34, D12

∗We thank Chuck Manski, Frank Vella and seminar participants at Northwestern and UCL for helpful comments.
Financial support for this research was provided through the European Community’s Program ‘Quality of Life’ under
the contract No. QLK6-CT-2002-002426 (AMANDA). This paper is based on data from the early Release 1 of SHARE
2004, which is preliminary and may contain errors that will be corrected in later releases. The SHARE data collection
has been primarily funded by the European Commission through the 5th framework program (project QLK6-CT-
2001-00360 in the thematic program ‘Quality of Life’). Additional funding came from the US National Institute on
Aging (U01 AG09740-13S2, P01 AG005842, P01 AG08291, P30 AG12815, Y1-AG-4553-01 and OGHA 04-064). Data
collection in Austria (through the Austrian Science Fund, FWF) and Switzerland (through BBW/OFES/UFES) was
nationally funded.

1



1 Introduction

Nonresponse is a very important source of nonsampling errors in sample surveys. A distinction is

usually made between two forms of nonresponse: unit and item nonresponse. Unit nonresponse

occurs when eligible sample units fail to participate to a survey because of failure to establish a

contact, or explicit refusal to cooperate. Item nonresponse occurs instead when responding units

do not provide useful answers to particular items of the questionnaire.

The relevance of distinguishing between unit and item nonresponse is twofold. First, data users

can improve model specification, because different information is usually available for studying the

two types of nonresponse. In fact, the information available to study unit nonresponse is usually

confined to the information obtained from the sampling frame or the data collection process, whereas

the additional information collected during the interview can be used to study item nonresponse.

Second, understanding the different types of error generated by unit and item nonresponse plays

a key rule at the survey design stage, where resources have to be allocated efficiently to reduce

nonresponse errors. For instance, improving incentive schemes and follow-up procedures can help

reduce unit nonresponse, while reducing the complexity of the questionnaire can help reduce item

nonresponse.

For panel surveys, one can also distinguish a particular form of unit nonresponse, namely sample

attrition. This occurs when a responding unit in one wave of the panel drops out in a subsequent

wave. In this paper, we are mainly concerned with problems of nonresponse in cross-sectional

surveys or, equivalently, in the first wave of panel surveys. Response rates in the first wave of

a panel are typically much lower than in subsequent waves. For example, the overall household

nonresponse rate in the first wave of the European Community Household Panel, a large longitudinal

survey of the European population, is about 30 percent, whereas the overall household attrition

rate in the next two waves is about 10 percent (Eurostat 1997). Despite its importance, however,

response rate in the first wave has received little attention relative to panel attrition, largely because

of the lack of information on unit nonrespondents.

One crucial issue in studying both unit and item nonresponse is establishing whether or not

the mechanism generating missing observations is random. Following Rubin (1976), we distinguish

between three missing data mechanisms: missing completely at random (MCAR), missing at ran-

dom (MAR), and not missing at random (NMAR). A mechanism is MCAR if missingness does not

depend on the values of the variables in the data matrix. A mechanism is MAR if, after condi-

tioning on a set of observed covariates, there is no relation between missingness and the observed

2



outcomes. A mechanism is NMAR if missingness and the observed outcomes are related even after

conditioning on the set of observed covariates. When mechanisms underlying (unit or item) non-

response are NMAR, ignoring nonresponse errors or relying on the MAR assumption may lead to

invalid inference about population parameters of interest.

An important strategy in order to reduce nonresponse errors consists of planning preventive

measures to cope with nonresponse at the survey design stage. Well-designed surveys aim to

reduce unit nonresponse rates by choosing the most appropriate fieldwork period, interview mode,

interviewer training, follow-up procedures and incentive schemes. Other aspects of the questionnaire

design, like length of the interview, wording of the questions and their reference period, are more

likely to affect item nonresponse rates. Empirical studies by Groves and Couper (1998), Groves

et al. (2002), O’Muircheartaigh and Campanelli (1999) and Riphahn and Serfling (2002), show

that all these aspects of survey design are crucial to explain the response rates achieved in sample

surveys.

Unfortunately, despite the preventive measures adopted for minimizing nonresponse errors, re-

sponse rates are rarely close to 100 percent. This explains why most of the survey nonresponse

literature focuses on the development of statistical methods for ex-post adjustments of nonresponse

errors (see Lessler and Kalsbeek 1992, and Little and Rubin 2002). Weighting adjustment meth-

ods, which involve the assignment of weights to sample respondents in order to compensate for

their systematic differences relative to nonrespondents, have been traditionally used to deal with

problems of unit nonresponse, whereas imputation procedures, which aim to fill in missing values

to produce a complete dataset, have been traditionally used to deal with problems of item nonre-

sponse. Although ex-post adjustment techniques have reached a high level of sophistication, such

methods commonly assume that the missing data mechanism is MAR, and they do not generally

allow compensating simultaneously for errors due to unit and item nonresponse.

This paper differs from previous studies in two respects. First, problems of selectivity due to

unit and item nonresponse are analyzed jointly. Second, missing data mechanisms underlying the

different types of nonresponse are allowed to be NMAR. In particular, we analyze a general sam-

ple selection model where unit and item nonresponse can jointly affect a regression relationship of

interest, and the two types of nonresponse can be correlated. Attention focuses on two alternative

specifications of the model, one parametric and the other semiparametric. In the parametric spec-

ification, errors in the two selection equations (one for unit and one for item nonresponse) and in

the equation for the outcome of interest are assumed to follow a trivariate Gaussian distribution.
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In the semiparametric specification, we avoid distributional assumptions about the errors in the

three equations. After discussing issues related to identification and estimation of the two kinds of

model, we provide an empirical application by using data from the first wave of SHARE (Survey

on Health, Aging and Retirement in Europe), a survey conducted in 2004 across eleven European

countries. The aim of this analysis is to investigate the potential selectivity associated with unit

and item nonresponse in the estimation of Engel curves for food consumption at home and total

nondurable consumption.

The remainder of the paper is organized as follows. Section 2 formalizes the motivation of

this study, and presents a general framework to analyze problems of unit and item nonresponse.

Sections 2.1 and 2.2 consider problems of identification and estimation of the parametric and

semiparametric model respectively. Section 3 presents our data. Section 4 presents our empirical

results. Finally, Section 5 summarizes our main findings and offers some conclusion.

2 The statistical model

In what follows, we are interested in estimating the conditional mean function of a random outcome

by using data from a survey. Initially, a set of n units is drawn at random from the population

of interest. Nonresponse may then select the sample at two stages. First, unit nonresponse may

reduce the sample size to n1 < n responding units. Second, item nonresponse may further reduce

the number of usable observations to n2 < n1. This loss of observations causes an efficiency loss

relative to the ideal situation of complete response. This efficiency loss needs not be the main

concern, however, because lack of independence between the missing data mechanism and the

outcome of interest may also generate selectivity in the observed sample and may lead to biased

estimates of the population parameters.

To formalize the statistical problem, we consider a sequential framework where individuals first

decide whether to participate to the survey. Given participation, they then decide whether to

answer a specific item of the questionnaire. Thus, the indicator of unit response, Y1, is always

observed, the indicator of item response, Y2, is only observed for the units that agree to participate

to the survey, and the response process is completely described by two elements: the probability of

unit nonresponse, π0 = Pr{Y1 = 0}, and the probability of item nonresponse conditional on unit

response, π0|1 = Pr{Y2 = 0 |Y1 = 1}. Our objective is to obtain consistent estimates of the mean
function of the outcome of interest Y3 (conditional on covariates) allowing for selectivity generated

by unit and item nonresponse.
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By the law of iterated expectations1

E(Y3) = π0 E(Y3 |Y1 = 0) + (1− π0)[π0|1 E(Y3 |Y1 = 1, Y2 = 0)+

+ (1− π0|1) E(Y3 |Y1 = 1, Y2 = 1)].
(1)

The sampling process identifies π0, π0|1 and E(Y3 |Y1 = 1, Y2 = 1) but not E(Y3 |Y1 = 0) and

E(Y3 |Y1 = 1, Y2 = 0). Hence, in the absence of additional information, E(Y3) is not identifiable.
The assumption that both unit and item nonresponse are MAR is convenient because it implies

that E(Y3 |Y1 = 1, Y2 = 1) = E(Y3), which enables one to directly exploit the information contained
in the subsample of fully responding units. If this assumption does not hold and estimates of

E(Y3 |Y1 = 1, Y2 = 1) are used to estimate E(Y3), then the overall nonresponse bias is

E(Y3 |Y1 = 1, Y2 = 1)− E(Y3) = π0[E(Y3 |Y1 = 1)− E(Y3 |Y1 = 0)]+

+ π0|1[E(Y3 |Y1 = 1, Y2 = 1)− E(Y3 |Y1 = 1, Y2 = 0)].
(2)

Thus, the overall nonresponse bias depends on two separate components, respectively proportional

to the probability of unit nonresponse and the probability of item nonresponse conditional on

unit response. The overall nonresponse bias is zero when π0 = π0|1 = 0 (neither unit nor item

nonresponse), or E(Y3 |Y1 = 1) = E(Y3 |Y1 = 0) and E(Y3 |Y1 = 1, Y2 = 1) = E(Y3 |Y1 = 1, Y2 = 0)
(both unit and item nonresponse are MAR). Equation (2) makes it clear that there is also a third

case in which the overall nonresponse bias is zero, namely when the bias components due to unit

and item nonresponse have opposite sign and offset each other.

A simple way of allowing for differential selectivity effects of unit and item nonresponse is

to adopt the following straightforward generalization of the classical sample selection model of

Heckman (1979)

Y ∗j = μj + Uj , j = 1, 2, 3, (3)

Y1 = 1{Y ∗1 ≥ 0}, (4)

Y2 = 1{Y ∗2 ≥ 0}, if Y1 = 1, (5)

Y3 = Y ∗3 , if Y1Y2 = 1, (6)

where the Y ∗j , j = 1, 2, 3, are latent continuous random variables representing, respectively, the

propensity to participate to the survey, the propensity to answer to the item of interest, and the

outcome variable in the uncensored sample, and the Uj are regression errors with zero mean. The

μj are assumed to depend linearly on a kj-vector of fully observable exogenous variables Xj , that is,

1 In the following, explicit conditioning on covariates is suppressed to simplify notation.
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μj = αj +β>j Xj , j = 1, 2, 3, where αj and βj are unknown parameters to be estimated. The latent

variables Y ∗j are related to their observed counterparts Yj through the observation rules (4)—(6),

where 1{A} is the indicator function of the event A.
The primary interest of the analysis is estimation of the parameters in μ3 from the sub-sample

of fully observed units, for which

E(Y ∗3 |Y1Y2 = 1) = μ3 + σ3 E(U3 |U1 > −μ1, U2 > −μ2). (7)

If any of the two nonresponse mechanisms is NMAR, then the conditional expectation on the right

hand side of (7) is different from zero, and traditional estimation methods, sach as ordinary least

squares, lead to inconsistent estimates of the parameters of interest. Consistent estimation can

be based on simple generalizations of the classical Heckman two-step procedure. Parametric and

semiparametric versions of this procedure are presented in Sections 2.1 and 2.2 respectively. In both

cases, point identification of E(Y3) is achieved by restricting the shape of the joint distribution of

(Y1, Y2, Y3).

Although unavoidable if one seeks point identification, assumptions about the shape of the joint

distribution of (Y1, Y2, Y3)may not be entirely convincing, especially if they cannot be tested. When

the lack of credible assumptions about the response process prevents point identification of E(Y3),

partial identification in the sense of Horowitz and Manski (1998) and Manski (2003) would still be

possible if one could bound E(Y3 |Y1 = 0) and E(Y3 |Y1 = 1, Y2 = 0) in (1). Specifically, suppose
that E(Y3 |Y1 = 0) can take any value in the interval [a0, a1], whereas E(Y3 |Y1 = 1, Y2 = 0) can
take any value in the interval [b0, b1]. Then, E(Y3) must necessarily lie in the interval H = [c0, c1],

where
c0 = π0a0 + (1− π0)[π0|1b0 + (1− π0|1) E(Y3 |Y1 = 1, Y2 = 1)],

c1 = π0a1 + (1− π0)[π0|1b1 + (1− π0|1) E(Y3 |Y1 = 1, Y2 = 1)],
whose width is equal to

c1 − c0 = π0(a1 − a0) + (1− π0)π0|1(b1 − b0).

