

Resour
es Allo
ation for VirtualizedAr
hite
turesPaolo CampegianiApril, 2009

Contents
1 Introdu
tion 12 Virtualization te
hniques 42.1 A general de�nition of virtualization 42.2 Virtualization at the operating system level . . . 72.3 Virtualization te
hniques 102.3.1 Binary translation 112.3.2 Para-virtualization 112.3.3 Hardware assisted virtualization 122.3.4 Light weight virtualization 122.4 VMM implementations 132.4.1 QEMU 132.4.2 VMWare 17i

CONTENTS ii2.4.3 Xen . 202.4.4 Hardware assisted virtualization 242.4.5 Lightweight virtualization 272.4.6 Other VMMs 282.5 Hardware virtualization 302.5.1 Pro
essor 302.5.2 Memory and DMA 312.5.3 Storage 392.5.4 Network 422.6 Con
luding remarks 493 Virtualization ar
hite
tures 503.1 Referen
e ar
hite
ture 553.1.1 Modeling of multi-tier systems 593.2 Virtualization performan
es and measurement . . 633.3 Autonomi

omputing 683.3.1 Self-optimization 703.3.2 Proposed extension to the model 754 The mapping problem 794.1 Problem formalization 804.1.1 Dis
ussion of formalization 844.2 The mapping problem as a generalization of theknapsa
k problem 87

CONTENTS iii4.3 Computational
omplexity of the mapping problem 904.4 Optimal solution of the mapping problem 924.5 Approximate solutions for the mapping problem 954.5.1 A pa
king oriented heuristi
 964.5.2 A geneti
 algorithm 1005 Simulations results 1135.1 Implementation of the bin pa
king heuristi
s . . 1145.2 Implementation of the geneti
 algorithm 1205.3 Models dataset 1216 Con
lusions 128

List of Figures
2.1 VMM ar
hite
ture. 82.2 Xen ar
hite
ture. 212.3 Memory virtualization datapath. 352.4 Xen ar
hite
ture for shared network devi
es. . . . 452.5 CDNA ar
hite
ture. 483.1 A virtualization ar
hite
ture. 543.2 A multi-tier distributed system. 563.3 The QoS Controller. 714.1 A partial de
ision tree for a MMMKP problem.In the double
he
ked leaf, set de
isional variablesare x11

1 = 2, x21
1 = 1. 93iv

LIST OF FIGURES v4.2 An individual for a problem with 3 groups. Ea
hX marks a variable set to 1. 1094.3 Fixing the �rst group with di�erent individuals. . 1104.4 Fixing the se
ond group by generating two di�er-ent individuals. 1114.5 Fixing the se
ond and third group by generatingall possible feasible individuals. 1125.1 Average �tness of population for the third model. 1265.2 Average �tness of population for the fourth model.127

List of Tables
3.1 Measurements for estimation of VMM overhead. 665.1 First model SLAs and pro�ts. 1235.2 Se
ond model SLAs and pro�ts. 1235.3 Physi
al hosts
hara
terizations for all models. . 1245.4 Comparisons of pro�ts for the optimal solutionand the approximate solution for the �rst model,for di�erent values of C. 1245.5 Se
ond model: range of pro�t and approximatesolution pro�t, for di�erent values of C. 1245.6 Third model SLAs and pro�ts. 1255.7 Fourth model SLAs and pro�ts. 125vi

LIST OF TABLES vii5.8 Initial and �nal �tness of best individual for thirdand fourth model, as seen by the geneti
 algorithm.125

A
knowledgmentsI'd like to thank many people that helped me all along the pur-suing of my Ph. D.Professor Salvatore Tu

i was my tutor during these years,and allowed me to freely explore my interests. He says thatthe best way to do resear
h is by �nding a topi
 of interest anddeveloping it, and if I
ould say the best way to understand thisvision is to apply it on everyday's work.Professor Fran
o Ma
eri allowed to run the simulations in thes
ienti�
 lab of Dipartimento di Ingegneria Civile, that it hap-pens I also manage as system administrator hoping not
ausingtoo mu
h long downtimes. Fa
ing high
omputational problemsfrom the system's point of view has developed in me some sen-sibility to performan
es problem that shines through this workviii

(or, at least, I hope so).Professor Aurelio Simone, as the dire
tor of S
uola IaD, putme in
harge of designing and administration of their networkinfrastru
ture, an ex
iting
hallenge that he generously allowsme to do without interrupting my Ph. D. due work.Professor Fran
es
o Lo Presti is the one who more en
our-ages me and follow my progress (or la
k thereof), really helpingme in �nalizing this work.I'd also like to thank people and sta� of Dipartimento diIngegneria Civile and from S
uola IaD for their kindness, andespe
ially Eusebio Giandomeni
o and Mar
o Orazi for their sug-gestions and support.

1Introdu
tionAs many other te
hnologies and paradigms in the
omputer s
i-en
e �eld, virtualization has a long history with periods withgreat momentum and periods when it has been put in then ba
k-ground. The advent of massive and e
onomi

omputer power,as predi
ted by Moore's Law, has �nally resulted in the avail-ability of system level virtualization te
hnologies on
ommodityhardware. This will lead to a
omplete new
lass of problems,from provisioning to deployment, that arise when virtualizationis intended as an ar
hite
tural asset that
ould bring value tothe
omputing platform, an asset upon whi
h build value added1

1. INTRODUCTION 2servi
es.In this dissertation, I investigate a problem that
ould be ex-pressed as: given a number of virtual ma
hines and some phys-i
al ma
hines, ea
h des
ribed respe
tively by a demand ve
torand a resour
e ve
tor, whi
h is the best allo
ation of the formerto the latter, for a given metri
?For a large data
enter, an example of metri
 would be tominimize the number of physi
al ma
hines devoted to host vir-tual ma
hines, giving su�
ient resour
es to ea
h virtual ma-
hine. By minimizing this number, the data
enter
ould in-
rease the e�
ien
y of the physi
al ma
hines, and the underly-ing virtualization te
hnology will prevent ea
h virtual ma
hineto interfere with others, from both a performan
e and a se
urityprospe
tive.It will shown that this problem, stated in the most gener-ally form, is NP-hard (it's a generalization of the
lassi
al 0/1knapsa
k problem), and its
omplexity is daunting, requiring tode�ne an heuristi
 to �nd an approximate solution. We will alsopresent a geneti
 algorithm that appears promising in ta
klingthis problem.The dissertation is organized as follows.In Chapter 2, the di�erent virtualization te
hniques are pre-sented, analyzing them from an ar
hite
tural point of view,

1. INTRODUCTION 3broadly
lassifying them in two
ategories: te
hniques that doesnot rely on hardware feature to support virtualization, and te
h-niques that leverage on.In Chapter 3, we move from a te
hnology point of view to-wards an ar
hite
ture
entri
 one, analyzing the performan
esproblems that virtualization fa
es. We put virtualization as anasset of multi-tier distributed systems, and we des
ribe it as afundamental blo
k for autonomi

omputing. Current works inthis �eld la
k of some degree of generality, and when we extendthe
urrent available frameworks.In Chapter 4, the mapping problem is formally de�ned, weanalyze its
omputational
omplexity, and develop some heuris-ti
s [44℄ to solve it,
omparing them to a geneti
 algorithm [45℄we also propose. In this
hapter, we see that the mapping prob-lem is a generalization of the knapsa
k problem, and we brie�yanalyze the s
ar
e literature on generalization of knapsa
k prob-lems.In Chapter 5, we show simulation results for some interestingdata sets.Chapter 6 ends this dissertation, brie�y re
alling the resultswe have found and proposing future enhan
ements.

2Virtualizationte
hniques
2.1 A general de�nition of virtualiza-tionVirtualization
ould be de�ned as a two phase pro
ess. In the�rst phase, some resour
es of the same kind will be grouped to-gether, hiding physi
al boundaries; in the se
ond phase, a por-tion is
arved out from this aggregated
ompound and presented4

2. VIRTUALIZATION TECHNIQUES 5to an user. There are many types of virtualization, dependingon the type of the aggregated resour
e:
• Virtual LAN (VLAN): a VLAN [23℄ is a set of hosts that
ommuni
ate as if they were on the same wire, unregard-ing their physi
al lo
ation. Even when the hosts are ondi�erent physi
al segment of the same LAN, the
on�gu-ration made on network devi
es like swit
hes and routersallows the hosts to share the same virtual segment, sobroad
ast pa
kets are forwarded only on the VLAN. Thiswill in
rease se
urity, by avoiding unauthorized hosts to
onne
t to the virtual segment, and allows for the de�ni-tion of per-segment Quality of Servi
e poli
ies;
• Storage Virtualization: a bun
h of storage resour
es (disksor tapes) are grouped together, and the a

ess to them issele
tively de�ned by a management fun
tion. In a Net-work Atta
hed Storage (NAS) environment, and more ina Storage Area Network (NAS) [55℄, it is possible do
arveout some resour
es and allow one or more hosts to a

essthem. As a result, the hosts are
omputing nodes that areatta
hed to the data. This allows for better and
heaperdata
onsolidation, ba
kup and se
urity;
• Runtime environments: this is the
ase of many web based

2. VIRTUALIZATION TECHNIQUES 6appli
ations, running on Java or Flash. As an example,when the user downloads a Java applet via the browser,the applet is exe
uted in the
ontext of a Java RuntimeEnvironment (JRE) [74℄. The JRE virtualizes the
om-puting resour
es to the applet in the sense that the appletis written in a so
alled byte
ode, a ma
hine language thatthe JRE translates into real operations for the underlyingtarget pro
essor. As a result, the same applet
ould be ex-e
uted over di�erent pro
essor ar
hite
tures, as long as aJRE is provided. Besides this, the JRE de�nes a sandboxthat has some se
urity
onstraints, like an applet
annota

ess system �les on the target ma
hine.All these examples, no way exhaustive, shows some of the ben-e�ts of virtualization. By adding an intermediate layer betweenphysi
al resour
e and resour
e demand, it's possible to multi-plex, demultipex and routing requests to a single managementpoint, a
hieving better s
alability, manageability, performan
esand se
urity.

2. VIRTUALIZATION TECHNIQUES 72.2 Virtualization at the operating sys-tem levelVirtualization at the operating system level has been imple-mented for the �rst time on the IBM S/360 system [8℄. In anfundamental arti
le on virtualization, Popek and Goldberg [86℄de�ned the formal requirements for a virtualization ar
hite
ture.We will base our exploration and taxonomy of virtualizationte
hniques on that paper, so it's worthy to re
ap it.First, it's de�ned the
on
ept of Virtual Ma
hine Monitor(VMM) as a layer that separate the Virtual Ma
hine (VM) - thatis, the operating system to be exe
uted - from the underlyinghardware, as shown in �gure 2.1.Some of the instru
tions of the VM
ould trap, that in theoriginal arti
le is de�ned by saving the program
ounter to aspe
i�ed lo
ation and then jumping to the address
ontained inanother lo
ation, where a trap routine is to be exe
uted, with thema
hine registers saved. The trap routine will do its own job,then it restores the registers and return
ontrol to the addresssaved in the �rst pla
e. It's possibile to de�ne not blo
king traproutines. This me
hanism is the pre
ursor of today's system
alls, where a program request the operating system to performan operation on hardware resour
es.

2. VIRTUALIZATION TECHNIQUES 8
Virtual Virtual Virtual

machine 1 machine 2 machine N

.

.

VMM

HardwareFigure 2.1: VMM ar
hite
ture.Trap are instrumental to
lassify instru
tion in three di�er-ent groups:
• privileged instru
tions: are the instru
tions that
auses atrap;
• sensitive instru
tions: they
ame in two di�erent types,
ontrol sensitive instru
tions and behavior sensitive in-stru
tions. To de�ne them in terms of
urrent ar
hite
-tures, we de�ne these instru
tions as the ones whi
h
hangesthe pro
essor mode (or returns it) or whi
h exe
ution de-pends on the real memory address of their operands;
• inno
uous instru
tions: all the remaining.

2. VIRTUALIZATION TECHNIQUES 9The VMM should have some properties to allow for the exe
u-tion of a VM on top of it:
• E�
ien
y: Every instru
tion that is inno
uous is exe
uteddire
tly by the underlying hardware, with no interventionof the VMM;
• Resour
e
ontrol: The VM
annot
hange its resour
esquota: every request for more resour
e is mediated by theVMM;
• Equivalen
e: Every program exe
uted in the
ontext of aVM performs in an almost indistinguishable manner, as ifit were exe
uted without a VMM interposing between theVM and the hardware. In this
ontext, almost indistin-guishable means that it's allowed a
ertain degree of devi-ation, as performan
es may be a bit worse and resour
esavailability
ould be not identi
al (be
ause the VM
annota

ess dire
tly the hardware).The work of Papek and Goldberg is fundamental as they proofthe following theorem:For any [
onventional third generation℄
omputer, a virtualma
hine monitor
ould be
onstru
ted if the set of sensitive in-

2. VIRTUALIZATION TECHNIQUES 10stru
tions is a subset of the privileged instru
tion.The theorem still holds for
urrent ar
hite
ture, and we useit as a
riteria to dis
riminate between virtualizable pro
essorar
hite
ture (or so
alled virtualization friendly) and the notvirtualizable ones: a pro
essor ar
hite
ture is virtualizable ifand only if the exe
ution of every sensitive instru
tion eventuallyresult in a trap, as the trap routine
ould be implemented bythe VMM.It will be shown later that, surprisingly, the Intel x86 ar
hi-te
ture is not virtualization friendly.2.3 Virtualization te
hniquesIn spite of the unifying de�nition stated above, there are somedi�erent ways to virtualize an operating system. Broadly speak-ing, there is a trade o� between the resulting performan
es andthe spe
trum of pro
essors ar
hite
tures that
ould be virtual-ized: to a
hieve speed it's usually ne
essary to fo
us on a spe
i�
instru
tion set and presenting the virtual ma
hine a more gen-eralized and less
ustomizable abstra
tion of physi
al hardware,whilst the �exibility of having more instru
tion sets or virtu-alized resour
es usually in
urs in performan
es penalties. We

2. VIRTUALIZATION TECHNIQUES 11identify four di�erent virtualization te
hniques.2.3.1 Binary translationIn this approa
h, a software layer translates operations fromthe virtual ma
hine set to the physi
al ma
hine set, allowing for
ode optimization and translation
a
he e�
ien
y. The virtual-ization layer
ould do a so
alled
ross virtualization, where thevirtual ma
hine instru
tion set and physi
al ma
hine instru
tionset are
ompletely di�erent - requiring to
ompletely translatethe former into the latter - or a partial virtualization, whereinno
uous instru
tion are exe
uted dire
tly by the hardware (ina
ontext set up by the VMM) and
riti
al ones are translatedby the VMM that operates as a resour
es' broker.2.3.2 Para-virtualizationThe operating system of the virtual ma
hine is modi�ed in su
ha way that every system
all that should have a

essed the hard-ware is instead mapped in an system
all exe
uted by and in the
ontext of the VMM. The modi�
ation of the to be virtualizedoperating system
ould be unfeasible when it's released only in
losed sour
e format.

2. VIRTUALIZATION TECHNIQUES 122.3.3 Hardware assisted virtualizationThe instru
tion set has been augmented with operations thaten
ompasses portion of ma
hine
ode. This se
tions are exe-
uted in a virtual ma
hine
ontext, whi
h is di�erent from thephysi
al ma
hine
ontext. The VMM has some degree of
ontrolover the operations made by a spe
i�
 virtual ma
hine, rangingfrom a no trust relationship (every I/O operation performed bythe virtual ma
hine is trapped and results in the exe
ution of theVMM that operates as a
ontrol interfa
e) to a total trust rela-tionship, where the virtual ma
hine
ould dire
tly a

ess everyhardware in the system. The latter results in in
reased speedand diminished se
urity.2.3.4 Light weight virtualizationThe operating system of the physi
al ma
hine is
hanged toallow di�erent and not-
ommuni
ating namespa
es for the dif-ferent resour
e
lasses. As a result, there are some zones (touse a typi
al terminology) and ea
h one has its own �le sys-tem, users, pro
esses namespa
e and hardware view. It
ouldbe argued that this approa
h is not a virtualization, mainly be-
ause it la
ks generality (all the running instan
es are sharingthe same operating system), but it's widely adopted to solve

2. VIRTUALIZATION TECHNIQUES 13some problems that otherwise require a traditional virtualiza-tion te
hnique, while experien
ing nearly no performan
e penal-ties.2.4 VMM implementationsA number of
ompeting produ
ts, both open and
losed sour
e,are available as VMM. In this se
tion we see the most represen-tative of them, fo
using on the adopted virtualization te
hnique.2.4.1 QEMUQEMU [16℄, written by Fabri
e Bellard, is an open sour
e ma-
hine emulator and virtualizer. It
ould operate as a virtualizer,when the virtual ma
hine instru
tion set and physi
al ma
hineinstru
tion set are the same, or as an emulator,
apable of trans-lating instru
tion set from seven di�erent pro
essor ar
hite
tureto some target ar
hite
ture, plus virtualizing system hardwareto allow for a
omplete operating system virtualization.QEMU is a dynami
 translator, i.e. the
ode translated isstored in a translation
a
he where it
ould be reused to in
reasee�
ien
y. The translation pro
ess of QEMU is fully do
umentedin [38℄, and it will be brie�y shown here as it highlights the

2. VIRTUALIZATION TECHNIQUES 14general approa
h for binary translation.Consider the following PowerPC instru
tion:addi r1 , r1 ,−16 # r1 = r1 −16that must be translated into Intel x86
ode. First, there willbe generated some mi
ro operations, that are independent ofthe �nal target:movl_T0_r1 # T0 = r1addl_T0_im −16 # T0 = T0 − 16movl_r1_T0 # r1 = T0the T0 and T1 register are typi
ally stored in host registerdue the optimization made by the GCC
ompiler. The �rst ofthe mi
ro operation is typi
ally
oded as:void op_molv_T0_r1(void) {To = env−>regs [1 ℄ ;} where env is the stru
ture
ontaining the CPU state of thevirtual ma
hine.The
ode generated is then translated in physi
al ma
hine
ode by the GCC
ompiler, and the result will be (for an Intelx86 target):# movl_T0_r1

2. VIRTUALIZATION TECHNIQUES 15# ebx = env−>regs [1 ℄mov 0x4(%ebp) , %ebx# addl_T0_im −16# ebx = ebx − 16add $ 0X f f f f f f f 0 ,%ebx# movl_r1_T0# env−>regs [1 ℄= ebxmov %ebx , 0x4(%ebp)QEMU is a dynami
 translator as it uses a 16 MByte
a
hethat holds the most re
ently used translation blo
ks (TB). Afterthe exe
ution of every TB, the next instru
tion to be exe
utedwill be determined by examining the state of the emulated CPU;if the jump point is in the
a
he, the
ode is exe
uted dire
tly,otherwise the translation pro
ess takes pla
e. A TB
ould bepat
hed dire
tly to the logi
al following one when the jump des-tination is known.More
omplex problem arises with self-modifying
ode, asthe appli
ations written for the Intel x86 ar
hite
ture does notsignal
a
he invalidation that
ould trigger the removing of astale TB.With a dynami

ode translator is possible to exe
ute an ap-

2. VIRTUALIZATION TECHNIQUES 16pli
ation written for a di�erent pro
essor ar
hite
ture, but anentire operating system requires the virtualization of the hard-ware. QEMU allows for a limited set of virtualized hardware.It's possible to have up to two EIDE hard disks, a basi
 videoVGA
ard, one or more Fast Ethernet NIC; while it's also pos-sible to
onne
t dire
tly the USB subsystem of the virtual ma-
hine to the physi
al USB subsystem.The virtualized hard disks are mapped as �le on the physi-
al ma
hine. This will result in a signi�
ant performan
e loss,as every I/O request made from the virtualized ma
hine willtraverse the virtualized operating system sta
k, resulting in asequen
e of I/O operations intertwined with virtualized OS op-erations, and ea
h I/O operation will ultimately result in a I/Ooperation made on the image �le on the physi
al system, requir-ing for being made traversing again the sta
k of an operatingsystem, in this
ase the physi
al one. The �nal result is that thedata path is doubled. QEMU has some �exibility in the image�le format, it's possibile to have a
opy-on-write format �le, butthis ar
hite
ture won't help for performan
es.The network
ard emulation has some interesting features.Ea
h virtual ma
hine
ould have one or more NICs, and theseNICs
ould be logi
ally organized in several ways. It's pos-sible to have two virtual ma
hines on the same private LAN,

