UNIVERSITA DEGLI STUDI DI ROMA
"TOR VERGATA"

FACOLTA' DI INGEGNERIA

DOTTORATO DI RICERCA IN INFORMATICA ED
INGEGNERIA DELL'AUTOMAZIONE

XIX Ciclo

Resources Allocation for Virtualized Architectures

Paolo Campegiani

A.A. 2008/2009
Docente Guida: Prof. Salvatore Tucci

Coordinatore: Prof. Daniel Pierre Bovet

Resources Allocation for Virtualized

Architectures

Paolo Campegiani

April, 2009

Contents

‘1 Introduction 1

\LVirtualization techniques 4
2.1 A general definition of virtualization

2.2 Virtualization at the operating system level . . . 7

2.3 Virtualization techniques 10

2.3.1 Binary translation 11

2.3.2 Para-virtualization 11

2.3.3 Hardware assisted virtualization 12

‘2.3.4 Light weight VirtnalimtionJ 12

‘2.4 VMM implementations 13

241 QEMU . . . 13

242 VMWare 17

CONTENTS

24.3 Xe;

2.4.4 Hardware assisted virtualization

2.4.5 Lightweight virtualizationJ
‘2.4.6 Other VMMS‘

2.5 Hardware virtualization

2.5.1 Processor

2.5.2 Memory and DMA

2.5.3 Storageo
254 Network

‘2.6 Concluding remarks‘

‘3 Virtualization architectures

‘3.1 Reference architectur&

‘3.1.1 Modeling of multi-tier systems

3.2 Virtualization performances and measurement . .
3.3 Autonomic computing

‘3.3.1 Self-optimization

‘3.3.2 Proposed extension to the model

‘4 The mapping problemJ
‘4.1 Problem formalizationJ

4.1.1 Discussion of formalization

4.2 The mapping problem as a generalization of the

knapsack problem

ii

20
24
27
28
30
30
31
39
42
49

50
55
39
63
68
70
75

CONTENTS iii

4.3 Computational complexity of the mapping problem 90

4.4 Optimal solution of the mapping problemJ ... 92

4.5 Approximate solutions for the mapping problemJ 95

96

4.5.2 A genetic algorithm/ 100

‘5 Simulations results ‘ 113
5.1 TImplementation of the bin packing heuristics . . 114
5.2 Implementation of the genetic algorith; 120

5.3 Models dataset‘ 121

‘6 Conclusions 128

List of Figures

2.1 VMM architecture. 8
2.2 Xen architecture., 21
2.3 Memory virtualization datapath, 35
2.4 Xen architecture for shared network devices,. . . 45
2.5 CDNA architecture. 48
3.1 A virtualization architecture.‘ 54
3.2 A multi-tier distributed system. 56
3.3 The QoS Controller.‘ 71
4.1 A partial decision tree for a MMMKP problem.

In the double checkeJi leaf, set decisional variables

arexil =223 =1. 93

iv

LIST OF FIGURES v

4.2 An individual for a problem with 3 groups. Each

X marks a variableset to 1. 109
4.3 Fixing the first group with different individuals. . 110
4.4 Fixing the second group by generating two differ-

ent individuals. 111

4.5 Fixing the second and third group by generating
all possible feasible individuals. 112

5.1 Average fitness of population for the third model. 126

5.2 Average fitness of population for the fourth model. 127

List of Tables

3.1 Measurements for estimation of VMM overhead. 66

5.1 First model SLAs and Droﬁts.‘ 123
5.2 Second model SLAs and Droﬁts.‘ 123
5.3 Physical hosts characterizations for all models.‘ . 124
5.4 Comparisons of profits for the optimal solution

and the approximate solLtion for the first model,
for different valuesof C. 124

5.5 Second model: range of profit and approximate
solution profit, for different values of C. 124

5.6 Third model SLAs and profits. 125

5.7 Fourth model SLAs and profits. 125

vi

LIST OF TABLES vii

5.8 Initial and final fitness of best individual for third
and fourth model, as seen by the genetic algorithm.125

Acknowledgments

I’d like to thank many people that helped me all along the pur-
suing of my Ph. D.

Professor Salvatore Tucci was my tutor during these years,
and allowed me to freely explore my interests. He says that
the best way to do research is by finding a topic of interest and
developing it, and if I could say the best way to understand this
vision is to apply it on everyday’s work.

Professor Franco Maceri allowed to run the simulations in the
scientific lab of Dipartimento di Ingegneria Civile, that it hap-
pens I also manage as system administrator hoping not causing
too much long downtimes. Facing high computational problems
from the system’s point of view has developed in me some sen-

sibility to performances problem that shines through this work

viii

(or, at least, I hope so).

Professor Aurelio Simone, as the director of Scuola IaD, put
me in charge of designing and administration of their network
infrastructure, an exciting challenge that he generously allows
me to do without interrupting my Ph. D. due work.

Professor Francesco Lo Presti is the one who more encour-
ages me and follow my progress (or lack thereof), really helping
me in finalizing this work.

I’d also like to thank people and staff of Dipartimento di
Ingegneria Civile and from Scuola IaD for their kindness, and
especially Eusebio Giandomenico and Marco Orazi for their sug-

gestions and support.

Introduction

As many other technologies and paradigms in the computer sci-
ence field, virtualization has a long history with periods with
great momentum and periods when it has been put in then back-
ground. The advent of massive and economic computer power,
as predicted by Moore’s Law, has finally resulted in the avail-
ability of system level virtualization technologies on commodity
hardware. This will lead to a complete new class of problems,
from provisioning to deployment, that arise when virtualization
is intended as an architectural asset that could bring value to

the computing platform, an asset upon which build value added

1. INTRODUCTION 2

services.

In this dissertation, I investigate a problem that could be ex-
pressed as: given a number of virtual machines and some phys-
ical machines, each described respectively by a demand vector
and a resource vector, which is the best allocation of the former
to the latter, for a given metric?

For a large data center, an example of metric would be to
minimize the number of physical machines devoted to host vir-
tual machines, giving sufficient resources to each virtual ma-
chine. By minimizing this number, the data center could in-
crease the efficiency of the physical machines, and the underly-
ing virtualization technology will prevent each virtual machine
to interfere with others, from both a performance and a security
prospective.

It will shown that this problem, stated in the most gener-
ally form, is NP-hard (it’s a generalization of the classical 0/1
knapsack problem), and its complexity is daunting, requiring to
define an heuristic to find an approximate solution. We will also
present a genetic algorithm that appears promising in tackling
this problem.

The dissertation is organized as follows.

In Chapter 2, the different virtualization techniques are pre-

sented, analyzing them from an architectural point of view,

1. INTRODUCTION 3

broadly classifying them in two categories: techniques that does
not rely on hardware feature to support virtualization, and tech-
niques that leverage on.

In Chapter 3, we move from a technology point of view to-
wards an architecture centric one, analyzing the performances
problems that virtualization faces. We put virtualization as an
asset of multi-tier distributed systems, and we describe it as a
fundamental block for autonomic computing. Current works in
this field lack of some degree of generality, and when we extend
the current available frameworks.

In Chapter 4, the mapping problem is formally defined, we
analyze its computational complexity, and develop some heuris-
tics |44] to solve it, comparing them to a genetic algorithm [45]
we also propose. In this chapter, we see that the mapping prob-
lem is a generalization of the knapsack problem, and we briefly
analyze the scarce literature on generalization of knapsack prob-
lems.

In Chapter 5, we show simulation results for some interesting
data sets.

Chapter 6 ends this dissertation, briefly recalling the results

we have found and proposing future enhancements.

Virtualization

techniques

2.1 A general definition of virtualiza-
tion

Virtualization could be defined as a two phase process. In the
first phase, some resources of the same kind will be grouped to-
gether, hiding physical boundaries; in the second phase, a por-
tion is carved out from this aggregated compound and presented

2. VIRTUALIZATION TECHNIQUES 5}

to an user. There are many types of virtualization, depending

on the type of the aggregated resource:

e Virtual LAN (VLAN): a VLAN [23] is a set of hosts that
communicate as if they were on the same wire, unregard-
ing their physical location. Even when the hosts are on
different physical segment of the same LAN, the configu-
ration made on network devices like switches and routers
allows the hosts to share the same virtual segment, so
broadcast packets are forwarded only on the VLAN. This
will increase security, by avoiding unauthorized hosts to
connect to the virtual segment, and allows for the defini-

tion of per-segment Quality of Service policies;

e Storage Virtualization: a bunch of storage resources (disks
or tapes) are grouped together, and the access to them is
selectively defined by a management function. In a Net-
work Attached Storage (NAS) environment, and more in
a Storage Area Network (NAS) [55], it is possible do carve
out some resources and allow one or more hosts to access
them. As a result, the hosts are computing nodes that are
attached to the data. This allows for better and cheaper
data consolidation, backup and security;

e Runtime environments: this is the case of many web based

2. VIRTUALIZATION TECHNIQUES 6

applications, running on Java or Flash. As an example,
when the user downloads a Java applet via the browser,
the applet is executed in the context of a Java Runtime
Environment (JRE) [74]. The JRE virtualizes the com-
puting resources to the applet in the sense that the applet
is written in a so called bytecode, a machine language that
the JRE translates into real operations for the underlying
target processor. As a result, the same applet could be ex-
ecuted over different processor architectures, as long as a
JRE is provided. Besides this, the JRE defines a sandbox
that has some security constraints, like an applet cannot

access system files on the target machine.

All these examples, no way exhaustive, shows some of the ben-
efits of virtualization. By adding an intermediate layer between
physical resource and resource demand, it’s possible to multi-
plex, demultipex and routing requests to a single management
point, achieving better scalability, manageability, performances

and security.

2. VIRTUALIZATION TECHNIQUES 7

2.2 Virtualization at the operating sys-

tem level

Virtualization at the operating system level has been imple-
mented for the first time on the IBM S/360 system [8]. In an
fundamental article on virtualization, Popek and Goldberg [86]
defined the formal requirements for a virtualization architecture.
We will base our exploration and taxonomy of virtualization
techniques on that paper, so it’s worthy to recap it.

First, it’s defined the concept of Virtual Machine Monitor
(VMM) as a layer that separate the Virtual Machine (VM) - that
is, the operating system to be executed - from the underlying
hardware, as shown in figure [2.11

Some of the instructions of the VM could trap, that in the
original article is defined by saving the program counter to a
specified location and then jumping to the address contained in
another location, where a trap routine is to be executed, with the
machine registers saved. The trap routine will do its own job,
then it restores the registers and return control to the address
saved in the first place. It’s possibile to define not blocking trap
routines. This mechanism is the precursor of today’s system
calls, where a program request the operating system to perform

an operation on hardware resources.

2. VIRTUALIZATION TECHNIQUES 8

Virtual Virtual | - Virtual
machine 1 machine2 | ----- machine N
VMM
Hardware

Figure 2.1: VMM architecture.

Trap are instrumental to classify instruction in three differ-

ent groups:

e privileged instructions: are the instructions that causes a

trap;

e sensitive instructions: they came in two different types,
control sensitive instructions and behavior sensitive in-
structions. To define them in terms of current architec-
tures, we define these instructions as the ones which changes
the processor mode (or returns it) or which execution de-

pends on the real memory address of their operands;

e innocuous instructions: all the remaining.

2. VIRTUALIZATION TECHNIQUES 9

The VMM should have some properties to allow for the execu-

tion of a VM on top of it:

e Efficiency: Every instruction that is innocuous is executed
directly by the underlying hardware, with no intervention
of the VMM;

e Resource control: The VM cannot change its resources
quota: every request for more resource is mediated by the
VMM,

e Equivalence: Every program executed in the context of a
VM performs in an almost indistinguishable manner, as if
it were executed without a VMM interposing between the
VM and the hardware. In this context, almost indistin-
guishable means that it’s allowed a certain degree of devi-
ation, as performances may be a bit worse and resources
availability could be not identical (because the VM cannot
access directly the hardware).

The work of Papek and Goldberg is fundamental as they proof
the following theorem:

For any [conventional third generation| computer, a virtual

machine monitor could be constructed if the set of sensitive in-

2. VIRTUALIZATION TECHNIQUES 10

structions is a subset of the privileged instruction.

The theorem still holds for current architecture, and we use
it as a criteria to discriminate between virtualizable processor
architecture (or so called virtualization friendly) and the not
virtualizable ones: a processor architecture is virtualizable if
and only if the execution of every sensitive instruction eventually
result in a trap, as the trap routine could be implemented by
the VMM.

It will be shown later that, surprisingly, the Intel x86 archi-

tecture is not virtualization friendly.

2.3 Virtualization techniques

In spite of the unifying definition stated above, there are some
different ways to virtualize an operating system. Broadly speak-
ing, there is a trade off between the resulting performances and
the spectrum of processors architectures that could be virtual-
ized: to achieve speed it’s usually necessary to focus on a specific
instruction set and presenting the virtual machine a more gen-
eralized and less customizable abstraction of physical hardware,
whilst the flexibility of having more instruction sets or virtu-

alized resources usually incurs in performances penalties. We

2. VIRTUALIZATION TECHNIQUES 11

identify four different virtualization techniques.

2.3.1 Binary translation

In this approach, a software layer translates operations from
the virtual machine set to the physical machine set, allowing for
code optimization and translation cache efficiency. The virtual-
ization layer could do a so called cross virtualization, where the
virtual machine instruction set and physical machine instruction
set are completely different - requiring to completely translate
the former into the latter - or a partial virtualization, where
innocuous instruction are executed directly by the hardware (in
a context set up by the VMM) and critical ones are translated

by the VMM that operates as a resources’ broker.

2.3.2 Para-virtualization

The operating system of the virtual machine is modified in such
a way that every system call that should have accessed the hard-
ware is instead mapped in an system call executed by and in the
context of the VMM. The modification of the to be virtualized
operating system could be unfeasible when it’s released only in

closed source format.

2. VIRTUALIZATION TECHNIQUES 12

2.3.3 Hardware assisted virtualization

The instruction set has been augmented with operations that
encompasses portion of machine code. This sections are exe-
cuted in a virtual machine context, which is different from the
physical machine context. The VMM has some degree of control
over the operations made by a specific virtual machine, ranging
from a no trust relationship (every I/O operation performed by
the virtual machine is trapped and results in the execution of the
VMM that operates as a control interface) to a total trust rela-
tionship, where the virtual machine could directly access every
hardware in the system. The latter results in increased speed

and diminished security.

2.3.4 Light weight virtualization

The operating system of the physical machine is changed to
allow different and not-communicating namespaces for the dif-
ferent resource classes. As a result, there are some zones (to
use a typical terminology) and each one has its own file sys-
tem, users, processes namespace and hardware view. It could
be argued that this approach is not a virtualization, mainly be-
cause it lacks generality (all the running instances are sharing

the same operating system), but it’s widely adopted to solve

2. VIRTUALIZATION TECHNIQUES 13

some problems that otherwise require a traditional virtualiza-
tion technique, while experiencing nearly no performance penal-

ties.

2.4 VMM implementations

A number of competing products, both open and closed source,
are available as VMM. In this section we see the most represen-

tative of them, focusing on the adopted virtualization technique.

2.4.1 QEMU

QEMU [16], written by Fabrice Bellard, is an open source ma-
chine emulator and virtualizer. It could operate as a virtualizer,
when the virtual machine instruction set and physical machine
instruction set are the same, or as an emulator, capable of trans-
lating instruction set from seven different processor architecture
to some target architecture, plus virtualizing system hardware
to allow for a complete operating system virtualization.
QEMU is a dynamic translator, i.e. the code translated is
stored in a translation cache where it could be reused to increase
efficiency. The translation process of QEMU is fully documented
in |38], and it will be briefly shown here as it highlights the

2. VIRTUALIZATION TECHNIQUES 14

general approach for binary translation.
Consider the following PowerPC instruction:
addi rl,r1,-16 #rl =rl —16

that must be translated into Intel x86 code. First, there will
be generated some micro operations, that are independent of

the final target:

movl TO rl # TO = r1
addl_TO_im —-16 # TO = TO — 16
movl r1 TO # r1l = T0

the TO and T1 register are typically stored in host register
due the optimization made by the GCC compiler. The first of
the micro operation is typically coded as:

void op_molv_TO0_rl(void) {
To = env—>regs[1];

where env is the structure containing the CPU state of the
virtual machine.

The code generated is then translated in physical machine
code by the GCC compiler, and the result will be (for an Intel
x86 target):

movl TO rl

2. VIRTUALIZATION TECHNIQUES 15

ebx = env—>regs|[1]
mov 0x4(%ebp), %ebx

addl _TO im -16
ebx = ebx — 16
add $OXIffffffo ,%ebx

movl rl TO
env—>regs|[l]= ebx
mov %ebx, 0x4(%ebp)

QEMU is a dynamic translator as it uses a 16 MByte cache
that holds the most recently used translation blocks (TB). After
the execution of every TB, the next instruction to be executed
will be determined by examining the state of the emulated CPU;
if the jump point is in the cache, the code is executed directly,
otherwise the translation process takes place. A TB could be
patched directly to the logical following one when the jump des-
tination is known.

More complex problem arises with self-modifying code, as
the applications written for the Intel x86 architecture does not
signal cache invalidation that could trigger the removing of a
stale TB.

With a dynamic code translator is possible to execute an ap-

2. VIRTUALIZATION TECHNIQUES 16

plication written for a different processor architecture, but an
entire operating system requires the virtualization of the hard-
ware. QEMU allows for a limited set of virtualized hardware.
It’s possible to have up to two EIDE hard disks, a basic video
VGA card, one or more Fast Ethernet NIC; while it’s also pos-
sible to connect directly the USB subsystem of the virtual ma-
chine to the physical USB subsystem.