When Y3 is non-negative, as in the empirical example in Section 4, it is natural to choose a0 = b0 =

0. The resulting bounds of the identification region for E(Y3) are

c0 = (1− π0)(1− π0|1) E(Y3 |Y1 = 1, Y2 = 1)],

c1 = π0a1 + (1− π0)[π0|1b1 + (1− π0|1) E(Y3 |Y1 = 1, Y2 = 1)],
and the width of the identification region is c1 − c0 = π0a1 + (1 − π0)π0|1b1. Even in this case,

however, credible values for a1 and b1 are not easily found (unless when Y3 is a 0-1 indicator, in

which case it is natural to set a1 = b1 = 1), and so we do not pursue this approach further.
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2.1 Parametric estimation

Our parametric framework assumes that the latent regression errors follow a trivariate Gaussian

distribution with zero mean and correlation matrix

Σ =

⎡⎣ 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

⎤⎦ .
We also normalize the variances of U1 and U2 to one in order to identify the coefficients of the

binary response equations.

In this parametric setting, the vectors β = (β1, β2, β3) and α = (α1, α2, α3) of regression para-

meters can be estimated consistently through the two-step procedure proposed by Poirier (1980)

and further developed by Ham (1982). Here, we slightly modify their procedure in order to account

for partial observability of Y2. The procedure exploits the fact that, under our set of assumptions,

we have the explicit representation

E(U3 |U1 > −μ1, U2 > −μ2) = ρ13λ1(θ) + ρ23λ2(θ), (8)

where θ = (α1, α2, β1, β2, ρ12), the λj(θ) are bias correction terms given by

λ1(θ) =
φ(μ1)Φ(σ

−1(μ2 − ρ12μ1))

Φ2(μ1, μ2; ρ12)
,

λ2(θ) =
φ(μ2)Φ(σ

−1(μ1 − ρ12μ2))

Φ2(μ1, μ2; ρ12)
,

σ =
p
1− ρ212, and φ(·), Φ(·) and Φ2(·, ·; ρ) denote, respectively, the density of the standard-

ized Gaussian distribution, its distribution function and the distribution function of the bivariate

Gaussian distribution with zero means, unit variances and correlation coefficient ρ. The basic idea

of the two-step procedure is to obtain consistent estimates of the bias correction terms in (8), and

then use them as additional explanatory variables in an otherwise standard OLS regression.

In the first step of the procedure, we consider a bivariate probit model with sample selection for

(Y1, Y2), and estimate the parameter θ by maximum likelihood (ML). Identifiability of θ requires

imposing at least one exclusion restriction on the two sets of exogenous covariates X1 and X2.

Subject to the identifiability restrictions, the log-likelihood for a random sample of n units is of the

form

L(θ) =
nX
i=1

[Yi1Yi2 lnπi11(θ) + Yi1(1− Yi2) lnπi10(θ) + (1− Yi1) lnπi0(θ)] , (9)
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where we conventionally set Yi2 = 0 whenever Yi1 = 0 and, dropping the suffix i for simplicity,

π11(θ) = Pr{Y1 = 1, Y2 = 1} = Φ2(μ1, μ2; ρ12),

π10(θ) = Pr{Y1 = 1, Y2 = 0} = Φ(μ1)−Φ2(μ1, μ2; ρ12),

π0(θ) = Pr{Y1 = 0} = 1−Φ(μ1).

A ML estimator θ̂ maximizes (9) over the parameter space Θ = <k1+k2+2× (−1, 1). This estimator
is asymptotically normal under general conditions, and is consistent if the bivariate probit model

is correctly specified. Within this model, the hypothesis of conditional independence between unit

and item nonresponse can be tested either through a Wald test on the significance of ρ12, or through

a likelihood ratio test that compares the maximized values of the log-likelihood in (9) with the sum

of the log-likelihoods of two simple probit models, one for Y1 and one for Y2 given Y1 = 1.

In the second step of the procedure, estimates λ̂j = λj(θ̂), j = 1, 2, of the bias correction terms

in (8) are used as additional predictors in the augmented regression model

Y3 = α3 + β>3 X3 + σ3ρ13λ̂1 + σ3ρ23λ̂2 + 3, (10)

where 3 = U3−σ3ρ13λ̂1−σ3ρ23λ̂2 is a heteroscedastic regression error with zero conditional mean.
The vector of parameters γ = (α3, β3, σ3ρ13, σ3ρ23) may be estimated consistently by OLS, but

inference must take into account the heteroscedasticity induced by censoring and the additional

sampling variability induced by the use of the generated regressors λ̂1 and λ̂2 instead of λ1 and

λ2. Ham (1982) provides consistent estimators of the σ3 and the asymptotic covariance matrix of

the OLS estimator of γ. Alternatively, standard errors may be obtained via the nonparametric

bootstrap.

Although implementing this two-step procedure is relatively straightforward, a major concern

is identifiability of the parameters in model (10). The identification problem is closely related

to that arising in the classical Heckman two-step procedure (see Vella 1998 and Puhani 2000 for

an extensive discussion). Parameters of the second estimation step may in principle be identified

through the nonlinearity of the inverse Mills ratio. However, since the inverse Mills ratio is linear

over a wide range of its argument, identification obtained through the nonlinearity of the inverse

Mills ratio is often weak and exclusion restrictions are typically imposed to assist identification in

the second estimation step.2 The above considerations also hold for sample selection models with

2 Leung and Yu (1996) show that the quasi-linearity of the inverse Mills ratio causes essentially a problem of
collinearity with the other covariates of the second estimation step, which in turn leads to inflated standard errors
and unreliable estimates.
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two censoring equations. Although larger values of the correlation coefficient ρ12 increase slightly

the nonlinearity of the bivariate Mills ratio, the function is still linear for wide ranges of the two

indexes μ1 and μ2. Exclusion restrictions (that is, variables which are included in X1 and X2 but

excluded from X3) become then crucial to guarantee identifiability of the parameters in the second

estimation step.

As suggested by Fitzgerald et al. (1998) and Nicoletti and Peracchi (2005), features of the

data collection process and socio-demographic characteristics of the interviewers can be promising

candidates for this set of exclusion restrictions. Because these variables are external to the subjects

under investigation and are not under their control, one should expect them to be irrelevant in

explaining the outcome of interest. On the other hand, results of several data validation studies

have shown that these variables are typically important predictors of both unit and item response.

2.2 Semiparametric estimation

Parametric estimators of sample selection models are known to be sensitive to incorrect specification

of the model. During the last twenty-five years, a large body of literature has been concerned with

finding semiparametric procedures for consistent estimation in the presence of various forms of

misspecification.

In this section, we focus on model (3)—(6) and consider semiparametric estimation procedures

that are robust to departures from the assumption of Gaussian errors. As noted by Vella (1998),

semiparametric estimation of sample selection models involves two main difficulties. First, one

cannot invoke distributional assumptions to estimate parameters of the two binary response models.

Second, one cannot use distributional relationships to find an analytical expression for the bias

correction term in equation (7). In this case, the conditional expectation for the outcome variable

of interest can be written as the partially linear model

E(Y3 |Y1Y2 = 1) = μ3 + g(μ1, μ2), i = 1, . . . , n2, (11)

where μ3 = α3 + β>3 X3 is the linear part of the model, and g is an unknown function of the two

indexes μ1 = α1 + β>1 X1 and μ2 = α2 + β>2 X2. Notice that model (11) maintains a double index

structure. Although restrictive, this structure is useful to avoid the curse of dimensionality problem.

Under regularity conditions, semiparametric estimation of model (3)—(6) can again be carried

out through a two-step procedure. In the first step, we adapt the semi-nonparametric (SNP) esti-

mator of Gallant and Nychka (1987) to the bivariate binary-choice model with sample selection to
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obtain consistent estimators of μ1 and μ2.3 A similar approach has been used, among others, by

Gabler et al. (1993), Gerfin (1996), Melenberg and van Soest (1996), and Stewart (2004) for SNP

estimation of univariate binary-choice and ordered-choice models. In the second step, the remain-

ing parameters of the partially linear model in (11) are instead estimated by the semiparametric

approach of Robinson (1988).

Alternative approaches for semiparametric estimation of sample selection models with multiple

selection rules are the semiparametric least square (SLS) estimator of Ichimura and Lee (1991)

and the semiparametric two-step estimator of Das, Newey and Vella (2003). The SLS estimator is

likely to be less efficient of our semiparametric two-step procedure because it only focuses on the

sub-sample of fully observed units for simultaneous estimation of the parameters in the selection

equations and in the equation for the outcome of interest. In addition, this estimator is more

computational demanding because it requires to compute kernel regressions at each iteration of

the estimation process. The semiparametric two-step procedure of Das, Newey and Vella (2003) is

instead an attractive alternative because it allows for several generalizations (such as the presence

of endogenous regressors). However, their estimator requires independence of the error terms in

the selection equations, which we do not want to impose a priori.

Before describing our estimation procedure in detail, it is important to mention the conditions

under which this semiparametric model is identified. First, identification of μ3 from equation (11)

requires identification of the two indexes μ1 and μ2. As argued by Newey (1999), consistency of μ̂1

and μ̂2 guarantees identification of the underlying indexes, but different consistent estimators may

correspond to different identifying assumptions. Identification conditions necessary for consistent

estimation of μ1 and μ2 are provided in the following section. Second, it is important to notice that

the intercept coefficient α3 is absorbed into the unknown function g and is not separately identified.

Third, as shown by Robinson (1988), identification of the slope coefficients β3 requires that X1 and

X2 are not linear combinations of X3. As for the parametric case, exclusion restrictions are then

necessary to guarantee identifiability of the parameters in the second estimation step.

The bivariate binary-choice model with sample selection consists of equations (4) and (5). The

log-likelihood function for a random sample of n observations has the same form as (9) with π11(θ),

3Parameters of the two response equations could also be estimated by the semiparametric maximum likelihood
(SML) approach of Lee (1995), which generalizes to sequential choice models the approach originally proposed for
binary-choice models by Klein and Spady (1993). Like other semiparametric estimators based on kernel density
estimaton, the SML estimator is likely to be very computational demanding since kernel regression needs to be
conducted at each iteration of the maximization process. In particular, because of both the large sample size and
the large number of covariates used in our empirical application, the implementation of this estimator would be very
time consuming.
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π10(θ) and π0(θ) replaced by

π11(δ) = Pr{Y1 = 1, Y2 = 1} = 1− F1(−μ1)− F2(−μ2) + F (−μ1,−μ2),

π10(δ) = Pr{Y1 = 1, Y2 = 0} = F2(−μ2)− F (−μ1,−μ2),

π0(δ) = Pr{Y1 = 0} = F1(−μ1),

where δ = (α1, α2, β1, β2), Fj is the unknown marginal distribution function of the latent regression

error Uj , j = 1, 2, and F is the unknown joint distribution function of (U1, U2).

Following Gallant and Nychka (1987), we approximate the unknown joint density f of the latent

regression errors by an Hermite polynomial expansion of the form

f∗(u1, u2) =
1

ψK
τK(u1, u2)

2 φ(u1)φ(u2), (12)

where τK(u1, u2) =
PK

h,k=0 τhku
h
1u

k
2 is a polynomial of order K in u1 and u2, and

ψK =

Z ∞

−∞

Z ∞

−∞
τK(u1, u2)

2φ(u1)φ(u2) du1 du2

is a normalization factor to ensure that f∗ is a proper density. The class of densities that can be

approximated by this polynomial expansion includes densities with arbitrary skewness and kurtosis,

but excludes violently oscillatory densities or densities with too fat or too thin tails (see Gallant

and Nychka 1987, p. 369).

Since the polynomial expansion in (12) is invariant to multiplication of τ = (τ00, τ01, . . . , τKK)

by a scalar, some normalization is needed. After setting τ00 = 1, expanding the square of the

polynomial in (12) and rearranging terms gives

f∗(u1, u2) =
1

ψK

⎡⎣ 2KX
h,k=0

τ∗hku
h
1u

k
2

⎤⎦ φ(u1)φ(u2),

with τ∗hk =
Pbh

r=ah

Pbk
s=ak

τrsτh−r,k−s, where ah = max(0, h − K), ak = max(0, k − K), bh =

min(h,K), and bk = min(k,K). Integrating f∗(u1, u2) alternatively with respect to u2 and u1 gives

the following approximations to the marginal densities f1 and f2

f∗1 (u1) =
1

ψK

⎡⎣ 2KX
h,k=0

τ∗hkmk u
h
1

⎤⎦φ(u1) = 1

ψK

"
2KX
h=0

γ1h u
h
1

#
φ(u1), (13)

f∗2 (u2) =
1

ψK

⎡⎣ 2KX
h,k=0

τ∗hkmh u
k
2

⎤⎦φ(u2) = 1

ψK

"
2KX
k=0

γ2k u
k
2

#
φ(u2), (14)
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where mh and mk are the hth and kth central moments of the standardized Gaussian distribution,

γ1h =
P2K

k=0 τ
∗
hkmk, γ2k =

P2K
h=0 τ

∗
hkmh, and ψK =

P2K
h=0 γ1hmh =

P2K
k=0 γ2kmk. As for the

bivariate density function, γ10 and γ20 are normalized to one by imposing that τi0 = τ0j = 0 for all

i, j = 1, . . . ,K. Thus, if γ1h = 0 for all h ≥ 1, then ψK = 1 and the approximation f∗1 coincides

with the standard normal density. Similarly, the approximation f∗2 coincides with the standard

normal density when γ2k = 0 for all k ≥ 1. Thus, Wald tests for the joint significance of these two
sets of parameters provide tests for Gaussianity of the marginal distributions of U1 and U2.