2. VIRTUALIZATION TECHNIQUES 17
ompletely hidden from the rest of the world, bridged on thephysi
al LAN or even on a UDP multi
ast network that
ouldspan several physi
al ma
hines.2.4.2 VMWareVMWare [24℄ is the market leader in the virtualization �eld,thanks to its performan
es and management tools. Produ
tsfrom VMWare range from VMWare Player, that is only
apableof run a virtual ma
hine, to the VMWare Infrastru
ture suite,that has the ability to manage resour
es allo
ation, performinglive ba
kup of running virtual ma
hines, moving them from aphysi
al ma
hine to another with very little servi
e interruption.VMWare rea
ted to the introdu
tion of the open sour
e Xenhypervisor (dis
ussed below) by releasing its VMWare serverfree but
losed sour
e, to gain and maintain market share atthe expenses of the new
omer. Unfortunately, the li
ense ofVMWare server di
tates that ben
hmark are possible only whenthe methodology has been approved by VMWare In
., and as aresult of this there are very few s
ienti�
 papers on the internalsof this VMM.One of these is [30℄, where the fo
us is in
ontrasting thathardware assisted virtualization (hardware VMM in the arti
le)

2. VIRTUALIZATION TECHNIQUES 18has overall better performan
e.To a
hieve maximum speed, it's imperative that, as stated in[86℄, most part of the
ode is exe
uted dire
tly by the underlyingphysi
al pro
essor, but this is impossible with the Intel x86 pro-
essor ar
hite
ture, as there are instru
tions that are sensitivebut not trappable. As an example, the Current Privilege Level(CPL)
ould be obtained by reading the low two bits of the
ode segment sele
tor register (%
s), and the popf instru
tion(�pop �ags�) exe
uted by a privileged pro
ess
ould modify theIF �ags that governs the interrupt delivery, an operation that anunprivileged guest
annot do [92℄. As a result, it's ne
essary tohave a binary translator that, for su
h virtualization unfriendlyoperations, simulates their exe
ution in a virtual
ontext. Thetranslator adopted by VMWare is:
• Binary: its input is Intel x86
ode;
• Dynami
 and on demand: translation happens at runtime,and only when
ode is about to be exe
uted;
• System level: the are no assumption about the guest
ode,the ABI is the x86 Industry Standard Ar
hite
ture (ISA);
• Subsetting: the input is the full set of Intel x86 operations,the output is a subset of them (typi
ally only user-mode

2. VIRTUALIZATION TECHNIQUES 19instru
tions);
• Adaptive: translated
ode is adjusted in response to guestbehavior
hange to improve e�
ien
y.The last property is worthy noting. When a CPU en
ountersa trap for a privileged instru
tion, it has to jump to a traproutine (typi
ally an operating system entry point) to deal withit, and this
ould be expensive. A binary translator
ould avoidit, by repla
ing the original
ode with a routine (that, beingexe
uted by a program, is in user mode and not in kernel mode).As an example, the rdts
 instru
tion for the Intel Pentiumar
hite
ture, takes 2030
y
les for a
lassi
al trap and emulateexe
ution, and only 216 for the binary translation. This
oulddeal with a minor part of the sensitive instru
tions, as loads andstores
ould a

ess sensitive data as page tables. The adoptedapproa
h is that an instru
tion is translated identi
ally (i.e., nottranslated) and exe
uted by the physi
al pro
essor. If a traphappens, next time the same instru
tion will be re-translated toavoid the trap, maybe invoking an interpreter.VMWare has put a lot of e�ort in the management and
on-�guration tools, both for a single system and for an entire data
enter. Although the only virtualized operating system are theones for the Intel x86 ar
hite
ture, for ea
h virtual ma
hine is

2. VIRTUALIZATION TECHNIQUES 20possible to de�ne an arbitrary number of virtualized peripher-als, in
luding storage systems, network
ards, video
ards andUSB devi
es. Hard disks
an be mapped into a �le image, adisk partition or an iSCSI target [13℄ to a
hieve maximum per-forman
es. The network
ould be
on�gurated to have a virtualma
hine that has an host-only network (i.e., it
ommuni
atesonly with the physi
al ma
hine it's instantiated on), a NATnetwork (where the physi
al ma
hine a
ts as a Network Ad-dress Translator), or to have a unique, externally a

essible IPaddress.The real value of the VMWare suites
omes with the VMWareInfrastru
ture, that allows for a
entral administration of hun-dreds of virtual ma
hines, over dozens of di�erent physi
al ma-
hines, allowing for load balan
ing, high availability and livemigration (moving a virtual ma
hine from one physi
al node toanother [82℄) with little servi
e disruption.2.4.3 XenXen [25℄ was originally developed at the University of Cam-bridge Computer Lab [26℄ as a framework to have an homo-geneous
omputing environment over a high performan
e
om-puting grid. Performan
es were so good that a
ompany was

2. VIRTUALIZATION TECHNIQUES 21
Hardware

Xen−aware device drivers Xen−aware device drivers

Block

Virtual

Device

Virtual

Network

Virtual

Physical

Memory

Virtual

CPU

Domain 0

interface

control

Xen−aware

device drivers

Dom0 OS Guest OS Guest OS

User Software User SoftwareSoftware

Control

Figure 2.2: Xen ar
hite
ture.founded to gain paying
ustomers for management tools (the hy-pervisor itself is released under the GNU Publi
 Li
ense); laterthe
ompany has been a
quired by Citrix.In the Xen language, both physi
al and virtual operatingsystems are
alled domains, with dom0 indi
ating the hyper-visor and domU for the unprivileged domains, i.e. the virtualma
hines. The �gure 2.2 shows the Xen ar
hite
ture [36℄.Xen adopts the para-virtualization approa
h, borrowed fromthe Denali system [102℄: the appli
ation ABI remains un
hanged,but the virtualized operating system has some modi�
ations (inthe order of thousands of lines of
ode), with the introdu
tion

2. VIRTUALIZATION TECHNIQUES 22of hyper
alls.An hyper
all is essentially a way to
ontrol intera
tions be-tween a virtual ma
hine operating system and the physi
al ma-
hine operating system. The hyper
all interfa
e allows domainsto perform a syn
hronous software trap to perform a privilegedoperation, analogous to the system
alls found in the operatingsystem. Data transfers are managed via I/O rings, essentially aprodu
er-
onsumer bu�er of I/O �le des
riptors, with a generalinterfa
e that
ould be used for almost every kind of I/O devi
eintera
tion.CPU s
heduling between di�erent domains is made withthree di�erent s
hedulers as Xen 3.0: the Borrowed Virtual Time(BVT) s
heduling algorithm [59℄, that is work-
onserving and
apable of a low laten
y wake up when a domain re
eives anevent; the Simple Earliest Deadline First (sEDF) that
ouldbe both work-
onserving and not work-
onserving, but la
ks aglobal load balan
ing between di�erent CPUs; the Credit S
hed-uler that is also global load balan
ing although not preemptive,and has a s
heduling period hard-
oded at 30 ms [47℄.Network interfa
es are quite
omplex [28℄: the foundation ofthe ar
hite
ture is a Virtual Firewall Router (VFR), with ea
hdomain using one or more Virtual Network Interfa
es (VIF).The end result is that ea
h domain sees one or more typi
al

2. VIRTUALIZATION TECHNIQUES 23NIC, but the administration of the VFR
ould be
hallenging.Storage systems for the domU are modeled as Virtual Blo
kDevi
es (VBD): the dom0
ould map them into �les, partitionsor LUNs. It's also possible to bla
k list a PCI devi
e for thedom0, leaving it in the ex
lusive a

ess of one or more domU.Xen has the ability to perform a live migration, with verylittle QoS loss [49℄. On [97℄ it's exposed an ar
hite
ture thatallows for migration over a MAN/WAN, at the expense of hav-ing a dedi
ated
ommuni
ation
ir
uit. On [43℄ it's shown anextension that also allows for migration of the lo
al �le system(hypervisors assume that the lo
al �le system
ould also be a
-
essed from the destination physi
al ma
hine, requiring a NASor SAN infrastru
ture).Che
kpointing, as the ability to save and restore often froma saved image that
ontains also the persistent state, is underdevelopment, allowing for a global
he
kpointing of an entire
luster of virtualized ma
hines [54℄.Xen performan
es are of the utmost interest, as the paravir-tualization has a very low impa
t, at the
ost of requiring to
hange both the dom0 and the domU operating system. Thisis infeasible for operating systems released only in binary form(like Mi
rosoft's Windows line of produ
ts), but Xen also sup-ports the hardware assisted virtualization des
ribed below.

2. VIRTUALIZATION TECHNIQUES 24Xen has found its way in the mainline Linux kernel, aftersome time where its integration with the operating system wasthe premiere feature of enterprise oriented Linux distribution asRed Hat RHEL and Novell SuSE server.2.4.4 Hardware assisted virtualizationThe Intel x86 ar
hite
ture is not a virtualization-friendly one.As a result, until some years ago the only available hypervisorsare binary translator (as VMWare) or para-virtualizer (as Xen).In 2006, Intel has announ
ed the VT-x ar
hite
ture for hardwareassisted virtualization for the x86 pro
essor family, and the VT-ifor the Itanium family [12℄.With the VT-x extension, there are available two new CPUoperations, the VMX root operation and the VMX non-rootoperation.The VMX root operation is intended for a VMM, and it'svery similar to a traditional IA-32 operation. VMX non-root isintended to support and isolate the exe
ution of a virtual ma-
hine, allowing the VMM to de�ne a degree of trust for the vir-tual ma
hine, granting some dire
t intera
tions with the hard-ware.A VM entry is the transition from the VMX root operation

2. VIRTUALIZATION TECHNIQUES 25to the VMX non-root operation, the opposite transition is aVMX exit. The Virtual Ma
hine Control Stru
ture (VMCS)manages these transitions, being
omposed of a guest state areaand an host state area. Pro
essor state is loaded from the guest-state area on every VM entry, while it's restored from the host-state area on every VM exit. Exits happen always for someinstru
tions, for others it depends on some variables and �agsin the VMCS, that
ould be set only in the VMX root operationmode. As an example, the VMCS
ould de�ne how to deliverinterrupts (every interrupt results in a VM exit with no mask, orthe guest is able to re
eive interrupts),
hoose to allow the guestto dire
tly a

ess some spe
ial register (that de�nes paging or�oating point operation mode), whi
h ex
eptions
ause a VMexit, whi
h I/O operations are allowed (by de�ning a

eptableI/O port range).This �exibility allows for a �ner grain of
ontrol, be
ausea VMM
ould
hoose to give a spe
i�
 virtual ma
hine moreprivileges, resulting in fewer VM exits and entries. As notedin [30℄, ea
h entry or exit is analogous to a
ontext swit
h, re-sulting in some performan
e losses. The exa
t penalty variesa lot, be
ause it depends on the number of privileged instru
-tions (in [30℄, one test is based on the virtualization of a
odethat
reates forty thousand pro
esses, a very un
ommon appli-

2. VIRTUALIZATION TECHNIQUES 26
ation behavior). Nevertheless, the performan
e problem mustbe addressed.As a result of the growing
on
erns, the se
ond generation ofvirtualization
apable pro
essor has some new features. AMD,that developed a similar ar
hite
ture
alled Pa
i�
a, presentedthe Bar
elona pro
essor, that has a third level
a
he and a vir-tualized address translation, instead of a shadow paging, thatshould substantially redu
e the memory performan
e loss. In-tel has instead developed the Virtualization Te
hnology for Di-re
ted I-O [10℄, that allows for a dire
t remapping of DMA trans-fers and devi
e generated interrupts.It must be noted that an hardware assisted virtualization isthe only way to virtualize an operating system that's availableonly in
losed sour
e form (like Mi
rosoft Windows series), butto get the best performan
e it
ould be required to use spe
i�
drivers in the guest kernel. The so
alled para-virtualized (PV)drivers are drivers engineered to work optimally in a guest envi-ronment, where there's no need to a

ess dire
tly the hardware(and, in fa
t, trying to do that will usually
auses a VM exit)[29℄.

2. VIRTUALIZATION TECHNIQUES 272.4.5 Lightweight virtualizationThe VMM seen so far allows for multiple and di�erent operatingsystems hosted on the same physi
al ma
hines, giving a highdegree of �exibility. In some s
enarios, there is no need forusing di�erent operating systems (or even di�erent version ofthe same), it's su�
ient to have multiple views of the samesystem. This approa
h is the generalization of the jail or
hrootse
urity feature found on Unix system: a pro
ess is restri
tedto intera
t with a subset of the system �les, so a
ompromissionof it wouldn't allow the atta
ker to manipulate others program�les and resour
es. From the system point of view, the �lesnamespa
e has been split, as two di�erent pro
esses may referto di�erent �les even when they use the same (lo
al) name. Ifthis splitting is extended to all the system's resour
es, we havea lightweight (or
ontainer based) virtualization [96℄.Example of this are the OpenVZ extension to Linux kernel[18℄, the Linux-VServer proje
t [15℄ and the Solaris 10 operatingsystem [20℄.OpenVZ
alls ea
h autonomous namespa
e as a virtual en-vironment (VE),
alled zones in Solaris. With
ontainer basedvirtualization there's only one operating system running on thehardware, and ea
h
ontainer
an use a spe
i�
 amount of sys-

2. VIRTUALIZATION TECHNIQUES 28tem resour
es. OpenVZ de�nes this resour
es limits as bean
ounters, and they are in pla
e for ea
h possible resour
e type.In fa
t, resour
es management within
ontainers is far more sim-ple, as there's only one operating system that must be enhan
edto govern that, making also possible to
hange these limits evenat run-time. Overhead is also negligible [95℄, allowing for in-stantiating even hundreds of
ontainers in the same physi
alma
hine, making this solutions parti
ularly appealing for Inter-net Servi
e Providers where ea
h hosted site
ould
oin
ide witha virtual
ontainer.2.4.6 Other VMMsThere are many VMM solutions today, from resear
h prototypesto produ
tion ready infrastru
tures. We
ite here some of thempresenting interesting features:Terra: Terra [62℄ is a VMM that allows for Trusted Comput-ing. A virtual ma
hine
ould be instantiated as an open-box, allowing for data a

ess and modi�
ation from theadministrator of the physi
al ma
hine, or as a
losed box,where these operations are prohibited. Also, the Terrahypervisor automati
ally analyzes the images of a
losedbox virtual ma
hines to get sure they have not been tam-

2. VIRTUALIZATION TECHNIQUES 29pered. This experimental approa
h allows for high sensi-tive se
ure virtual ma
hines (e.g. voting ma
hine) to beallo
ated over
ommodity hardware;P.R.O.S.E.: the Partitioned Reliable Operating Systems [63℄,based on the Logi
al Partitioning (LPAR). The hyper-visor, rHype, is a para-virtualization engine that uses around robin �xed slot CPU s
heduler. This simple s
hed-uler redu
es the OS interferen
e [64℄, whi
h happens whenthere's some jitter in the exe
ution sequen
e of di�erentvirtual ma
hine, a plague that is more evident on generalpurpose VMM like Xen or VMWare as the VMM are a
omponent of a general purpose operating system. Thisla
ks of stri
t timing
oordination
ould easily destroy ag-gregated performan
es in a High Performan
e Computings
enario;Virtual Box: it's a GPL released binary translator made byInnotek and now developed by Sun;KVM: it's a Linux kernel module that o�ers hardware assistedvirtualization. Due to its integration with the kernel andits limited
omplexity, it will be the de fa
to standard forvirtualization with Linux in the next following years;

2. VIRTUALIZATION TECHNIQUES 30Lguest: it's a para-virtualizer for the Linux Kernel, made inless than 5000 lines of
ode [14℄;Hyper-V: it's the virtualization te
hnology made by Mi
rosoftand made available for Windows Server 2008 andWindowsVista. It leverages on hardware support for virtualization.2.5 Hardware virtualizationIn this se
tion, we dis
uss in details how a
omputer
omponent
ould be virtualized, i.e. how it
ould be abstra
ted and pre-sented to one or more virtual ma
hines, preventing ea
h one ofthem to a

ess or interferes with others' data.2.5.1 Pro
essorPro
essor virtualization is usually a simple topi
. For the Popekand Goldberg prin
iple stated above, the most portion of in-stru
tions are exe
uted dire
tly by the pro
essor itself, for a
-
ura
y and performan
es. Only sensitive instru
tions requireto be inter
epted and somehow managed by the VMM. Whenthis happens, there's a pro
ess analogous to a
ontext swit
h:pro
essor's
urrent registers are saved, the handling routine isexe
uted, and then saved registers are restored.

