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Band Spectral Estimation for Signal Extraction

Abstract

The paper evaluates the potential of band spectral estimation for extracting signals in eco-

nomic time series. Two situations are considered. The first deals with trend extraction when

the original data have been permanently altered by routine operations, such as prefiltering,

temporal aggregation and disaggregation, and seasonal adjustment, which modify the high

frequencies properties of economic time series. The second is when the measurement model

is only partially specified, in that it aims at fitting the series in a particular frequency range,

e.g. at interpreting the long run behaviour. These issues are illustrated with reference to a

simple structural model, namely the random walk plus noise model.

Keywords: Temporal Aggregation, Seasonal Adjustment, Trend Component, Frequency Do-

main.

JEL classification:C22, E3.



1 Introduction

Many signal extraction problems in economics deal with the measurement of the underlying evo-

lution of economic variables, such as inflation and output. These problems can be addressed in

a parametric framework, whereby a measurement model describing the evolution of the signal is

specified and estimated according to some criterion; given the parameter estimates, suitable algo-

rithms, such as the Wiener-Kolmogorov filter or the Kalman filter and smoother (KFS), carry out

the necessary computations for estimating the signal.

The specification issue will not be considered by this paper, which rather takes the parametric

model as fixed. In particular, we shall focus on a simple model breaking down the series into a

random walk trend and a white noise component, mutually orthogonal, which is known as theran-

dom walk plus noise(RWpN) model. This model owes its success to its simplicity, as it provides

a basic separation between transitory and permanent dynamics depending on a single smooth-

ness parameter, which determines the weights that are assigned to the available observations for

forecasting and trend estimation.

The paper deals with the estimation of the smoothness parameter by band spectral (BS) maxi-

mum likelihood (ML). The latter is a variant of ML in the frequency domain which assigns differ-

ent weights to the Fourier frequencies and it has a fairly long and well established tradition in the

time series and econometric literature.

The possibility of eliminating a fixed number of Fourier frequencies is mentioned in Hannan

(1969, p. 584), who considers the case when a band is affected by noise. The marginal likelihood

(with respect to the drift parameter), which amounts to removing the zero frequency term from the

standard likelihood, can also be seen as an extreme particular case (Shephard, 1993, sec. 5) of BS

estimation.

The idea of differential weighting according to the frequency is considered in Robinson (1977)

and Thomson (1986). The former considers the case when ”omission of small clusters” of fre-

quencies ”at strategic places may reduce seasonal noise” or measurement noise (p. 181). Another

motivation is when the underlying process is band limited, that is it has nonzero spectral density

only in a specific frequency range (Robinson, p. 180). This case is considered in detail by Pollock

(2006a, 2006b), who also provides illustrations with reference to the problem of trend extraction
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in economic time series. Thomson (1986) adopts BS estimation for the purpose of estimating

ARMA models that are noninvertible at a fixed number of frequencies; noninvertibility may result

from stationarity inducing transformations, such as differencing.

Moreover, BS estimation has successful applications in regression, when a behavioural rela-

tionship is not stable across the frequency range, e.g. the price elasticity with respect to wages is

larger in the long run (low frequencies) than in the short run (high frequencies); see Engle (1978)

and Jaeger (1992). The theory of BS regression is set forth in Engle (1974), whereas Corbae,

Oularis and Phillips (2002) extend it when stochastic and deterministic trends are present.

A similar idea is present in Watson (1993), Diebold, Ohanian and Berkowitz (1998), and Chris-

tiano and Vigfusson (2003). These references advocate the use of BS techniques for estimating

dynamic structural economic models that are only partially specified, as it occurs when the model

explicitly formulates long run behavioural relationships, but is otherwise agnostic on the short run

behaviour. They also consider the assessment of goodness of fit in the frequency domain, namely

the use of BS methods for evaluating how well a parametric model fit the data spectra across a

specified frequency range.

In general, BS estimation is close to the notion of a local likelihood as adopted in cross-

sectional (generalised) linear models with independently distributed observations; see, for in-

stance, Hastie, Tibshirani and Friedman (2001, sec. 6.5), and the references therein.

The objective of this paper is to evaluate the role of BS estimation for extracting the trend from

an economic time series; our applications will deal with the measurement of core inflation and

potential output. There are two situations in which BS proves valuable.

The first is trend extraction when the original data have been permanently altered by routine op-

erations, such as prefiltering, temporal aggregation and disaggregation, and seasonal adjustment,

which modify the high frequencies properties of economic time series. In this situation the RWpN

is correctly specified, but the original data have been transformed to an extent that they ”lack

power” at the high frequencies. BS estimation will aim at discounting those Fourier frequencies

which are most affected by preliminary transformations.