Semiparametric identification of the model requires imposing some location restriction either on

the distributions of the latent regression errors U1 and U2, or on the systematic part of the model.

Gabler et al. (1993) impose restriction on the τhk parameters to guarantee that the error term in

their model has zero mean. Melenberg and van Soest (1996) argue that forcing the error terms to

have mean zero is too cumbersome and propose instead the simpler approach of normalizing the

intercept coefficients α1 and α2 to be equal to their parametric estimates.

Subject to these identifiability restrictions, integrating the joint density (12) gives the following

approximation to the joint distribution function F

F ∗(u1, u2) = Φ(u1)Φ(u2) +
1

ψK
A∗1(u1, u2)φ(u1)φ(u2)

− 1

ψK
A∗2(u2)Φ(u1)φ(u2)−

1

ψK
A∗3(u1)φ(u1)Φ(u2).

Similarly, integrating the marginal densities (13) and (14) gives the following approximations to

the marginal distribution functions F1 and F2,

F ∗1 (u1) = Φ(u1)−
1

ψK
A∗3(u1)φ(u1),

F ∗2 (u2) = Φ(u2)−
1

ψK
A∗2(u2)φ(u2),

where

A∗1(u1, u2) =
2KX

h,k=0

τ∗hkAh(u1)Ak(u2),

A∗2(u2) =
2KX

h,k=0

τ∗hkmhAk(u2) =
2KX
k=0

γ2kAk(u2),

A∗3(u1) =
2KX

h,k=0

τ∗hkmkAh(u1) =
2KX
h=0

γ1hAh(u1),

with A0(uj) = 0, A1(uj) = 1, and Ar(uj) = (r− 1)Ar−2(uj) + ur−1j , j = 1, 2. Notice that, the SNP

approximations to the marginal distribution functions F1 and F2 have the Gaussian distribution
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function as the leading term and differ from this by the product of the Gaussian density function

and a polynomial of order (2K − 1). The approximation to the joint distribution function F has

instead the product of two Gaussian distribution functions as the leading term and differs from

this by a complicated function of u1 and u2. Thus, the approximations to marginal distribution

functions nest the univariate Gaussian distribution function, while the approximation to the joint

distribution function only nests the bivariate Gaussian distribution with zero correlation coefficient.

Semiparametric estimators of β1 and β2 can then be obtained by maximizing a pseudo log-

likelihood function in which the unknown distribution functions F , F1 and F2 are replaced by their

approximations F ∗, F ∗1 and F
∗
2 . As shown by Gallant and Nychka (1987), the resulting pseudo-ML

estimator of θ∗ is
√
n-consistent provided that the degree K of the polynomial increases with the

sample size.4 In practice, for a given sample size, the value of K may be selected either through a

sequence of likelihood ratio tests, or by model selection criteria like the Akaike Information Criterion

(AIC) or the Bayesian Information Criterion (BIC).

2.2.1 Second step

Given consistent estimates of the two indexes μ1 and μ2, the parameters in μ3 can be estimated

by the semiparametric approach of Robinson (1988). Specifically, the partially linear model (11)

implies that

Y3 − E(Y3 |μ1, μ2, Y1Y2 = 1) = β>3 [X3 − E(X3 |μ1, μ2, Y1Y2 = 1)] + 3, (15)

where E( 3|μ1, μ2, Y1Y2 = 1) = 0. After replacing μ1 and μ2 with their estimates from the first step
and the unknown conditional expectations in (15) with their nonparametric estimates, the slope

coefficients β3 can be estimated by OLS with no intercept. Robinson (1988) shows that, under

mild regularity conditions, this estimator is
√
n-consistent and asymptotically normal. Like for

the parametric two-step procedure, computation of the standard errors needs to take into account

the heteroscedasticity induced by censoring and the additional sampling variability induced by

the use of the generated regressors μ̂1 and μ̂2. In our empirical application, this is done via the

nonparametric bootstrap.

Finally, the nonlinear function g can be estimated nonparametrically by the residual component

ĝ(μ1, μ2) = Ê(Y3 |μ1, μ2, Y1Y2 = 1)− β̂>3 Ê(X3 |μ1, μ2, Y1Y2 = 1), (16)

4 Notice that, Gallant and Nycka (1987) do not provide asymptotic normality results. Results on the asymptotic
normality of the SNP estimator are given in Gabler et al. (1993).
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where Ê(Y3 |μ1, μ2, Y1Y2 = 1) and Ê(X3 |μ1, μ2, Y1Y2 = 1) denote respectively the nonparametric
estimates of E(Y3 |μ1, μ2, Y1Y2 = 1) and E(X3 |μ1, μ2, Y1Y2 = 1).5 Notice that, since the rate of

convergence of ĝ depends on the rate of convergence of the nonparametric estimators in (16), this

estimator is not
√
n-consistent in general.

3 Data

Our empirical application uses data from the Survey on Health, Ageing and Retirement in Europe

(SHARE), a standardized multi-purpose household survey designed to investigate several aspects

of the elderly population in Europe.

Survey respondents are asked about their household expenditures on three sub-categories of

consumption (food expenditure at home, food expenditure outside home, and phone expenditure)

and on total nondurable consumption. Because of the large fractions of zeros on food expendi-

ture outside home and phone expenditure, we only consider food expenditure at home and total

nondurable expenditure. Although the measure of primary interest for many economic studies is

total nondurable expenditure, recent data validation studies by Browning et al. (2002), Battistin

et al. (2003) and Winter (2004) show that information collected through sub-categories of con-

sumption expenditure is usually more accurate than that collected through a “one-shot” question

on total nondurable expenditure. In addition, food expenditure at home is typically an important

component of total nondurable expenditure, and is of direct interest in itself.

3.1 Country coverage and sampling design

The first wave of SHARE, conducted in 2004, covered 15,544 households and 22,431 individuals in

eleven European countries (Austria, Belgium, Denmark, France, Germany, Greece, Italy, Nether-

lands, Spain, Sweden and Switzerland).

In each country, the target population consists of all people living in residential households

who have at least 50 years of age, plus their (possibly younger) partners. The target population is

further restricted by excluding people who currently do not reside at the sampled address, or died

before the starting of the field period, or are unable to speak the specific language of the national

questionnaire, or are physically or mentally unable to participate to the survey.

All national samples are selected through probability sampling, but sampling procedures are

5 Alternatively, the nonlinear component of the model can be estimated by a nonparametric regression of Y3−β̂>3 X3

on μ̂1 and μ̂2.
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not completely standardized across countries. We distinguish between two groups of countries

depending on the nature of the sampling frame adopted. In one group of countries (Denmark,

Germany, Italy, Netherlands, Spain, and Sweden), the sampling frame is a population register

containing information at least on years of age and gender of the sampled units (in Germany only

information on broadly defined age class and gender is available). In the other group of countries,

the sampling frame is either a telephone register (Austria, Belgium, Greece and Switzerland) or

a register of dwellings (France), and contains no information on the background characteristics of

the sampled units. In these countries, age-eligibility was assessed through a preliminary screening

phase in the field. However, because of nonresponse during the screening phase, it was not possible

to determine the eligibility status of about 15 percent of the gross sample. For this second group of

countries, the analysis of unit nonresponse is therefore complicated by the lack of sampling frame

information and unknown eligibility of a fraction of the gross sample. To avoid these problems, we

only consider the countries of the first group for which sampling frame information on years of age

and gender is available (Denmark, Italy, Netherlands, Spain, and Sweden).

Table 1 provides the number of eligible households, the unweighted household response rate, and

the main sub-components of the household nonresponse rate (that is, noncontact rate, refusal rate

and other non-interview rate) by country.6 The household response rate ranges from a minimum of

47 percent in Sweden to a maximum of 62 percent in the Netherlands, and is equal to 55 percent on

average. Focusing attention on the reasons for nonresponse, refusal to participate to the survey is

the main reason (35 percent), although in some countries a non negligible fraction of nonresponse is

also due to noncontact (13 percent in Spain) and other non-interview reasons (5 percent in Sweden).

Conditional on unit response, SHARE also experienced non-negligible amounts of missing data

for open-ended questions on income, assets and consumption expenditures. Item response rates

for the two consumption expenditure items of interest are reported in Table 2.7 The cross-country

average of the item response rates is equal to 85 percent for food expenditure at home and 81

percent for total nondurable expenditure, again with considerable variation across countries. The

lowest item response rates are in Spain (78 and 77 percent respectively), while the highest are in

Sweden (93 and 90 percent respectively).

Although response rates obtained in the first wave of SHARE do not differ considerably from

6 For each country, the unweighted household response rate is computed as the fraction of eligible households with
at least one interviewed person. Further details on the computations of these outcome rates are given in Börsch-Supan
and Jürges (2005).

7 For each consumption expenditure question, the item response rate is compiuted as the fraction of eligible
respondents with a “Don’t know” or “Refusal” answer.
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those obtained by other comparable European surveys, the results of Tables 1 and 2 indicate that

unit and item nonresponse may be two important sources of nonsampling errors.

3.2 Outliers in consumption expenditure

A preliminary analysis of PPP-adjusted consumption expenditure data reveals clearly the presence

of outliers in the tails of the empirical distribution of these variables. This is a typical problem

with data collected through retrospective and open-ended questions. On the one hand, there are

households who report zero or very low expenditures. Although these may be plausible values

for some consumption categories (like food outside home and phone), they are highly suspicious

for food expenditure at home and total nondurable expenditure. On the other hand, we also find

extremely high expenditure values which are presumably due to interviewer’s typing errors.

To deal with these problems, we symmetrically trim 1 percent of the observations from each tail

of the two empirical distributions.8 Summary statistics (that is, number of nonmissing observa-

tions, mean, standard deviation, minimum and maximum) of the two PPP-adjusted and trimmed

consumption expenditure distributions are shown in Table 3.

3.3 Choice of predictors

In SHARE, predictors of unit nonresponse can be obtained by exploiting the information coming

from the sampling frame, the survey agencies and the fieldwork. By matching these three sources

of data, we are able to get information on background characteristics of the selected household

member (like years of age and gender), interviewers’ characteristics (like years of age, gender and

years of education), number and timing of calls made (total number of calls and indicators for calls

made in the evening and the week-end), and length of the fieldwork (measured by the number of

days between the first and the last call).

For the sub-sample of responding households, the additional information collected during the

interview can be used to study nonresponse on specific items of the questionnaire. The multi-

disciplinary nature of the SHARE data offers the unique opportunity of assessing whether item

nonresponse on consumption expenditure questions is related to different types of economic and

health variables, while controlling for features of the data collection process and background char-

acteristics of respondents and interviewers.

8 A sensitiveness analysis with 1.5 and 2 percent of trimming on each tail does not lead to qualitative different
results. Thus, for efficiency reasons, we only present results with 1 percent of trimming.
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Since consumption expenditure questions are asked to the household member who is most

knowledgeable about housing matters (the “household respondent” or HR), a set of variables related

to socio-demographic characteristics, cognitive abilities, and health conditions of the HR has been

included as predictors of item response. Our set of socio-demographic variables includes years of

age (entering as a quadratic term), gender, years of education, current job situation, marital status,

household size, and indicators for having children aged less than 6 years and for living in small cities.