2. VIRTUALIZATION TECHNIQUES 31It's also required some level of prote
tion for
riti
al stru
-tures stored in memory, and this is usually done by leveragingon pro
essors' a

ess
ontrol me
hanisms. In the Intel x86 ar-
hite
ture, ea
h pro
ess
ould run in one of four privilege level,the less privileged numbered 3 and the most privileged num-bered 0. In a no virtualized s
enario, operating system runs at0 level, and appli
ations run at 3, leaving levels 1 and 2 unused.With a hypervisors like Xen or VMWare, the hypervisor andits operating system still running at level 0, meaning full a

essto memory and devi
es, and the virtualized ma
hines run in anintermediate level. This is the main reason why it is di�
ult tovirtualize an hypervisor.2.5.2 Memory and DMAIn a modern ar
hite
ture, ea
h pro
ess has asso
iated its ownunique address spa
e, and instru
tions and data are stored in avirtual address spa
e. The virtual address spa
e is implementedby the Memory Management Unit (MMU) that gets the virtualaddress and returns the physi
al address. This
onversion isper pro
ess, meaning that two di�erent pro
esses will usuallyhave the same virtual address mapped into two di�erent phys-i
al addresses (although it's possible for two pro
esses to share

2. VIRTUALIZATION TECHNIQUES 32memory; also, two threads of the same pro
ess will usually sharememory).This translation is made up by organizing the memory spa
eof a pro
ess in a hierar
hi
al stru
ture, the page dire
tory, theroot of whi
h is a part of the pro
ess
ontext (on x86 ar
hite
-ture is a CPU register). A virtual address is
omposed of twoparts, the dire
tory part and the o�set. The dire
tory part willbe
ombined with the page dire
tory to determine the physi
alpage, whi
h is added to the o�set to get the physi
al address[58℄.This operation,
alled page tree walking, will require travers-ing the multi-level tree page table. Ea
h Page Table Entry(PTE) has the same size of a page table, whi
h is 4 KiB or4 MiB on Intel x86 ar
hite
ture (other ar
hite
tures
ould havedi�erent page size
oexisting in the system): as there are manyof them, the PTEs are stored in memory. So, every time thedire
tory part of the virtual address
hanges, it
ould be re-quired to a

ess some PTEs in memory, resulting in very poorperforman
es. To avoid this, a MMU is equipped with a Trans-lation Look-Aside Bu�er (TLB), whi
h is a spe
ialized
a
he forvirtual memory
onversion lookups.The problem asso
iated with the TLB is that, as a
a
he,must from time to time to be invalidated. When a
ontext

2. VIRTUALIZATION TECHNIQUES 33swit
h o

urs, or when there is a transition between the kernelmode and the user mode (to adopt the Intel x86 nomen
lature),the TLB will refer to a page table that is no longer the
urrentpage table, so it must be invalidated. As a result, the in
omingmemory a

esses will require a page tree walking, until the TLBgets re�lled.A typi
al pattern on a modern system is when a pro
ess(running on user mode) requires an operation to the operatingsystem by issuing a system
all: the pro
essor swit
hes to kernelmode, the operating system will hopefully honor the requests,then the pro
essor goes ba
k to user mode and the pro
ess exe-
ution resumes. This �ow has two transitions in it (the �rst fromuser mode to kernel mode, and the se
ond from kernel mode touser mode), whi
h in a naive TLB implementation would requiretwo TLB invalidations. This is usually a waste of resour
es, be-
ause a better approa
h would be to sele
tively invalidate someof the TLB lines. If the kernel
omputation is small (as usuallyit is), the number of the referen
ed memory addresses is alsosmall, so only some of the TLB lines must be invalidated.This optimization requires that ea
h TLB line is tagged, as-so
iating to it the page table whi
h it refers to. Tagging is alsouseful for pro
ess swit
hing (when pro
esses are swit
hed often)and when there's a thread swit
hing, as in su
h a
ase no TLB

2. VIRTUALIZATION TECHNIQUES 34invalidation is needed.Figure 2.3 (adapted from [57℄) shows the general s
heme formemory virtualization, stressing that the datapath required for
onverting a virtual memory address of a virtual ma
hine toa physi
al address is almost doubled with respe
t to the novirtualized s
enario: �rst, a virtual ma
hine virtual memoryaddress is translated into the physi
al ma
hine guest address,and then the latter is translated into a physi
al ma
hine realaddress.Software memory virtualizationThe VMWare hypervisor assumes that the hardware has notbeen enhan
ed for virtualization (although, when this is the
ase, it uses some of the available hardware features), so it worksby deriving shadow stru
tures from guest level primary stru
-ture.Some of these stru
ture
ould be mapped into the state of avirtual ma
hine (i.e. pro
essor state), some others as the pagetable dire
tory will ne
essarily reside in memory. These stru
-tures are also privileged, so the VMM must prote
t them fromunauthorized a

ess, with the
ompli
ation that modi�
ationsof these will usually not generate traps, and they
ould even bemodi�ed by an I/O operation, when the I/O devi
e is memory

2. VIRTUALIZATION TECHNIQUES 35

Address
Memory

Virtual
Host

Address

Memory

Virtual

Offset

Virtual Machine OS

VMM

Page directories

Address

Page

Page

Physical

AddressFigure 2.3: Memory virtualization datapath.

2. VIRTUALIZATION TECHNIQUES 36mapped.VMWare use the hardware prote
tion me
hanism to pro-te
t and tra
e modi�
ation to the shadow stru
tures [30℄. Ifthe PTEs are prote
ted, every a

esses to them will be trapped(the virtual ma
hines are running de-privileged) and the
on-trol is transferred to the VMM. The VMM de
odes the fault-ing instru
tion, emulates its e�e
t on the primary stru
ture,and then propagates the modi�
ation on the shadow stru
ture.VMM must distinguish between true page faults,
aused by theviolation of the poli
y en
oded by the guest PTEs (this hap-pens when a virtualized pro
ess tries to a

ess another virtual-ized pro
ess's memory spa
e) and hidden page faults,
aused bymisses in the page table. True page faults are forwarded to theguest (that
ould faults and kills the o�ending pro
ess) whilsthidden page faults
auses the VMM to
onstru
t an appropriateshadow PTE, and then resuming guest exe
ution. The tra
esare used to keep in syn
 the shadow PTEs and the primaryPTEs.Hardware memory virtualizationIn the para-virtualized approa
h, the virtual ma
hine operatingsystem is slightly modi�ed, to made
ooperation between it andthe hypervisor simpler and more e�
ient. In the Xen hypervi-

2. VIRTUALIZATION TECHNIQUES 37sor, the privileged dom0 and the less privileged domU domainsdon't have unrestri
ted a

ess to physi
al memory. The VMM
reates its own page table for ea
h domain, and the virtual ma-
hines
onstru
t their page table in a way that is similar for thepara-virtualized and hardware virtualized
ase. Every time thevirtual ma
hine operating system modi�es its page table, theVMM is invoked, and it will update its shadow page table.This approa
h is quite expensive, for the TLB invalidationto take pla
e and the
reation and maintenan
e of a shadowpage table stru
ture.Intel has de�ned the Extended Page Tables (EPTs) [9℄, andAMD the Nested Page Table (NPTs) for the Bar
elona pro
es-sor [100, 3℄: both allow the virtual ma
hine operating systemto produ
e host virtual addresses from guest virtual addresses.The host virtual address is then translated into physi
al hostaddress by using a per-virtual ma
hine page tree, with a verylittle performan
e penalty, as this se
ond step is done at pro-
essor speed without external memory a

esses. At the timeof this writing, these extension are not generally available, butben
hmarks appear promising [68, 5, 35℄.Also, the result of this
omplex address translation is storedinto a TLB line. AMD has proposed a 1-bit tag extension withthe Pa
i�
a virtualization extension,
alled the Address Spa
e

2. VIRTUALIZATION TECHNIQUES 38ID (ASID) [42℄. This one bit tag
ould distinguish betweenVMM's address spa
e and guests' address spa
e, allowing theoperating system to avoid �ushing the entire TLB every timethe VMM is entered or exited. Intel has Virtual Pro
essor IDs(VPIDs) for the same purpose.Even with hardware support, the entire memory addresses
onversion pro
ess is quite
omplex, as it requires that two dif-ferent memory s
hedulers (one for the virtual ma
hine and oneused by the VMM) must
ooperate. As the memory s
heduleris the most
omplex and tuned
omponent of the operating sys-tem, this e�ort is daunting, and is for su
h reasons that theLinux KVM VMM [17℄ is gaining in popularity: There's onlyone s
heduler, enhan
ed with virtualization oriented featuresthat also leverage massively on hardware features, resulting inone single implementation to be maintained (if the running vir-tual ma
hine is Linux) instead of two.DMA Memory pinningDMA
apable devi
es usually side-step the CPU while transfer-ring large amounts of data. To keep devi
e's implementationsimple, usually they don't have any idea about virtual memory,not to mention virtual ma
hines. This will require that, dur-ing an I/O operation, the used memory region must be �xed

2. VIRTUALIZATION TECHNIQUES 39(pinned). This approa
h should be extended when an I/O oper-ation is issued by a virtual ma
hine, and the
ommon approa
his by the use of a lo
king me
hanism. The VMM should managelo
ks to avoid
on�i
ts and deadlo
ks between virtual ma
hines.To help virtualization of DMA fun
tion, Intel has developedthe Intel Virtualization Dire
ted I/O [10℄ and AMD has intro-du
ed the IOMMU unit [4℄.2.5.3 StorageIn
ontrast to other peripherals, the virtualization of the storageis mu
h more simpler. We stress out that in this paragraphwith �storage virtualization� we de�ne the reservation of spe
i�
portion of a system storage spa
e (made up of lo
al and remotedisks, tapes and whatever) for the ex
lusive use of one or morevirtual ma
hine. The most
ommon
ase is when a portionof storage spa
e is reserved for use by a single virtual ma
hine,analogously to the no virtualized s
enario, although it's possibilethat two or more virtual ma
hines share a data storage area (asan example, a quorum disk).All VMMs have some degree of �exibility in
hoosing howto
arve out the area to be assigned to a virtual ma
hine. It
ould be an image �le, i.e. a single big �le on the physi
al

2. VIRTUALIZATION TECHNIQUES 40system that the virtual ma
hine a

esses as an entire disk, withthe VMM that maps the read and write requests of the virtualma
hine to read and write requests on the �le. This approa
ho�ers a great degree of �exibility (all the storage of the virtualma
hines is
ontained in a �le, whi
h
ould be easily ba
ked upand restored) and it's possible to de�ne snapshots of the �le,whi
h are
oherent point-in-time
opies of the virtual ma
hinestorage, allowing for qui
kly restoring of the virtual ma
hine'sstatus. The main drawba
k of this approa
h is performan
epenalty: the datapath required for an I/O requests is doubled.On the other side, it's possible to assign an entire disk (or apartition on it) to a virtual ma
hine, at the expense of somemanagement and �exibility issues, gaining on performan
es asthe datapath is redu
ed (the �le system layer of the physi
alma
hine is skipped).It has to be noted that storage availability is, nearly, theavailability of the entire system, as it's the far most
ommon
ause of system outages. A
areful planning of a virtual ma-
hine installation should try to balan
e between easy of man-agement, ba
king up, migration and performan
es, avoiding un-ne
essary dupli
ation of e�orts, the most typi
al of it being aredundan
y system like RAID doubled on the physi
al and vir-tual ma
hine: it's usually su�
ient that the virtual ma
hine

2. VIRTUALIZATION TECHNIQUES 41ignores every problem related to redundan
y, seeing only a sim-ple storage system, where the VMM
ould better map it to aredundant data storage area.On the same side, today's storage for server is usually re-mote, by using NAS or SAN infrastru
tures. All of them aren'tvirtualization-aware. As an example, a SAN server
ould be
on-�gured to sele
tively presents LUNs to a physi
al server, identi-�ed by a physi
al
onne
tion (zoning). If this LUN
ontains datastorage for a virtual ma
hine running into the physi
al server, amigration of this virtual ma
hine will require to re
on�gure theSAN server, as the LUN
ontaining the virtual ma
hine datashould be, from now on, only a

essed from the new server,whilst the old server must be disallowed to a

ess the data, asthe migration has been
ompleted. This will require a
oor-dination between the VMM and the SAN, and the SAN musttrust the VMM, whi
h in this s
enario is usually deployed anddistributed among di�erent servers. On [76℄ it's presented theN_Port Identi�er Virtualization extension for the Xen VMMto solve this. Others high availability solutions will programthe SAN swit
h to sele
tively allow or forbid data a

ess as thevirtual ma
hines are being moved over the infrastru
ture.

2. VIRTUALIZATION TECHNIQUES 422.5.4 NetworkNetwork virtualization refers to the ability to o�er to ea
h vir-tual ma
hine a NIC interfa
e, allowing it to send and re
eivenetwork tra�
 without interferen
e, snooping or servi
e degra-dation
aused by the other virtual ma
hines.Network interfa
e is
omplex as the network tra�
 is unso-li
ited, requiring the VMM to be prepared to re
eive and re-spond to tra�
 that
ould be re
eived at any time.Private devi
esThe �rst approa
h, adopted by the IBM S/360,
onsisted onassigning a physi
al network interfa
e to ea
h virtual ma
hine(this was also made for other devi
es su
h terminals, disks andso on). Transfers to and from the network
ard were made by
hannel programs, doing programmed I/O to transfer data fromand to the memory.Modern virtualization systems also allow for the private de-vi
e I/O, as Xen does with the p
iba
k module. This approa
has a relative degree of �exibility, as it requires that the VMMmust boot with a
on�guration that prevents some PCI devi
es(identi�ed by their slot and PCI number) to be
on�gured bythe dom0 kernel, and then it's possible to
on�gure a virtual

2. VIRTUALIZATION TECHNIQUES 43ma
hine to dire
tly intera
t with the PCI devi
e by
on�guringits des
ription �le [27℄. Although it's possible to reassign a PCIdevi
e to another virtual ma
hine, the set of dire
tly a

esseddevi
es
ould be
hanged only by a VMM reboot.The same approa
h is also used by the IBM Logi
al Parti-tioning (LPAR) ar
hite
ture for the Power4 pro
essor, relyingon spe
i�
 pro
essor features.More re
ent approa
hes as the LPAR for the Power4 pro-
essor allow for isolated a

ess at the PCI-level, leveraging on aIOMMU unit that
reates a I/O page table for ea
h devi
e, withmemory mappings from the pages owned by the virtual ma
hineto the assigned devi
e. As a result, for ea
h DMA operation thepro
essor
onsults the IOMMU, disabling I/O a

ess to devi
esnot owned by the virtual ma
hine.The private devi
e approa
h has a
lear advantage, perfor-man
es maximization, but at the expense of a possible under-utilization (or over-provisioning) of physi
al resour
es. Also, theDMA memory pinning problem dis
ussed in se
tion 2.5.2
ouldalso severely restri
t the feasibility of this approa
h for a givennetwork devi
e.

2. VIRTUALIZATION TECHNIQUES 44Shared devi
esIn the Xen ar
hite
ture, the shared a

ess to the network ismade by using a virtualized spool-�le interfa
e,
alled an I/Odomain. The VMM interprets readings on this bu�er as re
eiv-ing a network pa
ket, and writing to it as sending a networkpa
ket. As the �gure 2.4 shows, the Xen VMM
ould be de
om-posed in two elements, the hypervisor and the driver domain(the Xen ar
hite
ture is the
ommon approa
h for shared de-vi
es virtualization). The hypervisor is the abstra
tion layerbetween the virtual ma
hine and the real hardware, and ea
hI/O devi
e is managed by a I/O domain, whi
h runs a Linuxkernel. Ea
h virtual ma
hine
ould
ommuni
ate with a devi
eby using a front-end driver, whi
h then
onne
ts to a ba
k-enddriver.As an example, when a pa
ket is transmitted from a virtualma
hine, it's
opied (or remapped) from the front-end driverto the ba
k-end driver, and then queued for transmission fromthe NIC. An interrupt is generated when a pa
ket is re
eived,triggering the
opy (or remap) of the pa
ket from the ba
k-enddriver to the spe
i�
 front-end driver. The ba
k-end driver is
apable of dispat
hing the network pa
ket to the spe
i�
 vir-tual ma
hine be
ause it inspe
ts the pa
ket, sees the MAC ad-

2.VIRTUALIZATIONTECHNIQUES
45

back−end
driver

NIC

driver

Bridge

Ethernet

back−end
driver

Driver Domain

virtual machine 2

front−end

driver

virtual machine 1

NIC

hypervisorinterrupt
dispatch

CPU/memory/disk/devices

Packet Data

DataControl

Interrupts

Virtual Interrupts

Packet Data

front−end

Control

driver

Figure2.4:Xenar
hite
tureforsharednetworkdevi
es.

2. VIRTUALIZATION TECHNIQUES 46dress and then routes it a

ordingly to the destination front-enddriver. After the
opy of the network data, a virtual interruptis sent to the virtual ma
hine, whi
h will in turn wake up thefront-end driver and pro
ess the pa
ket.Data prote
tion and isolation between the di�erent virtualma
hine is ensured by the driver domain. This approa
h resultsin some overhead, as it's possible that data must be
opied fromand to memory, and the number of interrupts required to pro
essa network pa
ket is doubled. A spe
ialized driver
ould resultin a substantial in
rease in performan
e [29℄, by doing memorymapping and not memory
opying and avoiding to
he
k fortransmission errors, as this
ontrol is also made by the ba
k-enddriver. Another problem is that the I/O domain must be s
hed-uled to allow for pa
ket pro
essing, and the only way to avoid itis to move the ba
k-end driver
ode into the hypervisor, result-ing in a bigger hypervisor, more exposed to �aws and se
urityrelated problems.Con
urrent Dire
t Network A

essA modern NIC interfa
e is usually organized with more thanone queue for pa
ket transmission and re
eption. This is donebe
ause, to in
rease availability, it's usually better to bond to-gether two or more network
ards, presenting them as a unique

2. VIRTUALIZATION TECHNIQUES 47network devi
e, and then
on�guring them with two or moreIP addresses: if a network
ard fails, the others will
ontinueto work, with a minimal servi
e disruption (also, on multi-
orema
hines, this prevents for global lo
king on network resour
es,as it's possible to assign a queue to one spe
i�

ore).This hardware feature is employed in the Con
urrent Dire
tNetwork A

ess (CDNA), where ea
h one of this queues
ould beassigned to a spe
i�
 virtual ma
hines, as the �gure 2.5 shows.The hypervisor treats ea
h queue as if it were a physi
alnetwork
ard, assigning ownership of it to a virtual ma
hine,without the need to de�ne an I/O domain, resulting in near zerooverhead: interrupts are routed dire
tly to the virtual ma
hineowner of the queue, and the virtual ma
hine reads and writesdire
tly on the queue.Memory prote
tion is a bit more
omplex, as there's no morea driver domain that
ould validate memory a

ess to the de-vi
e. The problem is exa
erbated in the Intel x86 ar
hite
ture,where I/O devi
es have only physi
al addresses. On this ar
hi-te
ture, the hypervisor must validate ea
h bu�er, ensuring thatevery virtual ma
hine does not add to or remove from the queuepa
kets belonging to a queue it does not own, and preventingthe queue ownership from
hanging,
onsidering this a privilegedoperation. It should be noted that these two tasks are the same

2.VIRTUALIZATIONTECHNIQUES
48

virtual machine 2

virtual machine 1

Driver

NIC

interrupt

dispatch
hypervisor

driver

NIC

CPU/memory/disk

Driver Control

Packet Data

CDNA NIC

Driver

Control

Interrupts

Virtual InterruptsFigure2.5:CDNAar
hite
ture.

2. VIRTUALIZATION TECHNIQUES 49made by a MMU with respe
t to memory a

ess, so the gen-eral availability of a IOMMU will eliminate these burdens fromthe hypervisor. The performan
es of CNDA are su
h that thetransmission throughput is linear with the in
reasing numberof virtual ma
hines, while the shared devi
e approa
h a la Xende
reases exponentially. The performan
e gap for re
eiving isredu
ed, as Xen works better when demultiplexes re
eived pa
k-ets [91℄. Intel has developed the Virtual Ma
hine Devi
e Queueto e�e
tively implement the CDNA network virtualization [11℄.2.6 Con
luding remarksVirtualization dates ba
k in
omputer history, and
omes inmany di�erent forms. Providing and leveraging hardware fea-tures to get the best from this approa
h to
omputation is a
om-plex pro
ess, as there are many inter-dependen
ies and manydi�erent approa
hes, that must be evaluated against require-ments and provided features.