The virtualized hard disks are mapped as file on the physi-
cal machine. This will result in a significant performance loss,
as every I/O request made from the virtualized machine will
traverse the virtualized operating system stack, resulting in a
sequence of I/O operations intertwined with virtualized OS op-
erations, and each I/O operation will ultimately result in a I/O
operation made on the image file on the physical system, requir-
ing for being made traversing again the stack of an operating
system, in this case the physical one. The final result is that the
data path is doubled. QEMU has some flexibility in the image
file format, it’s possibile to have a copy-on-write format file, but
this architecture won’t help for performances.

The network card emulation has some interesting features.
Each virtual machine could have one or more NICs, and these
NICs could be logically organized in several ways. It’s pos-

sible to have two virtual machines on the same private LAN,

2. VIRTUALIZATION TECHNIQUES 17

completely hidden from the rest of the world, bridged on the
physical LAN or even on a UDP multicast network that could
span several physical machines.

2.4.2 VMWare

VMWare |24] is the market leader in the virtualization field,
thanks to its performances and management tools. Products
from VMWare range from VMWare Player, that is only capable
of run a virtual machine, to the VMWare Infrastructure suite,
that has the ability to manage resources allocation, performing
live backup of running virtual machines, moving them from a
physical machine to another with very little service interruption.

VMWare reacted to the introduction of the open source Xen
hypervisor (discussed below) by releasing its VMWare server
free but closed source, to gain and maintain market share at
the expenses of the newcomer. Unfortunately, the license of
VMWare server dictates that benchmark are possible only when
the methodology has been approved by VMWare Inc., and as a
result of this there are very few scientific papers on the internals
of this VMM.

One of these is [30], where the focus is in contrasting that
hardware assisted virtualization (hardware VMM in the article)

2. VIRTUALIZATION TECHNIQUES 18

has overall better performance.

To achieve maximum speed, it’s imperative that, as stated in
[86], most part of the code is executed directly by the underlying
physical processor, but this is impossible with the Intel x86 pro-
cessor architecture, as there are instructions that are sensitive
but not trappable. As an example, the Current Privilege Level
(CPL) could be obtained by reading the low two bits of the
code segment selector register (%cs), and the popf instruction
(“pop flags”) executed by a privileged process could modify the
IF flags that governs the interrupt delivery, an operation that an
unprivileged guest cannot do [92]. As a result, it’s necessary to
have a binary translator that, for such virtualization unfriendly
operations, simulates their execution in a virtual context. The
translator adopted by VMWare is:

e Binary: its input is Intel x86 code;

e Dynamic and on demand: translation happens at runtime,

and only when code is about to be executed;

e System level: the are no assumption about the guest code,
the ABI is the x86 Industry Standard Architecture (ISA);

e Subsetting: the input is the full set of Intel x86 operations,
the output is a subset of them (typically only user-mode

2. VIRTUALIZATION TECHNIQUES 19

instructions);

e Adaptive: translated code is adjusted in response to guest

behavior change to improve efficiency.

The last property is worthy noting. When a CPU encounters
a trap for a privileged instruction, it has to jump to a trap
routine (typically an operating system entry point) to deal with
it, and this could be expensive. A binary translator could avoid
it, by replacing the original code with a routine (that, being
executed by a program, is in user mode and not in kernel mode).
As an example, the rdtsc instruction for the Intel Pentium
architecture, takes 2030 cycles for a classical trap and emulate
execution, and only 216 for the binary translation. This could
deal with a minor part of the sensitive instructions, as loads and
stores could access sensitive data as page tables. The adopted
approach is that an instruction is translated identically (i.e., not
translated) and executed by the physical processor. If a trap
happens, next time the same instruction will be re-translated to
avoid the trap, maybe invoking an interpreter.

VMWare has put a lot of effort in the management and con-
figuration tools, both for a single system and for an entire data
center. Although the only virtualized operating system are the

ones for the Intel x86 architecture, for each virtual machine is

2. VIRTUALIZATION TECHNIQUES 20

possible to define an arbitrary number of virtualized peripher-
als, including storage systems, network cards, video cards and
USB devices. Hard disks can be mapped into a file image, a
disk partition or an iSCSI target [13| to achieve maximum per-
formances. The network could be configurated to have a virtual
machine that has an host-only network (i.e., it communicates
only with the physical machine it’s instantiated on), a NAT
network (where the physical machine acts as a Network Ad-
dress Translator), or to have a unique, externally accessible IP
address.

The real value of the VM Ware suites comes with the VM Ware
Infrastructure, that allows for a central administration of hun-
dreds of virtual machines, over dozens of different physical ma-
chines, allowing for load balancing, high availability and live
migration (moving a virtual machine from one physical node to

another [82]) with little service disruption.

2.4.3 Xen

Xen [25] was originally developed at the University of Cam-
bridge Computer Lab [26] as a framework to have an homo-
geneous computing environment over a high performance com-

puting grid. Performances were so good that a company was

2. VIRTUALIZATION TECHNIQUES 21

Control
User Software User Software

Software

Dom0 OS Guest OS Guest OS
Xen-aware

device drivers Xen-aware device drivers Xen-aware device drivers

i Virtual Block

Domain 0 Virtual Virtual
control Physical Virtual
. CPU Network .
interface Memory Device

Hardware

Figure 2.2: Xen architecture.

founded to gain paying customers for management tools (the hy-
pervisor itself is released under the GNU Public License); later
the company has been acquired by Citrix.

In the Xen language, both physical and virtual operating
systems are called domains, with domO indicating the hyper-
visor and domU for the unprivileged domains, i.e. the virtual
machines. The figure[2.2 shows the Xen architecture [36].

Xen adopts the para-virtualization approach, borrowed from
the Denali system |102]: the application ABI remains unchanged,
but the virtualized operating system has some modifications (in
the order of thousands of lines of code), with the introduction

2. VIRTUALIZATION TECHNIQUES 22

of hypercalls.

An hypercall is essentially a way to control interactions be-
tween a virtual machine operating system and the physical ma-
chine operating system. The hypercall interface allows domains
to perform a synchronous software trap to perform a privileged
operation, analogous to the system calls found in the operating
system. Data transfers are managed via I/O rings, essentially a
producer-consumer buffer of I/0 file descriptors, with a general
interface that could be used for almost every kind of I/O device
interaction.

CPU scheduling between different domains is made with
three different schedulers as Xen 3.0: the Borrowed Virtual Time
(BVT) scheduling algorithm [59], that is work-conserving and
capable of a low latency wake up when a domain receives an
event; the Simple Earliest Deadline First (sEDF) that could
be both work-conserving and not work-conserving, but lacks a
global load balancing between different CPUs; the Credit Sched-
uler that is also global load balancing although not preemptive,
and has a scheduling period hard-coded at 30 ms [47].

Network interfaces are quite complex [28]: the foundation of
the architecture is a Virtual Firewall Router (VFR), with each
domain using one or more Virtual Network Interfaces (VIF).

The end result is that each domain sees one or more typical

2. VIRTUALIZATION TECHNIQUES 23

NIC, but the administration of the VFR could be challenging.

Storage systems for the domU are modeled as Virtual Block
Devices (VBD): the dom0 could map them into files, partitions
or LUNs. It’s also possible to black list a PCI device for the
dom0, leaving it in the exclusive access of one or more domU.

Xen has the ability to perform a live migration, with very
little QoS loss [49]. On |97] it’s exposed an architecture that
allows for migration over a MAN/WAN;, at the expense of hav-
ing a dedicated communication circuit. On [43] it’s shown an
extension that also allows for migration of the local file system
(hypervisors assume that the local file system could also be ac-
cessed from the destination physical machine, requiring a NAS
or SAN infrastructure).

Checkpointing, as the ability to save and restore often from
a saved image that contains also the persistent state, is under
development, allowing for a global checkpointing of an entire
cluster of virtualized machines [54].

Xen performances are of the utmost interest, as the paravir-
tualization has a very low impact, at the cost of requiring to
change both the dom0O and the domU operating system. This
is infeasible for operating systems released only in binary form
(like Microsoft’s Windows line of products), but Xen also sup-

ports the hardware assisted virtualization described below.

2. VIRTUALIZATION TECHNIQUES 24

Xen has found its way in the mainline Linux kernel, after
some time where its integration with the operating system was
the premiere feature of enterprise oriented Linux distribution as
Red Hat RHEL and Novell SuSE server.

2.4.4 Hardware assisted virtualization

The Intel x86 architecture is not a virtualization-friendly one.
As a result, until some years ago the only available hypervisors
are binary translator (as VMWare) or para-virtualizer (as Xen).
In 2006, Intel has announced the VT-x architecture for hardware
assisted virtualization for the x86 processor family, and the VT-i
for the Itanium family [12].

With the VT-x extension, there are available two new CPU
operations, the VMX root operation and the VMX non-root
operation.

The VMX root operation is intended for a VMM, and it’s
very similar to a traditional TA-32 operation. VMX non-root is
intended to support and isolate the execution of a virtual ma-
chine, allowing the VMM to define a degree of trust for the vir-
tual machine, granting some direct interactions with the hard-
ware.

A VM entry is the transition from the VMX root operation

2. VIRTUALIZATION TECHNIQUES 25

to the VMX non-root operation, the opposite transition is a
VMX exit. The Virtual Machine Control Structure (VMCS)
manages these transitions, being composed of a guest state area
and an host state area. Processor state is loaded from the guest-
state area on every VM entry, while it’s restored from the host-
state area on every VM exit. Exits happen always for some
instructions, for others it depends on some variables and flags
in the VMCS, that could be set only in the VMX root operation
mode. As an example, the VMCS could define how to deliver
interrupts (every interrupt results in a VM exit with no mask, or
the guest is able to receive interrupts), choose to allow the guest
to directly access some special register (that defines paging or
floating point operation mode), which exceptions cause a VM
exit, which I/O operations are allowed (by defining acceptable
I/0 port range).

This flexibility allows for a finer grain of control, because
a VMM could choose to give a specific virtual machine more
privileges, resulting in fewer VM exits and entries. As noted
in [30], each entry or exit is analogous to a context switch, re-
sulting in some performance losses. The exact penalty varies
a lot, because it depends on the number of privileged instruc-
tions (in [30], one test is based on the virtualization of a code

that creates forty thousand processes, a very uncommon appli-

2. VIRTUALIZATION TECHNIQUES 26

cation behavior). Nevertheless, the performance problem must
be addressed.

As a result of the growing concerns, the second generation of
virtualization capable processor has some new features. AMD,
that developed a similar architecture called Pacifica, presented
the Barcelona processor, that has a third level cache and a vir-
tualized address translation, instead of a shadow paging, that
should substantially reduce the memory performance loss. In-
tel has instead developed the Virtualization Technology for Di-
rected I-O [10], that allows for a direct remapping of DMA trans-
fers and device generated interrupts.

It must be noted that an hardware assisted virtualization is
the only way to virtualize an operating system that’s available
only in closed source form (like Microsoft Windows series), but
to get the best performance it could be required to use specific
drivers in the guest kernel. The so called para-virtualized (PV)
drivers are drivers engineered to work optimally in a guest envi-
ronment, where there’s no need to access directly the hardware
(and, in fact, trying to do that will usually causes a VM exit)
[29].

2. VIRTUALIZATION TECHNIQUES 27

2.4.5 Lightweight virtualization

The VMM seen so far allows for multiple and different operating
systems hosted on the same physical machines, giving a high
degree of flexibility. In some scenarios, there is no need for
using different operating systems (or even different version of
the same), it’s sufficient to have multiple views of the same
system. This approach is the generalization of the jail or chroot
security feature found on Unix system: a process is restricted
to interact with a subset of the system files, so a compromission
of it wouldn’t allow the attacker to manipulate others program
files and resources. From the system point of view, the files
namespace has been split, as two different processes may refer
to different files even when they use the same (local) name. If
this splitting is extended to all the system’s resources, we have
a lightweight (or container based) virtualization [96].

Example of this are the OpenVZ extension to Linux kernel
[18], the Linux-VServer project [15] and the Solaris 10 operating
system |20].

OpenV7Z calls each autonomous namespace as a virtual en-
vironment (VE), called zones in Solaris. With container based
virtualization there’s only one operating system running on the

hardware, and each container can use a specific amount of sys-

2. VIRTUALIZATION TECHNIQUES 28

tem resources. OpenVZ defines this resources limits as bean
counters, and they are in place for each possible resource type.
In fact, resources management within containers is far more sim-
ple, as there’s only one operating system that must be enhanced
to govern that, making also possible to change these limits even
at run-time. Overhead is also negligible [95], allowing for in-
stantiating even hundreds of containers in the same physical
machine, making this solutions particularly appealing for Inter-
net Service Providers where each hosted site could coincide with

a virtual container.

2.4.6 Other VMMs

There are many VMM solutions today, from research prototypes
to production ready infrastructures. We cite here some of them

presenting interesting features:

Terra: Terra [62] is a VMM that allows for Trusted Comput-
ing. A virtual machine could be instantiated as an open-
box, allowing for data access and modification from the
administrator of the physical machine, or as a closed box,
where these operations are prohibited. Also, the Terra
hypervisor automatically analyzes the images of a closed

box virtual machines to get sure they have not been tam-

2. VIRTUALIZATION TECHNIQUES 29

pered. This experimental approach allows for high sensi-
tive secure virtual machines (e.g. voting machine) to be

allocated over commodity hardware;

P.R.O.S.E.: the Partitioned Reliable Operating Systems [63],
based on the Logical Partitioning (LPAR). The hyper-
visor, rHype, is a para-virtualization engine that uses a
round robin fixed slot CPU scheduler. This simple sched-
uler reduces the OS interference [64], which happens when
there’s some jitter in the execution sequence of different
virtual machine, a plague that is more evident on general
purpose VMM like Xen or VMWare as the VMM are a
component of a general purpose operating system. This
lacks of strict timing coordination could easily destroy ag-
gregated performances in a High Performance Computing

scenario;

Virtual Box: it’s a GPL released binary translator made by

Innotek and now developed by Sun;

KVM: it’s a Linux kernel module that offers hardware assisted
virtualization. Due to its integration with the kernel and
its limited complexity, it will be the de facto standard for

virtualization with Linux in the next following years;

2. VIRTUALIZATION TECHNIQUES 30

Lguest: it’s a para-virtualizer for the Linux Kernel, made in
less than 5000 lines of code [14];

Hyper-V: it’s the virtualization technology made by Microsoft
and made available for Windows Server 2008 and Windows

Vista. It leverages on hardware support for virtualization.

2.5 Hardware virtualization

In this section, we discuss in details how a computer component
could be virtualized, i.e. how it could be abstracted and pre-
sented to one or more virtual machines, preventing each one of

them to access or interferes with others’ data.

2.5.1 Processor

Processor virtualization is usually a simple topic. For the Popek
and Goldberg principle stated above, the most portion of in-
structions are executed directly by the processor itself, for ac-
curacy and performances. Only sensitive instructions require
to be intercepted and somehow managed by the VMM. When
this happens, there’s a process analogous to a context switch:
processor’s current registers are saved, the handling routine is

executed, and then saved registers are restored.

2. VIRTUALIZATION TECHNIQUES 31

It’s also required some level of protection for critical struc-
tures stored in memory, and this is usually done by leveraging
on processors’ access control mechanisms. In the Intel x86 ar-
chitecture, each process could run in one of four privilege level,
the less privileged numbered 3 and the most privileged num-
bered 0. In a no virtualized scenario, operating system runs at
0 level, and applications run at 3, leaving levels 1 and 2 unused.
With a hypervisors like Xen or VMWare, the hypervisor and
its operating system still running at level 0, meaning full access
to memory and devices, and the virtualized machines run in an
intermediate level. This is the main reason why it is difficult to

virtualize an hypervisor.

2.5.2 Memory and DMA

In a modern architecture, each process has associated its own
unique address space, and instructions and data are stored in a
virtual address space. The virtual address space is implemented
by the Memory Management Unit (MMU) that gets the virtual
address and returns the physical address. This conversion is
per process, meaning that two different processes will usually
have the same virtual address mapped into two different phys-
ical addresses (although it’s possible for two processes to share

2. VIRTUALIZATION TECHNIQUES 32

memory; also, two threads of the same process will usually share
memory).

This translation is made up by organizing the memory space
of a process in a hierarchical structure, the page directory, the
root of which is a part of the process context (on x86 architec-
ture is a CPU register). A virtual address is composed of two
parts, the directory part and the offset. The directory part will
be combined with the page directory to determine the physical
page, which is added to the offset to get the physical address
[58].

This operation, called page tree walking, will require travers-
ing the multi-level tree page table. Each Page Table Entry
(PTE) has the same size of a page table, which is 4 KiB or
4 MiB on Intel x86 architecture (other architectures could have
different page size coexisting in the system): as there are many
of them, the PTEs are stored in memory. So, every time the
directory part of the virtual address changes, it could be re-
quired to access some PTEs in memory, resulting in very poor
performances. To avoid this, a MMU is equipped with a Trans-
lation Look-Aside Buffer (TLB), which is a specialized cache for
virtual memory conversion lookups.

The problem associated with the TLB is that, as a cache,

must from time to time to be invalidated. When a context

2. VIRTUALIZATION TECHNIQUES 33

switch occurs, or when there is a transition between the kernel
mode and the user mode (to adopt the Intel x86 nomenclature),
the TLB will refer to a page table that is no longer the current
page table, so it must be invalidated. As a result, the incoming
memory accesses will require a page tree walking, until the TLB
gets refilled.