The second arises when the RWpN model is used as an approximation to an unknown true

model separating the long run and the short run. For instance, we may be interested in extracting
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a random walk trend from an economic time series, leaving the short run unspecified. The ap-

proximate model can only provide a stripped to the bone representation of economic dynamics, so

that for real output series such as gross domestic product (GDP) at constant prices we expect that

the transitory component has richer dynamics than pure white noise, as postulated by the RWpN

model.

Hence, the second situation differs from the first in that we assume that the RWpN model is

misspecified or only partially specified. In the time series literature considerable attention has been

attracted by the issue of determining estimation criteria alternative to ML that could guarantee

efficiency in prediction and signal extraction from a model that would otherwise be rejected from

the standard model building methodology.

We aim at illustrating that BS estimation provides a valuable tool for signal extraction from a

misspecified model: using the periodogram ordinates in a neighbourhood of the zero frequency,

thereby emphasising the separation of the long-run behaviour from the short run, it allows the

extraction of trends from an economic time series using a simple and well understood model.

In this respect, its scope is similar to multistep (or adaptive) estimation of the RWpN, which is

discussed in Cox (1961), Tiao and Xu (1993) and Haywood and Tunicliffe Wilson (1997), thereby

providing a valid alternative estimation tool.

The paper is structured as follows: in the next section we set off by introducing and review-

ing the properties of the our workhorse model, the RWpN model. Estimation in the frequency

domain and band spectral estimation are the topic of section3. Section4 introduces the scope

of BS estimation using an artificial example. Temporal disaggregation and seasonal adjustment

are deal with in sections5 and6, respectively. The use of BS for signal extraction under model

misspecification is illustrated in section7. Section8 concludes the paper.
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2 The random walk plus noise model

The RWpN model provides the following decomposition of a univariate time series,yt, into trend

and irregular components, denoted respectively byµt andεt:

yt = µt + εt, t = 0, 1, . . . , T, εt ∼ NID(0, σ2
ε ),

µt = µt−1 + β + ηt, ηt ∼ NID(0, σ2
η).

(1)

The trend is a random walk with normal and independently distributed (NID) increments, whereas

the irregular is a Gaussian white noise (WN) process. When the drift is absent, i.e.β = 0, the

model is also known as thelocal level model, see Harvey (1989). We assume throughout that

E(ηtεt−j) = 0 for all t andj, so that the components are orthogonal.

The RWpN has a long tradition and a well established role in the analysis of economic time se-

ries, as it provides the model based interpretation for the celebrated forecasting technique known as

exponential smoothing, which is widely used in applied economic forecasting and fares remark-

ably well in forecast competitions; see Muth (1960) and the comprehensive review by Gardner

(1985). For later treatment it is helpful to review the main properties of the model. Further details

can be found in Harvey (1989) and Durbin and Koopman (2001).

The reduced form representation of (1) is an IMA(1,1) model:∆yt = β + ξt − θξt−1, ξt ∼
NID(0, σ2), with the MA parameter subject to the restriction0 ≤ θ ≤ 1. Equating the autoco-

variance generating functions of∆yt implied by the IMA(1,1) and the structural representation

(1), it is possible to establish thatσ2
η = (1 − θ)2σ2 andσ2

ε = θσ2. The signal-noise ratio (SNR),

q = σ2
η/σ2

ε , depends uniquely onθ: q = (1 − θ)2/θ. The reciprocal of the SNR is a measure

of relative smoothness of the trend: ifq−1 is large, then the trend varies little with respect to the

irregular, and thus it can be regarded as ”smooth”.

The rescaled parametric spectrum of∆yt, denotedg(ω), whereω is the frequency in radians,

defined in the interval∈ [0, π], is given by

g(ω) = σ2
η + 2(1− cosω)σ2

ε = (1 + θ2 − 2θ cosω)σ2,

and has a maximum at theπ frequency.

Assuming a doubly infinite sample, the one-step-ahead predictions, the filtered and smoothed
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estimates of the trend component are given, respectively, by:

µ̃t+1|t = µ̃t|t = (1− θ)
∞∑

j=0

θjyt−j , µ̃t|∞ =
1− θ

1 + θ

∞∑

j=−∞
θ|j|yt−j ;

these expressions follow from applying the Wiener-Kolmogorov prediction and signal extraction

formulae, see Whittle (1983) and Harvey and Koopman (2000). In finite samples the computations

are performed by the KFS.

The parameterθ (or, equivalently, the SNRq) is essential in determining the weights that are

attached to the observations for signal extraction and prediction. Whenθ = 0, yt is a pure random

walk and thus the estimates of the signal are as local as possible,µ̃t+1|t = µ̃t|t = µ̃t|∞ = yt; on

the contrary, whenθ = 1, the trend is as smooth as possible, being a straight line passing through

the observations.