3Virtualizationar
hite
turesThe di�erent hypervisors that have been presented throughoutChapter 2 are merely te
hniques that
ould be used when vir-tualization has to be put in pla
e in a system. In this
hapterwe analyze the next logi
al step, where virtualization is an ar-
hite
tural asset that brings value to a distributed system, andnot only an available feature. It has to be noted that hypervi-sors' makers put a lot of emphasis in the server
onsolidation50

3. VIRTUALIZATION ARCHITECTURES 51s
enario, where some (and possibly many) lega
y systems arevirtualized. This is a
ost-savvy strategy, but virtualization hasa lot more to o�er when it's an integral part of a distributedsystem.A distributed system is usually designed and built up (oftenwith a trial and error approa
h) with a list of desired features,both measurable and not-measurable, that drive the design pro-
ess. Some of the features that
ould take a great bene�t fromvirtualization are:
• e�
ien
y: the average server usually works at 10-15% ofits
apa
ity, with some temporary surges. By pa
kingsome (virtual) servers into a physi
al one, it's possible to
ut down ele
tri
ity and maintenan
e
osts;
• availability: by leveraging on live migration, it's possibleto migrate a running virtual ma
hine from one physi
alhost to another, in a proa
tive way (allowing for ordinarymaintenan
e) or rea
tive (as in a disaster re
overy s
e-nario). Re
overy Oriented Computing [21℄ is a remarkableapproa
h to rea
h this goal;
• ease of deployment: by
loning a virtual ma
hine, it's pos-sible to install it on several di�erent physi
al hosts;

3. VIRTUALIZATION ARCHITECTURES 52
• load distribution: virtualized ma
hines
ould be the build-ing blo
k of a
luster that spans over di�erent underlyingphysi
al ma
hines, hiding the heterogeneous underlyinghardware.Virtualization
ould be e�e
tive in a
hieving these sometimes
on�i
ting goals, as it de�nes a
entral management fun
tionthat is implemented by another intermediate layer. Having an-other layer means also adding
omplexity, as
omplex intera
-tions with the rest of the sta
k result in. As virtualization be-
omes pervasive, the �ghting arena for manufa
turers will pro-gressively shift from performan
es to management tools: newgeneration of
omputer pro
essors, operating systems and pe-ripherals are designed with virtualization in mind, and the bur-den of hypervisors will move from making a
omputing platformvirtualization friendly (i.e. virtualize a lega
y server) to man-aging hundreds and thousands of di�erent virtualized systems,that o�ers di�erent servi
es to di�erent users.This will be a
ommon s
enario for a large data
enter whi
htoday's o�er in
lude shared hosts for low-tra�
 sites and dedi-
ated hosting, but both of them are far less than ideal. Sharedhosting is a

eptable only when both tra�
 and requested levelof se
urity are low, whilst dedi
ated hosting requires
arefulplanning (it will take some time to
hange the footprint of an

3. VIRTUALIZATION ARCHITECTURES 53installation, espe
ially when the
ustomer wants to downgrade)and it will usually result in a waste of money, from
ustomer'spoint of view, as the average server is usually under-utilized.For this very reason a modern data
enter should use virtualiza-tion in its
ore ar
hite
ture, to rapidly adapt to its
ustomers'needs. One of the pioneers in this approa
h is Amazon, withthe Amazon Elasti
 Computing Cloud (EC2) servi
e [1℄.With Amazon EC2, a
ustomer
ould lease a virtual server,and pay only for the time the server is up and running. Whenthe server is o�ine, the server's image is stored o�ine (a
ol-lateral servi
e of Amazon, the Amazon Simple Storage Servi
e(S3) [2℄
ould take
are of that). Amazon has a large pool ofma
hines, so it
ould instantiate even thousands of server fora
ustomer within minutes from the request. These ma
hines
ould be used for the time required to perform their job, as do-ing a number
run
hing
omputation (that was the
ase whenNew York Times need to repro
ess and
onvert its entire ar
hivein ele
troni
 format [19℄), a
ting as a ba
kup system or givingsome extra
apa
ity power to o�oad some
omputations for asite that is experien
ing a surge in tra�
. A start-up
ompany
ould lease its servers and expanding its pool when it's needed,
on
entrating its e�ort on the produ
ts and developing a long-term strategy for its information system in the meantime. When

3. VIRTUALIZATION ARCHITECTURES 54
Intranet

Services
Web site DB2 Testing HPC

Hypervisor and virtualization manager

Node Node Node Node Node NodeNode

DB 1

Figure 3.1: A virtualization ar
hite
ture.all
ost fa
tors are taken into a

ount, this approa
h is usually
heaper in the short-term than the traditional one.This unifying approa
h
ould be worth to be used even whenthe
ustomer and the provider (of
omputing ma
hines) are thesame organization, i.e. by the IT department of a
orporate.Instead of having many di�erent
lusters, ea
h one devoted to aspe
i�
 business fun
tion, there
ould be only one
luster, withsome isles on top of it, ea
h one for a high level task. Theseisles
ould be expanded or redu
ed with respe
t to their size(asso
iated resour
es) a

ording to the evolution of the business.Figure 3.1 shows an example where di�erent area sizes of thehigh level fun
tions remarks the di�erent amount of asso
iatedresour
es.

3. VIRTUALIZATION ARCHITECTURES 55At the pri
e of a more
omplex setup and planning, this ar-
hite
ture will bring bene�ts to the organization that uses it.Ea
h
omputer is a
omputing blo
k, that is globally managedand assigned. As long as the hypervisor remains the same, it'spossible to mix and mat
h di�erent hardware solutions, maxi-mizing the e�
ien
y of the infrastru
ture and obtaining, withless e�ort, high pro�le features like high availability, disasterre
overy, rapid deployment and so on.As a result, virtualization must be in
luded in the designpro
ess of a distributed system. In this
hapter, we see somestandard te
hniques to develop a modern distributed system andhow virtualization
ould be integrated in it sin
e the design pro-
ess. We
onsider this in the more general
ontext of autonomi

omputing, that will provide a useful framework.3.1 Referen
e ar
hite
tureThe referen
e ar
hite
ture we
onsider is a multi-tier distributedsystem, shown in �gure 3.2.Ea
h tier is fun
tionally distin
t from the others. Ea
h tieris made up of nodes of the same type and with the same asso-
iated resour
es (CPU, disks, memory, ...). In this ar
hite
ture,in
oming requests are fa
ed by the top tier, N , whi
h, to serve

3. VIRTUALIZATION ARCHITECTURES 56
Node Node Node Tier N−1

NodeNode Node Tier N

Requests

NodeNodeNode

.

.

. Tier 1

. .Figure 3.2: A multi-tier distributed system.them, requires servi
es from the next tier, N − 1, whi
h in turnrelays to tier N − 2 and so on. It is assumed that a request�ows only from one tier to the next one to be served, althoughit
ould be possible that it doesn't need to traverse all the tiers.After rea
hing the last tier, the
omputed result �ows upwards,is aggregated by the di�erent traversed tiers, and is �nally sentto the
lient. Requests are grouped in
lasses, distinguished bythe amount of requests and type of resour
es they require byea
h tier in order to be served, and within the same
lass theyare assumed statisti
ally indistinguishable.

3. VIRTUALIZATION ARCHITECTURES 57In the
ontext of web servi
es, distributed systems are usu-ally made up of three tiers:
• front end tier, whi
h is the
onne
tion point for external
lients a

essing the web servi
e, with its nodes servingonly stati

ontent. This tier usually does not su�er froms
alability problems as a modern web server
ould servestati

ontent in su
h a fast way to saturate the availableInternet
onne
tion;
• appli
ation tier, where the appli
ation logi
 resides. Thisis made up of programs running in the
ontext of an HTTPrequest, written in languages like PHP, Java and so on.Ea
h
ustomer intera
ting with the web servi
e usuallyprodu
es more than one servi
e request, and these areall interdependent (as an example, a buy order followsa sear
h
atalog fun
tion), so requests are grouped intosessions. To avoid repli
ating session stateful informationalong all nodes
onstituting the appli
ation tier, the loaddistribution fun
tion must be session aware, and this in-trodu
es some limits in the s
alability of this tier;
• database tier, whi
h handles all queries to the databasesystem. This tier is usually the most di�
ult to expand,as all low-level DBMS employ a shared-nothing approa
h,

3. VIRTUALIZATION ARCHITECTURES 58whi
h makes di�
ult to realize
on
urrent, write-a

ess tothe data.More tiers
ould be added to this model, as an example a front-end tier
ould manage web authorization and a

ess, and aninner tier
ould model and intera
t with lega
y mainframe sys-tems. In ea
h
ase, although this ar
hite
ture is the de fa
tostandard for web servi
es, s
alability of it must
arefully ad-dressed: adding some extra nodes to a spe
i�
 tier wouldn'tne
essarily let to a general performan
es improvement as some
ommon
apa
ity planning problems
ould arise:
• the extra nodes are not added to the tier that is the bot-tlene
k of the distributed system;
• the extra nodes are added to a tier that has almost noneed of them;
• the speed-up of the tier being in
reased is su
h that there'sa waste of pro
essing power.The last point is
riti
al. Ea
h tier has asso
iated a load dis-tribution fun
tion, that dispat
hes the in
oming requests fromthe upper tier to a spe
i�
 node. This dispat
hing �rst requiressome kind of strategy (as an example, in order to dispat
h re-quests to less busy nodes it's required to monitor and
olle
t

3. VIRTUALIZATION ARCHITECTURES 59the load on ea
h node) and it
ould be more or less e�
ient forthe spe
i�
 semanti
 of operations performed by the tier. As aresult, adding nodes to a tier that is already experien
ing thesaturation of its distribution fun
tion will result in no e�e
t.In some
ases it will be required to
hange the strategy usedto distribute the load between the nodes of the same tier, thatit
ould in turn require to
hange the implementation of thesoftware running on the nodes.3.1.1 Modeling of multi-tier systemsModeling of multi tier systems has attra
ted a lot of interest inthe last several years, as pervasive web servi
es are usually bestimplemented in this framework.As for ea
h performan
e model, there's a trade o� betweenits a

ura
y and the feasibility of the implementation: a morepre
ise model, that requires too mu
h instrumentation of thereal system to feed its model solver, or that has a
omplex modelthat requires a lot of pro
essing time to be solved, is of no morethan theoreti
al interest, as the predi
tions originating from it
annot be applied in an on-line system, so the level of detail inthe models is
hosen in a utilitarian fashion.In [61℄ the fo
us is in the modeling of a single server,
om-

3. VIRTUALIZATION ARCHITECTURES 60prised of physi
al resour
es like CPU, memory and disks, that
ould intera
t with other servers to a

omplish the requestedfun
tions.In [98℄ the developed model is session-based and take intoa

ount
a
hing e�e
ts and
on
urren
y limit on the tiers. Inthis model, ea
h tier is modeled via a queue, and the systemis solved via the Mean Value Analysis algorithm ([90℄). Thismodel allows for performan
es predi
tion and dynami

apa
ityprovisioning, and it
ould handle multi-
lass models.In [105℄ the most important input for the MVA model, theaverage servi
e time for the CPU at ea
h tier, is estimated via aregression te
hnique, minimizing the quadrati
 di�eren
e fromobserved and estimated utilization rate.In [99℄ the fo
us is in provisioning the appli
ation tier. First,it is shown that for limited times
ale a tier
ould be modeled asa M/G/1/PS queue, i.e. the arrival rate of requests at the appli-
ation tier is des
ribed by a Poisson distribution (this of
ourseis not true on large and di�erent times
ales, as self-similarityappears due to an high degree of
orrelation between arrivals.The times
ales over whi
h
orrelations exists are delimited byan upper bound,
alled Criti
al Time S
ale [93℄). Then the
or-re
t solution of the model, that requires some
omplex
al
ula-tions making it infeasible for on-line provisioning, is
ompared

3. VIRTUALIZATION ARCHITECTURES 61against three di�erent approximations. All of these approxima-tion methods a
hieve allo
ations with
osts near the minimumpossible, while simpler heuristi
s in
ur in signi�
antly higher
osts. This model
ould also be used to determine the opti-mal number of servers to bve deployed for the appli
ation tier,ignoring the provisioning of the other tiers.The assumption that all nodes are work
onserving and thatthe dis
ipline is pro
essor sharing (PS) is generally appli
able,while it
ould not be the
ase that the arrivals are modeled via aPoisson distribution. To have the most general multi-tier model,we assume that ea
h server is modeled via a G/G/1 queue. Thebehavior of this server is des
ribed via the following equationfrom queuing theory [72℄:
λi ≥

[

si +
σ2

a + σ2
b

2 ∗ (di − si)

]−1 (3.1)where:
• λi is the arrival rate for tier i;
• si is the average servi
e time for requests on tier i;
• di is the mean response time for requests on tier i;
• σ2

a is the varian
e of inter-arrival time for requests on tier
i;

3. VIRTUALIZATION ARCHITECTURES 62
• σ2

b is the varian
e of servi
e times for requests on tier i.Quantities as di and si and their varian
es are known or
ouldbe on-line estimated (instrumenting the distributed system tore
ord, for ea
h transa
tion, request time and
ompletion time),so a lower bound on λi
ould be evaluated for ea
h server. Ifea
h session has a think time of Z, by Little's Law the sessionarrival rate of λ
ould be translated in a request arrival rateof λτ
Z
, where τ is the average session duration. So, when the
apa
ity λi of a single server is
omputed, the number ni ofserver required for tier i is simply de�ned as:

ni =

⌈

βiλτ

λiZ

⌉ (3.2)the βi is a
orre
tion fa
tor spe
i�
 for ea
h tier, that takeinto the formula
ompeting e�e
ts as
a
hing, load distributionand speed-up. If the speed-up behavior is not
onstant but afun
tion of n, then ni is de�ned as the minimum value of ni forwhi
h it holds:
niλiZ ≥ βi(ni)λτ (3.3)with the
onstraint that ea
h tier has at least one node:

3. VIRTUALIZATION ARCHITECTURES 63
ni ≥ 1, ∀i (3.4)Equation 3.2 is general, so more tier-spe
i�
 equations
ouldlead to substantial improvements determining a lower numberof server ni, at the
ost of more spe
i�
 tier-knowledge. As ourobje
tive is to investigate in the allo
ation of this servers overphysi
al ma
hines, we assume that an equation like 3.2 will besu�
ient for our needs.3.2 Virtualization performan
es and mea-surementVirtualization is an additional layer, so it has some
omplexityby itself (espe
ially when is a foundation for the entire infras-tru
ture) and an asso
iated overhead. Re
alling the de�nitionof VMM made by Popek and Goldberg, this overhead must benegligible, but it must be evaluated.Virtualization is making some fast progresses, and as a resultthe performan
es of an hypervisor are
hanging rapidly, makingof no interest to report them in a dissertation where the fo
usis on the ar
hite
tural
omponent. Plus, very few
omparativestudies are
ondu
ted on this �eld, as some hypervisors' li
enses

3. VIRTUALIZATION ARCHITECTURES 64substantially prohibits to publish them.In [83℄ the relative performan
es of Xen and OpenVZ are
ompared on some s
enarios, founding that Xen has a lot ofoverhead, mainly due to level two
a
he misses, up to ten timesthan the ones in OpenVZ. It's generally understood that thisgap will redu
e as the hardware features are made available, asdis
ussed throughout Chapter 1.From dis
ussion in Chapter 1 it's
lear that performan
esare stri
tly dependent on the number of privileged instru
tionsthat the hypervisor has to emulate, be
ause the inno
uous in-stru
tion are exe
uted dire
tly by the hardware, with no perfor-man
es penalty.On [81℄ this formula is adopted to evaluate the slowdown ofa virtualization:
Sv = fp ∗Ne + (1− fp) = fp ∗ (Ne − 1) + 1 (3.5)where:

• fp is the fra
tion of privileged instru
tion;
• Ne is the number of instru
tion required to emulate a priv-ileged instru
tion.As an example, when f = 0.1% and N = 500 the slowdown is

3. VIRTUALIZATION ARCHITECTURES 65
S = 1.5, meaning that an appli
ation running on top of a virtualma
hine will see its exe
ution time in
reased by 50%. The mainadvantage of the equation 3.5 lies in its simpli
ity. The �xedvalue of Ne does not take into a

ount adaptive behavior or
a
hing me
hanism employed by the translator, and the fra
tion
fp of privileged instru
tions
ould be substantially redu
ed withsome modi�
ation to the virtual ma
hine's
ode base.But in even more general terms, the pa
e of progresses inthis �eld results in high performan
es variations, even betweentwo releases of the same hypervisors, as soon as it leverages onsome hardware features or modi�
ation of the virtualized
ode.Nevertheless, it makes sense to measure the virtualizationoverhead, over a spe
i�
 s
enario and this
an be done as seenin [81℄.In that paper, some metri
s have been
olle
ted for a physi
alsystem that
omprises of two virtual ma
hines, the �rst runninga bat
h system and a Transa
tion Pro
ess Manager (TPM), andthe se
ond devoted to testing purposes. Table 3.1 is an ex
erptthat we use to show the relevant results.To determine the CPU utilization fa
tor for the �rst virtualma
hine, we use this formula:

3. VIRTUALIZATION ARCHITECTURES 66Metri
 Value
T vmm

cpu,vm1 420 s
T vmm

cpu,vm2 220 s
Uvmm

cpu 0.40Table 3.1: Measurements for estimation of VMM overhead.
Uvm1

cpu = Uvmm
cpu ∗

T vmm
cpu,vm1

T vmm
cpu,vm1 + T vmm

cpu,vm2

= 0.2625 (3.6)Eq. 3.6 states that the utilization of the physi
al CPU forthe �rst virtual ma
hine is a fra
tion of the utilization of theCPU as seen by the hypervisor, Uvmm
cpu . The apportionmentfa
tor is the ratio between the total time that CPU is runningthe �rst virtual ma
hine as measured by the VMM, T vmm

cpu,vm1and the total time that CPU is running the virtual ma
hines,as seen by the VMM. The experiment spans over a 30 minutesinterval, and if we
al
ulate the utilization of the physi
al CPUfor the �rst virtual ma
hine as:
Uvm1

cpu =
T vmm

cpu,vm1

30 ∗ 60
= 0.2333 (3.7)we get a result that does not take
are of the 2.92% di�eren
e

3. VIRTUALIZATION ARCHITECTURES 67due to overhead imposed by the VMM.This little overhead is going to be redu
ed as the implemen-tation of the hypervisors are better. It has to be noted that thisoverhead is in fa
t a result of two
ompeting phenomenons. The�rst is the overhead that result when privileged instru
tions areen
ountered and have to be somehow emulated by the VMM,the se
ond are the optimization that the VMM
ould put inpla
e to redu
e penalties due, for example, to memory faults.Eq. 3.6 is made with the assumption that there isn't inter-feren
e between the two virtual ma
hines
ompeting over thesame result, i.e. the �ow of operation for the two ma
hines arealmost the same as if they were exe
uted without an interposingVMM. This in turn requires that the VMM is perfe
tly
apa-ble of isolating the two virtual ma
hines regarding to resour
es
ontention.We stress that a
riti
al point is that the VMM must takeevery
are in avoiding the interferen
e problem. As an exam-ple, if a virtual ma
hine is doing a lot of unexpe
ted I/O workwith the disk (i.e. is running out of memory and it's movingpages to and from disk) this behavior must not limit the I/Odisk bandwidth available for others virtual ma
hines, requiringa global monitoring of resour
es
onsumption. This
ould gener-ate a butter�y e�e
t, as the virtualized operating system
ould

3. VIRTUALIZATION ARCHITECTURES 68
hoose an aggressive I/O strategy that is greedy in the shortterm but it would have been resulted in a general performan
esimprovement in the long term (usually the virtualized operatingsystem has no idea that is running in a virtual ma
hine). Lim-iting the ability of the virtualized operating system
ould be noperforman
e wise in the long term, so the VMM should �nd abalan
e between the fairness of the resour
es allo
ation and theresulting global throughput.3.3 Autonomi

omputingToday's
omputer systems have an intrinsi
 daunting
omplex-ity that stems from the wide range of te
hnologies and
om-plexity of intera
tions. As a result, identifying problems in aprodu
tion system
ould be quite
hallenging, and optimizingand tuning for performan
es is often out of the question. Thiswill end up in very little e�
ien
y, redu
ed availability and se-
urity problems.In 2001, IBM has proposed autonomi

omputing as a long-term answer to these problems [67℄. Autonomi
 systems
ouldmanage themselves, as the autonomi
 nervous systems governshuman body adapting it to
hanging environments and repairingit, a damage
ould o

urred, with little or now knowledge from

3. VIRTUALIZATION ARCHITECTURES 69the high level fun
tion as the
ons
ien
e.Distinguishing properties of autonomi
 systems are [70℄:Self-optimization: an autonomi
 system
ontinually seek waysto improve its operation, identifying options and a
tionsthat make it more e�
ient on performan
es or
osts, a
-
ording to some built-in metri
;Self-healing: an autonomi
 system identi�es defe
tive
ompo-nents and put them o�-line, re-organizing itself to
ontinueto work with the remaining parts;Self-prote
tion: an autonomi
 system a
knowledges atta
ksfrom the outside, preventing them to have su

ess and
ompromise the entire system.These properties are usually
olle
tive identi�ed as self-* prop-erties. All of them are, to say the least, appealing, as they solvea great share of the problems that everyday happen and arisein a produ
tion system. Autonomi

omputing is still in itsinfantry, as many problems have yet to be addressed [56℄.All the self-* properties
ould be implemented leveraging onvirtualization. If we imagine an autonomi

omputing systemas a system made up of independent but
ooperating systems,ea
h of them
ould be implemented as a virtual ma
hine. Self-prote
tion
ould take advantages by the isolation property that

3. VIRTUALIZATION ARCHITECTURES 70an hypervisor o�ers, and self-healing
ould be more easily ob-tained if the failure of a
omponent will be
on�ned in its bound-aries, allowing for shutting down the
omponent and eventuallyre-initialize it (hoping the failure is transient) or migrating itover di�erent physi
al resour
es (if the failure is due to hard-ware's �aws), giving some degree of �exibility over a traditionalapproa
h when the
oupling between resour
es and
omponentsis tighter.In this dissertation we mainly investigate how to deal withself-optimization, i.e. how to leverage on virtualization to al-low an autonomi

omputing system to adapt itself to di�erentworkloads.3.3.1 Self-optimizationSelf-optimization is the ability of a system to adapt itself ondi�erent
onditions, and as a distributed system is intended togive servi
es to
lients requesting them, the fo
us is on systemsthat adapt themselves on variable workloads. We
onsider thear
hite
ture proposed in [80℄ as a general framework we wish toextend.The proposed ar
hite
ture evolves around a QoS Controller,depi
ted in �gure 3.3 whi
h has four main
omponents:

3. VIRTUALIZATION ARCHITECTURES 71

Analyzer

Workload

Solver

Model
Performance

Arriving requests Completed requestsComputer System

QoS Controller

Goals

QoS

Algorithm

Controller

QoS

Computation

Demand

Service

Figure 3.3: The QoS Controller.