A typical pattern on a modern system is when a process
(running on user mode) requires an operation to the operating
system by issuing a system call: the processor switches to kernel
mode, the operating system will hopefully honor the requests,
then the processor goes back to user mode and the process exe-
cution resumes. This flow has two transitions in it (the first from
user mode to kernel mode, and the second from kernel mode to
user mode), which in a naive TLB implementation would require
two TLB invalidations. This is usually a waste of resources, be-
cause a better approach would be to selectively invalidate some
of the TLB lines. If the kernel computation is small (as usually
it is), the number of the referenced memory addresses is also
small, so only some of the TLB lines must be invalidated.

This optimization requires that each TLB line is tagged, as-
sociating to it the page table which it refers to. Tagging is also
useful for process switching (when processes are switched often)

and when there’s a thread switching, as in such a case no TLB

2. VIRTUALIZATION TECHNIQUES 34

invalidation is needed.

Figure[2.3] (adapted from [57]) shows the general scheme for
memory virtualization, stressing that the datapath required for
converting a virtual memory address of a virtual machine to
a physical address is almost doubled with respect to the no
virtualized scenario: first, a virtual machine virtual memory
address is translated into the physical machine guest address,
and then the latter is translated into a physical machine real

address.

Software memory virtualization

The VMWare hypervisor assumes that the hardware has not
been enhanced for virtualization (although, when this is the
case, it uses some of the available hardware features), so it works
by deriving shadow structures from guest level primary struc-
ture.

Some of these structure could be mapped into the state of a
virtual machine (i.e. processor state), some others as the page
table directory will necessarily reside in memory. These struc-
tures are also privileged, so the VMM must protect them from
unauthorized access, with the complication that modifications
of these will usually not generate traps, and they could even be
modified by an I/O operation, when the I/O device is memory

2. VIRTUALIZATION TECHNIQUES

Virtual | | | |
Memory
Address

‘Virtual Machine OS

_—

Virtual

Memory
Address

Host | | | |

Page

Offset

Page directories / Page
Address

/—\’
|

VMM

Physical
Address

Figure 2.3: Memory virtualization datapath.

2. VIRTUALIZATION TECHNIQUES 36

mapped.

VMWare use the hardware protection mechanism to pro-
tect and trace modification to the shadow structures [30]. If
the PTEs are protected, every accesses to them will be trapped
(the virtual machines are running de-privileged) and the con-
trol is transferred to the VMM. The VMM decodes the fault-
ing instruction, emulates its effect on the primary structure,
and then propagates the modification on the shadow structure.
VMM must distinguish between true page faults, caused by the
violation of the policy encoded by the guest PTEs (this hap-
pens when a virtualized process tries to access another virtual-
ized process’s memory space) and hidden page faults, caused by
misses in the page table. True page faults are forwarded to the
guest (that could faults and kills the offending process) whilst
hidden page faults causes the VMM to construct an appropriate
shadow PTE, and then resuming guest execution. The traces
are used to keep in sync the shadow PTEs and the primary
PTEs.

Hardware memory virtualization

In the para-virtualized approach, the virtual machine operating
system is slightly modified, to made cooperation between it and
the hypervisor simpler and more efficient. In the Xen hypervi-

2. VIRTUALIZATION TECHNIQUES 37

sor, the privileged dom0 and the less privileged domU domains
don’t have unrestricted access to physical memory. The VMM
creates its own page table for each domain, and the virtual ma-
chines construct their page table in a way that is similar for the
para-virtualized and hardware virtualized case. Every time the
virtual machine operating system modifies its page table, the
VMM is invoked, and it will update its shadow page table.

This approach is quite expensive, for the TLB invalidation
to take place and the creation and maintenance of a shadow
page table structure.

Intel has defined the Extended Page Tables (EPTs) [9], and
AMD the Nested Page Table (NPTs) for the Barcelona proces-
sor [100} 3]: both allow the virtual machine operating system
to produce host virtual addresses from guest virtual addresses.
The host virtual address is then translated into physical host
address by using a per-virtual machine page tree, with a very
little performance penalty, as this second step is done at pro-
cessor speed without external memory accesses. At the time
of this writing, these extension are not generally available, but
benchmarks appear promising [68, 5, 35].

Also, the result of this complex address translation is stored
into a TLB line. AMD has proposed a 1-bit tag extension with

the Pacifica virtualization extension, called the Address Space

2. VIRTUALIZATION TECHNIQUES 38

ID (ASID) [42]. This one bit tag could distinguish between
VMM’s address space and guests’ address space, allowing the
operating system to avoid flushing the entire TLB every time
the VMM is entered or exited. Intel has Virtual Processor IDs
(VPIDs) for the same purpose.

Even with hardware support, the entire memory addresses
conversion process is quite complex, as it requires that two dif-
ferent memory schedulers (one for the virtual machine and one
used by the VMM) must cooperate. As the memory scheduler
is the most complex and tuned component of the operating sys-
tem, this effort is daunting, and is for such reasons that the
Linux KVM VMM [17] is gaining in popularity: There’s only
one scheduler, enhanced with virtualization oriented features
that also leverage massively on hardware features, resulting in
one single implementation to be maintained (if the running vir-

tual machine is Linux) instead of two.

DMA Memory pinning

DMA capable devices usually side-step the CPU while transfer-
ring large amounts of data. To keep device’s implementation
simple, usually they don’t have any idea about virtual memory,
not to mention virtual machines. This will require that, dur-

ing an I/O operation, the used memory region must be fixed

2. VIRTUALIZATION TECHNIQUES 39

(pinned). This approach should be extended when an I/O oper-
ation is issued by a virtual machine, and the common approach
is by the use of a locking mechanism. The VMM should manage
locks to avoid conflicts and deadlocks between virtual machines.

To help virtualization of DMA function, Intel has developed
the Intel Virtualization Directed I/O [10] and AMD has intro-
duced the IOMMU unit [4].

2.5.3 Storage

In contrast to other peripherals, the virtualization of the storage
is much more simpler. We stress out that in this paragraph
with “storage virtualization” we define the reservation of specific
portion of a system storage space (made up of local and remote
disks, tapes and whatever) for the exclusive use of one or more
virtual machine. The most common case is when a portion
of storage space is reserved for use by a single virtual machine,
analogously to the no virtualized scenario, although it’s possibile
that two or more virtual machines share a data storage area (as
an example, a quorum disk).

All VMMs have some degree of flexibility in choosing how
to carve out the area to be assigned to a virtual machine. It
could be an image file, i.e. a single big file on the physical

2. VIRTUALIZATION TECHNIQUES 40

system that the virtual machine accesses as an entire disk, with
the VMM that maps the read and write requests of the virtual
machine to read and write requests on the file. This approach
offers a great degree of flexibility (all the storage of the virtual
machines is contained in a file, which could be easily backed up
and restored) and it’s possible to define snapshots of the file,
which are coherent point-in-time copies of the virtual machine
storage, allowing for quickly restoring of the virtual machine’s
status. The main drawback of this approach is performance
penalty: the datapath required for an I/O requests is doubled.
On the other side, it’s possible to assign an entire disk (or a
partition on it) to a virtual machine, at the expense of some
management and flexibility issues, gaining on performances as
the datapath is reduced (the file system layer of the physical
machine is skipped).

It has to be noted that storage availability is, nearly, the
availability of the entire system, as it’s the far most common
cause of system outages. A careful planning of a virtual ma-
chine installation should try to balance between easy of man-
agement, backing up, migration and performances, avoiding un-
necessary duplication of efforts, the most typical of it being a
redundancy system like RAID doubled on the physical and vir-

tual machine: it’s usually sufficient that the virtual machine

2. VIRTUALIZATION TECHNIQUES 41

ignores every problem related to redundancy, seeing only a sim-
ple storage system, where the VMM could better map it to a
redundant data storage area.

On the same side, today’s storage for server is usually re-
mote, by using NAS or SAN infrastructures. All of them aren’t
virtualization-aware. As an example, a SAN server could be con-
figured to selectively presents LUNs to a physical server, identi-
fied by a physical connection (zoning). If this LUN contains data
storage for a virtual machine running into the physical server, a
migration of this virtual machine will require to reconfigure the
SAN server, as the LUN containing the virtual machine data
should be, from now on, only accessed from the new server,
whilst the old server must be disallowed to access the data, as
the migration has been completed. This will require a coor-
dination between the VMM and the SAN, and the SAN must
trust the VMM, which in this scenario is usually deployed and
distributed among different servers. On [76] it’s presented the
N Port Identifier Virtualization extension for the Xen VMM
to solve this. Others high availability solutions will program
the SAN switch to selectively allow or forbid data access as the

virtual machines are being moved over the infrastructure.

2. VIRTUALIZATION TECHNIQUES 42

2.5.4 Network

Network virtualization refers to the ability to offer to each vir-
tual machine a NIC interface, allowing it to send and receive
network traffic without interference, snooping or service degra-
dation caused by the other virtual machines.

Network interface is complex as the network traffic is unso-
licited, requiring the VMM to be prepared to receive and re-

spond to traffic that could be received at any time.

Private devices

The first approach, adopted by the IBM S/360, consisted on
assigning a physical network interface to each virtual machine
(this was also made for other devices such terminals, disks and
so on). Transfers to and from the network card were made by
channel programs, doing programmed I/0 to transfer data from
and to the memory.

Modern virtualization systems also allow for the private de-
vice I/0, as Xen does with the pciback module. This approach
as a relative degree of flexibility, as it requires that the VMM
must boot with a configuration that prevents some PCI devices
(identified by their slot and PCI number) to be configured by

the dom0 kernel, and then it’s possible to configure a virtual

2. VIRTUALIZATION TECHNIQUES 43

machine to directly interact with the PCI device by configuring
its description file [27]. Although it’s possible to reassign a PCI
device to another virtual machine, the set of directly accessed
devices could be changed only by a VMM reboot.

The same approach is also used by the IBM Logical Parti-
tioning (LPAR) architecture for the Power4 processor, relying
on specific processor features.

More recent approaches as the LPAR for the Power4 pro-
cessor allow for isolated access at the PClI-level, leveraging on a
TIOMMU unit that creates a I/O page table for each device, with
memory mappings from the pages owned by the virtual machine
to the assigned device. As a result, for each DMA operation the
processor consults the IOMMU, disabling I/O access to devices
not owned by the virtual machine.

The private device approach has a clear advantage, perfor-
mances maximization, but at the expense of a possible under-
utilization (or over-provisioning) of physical resources. Also, the
DMA memory pinning problem discussed in section [2.5.2 could
also severely restrict the feasibility of this approach for a given

network device.

2. VIRTUALIZATION TECHNIQUES 44

Shared devices

In the Xen architecture, the shared access to the network is
made by using a virtualized spool-file interface, called an I/O
domain. The VMM interprets readings on this buffer as receiv-
ing a network packet, and writing to it as sending a network
packet. As the figure[2.4]shows, the Xen VMM could be decom-
posed in two elements, the hypervisor and the driver domain
(the Xen architecture is the common approach for shared de-
vices virtualization). The hypervisor is the abstraction layer
between the virtual machine and the real hardware, and each
I/O device is managed by a I/O domain, which runs a Linux
kernel. Each virtual machine could communicate with a device
by using a front-end driver, which then connects to a back-end
driver.

As an example, when a packet is transmitted from a virtual
machine, it’s copied (or remapped) from the front-end driver
to the back-end driver, and then queued for transmission from
the NIC. An interrupt is generated when a packet is received,
triggering the copy (or remap) of the packet from the back-end
driver to the specific front-end driver. The back-end driver is
capable of dispatching the network packet to the specific vir-

tual machine because it inspects the packet, sees the MAC ad-

"SODIAOD JIOMIOU POIRYS I0J OINJOIYYDIR UQY F°Z 9INSL]

Driver Domain

virtual machine 1

- . back—end‘ front-end
driver driver
Ethernet]]
virtual machine 2
Bridge
. .| back-end| .| front-end
driver Packet Data driver
t A
NIC Virtual Interrupts
driver
]
Packet Data Interrupts -
= interrupt hypervisor
\ Control [dispatch yp
1111 we '
Control Data
Y Y
CPU/memory/disk/devices

SANOINHOAL NOILVZITVAIYIA €

v

2. VIRTUALIZATION TECHNIQUES 46

dress and then routes it accordingly to the destination front-end
driver. After the copy of the network data, a virtual interrupt
is sent to the virtual machine, which will in turn wake up the
front-end driver and process the packet.

Data protection and isolation between the different virtual
machine is ensured by the driver domain. This approach results
in some overhead, as it’s possible that data must be copied from
and to memory, and the number of interrupts required to process
a network packet is doubled. A specialized driver could result
in a substantial increase in performance [29], by doing memory
mapping and not memory copying and avoiding to check for
transmission errors, as this control is also made by the back-end
driver. Another problem is that the I/O domain must be sched-
uled to allow for packet processing, and the only way to avoid it
is to move the back-end driver code into the hypervisor, result-
ing in a bigger hypervisor, more exposed to flaws and security

related problems.

Concurrent Direct Network Access

A modern NIC interface is usually organized with more than
one queue for packet transmission and reception. This is done
because, to increase availability, it’s usually better to bond to-

gether two or more network cards, presenting them as a unique

2. VIRTUALIZATION TECHNIQUES 47

network device, and then configuring them with two or more
IP addresses: if a network card fails, the others will continue
to work, with a minimal service disruption (also, on multi-core
machines, this prevents for global locking on network resources,
as it’s possible to assign a queue to one specific core).

This hardware feature is employed in the Concurrent Direct
Network Access (CDNA), where each one of this queues could be
assigned to a specific virtual machines, as the figure[2.5 shows.

The hypervisor treats each queue as if it were a physical
network card, assigning ownership of it to a virtual machine,
without the need to define an I/O domain, resulting in near zero
overhead: interrupts are routed directly to the virtual machine
owner of the queue, and the virtual machine reads and writes
directly on the queue.

Memory protection is a bit more complex, as there’s no more
a driver domain that could validate memory access to the de-
vice. The problem is exacerbated in the Intel x86 architecture,
where I/O devices have only physical addresses. On this archi-
tecture, the hypervisor must validate each buffer, ensuring that
every virtual machine does not add to or remove from the queue
packets belonging to a queue it does not own, and preventing
the queue ownership from changing, considering this a privileged

operation. It should be noted that these two tasks are the same

*2IN3293YDIR YN (D :G'Z oIS

Virtual Interrupts

virtual machine 1

NIC
Driver

virtual machine 2

NIC

hypervisor interrupt
dispatch
CPU/memory/disk

Interrupts

Driver
Control

Packet Data

Driver Control

driver

CDNA NIC

SANOINHOAL NOILVZITVAIYIA €

87

2. VIRTUALIZATION TECHNIQUES 49

made by a MMU with respect to memory access, so the gen-
eral availability of a IOMMU will eliminate these burdens from
the hypervisor. The performances of CNDA are such that the
transmission throughput is linear with the increasing number
of virtual machines, while the shared device approach a la Xen
decreases exponentially. The performance gap for receiving is
reduced, as Xen works better when demultiplexes received pack-
ets [91]. Intel has developed the Virtual Machine Device Queue
to effectively implement the CDNA network virtualization [11].

2.6 Concluding remarks

Virtualization dates back in computer history, and comes in
many different forms. Providing and leveraging hardware fea-
tures to get the best from this approach to computation is a com-
plex process, as there are many inter-dependencies and many
different approaches, that must be evaluated against require-

ments and provided features.

Virtualization

architectures

The different hypervisors that have been presented throughout
Chapter 2 are merely techniques that could be used when vir-
tualization has to be put in place in a system. In this chapter
we analyze the next logical step, where virtualization is an ar-
chitectural asset that brings value to a distributed system, and
not only an available feature. It has to be noted that hypervi-

sors’ makers put a lot of emphasis in the server consolidation

50

3. VIRTUALIZATION ARCHITECTURES 51

scenario, where some (and possibly many) legacy systems are
virtualized. This is a cost-savvy strategy, but virtualization has
a lot more to offer when it’s an integral part of a distributed
system.

A distributed system is usually designed and built up (often
with a trial and error approach) with a list of desired features,
both measurable and not-measurable, that drive the design pro-
cess. Some of the features that could take a great benefit from

virtualization are:

e efficiency: the average server usually works at 10-15% of
its capacity, with some temporary surges. By packing
some (virtual) servers into a physical one, it’s possible to

cut down electricity and maintenance costs;

e availability: by leveraging on live migration, it’s possible
to migrate a running virtual machine from one physical
host to another, in a proactive way (allowing for ordinary
maintenance) or reactive (as in a disaster recovery sce-
nario). Recovery Oriented Computing [21] is a remarkable

approach to reach this goal;

e case of deployment: by cloning a virtual machine, it’s pos-

sible to install it on several different physical hosts;

3. VIRTUALIZATION ARCHITECTURES 52

e load distribution: virtualized machines could be the build-
ing block of a cluster that spans over different underlying
physical machines, hiding the heterogeneous underlying

hardware.

Virtualization could be effective in achieving these sometimes
conflicting goals, as it defines a central management function
that is implemented by another intermediate layer. Having an-
other layer means also adding complexity, as complex interac-
tions with the rest of the stack result in. As virtualization be-
comes pervasive, the fighting arena for manufacturers will pro-
gressively shift from performances to management tools: new
generation of computer processors, operating systems and pe-
ripherals are designed with virtualization in mind, and the bur-
den of hypervisors will move from making a computing platform
virtualization friendly (i.e. virtualize a legacy server) to man-
aging hundreds and thousands of different virtualized systems,
that offers different services to different users.

This will be a common scenario for a large data center which
today’s offer include shared hosts for low-traffic sites and dedi-
cated hosting, but both of them are far less than ideal. Shared
hosting is acceptable only when both traffic and requested level
of security are low, whilst dedicated hosting requires careful

planning (it will take some time to change the footprint of an

3. VIRTUALIZATION ARCHITECTURES 53

installation, especially when the customer wants to downgrade)
and it will usually result in a waste of money, from customer’s
point of view, as the average server is usually under-utilized.
For this very reason a modern data center should use virtualiza-
tion in its core architecture, to rapidly adapt to its customers’
needs. One of the pioneers in this approach is Amazon, with
the Amazon Elastic Computing Cloud (EC2) service [1].