Figure1 displays in the right panels the normalised spectral density of∆yt, g(ω)/(1 + θ2),

for three values of the parameterq. The area beneath the curve is equal to one. The height of

the rectangular box is the ratio ofσ2
η to the variance of∆yt and represents the portion of the

total variability is due to trend movements. Asq increases (θ decreases) the spectrum tends to a

horizontal straight line. The two-sided filter weights for trend estimation for a sequence of101

observations corresponding to the different values of the SNR parameter are depicted in the right

panels. The weights decline symmetrically and geometrically at different rates, depending on the

value of the SNR (orθ). As q increases the trend estimates become more and more local until the

weighting function is unity for the current observation and zero elsewhere, which occurs whenyt

is a random walk.

3 Band spectral estimation

Estimation of the unknown parameters,θ ∈ [0, 1] andσ2 (or equivalentlyq andσ2
ε ) can be done in

the frequency domain. Maximum likelihood estimation is then based on the stationary representa-

tion of the model,∆yt = β + ηt + ∆εt, or in terms of the reduced form,∆yt = β + ξt − θξt−1,

θ ∈ [0, 1].

While the time domain likelihood is evaluated via a recursive orthogonalisation, known as the

prediction error decomposition, performed by the Kalman filter, the frequency domain likelihood
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Figure 1:Normalised spectral density of∆yt (left panels) and two-sided filter weights attributed to

yt−j , j = 0,±1, . . ., for signal extraction by the RWpN model with different SNR. The horizontal

axis measures the lagj (right panels).
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is based on an alternative orthogonalisation, achieved through a Fourier transform. We refer to

Nerlove, Grether and Carvalho (1995) and Harvey (1989, sec. 4.3) for a comprehensive treatment

on the derivation of the likelihood function and the nature of the approximation involved.

Given the availability of the differenced observations∆yt, t = 1, 2, . . . , T, let us denote the

Fourier frequencies byωj = 2πj
T , j = 0, 1, . . . , (T − 1). Apart from a constant, the Whittle’s

approximation to the likelihood function is defined as follows:

loglik = −1
2

T−1∑

j=0

[
log g(ωj) + 2π

I(ωj)
g(ωj)

]
(2)

whereg(ωj) is the scaled parametric spectrum of the stationary representation of the RWpN model

evaluated at frequencyωj , that isg(ωj) = σ2(1 + θ2 − 2θ cosωj), and I(ωj) is the sample

spectrum:

I(ωj) =
1
2π

[
c0 + 2

T−1∑

τ=1

cτ cos(ωjτ)

]
,

wherecτ is the sample autocovariance of∆yt at lagτ . Notice that for1 ≤ j ≤ [T/2], where

[T/2] = T/2, if T is even, and[T/2] = (T − 1)/2 otherwise,I(ωj) = I(ωT−j) andg(ωj) =

g(ωT−j), that is both the sample and the parametric spectrum are symmetric aroundπ. Hence, in

the sequel these quantities will be plotted only in the range[0, π].

Band spectral estimation is a particular form of weighted likelihood estimation in the frequency

domain, where the objective function (2) is modified as follows:

loglik(BS) = −1
2

T−1∑

j=0

wj

[
log g(ωj) + 2π

I(ωj)
g(ωj)

]
. (3)

In the above expression wj is a nonnegative weight, depending on the Fourier frequency, which is

symmetric with respect toπ, implying wj = wT−j .

Typically, wj takes the value of 1 in a certain band and 0 elsewhere, so that (3) is the summation

over the frequencies of interest. The simplest option is to consider the uniform weighting function,

defined as follows:

wj = wT−j , j = 1, . . . , [T/2], (4)

wj =





1, ωj ≤ ωc j < [T/2]

0, otherwise
(5)
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The frequencyωc is the cutoff frequency in the range[0, π]. Equation (4) establishes that the

weighting pattern is symmetric around theπ frequency.

As hinted in the Introduction, there are a variety of motivations for using (3) in place of the

standard likelihood (2). We mention in passing that we do not explore further a special case for

which BS estimation seem to be well suited, which arises when the trend disturbance is a band

limited white noise process, characterised by the following parametric spectrum (up to a factor of

proportionality):

g(ω) =





σ2
η + 2(1− cosω)σ2

ε , ω ≤ ωc

2(1− cosω)σ2
ε , ω ≤ ωc

In this particular case, we could fit the RWpN model using (3) with (4)-(5) and cutoffωc.

A first motivation for downweighting the high frequencies, that will be illustrated in the next

three sections, arises when certain transformation of the series have taken place beforehand, so that

the original amplitude of the frequency components in the series has been modified to an extent

that the condition under which the trend-irregular decomposition ofyt is admissible is no longer

met. In terms of the MA(1) reduced form representation for∆yt, the condition requires thatθ is

in [0, 1], which implies that the spectral density of∆yt is a minimum at the zero frequency (see

figure1).