3. VIRTUALIZATION ARCHITECTURES 72Servi
e Demand Computation:
olle
ts utilization data onall system resour
es and
ount of
ompleted requests. Theservi
e demand of a request, de�ned as the total averageservi
e time of a request for a spe
i�
 resour
e,
an thenbe
omputed as the ratio between the resour
e utilizationand the system throughput [78℄. These servi
e demandsare used as input parameters for a Queuing Model solvedby the Performan
e Model Solver;Workload Analyzer: analyzes the arriving requests and
om-putes statisti
s as average arrival rate. It
ould also usestatisti
al te
hniques to fore
ast workload. These statis-ti
s are made on a per-interval basis,
alled
ontroller in-tervals;Performan
e Model Solver: re
eives requests from the QoSController Algorithm to solve the Queuing Model for aspe
i�

on�guration of the system. Its inputs are the
on�guration parameter values, servi
e demand values andworkload intensity values. Its output is the QoS value forthe
on�guration used as input, given a

ording to somemetri
;QoS Controller Algorithm: it runs the
ontroller algorithmat the beginning of ea
h
ontroller interval. Its input

3. VIRTUALIZATION ARCHITECTURES 73are the QoS goals, departure and arrival pro
esses, andit sear
hes a
lose-to-optimal solution, by a mix of analyt-i
al models and
ombinatorial sear
hing te
hniques. Ea
hpossible solution is evaluated by the Performan
e ModelSolver. After the best possible
on�guration has been dis-
overed, it sends
ommands to re
on�gure the system.This ar
hite
ture has been then validated for highly variableworkloads [39℄. In [40℄, this ar
hite
ture has been expandedto allow the
o-existen
e of di�erent Appli
ation Environments(AEs) on the same physi
al ma
hine. On ea
h physi
al ma
hinethere's a QoS Controller analogous to the one of �gure 3.3 plusa
entralized global
ontroller.These ar
hite
tures �t in the general model for autonomi

omputing proposed in [103℄.In [101℄, a similar ar
hite
ture has been
onsidered for ap-plian
e based autonomi
 provisioning. The ar
hite
ture de�nessome Virtual Appli
ation Environments (VAEs): a VAE spansover one or more virtual servers, and ea
h server is de�ned insidea physi
al ma
hine. Ea
h VAE has a On-Demand Router thatdispat
hes in
oming request to the less loaded virtual server in-side the VAE, in a round-robin fashion. A global, utility-driven,virtualization-aware model solver solves a performan
e model todetermine the better
on�guration for the VAEs, for the given

3. VIRTUALIZATION ARCHITECTURES 74(and fore
asted) workload. This arti
le is remarkable as it's the�rst to take into a

ount the time required for virtual ma
hineprovisioning, i.e. the time required to a
tivate a virtual ma-
hine and the time required for
losing it, and o�ers a formulato evaluate the performan
e overhead of an hypervisor, as thisdatum is required by the model solver to avoid overloading aphysi
al ma
hine. Based on the works in [87, 88℄ it is assumedthat the
apa
ity available for a spe
i�
 virtual ma
hine is afair share of the total (raw)
apa
ity of the physi
al ma
hine,attenuated by a
onstant fa
tor α that takes
are of overheaddue to virtualization:
Cv = (1− α) ∗ Cp/N (3.8)where:

• Cv is the
apa
ity of the virtual ma
hines;
• Cp is the
apa
ity of the physi
al ma
hine;
• N is the number of virtual ma
hines instantiated over thesame physi
al ma
hine.In the aforementioned arti
le, α = 0.1. (in [31℄ authors
hoosean overhead between 1.5 and 3, i.e. 1

3 ≤ α ≤ 2
3 . This di�erent

3. VIRTUALIZATION ARCHITECTURES 75values are best explained by di�erent virtualization te
hnolo-gies). The
apa
ity is de�ned as a global index of the rela-tive performan
es of a physi
al server, i.e. the model is mono-dimensional. The mapping between the physi
al server and thevirtual ma
hine is des
ribed by an asso
iation matrix, and themodel solver returns, for a given matrix and a (fore
asted) work-load, a new asso
iation matrix. The time required to deploy thenew asso
iation matrix is
onsidered as a linear sum of the timerequired to shut down the no longer ne
essary virtual ma
hinesand the time required to boot the new virtual ones.In [31℄ the model fo
uses on SLA violations, trying to mini-mize it. To get a solvable performan
e model, the probability ofa servi
e time bigger than the agreed value is bounded via theMarkov Inequality [71℄.Other approa
hes for self-optimization are possible. In [84℄it's exposed a
ontrol of CPU shares of two
ompeting virtualma
hines over the same physi
al node based on
ontrol theory.3.3.2 Proposed extension to the modelAll the previous ar
hite
tures have some boundaries we wish toextend.First, they assume that the
apa
ity of the servers are �xed,

3. VIRTUALIZATION ARCHITECTURES 76and so the servi
e demand times are only input variables. Thisis in general not true when virtualization deploys all of its powerin resour
e sharing: it's possible to dynami
ally vary the CPUshare assigned to a virtual ma
hine.But the most important limit is that all of these models as-sume that the only
riti
al parameter for modeling is the CPUpower of the virtual ma
hines ([79℄, [89℄). A notable ex
eptionis [69℄ where are both
onsidered a load dependent resour
e,as the CPU, and load independent resour
e as the main mem-ory; but performan
es of a (virtual) ma
hines stem from all theavailable resour
es. As an example, front end tier require a lotof bandwidth for
onne
tion to external
lients, and a databasetier is bounded by storage bandwidth. As is shown in [61℄, allof these (and possibly others) parameters are required to havea
orre
t estimation of servi
e demand times.Consequently, if ea
h virtual ma
hine is des
ribed by a re-sour
es demand ve
tor, ea
h physi
al ma
hine must by des
ribedby a dimensionally analogous resour
es ve
tor, and it
ould bepossible that a physi
al ma
hine has some spare resour
es thatare insu�
ient for instantiate a spe
i�
 virtual ma
hine in it.As an example, imagine we have a physi
al ma
hine with8 GiB of RAM and four pro
essors (for the sake of brevity we
onsider only two elements for the resour
e ve
tor). This ma-

3. VIRTUALIZATION ARCHITECTURES 77
hine
ould host 4 virtual ma
hines, ea
h one requiring 1.8 GiBof RAM and one pro
essor, but it
annot a

ommodate morethan 3 virtual ma
hines requiring 3 GiB of RAM and one pro-
essor. In the latter
ase, 2 GiB of RAM and one pro
essor arefree and unused, and they maybe a

ommodate another virtualma
hine, belonging to a di�erent tier, with a more
ompatibleresour
es demand ve
tor.Last, in the
urrent works it is often assumed that all theappli
ations are available on ea
h physi
al ma
hines, ready to bea
tivated should the workload variations require it ([69℄). Forproprietary appli
ations this is usually not a

eptable, as theli
ense fees are for ea
h installed
opy and not only for running
opies.For a virtualized ar
hite
ture, migration times must be takeninto a

ount. In [89℄, it is assumed that the
ontroller intervalare a lot bigger than the time required for server migration, andthis is a standard modeling option, as the
ontroller time is inthe range of 5-30 minutes.So, in this dissertation we
on
entrate on an allo
ation prob-lem. We assume that a multi-tier performan
e model solver hasdetermined the number of nodes that must be in ea
h tier forthe
urrent (or fore
asted) workload. Ea
h one of these nodesis des
ribed via a resour
e demand ve
tor, and there are avail-

3. VIRTUALIZATION ARCHITECTURES 78able some physi
al ma
hines des
ribed by a resour
e ve
tor. Wewant to map the former into the latter, i.e. assign ea
h virtualma
hine to only one physi
al ma
hine, without ex
eeding avail-able resour
es and possibly minimizing the number of requiredphysi
al ma
hine, to a
hieve maximum e�
ien
y.In Chapter 4 we formalize our model, dis
uss its
omputa-tional
omplexity and propose some algorithms to ta
kle it.

4The mapping problemAs seen throughout previous
hapters, virtualization
ould playa fundamental role in de�ning a distributed ar
hite
ture that
ould self-adapt to workload variations. In Chapter 3 we havesurveyed studies that deal with the problem of de�ning the nu-merousness of ea
h of the tier
omprising a multi-tier distributedsystem, espe
ially in the
ontext of web servi
es. To the best ofour knowledge, there are no studies that model these systemsfor more than one (or two) resour
es as CPU power (and avail-able memory) and no one that deal with the mapping problemthat we de�ne as: given a set of virtual ma
hines, ea
h one de-79

4. THE MAPPING PROBLEM 80s
ribed by a resour
e demand ve
tor, and a group of physi
alma
hines, ea
h one des
ribed by an available resour
es ve
tor,whi
h is the best mapping of the former to the latter, i.e. howto asso
iate ea
h virtual ma
hine to one and only one physi-
al ma
hine, without ex
eeding available physi
al resour
es andmaximizing a given metri
?Current studies ignore
ompletely this problem, and ofter
hara
terize performan
es of a virtual ma
hine only by its CPUpower. Instead, we
hoose to work, for this mapping problem, ina multi-dimensional spa
e, where we have both quantitative andqualitative
hara
teristi
s of the physi
al (and therefore virtual)ma
hines.4.1 Problem formalizationWe formalize the mapping problem to allow for maximum gen-eralization.To do so, we assume that the virtual ma
hines are groupedtogether, and that for ea
h group we must allo
ate one and oneonly ma
hine to a physi
al one. Ma
hines in the same grouprepresent di�erent servi
e levels and are
hara
terized by dif-ferent resour
e demand ve
tors, and for ea
h virtual ma
hinethere's an asso
iated pro�t that is earned when the ma
hine is

4. THE MAPPING PROBLEM 81
hosen to be instantiate.We want to maximize the grand total of pro�ts, while mini-mizing the number of physi
al ma
hine we have to use. It's pos-sible that, for some or even all groups, we have only one virtualma
hine for ea
h group, meaning that we
annot do anythingbut instantiate that ma
hine, and in su
h a
ase the problemis only to �nd where to instantiate it. As the virtual ma
hinesare pooled in groups, we indi
ate ea
h one of them by two in-dexes, the �rst denoting the group and the se
ond the ma
hinein the group (i.e. the servi
e level). Following this
onvention,if X is a generi
 s
alar (or ve
tor), X ij is the s
alar (or ve
tor)pertaining to the j−th ma
hine of the i−th group.We stipulate that:
• G is the number of groups. Ea
h group is
omposed of gidi�erent ma
hines (it's possible that gi = 1);
• ea
h virtual ma
hine is des
ribed by a K−dimensionaldemand ve
tor Dij = (dij

1 , dij
2 , ...dij

k);
• ea
h virtual ma
hine has an asso
iated pro�t P ij ;
• M is the number of physi
al ma
hines;
• ea
h physi
al ma
hine is des
ribed by a K−dimensionalresour
e ve
tor, Rl = (rl

1, r
l
2, ..., r

l
k), 1 ≤ l ≤M ;

4. THE MAPPING PROBLEM 82
• for ea
h i, we have Di1 ≤ Di2 ≤ ... ≤ Digi ,
oordinatewise, and P i1 ≤ P i2 ≤ ... ≤ P igi .The de
ision variables xij

m are de�ned as:
xij

m =







0 ma
hine ij is not on physi
al ma
hine m

1 ma
hine ij is on physi
al ma
hine m
(4.1)We want to
hoose one and one only virtual ma
hine fromea
h group, and allo
ate it on a physi
al ma
hine, with the
onstraint that we
annot ex
eed the available resour
es, max-imizing the total pro�t earned and minimizing the number ofphysi
al ma
hines that are used.To do so, we de�ne the variables ul as:

um =







0 if physi
al ma
hine m is not used
1 if physi
al ma
hine m is used (4.2)Our obje
tive fun
tion is:

P =
G

∑

i=1

gi
∑

j=1

M
∑

m=1

xij
mP ij − C ∗

M
∑

m=0

um (4.3)

4. THE MAPPING PROBLEM 83whi
h is the total pro�t of the virtual ma
hines that are in-stantiated minus the number of physi
al ma
hines used timesa
onvenient
onstant C. We assume C as a
onstant as theoperational
osts for running the infrastru
ture (e.g. ele
tri
-ity
osts, maintenan
e fees,
o-lo
ation expenses) are usuallyproportional to the number of ma
hines
omprising the infras-tru
ture: as we want to maximize their usage (by allowing fordi�erent servi
e levels) we also want not to use more than thestri
tly ne
essary.We extend the ≤ operator from s
alar to ve
tors in a
oor-dinate wise fashion: if X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn)we say that X ≤ Y i� xi < yi for ea
h i s.t. 1 ≤ i ≤ n, so
onstraints are formally de�ned as:
∀i ,

M
∑

m=1

gi
∑

j=1

xij
m = 1 (4.4)

∀m ,
∑

i

∑

j

xij
mDij ≤ Rm (4.5)

∀m, i, j , um ≥ xij
m (4.6)Eq. 4.4 means that we
hoose only one virtual ma
hine forea
h group, and eq. 4.5 means that, on ea
h physi
al ma
hine,we
annot allo
ate more resour
es than available ones, while eq.

4. THE MAPPING PROBLEM 844.6 relates variables ul to xij
m a

ording to def. 4.2 .4.1.1 Dis
ussion of formalizationThe key issue of the proposed formalization is that we assume a�xed number of available physi
al ma
hines, ea
h one with pre-de�ned asso
iated resour
es. We re
all that the mapping prob-lem arise when we have already solved a multi-tier performan
emodel, whi
h in turn requires to have, besides others, parame-ters as the servi
e average time that is determined, analyti
allyor by live system instrumentation, only after ea
h tier has been
hara
terized by its
omputing power. Therefore, the only po-tentially limiting fa
tor for the proposed formalization is thatthe number of available physi
al ma
hines M is �xed, and it'spossibile that we would experien
e over-provisioning (we
ouldbe able to solve the same mapping problem with lesser physi
alma
hine) or, on the
ontrary, that we have too few ma
hines tosolve it.Determining the minimum value of M that leads to a solu-tion satisfying
onstraint
ould be quite
hallenging. We observesome basi
 fa
ts.First, we
an de�ne easily ne
essary but not su�
ient
on-ditions that would help in de�ning an a

eptable value for M .

4. THE MAPPING PROBLEM 85For ea
h group of virtual ma
hines, we
onsider that theresour
e ve
tors are non de
reasing ordered, i.e. that we have
Di1 ≤ Di2 ≤ Digi , for ea
h i. This means that, for ea
h group
i, we
ould
onsider Di1 as the minimum level of resour
es thatmust be instantiated by the pool of physi
al ma
hines. Now, ifthe sum of these Di1 ex
eeds, even for only one resour
e, thesum of available resour
es provided by the physi
al ma
hines(∑ Ri), a solution
ould not exist.As an example, if we need to allo
ate four virtual ma
hines,ea
h one requiring 4 GiB of RAM, and we have 2 physi
al hostsof 5 GiB of RAM ea
h, we have less memory than needed, anda mapping
annot be determined.This is a ne
essary but not su�
ient
ondition: if, insteadof 2 physi
al hosts of 5 GiB, we have had 10 physi
al ma
hineswith 3 GiB of RAM ea
h, the grand total of available memorywould be of 30 GiB, but nevertheless a mapping
ouldn't befound, as ea
h physi
al ma
hine is too small to a

ommodateeven just a single virtual ma
hine.Formally, we say that a solution does not exist if :

G
∑

i=1

Di1 >
M
∑

i=1

Ri (4.7)or

4. THE MAPPING PROBLEM 86
∃i s.t. Di1 > Rj ∀j (4.8)so we
ould start from a small set of physi
al ma
hines, verifyby eq. 4.7 and eq. 4.8 if a solution whether
ould exist or not.If not, we in
rease the set of physi
al ma
hines: sooner or laterwe �nd a feasible set, and we
ould try to map over it. If we �nda solution, we
ould assume that this is the smallest availableset of required physi
al ma
hines.The proposed model allow for
oexisten
e of quantitative re-sour
es (like CPU power or number of
ores, memory size) andqualitative resour
es. As an example, we might want to deploythe multi-tier distributed system in two di�erent areas (two dif-ferent LANs, or two geographi
ally remote sites). To do so, weextend the quantitative model, by de�ning two new qualitativeresour
es,
alled q1 and q2. Resour
e q1 means �allo
ation inthe �rst area�, whilst resour
e q2 means �allo
ation in the se
-ond area�. Re
all that ea
h tier is
omprised of virtual ma
hinesof the same type, i.e. with the same resour
e demand ve
tor: weextend this ve
tor to a

ommodate for the new resour
es, andwe put q1 = 1 for the �rst half of nodes of the tier, and q2 = 1for the se
ond half, meaning we want half nodes in the �rst areaand half nodes in the se
ond area. Lastly, for the physi
al ma-

4. THE MAPPING PROBLEM 87
hines lo
ated in the �rst area, we put the provided resour
e
q1 = M/2 and the provided resour
e q2 = 0, and the
onversefor the physi
al ma
hines lo
ated in the se
ond area.As a result, ea
h solution of the mapping problem will maphalf nodes of ea
h tier (ones for whi
h q1 = 1) on the physi-
al ma
hines lo
ated in the �rst area, and remaining nodes onphysi
al ma
hines lo
ated in the se
ond area, thus giving us ageographi
al distribution of the system.This approa
h
ould be applied for other qualitative resour
esas better
onne
tion to storage area networks, software li
ensesrestri
tions, hardware support for virtualization and so on.4.2 The mapping problem as a gener-alization of the knapsa
k problemThe mapping problem is a generalization of the well knownknapsa
k problem [75℄.The generalization stems from these
onsiderations:
• the knapsa
k problem is mono-dimensional, whilst the map-ping problem is multi-dimensional;
• the knapsa
k problem is with only one knapsa
k (physi
al

4. THE MAPPING PROBLEM 88ma
hine), whilst the mapping problem deals with multipleknapsa
ks (physi
al ma
hines);
• the knapsa
k problem doesn't group items (virtual ma-
hines), the mapping problem does.To the best of our knowledge, there are no published studies(in the �eld of
omputing performan
e modeling or operationalresear
h) that ta
kle all these generalizations together.Multi-dimensional knapsa
ks,
alled MDKP, are dis
ussed in[41, 48℄. Multi-knapsa
ks problems are studied in [60, 53, 46℄.Multiple-
hoi
e knapsa
ks, problems where items are groupedtogether, are
alled MCKP and a minimal algorithm to solvethem is shown in [85℄. In [104℄ the algorithm is used in the
ontext of QoS for web servi
es.Some interse
tions have been evaluated: MMKP are multiple-
hoi
e, multiple-dimensional knapsa
k problems, and heuristi
sto solve them are dis
ussed in [32, 65, 33, 66℄The only referen
e we have found to a multi-dimensional,multiple-
hoi
e, multiple knapsa
ks problem, that hen
eforthwe
all MMMKP problem, is in [94℄, but only as a de�nition.The
ontext there was the de�nition of an admission
ontrol sys-tem for multimedia servers, but in that
ase the only arbitratedresour
e was Internet bandwidth.