With Amazon EC2, a customer could lease a virtual server,
and pay only for the time the server is up and running. When
the server is offline, the server’s image is stored offline (a col-
lateral service of Amazon, the Amazon Simple Storage Service
(S3) |2] could take care of that). Amazon has a large pool of
machines, so it could instantiate even thousands of server for
a customer within minutes from the request. These machines
could be used for the time required to perform their job, as do-
ing a number crunching computation (that was the case when
New York Times need to reprocess and convert its entire archive
in electronic format [19]), acting as a backup system or giving
some extra capacity power to offload some computations for a
site that is experiencing a surge in traffic. A start-up company
could lease its servers and expanding its pool when it’s needed,
concentrating its effort on the products and developing a long-

term strategy for its information system in the meantime. When

3. VIRTUALIZATION ARCHITECTURES 54

Intranet

Web site DB 1 DB2 Testing HPC
Services

Hypervisor and virtualization manager

Node Node Node Node Node Node Node]

Figure 3.1: A virtualization architecture.

all cost factors are taken into account, this approach is usually
cheaper in the short-term than the traditional one.

This unifying approach could be worth to be used even when
the customer and the provider (of computing machines) are the
same organization, i.e. by the IT department of a corporate.
Instead of having many different clusters, each one devoted to a
specific business function, there could be only one cluster, with
some isles on top of it, each one for a high level task. These
isles could be expanded or reduced with respect to their size
(associated resources) according to the evolution of the business.
Figure 13.1] shows an example where different area sizes of the
high level functions remarks the different amount of associated

resources.

3. VIRTUALIZATION ARCHITECTURES 95

At the price of a more complex setup and planning, this ar-
chitecture will bring benefits to the organization that uses it.
Each computer is a computing block, that is globally managed
and assigned. As long as the hypervisor remains the same, it’s
possible to mix and match different hardware solutions, maxi-
mizing the efficiency of the infrastructure and obtaining, with
less effort, high profile features like high availability, disaster
recovery, rapid deployment and so on.

As a result, virtualization must be included in the design
process of a distributed system. In this chapter, we see some
standard techniques to develop a modern distributed system and
how virtualization could be integrated in it since the design pro-
cess. We consider this in the more general context of autonomic

computing, that will provide a useful framework.

3.1 Reference architecture

The reference architecture we consider is a multi-tier distributed
system, shown in figure [3.2.

Each tier is functionally distinct from the others. Each tier
is made up of nodes of the same type and with the same asso-
ciated resources (CPU, disks, memory, ...). In this architecture,

incoming requests are faced by the top tier, N, which, to serve

3. VIRTUALIZATION ARCHITECTURES 56

Requests

Figure 3.2: A multi-tier distributed system.

them, requires services from the next tier, NV — 1, which in turn
relays to tier N — 2 and so on. It is assumed that a request
flows only from one tier to the next one to be served, although
it could be possible that it doesn’t need to traverse all the tiers.
After reaching the last tier, the computed result flows upwards,
is aggregated by the different traversed tiers, and is finally sent
to the client. Requests are grouped in classes, distinguished by
the amount of requests and type of resources they require by
each tier in order to be served, and within the same class they

are assumed statistically indistinguishable.

3. VIRTUALIZATION ARCHITECTURES o7

In the context of web services, distributed systems are usu-

ally made up of three tiers:

e front end tier, which is the connection point for external
clients accessing the web service, with its nodes serving
only static content. This tier usually does not suffer from
scalability problems as a modern web server could serve
static content in such a fast way to saturate the available

Internet connection;

e application tier, where the application logic resides. This
is made up of programs running in the context of an HT TP
request, written in languages like PHP, Java and so on.
Each customer interacting with the web service usually
produces more than one service request, and these are
all interdependent (as an example, a buy order follows
a search catalog function), so requests are grouped into
sessions. To avoid replicating session stateful information
along all nodes constituting the application tier, the load
distribution function must be session aware, and this in-

troduces some limits in the scalability of this tier;

e database tier, which handles all queries to the database
system. This tier is usually the most difficult to expand,

as all low-level DBMS employ a shared-nothing approach,

3. VIRTUALIZATION ARCHITECTURES 58

which makes difficult to realize concurrent, write-access to
the data.

More tiers could be added to this model, as an example a front-
end tier could manage web authorization and access, and an
inner tier could model and interact with legacy mainframe sys-
tems. In each case, although this architecture is the de facto
standard for web services, scalability of it must carefully ad-
dressed: adding some extra nodes to a specific tier wouldn’t
necessarily let to a general performances improvement as some

common capacity planning problems could arise:

e the extra nodes are not added to the tier that is the bot-
tleneck of the distributed system;

e the extra nodes are added to a tier that has almost no

need of them;

e the speed-up of the tier being increased is such that there’s

a waste of processing power.

The last point is critical. Each tier has associated a load dis-
tribution function, that dispatches the incoming requests from
the upper tier to a specific node. This dispatching first requires
some kind of strategy (as an example, in order to dispatch re-

quests to less busy nodes it’s required to monitor and collect

3. VIRTUALIZATION ARCHITECTURES 59

the load on each node) and it could be more or less efficient for
the specific semantic of operations performed by the tier. As a
result, adding nodes to a tier that is already experiencing the
saturation of its distribution function will result in no effect.
In some cases it will be required to change the strategy used
to distribute the load between the nodes of the same tier, that
it could in turn require to change the implementation of the

software running on the nodes.

3.1.1 Modeling of multi-tier systems

Modeling of multi tier systems has attracted a lot of interest in
the last several years, as pervasive web services are usually best
implemented in this framework.

As for each performance model, there’s a trade off between
its accuracy and the feasibility of the implementation: a more
precise model, that requires too much instrumentation of the
real system to feed its model solver, or that has a complex model
that requires a lot of processing time to be solved, is of no more
than theoretical interest, as the predictions originating from it
cannot be applied in an on-line system, so the level of detail in
the models is chosen in a utilitarian fashion.

In [61] the focus is in the modeling of a single server, com-

3. VIRTUALIZATION ARCHITECTURES 60

prised of physical resources like CPU, memory and disks, that
could interact with other servers to accomplish the requested
functions.

In [98] the developed model is session-based and take into
account caching effects and concurrency limit on the tiers. In
this model, each tier is modeled via a queue, and the system
is solved via the Mean Value Analysis algorithm ([90]). This
model allows for performances prediction and dynamic capacity
provisioning, and it could handle multi-class models.

In [105] the most important input for the MVA model, the
average service time for the CPU at each tier, is estimated via a
regression technique, minimizing the quadratic difference from
observed and estimated utilization rate.

In [99] the focus is in provisioning the application tier. First,
it is shown that for limited timescale a tier could be modeled as
aM/G/1/PS queue, i.e. the arrival rate of requests at the appli-
cation tier is described by a Poisson distribution (this of course
is not true on large and different timescales, as self-similarity
appears due to an high degree of correlation between arrivals.
The timescales over which correlations exists are delimited by
an upper bound, called Critical Time Scale [93]). Then the cor-
rect solution of the model, that requires some complex calcula-

tions making it infeasible for on-line provisioning, is compared

3. VIRTUALIZATION ARCHITECTURES 61

against three different approximations. All of these approxima-
tion methods achieve allocations with costs near the minimum
possible, while simpler heuristics incur in significantly higher
costs. This model could also be used to determine the opti-
mal number of servers to bve deployed for the application tier,
ignoring the provisioning of the other tiers.

The assumption that all nodes are work conserving and that
the discipline is processor sharing (PS) is generally applicable,
while it could not be the case that the arrivals are modeled via a
Poisson distribution. To have the most general multi-tier model,
we assume that each server is modeled via a G/G/1 queue. The
behavior of this server is described via the following equation

from queuing theory [72]:
02 + o} -t

N> |sip—2at T
- s+2*(di—8i)

(3.1)
where:

e)\, is the arrival rate for tier ;

e s; is the average service time for requests on tier 7;

e d; is the mean response time for requests on tier i;

e o2 is the variance of inter-arrival time for requests on tier

i;

3. VIRTUALIZATION ARCHITECTURES 62

° a?is the variance of service times for requests on tier i.

Quantities as d; and s; and their variances are known or could
be on-line estimated (instrumenting the distributed system to
record, for each transaction, request time and completion time),
so a lower bound on A; could be evaluated for each server. If
each session has a think time of Z, by Little’s Law the session
arrival rate of A could be translated in a request arrival rate
of)‘—ZT,
capacity \; of a single server is computed, the number n; of

where 7 is the average session duration. So, when the

server required for tier ¢ is simply defined as:

EEY 5

the §; is a correction factor specific for each tier, that take

into the formula competing effects as caching, load distribution
and speed-up. If the speed-up behavior is not constant but a
function of n, then n; is defined as the minimum value of n; for
which it holds:

niXiZ > Bi(ng) AT (3.3)

with the constraint that each tier has at least one node:

3. VIRTUALIZATION ARCHITECTURES 63

n; > 1, Vi (3.4)

Equation [3.2]is general, so more tier-specific equations could
lead to substantial improvements determining a lower number
of server n;, at the cost of more specific tier-knowledge. As our
objective is to investigate in the allocation of this servers over
physical machines, we assume that an equation like[3.2 will be

sufficient for our needs.

3.2 Virtualization performances and mea-

surement

Virtualization is an additional layer, so it has some complexity
by itself (especially when is a foundation for the entire infras-
tructure) and an associated overhead. Recalling the definition
of VMM made by Popek and Goldberg, this overhead must be
negligible, but it must be evaluated.

Virtualization is making some fast progresses, and as a result
the performances of an hypervisor are changing rapidly, making
of no interest to report them in a dissertation where the focus
is on the architectural component. Plus, very few comparative

studies are conducted on this field, as some hypervisors’ licenses

3. VIRTUALIZATION ARCHITECTURES 64

substantially prohibits to publish them.

In [83] the relative performances of Xen and OpenVZ are
compared on some scenarios, founding that Xen has a lot of
overhead, mainly due to level two cache misses, up to ten times
than the ones in OpenVZ. It’s generally understood that this
gap will reduce as the hardware features are made available, as
discussed throughout Chapter 1.

From discussion in Chapter 1 it’s clear that performances
are strictly dependent on the number of privileged instructions
that the hypervisor has to emulate, because the innocuous in-
struction are executed directly by the hardware, with no perfor-
mances penalty.

On [81] this formula is adopted to evaluate the slowdown of

a virtualization:

So=fpsNet (1= fp)=fpx(Ne=1)+1 (3.5)
where:
e f, is the fraction of privileged instruction;

e N, is the number of instruction required to emulate a priv-

ileged instruction.

As an example, when f = 0.1% and N = 500 the slowdown is

3. VIRTUALIZATION ARCHITECTURES 65

S = 1.5, meaning that an application running on top of a virtual
machine will see its execution time increased by 50%. The main
advantage of the equation [3.5]lies in its simplicity. The fixed
value of N. does not take into account adaptive behavior or
caching mechanism employed by the translator, and the fraction
fp of privileged instructions could be substantially reduced with
some modification to the virtual machine’s code base.

But in even more general terms, the pace of progresses in
this field results in high performances variations, even between
two releases of the same hypervisors, as soon as it leverages on
some hardware features or modification of the virtualized code.

Nevertheless, it makes sense to measure the virtualization
overhead, over a specific scenario and this can be done as seen
in [81].

In that paper, some metrics have been collected for a physical
system that comprises of two virtual machines, the first running
a batch system and a Transaction Process Manager (TPM), and
the second devoted to testing purposes. Table[3.1lis an excerpt
that we use to show the relevant results.

To determine the CPU utilization factor for the first virtual

machine, we use this formula:

3. VIRTUALIZATION ARCHITECTURES 66

| Metric | Value |
Tymm 420 s

cpu,vml

romm 220 s

cpu,vm2

Uz | 0.40

Table 3.1: Measurements for estimation of VMM overhead.

Tymm

vml _ rrvmm cpu,vml _

Utpa! = Ubpu™ * e e— = 02625 (3.6)
cpu,vml cpu,vm2

Eq. states that the utilization of the physical CPU for
the first virtual machine is a fraction of the utilization of the
CPU as seen by the hypervisor, Uy7™. The apportionment
factor is the ratio between the total time that CPU is running
the first virtual machine as measured by the VMM, TZ7"0
and the total time that CPU is running the virtual machines,
as seen by the VMM. The experiment spans over a 30 minutes
interval, and if we calculate the utilization of the physical CPU
for the first virtual machine as:

vmm

vml __ Tcpu,vml o
Ul = g = 0.2333 (3.7)

we get a result that does not take care of the 2.92% difference

3. VIRTUALIZATION ARCHITECTURES 67

due to overhead imposed by the VMM.

This little overhead is going to be reduced as the implemen-
tation of the hypervisors are better. It has to be noted that this
overhead is in fact a result of two competing phenomenons. The
first is the overhead that result when privileged instructions are
encountered and have to be somehow emulated by the VMM,
the second are the optimization that the VMM could put in
place to reduce penalties due, for example, to memory faults.

Eq. is made with the assumption that there isn’t inter-
ference between the two virtual machines competing over the
same result, i.e. the flow of operation for the two machines are
almost the same as if they were executed without an interposing
VMM. This in turn requires that the VMM is perfectly capa-
ble of isolating the two virtual machines regarding to resources
contention.

We stress that a critical point is that the VMM must take
every care in avoiding the interference problem. As an exam-
ple, if a virtual machine is doing a lot of unexpected I/O work
with the disk (i.e. is running out of memory and it’s moving
pages to and from disk) this behavior must not limit the I/O
disk bandwidth available for others virtual machines, requiring
a global monitoring of resources consumption. This could gener-

ate a butterfly effect, as the virtualized operating system could

3. VIRTUALIZATION ARCHITECTURES 68

choose an aggressive I/O strategy that is greedy in the short
term but it would have been resulted in a general performances
improvement in the long term (usually the virtualized operating
system has no idea that is running in a virtual machine). Lim-
iting the ability of the virtualized operating system could be no
performance wise in the long term, so the VMM should find a
balance between the fairness of the resources allocation and the

resulting global throughput.

3.3 Autonomic computing

Today’s computer systems have an intrinsic daunting complex-
ity that stems from the wide range of technologies and com-
plexity of interactions. As a result, identifying problems in a
production system could be quite challenging, and optimizing
and tuning for performances is often out of the question. This
will end up in very little efficiency, reduced availability and se-
curity problems.

In 2001, IBM has proposed autonomic computing as a long-
term answer to these problems [67]. Autonomic systems could
manage themselves, as the autonomic nervous systems governs
human body adapting it to changing environments and repairing

it, a damage could occurred, with little or now knowledge from

3. VIRTUALIZATION ARCHITECTURES 69

the high level function as the conscience.

Distinguishing properties of autonomic systems are [70]:

Self-optimization: an autonomic system continually seek ways
to improve its operation, identifying options and actions
that make it more efficient on performances or costs, ac-

cording to some built-in metric;

Self-healing: an autonomic system identifies defective compo-
nents and put them off-line, re-organizing itself to continue

to work with the remaining parts;

Self-protection: an autonomic system acknowledges attacks
from the outside, preventing them to have success and

compromise the entire system.

These properties are usually collective identified as self-* prop-
erties. All of them are, to say the least, appealing, as they solve
a great share of the problems that everyday happen and arise
in a production system. Autonomic computing is still in its
infantry, as many problems have yet to be addressed [56].

All the self-* properties could be implemented leveraging on
virtualization. If we imagine an autonomic computing system
as a system made up of independent but cooperating systems,
each of them could be implemented as a virtual machine. Self-

protection could take advantages by the isolation property that

3. VIRTUALIZATION ARCHITECTURES 70

an hypervisor offers, and self-healing could be more easily ob-
tained if the failure of a component will be confined in its bound-
aries, allowing for shutting down the component and eventually
re-initialize it (hoping the failure is transient) or migrating it
over different physical resources (if the failure is due to hard-
ware’s flaws), giving some degree of flexibility over a traditional
approach when the coupling between resources and components
is tighter.

In this dissertation we mainly investigate how to deal with
self-optimization, i.e. how to leverage on virtualization to al-
low an autonomic computing system to adapt itself to different

workloads.

3.3.1 Self-optimization

Self-optimization is the ability of a system to adapt itself on
different conditions, and as a distributed system is intended to
give services to clients requesting them, the focus is on systems
that adapt themselves on variable workloads. We consider the
architecture proposed in [80] as a general framework we wish to
extend.

The proposed architecture evolves around a QoS Controller,
depicted in figure[3.3 which has four main components:

3. VIRTUALIZATION ARCHITECTURES 71

Arriving requests Completed requests

Computer System

[B I T
! ['
T 1
: r——*— \ 1
1
' Service QoS ' QoS
X Demand Controller Goals
: Computation Algorithm :
' I
! 1
! 1
! 1
! 1
! 1
| Workload Performance X
! Model !
T Analyzer 1
: Solver |
' I
! 1
! 1

QoS Controller

Figure 3.3: The QoS Controller.