Moreover, if our interest lies in long range forecasting and in the estimation of long-run trends,

it is of reduced importance how well the model fits the sample spectrum at the high frequencies,

which express uninteresting fluctuations from the analyst perspective, such as trading day variation

and other short lived components.

4 An artificial example

In this section we provide an artificial example that motivates the adoption of BS estimation. The

first panel of Figure2 displays the monthly inflation rate for the Consumer Price Index (CPI) for

France (all items, base year 2000), for the sample period going from February 1970 to December

2004.

If the RWpN model (with no drift) is estimated according to (2), the ML estimate ofθ amounts

to 0.7 (the estimated SNR is 0.13). The plot also shows the estimated trend in inflation, e.g. a
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univariatecore inflationmeasure, using the Kalman filter and smoother (see Durbin and Koopman,

2001, for details), which is much smoother than the original series. All the computations were

carried out using Ox 3.20 by Doornik (2001) and the package SsfPack 2.2 (Koopman, Shephard

and Doornik, 1999) for KFS. The sample spectrum2πI(ωj) and the fitted parametric spectrum

are plotted in the bottom left panel.

Assume now that the series has been prefiltered by the unweighted moving average(1 + L +

L−1)/3, so the seriesyt is replaced by the average across three months:y∗t = (yt−1+yt+yt+1)/3.

A three months moving average is often used by statistical agencies for publishing time series

characterised by short-term volatility. The transformed series and its sample spectrum are plotted

in the right panels of Figure2. It can be seen that the sample spectrum has now much reduced

power at the higher frequencies; this is so since the lower frequencies are preserved to a higher

extent by the moving average filter.

If the RWpN is fitted to the transformed series, the maximiser of (2) is θ̂ = 0, which implies

σ̂2
ε = 0, andµ̃t|T = y∗t . As a result the estimated trend is coincident with the seriesy∗t ; in the light

of the previous evidence, this is too rough and volatile as a measure of trend. The sample spectrum

of ∆y∗t is interpolated by a constant spectrum, as it is evident from the bottom right plot, which

also shows that the random walk model fits the low frequencies rather poorly.

In fact, the transformation by a moving average has altered the high frequency dynamics in the

series, while the long run properties are retained to a great extent. A plot of the gain of the filter

would make this clear. As a result the signal estimates are more erratic than they should be and all

the movements in the series are considered as permanent.

We consider now the BS estimation of the RWpN model using (3) with (4)-(5) as a weighting

function and different cutoffs frequencies:ωc = π/k, k = 1, . . . , 18. Obviously, whenωc = π we

recover the standard MLE which maximises (2).

BS estimation is carried out for both the original and the transformed series. Figure3 displays

the BS estimates ofθ against the cutoff frequency. As far as the original series is concerned, the

latter are very stable and close to the standard MLE (θ̃ = 0.7) for cutoff frequencies corresponding

to values ofk up to 7, and then they suddenly rise up to 1, in which case the trend extracted by the

RWpN model is constant.
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Figure 2: Monthly CPI inflation rate, France 1970.2-2004.12. Standard ML estimation of the

RWpN model in the frequency domain using the original series (left panels) and the transformed

series by a 3-terms centred arithmetic average.
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Figure 3: Band spectral maximum likelihood estimates of the parameterθ versus the cutoff fre-

quency,ωc.
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When we apply BS estimation to the transformed series the noticeable fact is that if the cutoff

frequency isπ/2, which amounts to ignoring in the estimation all the frequencies corresponding

to fluctuations with periodicity smaller than four observations, the MLE ofθ moves away from

zero, rising up to 0.5. If we further lower the cutoff, we get very close to the BS estimates obtained

for the original time series and to the standard MLE for the same series.

This trivial example shows that BS can improve the estimation of trends for series that have

been altered by filtering operations. We note in passing that preliminary smoothing of certain

components of economic aggregates that are particularly noisy (e.g. certain CPI items such as fruit

and vegetables) is not uncommon in the data production process adopted by statistical agencies.

The instability of the BS estimates using different cutoffs can be considered as a diagnostic device.
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5 Temporal disaggregation

Temporal disaggregation methods play an important role for the construction of short term eco-

nomic indicators. This is certainly the case for a number of European countries (Eurostat, 1999),

including France, Italy and Spain, whose national statistical institutes make extensive use of dis-

aggregation methods, among which the Chow-Lin procedure stands out prominently (Chow and

Lin, 1971), for constructing the quarterly national economic accounts using the annual figures and

a set of indicators available at the quarterly frequency. These considerations apply to the Italian

GDP series, that will be dealt with in section7.

We argue that economic time series resulting from temporal disaggregation suffer from excess

smoothness or ”lack of power” at the high frequency. Intuitively, the process of disaggregating ag-

gregate data cannot restore all the power that characterised the original series at the high frequen-

cies. As a consequence, the estimates of the SNR, or theθ parameters will be biased downward,

whereas, on the contrary, the contribution of the irregular component will be underestimated.