4. THE MAPPING PROBLEM 89The MMMKP model will be simpli�ed in a MMKP if wehave only one ma
hine for ea
h group, i.e. gi = 1 ∀i. Althoughthe performan
e models �nd an estimation of the number of re-quired nodes for ea
h tier, they usually assume that workloadwould not experien
e transient surges. To try to a

ommodatefor peaks in workload intensity, we
ould over-provision the ar-
hite
ture: it wouldn't
hange the tier's size or the ar
hite
-ture, but it will improve e�
ien
y in resour
es using. This iseven more realisti
 if the provider and the owner of the multi-tier system belong to the same organization, as in this s
enariothe solution of the mapping problem is the minimum requiredlevel of servi
e, while every extra
omputing power put in use(and therefore not wasted) will be appre
iated. The MMKP,as stated, is studied in the s
ienti�
 literature, so we
hoose to
on
entrate on its MMMKP generalization, as the algorithms wedevise to solve it are equally appli
able to the MMKP problem.Another point is that being the number M �xed or not willlead us to di�erent problems: if M is �xed, we have a knapsa
kproblem, otherwise we have a multiple-dimensional, multiple-
hoi
e bin pa
king problem, a generalization of the bin pa
kingproblem that has the same popularity of the MMMKP in theliterature, being almost unknown (a survey of bin pa
king prob-lems is [50℄). To maintain our pragmati
 approa
h, we prefer to

4. THE MAPPING PROBLEM 90work on MMMKP, as the approa
hes we will develop to solveit
ould be easily applied to a generalization of the bin pa
kingproblem.Last, we assume that the hypervisor te
hnology that weadopt to manage the virtual ma
hines su�ers of no or little in-terferen
e, meaning that is
apable of perform a robust and fair(physi
al) resour
es sharing. If this is not the
ase, the mappingproblem
ould be more easily de�ned as a generalization of theGeneralized Assignment Problem ([51℄).4.3 Computational
omplexity of themapping problemIt's easy to show that ea
h
lassi
al knapsa
k problem
ould beformulated as a MMMKP.First, we
an generalize a mono-dimensional knapsa
k prob-lem to a multi-dimensional by substitution of ea
h item weight
Wi and knapsa
k
apa
ity C (both s
alar) with respe
tively ve
-tor Wi = (Wi, 0, ..., 0) and C′ = (C, 0, ..., 0). Then we
an addmore dummy knapsa
ks to have a multiple knapsa
ks general-ization, and these knapsa
ks are des
ribed via
apa
ity ve
tors
C′′ = (0, 0, ..., 0), C′′′ = (0, 0, ..., 0). Generalization to have a

4. THE MAPPING PROBLEM 91multiple
hoi
e problem
ould be obtained if, for ea
h item de-s
ribed via a Wi ve
tor, we de�ne a group, with the �rst element,
W 0

i = (0, 0, ..., 0) and the se
ond element W 1
i = Wi. Pro�t for

W 0
i is 0, and pro�t for W 1

i is the pro�t asso
iated with theoriginal item i in the knapsa
k problem.As a result, be
ause the knapsa
k problem is NP-hard [75℄,we get that MMMKP is NP-hard.A knapsa
k problem with N items has a solution spa
e ofthe size Θ(2N) as the de
isional variables asso
iated with ea
hitem are expressed as xi = 1 if we
hoose the item or xi = 0otherwise.In the MMMKP, we observe that we
hoose one only vir-tual ma
hine from ea
h group, and the
hosen one is mappedover only one of the available M physi
al ma
hine. So, for agroup made up of gi elements, we have gi ∗M di�erent de
isionvariables, of whi
h only one will be set to 1.For all the groups, this leads to a solution spa
e size of Θ(g1∗

M ∗ g2 ∗M ∗ ... ∗ gG ∗M) = Θ(
∏

gi ∗M
G), where we have the Θnotation as the mappings are not independent from ea
h other(when one virtual ma
hine is mapped over a physi
al ma
hine,there are less available physi
al resour
es).To
omplete analysis, if we assume that gi = k for ea
h i,the solution spa
e size is Θ(kG ∗MG). For M = 1 and k = 2,

4. THE MAPPING PROBLEM 92we have the solution spa
e size of a
lassi
al knapsa
k problem.4.4 Optimal solution of the mappingproblemA naive approa
h to �nd the optimal solution of the mappingproblem will
onsist of enumerating all the
ombinations of thede
ision variables: for ea
h
ombination we �rst
he
k if the
onstraints are not violated; for all the feasible
ombinations theasso
iated pro�t P is
ompared against the previous maximum:if it's bigger the
urrent
on�guration of the de
isional variablesis
onsidered the best solution found insofar.The enumeration will keep
are of guarantee for the
on-straints 4.4, as for ea
h group it
onsider only all the a

eptable
ombinations that are, as seen in paragraph 4.3, in number of
gi ∗M . For ea
h one of these
ombination for the �rst group,the
ombination of the se
ond group are evaluated, and for ea
h
ombination of these, the
ombination of the third group areevaluated and so on in an iterative way.The enumeration tuples we produ
e in this approa
h
ouldbe represented in a hierar
hi
al way, putting them in a de
isiontree (see �gure 4.1).

4. THE MAPPING PROBLEM 93
x(1,1)=1

Root

x(2,1)=2x(2,1)=1 x(2,1)=2x(2,1)=1

x(1,1)=2 x(1,2)=1

Figure 4.1: A partial de
ision tree for a MMMKP problem.In the double
he
ked leaf, set de
isional variables are x11
1 =

2, x21
1 = 1.Ea
h node of the tree
ontains the values of the de
isionalvariables that have already been
hosen, while the leafs
ontainthe values of the de
isional variables that are under evaluation.Evaluation
onsists of two phases. In the �rst phase we
he
kif, for the (partial) solution whi
h is des
ribed by the nodes inthe path from the
urrent leaf to the root of the tree, some ofthe
onstraints are violated. If so, there is no need to furtherdevelop the tree, be
ause the
urrent node and all its des
en-dants will violate the
onstraints. The node is then marked andwe move on to evaluation of another node. Se
ond phase ofthe evaluation is the generation of all the possible des
endants,that are proposed assignments for the de
isional variables of the

4. THE MAPPING PROBLEM 94next group (at level i of the three, we have the values of the de-
isional variables for the i-th group). If there are no leafs to beevaluated, the enumeration pro
ess is done, and we have found(one of) the optimal solution for the problem.This algorithm uses a simple method to
ut the developingof the tree, that
ould be improved implementing a bran
h andbound te
hnique.To do so, we
onsider a linear relaxation of original problem,where the
onstraints 4.4 and 4.5 are relaxed by these:
gi

∑

j=1

xij
m = 1, ∀m (4.9)

∑

xij
mDij ≤ Rm, ∀m (4.10)where de
isional variables xij

m are real numbers in the range
[0..1].For ea
h leaf of the de
ision tree, we have some of thesevariables that are �xed, and others that are free. We �nd theoptimal solution that maximizes 4.3 via the Simplex Method.This solution is an upper bound of the solution for the origi-nal (integer) problem, be
ause allowing for de
isional variablesto take fra
tional values potentially lead to a better use of theavailable knapsa
ks
apa
ities. This upper bound will be evalu-

4. THE MAPPING PROBLEM 95ated against the
urrent optimal found for the integer problem,and the
orresponding sub-tree will no further expanded if theupper bound is less than the optimal found insofar. Otherwise,the sub-tree is promising, and we
ould a�ord to expand it.The Simplex Method
ould grow exponentially in the time ittakes to �nd an optimal solution for a given set of free variables,and the number of trees to be expanded and evaluated will beexponential in the number of de
isional variables. This
on�rmsthat the MMMKP problem is an NP-hard problem, and that anoptimal solution
ouldn't sear
hed but for problems of limitedsize.4.5 Approximate solutions for the map-ping problemAs the mapping problem is NP-hard, we are for
ed to developalgorithms to �nd approximate solutions of it. We both devel-oped an heuristi
 to deal with it [44℄ and a geneti
 algorithm[45℄.

4. THE MAPPING PROBLEM 964.5.1 A pa
king oriented heuristi
As dis
ussed, the MMMKP problem is very similar to the binpa
king problem, so we
ould de�ne some heuristi
s that resem-ble the ones used for the bin pa
king problem. In all of theproposed heuristi
s, we start sear
hing for a basi
 solution, thatlater we try to improve.A basi
 solution is when we
onsider, for ea
h group i, onlythe item i1 - with asso
iated resour
e demand ve
tor Di1 - tobe mapped: we start solving the mapping problem by redu
ingit to a multi-dimensional multi-knapsa
k problem. If we �nda solution for it, we try to improve the solution,
onsidering ifwe
ould map Di(j+1) instead of the
urrently Dij in solution.In the following, we adopt naming
onventions from operationalresear
h, so item ij, will be indi
ateb by its size Dij .Next Fit For ea
h item Di1 we sear
h for a knapsa
k withsu�
ient available spa
e. If there is one, we put Di1 into it, andwe
orrespondingly redu
e the available spa
e. We start with allthe knapsa
ks open, and we
lose one when the available spa
eis insu�
ient for the Di1 item. When a knapsa
k is
losed, weno further inspe
t it to see if has su�
ient available spa
e foran item. We have a basi
 solution if ea
h Di1 item has beenput into a knapsa
k (some knapsa
ks will be open, other
losed,

4. THE MAPPING PROBLEM 97and it's possible that there are knapsa
k
ompletely unused),otherwise the heuristi
 fails.First Fit In the First Fit heuristi
, we sear
h for a destinationof the item Di1 by inspe
ting all available knapsa
ks, i.e. we nolonger have open or
losed knapsa
ks. We �nd a basi
 solutionin the same sense of Next Fit, i.e. when ea
h item Di1 has beenput into a knapsa
k.Best Fit The Best Fit heuristi
 sear
hes between all the avail-able knapsa
ks the best where to put the item Dij , usuallyde�ning best with a metri
 that tries to minimize the unusedresour
es. A monodimensional example is where we have twoknapsa
k, with available spa
e respe
tively R1 = 3 and R2 = 4and we need to insert the item i1 su
h thatDi1 = 3. Both knap-sa
ks
ould host it, but the heuristi

hoose the �rst, to make it
ompletely used and leave a little unused
apa
ity in the se
ond.In a multi-dimensional bin-pa
king problem, ties are resolved infavor of lower (resour
e) index ore more
omplex evaluation ofrelative s
ar
ity of ea
h resour
e, as we'll do. We �nd a basi
solution in the same sense of Next Fit, i.e. when ea
h item Dijhas been put into a knapsa
k.

4. THE MAPPING PROBLEM 98Improving the basi
 solution We improve the solution foundinsofar in an iterative way.At the generi
 step, we have
hosen a spe
i�
 item fromea
h group. Assume that for the group i we have item j
hosenon ma
hine m, i.e. xij
m = 1 and x

i(j+1)
m = 0. If j = gi wealready have the most pro�table item from group i so we moveon another group to
he
k for possible in
reases.Otherwise, we
ould remove item j from group i from solu-tion, releasing asso
iated resour
es on knapsa
k m, and we seeif and where we
ould put in solution item j + 1 of the samegroup. This requires
onsidering all available knapsa
ks, �ndingthe most suitable one to
ontain su
h item. If a generi
 knap-sa
k k as enough free resour
es for the item, we evaluate thegoodness of the mapping by this formula:

Goodness(i, k) =
‖R‖

P i(j+1) − P ij − (1− uk) ∗ C
(4.11)In eq. 4.11:

• the numerator is the ve
tor norm of the residual amount ofresour
es available on knapsa
k k after we put item i(j+1)in it;

4. THE MAPPING PROBLEM 99
• the denominator is the in
rease in pro�t we have (P i(j+1)−

P ij) minus the possibility that we may end up using aknapsa
k k that was not yet used (1− uk ∗ C);Eq. 4.11 makes sense only if the denominator is bigger than zero,i.e. only if we have some pro�t gain. In ea
h phase of the im-provement pro
ess, we
al
ulate Goodness(i, k) for ea
h a

ept-able value of i (groups with more valuable items) and k (knap-sa
ks with available resour
es). Lowest values of Goodness(i, k)are better, so we
hoose the minimum positive one, and we per-form the ne
essary
orre
tions on the solution we are workingon (i.e., we set xij
m = 0 and x

i(j+1)
k = 1). We repeat this pro
essas long as we have made improvements on the
urrent solution.Ea
h pass has a
omputational
omplexity of θ(G ∗M).Randomization of data The proposed heuristi
s are stronglybased on the order by whi
h groups and knapsa
ks are de�ned.We
annot stipulate that it exists an order of these variable su
hthat the proposed heuristi

ould always �nd the optimal solu-tion, but we are
on�dent that if we permute the groups and thema
hines before a
tually building up a basi
 solution we
ouldin
rease the �nal pro�t as a result of the appli
ation of the basi
heuristi
s shown before. We observe that there is not a general
riterion to dis
riminate between good permutations that lead

4. THE MAPPING PROBLEM 100us to �nd better solutions and bad permutations, and also thesegood ones are less than statisti
ally rare, unless that P=NP.Other bin pa
king heuristi
s In most of the s
ienti�
 lit-erature for the bin-pa
king problem ([50℄) it is assumed thatall the resour
es are dimensionally homogeneous. As an exam-ple, if the problem is to put
ans into a
ontainer maximizingused spa
e, the
ans
ould be rotated, so elements of ve
tors
Dij
ould be inter
hanged. This is not the
ase of the mappingproblem. Also, heuristi
s are evaluated with a predeterminedset of elements, that are used as a
omparative basis. Theseelements are de�ned as out
omes of some random variables, as-sumed independent of ea
h other, while in our problem this isgenerally not true, for two distin
t reasons. First, there is somedegree of intra-dependen
ies, i.e. if a virtual ma
hines requiresa lot of CPU power it will requires (on average) more memorythan a ma
hine that requires less CPU power. Se
ond, there isa degree of inter-dependen
ies, as all ma
hines belonging to thesame tier will share their resour
e demand ve
tor.4.5.2 A geneti
 algorithmA geneti
 algorithm
ould be seen as an intelligent probabilisti
sear
h in the spa
e of solutions for an hard problem.

4. THE MAPPING PROBLEM 101Starting from the name itself, the terminology of the geneti
algorithms is derived from the evolutionary biology, where in-dividuals stem from a population by a re
ombination of geneti

hara
teristi
s of their parents, plus a small probability of somerandom geneti
 mutation. Some mutations are for the better,giving the individual an higher
han
e to be
ome a parent of anew individual (that
ould inherit this advantageous mutation),other mutations are for the worst, and the individual
arryingthem will have a smaller
han
e to be
ome parent.Geneti
 algorithms have been widely
onsidered as an op-timization strategy for hard optimization problems, where it'seasy to �nd some solutions but it's very di�
ult to �nd the op-timal, as these initial solutions
ould be the initial populationfrom whi
h start the sear
h for the optimal one.In the �eld of integer programming, the mapping betweenan individual and a solution is usually really simple, as he i-th
hromosome of the individual is 0 (or 1) if and only if the i-thde
ision variable of the portrayed solution is 0 (or 1). Althoughmore
omplex representations are possible [52℄ we
hoose to sti
kwith this.Geneti
 algorithm are not a free lun
h in the �eld of opti-mization when they are applied to a
onstrained optimizationproblem, as the result of re
ombination and mutation of two fea-

4. THE MAPPING PROBLEM 102sible element (i.e., individuals that represent feasible solutions)
ould not be feasible. The mapping problem is parti
ularly
om-plex from this point of view. In fa
t we have two di�erent set of
onstraints, the �rst that requires we
hoose only one elementfrom ea
h group, the other that we don't over�ll a knapsa
k.As these two set of
onstraints must be enfor
ed together, we
annot adapt a simple 'repair' operator to deal with unfeasibleindividual (i.e., individual representing unfeasible solutions), ashas been done in [48℄ where, should a knapsa
k be over�lled,elements are removed from it until the violation is �xed: we
annot do that as we must allo
ate exa
tly one element fromea
h group. The approa
h we have adopted is to
onsider our
onstraints as belonging to two di�erent sets: easy and hard.An easy
onstraint is a
onstraint that, should an individualviolate it, we
ould easily �x, while hard
onstraints require a
omplementary approa
h, based on the use of penalty fun
tion.Formally speaking, if we have this optimization problem:


















max f(x)x ∈ Ex ∈ H

(4.12)where E and H represents respe
tively easy and hard
on-

4. THE MAPPING PROBLEM 103straints, we transform problem 4.12 into this one:






max f(x)− p(d(x, H))x ∈ E
(4.13)where d(x, H) is a metri
 fun
tion des
ribing the distan
eof solution x from the set H of feasible solutions, and p(·) isa monotoni
ally non-de
reasing fun
tion su
h that p(0) = 0.Penalty fun
tions are surveyed in [34℄. For our model,
onstraint4.4 is easy, so we de�ne a repair operator for individuals thatviolate it, while
onstraint 4.5 is hard, and it will be handledvia a penalty fun
tion.Outline Our geneti
 algorithm starts with a population thatis made up of individuals representing basi
 solution for theproblem, i.e. solutions where only the lowest SLA of ea
h virtualma
hine has been
hosen to be allo
ated. We generate thesesolutions by using the �rst-�t, best-�t and next-�t heuristi
 fromthe bin-pa
king problem, with a randomization of the data togenerate initial di�erent solutions.We must take
are that we don't insert into the populationan element that is already in, to avoid that we unne
essarilyredu
e the initial population size. After this initialization step,