Cognitive abilities are measured through the scores obtained in the mathematical, orientation in

time, and delayed recall tests performed during the cognitive function (CF) module of the SHARE

interview. The set of health variables includes instead indicators for less than good self-perceived

health, for at least one ADL limitation, and for self-reported problems in managing money.9

One problem with estimating Engel curves using the SHARE data is that household income

is typically affected by item nonresponse, measurement errors and outliers. To deal with the first

problem, we use the imputed gross annual household income provided in the SHARE public release

database, but include an indicator for imputed values.10 To reduce the impact of measurement

errors and outliers, we do not use income directly but use instead a set of indicators for income

quartiles. There are three reasons for using imputed household income. First, considering the

overall process leading to missing data on consumption and household income is complicated. This

is because the latter is obtained by aggregating 27 different sources of income (19 collected at

the individual level and 8 collected at the household level). Second, nonresponse on household

income does not seem to be as problematic as nonresponse on consumption expenditure. As shown

in Table 4, household income is fully observed for 47 percent of the households that agree to

participate to the survey, while at least one income component is missing for the remaining 53

percent. Of these, 27 percent have only one missing component, 15 percent have two missing

components, 7 percent have three missing components, and only 4 percent have more than three

missing components. Accordingly, for households with missing income components, the fraction

9 A description of these cognitive ability tests and health measures can be found in Börsch-Supan et al. (2005).
10 In SHARE, gross household income is obtained by aggregating different sources of income collected both at the

individual and the household level. Missing data are imputed separately for each income source by using conditional
hot-deck and regression imputations. The first method is used to impute missing data on the amount variables,
while the second is used to imputed missing data on the frequency variables (e.g. the number of months in which
the respondent has received a payment). For the imputation of amounts, the set of covariates consists of unfolding-
bracket intervals and country dummies. If no unfolding-bracket information is available, a richer set of covariates
is used (typically, age, gender, education and country). For the imputation of frequencies, the set of covariates
consists instead of age, gender, quartiles of the imputed amount, and country dummies. Multiple imputations are
then provided by five independent replications of the one-step imputation procedure. Here, for simplicity reasons, we
only use the first of these independent replications.
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of total household income that is imputed is equal to 37 percent on average, but for half of them

this fraction does not exceed 20 percent. Third, initial nonrespondents to questions about income

amounts are asked a sequence of unfolding-bracket questions, namely whether the amount is larger

than, smaller than, or about equal to a given threshold. This sequence provides valuable categorical

information that is exploited in the imputation of household income. By design, however, no

sequence of unfolding-bracket questions is used to collect additional information on nonrespondents

to consumption expenditure questions.11

To control for differences in the interview process, we use a set of measures of the cognitive

burden of the interview. These variables include the length of the HR interview, and a set of

indicators for partial proxy interviews, full proxy interviews, and interviews not conducted at the

respondent’s home.

As a measure of the interviewers’ computer skill, we also include the length of the Interviewer

(IV) module. The IV module contains a set of close-ended questions on the background charac-

teristics of the interviewers and the conditions of the interview process. Since this module is only

completed by the interviewer without involving the respondent, its length provides a proxy measure

of the interviewers’ computer skill.12

Definitions and summary statistics (number of nonmissing observations, mean and standard

deviation) of the predictors used in our empirical application are given in Table 5.

4 Empirical results

This section presents the results obtained by using the first wave of SHARE to investigate whether

selectivity associated with unit and item nonresponse may bias the estimation of Engel curves for

household consumption expenditure.

4.1 Parametric estimates

We estimate five alternative models. Model 1 is a standard linear model estimated for the fully

responding units without accounting for selectivity generated by nonresponse. Model 2a is a clas-

sical sample selection model estimated for the unit respondents and only accounts for selectivity

generated by item nonresponse. Model 3a is a classical sample selection model estimated for the

11 Extensive discussions on the definition of household income, item response rates, unfolding-bracket questions,
and imputation procedures adopted in SHARE are given in Börsch-Supan and Jürges (2005).
12 Estimates of a regression model reveals that this module tends to last longer for interviewers with higher age

and lower education. Results are omitted to save space.

18



full sample with a single indicator (D = Y1Y2) for unit and item response. Model 4a is a generalized

sample selection model which accounts for selectivity generated by unit and item nonresponse, but

assumes that errors in the unit and the item response equations are independent. Finaly, Model 5a

is a generalized sample selection model which accounts for selectivity generated by unit and item

nonresponse, and does not impose independence of the error terms in the two response equations.

To control for possible effects due to “mismatch” between the interviewer and the interviewee, we

also present the results obtained by introducing interaction terms in the age, gender and schooling

level of the interviewer and the interviewee (Models 2b, 3b, 4b, and 5b). Parametric estimates of

these models are provided in Tables 6—13.

All estimated models share two common features. First, given the high comparability of the

SHARE data, we pool data from the various countries and introduce country indicators plus their

interactions with income quartiles to capture unobserved heterogeneity across countries. Pooling

the data allows us to increase efficiency of estimation and helps reducing problems of collinear-

ity due to the limited within-country variability of some variables (like the characteristics of the

fieldwork and the interviewers).13 Second, identifiability of the model parameters is achieved by

imposing a common set of exclusion restrictions. As mentioned in Section 2.1, our exclusion restric-

tions are based on characteristics of the fieldwork, the interview process and the interviewers. In

particular, characteristics of the fieldwork are used to predict unit nonresponse, characteristics of

the interview process are used to predict item nonresponse, and socio-demographic characteristics

of the interviewers are used to predict both. Thus, if we distinguish between sampling frame or

fieldwork information (Z), characteristics of the household or the HR (V ), characteristics of the

interviewer or the interview process (W ), and country dummies (D), then the sets of predictors in

each of the three model equations are

X1 = (Z,W,D),

X2 = (V,W,W ∗,D),

X3 = (V,D).

where W ∗ are characteristics of the interviewer or interview process which are only relevant for the

item response equation. The use of this large set of exclusion restrictions should protect against

problems of collinearity, especially in the second estimation step.

Estimates of the response probability for Model 3 are presented in Table 6, while estimates

of the probability of participation for Models 4 and 5 are presented in Table 7. After dropping
13 As the reference country, we always take Sweden (the country with the largest number of observations).
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a few cases with missing data on the covariates, the sample size consists of 12,537 households, of

which 6,746 (53.8 percent) participated to the survey. The reference category for the unit response

equations is always a Swedish male aged 55, who received 4 call attempts during fieldwork lasting

one month, and was approached by a male interviewer of the same age and schooling level.

Other things being equal, we find that the relationship between the probability of participation

and the age of the sampled household member has an inverted-U shape, with a maximum at 62

years of age. Women are less likely to participate than men, but the differences are not strongly

significant. The interviewer’s gender does not seem to matter, whereas the interviewer’s age is

positively related to unit response. The interviewer’s education, the total number of calls and

the length of the fieldwork are negatively related to unit response. These negative relations may

simply reflect the strategy of increasing the number of calls (specially those in the evening) and

switching to more experienced interviewers when there are difficulties in reaching contact and

gaining respondents’ cooperation. As for the interaction between characteristics of the interviewee

and the interviewer, we find that the age interactions are significant at the 1 percent level, while

the gender interaction is not. While the AIC tends to select the less parsimonious models with

interactions, the BIC tends to select the more parsimonious ones without interactions.

Estimates of the probability of item response for food expenditure at home and total nondurable

expenditure are presented in Tables 8 and 9 respectively. The reference category for the item

response equations is now a Swedish male worker aged 55, with 13 years of education, living in a

couple without children, residing in a big city, with good cognitive abilities and health conditions,

in the second income quartile, with income not missing, interviewed by a male interviewer of the

same age and schooling level, and with the interview conducted at the respondent home, without

proxy, and lasting one hour.

Other thing being equal, we find that the probability of item response tends to fall with the age

of the HR and with the presence of children aged less than 6 years. Living in a small city, being

employed, being single, or being more educated are negatively related to item response, but the es-

timated effects are only weakly statistically significant. Even after controlling for the respondent’s

background characteristics (like age and education), the scores obtained on the cognitive ability

tests are positively related to item response, while other health measures are not. The positive

and significant coefficients on the third and forth income quartiles suggest that item nonresponse

may lead to selection of households with higher income. Furthermore, the negative coefficient on

the dummy for income imputations suggests that nonresponse to income questions is positively
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related to nonresponse to consumption expenditure questions. Among characteristics of the inter-

view process and the interviewers, we find that allowing the interviewee to be assisted by a proxy

respondent, conducting the interview at the respondent home, and using more experienced inter-

viewers (that is, interviewers with better computer skill) are positively related to item response.

Interaction terms do not seem to be important predictors of the probability of item response. For

food consumption at home, both AIC and BIC tend to select models without interactions. For total

nondurable consumption, AIC tends to select models with interactions, while BIC tends to select

models without interactions.14 Estimates of the correlation coefficient ρ12 are very close to zero,

and the corresponding likelihood ratio tests never reject conditional independence between unit

and item nonresponse. Accordingly, the differences between the estimated coefficients of the probit

model (Models 4a and 4b) and the bivariate probit model (Models 5a and 5b) are not statistically

significant.

Finally, Tables 10—13 present estimates of the Engel curves for food expenditure at home and

total nondurable expenditure. For both consumption expenditure items, the selection biases asso-

ciated to unit and item nonresponse have opposite sign and therefore partly offset each other: the

first (unit nonresponse) is positive, the second (item nonresponse) is negative.

Estimates of the model parameters can be used to estimate the relative total nonresponse bias

for the reference category (corresponding to X = x)

RBtotal(x) =
E(U3 |U1 > −μ1(x), U2 > −μ2(x))

μ3(x)
,

where μj(x) = αj + β>j x, j = 1, 2, 3. For our parametric model, this is just the sum of the relative

biases due to unit and item nonresponse. The relative unit nonresponse bias for the refence category

ranges between 8 percent and 10 percent for food expenditure at home, and between 14 percent

and 18 percent for total nondurable expenditure. The relative item nonresponse bias ranges instead

between -2 percent and -3 percent for food expenditure at home, and between -3 percent and -5

percent for total nondurable expenditure. For food expenditure at home, the coefficients on the bias

correction terms λunit and λitem are not statistically significant, and estimates of the five models

are not very different. We conclude that unit and item nonresponse appear to be purely random.

For total nondurable expenditure, the coefficients on the bias correction terms are statistically

significant at the 1 percent level. Therefore, neither unit nor item nonresponse errors are ignorable,

and only estimates of Models 4 and 5 are consistent.

14 In this case, only interaction terms in age are statistically significant at the 5 percent level.
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As mentioned in Section 2.2, the assumption of Gaussian errors is critical for our parametric

estimates of sample selection models. Parametric estimators are indeed inconsistent if this distri-

butional assumption is not valid. Conditional moment tests provide a simple way of testing for

this assumption.15 Because errors of the unit and the item response equations are independent

under the null hypothesis (see Tables 8 and 9), tests for Gaussianity can be conducted separately

by testing for Gaussianity in two simple probit models. Following Pagan and Vella (1989), these

conditional moment tests can be computed via artificial regressions in which the sample third and

forth moments are regressed against an intercept and the score obtained from the probit model.

Under the null, the coefficients on the intercepts should be equal to zero. Thus, a test for the joint

significance of these coefficients is a test for Gaussianity in the probit model. The independence

of the error terms in the two response equations is also useful to test Gaussianity in the outcome

equation. In this case, a straightforward generalization of the RESET-like test proposed by Pagan

and Vella (1989) consists of augmenting the second estimation step with the additional variables

ζUj = μ̂j1 λ̂1, ζIj = μ̂j2 λ̂2 and ζrs = ζUr ζIs (with j = 1, 2, 3 and r, s = 0, 1, 2, 3), and then testing

their joint significance.16 Tables 14 and 15 focus on Model 5a and provide tests for the assumption

of Gaussian errors in the two response equations and in the outcome equation respectively. Overall,

our results suggest that the Gaussian assumption is strongly rejected for the unit response equation,

but not for the other two equations. As a consequence, parametric estimators may be inconsistent.

4.2 Semiparametric estimates

In this section, we focus on Model 5a and presents estimates of the semiparametric two-step pro-

cedure that are robust to departures from the assumption of Gaussian errors.

In the first step of the procedure, parameters of the unit and item response equations are esti-

mated jointly by the SNP estimator discussed in Section ?? for two choices of K (the degree of the

Hermite polynomial used for approximating the bivariate density of the error terms), namelyK = 3

and K = 4. The model specifications underlying these different choices are then compared through

a likelihood ratio test, AIC, and BIC. For all model selection criteria, the preferred specification

has K = 3 for both food expenditure at home and total nondurable expenditure. Parametric and

SNP estimates of these models are presented in Tables 16—19. Notice that, because of the different

scale, estimated coefficients of the SNP model and the bivariate probit model with sample selec-

tion are not directly comparable. Thus we compare ratios of the estimated coefficients, obtained

15 For an extensive discussion of conditional moment tests see Newey (1985) and Pagan and Vella (1989).
16 Here, λ̂1 and λ̂2 denote the classical inverse Mills ratios evaluated at μ̂1 and μ̂2 respectively.
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after dividing by the absolute value of the coefficient for the length of the fieldwork (lfield) in the

unit response equation and the basolute value of the coefficient on the length of the IV module

(ivlength) in the item response equation (and then dividing again by 100). The standard errors of

these normalized coefficients are computed using the delta method.