3. VIRTUALIZATION ARCHITECTURES 72

Service Demand Computation: collects utilization data on
all system resources and count of completed requests. The
service demand of a request, defined as the total average
service time of a request for a specific resource, can then
be computed as the ratio between the resource utilization
and the system throughput [78|. These service demands
are used as input parameters for a Queuing Model solved
by the Performance Model Solver;

Workload Analyzer: analyzes the arriving requests and com-
putes statistics as average arrival rate. It could also use
statistical techniques to forecast workload. These statis-
tics are made on a per-interval basis, called controller in-

tervals;

Performance Model Solver: receives requests from the QoS
Controller Algorithm to solve the Queuing Model for a
specific configuration of the system. Its inputs are the
configuration parameter values, service demand values and
workload intensity values. Its output is the QoS value for
the configuration used as input, given according to some

metric;

QoS Controller Algorithm: it runs the controller algorithm

at the beginning of each controller interval. Its input

3. VIRTUALIZATION ARCHITECTURES 73

are the QoS goals, departure and arrival processes, and
it searches a close-to-optimal solution, by a mix of analyt-
ical models and combinatorial searching techniques. Each
possible solution is evaluated by the Performance Model
Solver. After the best possible configuration has been dis-

covered, it sends commands to reconfigure the system.

This architecture has been then validated for highly variable
workloads [39]. In [40], this architecture has been expanded
to allow the co-existence of different Application Environments
(AEs) on the same physical machine. On each physical machine
there’s a QoS Controller analogous to the one of figure[3.3 plus
a centralized global controller.

These architectures fit in the general model for autonomic
computing proposed in [103].

In [101], a similar architecture has been considered for ap-
pliance based autonomic provisioning. The architecture defines
some Virtual Application Environments (VAEs): a VAE spans
over one or more virtual servers, and each server is defined inside
a physical machine. Each VAE has a On-Demand Router that
dispatches incoming request to the less loaded virtual server in-
side the VAE, in a round-robin fashion. A global, utility-driven,
virtualization-aware model solver solves a performance model to

determine the better configuration for the VAEs, for the given

3. VIRTUALIZATION ARCHITECTURES 74

(and forecasted) workload. This article is remarkable as it’s the
first to take into account the time required for virtual machine
provisioning, i.e. the time required to activate a virtual ma-
chine and the time required for closing it, and offers a formula
to evaluate the performance overhead of an hypervisor, as this
datum is required by the model solver to avoid overloading a
physical machine. Based on the works in [87 88| it is assumed
that the capacity available for a specific virtual machine is a
fair share of the total (raw) capacity of the physical machine,
attenuated by a constant factor a that takes care of overhead

due to virtualization:

Co=(1-a)*xCy/N (3.8)
where:
e (, is the capacity of the virtual machines;
e () is the capacity of the physical machine;

e N is the number of virtual machines instantiated over the

same physical machine.

In the aforementioned article, a = 0.1. (in [31] authors choose

an overhead between 1.5 and 3, i.e. % <a< % This different

3. VIRTUALIZATION ARCHITECTURES 75

values are best explained by different virtualization technolo-
gies). The capacity is defined as a global index of the rela-
tive performances of a physical server, i.e. the model is mono-
dimensional. The mapping between the physical server and the
virtual machine is described by an association matrix, and the
model solver returns, for a given matrix and a (forecasted) work-
load, a new association matrix. The time required to deploy the
new association matrix is considered as a linear sum of the time
required to shut down the no longer necessary virtual machines
and the time required to boot the new virtual ones.

In [31] the model focuses on SLA violations, trying to mini-
mize it. To get a solvable performance model, the probability of
a service time bigger than the agreed value is bounded via the
Markov Inequality [71].

Other approaches for self-optimization are possible. In [84]
it’s exposed a control of CPU shares of two competing virtual

machines over the same physical node based on control theory.

3.3.2 Proposed extension to the model

All the previous architectures have some boundaries we wish to
extend.

First, they assume that the capacity of the servers are fixed,

3. VIRTUALIZATION ARCHITECTURES 76

and so the service demand times are only input variables. This
is in general not true when virtualization deploys all of its power
in resource sharing: it’s possible to dynamically vary the CPU
share assigned to a virtual machine.

But the most important limit is that all of these models as-
sume that the only critical parameter for modeling is the CPU
power of the virtual machines (|79], [89]). A notable exception
is [69] where are both considered a load dependent resource,
as the CPU, and load independent resource as the main mem-
ory; but performances of a (virtual) machines stem from all the
available resources. As an example, front end tier require a lot
of bandwidth for connection to external clients, and a database
tier is bounded by storage bandwidth. As is shown in [61], all
of these (and possibly others) parameters are required to have
a correct estimation of service demand times.

Consequently, if each virtual machine is described by a re-
sources demand vector, each physical machine must by described
by a dimensionally analogous resources vector, and it could be
possible that a physical machine has some spare resources that
are insufficient for instantiate a specific virtual machine in it.

As an example, imagine we have a physical machine with
8 GiB of RAM and four processors (for the sake of brevity we

consider only two elements for the resource vector). This ma-

3. VIRTUALIZATION ARCHITECTURES 7

chine could host 4 virtual machines, each one requiring 1.8 GiB
of RAM and one processor, but it cannot accommodate more
than 3 virtual machines requiring 3 GiB of RAM and one pro-
cessor. In the latter case, 2 GiB of RAM and one processor are
free and unused, and they maybe accommodate another virtual
machine, belonging to a different tier, with a more compatible
resources demand vector.

Last, in the current works it is often assumed that all the
applications are available on each physical machines, ready to be
activated should the workload variations require it (|69]). For
proprietary applications this is usually not acceptable, as the
license fees are for each installed copy and not only for running
copies.

For a virtualized architecture, migration times must be taken
into account. In [89], it is assumed that the controller interval
are a lot bigger than the time required for server migration, and
this is a standard modeling option, as the controller time is in
the range of 5-30 minutes.

So, in this dissertation we concentrate on an allocation prob-
lem. We assume that a multi-tier performance model solver has
determined the number of nodes that must be in each tier for
the current (or forecasted) workload. Each one of these nodes

is described via a resource demand vector, and there are avail-

3. VIRTUALIZATION ARCHITECTURES 78

able some physical machines described by a resource vector. We
want to map the former into the latter, i.e. assign each virtual
machine to only one physical machine, without exceeding avail-
able resources and possibly minimizing the number of required
physical machine, to achieve maximum efficiency.

In Chapter 4 we formalize our model, discuss its computa-
tional complexity and propose some algorithms to tackle it.

The mapping problem

As seen throughout previous chapters, virtualization could play
a fundamental role in defining a distributed architecture that
could self-adapt to workload variations. In Chapter 3 we have
surveyed studies that deal with the problem of defining the nu-
merousness of each of the tier comprising a multi-tier distributed
system, especially in the context of web services. To the best of
our knowledge, there are no studies that model these systems
for more than one (or two) resources as CPU power (and avail-
able memory) and no one that deal with the mapping problem

that we define as: given a set of virtual machines, each one de-

79

4. THE MAPPING PROBLEM 80

scribed by a resource demand vector, and a group of physical
machines, each one described by an available resources vector,
which is the best mapping of the former to the latter, i.e. how
to associate each virtual machine to one and only one physi-
cal machine, without exceeding available physical resources and
maximizing a given metric?

Current studies ignore completely this problem, and ofter
characterize performances of a virtual machine only by its CPU
power. Instead, we choose to work, for this mapping problem, in
a multi-dimensional space, where we have both quantitative and
qualitative characteristics of the physical (and therefore virtual)

machines.

4.1 Problem formalization

We formalize the mapping problem to allow for maximum gen-
eralization.

To do so, we assume that the virtual machines are grouped
together, and that for each group we must allocate one and one
only machine to a physical one. Machines in the same group
represent different service levels and are characterized by dif-
ferent resource demand vectors, and for each virtual machine

there’s an associated profit that is earned when the machine is

4. THE MAPPING PROBLEM 81

chosen to be instantiate.

We want to maximize the grand total of profits, while mini-
mizing the number of physical machine we have to use. It’s pos-
sible that, for some or even all groups, we have only one virtual
machine for each group, meaning that we cannot do anything
but instantiate that machine, and in such a case the problem
is only to find where to instantiate it. As the virtual machines
are pooled in groups, we indicate each one of them by two in-
dexes, the first denoting the group and the second the machine
in the group (i.e. the service level). Following this convention,
if X is a generic scalar (or vector), X% is the scalar (or vector)
pertaining to the j—th machine of the i—th group.

We stipulate that:

e (G is the number of groups. Each group is composed of g;

different machines (it’s possible that g; = 1);

each virtual machine is described by a K —dimensional
demand vector D% = (d¥,dY,...d}});

each virtual machine has an associated profit P¥;

M is the number of physical machines;

each physical machine is described by a K —dimensional

resource vector, R = (rf,rb,....rt), 1 <1 < M;

4. THE MAPPING PROBLEM 82

e for each i, we have Dl < D2 < . < Di-‘”, coordinate

wise, and P! < P2 < ... < P9,

The decision variables 2% are defined as:

i 0 machine ij is not on physical machine m
) = (4.1)
1 machine ij is on physical machine m

We want to choose one and one only virtual machine from
each group, and allocate it on a physical machine, with the
constraint that we cannot exceed the available resources, max-
imizing the total profit earned and minimizing the number of
physical machines that are used.

To do so, we define the variables u! as:

0 if physical machine m is not used
U, = (4.2)
1 if physical machine m is used

Our objective function is:

G gi M M
ZZZ 9 P9 C % Zum (4.3)
i=1 j=1m=1 m=0

4. THE MAPPING PROBLEM 83

which is the total profit of the virtual machines that are in-
stantiated minus the number of physical machines used times
a convenient constant C. We assume C' as a constant as the
operational costs for running the infrastructure (e.g. electric-
ity costs, maintenance fees, co-location expenses) are usually
proportional to the number of machines comprising the infras-
tructure: as we want to maximize their usage (by allowing for
different service levels) we also want not to use more than the
strictly necessary.

We extend the < operator from scalar to vectors in a coor-
dinate wise fashion: if X = (1,22,,2,),Y = (y1,Y2, -+, Yn)
we say that X <Y iff x; < y; for each 7 s.t. 1 < i < n, so
constraints are formally defined as:

M g
Vi, > Y al = (4.4)

m=1 j=1
Ym, Z Z z9 DY < R™ (4.5)
i g

Ym, i, g, um > 2 (4.6)

Eq. means that we choose only one virtual machine for
each group, and eq. [4.5] means that, on each physical machine,

we cannot allocate more resources than available ones, while eq.

4. THE MAPPING PROBLEM 84

4.6 relates variables u! to % according to def. [4.2].

4.1.1 Discussion of formalization

The key issue of the proposed formalization is that we assume a
fixed number of available physical machines, each one with pre-
defined associated resources. We recall that the mapping prob-
lem arise when we have already solved a multi-tier performance
model, which in turn requires to have, besides others, parame-
ters as the service average time that is determined, analytically
or by live system instrumentation, only after each tier has been
characterized by its computing power. Therefore, the only po-
tentially limiting factor for the proposed formalization is that
the number of available physical machines M is fixed, and it’s
possibile that we would experience over-provisioning (we could
be able to solve the same mapping problem with lesser physical
machine) or, on the contrary, that we have too few machines to
solve it.

Determining the minimum value of M that leads to a solu-
tion satisfying constraint could be quite challenging. We observe
some basic facts.

First, we can define easily necessary but not sufficient con-

ditions that would help in defining an acceptable value for M.

4. THE MAPPING PROBLEM 85

For each group of virtual machines, we consider that the
resource vectors are non decreasing ordered, i.e. that we have
D" < D2 < D for each i. This means that, for each group
i, we could consider D*' as the minimum level of resources that
must be instantiated by the pool of physical machines. Now, if
the sum of these D' exceeds, even for only one resource, the
sum of available resources provided by the physical machines
(3" RY), a solution could not exist.

As an example, if we need to allocate four virtual machines,
each one requiring 4 GiB of RAM, and we have 2 physical hosts
of 5 GiB of RAM each, we have less memory than needed, and
a mapping cannot be determined.

This is a necessary but not sufficient condition: if, instead
of 2 physical hosts of 5 GiB, we have had 10 physical machines
with 3 GiB of RAM each, the grand total of available memory
would be of 30 GiB, but nevertheless a mapping couldn’t be
found, as each physical machine is too small to accommodate
even just a single virtual machine.

Formally, we say that a solution does not exist if :

G M
> DP>N R (4.7)
i=1 i=1

or

4. THE MAPPING PROBLEM 86

Ji s.t. D1 > RV Yy (4.8)

so we could start from a small set of physical machines, verify
by eq. 4.7 and eq. if a solution whether could exist or not.
If not, we increase the set of physical machines: sooner or later
we find a feasible set, and we could try to map over it. If we find
a solution, we could assume that this is the smallest available
set of required physical machines.

The proposed model allow for coexistence of quantitative re-
sources (like CPU power or number of cores, memory size) and
qualitative resources. As an example, we might want to deploy
the multi-tier distributed system in two different areas (two dif-
ferent LANSs, or two geographically remote sites). To do so, we
extend the quantitative model, by defining two new qualitative
resources, called ¢; and ¢2. Resource ¢; means “allocation in
the first area”, whilst resource ¢o means “allocation in the sec-
ond area”. Recall that each tier is comprised of virtual machines
of the same type, i.e. with the same resource demand vector: we
extend this vector to accommodate for the new resources, and
we put ¢; = 1 for the first half of nodes of the tier, and g2 =1
for the second half, meaning we want half nodes in the first area

and half nodes in the second area. Lastly, for the physical ma-

4. THE MAPPING PROBLEM 87

chines located in the first area, we put the provided resource
¢1 = M/2 and the provided resource ¢; = 0, and the converse
for the physical machines located in the second area.

As a result, each solution of the mapping problem will map
half nodes of each tier (ones for which ¢g; = 1) on the physi-
cal machines located in the first area, and remaining nodes on
physical machines located in the second area, thus giving us a
geographical distribution of the system.

This approach could be applied for other qualitative resources
as better connection to storage area networks, software licenses

restrictions, hardware support for virtualization and so on.

4.2 The mapping problem as a gener-

alization of the knapsack problem

The mapping problem is a generalization of the well known
knapsack problem [75].

The generalization stems from these considerations:

e the knapsack problem is mono-dimensional, whilst the map-

ping problem is multi-dimensional;

e the knapsack problem is with only one knapsack (physical

4. THE MAPPING PROBLEM 88

machine), whilst the mapping problem deals with multiple

knapsacks (physical machines);

e the knapsack problem doesn’t group items (virtual ma-

chines), the mapping problem does.

To the best of our knowledge, there are no published studies
(in the field of computing performance modeling or operational
research) that tackle all these generalizations together.

Multi-dimensional knapsacks, called MDKP, are discussed in
[41, 48]. Multi-knapsacks problems are studied in [60, 53| 46].
Multiple-choice knapsacks, problems where items are grouped
together, are called MCKP and a minimal algorithm to solve
them is shown in [85]. In [104] the algorithm is used in the
context of QoS for web services.

Some intersections have been evaluated: MMKP are multiple-
choice, multiple-dimensional knapsack problems, and heuristics
to solve them are discussed in [32, 65} 33} 66|

The only reference we have found to a multi-dimensional,
multiple-choice, multiple knapsacks problem, that henceforth
we call MMMKP problem, is in [94], but only as a definition.
The context there was the definition of an admission control sys-
tem for multimedia servers, but in that case the only arbitrated

resource was Internet bandwidth.

4. THE MAPPING PROBLEM 89

The MMMKP model will be simplified in a MMKP if we
have only one machine for each group, i.e. g; = 1 Vi. Although
the performance models find an estimation of the number of re-
quired nodes for each tier, they usually assume that workload
would not experience transient surges. To try to accommodate
for peaks in workload intensity, we could over-provision the ar-
chitecture: it wouldn’t change the tier’s size or the architec-
ture, but it will improve efficiency in resources using. This is
even more realistic if the provider and the owner of the multi-
tier system belong to the same organization, as in this scenario
the solution of the mapping problem is the minimum required
level of service, while every extra computing power put in use
(and therefore not wasted) will be appreciated. The MMKP,
as stated, is studied in the scientific literature, so we choose to
concentrate on its MMMKP generalization, as the algorithms we
devise to solve it are equally applicable to the MMKP problem.

Another point is that being the number M fixed or not will
lead us to different problems: if M is fixed, we have a knapsack
problem, otherwise we have a multiple-dimensional, multiple-
choice bin packing problem, a generalization of the bin packing
problem that has the same popularity of the MMMKP in the
literature, being almost unknown (a survey of bin packing prob-

lems is [50]). To maintain our pragmatic approach, we prefer to

4. THE MAPPING PROBLEM 90

work on MMMKP, as the approaches we will develop to solve
it could be easily applied to a generalization of the bin packing
problem.

Last, we assume that the hypervisor technology that we
adopt to manage the virtual machines suffers of no or little in-
terference, meaning that is capable of perform a robust and fair
(physical) resources sharing. If this is not the case, the mapping
problem could be more easily defined as a generalization of the

Generalized Assignment Problem (]51]).

4.3 Computational complexity of the

mapping problem

It’s easy to show that each classical knapsack problem could be
formulated as a MMMKP.

First, we can generalize a mono-dimensional knapsack prob-
lem to a multi-dimensional by substitution of each item weight
W; and knapsack capacity C' (both scalar) with respectively vec-
tor W; = (W;,0,...,0) and C’ = (C,0,...,0). Then we can add
more dummy knapsacks to have a multiple knapsacks general-
ization, and these knapsacks are described via capacity vectors
¢’ =(0,0,..,0), C" = (0,0,...,0). Generalization to have a

4. THE MAPPING PROBLEM 91

multiple choice problem could be obtained if, for each item de-
scribed via a W; vector, we define a group, with the first element,
w2 = (0,0,...,0) and the second element W} = W;. Profit for
WP is 0, and profit for W} is the profit associated with the
original item ¢ in the knapsack problem.

As a result, because the knapsack problem is NP-hard [75],
we get that MMMKP is NP-hard.