4. THE MAPPING PROBLEM 104we do an iterative pro
ess, ea
h
y
le of it
alled a generation,where we:1. Choose the two parents of the new individual, by a tour-nament pro
ess;2. Create the new individual by a
rossover operator;3. Mutate some variables of the new individual with a mu-tation operator;4. Cal
ulate the �tness of the individual, taking
are of un-feasibility due to over�lling;5. Fix the easy
onstraint with the repair operator;6. Insert this individual into the population, and remove theindividual with the lowest �tness.These steps are all tunable by some parameters, resulting indi�erent instan
es of the same geneti
 algorithm. We dis
ussea
h of these steps in the following paragraphs.Tournament Pro
ess To
hoose the two parents that willgenerate a new individual, we randomly de�ne two di�erentpools of all di�erent elements from the population. From ea
hpool, we
hoose the element with the highest �tness as one of

4. THE MAPPING PROBLEM 105the two parents. A larger pool will in
rease the
ompetitivepressure.Crossover Operator After the sele
tion of the two parents,the new individual will be de�ned as the
rossover of them. In-stead of adopting a random
rossover we do an uniform
rossover[37℄, where the probability that the i-th variable of the new in-dividual is equal to the i-th variable of the �rst or se
ond parentis proportional to the �tness of the �rst or se
ond parent.Mutation Operator Mutation rate is �xed. A more
omplexapproa
h would be a dynami
 mutation rate, with an higher ratefor the initial generations (when we are probably away fromthe optimal solution, so we
an
hange a lot of variables) anda lower rate as the generations pass away. This is a
riti
alparameter, as an high rate
ould destroy the stability of thegeneti
 algorithm, and a low rate
ould end up in being trappedin a lo
al minimum.Fitness and penalty fun
tion At a �rst glan
e, one shouldbe tempted to
onsider the obje
tive fun
tion 4.3 as the �tnessfun
tion, but this will result in even
ompletely di�erent indi-viduals with the same �tness, when we want to di�erentiate as

4. THE MAPPING PROBLEM 106mu
h as possible in order to pi
k up, from the tournament pro-
ess, the potentially best individuals by looking at their �tnessand not only by
han
e.We have also to in
lude the penalty fun
tion in the �tness
omputation, so we are already
onsidering a di�erent problemthan the original one, but we must de�ne the �tness fun
tionso individuals with better values of the �tness are, on average,better solutions for the original problem.We observe that, if we have two di�erent and feasible so-lutions x and x′ with the same value of the obje
tive fun
tion4.3 and the same number of physi
al hosts used, we
an stillsay that x is better than x′ if x pa
ks more virtual ma
hines inthe same physi
al host, while x′ allo
ate virtual ma
hines moreevenly; this be
ause it's more probable that, from the solution
x, we have more unused resour
es in some physi
al hosts and we
an use these resour
es to allo
ate some others virtual ma
hines,without
hanging the number of physi
al hosts used; while forsolution x′ unused resour
es are not aggregated together. For-mally speaking, for a solution x of the formal problem, we de�nethe relative amount of unused resour
es for ea
h physi
al hostsas:

4. THE MAPPING PROBLEM 107
relmk =

rm
k −

∑G

i=1

∑gi

j=1 xij
k ∗ dij

k

rm
k

(4.14)From this de�nition, we have that relmk is not negative whenthe knapsa
k l has some unused resour
e k, and it's less thanzero when we have over�lled it with respe
t to that resour
e. We
an leverage on this property of relmk using it both for rewardingfeasible individuals and for penalizing unfeasible individuals.To do so, we need also to de�ne the portion of the pro�t ona per physi
al hosts basis, i.e. the pro�t we earn for the virtualma
hines allo
ated on a spe
i�
 physi
al hosts:
Gain(m) =

∑

xij
m ∗ P ij (4.15)we need this value to deal with the unfeasibility that arises af-ter over�lling a physi
al host: in su
h a
ase, we
annot saywhi
h virtual ma
hines is 'guilty', and we have to de
rease thetotal pro�t for the portion of the pro�t we earn from all thevirtual ma
hines allo
ated over this over�lled physi
al host (theinability to say whi
h virtual ma
hines is guilty is what makesdi�
ult to de�ne a repair operator and for
es use to sear
h asuitable penalty fun
tion).Conversely, when the host is not over�lled, we
ould in
rease

4. THE MAPPING PROBLEM 108the �tness, and the more resour
es are relatively free (hosts byhosts), the more we in
rease the �tness. Putting all together,we de�ne the �tness fun
tion as:
F (x) = P (x) +

K
∑

i=1

M
∑

m=1

Gain(m) ∗
α

K
∗ relmk (4.16)The quantity α is used as a stati
 multiplier: if α

K
we rewardand penalize individuals more aggressively.The Repair Operator We de�ne a repair operator to ensurethat eq. 4.4 holds for ea
h individual. This equation requiresthat, for ea
h group i, we have exa
tly one element set to 1, allothers being 0. We
ould express in a di�erent way by statingthat, for ea
h group i: 1) there is at least an element di�erentthan 0; 2) there is no more than one element di�erent than0. By su
h separation, we
an de�ne two spe
ialized operators.Ea
h individual is an ordered
olle
tion of groups, and eq. 4.4
ould hold for some groups and not for others. So we s
an allthe groups
omprising the individual to
he
k for property 1, wesomehow �x the groups that don't verify it, and then we res
anall the groups to
he
k and possibly �x for property 2.To des
ribe the pro
ess,
onsider an individual made up of3 groups (whi
h means that we are sear
hing for the optimal al-

4. THE MAPPING PROBLEM 109
X X

X XFigure 4.2: An individual for a problem with 3 groups. Ea
h Xmarks a variable set to 1.lo
ation of 3 virtual ma
hines) where �rst group has no elementset to 1, and se
ond and third group both have 2 elements setto 1 (see �gure 4.2 for a pi
torial representation).To ensure that ea
h group has at least one non-zero element,we need to �x the �rst group. We
ould this randomly, by
hoosing one element of the �rst group and setting it to 1, or we
ould start a neighborhood sear
h. In this sear
h, we generate
g1 new individuals, ea
h one of them
ompletely equal to theindividual we are �xing, but with the i-th variable of the �rstgroup set to 1. (see �gure 4.3).For ea
h of these individuals, we evaluate the �tness (our�tness fun
tion takes
are of unfeasibility, so we
an safely useit) and we
hoose the individual with the highest �tness as therepaired individual. If we have more than one group that needsthis �xing, we perform it in an iterative way, group after group.

4. THE MAPPING PROBLEM 110
X X

X X

XX

X X X X XX

X

X XX XX XFigure 4.3: Fixing the �rst group with di�erent individuals.Now we have to ensure that ea
h group has no more thanone non-zero element, so we need to �x the se
ond group. Wegenerate two individuals, where the i-th individual has set to 1only the i-th non-zero variable of the se
ond group, and againwe
hoose the best among them. Then we repeat the pro
essfor the third group (see �gure 4.4).We stress that, when we
reate the neighborhood list, wehave partially unfeasible individuals in it, but we
an
ope withthis as the �tness fun
tion is robust enough. We
ould havebeen put in pla
e a more
omplex resear
h when we
onsider allthe possible
ombinations (see �gure 4.5), but we have
hosennot to do this for this version of the geneti
 algorithm, as ef-�
ien
y should be
arefully evaluated, espe
ially for the size of

4. THE MAPPING PROBLEM 111
X

X X

X X

X X

XX

X XX XFigure 4.4: Fixing the se
ond group by generating two di�erentindividuals.the explored set of neighborhood elements.

4. THE MAPPING PROBLEM 112
X X

X

X
X

X

X
X

X

X X

X

X

X

X

X X X
X

X X X

X X

X

Figure 4.5: Fixing the se
ond and third group by generating allpossible feasible individuals.

5Simulations resultsIn this
hapter we analyze the performan
es of the heuristi
s andthe geneti
 algorithm we have proposed in Chapter 4,
onsider-ing four di�erent problem sets. In the �eld of the operationalresear
h and integer programming, there are some datasets forthe most
lassi
al problems that one
ould use to test againsta new algorithm, so it's possible to
ompare the relative per-forman
es between di�erent resear
hers. At the time being, wedon't have the same for virtualized ar
hite
tures, and we wereunable to �nd publi
ly known data depi
ting a distributed sys-tem that has been virtualized: we were for
ed to
onsider some-113

5. SIMULATIONS RESULTS 114what arbitrary models of distributed systems, and we are alsoaware that the performan
es of our solvers (parti
ularly for thegeneti
 algorithm)
annot be fully understood and determinedwithout knowing the
lass and the stru
ture of the problems.From an implementation stand-point, all the programs wehave made are written in C, and they extensively use the GNUS
ienti�
 Library (GSL) [7℄ as we need to to deal with randomnumbers. We don't stress too mu
h in the sense of their e�-
ien
y, as we are more interested in their robustness: neverthe-less, ea
h dataset is solved within few minutes, on a
ommodity
omputer.5.1 Implementation of the bin pa
kingheuristi
sAll the proposed bin pa
king heuristi
s �nd a basi
 solution,whi
h is a solution when only the lowest SLA of ea
h virtual ma-
hine is instantiated over a physi
al host. We de�ne mapping[i]has su
h physi
al host, so if we have mapping[i] = j we have,in our formal model, that xj
i1 = 1. We have implemented theNext Fit, First Fit and Basi
 Fit bin pa
king heuristi
s.

5. SIMULATIONS RESULTS 115Next Fit In the Next Fit (algorithm 1) we start
onsideringall physi
al host as initially available (open). Then, for ea
hvirtual ma
hine, we
onsider ea
h open physi
al host: if it
ould
ontain the virtual ma
hine, we put the latter in the former,thus redu
ing the available resour
es, and setting mapping[i]properly; otherwise, we
lose the physi
al host, so we'll no longer
onsider it in further iterations. These
losings redu
e the setof available physi
al host over iterations. It's easy to show that
omputational
omplexity of this heuristi
 is Θ(G ∗M).First Fit In the �rst �t (algorithm 2), we
onsider all physi
alhosts as possible destinations for the lowest SLA of ea
h virtualma
hine, in a stri
t order starting from the �rst physi
al hostand then moving on. The �rst host we �nd that has su�
ientavailable resour
es, will be the
hosen host. As in the Next Fit,
omputational
omplexity is Θ(G ∗M).Best Fit In the Best Fit heuristi
 (algorithm 3), we have �rstto de�ne whi
h resour
es of the K we have in our model isthe s
ar
est. The s
ar
est resour
e is the one where the ratiobetween the grand total of it, as provided by the physi
al hosts,and the grand total of requested by the lowest SLA of all virtualma
hines, is lowest. The s
ar
est resour
e r is the resour
e

5. SIMULATIONS RESULTS 116Algorithm 1 Next Fit Algorithmfor i = 1 to M do
open[i]← trueend forfor i = 1 to G do
mapping[i]← −1end forfor ea
h virtual ma
hine i dofor ea
h host j doif open[j] thenif host j has su�
ient resour
es for lowest SLA of vir-tual ma
hine i then

mapping[i]← jredu
e available resour
es for host jmove to next value of ielse
open[j]← falseend ifend ifend forend forif ∃i s. t. mapping[i] = −1 thenprint Unable to �nd a basi
 solutionend if

5. SIMULATIONS RESULTS 117
Algorithm 2 First Fit Algorithmfor i = 1 to G do

mapping[i]← −1end forfor ea
h virtual ma
hine i dofor ea
h host j doif host j has su�
ient resour
es for lowest SLA of virtualma
hine i then
mapping[i]← jredu
e available resour
es for host jmove to next value of iend ifend for host jend for virtual ma
hine iif ∃i s. t. mapping[i] = −1 thenprint Unable to �nd a basi
 solutionend if

5. SIMULATIONS RESULTS 118whi
h should drive our mapping pro
ess, as there is not so mu
hof it.After this determination, for the lowest SLA of ea
h virtualma
hine, we �rst determine the set of physi
al hosts that havesu�
ient available resour
es (de�ning has_space[j] = true ifhost j has this property). From all these hosts, we asso
iatethe virtual ma
hine and the best host. The best host is thehost where mapping of the virtual ma
hine will result in theminimization of the residual resour
e r. This heuristi
 has a
omputational
omplexity of Θ(G ∗M) but the hidden propor-tionality fa
tor is the highest.Randomization of data The three heuristi
s pro
ess datain a stri
t order, while the mapping problem does not
hangeif data are reordered (as an example, by swapping elements ofgroup i with elements of group j). So we de
ide to allow for apermutation of the D ve
tor (and the asso
iated P) ve
tor. Per-mutation is de�ned randomly by using the gsl_ran_shuffle()fun
tion of the GSL library.The random number generator used is the Mersenne Twister[77℄ implemented by GSL, and we
onsider 10,000 runs of ea
hof the heuristi
s, ea
h time
hanging the random number seed.For ea
h of these runs, we improve the solution by the heuristi

5. SIMULATIONS RESULTS 119
Algorithm 3 Best Fit Algorithmfor i = 1 to G do

mapping[i]← −1end forfor ea
h virtual ma
hine i dofor ea
h hosts j do
has_space[j]← falseend forfor ea
h host j doif host j has su�
ient resour
es for lowest SLA of virtualma
hine i then

has_space[j]← trueend ifend forfor ea
h host j s.t. has_space[j] is true do
hoose the best host, bredu
e available resour
es for host b
mapping[i]← bend forend forif ∃i s. t. mapping[i] = −1 thenprint Unable to �nd a basi
 solutionend if

5. SIMULATIONS RESULTS 120de�ned by eq. 4.11 dis
ussed before.5.2 Implementation of the geneti
 al-gorithmAs is for ea
h geneti
 algorithm, the tuning of the parametersis parti
ularly
omplex, and more an art than a s
ien
e. Webelieve that we
annot �nd the best parameters without a deepunderstanding and analysis of real models; as our models aresomewhat arbitrary, we
hoose to make the more simplisti
 as-sumptions:1. The size of the tournament pro
ess is 5, so we draw apool of all di�erent 5 individuals to �nd ea
h parent: thismeans a very high
ompetitive pressure (usually ea
h poolis made up of 2 individuals);2. The mutation rate is proportional to 3 times the numberof de
isional variables set to 1, and it's �xed all along thesimulation. It's a rather high value;3. The value of α from eq. 4.16 is set to 2.4; being K = 2this means that the multiplier α
K

is bigger than 1;

5. SIMULATIONS RESULTS 1214. The initial population
onsists of 300 individuals, 100 forea
h of the bin-pa
king basi
 heuristi
s seen before; aswe remove the individual with the lowest �tness at ea
hgeneration, the population size remains stable throughoutthe simulation;5. We run the geneti
 algorithm for 2,000 generations.5.3 Models datasetWe
onsider two models to test the heuristi
, plus two di�erentmodels to test the geneti
 algorithm. For all but the smallest ofthem, the time it takes to �nd the optimal solutions via a toollike GLPK [6℄ is so long that we didn't see the linear program-ming solver
oming to an end.Tables 5.1 and 5.2 show the
hara
terization for the �rst andse
ond model, the ones on whi
h the heuristi
 is tested. Bothmodels depi
t a three-tier; as an example for the �rst model(table 5.1) the �rst tier (the web tier) is made up of 2 nodes,ea
h one having three di�erent servi
es of levels: the lowest levelof servi
e requires 1 CPU
ore, 2 GiB of RAM and gives a pro�tof 2 units, where the intermediate level requires 2 CPU
ores and4 GiB of RAM, and the pro�t goes up to 4. The highest level

5. SIMULATIONS RESULTS 122returns us a pro�t of 8, but it requires 3 CPU
ores and 4 GiBof RAM. All the fourth models are 2-dimensional, as it will bedi�
ult to �nd reasonable
hara
terization of other resour
es.Table 5.3 reports the grand total of physi
al resour
es for allthe four models. Note that not all hosts are equal in the amountof resour
es they provide.Although the se
ond model is not so mu
h bigger than the�rst, the in
rease in its size (both in virtual ma
hines number,SLAs and number of physi
al hosts available) makes di�
ult to�nd the optimal solution: the linear programming solver takessome se
onds to �nd the optimal solution for the �rst model,while on the se
ond we have only the range where the pro�t ofthe optimal solution lies after hours of
omputation (on an IntelXeon 1.86 GHz).So, while in table 5.4 we
ompare the pro�t for the optimalsolution and the best pro�t found by the heuristi
, on table 5.5we
annot do better than
ompare the range of pro�t with thebest pro�t found by the heuristi
. We
onsider, for this twodi�erent models, di�erent values of C.There is a
ommon result we
an see: for small value of C theheuristi
 performs extremely well, being
apable to �nd the op-timal solution or a solution really
lose to it. When C in
reases,the heuristi
 is no more able to �nd an optimal solution. This

5. SIMULATIONS RESULTS 123Tier Size CPU
ores RAM (GiB) Pro�tWeb 2 1/2/3 2/4/4 2/4/8Appli
ation 6 2/2 2/4 2/6Database 2 2/4 2/4 2/4Table 5.1: First model SLAs and pro�ts.Tier Size CPU
ores RAM (GiB) Pro�tWeb 2 1/2/4 2/4/6 2/4/8Appli
ation 6 2/4/4 2/4/6 2/4/6Database 2 2/2 4/6 2/6Table 5.2: Se
ond model SLAs and pro�ts.may indi
ate that the value of Goodness(i, k) as
omputed byeq. 4.11 is too mu
h sensitive to the value of C.Tables 5.6 and 5.7 des
ribe the third and fourth model, in-puts for the geneti
 algorithm. These models have a stru
tureanalogue to the �rst two models, with some minor variations.In both
ases, the value of C is set to 1.Table 5.8 reports the �tness of the best individual of theinitial population and the �tness of the best individual at theend of the simulation.The in
rease in individual's �tness is
learly evident. On�gure 5.1 the average �tness of the population over the simula-

5. SIMULATIONS RESULTS 124Model Hosts CPU
ores RAM size (GiB)First 6 48 48Se
ond 8 64 88Third 8 64 88Fourth 12 96 192Table 5.3: Physi
al hosts
hara
terizations for all models.C Optimal Heuristi
0 60 601 55 532 50 463 45 39Table 5.4: Comparisons of pro�ts for the optimal solution andthe approximate solution for the �rst model, for di�erent valuesof C.C Range of optimal pro�t Heuristi
s0 87÷ 96 841 79÷ 95 692 71÷ 93 543 63÷ 89 39Table 5.5: Se
ond model: range of pro�t and approximate solu-tion pro�t, for di�erent values of C.

5. SIMULATIONS RESULTS 125Tier Size CPU Cores RAM (GiB) Pro�tWeb 4 1/2/4 2/4/6 2/4/8Appli
ation 8 2/4/4 2/4/6 2/4/6Database 3 2/2 4/6 2/6Table 5.6: Third model SLAs and pro�ts.Tier Size CPU
ores RAM (GIB) Pro�tWeb 6 1/2 2/4 2/4Appli
ation 12 1/4 2/4 2/4Database 4 2/2 4/6 2/6Table 5.7: Fourth model SLAs and pro�ts.Model Initial best �tness Final best �tnessThird 33 109Fourth 39 166Table 5.8: Initial and �nal �tness of best individual for thirdand fourth model, as seen by the geneti
 algorithm.

5. SIMULATIONS RESULTS 126

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 F
itn

es
s

GenerationFigure 5.1: Average �tness of population for the third model.tion for the third model is depi
ted, while �gure 5.2 is for thefourth model. The average �tness value is higher than the �t-ness shown in table 5.8, as the average is all over the population,in
luding the unfeasible individuals.

5. SIMULATIONS RESULTS 127

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 F
itn

es
s

GenerationFigure 5.2: Average �tness of population for the fourth model.