A Monte Carlo experiment was conducted with the intent of assessing the properties of the

standard MLE and BS MLE when the series arises from the disaggregation of a temporal aggregate

at a coarser interval, and evaluating the detrimental effects on trend estimation.

The design of the experiment is the following:M = 1000 series of lengthT = 280 (e.g. 20

years of monthly observations) are simulated from the true monthly RWpN model (1), using three

different values of the SNR:Low, q = 1/100, corresponding toθ = 0.9; Medium, q = 1/2,

corresponding toθ = 0.5; High, q = 10, corresponding toθ = 0.08.

The parameterq (or θ) is estimated on the generated series by standard ML in the frequency

domain. The distribution of theθ estimates over the 1000 replications is plotted in Figure4. When

the SNR is low, the MLE suffers from what is referred to as thepile-up problem, meaning that there

is a concentration of density atq̂ = 0 (θ̂ = 1), so that when the true signal has a weak evolution it

is estimated as constant. In such cases Shephard (1993) shows that the marginal likelihood (with

respect to the initial value of the random walk) alleviates the problem. The marginal likelihood is

actually a particular extreme case of (3) since it amounts to setting to zero the weight attached to

the zero frequency. When the SNR is high, thepile-up problemconcerns the valueθ = 0, instead,

at which the noise contribution is estimated to be zero.
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Figure 4:Distribution of MLE ofθ for simulated series
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Let us assume now that the original series are not available to the analyst, but that the seriesYτ ,

resulting from temporal aggregation, is available at timesτ = 1, 2, . . . [n/s], where[n/s] denotes

the integral part ofn/s andYτ is generated as follows:

Yτ =
s−1∑

j=0

yτs−j , τ = 1, 2, . . . [n/s]. (6)

The values of the aggregation interval that we considered weres = 12 (e.g. from monthly to

annual data; the aggregated series has 20 observations) ands = 3 (from monthly to quarterly

observations, the aggregated series has 80 observations), but for brevity we report only on the last

case, which is fully representative.

Given the availability of the aggregate series alone, let us suppose thatYτ is disaggregated into

a monthly time series in an optimal way, that is using a methodology that returns the minimum

mean square estimates of the disaggregate series, denotedy∗t , satisfying the aggregation constraint

Yτ =
∑s−1

j=0 y∗τs−j .

This is achieved in practice using the state space methods set up in Harvey and Chun (2000)

and Proietti (2006). In order to handle temporal aggregation, a new state space representation is
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derived from that of the underlying true model, an IMA(1,1) model, by augmenting the state vector

of the original state space representation with a cumulator variable that is only partially observed.

The cumulator is defined as follows:

yc
t = ψty

c
t−1 + yt, ψt =





0, t = s(τ − 1) + 1, τ = 1, . . . , [n/s]

1, otherwise

Temporal aggregation is such that only a systematic sample of everys-th value ofyc
t process is

observed,Yτ = yc
τs, τ = 1, . . . [n/s], whereas all the remaining values are missing. This ap-

proach, proposed by Harvey (1989, sec. 6.3), converts the disaggregation problem into a problem

of missing values, that can be addressed by skipping certain updating operations in the filtering

and smoothing equations. The minimum mean square estimates of the disaggregate seriesy∗t are

computed by the Kalman filter and smoother applied to the relevant state space model. In setting

up the latter, the disaggregation adopts the true parameter values used in the generation of the

disaggregate series, and thus there is no parameter uncertainty affecting the estimatesy∗t .

The RWpN model is fitted to the estimated monthly series both by ordinary and band-limited

maximum likelihood. The results are summarised in Figure6, which plots, separately for the three

values of the SNR andθ values, the deciles of the distribution of the estimated parameterθ.

The deciles of the standard MLEs correspond to the value of the cutoff frequencyωc = π,

which is the outmost value of the frequency range considered. Remarkably, the deciles are zero in

the three cases. As a result, regardless of the true SNR, the disaggregated series suffers from excess

smoothness and the variance of the irregular is estimated equal to zero. This is inconvenient from

the signal extraction perspective: the estimated disaggregated series is smoother than the original

simulated series, but yet it is too rough to be comparable to the trend component estimated on the

original series.

When we discard the high frequency by using the cutoffωc = π/2, the distribution of the BS

MLE of θ moves away from zero when the true SNR is low (θ = 0.9), as it can be seen from the

upper panel of Figure6. The estimated trend component is much closer to that extracted using the

original series. For Medium and High SNR we need lower cutoffs, e.g.π/4 for the former case,

to move the BS estimates closer to the true value and to improve the estimation of trends.
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Figure 5:Deciles of the band spectral estimates of the parameterθ for difference cutoff frequencies
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5.1 Estimation under temporal aggregation

The previous section illustrated that temporal disaggregation leads to a systematic overestimation

of the SNR or, which is the same, to a value ofθ that is biased towards 0; the problem is alleviated

by BS estimation.