A knapsack problem with N items has a solution space of
the size ©(2Y) as the decisional variables associated with each
item are expressed as x; = 1 if we choose the item or x; = 0
otherwise.

In the MMMKP, we observe that we choose one only vir-
tual machine from each group, and the chosen one is mapped
over only one of the available M physical machine. So, for a
group made up of g; elements, we have g; x M different decision
variables, of which only one will be set to 1.

For all the groups, this leads to a solution space size of ©(g; *
M xgox M*...xgo+ M) = O([] gi * MF), where we have the ©
notation as the mappings are not independent from each other
(when one virtual machine is mapped over a physical machine,
there are less available physical resources).

To complete analysis, if we assume that g; = k for each ¢,
the solution space size is (k¢ + M¥). For M = 1 and k = 2,

4. THE MAPPING PROBLEM 92

we have the solution space size of a classical knapsack problem.

4.4 Optimal solution of the mapping

problem

A naive approach to find the optimal solution of the mapping
problem will consist of enumerating all the combinations of the
decision variables: for each combination we first check if the
constraints are not violated; for all the feasible combinations the
associated profit P is compared against the previous maximum:
if it’s bigger the current configuration of the decisional variables
is considered the best solution found insofar.

The enumeration will keep care of guarantee for the con-
straints[4.4] as for each group it consider only all the acceptable
combinations that are, as seen in paragraph in number of
g; * M. For each one of these combination for the first group,
the combination of the second group are evaluated, and for each
combination of these, the combination of the third group are
evaluated and so on in an iterative way.

The enumeration tuples we produce in this approach could
be represented in a hierarchical way, putting them in a decision
tree (see figure .

4. THE MAPPING PROBLEM 93

[x(z,l):l } {x(z,l):z } { x(2,1)=1 } {x(z,l):z }

Figure 4.1: A partial decision tree for a MMMKP problem.
In the double checked leaf, set decisional variables are z}! =
2,22t = 1.

Each node of the tree contains the values of the decisional
variables that have already been chosen, while the leafs contain
the values of the decisional variables that are under evaluation.
Evaluation consists of two phases. In the first phase we check
if, for the (partial) solution which is described by the nodes in
the path from the current leaf to the root of the tree, some of
the constraints are violated. If so, there is no need to further
develop the tree, because the current node and all its descen-
dants will violate the constraints. The node is then marked and
we move on to evaluation of another node. Second phase of
the evaluation is the generation of all the possible descendants,
that are proposed assignments for the decisional variables of the

4. THE MAPPING PROBLEM 94

next group (at level ¢ of the three, we have the values of the de-
cisional variables for the i-th group). If there are no leafs to be
evaluated, the enumeration process is done, and we have found
(one of) the optimal solution for the problem.

This algorithm uses a simple method to cut the developing
of the tree, that could be improved implementing a branch and
bound technique.

To do so, we consider a linear relaxation of original problem,
where the constraints[4.4 and are relaxed by these:

gi
> ai =1, Ym (4.9)
j=1

> DY < R™, ¥m (4.10)

where decisional variables 2% are real numbers in the range
[0..1].

For each leaf of the decision tree, we have some of these
variables that are fixed, and others that are free. We find the
optimal solution that maximizes [4.3 via the Simplex Method.
This solution is an upper bound of the solution for the origi-
nal (integer) problem, because allowing for decisional variables
to take fractional values potentially lead to a better use of the

available knapsacks capacities. This upper bound will be evalu-

4. THE MAPPING PROBLEM 95

ated against the current optimal found for the integer problem,
and the corresponding sub-tree will no further expanded if the
upper bound is less than the optimal found insofar. Otherwise,
the sub-tree is promising, and we could afford to expand it.
The Simplex Method could grow exponentially in the time it
takes to find an optimal solution for a given set of free variables,
and the number of trees to be expanded and evaluated will be
exponential in the number of decisional variables. This confirms
that the MMMKP problem is an NP-hard problem, and that an
optimal solution couldn’t searched but for problems of limited

size.

4.5 Approximate solutions for the map-

ping problem

As the mapping problem is NP-hard, we are forced to develop
algorithms to find approximate solutions of it. We both devel-
oped an heuristic to deal with it [44] and a genetic algorithm
[45].

4. THE MAPPING PROBLEM 96

4.5.1 A packing oriented heuristic

As discussed, the MMMKP problem is very similar to the bin
packing problem, so we could define some heuristics that resem-
ble the ones used for the bin packing problem. In all of the
proposed heuristics, we start searching for a basic solution, that
later we try to improve.

A basic solution is when we consider, for each group 4, only
the item i1 - with associated resource demand vector D™ - to
be mapped: we start solving the mapping problem by reducing
it to a multi-dimensional multi-knapsack problem. If we find
a solution for it, we try to improve the solution, considering if
we could map DUt instead of the currently D¥ in solution.
In the following, we adopt naming conventions from operational

research, so item 44, will be indicateb by its size D% .

Next Fit For each item D' we search for a knapsack with
sufficient available space. If there is one, we put D* into it, and
we correspondingly reduce the available space. We start with all
the knapsacks open, and we close one when the available space
is insufficient for the D item. When a knapsack is closed, we
no further inspect it to see if has sufficient available space for
an item. We have a basic solution if each D item has been
put into a knapsack (some knapsacks will be open, other closed,

4. THE MAPPING PROBLEM 97

and it’s possible that there are knapsack completely unused),

otherwise the heuristic fails.

First Fit In the First Fit heuristic, we search for a destination
of the item D' by inspecting all available knapsacks, i.e. we no
longer have open or closed knapsacks. We find a basic solution
in the same sense of Next Fit, i.e. when each item D* has been

put into a knapsack.

Best Fit The Best Fit heuristic searches between all the avail-
able knapsacks the best where to put the item D%, usually
defining best with a metric that tries to minimize the unused
resources. A monodimensional example is where we have two
knapsack, with available space respectively R' = 3 and R? = 4
and we need to insert the item i1 such thatD*' = 3. Both knap-
sacks could host it, but the heuristic choose the first, to make it
completely used and leave a little unused capacity in the second.
In a multi-dimensional bin-packing problem, ties are resolved in
favor of lower (resource) index ore more complex evaluation of
relative scarcity of each resource, as we’ll do. We find a basic
solution in the same sense of Next Fit, i.e. when each item D%

has been put into a knapsack.

4. THE MAPPING PROBLEM 98

Improving the basic solution We improve the solution found
insofar in an iterative way.

At the generic step, we have chosen a specific item from
each group. Assume that for the group ¢ we have item j chosen
on machine m, i.e. z¥ = 1 and :cifle) =0.If j = g; we
already have the most profitable item from group ¢ so we move
on another group to check for possible increases.

Otherwise, we could remove item j from group ¢ from solu-
tion, releasing associated resources on knapsack m, and we see
if and where we could put in solution item j + 1 of the same
group. This requires considering all available knapsacks, finding
the most suitable one to contain such item. If a generic knap-
sack k£ as enough free resources for the item, we evaluate the

goodness of the mapping by this formula:

N IR
Goodness(i, k) = PG — P — (1= up) 5 C (4.11)

In eq.

e the numerator is the vector norm of the residual amount of
resources available on knapsack k after we put item i(j+1)

in it;

4. THE MAPPING PROBLEM 99

e the denominator is the increase in profit we have (P*U+1 —
P%) minus the possibility that we may end up using a
knapsack k that was not yet used (1 — ug * C);

Eq. [4.1T1]makes sense only if the denominator is bigger than zero,
i.e. only if we have some profit gain. In each phase of the im-
provement process, we calculate Goodness(i, k) for each accept-
able value of i (groups with more valuable items) and & (knap-
sacks with available resources). Lowest values of Goodness(i, k)
are better, so we choose the minimum positive one, and we per-
form the necessary corrections on the solution we are working
on (i.e., we set #% = 0 and xz(jﬂ) = 1). We repeat this process
as long as we have made improvements on the current solution.

Each pass has a computational complexity of 6(G x M).

Randomization of data The proposed heuristics are strongly
based on the order by which groups and knapsacks are defined.
We cannot stipulate that it exists an order of these variable such
that the proposed heuristic could always find the optimal solu-
tion, but we are confident that if we permute the groups and the
machines before actually building up a basic solution we could
increase the final profit as a result of the application of the basic
heuristics shown before. We observe that there is not a general

criterion to discriminate between good permutations that lead

4. THE MAPPING PROBLEM 100

us to find better solutions and bad permutations, and also these

good ones are less than statistically rare, unless that P=NP.

Other bin packing heuristics In most of the scientific lit-
erature for the bin-packing problem ([50]) it is assumed that
all the resources are dimensionally homogeneous. As an exam-
ple, if the problem is to put cans into a container maximizing
used space, the cans could be rotated, so elements of vectors
D% could be interchanged. This is not the case of the mapping
problem. Also, heuristics are evaluated with a predetermined
set of elements, that are used as a comparative basis. These
elements are defined as outcomes of some random variables, as-
sumed independent of each other, while in our problem this is
generally not true, for two distinct reasons. First, there is some
degree of intra-dependencies, i.e. if a virtual machines requires
a lot of CPU power it will requires (on average) more memory
than a machine that requires less CPU power. Second, there is
a degree of inter-dependencies, as all machines belonging to the

same tier will share their resource demand vector.

4.5.2 A genetic algorithm

A genetic algorithm could be seen as an intelligent, probabilistic

search in the space of solutions for an hard problem.

4. THE MAPPING PROBLEM 101

Starting from the name itself, the terminology of the genetic
algorithms is derived from the evolutionary biology, where in-
dividuals stem from a population by a recombination of genetic
characteristics of their parents, plus a small probability of some
random genetic mutation. Some mutations are for the better,
giving the individual an higher chance to become a parent of a
new individual (that could inherit this advantageous mutation),
other mutations are for the worst, and the individual carrying
them will have a smaller chance to become parent.

Genetic algorithms have been widely considered as an op-
timization strategy for hard optimization problems, where it’s
easy to find some solutions but it’s very difficult to find the op-
timal, as these initial solutions could be the initial population
from which start the search for the optimal one.

In the field of integer programming, the mapping between
an individual and a solution is usually really simple, as he i-th
chromosome of the individual is 0 (or 1) if and only if the i-th
decision variable of the portrayed solution is 0 (or 1). Although
more complex representations are possible [52] we choose to stick
with this.

Genetic algorithm are not a free lunch in the field of opti-
mization when they are applied to a constrained optimization

problem, as the result of recombination and mutation of two fea-

4. THE MAPPING PROBLEM 102

sible element (i.e., individuals that represent feasible solutions)
could not be feasible. The mapping problem is particularly com-
plex from this point of view. In fact we have two different set of
constraints, the first that requires we choose only one element
from each group, the other that we don’t overfill a knapsack.
As these two set of constraints must be enforced together, we
cannot adapt a simple 'repair’ operator to deal with unfeasible
individual (i.e., individual representing unfeasible solutions), as
has been done in [48] where, should a knapsack be overfilled,
elements are removed from it until the violation is fixed: we
cannot do that as we must allocate exactly one element from
each group. The approach we have adopted is to consider our
constraints as belonging to two different sets: easy and hard.
An easy constraint is a constraint that, should an individual
violate it, we could easily fix, while hard constraints require a
complementary approach, based on the use of penalty function.

Formally speaking, if we have this optimization problem:

max f(x)
x€E (4.12)
xeH

where E and H represents respectively easy and hard con-

4. THE MAPPING PROBLEM 103

straints, we transform problem [4.12 into this one:

max f(x) — p(d(x, H))
x ek

(4.13)

where d(z, H) is a metric function describing the distance
of solution z from the set H of feasible solutions, and p(-) is
a monotonically non-decreasing function such that p(0) = 0.
Penalty functions are surveyed in [34]. For our model, constraint
[4.4 is easy, so we define a repair operator for individuals that
violate it, while constraint [4.5 is hard, and it will be handled

via a penalty function.

Outline Our genetic algorithm starts with a population that
is made up of individuals representing basic solution for the
problem, i.e. solutions where only the lowest SLA of each virtual
machine has been chosen to be allocated. We generate these
solutions by using the first-fit, best-fit and next-fit heuristic from
the bin-packing problem, with a randomization of the data to
generate initial different solutions.

We must take care that we don’t insert into the population
an element that is already in, to avoid that we unnecessarily
reduce the initial population size. After this initialization step,

4. THE MAPPING PROBLEM 104

we do an iterative process, each cycle of it called a generation,

where we:

1.

Choose the two parents of the new individual, by a tour-

nament process;
Create the new individual by a crossover operator;

Mutate some variables of the new individual with a mu-

tation operator;

Calculate the fitness of the individual, taking care of un-

feasibility due to overfilling;
Fix the easy constraint with the repair operator;

Insert this individual into the population, and remove the

individual with the lowest fitness.

These steps are all tunable by some parameters, resulting in

different instances of the same genetic algorithm. We discuss

each of these steps in the following paragraphs.

Tournament Process To choose the two parents that will

generate a new individual, we randomly define two different

pools of all different elements from the population. From each

pool, we choose the element with the highest fitness as one of

4. THE MAPPING PROBLEM 105

the two parents. A larger pool will increase the competitive

pressure.

Crossover Operator After the selection of the two parents,
the new individual will be defined as the crossover of them. In-
stead of adopting a random crossover we do an uniform crossover
[37], where the probability that the i-th variable of the new in-
dividual is equal to the i-th variable of the first or second parent

is proportional to the fitness of the first or second parent.

Mutation Operator Mutation rate is fixed. A more complex
approach would be a dynamic mutation rate, with an higher rate
for the initial generations (when we are probably away from
the optimal solution, so we can change a lot of variables) and
a lower rate as the generations pass away. This is a critical
parameter, as an high rate could destroy the stability of the
genetic algorithm, and a low rate could end up in being trapped

in a local minimum.

Fitness and penalty function At a first glance, one should
be tempted to consider the objective function [4.3 as the fitness
function, but this will result in even completely different indi-

viduals with the same fitness, when we want to differentiate as

4. THE MAPPING PROBLEM 106

much as possible in order to pick up, from the tournament pro-
cess, the potentially best individuals by looking at their fitness
and not only by chance.

We have also to include the penalty function in the fitness
computation, so we are already considering a different problem
than the original one, but we must define the fitness function
so individuals with better values of the fitness are, on average,
better solutions for the original problem.

We observe that, if we have two different and feasible so-
lutions and z’ with the same value of the objective function
[4.3 and the same number of physical hosts used, we can still
say that x is better than 2’ if 2 packs more virtual machines in
the same physical host, while 2’ allocate virtual machines more
evenly; this because it’s more probable that, from the solution
x, we have more unused resources in some physical hosts and we
can use these resources to allocate some others virtual machines,
without changing the number of physical hosts used; while for
solution z’ unused resources are not aggregated together. For-
mally speaking, for a solution z of the formal problem, we define
the relative amount of unused resources for each physical hosts

as:

4. THE MAPPING PROBLEM 107

G gi i i
m
= i 1 Ty, ok dy

m
Tk

(4.14)

rel]" =

From this definition, we have that rel;* is not negative when
the knapsack [has some unused resource k, and it’s less than
zero when we have overfilled it with respect to that resource. We
can leverage on this property of rel}* using it both for rewarding
feasible individuals and for penalizing unfeasible individuals.
To do so, we need also to define the portion of the profit on
a per physical hosts basis, i.e. the profit we earn for the virtual

machines allocated on a specific physical hosts:

Gain(m) = Zx% * PY (4.15)

we need this value to deal with the unfeasibility that arises af-
ter overfilling a physical host: in such a case, we cannot say
which virtual machines is ’guilty’, and we have to decrease the
total profit for the portion of the profit we earn from all the
virtual machines allocated over this overfilled physical host (the
inability to say which virtual machines is guilty is what makes
difficult to define a repair operator and forces use to search a
suitable penalty function).

Conversely, when the host is not overfilled, we could increase

4. THE MAPPING PROBLEM 108

the fitness, and the more resources are relatively free (hosts by
hosts), the more we increase the fitness. Putting all together,

we define the fitness function as:

K M
!
F(x)=P(x)+ Gain(m) x — = rel* 4.16
()= Pl + 303 Gaintm) » g wrelf (419
The quantity « is used as a static multiplier: if & we reward

and penalize individuals more aggressively.

The Repair Operator We define a repair operator to ensure
that eq. 4.4 holds for each individual. This equation requires
that, for each group ¢, we have exactly one element set to 1, all
others being 0. We could express in a different way by stating
that, for each group 4: 1) there is at least an element different
than 0; 2) there is no more than one element different than
0. By such separation, we can define two specialized operators.
Each individual is an ordered collection of groups, and eq.
could hold for some groups and not for others. So we scan all
the groups comprising the individual to check for property 1, we
somehow fix the groups that don’t verify it, and then we rescan
all the groups to check and possibly fix for property 2.

To describe the process, consider an individual made up of
3 groups (which means that we are searching for the optimal al-

4. THE MAPPING PROBLEM 109

X X

XX

Figure 4.2: An individual for a problem with 3 groups. Each X
marks a variable set to 1.

location of 3 virtual machines) where first group has no element
set to 1, and second and third group both have 2 elements set
to 1 (see figure 4.2 for a pictorial representation).

To ensure that each group has at least one non-zero element,
we need to fix the first group. We could this randomly, by
choosing one element of the first group and setting it to 1, or we
could start a neighborhood search. In this search, we generate
g1 new individuals, each one of them completely equal to the
individual we are fixing, but with the i-th variable of the first
group set to 1. (see figure[4.3).

For each of these individuals, we evaluate the fitness (our
fitness function takes care of unfeasibility, so we can safely use
it) and we choose the individual with the highest fitness as the
repaired individual. If we have more than one group that needs

this fixing, we perform it in an iterative way, group after group.