For the unit response equation, we find significant differences between the SNP and the paramet-

ric estimates. The main differences occur for interviewers’ characteristics, features of the fieldwork,

and country dummies. The assumption of Gaussian error in the unit response equation is again

rejected at the 1 percent level by a Wald test on the joint significance of the γ1h parameters in

the approximation (13). The semiparametric estimate of the marginal density function exhibits

positive skewness and lower kurtosis than a standard normal density. Furthermore, the density

plot in Figure 1 also reveals the presence of multiple modes.

For the item response equation, we find that Gaussianity is still rejected for food expenditure

at home but not for total nondurable expenditure. The marginal densities underlying the two item

response equations appear to have a similar shape. They are both platikurtic, exhibit negative

skewness, and have a secondary mode in the lower tail of the distribution (see Figure 1). For the

item response equation, however, departures from the assumption of Gaussian errors appear to be

less harmful. Once the different scale in taken into account, the differences between the parametric

and the SNP estimates in Table 19 are small.

In the second step of the procedure, estimates of the two indexes μ̂1 and μ̂2 are used to estimate

a partially linear model for the outcome variables of interest. Following Robinson (1988), the

unknown conditional expectations in (15) are estimated nonparametrically by Nadaraya-Watson

bivariate kernel regression estimators, where the bivariate kernel is the product of two univariate

bias reducing kernels with the same bandwidth hn = O(n−1/p). In computing the nonparametric

estimates, we also trim observations for which the denominator of the Nadaraya-Watson estimator

is smaller than a threshold bn = O(n−1/r). In the application, we experiment with different values

of p and r. After replacing the unknown conditional expectations in (15) with their nonparametric

estimates, the vector β3 of slope parameters is estimated by standard OLS with no intercept.17

Standard errors of the OLS estimator are instead computed by the nonparametric bootstrap with

50 replications.

Semiparametric estimates of the partially linear model for food expenditure at home and total

nondurable expenditure are presented in Tables 20 and 21 respectively. To explore sensitiveness of

17 As mentioned in Section 2.2, the intercept coefficient is absorbed in the nonlinear function g and is not separately
identified.
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Robinson’s estimator with respect to choice of the bandwidth parameter hn and the threshold bn,

estimation is carried out for various alternative combinations of p and r.18 In particular, results

are presented for p = 5 and r = 21 (Model A), p = 6 and r = 13 (Model B), p = 7 and r = 10

(Model C). Parametric estimates are also reported to facilitate comparisons.

According to our estimates, the Robinson’s estimator is not very sensitive to the choice of the

bandwidth hn and the threshold bn. The only exception is Model A in Table 20. For this model,

the low value of the bandwidth and the high value of threshold lead to imprecise estimates. For

food expenditure at home, we find that the estimated coefficients of the partially linear are very

close to their parametric counterparts. This suggests that parametric estimates are only marginally

affected by departures from Gaussianity. For total nondurable expenditure, instead, the differences

between the parametric and the semiparametric estimates are somewhat larger, especially for the

coefficients on the income quartiles and their interactions with the country dummies.

5 Conclusions

In this paper we investigate problems of selectivity generated by unit and item nonresponse in

cross-sectional surveys, or equivalently, in the first wave of a panel survey.

We first analyze a general sample selection model in which unit and item nonresponse can si-

multaneously affect a regression relationship of interest through NMAR missing data mechanisms.

Issues concerning identification and estimation have been considered for two alternative specifica-

tions of this model. In the parametric specification, errors in the two selection equations and in the

equation for the outcome of interest are assumed to follow a trivariate Gaussian distribution, and

model parameters are estimated by the parametric two-step procedure proposed by Poirier (1980).

In the semiparametric specification, error terms are assumed to follow an unknown distribution,

and model parameters are estimated by a semiparametric two-step procedure which involves a gen-

eralization of the SNP estimator proposed by Gallant and Nychka (1987) in the first step, and the

semiparametric estimator of Robinson (1988) in the second step.

We then use data from the first wave of SHARE to investigate whether selectivity associated with

unit and item nonresponse may bias the estimation of Engel curve for food expenditure at home and

total nondurable expenditure. Overall, the amount of bias generated by unit and item nonresponse

does not seem to be ignorable. According to our estimates, the relative unit nonresponse bias for

18 Combinations of p and r are selected to satisfy conditions imposed on the choice of the bandwidth parameter
and the trimming factor (see Robinson 1988, Theorem 1).
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the refence category ranges between 8 percent and 10 percent for food expenditure at home, and

between 14 percent and 18 percent for total nondurable expenditure. The relative item nonresponse

bias ranges instead between -2 percent and -3 percent for food expenditure at home, and between

-3 percent and -5 percent for total nondurable expenditure. According to several specifications of

our sample selection models, unit and item nonresponse errors appear to be purely random for food

expenditure at home, whereas they are not ignorable for total nondurable expenditure.

Diagnostic tests based on the conditional moment framework of Pagan and Vella (1989) and

on the SNP framework do not support the assumption of Gaussian errors, specially in the unit

response equation. Nevertheless, estimates of our semiparametric two-step procedure do not lead

to very qualitative different results.
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Table 1: Unweighted household response rates.

Response Noncontact Refusal Other noninterview
Country Eligible rate rate rate rate
Denmark 1742 .61 .09 .29 .01
Italy 2505 .54 .08 .36 .02
Netherlands 2509 .62 .05 .32 .01
Spain 2619 .50 .13 .36 .01
Sweden 3956 .47 .06 .42 .05
Total 13331 .55 .08 .35 .02

Table 2: Unweighted item response rates for consumption expenditure questions.

Food Nondurable
Country Eligible at home consumption
Denmark 1178 .81 .79
Italy 1376 .85 .84
Netherlands 1559 .89 .77
Spain 1341 .78 .77
Sweden 1850 .93 .90
Total 7304 .85 .81

Table 3: Summary statistics for consumption expenditure questions. Yearly amounts expressed in
100 Euro. Empirical distributions trimmed symmetrically by 2 percent.

Variable Obs. Mean Std. Min Max
Food at home 6067 49.6 42.4 .9 640
Nondurable consumption 5780 118.0 86.9 11.7 1280

Table 4: Summary statistics for the fraction of imputed household income by missing income
components.

Missing Fraction of imputed income
components Eligible Mean P25 P50 P75
0 3411
1 1943 .20 .00 .02 .29
2 1091 .47 .07 .42 .88
3 527 .59 .18 .68 1.00
4 or more 332 .72 .47 .88 1.00
Total 7304 .37 .01 .20 .76
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Table 5: Definitions and summary statistics for the main covariates. U denotes the unit response
equation, I denotes the item response equation, C denotes the consumption equation.

Variable Obs. Mean Std. Description Equation
gs_fem 13114 .54 .50 Female sampled hh member U
gs_age 13114 65.0 10.7 Age of the sampled hh member U
iv_fem 13100 .75 .43 Female interviewer U, I
iv_age 13100 49.4 11.9 Interviewer age U, I
iv_yedu 12804 13.1 2.95 Interviewer years of education U, I
tot_call 13114 3.95 5.36 Total number of call attempts U
call_ev 13114 .51 .50 Dummy for calls made in the evening U
call_we 13114 .25 .43 Dummy for calls made in the week-end U
lfield 13114 42.0 47.4 Length of fieldwork (days) U
hr_fem 7087 .55 .50 HR female I, C
hr_age 7076 64.9 10.5 HR age I, C
hr_yedu 7060 9.30 4.51 HR years of education I, C
hr_nowork 7041 .66 .47 No paid work in the last 4 weeks I, C
single 7065 .33 .47 HR lives as single I, C
hsize 7087 2.15 1.05 Household size I, C
children 7032 .02 .14 Dummy for children aged less than 6 years I, C
s_city 6930 .22 .41 Household lives in a small city I, C
math 7031 .23 1.17 Score on mathematical test (-2—2) I, C
recall 6999 -1.73 2.04 Score on delayed recall test (-5—5) I, C
orient 7043 .76 .65 Score on orientation in time test (-3—1) I, C
hr_health 7050 .39 .49 Less than good self-perceived health I, C
hr_adl 7048 .10 .30 At least one ADL limitation I, C
hr_pmm 7087 .04 .19 Self-reported problems in managing money I, C
income_q1 7084 .25 .43 1st quartile gross annual HH income I, C
income_q2 7084 .25 .43 2nd quartile gross annual HH income I, C
income_q3 7084 .25 .43 3rd quartile gross annual HH income I, C
income_q4 7084 .25 .43 4th quartile gross annual HH income I, C
inc_mis 7087 .53 .50 Gross annual income missing I, C
f_proxy 6958 .02 .12 Full proxy interview (CO module) I
p_proxy 6958 .07 .26 Partial proxy interview (CO module) I
int_out 6956 .04 .20 Interview not conducted at the respondent home I
int_length 6996 72.6 27.0 Length of the HR interview (min.) I
iv_length 7072 1.89 1.59 Length of the IV module (min.) I
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Table 6: Parametric estimates of the response probability for the model with a single indicator for
both unit and item response (* denotes a p-value between 1% and 5%, ** denotes a p-value below
1%). T1(5) is a χ2-test for the interaction terms and has 5 degree of freedom (df), T2(4) is a χ2-test
for the age interaction terms and has 4 df. Sample size n = 12537.

Food at home Nondurable expenditure
Variable Model 3a Model 3b Model 3a Model 3b
gs_fem -.0348 -.0307 -.0695 ** -.0596
gs_agec .0038 .0018 .0011 -.0029
gs_agec2 -.0005 ** -.0005 ** -.0004 ** -.0003 *
iv_fem .0147 .0193 .0075 .0169
iv_agec .0053 ** .0089 ** .0060 ** .0106 **
iv_agec2 .0001 .0001 .0002 * .0002
iv_yeduc -.0181 ** -.0182 ** -.0129 ** -.0130 **
tot_call -.0198 ** -.0195 ** -.0208 ** -.0205 **
call_ev -.0626 * -.0632 * -.0967 ** -.0969 **
call_we .0708 * .0697 * .0975 ** .0964 **
lfield -.0039 ** -.0039 ** -.0037 ** -.0037 **
DK -.0578 -.0554 -.0637 -.0617
ES -.3586 ** -.3556 ** -.3373 ** -.3338 **
IT -.2611 ** -.2590 ** -.2401 ** -.2375 **
NL .0057 .0059 -.1424 ** -.1421 **
gsiv_sexff -.0041 -.0112
gsiv_age11 -.0003 -.0003
gsiv_age12 .0000 .0000
gsiv_age21 -.0000 -.0000
gsiv_age22 -.0000 -.0000
_cons .1825 ** .1965 ** .1795 ** .1915 **
k1 + k2 15 20 15 20
T1(5) 16.06 ** 21.67 **
T2(4) 16.06 ** 21.63 **
AIC 16776.22 16770.15 16754.58 16742.82
BIC 16895.21 16926.32 16873.56 16898.99
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Table 7: Parametric estimates for unit response. Information criteria for Models 5a and 5b are not
reported because they are estimated jointly with the models presented in Tables 8 and 9. Sample
size n = 12537.