Rather than disaggregating the series and estimating the RWpN model in the estimated series,

an alternative strategy is to estimate the RWpN model, which is formulated at the higher observa-

tion frequency (e.g. monthly), using directly the aggregate (e.g. quarterly) data.

Assuming as before that aggregation occurs as in (6) and denoting the sample spectrum of

Yτ − Yτ−1, τ = 1, . . . N , by I†(ωj), the frequency domain likelihood is

loglik = −1
2

N−1∑

j=0

[
log gTA(ωj) + 2π

I†(ωj)
gTA(ωj)

]
(7)

where2πgTA(ω) is the parametric spectrum of the aggregate RWpN process. The latter is related

to the spectrum of the disaggregate process∆yt, 2πg(ω), by the following expression, which result

from the application of the well knownfolding formula to the process∆sS(L)yt = S(L)2∆yt,

whereS(L) = 1 + L + · · ·+ Ls−1 (see Harvey, 1989, sec. 6.3.5):

gTA(ω) =
1
s

s−1∑

h=0

∣∣S (
e−ıωh

)∣∣4 g(ωh) (8)

whereωh = (ω + 2πh)/s and

∣∣S (
e−ıωh

)∣∣2 = S
(
e−ıωh

)
S (eıωh) =





1−cos ω
1−cos ωh

, ωh 6= 0

s2, ωh = 0

Now, there is no way of rewriting (7) as a weighted likelihood. However, minimising

N−1∑

j=0

[
2π

I†(ωj)
gTA(ωj)

]
=

N−1∑

j=0

w(ωj)
[
2π

I†(ωj)
g(ωj)

]

is equivalent to minimising a weighted function, where the weighting function w(ω) = g(ω)/gTA(ω),

is a nondecreasing function ofω, giving more weight to the high frequencies. The latter are

weighted more than the other frequencies, depending on theθ value, since they have been subject

to compression through aggregation to a larger extent.
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In conclusion, estimation of the RWpN model taking into account of aggregation constraints

automatically ”redresses the balance” in favour of those frequencies which were affected by ag-

gregation, i.e. the high frequencies. As pointed out also at the end of the next section, BS has a

slightly different logic, as it does not attempt to ”redress the balance”, but it selects purposively

those frequencies that were not altered by the transformation, and that are likely to provide genuine

information on the underlying model.

6 Seasonal adjustment

Signal extraction is often carried out on seasonally adjusted series. This simplifies the formulation

and the estimation of the model, since the analyst does not have to specify the seasonal compo-

nent and estimate the parameters that govern its evolution. Furthermore, it is often the case that

seasonally adjusted data are the only available data.

However, seasonal adjustment (SA) can seriously affect the trends estimated from economic

time series. As we shall argue in this section, SA provides a further explanation for the ”excess

smoothness” of economic time series. We address this issue using a simple Monte Carlo simula-

tion, which is taken from a larger experiment, the full details of which are skipped for brevity.

We generateM = 1000 series from the RWpN model augmented by a quarterly seasonal

component,yt = µt + γt + εt where the trend and the irregular are specified as in (1), whereas the

seasonal component has the following representation:

γt =
1

1 + L2
κ1t +

1
1 + L

κ2t,

or, equivalently,(1+L+L2 +L3)γt = (1+L)κ1t +(1+L2)κ2t whereκ1t ∼ NID(0, σ2
ω), κ2t ∼

NID(0, σ2
ω), and all the disturbances are mutually uncorrelated.

The parameters are set equal to the following values:q = 1/2, σ2
ω = 0.1σ2

ε , σ2
ε = 1, β = 0.5;

the true seasonally adjusted series,y∗t = yt− γt, has thus a RWpN representation with SNR equal

to 1/2, corresponding to the MA parameterθ = 0.5.

For each of the simulated series we estimate the RWpN model with seasonality by standard

MLE in the frequency domain; next, we remove the seasonal component estimated by the KFS,

conditional on the estimated parameter values; finally, we estimate the RWpN model (1) on the
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seasonally adjusted series and compare the parameters and trend estimates with those estimated

on the original unadjusted series. We also consider BS estimation, where we delete a range of

frequencies around the seasonal frequencies. In particular, wj = 0 in a neigbourhood±0.05k

around the seasonal frequenciesπ/2, π and3π/2, wherek = 1, . . . , 10.

Figure 6 illustrates one replication of the Monte Carlo experiment: the simulated series is

plotted in the upper panel, along with the true trend and that estimated from the seasonal model.

The central panel presents the sample spectrum of the seasonally adjusted series,ỹ∗t = yt − γ̃t,

whereγ̃t is the minimum mean square estimate of the seasonal component, conditional on the

MLE of the parametersq, σ2
ε , σ

2
ω andβ, the estimated spectrum of the RWpN model obtained by

BS maximum likelihood. The plot also provides the barplot of the 0-1 weights used in (3).