4. THE MAPPING PROBLEM 110

X X| X| X X|

X X))((X X X

Figure 4.3: Fixing the first group with different individuals.

Now we have to ensure that each group has no more than
one non-zero element, so we need to fix the second group. We
generate two individuals, where the i-th individual has set to 1
only the i-th non-zero variable of the second group, and again
we choose the best among them. Then we repeat the process
for the third group (see figure[4.4).

We stress that, when we create the neighborhood list, we
have partially unfeasible individuals in it, but we can cope with
this as the fitness function is robust enough. We could have
been put in place a more complex research when we consider all
the possible combinations (see figure [4.5), but we have chosen
not to do this for this version of the genetic algorithm, as ef-

ficiency should be carefully evaluated, especially for the size of

4. THE MAPPING PROBLEM 111

X | X
x

e N\
]]

ix XX

Figure 4.4: Fixing the second group by generating two different
individuals.

the explored set of neighborhood elements.

4. THE MAPPING PROBLEM 112

]
f—
[x]

x]

N
x—é
x]

5

Figure 4.5: Fixing the second and third group by generating all
possible feasible individuals.

Simulations results

In this chapter we analyze the performances of the heuristics and
the genetic algorithm we have proposed in Chapter 4, consider-
ing four different problem sets. In the field of the operational
research and integer programming, there are some datasets for
the most classical problems that one could use to test against
a new algorithm, so it’s possible to compare the relative per-
formances between different researchers. At the time being, we
don’t have the same for virtualized architectures, and we were
unable to find publicly known data depicting a distributed sys-

tem that has been virtualized: we were forced to consider some-

113

5. SIMULATIONS RESULTS 114

what arbitrary models of distributed systems, and we are also
aware that the performances of our solvers (particularly for the
genetic algorithm) cannot be fully understood and determined
without knowing the class and the structure of the problems.
From an implementation stand-point, all the programs we
have made are written in C, and they extensively use the GNU
Scientific Library (GSL) |7] as we need to to deal with random
numbers. We don’t stress too much in the sense of their effi-
ciency, as we are more interested in their robustness: neverthe-
less, each dataset is solved within few minutes, on a commodity

computer.

5.1 Implementation of the bin packing

heuristics

All the proposed bin packing heuristics find a basic solution,
which is a solution when only the lowest SLA of each virtual ma-
chine is instantiated over a physical host. We define mapping|i]
has such physical host, so if we have mapping[i] = j we have,
in our formal model, that J, = 1. We have implemented the
Next Fit, First Fit and Basic Fit bin packing heuristics.

5. SIMULATIONS RESULTS 115

Next Fit In the Next Fit (algorithm 1) we start considering
all physical host as initially available (open). Then, for each
virtual machine, we consider each open physical host: if it could
contain the virtual machine, we put the latter in the former,
thus reducing the available resources, and setting mappingli
properly; otherwise, we close the physical host, so we’ll no longer
consider it in further iterations. These closings reduce the set
of available physical host over iterations. It’s easy to show that

computational complexity of this heuristic is (G x M).

First Fit In the first fit (algorithm 2), we consider all physical
hosts as possible destinations for the lowest SLA of each virtual
machine, in a strict order starting from the first physical host
and then moving on. The first host we find that has sufficient
available resources, will be the chosen host. As in the Next Fit,

computational complexity is O(G * M).

Best Fit In the Best Fit heuristic (algorithm 3), we have first
to define which resources of the K we have in our model is
the scarcest. The scarcest resource is the one where the ratio
between the grand total of it, as provided by the physical hosts,
and the grand total of requested by the lowest SLA of all virtual

machines, is lowest. The scarcest resource r is the resource

5. SIMULATIONS RESULTS 116

Algorithm 1 Next Fit Algorithm
for i =1to M do
openli] < true
end for
fori=1toG do
mapping[i] — —1
end for
for each virtual machine ¢ do
for each host j do
if open[j] then
if host j has sufficient resources for lowest SLA of vir-
tual machine i then
mappingli] — j
reduce available resources for host j
move to next value of 4
else
open[j] — false
end if
end if
end for
end for
if Ji s. t. mapping[i] = —1 then
print Unable to find a basic solution
end if

5. SIMULATIONS RESULTS 117

Algorithm 2 First Fit Algorithm
fori=1toG do
mapping[i] — —1
end for
for each virtual machine ¢ do
for each host j do
if host j has sufficient resources for lowest SLA of virtual
machine i then
mapping[i] — j
reduce available resources for host j
move to next value of i
end if
end for host j
end for virtual machine i
if 3i s. t. mapping[i] = —1 then
print Unable to find a basic solution
end if

5. SIMULATIONS RESULTS 118

which should drive our mapping process, as there is not so much
of it.

After this determination, for the lowest SLA of each virtual
machine, we first determine the set of physical hosts that have
sufficient available resources (defining has_space[j] = true if
host j has this property). From all these hosts, we associate
the virtual machine and the best host. The best host is the
host where mapping of the virtual machine will result in the
minimization of the residual resource r. This heuristic has a
computational complexity of ©(G * M) but the hidden propor-
tionality factor is the highest.

Randomization of data The three heuristics process data
in a strict order, while the mapping problem does not change
if data are reordered (as an example, by swapping elements of
group ¢ with elements of group j). So we decide to allow for a
permutation of the D vector (and the associated P) vector. Per-
mutation is defined randomly by using the gsl_ran_shuffle()
function of the GSL library.

The random number generator used is the Mersenne Twister
[77] implemented by GSL, and we consider 10,000 runs of each
of the heuristics, each time changing the random number seed.

For each of these runs, we improve the solution by the heuristic

5. SIMULATIONS RESULTS 119

Algorithm 3 Best Fit Algorithm
for i =1toG do
mapping[i] «— —1
end for
for each virtual machine i do
for each hosts j do
has_space[j] < false
end for
for each host j do
if host j has sufficient resources for lowest SLA of virtual
machine i then
has_space[j] <« true
end if
end for
for each host j s.t. has_space[j] is true do
choose the best host, b
reduce available resources for host b
mappingli] < b
end for
end for
if Ji s. t. mapping[i] = —1 then
print Unable to find a basic solution
end if

5. SIMULATIONS RESULTS 120

defined by eq. [4.11 discussed before.

5.2 Implementation of the genetic al-

gorithm

As is for each genetic algorithm, the tuning of the parameters
is particularly complex, and more an art than a science. We
believe that we cannot find the best parameters without a deep
understanding and analysis of real models; as our models are
somewhat arbitrary, we choose to make the more simplistic as-

sumptions:

1. The size of the tournament process is 5, so we draw a
pool of all different 5 individuals to find each parent: this
means a very high competitive pressure (usually each pool

is made up of 2 individuals);

2. The mutation rate is proportional to 3 times the number
of decisional variables set to 1, and it’s fixed all along the

simulation. It’s a rather high value;

3. The value of «a from eq. [4.16 is set to 2.4; being K = 2

this means that the multiplier 4 is bigger than 1;

5. SIMULATIONS RESULTS 121

4. The initial population consists of 300 individuals, 100 for
each of the bin-packing basic heuristics seen before; as
we remove the individual with the lowest fitness at each
generation, the population size remains stable throughout

the simulation;

5. We run the genetic algorithm for 2,000 generations.

5.3 Models dataset

We consider two models to test the heuristic, plus two different
models to test the genetic algorithm. For all but the smallest of
them, the time it takes to find the optimal solutions via a tool
like GLPK [6] is so long that we didn’t see the linear program-
ming solver coming to an end.

Tables'5.1 and[5.2]show the characterization for the first and
second model, the ones on which the heuristic is tested. Both
models depict a three-tier; as an example for the first model
(table the first tier (the web tier) is made up of 2 nodes,
each one having three different services of levels: the lowest level
of service requires 1 CPU core, 2 GiB of RAM and gives a profit
of 2 units, where the intermediate level requires 2 CPU cores and
4 GiB of RAM, and the profit goes up to 4. The highest level

5. SIMULATIONS RESULTS 122

returns us a profit of 8, but it requires 3 CPU cores and 4 GiB
of RAM. All the fourth models are 2-dimensional, as it will be
difficult to find reasonable characterization of other resources.

Table[5.3|reports the grand total of physical resources for all
the four models. Note that not all hosts are equal in the amount
of resources they provide.

Although the second model is not so much bigger than the
first, the increase in its size (both in virtual machines number,
SLAs and number of physical hosts available) makes difficult to
find the optimal solution: the linear programming solver takes
some seconds to find the optimal solution for the first model,
while on the second we have only the range where the profit of
the optimal solution lies after hours of computation (on an Intel
Xeon 1.86 GHz).

So, while in table we compare the profit for the optimal
solution and the best profit found by the heuristic, on table
we cannot do better than compare the range of profit with the
best profit found by the heuristic. We consider, for this two
different models, different values of C.

There is a common result we can see: for small value of C' the
heuristic performs extremely well, being capable to find the op-
timal solution or a solution really close to it. When C increases,

the heuristic is no more able to find an optimal solution. This

5. SIMULATIONS RESULTS 123

Tier | Size | CPU cores | RAM (GiB) | Profit |

Web 2 1/2/3 2/4/4 | 2/4/8
Application | 6 2/2 2/4 2/6
Database 2 2/4 2/4 2/4

Table 5.1: First model SLAs and profits.

| Tier | Size | CPU cores | RAM (GiB) | Profit |

Web 2 1/2/4 2/4/6 | 2/4/8
Application | 6 2/4/4 2/4/6 2/4/6
Database 2 2/2 4/6 2/6

Table 5.2: Second model SLAs and profits.

may indicate that the value of Goodness(i, k) as computed by
eq. [4.11]is too much sensitive to the value of C.

Tables 5.6 and [5.7 describe the third and fourth model, in-
puts for the genetic algorithm. These models have a structure
analogue to the first two models, with some minor variations.
In both cases, the value of C' is set to 1.

Table [5.8 reports the fitness of the best individual of the
initial population and the fitness of the best individual at the
end of the simulation.

The increase in individual’s fitness is clearly evident. On

figure 5.1 the average fitness of the population over the simula-

5. SIMULATIONS RESULTS 124

| Model | Hosts | CPU cores | RAM size (GiB) |

First 6 48 48
Second 8 64 88

Third 8 64 88
Fourth 12 96 192

Table 5.3: Physical hosts characterizations for all models.

| C | Optimal | Heuristic |

0 60 60
1 35 53
2 50 46
3 45 39

Table 5.4: Comparisons of profits for the optimal solution and
the approximate solution for the first model, for different values
of C.

| C | Range of optimal profit | Heuristics |

0 87+ 96 84
1 79 =95 69
2 7193 54
3 63 = 89 39

Table 5.5: Second model: range of profit and approximate solu-
tion profit, for different values of C.

5. SIMULATIONS RESULTS 125

| Tier | Size [CPU Cores | RAM (GiB) | Profit |
Web 4 1/2/4 2/4/6 2/4/8
Application | 8 2/4/4 2/4/6 2/4/6
Database 3 2/2 4/6 2/6

Table 5.6: Third model SLAs and profits.

| Tier | Size | CPU cores | RAM (GIB) | Profit |
Web 6 1/2 2/4 2/4
Application | 12 1/4 2/4 2/4
Database 4 2/2 4/6 2/6

Table 5.7: Fourth model SLAs and profits.

| Model | Initial best fitness | Final best fitness |

Third 33 109
Fourth 39 166

Table 5.8: Initial and final fitness of best individual for third
and fourth model, as seen by the genetic algorithm.

5. SIMULATIONS RESULTS 126

110

100

92

80

70

60

Average Fitness

50

awfl/

30 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Generation

Figure 5.1: Average fitness of population for the third model.

tion for the third model is depicted, while figure[5.2]is for the
fourth model. The average fitness value is higher than the fit-
ness shown in table[5.8, as the average is all over the population,

including the unfeasible individuals.

5. SIMULATIONS RESULTS

180

160

140

Average Fitness

40 f

20

120

100

80

60| /

0

L
200

400 600 800 1000) 1200 1400 1600 1800 2000
Generation

127

Figure 5.2: Average fitness of population for the fourth model.

Conclusions

It is the fate of every voyager, when he has just
discovered what object in any place is more partic-
ularly worthy of his attention, to be hurried from it.

(Charles Darwin, Voyage of the Beagle)

Operating system level virtualization will be fundamental in de-
signing and deploying computing architectures int the next fol-

lowing years.

128

6. CONCLUSIONS 129

The increasing concerns for environment protection and the
rising prices of electricity are some of the drivers for maximize
computing efficiency. Virtualization will be helpful in achieving
these goals, and has also some more technological benefits, as
it’s capable of isolating systems to allow for better security and
makes easier to implement disaster recovery solutions.

These key benefits are possible as virtualization is another
layer connecting to and interposing between hardware and op-
erating system, thus hiding physical heterogeneity and bound-
aries. As virtualization is progressively made in hardware, re-
ducing at a fraction the penalty due to the layer itself, its adop-
tion will further increase, and this will in turn lead to a new
generation of problems.

These problems begins to appear in the field of autonomic
systems, where the ability to self-adapt the system to the chang-
ing workload condition is of the utmost importance, but other
fields with similar resources allocation problems are the emerg-
ing cloud computing and, to some extent, the grid computing.

In this dissertation we have formalized the mapping problem,
which is a generalization of the classical 0/1 knapsack problem,
unknown before this work. The mapping problem requires to
find, for a given set of virtual machines, each one characterized

by a multi-dimensional resource demand vector, one physical

6. CONCLUSIONS 130

machine that has sufficient resources to host it. Physical ma-
chines are from a given set, and are also characterized by an
analogous multi-dimensional vector, describing their allowable
resources. Each one of the virtual machines has possibly some
different service levels, with increasing resources and increasing
profits that are earned when the allocation is made. The objec-
tive function is represented by a sum of profits, that could be
mitigated by the number of physical machines that are used.

We have determined the complexity of the mapping problem,
showing that is a NP-hard problem, and we have proposed an
heuristic and a genetic algorithm to deal with it.

Both the proposed approaches have been valuable in finding
an approximate solution for the mapping problem. We believe
that they would both perform well and complement each other
in a real scenario.

Operating system level virtualization is, in some sense, a
new territory to explore, that could lead us to better, more
efficient and more resilient distributed systems. Some of the
assumptions we have made in the past about how to build a
multi-tier distributed systems must be rediscussed, and to do so
limits and benefits of virtualization must be clearly understood,
properly formalized and methodologically analyzed.

This dissertation aims to be a first step in that direction.

Bibliography

[1] Amazon Elastic Computing Cloud,
http://www.amazon.com/gp/browse.html?
node=201590011

[2] Amazon Simple Storage Service,
http://en.wikipedia.org/wiki/Amazon_S3

[3] AMDG64 Architecture Tech Docs Volume 2,
http://www.amd.com/us-en/assets/content _type/
white papers _and tech docs/24593.pdf

[4] AMD I/0 Virtualization Technology (IOMMU) Specifica-
tion,
http://www.amd.com/us-en/assets/content-type/
white papers _and tech docs/34434.pdf

131

BIBLIOGRAPHY 132

[5] AMD Nested Page Table performance benchmark,
http://www.redhatmagazine.com,/2007/11/20/
red-hat-enterprise-linux-51-utilizes-nested-paging-on-
amd-barcelona-processor-to-improve-performance-of-

virtualized-guests/

[6] GNU Linear Programming Kit,
http://www.gnu.org/software/glpk

[7] GNU Scientific Library,
http://www.gnu.org/software/gsl/

[8] IBM S/360,
http://en.wikipedia.org/IBM__ 360

[9] Intel Extended Page Tables,
http://www.intel.com/technology /itj /2006 /v10i3/1-
hardware/8-virtualization-future.htm

[10] Intel Virtualization Directed 1/0,
http://www.intel.com/technology /itj /2006 /v10i3/2-
io/7conclusion.htm

[11] Intel Virtual Machine Device Queues,
http://www.intel.com/technology/platform-
technology /virtualization/VMDq_ whitepaper.pdf

BIBLIOGRAPHY 133

[12] Intel Virtualization Architecture,
http://www.intel.com/technology /itj /2006 /v10i3/1-
hardware/5-architecture.htm

[13] ISCSI,
http://en.wikipedia.orq/ISCSI

[14] Lguest site,
http://lguest.ozlabs.org

[15] Linuz-VServer site,

http://linux-vserver.org

[16] QEMU site,
http://fabrice.bellard.free.fr/qemu/

[17] Qumranet, Linux Kernel Based Virtual Machine,
http://kvm.qumranet.com

[18] OpenVZ site,
http://openvz.org

[19] Self-Service, Prorated Super Computing Fun,
http://open.blogs.nytimes.com /2007/11/01 /self-service-

prorated-super-computing-fun

[20] Solaris Containers (Zone),

http://www.sun.com/bigadmin/content /zones

BIBLIOGRAPHY 134

[21] The UC Berkley/Stanford Recovery-Oriented Computing
(ROC) Project,
http://roc.cs.berkeley.edu

[22] Virtualbox Site,
http://www.virtualbox.org

[23] Virtual Local Area Network,
hittp://www.cs.wustl.edu/ " jain/cis788-
97/ftp /virtual_lans/index.htm

[24] VM Ware site,

http://www.vmware.com

[25] Citriz Xen Server,

http://www.citrixxenserver.com

[26] Xen University of Cambridge Computer Lab site,

http://www.cl.cam.ac.uk /research/srg/netos/xen

[27] Xen Assign Hardware to DomU,
http://wiki.xensource.com/xenwiki/
Assign Hardware to DomU with
_PCIBack as module

[28] Xen Network architecture,

http://wiki.xensource.com/xenwiki/XenNetworking

BIBLIOGRAPHY 135

[29]