Food at home Nondurable expenditure
Variable Model 4a Model 4b Model 5a Model 5b Model 5a Model 5b
gs_fem -.0456 * -.0348 -.0457 * -.0348 -.0455 * -.0345
gs_agec .0053 * .0013 .0053 * .0013 .0053 * .0013
gs_agec2 -.0004 ** -.0003 ** -.0004 ** -.0003 ** -.0004 ** -.0003 **
iv_fem .0278 .0378 .0278 .0378 .0275 .0375
iv_agec .0048 ** .0076 ** .0048 ** .0076 ** .0048 ** .0076 **
iv_agec2 .0002 ** .0002 .0002 ** .0002 .0002 ** .0002
iv_yeduc -.0155 ** -.0156 ** -.0155 ** -.0156 ** -.0156 ** -.0157 **
tot_call -.0220 ** -.0217 ** -.0220 ** -.0217 ** -.0219 ** -.0216 **
call_ev -.0726 ** -.0729 ** -.0727 ** -.0729 ** -.0785 ** -.0784 **
call_we .0661 * .0646 * .0661 * .0646 * .0688 * .0672 *
lfield -.0042 ** -.0042 ** -.0042 ** -.0042 ** -.0042 ** -.0042 **
DK .1749 ** .1768 ** .1749 ** .1768 ** .1737 ** .1757 **
ES -.2109 ** -.2066 ** -.2109 ** -.2066 ** -.2111 ** -.2071 **
IT -.1506 ** -.1481 ** -.1506 ** -.1481 ** -.1511 ** -.1487 **
NL .1103 ** .1106 ** .1103 ** .1106 ** .1098 ** .1102 **
gsiv_sexff -.0131 -.0132 -.0132
gsiv_age11 -.0002 -.0002 -.0002
gsiv_age12 .0000 .0000 .0000
gsiv_age21 -.0000 -.0000 -.0000
gsiv_age22 -.0000 -.0000 -.0000
_cons .2138 ** .2296 ** .2139 ** .2296 ** .2166 ** .2319 **
k1 15 20 15 20 15 20
T1(5) 14.98 * 14.97 * 14.71 *
T2(4) 14.91 ** 14.91 ** 14.65 **
AIC 16638.97 16633.97
BIC 16757.95 16790.13
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Table 8: Parametric estimates for item response on food expenditure at home. Interaction terms
between characteristics of the interviewee and the interviewer, and between country dummies and
income quartiles are not reported to save space. T1(18) is a χ2-test for all interaction terms and
has 18 df. T2(4) is a χ2-test for the age interaction terms and have 4 df. T3(12) is a χ2-test for
the interaction terms between country dummies and income quartiles and have 12 df. Sample size
n1 = 6746.

Variable Model 4a Model 4b Model 5a Model 5b
hr_fem .1333 ** .1925 * .1335 ** .1925 *
hr_agec -.0080 -.0060 -.0080 -.0060
hr_agec2 .0000 -.0001 .0000 -.0001
hr_yeduc -.0078 -.0067 -.0077 -.0067
hr_nowork .1504 * .1547 * .1502 * .1547 *
single -.1262 * -.1209 * -.1263 * -.1209 *
hsize .0040 .0080 .0040 .0080
children -.4626 ** -.4624 ** -.4627 ** -.4624 **
s_city -.0381 -.0425 -.0381 -.0425
math .0442 .0439 .0442 .0439
recall .0265 * .0259 .0265 * .0259
orient .1493 ** .1522 ** .1493 ** .1522 **
hr_health .0086 .0111 .0086 .0111
hr_adl -.0902 -.0882 -.0902 -.0882
hr_pmm -.0827 -.0909 -.0827 -.0909
income_q1 -.2757 -.2810 -.2759 -.2810
income_q3 .3522 * .3593 * .3520 * .3593 *
income_q4 .3073 * .3093 * .3073 * .3093 *
inc_mis -.6863 ** -.6841 ** -.6862 ** -.6841 **
f_proxy -.0261 -.0388 -.0257 -.0388
p_proxy .2608 ** .2530 ** .2607 ** .2530 **
int_out -.1251 -.1155 -.1247 -.1155
int_length .0021 * .0021 * .0021 * .0021 *
iv_length -.0358 ** -.0361 ** -.0357 ** -.0361 **
iv_fem -.0224 .0200 -.0225 .0200
iv_agec .0011 .0062 .0011 .0062
iv_agec2 -.0003 * -.0002 -.0003 * -.0002
iv_yeduc -.0141 -.0244 * -.0141 -.0244 *
DK -.5862 ** -.5603 ** -.5893 ** -.5602 **
ES -.2413 -.2406 -.2421 -.2405
IT -.3593 ** -.3445 * -.3602 ** -.3445 *
NL -.2842 * -.2756 -.2864 -.2755
_cons 1.7941 ** 1.7663 ** 1.8020 ** 1.7661 **
k2 44 50 44 50
T1(18) 27.52 27.44
T2(4) 6.35 6.24
T3(12) 18.75 18.75
AIC 4593.70 4596.58
BIC 4900.45 4944.23
k1 + k2 59 70 59 70
ρ12 -.01 .00
AIC 21232.66 21230.54 21234.67 21232.55
BIC 21648.48 21721.34 21695.73 21775.41
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Table 9: Parametric estimates for item response on total nondurable expenditure. Interaction terms
between characteristics of the interviewee and the interviewer, and between country dummies and
income quartiles are not reported to save space. Sample size n1 = 6746.

Variable Model 4a Model 4b Model 5a Model 5b
hr_fem -.1052 * -.1072 -.1003 * -.1029
hr_agec -.0167 ** -.0210 ** -.0172 ** -.0211 **
hr_agec2 .0003 .0004 .0003 .0004 *
hr_yeduc -.0074 -.0062 -.0072 -.0060
hr_nowork .1046 .1120 * .1014 .1090
single -.0678 -.0573 -.0676 -.0575
hsize -.0476 * -.0420 -.0475 * -.0420
children -.5721 ** -.5828 ** -.5665 ** -.5780 **
s_city -.1122 * -.1163 * -.1121 * -.1162 *
math .0108 .0101 .0105 .0099
recall .0397 ** .0385 ** .0392 ** .0382 **
orient .0622 .0651 .0622 .0652
hr_health -.0040 -.0052 -.0057 -.0068
hr_adl .0315 .0334 .0314 .0333
hr_pmm -.0350 -.0432 -.0338 -.0422
income_q1 -.2532 -.2490 -.2527 -.2486
income_q3 .3004 * .3070 * .2947 * .3019 *
income_q4 .1274 .1355 .1253 .1335
inc_mis -.6926 ** -.6922 ** -.6835 ** -.6841 **
f_proxy -.0831 -.0724 -.0752 -.0649
p_proxy .1953 * .1819 * .1918 * .1787 *
int_out -.2624 ** -.2580 ** -.2512 * -.2479 *
int_length .0008 .0008 .0008 .0008
iv_length -.0376 ** -.0367 ** -.0370 ** -.0363 **
iv_fem -.0175 -.0161 -.0187 -.0174
iv_agec .0030 .0111 ** .0025 .0104 **
iv_agec2 -.0001 .0000 -.0001 -.0000
iv_yeduc .0002 -.0113 .0019 -.0095
DK -.3933 ** -.3676 ** -.4467 ** -.4179 **
ES -.1935 -.1944 -.2051 -.2049
IT -.1643 -.1497 -.1800 -.1644
NL -.4985 ** -.4856 ** -.5341 ** -.5188 **
_cons 1.8890 ** 1.8951 ** 2.0233 ** 2.0190 **
k2 44 50 44 50
T1(18) 34.63 * 7.93
T2(4) 12.76 * 5.13
T3(12) 20.16 5.13
AIC 5574.07 5569.58
BIC 5880.83 5917.23
k1 + k2 59 70 59 70
ρ12 -.18 -.17
AIC 22213.04 22203.54 22213.68 22204.41
BIC 22628.86 22694.34 22674.74 22747.27
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Table 10: Parametric estimates of the Engel curves for food expenditure at home based on non-
response equations without interaction terms. Standard errors in Models 4a and 5a are computed
via the nonparametric bootstrap with 50 replications. T1(2) is a χ2-test for selectivity due to
nonresponse and has 2 df. Sample size n2 = 5884.

Variable Model 1 Model 2a Model 3a Model 4a Model 5a
hr_fem -1.1364 -1.5956 -1.2487 -1.7185 -1.7196
hr_agec -.1121 -.0909 -.0959 -.0717 -.0716
hr_agec2 -.0012 -.0009 -.0026 -.0019 -.0019
hr_yeduc .7653 ** .7896 ** .7629 ** .7877 ** .7877 **
hr_nowork 1.0883 .5142 1.1892 .5992 .5994
single -7.2677 ** -6.6825 ** -7.3069 ** -6.6983 ** -6.6977 **
hsize 8.8260 ** 8.7781 ** 8.8380 ** 8.7909 ** 8.7910 **
children -1.9551 1.0404 -2.0474 1.0278 1.0298
s_city -2.5328 * -2.4035 -2.4627 -2.3471 -2.3469
math .6823 .5307 .6977 .5421 .5420
recall -.1512 -.2619 -.1369 -.2541 -.2541
orient -.7090 -1.5683 -.7224 -1.6053 -1.6060
hr_health -.6586 -.7203 -.5994 -.6631 -.6628
hr_adl 2.9356 3.1783 2.9400 3.1840 3.1841
hr_pmm 2.4839 3.1970 2.3632 3.1045 3.1046
income_q1 -.9156 .2129 -.9330 .2300 .2317
income_q3 -.6944 -1.5305 -.7102 -1.5631 -1.5629
income_q4 2.2267 1.5194 2.2825 1.5456 1.5458
inc_mis -.9352 1.7769 -1.0460 1.7543 1.7556
DK 1.4696 3.6433 2.2812 5.1239 5.1349
ES 35.3607 ** 36.5089 ** 35.0494 ** 36.8200 ** 36.8228 **
IT 21.7575 ** 23.2918 ** 21.7532 ** 23.7196 ** 23.7231 **
NL 17.6481 ** 18.3924 ** 18.6041 ** 19.5787 ** 19.5865 **
DK*inc_q1 -.2981 -.9952 -.2972 -1.0124 -1.0137
DK*inc_q3 -.1133 .6048 -.0945 .6410 .6406
DK*inc_q4 -.6427 .0543 -.7214 .0167 .0162
ES*inc_q1 -7.3420 -7.4043 -7.3697 -7.4248 * -7.4260 *
ES*inc_q3 6.3409 7.1329 6.3946 7.1834 7.1832
ES*inc_q4 7.5541 8.0258 7.5664 8.0584 8.0583
IT*inc_q1 -5.9353 -7.3404 -5.8787 -7.3226 -7.3242
IT*inc_q3 9.0998 * 8.9653 * 9.2012 * 9.0475 * 9.0476 *
IT*inc_q4 6.7618 7.8005 6.7969 7.8780 7.8787
NL*inc_q1 4.0141 3.5407 4.0296 3.5387 3.5377
NL*inc_q3 -2.1439 -2.2282 -2.1367 -2.2418 -2.2426
NL*inc_q4 -5.4750 -5.1941 -5.5891 -5.2914 -5.2919
λ -14.6377 5.3126
λunit 4.9501 4.9775
λitem -15.0370 -15.0747
_cons 41.8552 ** 43.4959 ** 37.4091 ** 39.5074 ** 39.4856 **
k3 35 36 36 37 37
T1(2) 5.98 5.69
RBunit(0) .084 .084
RBitem(0) -.028 -.032 -.032
RBtotal(0) -.028 .097 .052 .053
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Table 11: Parametric estimates of the Engel curves for food expenditure at home based on nonre-
sponse equations with interaction terms. Standard errors in Models 4b and 5b are computed via
the nonparametric bootstrap with 50 replications. Sample size n2 = 5884.