Assuming a doubly infinite sample, the squared gain of the seasonal adjustment filter is:

|S(ω)|2σ2
η

|S(ω)|2σ2
η + 2(1− cosω)gκ(ω)

=
1

1 + 2(1−cos ω)
|S(ω)|2 gκ(ω)

(9)

wheregκ(ω) = 2 [(1 + cosω) + 0.5(1 + cos 2ω)]σ2
κ.

The solid line in the bottom panel of Figure6 is the squared gain of the theoretical filter, i.e.

the above expression evaluated at the true parameter values. The dashed line is the squared gain

evaluated at the MLE of the parameters. The gain is zero at the seasonal frequencies and close

to zero around them, but the true one dominates the estimated one. As a matter of fact, given

the parameter setting, overadjustment is the dominant feature of the adjustment, in that too much

power is removed around the seasonal frequencies.

Coming to the properties of the parameters of the RWpN model on the seasonally adjusted se-

ries, the evidence can be summarised as follows: standard MLE suffers from a marked tendency to

overestimated the SNR; equivalently,θ is biased towards 0. From the signal extraction perspective

the estimated trends tend to be coincident with the seasonally adjusted series and are too vari-

able with respect to the original trends. BS estimation improves this situation since it suppresses

the frequency that are likely to have suffered most from the adjustment. However, the problem

is alleviated, but not resolved and also BS suffers from systematic underestimation of the noise

variance.

This is illustrated by Figure7, which is the scatterplot of the standard MLEs ofθ computed
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Figure 6:Band spectral estimation and seasonally adjusted series: one typical replication from the

Monte Carlo experiment.
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by fitting the RWpN model to the seasonally adjusted series (θ̃SA) versusθ̃, the standard MLEs

of the same parameter obtained from fitting the original trend plus seasonal plus irregular model

to the simulated raw series. The solid line is the least squares regression line. We superimpose

the scatterplot of the BS estimates (also computed on the seasonally adjusted series) withk = 8

(i.e. suppressing all the frequencies in a neighbourhood±0.4 around the seasonal frequencies -

the conclusions are unchanged if we increasek), denoted̃θBS , versus̃θ; the regression line is now

plotted as a dashed line. The plot shows thatθ is underestimated and pushed towards its lower

limit. In fact, most of the points lie below the 1-1 line (θ̃SA = θ̃) and there is a concentration of

points along the line (̃θ,0). The underestimation is less severe for the BS estimates; the regression

line is moved upwards in the direction of the 1-1 line (θ̃BS = θ̃), but there are no ways of improv-

ing the situations by increasingk. We also experimented with other weighting patterns, such as

pure truncation at a particular cutoff, but these did not prove more effective.

We conclude that BS estimation is helpful for diagnosing and partially correcting the upward

bias in the trend variance estimate. BS eliminates the frequencies that are most affected by the
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Figure 7:Plot of standard and BS maximum likelihood estimates of the moving average parameter

θ, denoted̃θSA andθ̃BS (seasonally adjusted series) versusθ̃, the standard MLE computed on the

original simulated series.
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adjustment. Nevertheless, for certain parameter combinations the type of overadjustment illus-

trated by the last panel calls for more clever ways of reviving by reweighting the high frequency

components of the spectrum that falls between the seasonal frequencies.

7 Band spectral estimation of approximate models

The previous sections have dealt with the case when a parametric model is thought to be correctly

specified for a seriesyt, for which only a transformed version,y∗t , is available. The typical trans-

formations are moving average smoothing, disaggregation of temporal aggregates and seasonal

adjustment.

We now address a different situation, according to which the RWpN model is thought only as

an approximation. As a matter of fact, it features a stripped to the bone parametric representation

for the components, postulating a naı̈ve separation of the short run from the long run fluctuations,

such that the trend and the cycle are formulated in terms of the simplest linear and Gaussian

nonstationary and stationary processes, respectively.

Due to its simplicity, the RWpN is usually misspecified for economic time series such as gross

domestic product (GDP), e.g. because the short run dynamics may display richer structure. Our

objective is to extract a random walk trend, so the model can be regarded as only partially specified.

Rather than fitting a more general model, e.g. specifying a stationary ARMA model forεt, we

focus on the strategy of adopting for the RWpN an alternative estimation method so as to enhance

the separation of the short run from the long run.

In the time series literature considerable attention has been attracted by the issue of determining

alternative estimation criteria that could guarantee efficiency in prediction and signal extraction

from a model that would otherwise be rejected from the standard model building methodology. In

the next subsection we explore the connections with multistep estimation.