[30]

31]

[32]

[33]

Xen Network Paravirtualized Driver performances,
https://bugzilla.redhat.com/show_bug.cgi?id=431898

K. Adams, O. Agesen, A Comparison of Software and
Hardware Techniques for £86 Virtualization, Proceedings
of the Twelfth International Conference on Architecture
Support for Programming Languages and Operating Sys-
tems (ASPLOS-XII), October 2006, San Jose, California,
USA

J. Almeida, D. Ardagna, M. Trubian, Resource Manage-
ment in the Autonomic Service-Oriented Architecture, in
Proceedings of the 2006 International Conference on Au-
tonomic Computing ICAC’06

M. M. Akbar, E. G. Manning, G. C. Shoja, S. Khan,
Heuristic Solutions for the Multiple-Choice Multidimen-
sion Knapsack Problem, Lecture Notes in Computer Sci-
ence, LNCS 2074, Springer Verlag, 2001

M. M. Akbar, M. Sohel Rahman, M. Kaykobad, E.
G. Manning, G. C. Shoja, Solving the Multidimensional
Multiple-choice Knapsack Problem by Constructing Con-
ver Hulls, Computers and Operation Research, vol. 33 is-
sue 5, May 2006

BIBLIOGRAPHY 136

[34]

[35]

[36]

[37]

[38]

T. Baeck, D. Fogel, Z. Michalewicz, Eds., Handbook of
Evolutionary Computing, A joint Publication of Oxford
University Press and Institute of Physics Publishing, 1995

R. Bhargava, B. Serebrin, F. Spadini, S. Manne, Accelerat-
ing Two-Dimensional Page Walks for Virtualized Systems,
Proceedings of the 13th international conference on Archi-
tectural support for programming languages and operat-
ing systems (ASPLOS-XIII), Seattle, Washington, USA
2008

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield, Xen
and the Art of Virtualization, in Proceedings of the Nine-
teenth ACM Symposium on Operating Systems Princi-
ples, Bolton Landing, NY, USA, 2003

J. E. Beasley, P. Chu, A Genetic Algorithm for the Set
Covering Problem, European Journal of Operational Re-
search, vol. 94 1996

F. Bellard, QEMU, a Fast and Portable Dynamic Trans-
lator, Proceedings of the USENIX Annual Technical Con-
ference, 2005

BIBLIOGRAPHY 137

[39]

[40]

[41]

[42]

[43]

M. N. Bennani, D. A. Menascé, Assessing the Robustness
of Self-Managing Computer Systems Under Highly Vari-
able Workloads, in Proceedings of the International Con-
ference on Autonomic Computing (ICAC’04)

M. N. Bennani, D. A. Menascé, Resource Allocation
for Autonomic Data Centers using Analytic Performance
Models, in Proceedings of the Second International Con-
ference on Autonomic Computing (ICAC’05), Seattle,
WA, USA

D. Bertsimas, R. Demir, An Approzimate Dynamic Pro-
gramming Approach to Multi-dimensional Knapsack Prob-

lems, Management Science, vol. 48 issue 4, 2002

S. Biemueller, AMD ASID Implementation in Xen
AMD-V, Xen Summit Spring 2007
http://xen.org/files/xensummit_4/2007XenSummit-
AMD-ASIDS-Biemueller.pdf

R. Bradford, E. Kotsovinos, A. Feldmann, H. Schioberg,
Live Wide-Area Migration of Virtual Machines Including
Local Persistent State, in Proceedings of the 3rd Inter-
national Conference on Virtual Execution Environments
(VIEE’03), San Diego, California, USA, 2007

BIBLIOGRAPHY 138

[44]

[45]

[46]

[47]

48]

P. Campegiani. F. Lo Presti, A General Model for Vir-
tual Machines Resources Allocation in Multi-Tier Dis-
tributed Systems, in Proceedings of the International Con-

ference on Autonomous and Autonomic Computing 2009
(ICAC’09), Valencia, Spain, 2009

P. Campegiani, A Genetic Algorithm to Solve the Virtual
Machines Resources Allocation Problem in Multi-tier Dis-
tributed Systems, submitted to the Second International
Workshop on Virtualization Performance: Analysis, Char-
acterization, and Tools (VPACT’09), Boston, Mass. USA,
2009

C. Chekuri, S. Khanna, A PTAS for the Multiple Knap-
sack Problem, in Proceedings of the Eleventh Annual
ACM-STAM Symposium on Discrete Algorithm, San Fran-
cisco, CA, USA, 2000

L. Cherkasova, D. Gupta, A. Vahdat, Comparison of the
Three CPU Schedulers in Xen, Xen Summit Spring 2007,
http://xen.org/files /xensummit_ 4/3schedulers-xen-
summit _Cherkosova.pdf

P. C. Chu, J. E. Beasley, A Genetic Algorithm for the

Multidimensional Knapsack Problem, Journal of Heuris-

BIBLIOGRAPHY 139

[49]

[50]

[51]

[52]

[53]

[54]

tics, vol. 4 n. 1, Springer Verlag, 1998

C. Clark, K. Fraser. S. Hand, J. Gorm Hansen, Live Mi-
gration of Virtual Machines, in Proceedings of the 2nd
Conference on Symposium on Networked Systems Design
& Implementation (NSDI), 2005

E. G. Coffman Jr., M. R. Garey, D. S. Johnson, Approz-
imation Algorithms for Bin Packing: a Survey, Approxi-
mation Algorithms for NP-hard Problems, PWS, 1996

R. Cohen, L. Katzir, D. Raz, An Efficient Approximation
for the Generalized Assignment Problem, Information Pro-

cessing Letters, vol. 100 issue 4, Elzevier, 2006

C. Reeves, Hybrid Genetic Algorithms for Bin-Packing
and Related Problems, Annals of Operations Research, vol.
63 1996

C. Cotta, J. M. Troya, A Hybrid Genetic Algorithm for
the 0-1 Multiple Knapsack Problem, Artifical Neural Nets
and Genetic Algorithms 3, Springer Verlag, 1998

B. Cully, A. Warfield, Virtual Machine Checkpointing,
Xen Summit Spring 2007,
http:/ /zen.org/files/zensummit_ 4 /talk_ Cully.pdf

BIBLIOGRAPHY 140

[55]

[56]

[57]

[58]

[59]

[60]

[61]

W. Curtis Peterson, Using SANs and NAS, O’Reilly

S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E.
Gelembe, F. Massacci, P. Nixon, F. Saffre, N. Schmidt,
F. Zambonelli, A Survey on Autonomic Communications,
ACM Transactions on Autonomous and Adaptive Sys-
tems, Vol. 1 no. 2, December 2006

U. Drepper, The Cost of Virtualization, ACM Queue Vol-
ume 6 Number 1, January/Febrary 2008

U. Drepper, What Every Programmer Should Know About
Memory,
http://people.redhat.com /drepper /cpumemory.pdf

K. J. Duda, D. R. Cheriton, Borrowed-Virtual-Time
(BVT) scheduling: supporting latency-sensitive threads in
a general-purpose scheduler, in Proceedings of the Sev-
enteenth ACM Symposium on Operating Systems Princi-
ples, Kiawah Island Resort, SC, USA, 1999

C. E. Ferreira, A. Martin, R. Weismantel, Solving Multiple
Knapsack Problems by Cutting Planes, STAM Journal of
Optimization, vol. 6 n. 3, 1996

G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia,
M. Woodside, Performance Analysis of Distributed Server

BIBLIOGRAPHY 141

[62]

[63]

[64]

[65]

[66]

Systems, Proceedings of The 6-th International Confer-
ence on Software Quality, Ottawa, October 1996

T. Garfinkel, R. Bfaff, J. Chow, M. Rosenblum, D. Boneh,
Terra: A Virtual Machine-Based Platform for Trusted
Computing, Proceedings of the Nineteenth ACM Sympo-
sium on Operating Systems Principles, Bolton Landing,
NY, USA, 2003

E. Van Hensbergen, P.R.O.S.E. Partitioned Reliable Op-
erating System FEnvironment, ACM SIGOPS Operating
Systems Review, Volume 40, Issue 2, April 2006

E. Van Hensbergen, The Effect of Virtualization on OS
Interference,

http:/ /research.ihost.com/osihpa/osihpa-hensbergen.pdf

M. Hifi, M. Michrafy, A. Sbihi, Heuristic Algorithms for
the Multiple-choice Multidimensional Knapsack Problem,

Journal of Operational Research Society, vol. 55 num. 12,
2004

M. Hifi, M. Michrafy, A. Sbihi, A Reactive Local
Search-Based Algorithm for the Multiple Choice Multi-

Dimensional Knapsack Problem, Computational Opti-

BIBLIOGRAPHY 142

mization and Applications, vol 33. n. 2-3, Springer Verlag,
2006

[67] P. Horn, Autonomic Computing Vision and Manifesto,
http://www.research.ibm.com

/autonomic/manifesto/autonomic__computing.pdf

[68] W. Huang, Nested Page Table Support, Xen Summit
Spring 2007
http://xen.org/files/xensummit_4/2007XenSummit-
AMD-Barcelona_Nested Paging WahligHuang.pdf

[69] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Stein-
der, M. Sviridenko, A. Tantawi, Dynamic Placement for
Clustered Web Applications, in Proceedings of the 15th
international conference on World Wide Web, Edinburgh,
Scotland, 2006

[70] J. O. Kephart, D. M. Chess, The Vision of Autonomic
Computing, Computer, January 2003

[71] L. Kleinrock, Queuing Systems, Volume I: Theory, Wiley
Interscience, 1975

[72] L. Kleinrock, Queueing Systems, Volume 2: Computer
Applications, John Wiley and Sons, Inc., 1976

BIBLIOGRAPHY 143

73]

[74]

[75]

[76]

[77]

[78]

J. Jann, L. M. Browning, R. S. Burugula, Dynamic Re-
configuration: Basic Building Blocks for Autonomic Com-
puting on IBM pSeries Servers, IBM Systems Journal,
42(1):29-37

T. Lindholm, F. Yellin, The Java Virtual Machine Speci-
fication, second edition, Prentice Hall PTR

S. Martello, P. Toth, Knapsacks Problems: Algorithms
and Computer Implementations, John Wiley and Sons,
1990

H. Matsumoto, SCSI Support for Xen, Xen Summit
Spring 2007,

http://xen.org/files/xensummit_4/Xen

_ Summit 8 Matsumoto.pdf

M. Matsumoto, T. Nishimura, Mersenne twister: a 623-
dimensionally Equidistributed Uniform Pseudo-random
Number Generator, ACM Transactions on Modeling and

Computer Simulation, vol. 8 issue 1, January 1998

D. A. Menasce, V. A. F. Almeida, L. W. Dowdy, Capacity
Planning and Performance Modeling: from mainframes to

client-server systems, Prentice Hall, 1994.

BIBLIOGRAPHY 144

[79]

[80]

[81]

[82]

[83]

[84]

D. A. Menascé, M. N. Bennani, Autonomic Virtualized
Environments, in Proceedings of the International Confer-
ence on Autonomic and Autonomous Systems, ICAS’06,
2006

D. A. Menascé, M. N. Bennani, On the Use of Perfor-
mance Models to Design Self-Managing Computer Sys-
tems, in Proceedings of 2003 Computer Measurement
Group Conference, 2003, Dallas, TX, USA

D. A. Menascé, Virtualization: Concepts, Applications,
and Performance Modeling, in Proceedings of 2005 Com-
puter Measurement Group Conference, Dec. 4-9, 2005, Or-
lando, FL, USA

M. Nelson, B. Lim, G. Hutchins, Fast Transparent Mi-
gration for Virtual Machines, in Proceedings of the an-

nual conference on USENIX Annual Technical Conference,
Anaheim, CA, USA, 2005

P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin,
Performance FEvaluation of Virtualization Technologies for
Server Consolidation, HP Tech Report HPL-2007-59

P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, K. Salem, Adaptive Control of Virtualized

BIBLIOGRAPHY 145

Resources in Utility Computing Environments, in ACM
SIGOPS Operating Systems Review, vol. 41 issue 3, June
2007

[85] D. Pisinger, A Minimal Algorithm for the Multiple-Choice
Knapsack Problem, European Journal of Operational Re-
search, vol. 83 issue 2, Elsevier, 1995

[86] G. J. Popek, R. P. Goldberg, Formal Requirements for
Virtualizable Third Generation Architectures, Communi-
cations of the ACM, Volume 17 Number 1, July 1974

[87] B. Quetier, V. Neri, F. Cappello, Scalability Comparison
of Four Host Virtualization Tools, in Journal of Grid Com-
puting, 2006

[88] B. Quetier, V. Neri, F. Cappello, Selecting a Virtual-
ization System for Grid/P2P Large Scale Emulation, in
Proceedings of EXPGRID (HPDC-15’s Workshop), Paris,
France, 2006

[89] S. Ranjan, J. Rolia, H. Fu, E. Knightly, QoS-Driven
Server Migration for Internet Data Centers, in Proceed-
ings of Tenth International IEEE Workshop on Quality of
Service, 2002.

BIBLIOGRAPHY 146

[90]

[91]

[92]

(93]

[94]

[95]

M. Reiser, S. S. Lavenberg, Mean-Value Analysis of Closed
Multichain Queueing Networks, Journal of the ACM, vol.
27 issue 2, April 190.

S. Rixner, Network Virtualization: Breaking the Perfor-
mance Barrier, ACM Queue January/February 2008

J.S. Robin, C. E. Irvine, Analysis of the Intel Pentium’s
ability to support a secure virtual machine monitor, in Pro-
ceedings of the 9th USENIX Security Symposium, Denver,
CO, USA, August 2000

B. Ryu, A. Elwalid, The importance of long-range de-
pendence of VBR wvideo traffic in ATM traffic engineer-
ing: myths and realities, in Proceedings of the ACM SIG-
COMM’96, Palo Alto, CA, USA

S. Shelford, M. M. Akbar, E. G. Manning, G. C. Shoia,
Distributed Optimal Admission Controllers for Service
Level Agreements in Interconnected Networks, in Proceed-
ings of the 21st IASTED International Conference on Ap-
plied Informatics, Innsbruck, Austria, 2003

S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, L. Pe-
terson, Container-Based Operating System Virtualization:

a Scalable, High-performance Alternative to Hypervisors,

BIBLIOGRAPHY 147

[96]

[97]

[98]

[99]

[100]

in Proceedings of the EuroSys 2007 Conference, Lisbon,
Portugal, 2007

S. J. Vaughan-Nichols, New Approach to Virtualization is
Lightweight, Computer, IEEE Computer Society, Vol. 39
Number 11, 2006

F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat,
J. Mambretti, I. Monga, B. van Oudenaarde, S. Raghu-
nath, P. Yonghui Wang, Seamless Live Migration of Vir-
tual Machines over the MAN/WAN, Future Generation
Computer Systems, Volume 22 Issue 8, 2006

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, A.
Tantawi, An Analytical Model for Multi-tier Internet Ser-
vices and Its Applications, in Proceedings of SIGMET-
RICS’05, 2005, Canada

D. Vilella, P. Pradhan, D. Rubenstein, Provisioning
Servers in the Application Tier for E-Commerce Systems,
ACM Transactions on Internet Technologies, vol. 7 No. 1,
2007

E. Wahlig, W. Huang, AMD Barcelona and Nested Paging
Support in Xen, Xen Summit Spring 2007,

http://xen.xensource.com /files/xensummit 4/

BIBLIOGRAPHY 148

[101]

[102]

[103]

[104]

[105]

2007XenSummit-AMD-Barcelona Nested
_Paging WahligHuang.pdf

X. Y. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y.
Chen, Q. Wang, Appliance-based Autonomic Provision-
ing Framework for Virtualized Outsourcing Data Center,
in Proceedings of the Fourth International Conference on
Autonomic Computing (ICAC’07)

A. Whitaker, M. Shaw, S.D. Gribble, Denali: Lightweight
Virtual Machines for Distributed and Networked Applica-
tions, Technical Report 02-02-01, University of Washing-
ton, 2002

S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, J. O.
Kephart, An Architectural Approach to Autonomic Com-
puting, in Proceedings of the International Conferecne on
Autonomic Computing (ICAC’04), 2004

T. Yu, K. Lin, Service Selection Algorithms for Web Ser-
vices with End-to-End QoS Constraints, Information Sys-
tems and E-Business Management, vol. 3 n. 2, Spinger
Verlag, 2005

Q. Zhang, L. Cherkasova, E. Smirni, A Regression-

based Analytic Model for Dynamic Resource Provision-

BIBLIOGRAPHY 149

ing of Multi-Tier Applications, in Proceedings of the
Fourth International Conference on Autonomic Comput-
ing (ICAC’07), 2007

	Introduction
	Virtualization techniques
	A general definition of virtualization
	Virtualization at the operating system level
	Virtualization techniques
	Binary translation
	Para-virtualization
	Hardware assisted virtualization
	Light weight virtualization

	VMM implementations
	QEMU
	VMWare
	Xen
	Hardware assisted virtualization
	Lightweight virtualization
	Other VMMs

	Hardware virtualization
	Processor
	Memory and DMA
	Storage
	Network

	Concluding remarks

	Virtualization architectures
	Reference architecture
	Modeling of multi-tier systems

	Virtualization performances and measurement
	Autonomic computing
	Self-optimization
	Proposed extension to the model

	The mapping problem
	Problem formalization
	Discussion of formalization

	The mapping problem as a generalization of the knapsack problem
	Computational complexity of the mapping problem
	Optimal solution of the mapping problem
	Approximate solutions for the mapping problem
	A packing oriented heuristic
	A genetic algorithm

	Simulations results
	Implementation of the bin packing heuristics
	Implementation of the genetic algorithm
	Models dataset

	Conclusions