Variable Model 1 Model 2b Model 3b Model 4b Model 5b
hr_fem -1.1364 -1.5287 -1.2651 -1.6867 -1.6866
hr_agec -.1121 -.0921 -.0955 -.0706 -.0706
hr_agec2 -.0012 -.0010 -.0027 -.0022 -.0022
hr_yeduc .7653 ** .7860 ** .7612 ** .7825 ** .7825 **
hr_nowork 1.0883 .5818 1.1992 .6666 .6667
single -7.2677 ** -6.7544 ** -7.3228 ** -6.7662 ** -6.7662 **
hsize 8.8260 ** 8.7866 ** 8.8309 ** 8.7946 ** 8.7946 **
children -1.9551 .6214 -2.0015 .7326 .7324
s_city -2.5328 * -2.4251 -2.4494 -2.3507 -2.3507
math .6823 .5508 .7010 .5636 .5636
recall -.1512 -.2471 -.1332 -.2388 -.2388
orient -.7090 -1.4601 -.7378 -1.5344 -1.5343
hr_health -.6586 -.7185 -.5820 -.6426 -.6426
hr_adl 2.9356 3.1396 2.9370 3.1473 3.1472
hr_pmm 2.4839 3.1063 2.3699 3.0238 3.0238
income_q1 -.9156 .0810 -.9464 .1064 .1063
income_q3 -.6944 -1.4267 -.7209 -1.4983 -1.4982
income_q4 2.2267 1.6147 2.2894 1.6254 1.6255
inc_mis -.9352 1.4081 -1.0623 1.4410 1.4408
DK 1.4696 3.3430 2.3768 5.1520 5.1516
ES 35.3607 ** 36.3667 ** 35.0199 ** 36.7719 ** 36.7718 **
IT 21.7575 ** 23.0784 ** 21.7360 ** 23.6034 ** 23.6032 **
NL 17.6481 ** 18.2815 ** 18.6919 ** 19.6843 ** 19.6841 **
DK*inc_q1 -.2981 -.9255 -.2957 -.9496 -.9495
DK*inc_q3 -.1133 .5258 -.0653 .6214 .6213
DK*inc_q4 -.6427 -.0429 -.6706 -.0061 -.0062
ES*inc_q1 -7.3420 -7.4352 -7.3396 -7.4189 * -7.4188 *
ES*inc_q3 6.3409 6.9892 6.3938 7.0600 7.0600
ES*inc_q4 7.5541 7.9401 7.5407 7.9761 7.9761
IT*inc_q1 -5.9353 -7.1584 -5.8558 -7.1413 -7.1412
IT*inc_q3 9.0998 * 8.9945 * 9.2463 * 9.1261 * 9.1261 *
IT*inc_q4 6.7618 7.6678 6.8273 7.8170 7.8169
NL*inc_q1 4.0141 3.5737 4.0626 3.5991 3.5991
NL*inc_q3 -2.1439 -2.2046 -2.0793 -2.1678 -2.1678
NL*inc_q4 -5.4750 -5.2365 -5.5343 -5.2846 -5.2846
λ -12.7211 6.0155
λunit 5.9456 5.9449
λitem -13.5365 -13.5345
_cons 41.8552 ** 43.2940 ** 36.8428 ** 38.5631 ** 38.5636 **
k3 35 36 36 37 37
T1(2) 7.55 * 7.37 *
RBunit(0) .101 .101
RBitem(0) -.026 -.031 -.031
RBtotal(0) -.026 .111 .071 .071
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Table 12: Parametric estimates of the Engel curves for total nondurable expenditure based on non-
response equations without interaction terms. Standard errors in Models 4a and 5a are computed
via the nonparametric bootstrap with 50 replications. Sample size n2 = 5605.

Variable Model 1 Model 2a Model 3a Model 4a Model 5a
hr_fem -.7727 1.6296 -1.4725 1.2447 1.3118
hr_agec -.3307 -.0153 -.3010 .0788 .1104
hr_agec2 .0025 -.0016 -.0019 -.0064 -.0074
hr_yeduc 3.3039 ** 3.4492 ** 3.2920 ** 3.4391 ** 3.4447 **
hr_nowork -10.0798 ** -12.3649 ** -9.6969 ** -11.9999 ** -12.0779 **
single -14.2161 ** -12.3453 ** -14.3206 ** -12.3993 ** -12.2824 **
hsize 14.7489 ** 15.7047 ** 14.8135 ** 15.8150 ** 15.8830 **
children -8.2815 8.9799 -8.4939 9.2547 10.2786
s_city -5.6530 * -3.3541 -5.4347 * -3.0532 -2.8825
math 2.5932 * 2.4846 * 2.6474 * 2.5526 * 2.5522 *
recall .1895 -.6340 .2329 -.6150 -.6589
orient .0409 -1.6808 -.0270 -1.8118 -1.9321
hr_health -5.9249 * -5.9525 * -5.7362 * -5.7209 * -5.6757 *
hr_adl 3.6007 2.5357 3.6105 2.4797 2.4127
hr_pmm 4.7020 6.2745 4.1387 5.6755 5.7338
income_q1 -.2739 4.9975 -.2547 5.1827 5.5696
income_q3 10.4333 * 6.1075 10.3681 * 5.8856 5.6763
income_q4 27.8826 ** 25.8034 ** 28.2009 ** 25.9994 ** 25.9275 **
inc_mis 2.8630 17.3704 ** 2.4785 17.4286 ** 18.2682 **
DK -6.8578 -.5680 -3.6691 5.9322 7.3659
ES 42.6597 ** 46.6014 ** 41.9278 ** 48.0775 ** 48.5169 **
IT 24.4017 ** 27.6063 ** 24.6381 ** 29.3261 ** 29.8148 **
NL 28.9011 ** 37.5871 ** 30.6362 ** 42.8853 ** 44.2894 **
DK*inc_q1 1.7820 3.1949 1.6628 3.1119 3.1675
DK*inc_q3 -19.7524 * -12.6673 -19.8051 * -12.4277 -12.0484
DK*inc_q4 -19.4311 * -15.9772 -19.9518 * -16.3004 * -16.1718 *
ES*inc_q1 -13.8668 -15.8732 -14.0797 -16.1169 * -16.3252 *
ES*inc_q3 24.1875 ** 23.1896 * 24.2600 ** 23.1822 23.0922
ES*inc_q4 18.9351 * 16.0216 18.8499 * 15.8520 15.6502
IT*inc_q1 -7.4403 -13.1667 -7.2445 -13.1485 -13.5422
IT*inc_q3 9.0314 9.2429 9.4296 9.7015 9.7262
IT*inc_q4 3.0246 5.6670 3.0168 5.8433 6.0031
NL*inc_q1 11.8391 7.3424 11.9651 7.3200 6.9687
NL*inc_q3 2.0529 5.6044 2.3050 5.9826 6.0877
NL*inc_q4 8.8766 12.6336 8.4170 12.3711 12.5065
λ -63.0836 ** 19.2001 *
λunit 21.6801 ** 24.8778 **
λitem -65.1366 ** -71.0698 **
_cons 116.6306 ** 120.0218 ** 100.2615 ** 102.4764 ** 100.0399 **
k3 35 36 36 37 37
T1(2) 20.36 ** 20.03 **
RBunit(0) .141 .167
RBitem(0) -.036 -.044 -.047
RBtotal(0) -.036 .132 .097 .121
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Table 13: Parametric estimates of the Engel curves for total nondurable expenditure based on
nonresponse equations with interaction terms. Standard errors in Models 4b and 5b are computed
via the nonparametric bootstrap with 50 replications. Sample size n2 = 5605.

Variable Model 1 Model 2b Model 3b Model 4b Model 5b
hr_fem -.7727 .8765 -1.5512 .5709 .6742
hr_agec -.3307 -.1146 -.3055 -.0018 .0269
hr_agec2 .0025 -.0003 -.0021 -.0056 -.0064
hr_yeduc 3.3039 ** 3.3958 ** 3.2862 ** 3.3862 ** 3.3920 **
hr_nowork -10.0798 ** -11.6548 ** -9.6712 ** -11.3812 ** -11.4908 **
single -14.2161 ** -12.9931 ** -14.3721 ** -12.9890 ** -12.8694 **
hsize 14.7489 ** 15.3834 ** 14.7839 ** 15.5265 ** 15.5930 **
children -8.2815 3.5631 -8.3004 4.9842 6.1163
s_city -5.6530 * -4.1206 -5.4017 * -3.6555 -3.4851
math 2.5932 * 2.5195 * 2.6556 * 2.5968 ** 2.5943 **
recall .1895 -.3606 .2438 -.3746 -.4223
orient .0409 -1.0990 -.0902 -1.3732 -1.4964
hr_health -5.9249 * -5.9622 * -5.6774 * -5.6770 * -5.6447 *
hr_adl 3.6007 2.8973 3.5907 2.7644 2.6941
hr_pmm 4.7020 5.6703 4.2066 5.1645 5.2339
income_q1 -.2739 3.3463 -.3614 3.7244 4.1042
income_q3 10.4333 * 7.5110 10.3192 * 6.9911 * 6.7488 *
income_q4 27.8826 ** 26.4218 ** 28.2645 ** 26.5260 ** 26.4257 **
inc_mis 2.8630 12.6397 ** 2.4355 13.4285 * 14.3369 *
DK -6.8578 -2.5595 -3.4338 4.8946 6.0373
ES 42.6597 ** 45.3297 ** 41.9383 ** 47.2239 ** 47.6174 **
IT 24.4017 ** 26.5685 ** 24.5745 ** 28.5506 ** 28.9481 **
NL 28.9011 ** 34.8035 ** 30.6293 ** 40.9827 ** 42.1463 **
DK*inc_q1 1.7820 2.7266 1.7521 2.7887 2.8742
DK*inc_q3 -19.7524 * -14.9368 -19.6639 * -14.1312 * -13.6933
DK*inc_q4 -19.4311 * -17.1190 -19.7419 * -17.0282 ** -16.8396 *
ES*inc_q1 -13.8668 -15.3680 -13.9090 -15.5658 -15.7501
ES*inc_q3 24.1875 ** 23.5004 * 24.1584 ** 23.3872 23.2893
ES*inc_q4 18.9351 * 16.8852 18.7042 * 16.4933 16.2839
IT*inc_q1 -7.4403 -11.3729 -7.0675 -11.5117 -11.8993
IT*inc_q3 9.0314 9.2021 9.6209 9.8780 9.9142
IT*inc_q4 3.0246 4.9662 3.1124 5.4345 5.6338
NL*inc_q1 11.8391 8.6761 12.1595 8.5845 8.2506
NL*inc_q3 2.0529 4.3778 2.5828 5.1873 5.3498
NL*inc_q4 8.8766 11.3758 8.6652 11.5167 11.7196
λ -42.8240 * 21.2050 **
λunit 24.1104 ** 26.2256 **
λitem -48.3078 * -54.6603 *
_cons 116.6306 ** 118.9383 ** 98.6568 ** 99.6900 ** 98.1585 **
k3 35 36 36 37 37
T1(2) 17.42 ** 17.14 **
RBunit(0) .159 .177
RBitem(0) -.025 -.033 -.036
RBtotal(0) -.025 .146 .126 .141
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Table 14: Conditional moment tests for Gaussianity in the unit and the item response equations.
Standard errors are computed via the nonparametric bootstrap with 50 replications. η is the
generalized residual from the probit model.

Food at home exp. Nondurable exp.
Equation Moment df Test p-value Test p-value
Unit E(μ21 η) 1 3.6907 .0002 3.6907 .0002

E(μ31 η) 1 -1.7369 .0824 -1.7369 .0824
All 2 13.6837 .0011 13.6837 .0011

Item E(μ22 η) 1 -1.9013 .0573 -1.7716 .0765
E(μ32 η) 1 -2.2057 .0274 -1.7418 .0815
All 2 5.0272 .0810 3.1687 .2051

Table 15: Reset-like tests for Gaussianity in the outcome equation. Standard errors are computed
via the nonparametric bootstrap with 50 replications. The definition of ζ is provided in the text.

Food at home exp. Nondurable exp.
Equation Variable df Test p-value Test p-value
Outcome ζU1 1 -1.1072 .2682 .1451 .8846

ζU2 1 -1.0714 .2840 .0993 .9209
ζU3 1 -.9683 .3329 .0769 .9387
ζ1 1 -.7432 .4573 .9821 .3260
ζ2 1 .9618 .3362 -.8073 .4195
ζ3 1 -1.1293 .2588 .4335 .6647
ζ00 1 .9582 .3379 .4876 .6258
ζ01 1 .7423 .4579 -.9839 .3252
ζ02 1 -.9594 .3374 .8094 .4183
ζ03 1 1.1270 .2597 -.4374 .6618
ζ10 1 .9701 .3320 .4991 .6177
ζ11 1 .7465 .4554 -.9816 .3263
ζ12 1 -.9701 .3320 .8104 .4177
ζ13 1 1.1376 .2553 -.4300 .6672
ζ20 1 .9244 .3553 .5744 .5657
ζ21 1 .7612 .4465 -.9754 .3294
ζ22 1 -.9694 .3324 .7709 .4408
ζ23 1 1.1126 .2659 -.3827 .7020
ζ30 1 .7504 .4530 .6970 .4858
ζ31 1 .7415 .4584 -.9178 .3587
ζ32 1 -.9032 .3664 .6904 .4899
ζ33 1 1.0088 .3131 -.3372 .7360
All 22 18.8646 .6537 25.3018 .2829
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Table 16: Parametric and semiparametric estimates for unit response. W1(6) is a Wald test for the
nonlinear combinations of τhk parameters in the distribution function of the unit response equation,
and has 6 df. Sample size n = 12537.