The band spectral approach illustrated in this paper implements explicitly the idea of weight-

ing differently the contribution of each Fourier frequency to the likelihood of the model, thereby

enhancing the separability of the trend from the cycle.

We illustrate the role of BS estimation with respect to the problem of extracting the trend from

the logarithms of the Italian and the U.S. quarterly GDP, using the RWpN as an approximation
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to the true model of economic fluctuations. The first series is available from 1970.1 to 2005.1

(Source OECD Statistical Compendium), and the second from 1947.1 to 2005.2 (Source: Bureau

of Economic Analysis). The logarithms of the series are displayed in Figure8.

The maximiser of (2) is θ̃ = 0 in both cases (equivalentlỹσ2
ε = 0), implying that the trend is

coincident with the observations; the usual diagnostics highlight the presence of misspecification.

The empirical spectrum of∆yt, displayed in the right plots of figure9, only for the frequency

range[0, π] due to its symmetry aroundπ, is interpolated by a constant spectrum; the resulting

trend extraction filter uses only the current observation with unit weight.

If we ignore the high frequencies we get local likelihood estimates that move away from zero,

imply smoother trends. This fact is illustrated by figure9: the plots on the left hand side display

the estimatedθ values for cutoff frequencies in the rangeπ/12 (corresponding to a period of 6

years) andπ (which amounts to considering the standard likelihood (2)). Those on the right hand

side display, along with the empirical spectrum of∆yt, the parametric spectral density implied by

the RWpN, that has been fitted using the empirical spectrum up to the cutoff frequencyωc = π/6

(corresponding to a period of 3 years).

In the Italian GDP case, when.5 < ωc < 1, θ̃ moves away from zero. To get an idea of the

level of smoothing implied by the local likelihood estimate usingωc = π/6, one should refer to

figure8, which displays the smoothed estimates of the trend and the irregular corresponding to the

maximiser of (3) using the above cutoff. For the U.S. caseθ̃ is positive and high for low cutoffs,

and decreases to zero more gradually than in the Italian case.

7.1 Relationship with multistep estimation

The band spectral approach is closely related to multistep estimation (ME) of the RWpN, also

known as adaptive estimation, which is discussed by a rich literature starting from the seminal

paper of Cox (1961), among which Tiao and Xu (1993) and Haywood and Tunicliffe Wilson

(1997) stand out prominently.

According to ME the parameters are estimated by minimising the variance of thel-step-ahead

prediction error, withl > 1. The previous references show the merits of ME of the RWpN model

for the purpose of forecasting, when the true model is not coincident with the fitted one. The
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Figure 8:BS estimation of the RWpN model for the Italian and U.S. quarterly GDP (logarithms).

Trend and irregular estimates corresponding the estimatedθ values using the cutoff frequencyπ/6

(corresponding to a period of 3 years).
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Figure 9:BS estimation of the RWpN model for the Italian and U.S. quarterly GDP (logarithms).

Left hand side: estimatedθ values for cutoff frequencies in the rangeπ/12 andπ. Right hand

side: empirical spectrum of∆yt, and the parametric spectral fit usingωc = π/6.
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efficency stems from the fact that the estimation criterion selects the information that is relevant

for predicting the series for medium to long forecast horizons. Proietti (2005) illustrates the role

of ME for signal extraction.

Thel-step-ahead forecast errors can be written as follows:

νt(l) =
n(L)

1− θL
∆yt, n(L) = 1 + (1− θ)L + · · · (1− θ)Ll−1.

Adopting the Fourier transform and using the approximation in Haywood and Tunicliffe Wilson

(1997, p. 242) we can express the ME estimator ofθ as

min
θ





T−1∑

j=0

wj
2πI(ωj)
g(ωj)



 , wj =

∣∣n(e−ıωj )
∣∣2 .

Thus, the weights are provided by the squared gain of the filtern(L). Given the properties of

the latter, ME is equivalent to a weighted estimation criterion placing more weight on the low-

frequencies.

In multistep estimation the kernel is automatically provided by the forecast function of the

approximating model and depends on its parameters; thus, in the RWpN case it depends onθ. In

the BS, instead, the kernel is independent ofθ.

8 Conclusions

This paper has focused on band spectral estimation of the random walk plus noise model. This

estimation strategy proves effective in two situations: the first occurs when the high frequency

components in the spectrum have been distorted by prefiltering, aiming at enhancing the smooth-

ness of the series, temporal disaggregation, and seasonal adjustment.

Band spectral estimation can be an effective tool for eliciting a long-run trend from a time

series using a simplified model of economic fluctuations. As the illustrations have shown, it con-

ceptualises and operationalises the notion of constructing simple predictors and signal extraction

filters that enhance the separation of the long run features of a series, by giving more consideration

to how well the model fits the empirical spectrum at the low (long run) frequencies.

More generally, it is a useful device to diagnose whether a proposed parametric model is valid

across the entire frequency range.
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