Food at home Total expenditure
Variable Parametric Semipar. Parametric Semipar.
gs_fem -.0457 * -.0556 -.0455 * -.0503
gs_agec .0053 * .0103 ** .0053 * .0103 **
gs_agec2 -.0004 ** -.0006 ** -.0004 ** -.0006 **
iv_fem .0278 .0664 .0275 .0686
iv_agec .0048 ** .0032 .0048 ** .0033
iv_agec2 .0002 ** .0003 ** .0002 ** .0003 **
iv_yeduc -.0155 ** -.0164 ** -.0156 ** -.0164 **
tot_call -.0220 ** -.0703 ** -.0219 ** -.0706 **
call_ev -.0727 ** -.0949 * -.0785 ** -.0884 *
call_we .0661 * -.0556 .0688 * -.0498
lfield -.0042 ** -.0054 ** -.0042 ** -.0054 **
DK .1749 ** .4646 ** .1737 ** .4627 **
ES -.2109 ** .0246 -.2111 ** .0260
IT -.1506 ** .1035 -.1511 ** .1021
NL .1103 ** .4912 ** .1098 ** .4873 **
_cons .2139 ** .2166 **
σ1 1.94 1.95
Skewness .23 .22
Kurthosis 2.09 2.11
W1(6) 260.1 ** 284.5 **

Table 17: Normalized estimates for unit response. Results based on the normalization βlfield =
−.01. Standard errors computed by the delta method.

Food at home Total expenditure
Variable Parametric Semipar. Parametric Semipar.
gs_fem -.1086 * -.1021 -.1086 -.0930
gs_agec .0127 * .0189 ** .0126 * .0191 **
gs_agec2 -.0010 ** -.0011 ** -.0009 ** -.0011 **
iv_fem .0662 .1220 .0656 .1268
iv_agec .0114 ** .0059 .0115 ** .0061
iv_agec2 .0006 ** .0005 ** .0006 ** .0005 **
iv_yeduc -.0370 ** -.0301 ** -.0373 ** -.0303 **
tot_call -.0524 ** -.1292 ** -.0523 ** -.1306 **
call_ev -.1730 ** -.1744 * -.1875 ** -.1633 *
call_we .1571 * -.1021 .1642 * -.0921
DK .4161 ** .8534 ** .4149 ** .8555 **
ES -.5017 ** .0453 -.5041 ** .0481
IT -.3582 ** .1900 -.3609 ** .1888
NL .2623 ** .9023 ** .2621 ** .9010 **
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Table 18: Parametric and semiparametric estimates of the item response equation. W2(6) is a
Wald test for the nonlinear combinations of τhk parameters in the distribution function of the item
response equation, and has 6 df. Interaction terms between country dummies and income quartiles,
and τhk parameters of the SNP estimator are not reported to save space. Sample size n1 = 6746.

Food at home Total expenditure
Variable Parametric Semipar. Parametric Semipar.
hr_fem .1335 ** .2627 ** -.1003 * -.1513
hr_agec -.0080 -.0154 -.0172 ** -.0296 *
hr_agec2 .0000 -.0000 .0003 .0004
hr_yeduc -.0077 -.0196 -.0072 -.0140
hr_nowork .1502 * .4147 ** .1014 .2568 *
single -.1263 * -.2314 * -.0676 -.0969
hsize .0040 .0094 -.0475 * -.0750
children -.4627 ** -.9628 ** -.5665 ** -1.5611 **
s_city -.0381 -.0696 -.1121 * -.1490
math .0442 .0764 .0105 .0268
recall .0265 * .0475 .0392 ** .0611 **
orient .1493 ** .3720 ** .0622 .1856 *
hr_health .0086 -.0282 -.0057 -.0064
hr_adl -.0902 -.1193 .0314 .0358
hr_pmm -.0827 -.2405 -.0338 -.0638
income_q1 -.2759 -.5247 -.2527 -.4049
income_q3 .3520 * .9162 ** .2947 * .7407 **
income_q4 .3073 * 1.0194 ** .1253 .5159
inc_mis -.6862 ** -1.3461 ** -.6835 ** -1.2455 **
f_proxy -.0257 .0162 -.0752 -.3258
p_proxy .2607 ** .4532 ** .1918 * .4030 *
int_out -.1247 -.2554 -.2512 * -.4626 *
int_length .0021 * .0050 ** .0008 .0023
iv_length -.0357 ** -.0670 ** -.0370 ** -.0642 **
iv_fem -.0225 .0318 -.0187 .0756
iv_agec .0011 .0066 .0025 .0061
iv_agec2 -.0003 * -.0003 -.0001 -.0001
iv_yeduc -.0141 -.0203 .0019 .0064
DK -.5893 ** -.8319 ** -.4467 ** -.4554
ES -.2421 -.0574 -.2051 .0554
IT -.3602 ** -.3890 -.1800 -.0376
NL -.2864 -.2946 -.5341 ** -.6204 **
_cons 1.8020 ** 2.0233 **
ρ12 -.01 .13 -.18 .14
σ2 1.68 1.74
Skewness -.69 -.59
Kurthosis 2.77 2.50
W2(6) 20.01 ** 8.72
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Table 19: Normalized estimates of the item response equation. Results are based on the normal-
ization βiv_length = −.01. Standard errors are computed by the delta method. Interaction terms
between country dummies and income quartiles are not reported to save space.

Food at home Total expenditure
Variable Parametric Semipar. Parametric Semipar.
hr_fem .0373 * .0392 * -.0271 -.0236
hr_agec -.0022 -.0023 -.0046 * -.0046
hr_agec2 .0000 -.0000 .0001 .0001
hr_yeduc -.0022 -.0029 -.0020 -.0022
hr_nowork .0420 .0619 * .0274 .0400
single -.0353 -.0346 -.0183 -.0151
hsize .0011 .0014 -.0128 -.0117
children -.1294 * -.1438 * -.1530 ** -.2432 *
s_city -.0107 -.0104 -.0303 -.0232
math .0124 .0114 .0028 .0042
recall .0074 .0071 .0106 * .0095
orient .0418 * .0556 * .0168 .0289
hr_health .0024 -.0042 -.0015 -.0010
hr_adl -.0252 -.0178 .0085 .0056
hr_pmm -.0231 -.0359 -.0091 -.0099
income_q1 -.0772 -.0784 -.0683 -.0631
income_q3 .0985 .1368 * .0796 .1154 *
income_q4 .0860 .1522 * .0338 .0804
inc_mis -.1920 ** -.2010 ** -.1846 ** -.1940 **
f_proxy -.0072 .0024 -.0203 -.0508
p_proxy .0729 * .0677 * .0518 .0628
int_out -.0349 -.0382 -.0679 * -.0721
int_length .0006 * .0007 * .0002 .0004
iv_fem -.0063 .0047 -.0051 .0118
iv_agec .0003 .0010 .0007 .0010
iv_agec2 -.0001 -.0000 -.0000 -.0000
iv_yeduc -.0039 -.0030 .0005 .0010
DK -.1649 * -.1242 * -.1207 * -.0710
ES -.0677 -.0086 -.0554 .0086
IT -.1008 -.0581 -.0486 -.0059
NL -.0801 -.0440 -.1443 * -.0967 *
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Table 20: Semiparametric estimates of the partially linear model for food expenditure at home.
Bandwidth parameter and trimming factor in semiparametric models are respectively equal to n−1/p2

and n
−1/r
2 . Standard errors are computed via the nonparametric bootstrap with 50 replications.

Semiparametric
Madel A Model B Model C

Variable Parametric p = 5, r = 21 p = 6, r = 13 p = 7, r = 10
hr_fem -1.7196 -1.6955 -1.7192 -1.7951
hr_agec -.0716 -.0718 -.0532 -.0412
hr_agec2 -.0019 -.0019 -.0023 -.0026
hr_yeduc .7877 ** .7588 ** .7784 ** .7992 **
hr_nowork .5994 .5097 .2468 .0339
single -6.6977 ** -6.7183 ** -6.6826 ** -6.6244 **
hsize 8.7910 ** 8.8078 ** 8.8046 ** 8.8089 **
children 1.0298 1.7756 3.0217 3.2667
s_city -2.3469 -2.0892 -2.1361 -2.2457
math .5420 .4601 .4616 .4315
recall -.2541 -.2572 -.2678 -.2817
orient -1.6060 -1.0352 -1.5390 -1.7868
hr_health -.6628 -.8729 -.8161 -.7790
hr_adl 3.1841 3.2253 3.1152 3.0594
hr_pmm 3.1046 3.1885 3.4310 3.2594
income_q1 .2317 -.6798 -.3920 -.3446
income_q3 -1.5629 -2.1956 -2.6150 -2.9673
income_q4 1.5458 .6432 .1069 -.1858
inc_mis 1.7556 1.9156 2.3986 2.6612
DK 5.1349 6.4337 6.1886 6.1523
ES 36.8228 ** 37.4021 37.4702 ** 37.5368 **
IT 23.7231 ** 24.3287 24.4420 ** 24.6609 **
NL 19.5865 ** 19.5280 19.5082 ** 19.8253 **
DK*inc_q1 -1.0137 -.1658 -.1859 -.1466
DK*inc_q3 .6406 .7481 1.4544 1.8804
DK*inc_q4 .0162 1.1986 1.6028 1.9157
ES*inc_q1 -7.4260 * -5.2459 -5.5954 -5.5325
ES*inc_q3 7.1832 8.4390 8.4521 8.7232
ES*inc_q4 8.0583 9.8780 10.2181 10.2921
IT*inc_q1 -7.3242 -6.5885 -6.7996 -6.7997
IT*inc_q3 9.0476 * 9.5695 * 10.0035 * 10.3845 *
IT*inc_q4 7.8787 8.3366 8.9581 9.3930
NL*inc_q1 3.5377 5.4522 4.9089 4.6435
NL*inc_q3 -2.2426 -.9920 -.9678 -.9374
NL*inc_q4 -5.2919 -3.9029 -3.8517 -3.8474
λunit 4.9775
λitem -15.0747
_cons 39.4856 **
n2 5884 5795 5835 5852
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Table 21: Semiparametric estimates of the partially linear model for total nondurable expenditure.
Bandwidth parameter and trimming factor in semiparametric models are respectively equal to
n
−1/p
2 and n

−1/r
2 . Standard errors computed via the nonparametric bootstrap with 50 replications.

Semiparametric
Model A Model B Model C

Variable Parametric p = 5, r = 21 p = 6, r = 13 p = 7, r = 10
hr_fem 1.3118 .9947 1.2516 1.1953
hr_agec .1104 .1807 .2143 .1847
hr_agec2 -.0074 -.0058 -.0072 -.0065
hr_yeduc 3.4447 ** 3.4959 ** 3.5152 ** 3.5168 **
hr_nowork -12.0779 ** -13.7965 ** -13.8466 ** -13.5968 **
single -12.2824 ** -11.6804 ** -11.8244 ** -11.9894 **
hsize 15.8830 ** 16.0205 ** 15.8533 ** 15.7935 **
children 10.2786 23.1555 23.4829 22.5968
s_city -2.8825 -3.3996 -3.6721 -3.6607
math 2.5522 * 2.4643 * 2.5447 * 2.4615 *
recall -.6589 -.8572 -.8233 -.7897
orient -1.9321 -3.6970 -3.8004 -3.7415
hr_health -5.6757 * -6.1505 * -6.0579 * -6.1439 *
hr_adl 2.4127 3.0171 2.8381 2.7687
hr_pmm 5.7338 5.5616 5.9330 5.3952
income_q1 5.5696 6.6534 5.8841 5.2522
income_q3 5.6763 -.7375 -1.2840 -1.4809
income_q4 25.9275 ** 19.6971 18.8786 18.5371
inc_mis 18.2682 ** 21.3783 21.7906 21.3213
DK 7.3659 6.3452 6.3147 5.7556
ES 48.5169 ** 44.9698 ** 45.8249 ** 45.8327 **
IT 29.8148 ** 28.6473 ** 29.2525 ** 29.2918 **
NL 44.2894 ** 46.1390 ** 46.0851 ** 44.9911 **
DK*inc_q1 3.1675 4.6213 5.4701 5.9248
DK*inc_q3 -12.0484 -4.3757 -3.8830 -3.8883
DK*inc_q4 -16.1718 * -10.5582 -9.6933 -9.4031
ES*inc_q1 -16.3252 * -13.2141 -12.5611 -12.3475
ES*inc_q3 23.0922 37.2361 ** 36.6058 ** 36.2935 **
ES*inc_q4 15.6502 25.5702 25.7588 26.0489
IT*inc_q1 -13.5422 -13.3603 -12.9417 -12.3378
IT*inc_q3 9.7262 18.4447 18.8368 18.8320
IT*inc_q4 6.0031 12.4760 12.9065 13.0088
NL*inc_q1 6.9687 3.8912 6.4949 6.9835
NL*inc_q3 6.0877 10.4320 11.8479 12.2028
NL*inc_q4 12.5065 17.0777 18.4888 19.0345
λunit 24.8778 **
λitem -71.0698 **
_cons 100.0399 **
n2 5605 5527 5567 5580
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Figure 1: Semiparametric estimates of the error densities.
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