6Con
lusionsIt is the fate of every voyager, when he has justdis
overed what obje
t in any pla
e is more parti
-ularly worthy of his attention, to be hurried from it.(Charles Darwin, Voyage of the Beagle)
Operating system level virtualization will be fundamental in de-signing and deploying
omputing ar
hite
tures int the next fol-lowing years. 128

6. CONCLUSIONS 129The in
reasing
on
erns for environment prote
tion and therising pri
es of ele
tri
ity are some of the drivers for maximize
omputing e�
ien
y. Virtualization will be helpful in a
hievingthese goals, and has also some more te
hnologi
al bene�ts, asit's
apable of isolating systems to allow for better se
urity andmakes easier to implement disaster re
overy solutions.These key bene�ts are possible as virtualization is anotherlayer
onne
ting to and interposing between hardware and op-erating system, thus hiding physi
al heterogeneity and bound-aries. As virtualization is progressively made in hardware, re-du
ing at a fra
tion the penalty due to the layer itself, its adop-tion will further in
rease, and this will in turn lead to a newgeneration of problems.These problems begins to appear in the �eld of autonomi
systems, where the ability to self-adapt the system to the
hang-ing workload
ondition is of the utmost importan
e, but other�elds with similar resour
es allo
ation problems are the emerg-ing
loud
omputing and, to some extent, the grid
omputing.In this dissertation we have formalized the mapping problem,whi
h is a generalization of the
lassi
al 0/1 knapsa
k problem,unknown before this work. The mapping problem requires to�nd, for a given set of virtual ma
hines, ea
h one
hara
terizedby a multi-dimensional resour
e demand ve
tor, one physi
al

6. CONCLUSIONS 130ma
hine that has su�
ient resour
es to host it. Physi
al ma-
hines are from a given set, and are also
hara
terized by ananalogous multi-dimensional ve
tor, des
ribing their allowableresour
es. Ea
h one of the virtual ma
hines has possibly somedi�erent servi
e levels, with in
reasing resour
es and in
reasingpro�ts that are earned when the allo
ation is made. The obje
-tive fun
tion is represented by a sum of pro�ts, that
ould bemitigated by the number of physi
al ma
hines that are used.We have determined the
omplexity of the mapping problem,showing that is a NP-hard problem, and we have proposed anheuristi
 and a geneti
 algorithm to deal with it.Both the proposed approa
hes have been valuable in �ndingan approximate solution for the mapping problem. We believethat they would both perform well and
omplement ea
h otherin a real s
enario.Operating system level virtualization is, in some sense, anew territory to explore, that
ould lead us to better, moree�
ient and more resilient distributed systems. Some of theassumptions we have made in the past about how to build amulti-tier distributed systems must be redis
ussed, and to do solimits and bene�ts of virtualization must be
learly understood,properly formalized and methodologi
ally analyzed.This dissertation aims to be a �rst step in that dire
tion.

Bibliography[1℄ Amazon Elasti
 Computing Cloud,http://www.amazon.
om/gp/browse.html?node=201590011[2℄ Amazon Simple Storage Servi
e,http://en.wikipedia.org/wiki/Amazon_S3[3℄ AMD64 Ar
hite
ture Te
h Do
s Volume 2,http://www.amd.
om/us-en/assets/
ontent_type/white_papers_and_te
h_do
s/24593.pdf[4℄ AMD I/O Virtualization Te
hnology (IOMMU) Spe
i�
a-tion,http://www.amd.
om/us-en/assets/
ontent-type/white_papers_and_te
h_do
s/34434.pdf131

BIBLIOGRAPHY 132[5℄ AMD Nested Page Table performan
e ben
hmark,http://www.redhatmagazine.
om/2007/11/20/red-hat-enterprise-linux-51-utilizes-nested-paging-on-amd-bar
elona-pro
essor-to-improve-performan
e-of-virtualized-guests/[6℄ GNU Linear Programming Kit,http://www.gnu.org/software/glpk[7℄ GNU S
ienti�
 Library,http://www.gnu.org/software/gsl/[8℄ IBM S/360,http://en.wikipedia.org/IBM_360[9℄ Intel Extended Page Tables,http://www.intel.
om/te
hnology/itj/2006/v10i3/1-hardware/8-virtualization-future.htm[10℄ Intel Virtualization Dire
ted I/O,http://www.intel.
om/te
hnology/itj/2006/v10i3/2-io/7
on
lusion.htm[11℄ Intel Virtual Ma
hine Devi
e Queues,http://www.intel.
om/te
hnology/platform-te
hnology/virtualization/VMDq_whitepaper.pdf

BIBLIOGRAPHY 133[12℄ Intel Virtualization Ar
hite
ture,http://www.intel.
om/te
hnology/itj/2006/v10i3/1-hardware/5-ar
hite
ture.htm[13℄ ISCSI,http://en.wikipedia.org/ISCSI[14℄ Lguest site,http://lguest.ozlabs.org[15℄ Linux-VServer site,http://linux-vserver.org[16℄ QEMU site,http://fabri
e.bellard.free.fr/qemu/[17℄ Qumranet, Linux Kernel Based Virtual Ma
hine,http://kvm.qumranet.
om[18℄ OpenVZ site,http://openvz.org[19℄ Self-Servi
e, Prorated Super Computing Fun,http://open.blogs.nytimes.
om/2007/11/01/self-servi
e-prorated-super-
omputing-fun[20℄ Solaris Containers (Zone),http://www.sun.
om/bigadmin/
ontent/zones

BIBLIOGRAPHY 134[21℄ The UC Berkley/Stanford Re
overy-Oriented Computing(ROC) Proje
t,http://ro
.
s.berkeley.edu[22℄ Virtualbox Site,http://www.virtualbox.org[23℄ Virtual Lo
al Area Network,http://www.
s.wustl.edu/~jain/
is788-97/ftp/virtual_lans/index.htm[24℄ VMWare site,http://www.vmware.
om[25℄ Citrix Xen Server,http://www.
itrixxenserver.
om[26℄ Xen University of Cambridge Computer Lab site,http://www.
l.
am.a
.uk/resear
h/srg/netos/xen[27℄ Xen Assign Hardware to DomU,http://wiki.xensour
e.
om/xenwiki/Assign_Hardware_to_DomU_with_PCIBa
k_as_module[28℄ Xen Network ar
hite
ture,http://wiki.xensour
e.
om/xenwiki/XenNetworking

BIBLIOGRAPHY 135[29℄ Xen Network Paravirtualized Driver performan
es,https://bugzilla.redhat.
om/show_bug.
gi?id=431898[30℄ K. Adams, O. Agesen, A Comparison of Software andHardware Te
hniques for x86 Virtualization, Pro
eedingsof the Twelfth International Conferen
e on Ar
hite
tureSupport for Programming Languages and Operating Sys-tems (ASPLOS-XII), O
tober 2006, San Jose, California,USA[31℄ J. Almeida, D. Ardagna, M. Trubian, Resour
e Manage-ment in the Autonomi
 Servi
e-Oriented Ar
hite
ture, inPro
eedings of the 2006 International Conferen
e on Au-tonomi
 Computing ICAC'06[32℄ M. M. Akbar, E. G. Manning, G. C. Shoja, S. Khan,Heuristi
 Solutions for the Multiple-Choi
e Multidimen-sion Knapsa
k Problem, Le
ture Notes in Computer S
i-en
e, LNCS 2074, Springer Verlag, 2001[33℄ M. M. Akbar, M. Sohel Rahman, M. Kaykobad, E.G. Manning, G. C. Shoja, Solving the MultidimensionalMultiple-
hoi
e Knapsa
k Problem by Constru
ting Con-vex Hulls, Computers and Operation Resear
h, vol. 33 is-sue 5, May 2006

BIBLIOGRAPHY 136[34℄ T. Bae
k, D. Fogel, Z. Mi
halewi
z, Eds., Handbook ofEvolutionary Computing, A joint Publi
ation of OxfordUniversity Press and Institute of Physi
s Publishing, 1995[35℄ R. Bhargava, B. Serebrin, F. Spadini, S. Manne, A

elerat-ing Two-Dimensional Page Walks for Virtualized Systems,Pro
eedings of the 13th international
onferen
e on Ar
hi-te
tural support for programming languages and operat-ing systems (ASPLOS-XIII), Seattle, Washington, USA2008[36℄ P. Barham, B. Dragovi
, K. Fraser, S. Hand, T. Har-ris, A. Ho, R. Neugebauer, I. Pratt, A. War�eld, Xenand the Art of Virtualization, in Pro
eedings of the Nine-teenth ACM Symposium on Operating Systems Prin
i-ples, Bolton Landing, NY, USA, 2003[37℄ J. E. Beasley, P. Chu, A Geneti
 Algorithm for the SetCovering Problem, European Journal of Operational Re-sear
h, vol. 94 1996[38℄ F. Bellard, QEMU, a Fast and Portable Dynami
 Trans-lator, Pro
eedings of the USENIX Annual Te
hni
al Con-feren
e, 2005

BIBLIOGRAPHY 137[39℄ M. N. Bennani, D. A. Menas
é, Assessing the Robustnessof Self-Managing Computer Systems Under Highly Vari-able Workloads, in Pro
eedings of the International Con-feren
e on Autonomi
 Computing (ICAC'04)[40℄ M. N. Bennani, D. A. Menas
è, Resour
e Allo
ationfor Autonomi
 Data Centers using Analyti
 Performan
eModels, in Pro
eedings of the Se
ond International Con-feren
e on Autonomi
 Computing (ICAC'05), Seattle,WA, USA[41℄ D. Bertsimas, R. Demir, An Approximate Dynami
 Pro-gramming Approa
h to Multi-dimensional Knapsa
k Prob-lems, Management S
ien
e, vol. 48 issue 4, 2002[42℄ S. Biemueller, AMD ASID Implementation in XenAMD-V, Xen Summit Spring 2007http://xen.org/�les/xensummit_4/2007XenSummit-AMD-ASIDS-Biemueller.pdf[43℄ R. Bradford, E. Kotsovinos, A. Feldmann, H. S
hioberg,Live Wide-Area Migration of Virtual Ma
hines In
ludingLo
al Persistent State, in Pro
eedings of the 3rd Inter-national Conferen
e on Virtual Exe
ution Environments(VIEE'03), San Diego, California, USA, 2007

BIBLIOGRAPHY 138[44℄ P. Campegiani. F. Lo Presti, A General Model for Vir-tual Ma
hines Resour
es Allo
ation in Multi-Tier Dis-tributed Systems, in Pro
eedings of the International Con-feren
e on Autonomous and Autonomi
 Computing 2009(ICAC'09), Valen
ia, Spain, 2009[45℄ P. Campegiani, A Geneti
 Algorithm to Solve the VirtualMa
hines Resour
es Allo
ation Problem in Multi-tier Dis-tributed Systems, submitted to the Se
ond InternationalWorkshop on Virtualization Performan
e: Analysis, Char-a
terization, and Tools (VPACT'09), Boston, Mass. USA,2009[46℄ C. Chekuri, S. Khanna, A PTAS for the Multiple Knap-sa
k Problem, in Pro
eedings of the Eleventh AnnualACM-SIAM Symposium on Dis
rete Algorithm, San Fran-
is
o, CA, USA, 2000[47℄ L. Cherkasova, D. Gupta, A. Vahdat, Comparison of theThree CPU S
hedulers in Xen, Xen Summit Spring 2007,http://xen.org/�les/xensummit_4/3s
hedulers-xen-summit_Cherkosova.pdf[48℄ P. C. Chu, J. E. Beasley, A Geneti
 Algorithm for theMultidimensional Knapsa
k Problem, Journal of Heuris-

BIBLIOGRAPHY 139ti
s, vol. 4 n. 1, Springer Verlag, 1998[49℄ C. Clark, K. Fraser. S. Hand, J. Gorm Hansen, Live Mi-gration of Virtual Ma
hines, in Pro
eedings of the 2ndConferen
e on Symposium on Networked Systems Design& Implementation (NSDI), 2005[50℄ E. G. Co�man Jr., M. R. Garey, D. S. Johnson, Approx-imation Algorithms for Bin Pa
king: a Survey, Approxi-mation Algorithms for NP-hard Problems, PWS, 1996[51℄ R. Cohen, L. Katzir, D. Raz, An E�
ient Approximationfor the Generalized Assignment Problem, Information Pro-
essing Letters, vol. 100 issue 4, Elzevier, 2006[52℄ C. Reeves, Hybrid Geneti
 Algorithms for Bin-Pa
kingand Related Problems, Annals of Operations Resear
h, vol.63 1996[53℄ C. Cotta, J. M. Troya, A Hybrid Geneti
 Algorithm forthe 0-1 Multiple Knapsa
k Problem, Arti�
al Neural Netsand Geneti
 Algorithms 3, Springer Verlag, 1998[54℄ B. Cully, A. War�eld, Virtual Ma
hine Che
kpointing,Xen Summit Spring 2007,http://xen.org/�les/xensummit_4/talk_Cully.pdf

BIBLIOGRAPHY 140[55℄ W. Curtis Peterson, Using SANs and NAS, O'Reilly[56℄ S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E.Gelembe, F. Massa

i, P. Nixon, F. Sa�re, N. S
hmidt,F. Zambonelli, A Survey on Autonomi
 Communi
ations,ACM Transa
tions on Autonomous and Adaptive Sys-tems, Vol. 1 no. 2, De
ember 2006[57℄ U. Drepper, The Cost of Virtualization, ACM Queue Vol-ume 6 Number 1, January/Febrary 2008[58℄ U. Drepper, What Every Programmer Should Know AboutMemory,http://people.redhat.
om/drepper/
pumemory.pdf[59℄ K. J. Duda, D. R. Cheriton, Borrowed-Virtual-Time(BVT) s
heduling: supporting laten
y-sensitive threads ina general-purpose s
heduler, in Pro
eedings of the Sev-enteenth ACM Symposium on Operating Systems Prin
i-ples, Kiawah Island Resort, SC, USA, 1999[60℄ C. E. Ferreira, A. Martin, R. Weismantel, Solving MultipleKnapsa
k Problems by Cutting Planes, SIAM Journal ofOptimization, vol. 6 n. 3, 1996[61℄ G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia,M. Woodside, Performan
e Analysis of Distributed Server

BIBLIOGRAPHY 141Systems, Pro
eedings of The 6-th International Confer-en
e on Software Quality, Ottawa, O
tober 1996[62℄ T. Gar�nkel, R. Bfa�, J. Chow, M. Rosenblum, D. Boneh,Terra: A Virtual Ma
hine-Based Platform for TrustedComputing, Pro
eedings of the Nineteenth ACM Sympo-sium on Operating Systems Prin
iples, Bolton Landing,NY, USA, 2003[63℄ E. Van Hensbergen, P.R.O.S.E. Partitioned Reliable Op-erating System Environment, ACM SIGOPS OperatingSystems Review, Volume 40, Issue 2, April 2006[64℄ E. Van Hensbergen, The E�e
t of Virtualization on OSInterferen
e,http://resear
h.ihost.
om/osihpa/osihpa-hensbergen.pdf[65℄ M. Hi�, M. Mi
hrafy, A. Sbihi, Heuristi
 Algorithms forthe Multiple-
hoi
e Multidimensional Knapsa
k Problem,Journal of Operational Resear
h So
iety, vol. 55 num. 12,2004[66℄ M. Hi�, M. Mi
hrafy, A. Sbihi, A Rea
tive Lo
alSear
h-Based Algorithm for the Multiple Choi
e Multi-Dimensional Knapsa
k Problem, Computational Opti-

BIBLIOGRAPHY 142mization and Appli
ations, vol 33. n. 2-3, Springer Verlag,2006[67℄ P. Horn, Autonomi
 Computing Vision and Manifesto,http://www.resear
h.ibm.
om/autonomi
/manifesto/autonomi
_
omputing.pdf[68℄ W. Huang, Nested Page Table Support, Xen SummitSpring 2007http://xen.org/�les/xensummit_4/2007XenSummit-AMD-Bar
elona_Nested_Paging_WahligHuang.pdf[69℄ A. Karve, T. Kimbrel, G. Pa
i�
i, M. Spreitzer, M. Stein-der, M. Sviridenko, A. Tantawi, Dynami
 Pla
ement forClustered Web Appli
ations, in Pro
eedings of the 15thinternational
onferen
e on World Wide Web, Edinburgh,S
otland, 2006[70℄ J. O. Kephart, D. M. Chess, The Vision of Autonomi
Computing, Computer, January 2003[71℄ L. Kleinro
k, Queuing Systems, Volume I: Theory, WileyInters
ien
e, 1975[72℄ L. Kleinro
k, Queueing Systems, Volume 2: ComputerAppli
ations, John Wiley and Sons, In
., 1976

BIBLIOGRAPHY 143[73℄ J. Jann, L. M. Browning, R. S. Burugula, Dynami
 Re-
on�guration: Basi
 Building Blo
ks for Autonomi
 Com-puting on IBM pSeries Servers, IBM Systems Journal,42(1):29-37[74℄ T. Lindholm, F. Yellin, The Java Virtual Ma
hine Spe
i-�
ation, se
ond edition, Prenti
e Hall PTR[75℄ S. Martello, P. Toth, Knapsa
ks Problems: Algorithmsand Computer Implementations, John Wiley and Sons,1990[76℄ H. Matsumoto, SCSI Support for Xen, Xen SummitSpring 2007,http://xen.org/�les/xensummit_4/Xen_Summit_8_Matsumoto.pdf[77℄ M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally Equidistributed Uniform Pseudo-randomNumber Generator, ACM Transa
tions on Modeling andComputer Simulation, vol. 8 issue 1, January 1998[78℄ D. A. Menas
e, V. A. F. Almeida, L. W. Dowdy, Capa
ityPlanning and Performan
e Modeling: from mainframes to
lient-server systems, Prenti
e Hall, 1994.

BIBLIOGRAPHY 144[79℄ D. A. Menas
é, M. N. Bennani, Autonomi
 VirtualizedEnvironments, in Pro
eedings of the International Confer-en
e on Autonomi
 and Autonomous Systems, ICAS'06,2006[80℄ D. A. Menas
è, M. N. Bennani, On the Use of Perfor-man
e Models to Design Self-Managing Computer Sys-tems, in Pro
eedings of 2003 Computer MeasurementGroup Conferen
e, 2003, Dallas, TX, USA[81℄ D. A. Menas
é, Virtualization: Con
epts, Appli
ations,and Performan
e Modeling, in Pro
eedings of 2005 Com-puter Measurement Group Conferen
e, De
. 4-9, 2005, Or-lando, FL, USA[82℄ M. Nelson, B. Lim, G. Hut
hins, Fast Transparent Mi-gration for Virtual Ma
hines, in Pro
eedings of the an-nual
onferen
e on USENIX Annual Te
hni
al Conferen
e,Anaheim, CA, USA, 2005[83℄ P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin,Performan
e Evaluation of Virtualization Te
hnologies forServer Consolidation, HP Te
h Report HPL-2007-59[84℄ P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal,A. Mer
hant, K. Salem, Adaptive Control of Virtualized

BIBLIOGRAPHY 145Resour
es in Utility Computing Environments, in ACMSIGOPS Operating Systems Review, vol. 41 issue 3, June2007[85℄ D. Pisinger, A Minimal Algorithm for the Multiple-Choi
eKnapsa
k Problem, European Journal of Operational Re-sear
h, vol. 83 issue 2, Elsevier, 1995[86℄ G. J. Popek, R. P. Goldberg, Formal Requirements forVirtualizable Third Generation Ar
hite
tures, Communi-
ations of the ACM, Volume 17 Number 1, July 1974[87℄ B. Quetier, V. Neri, F. Cappello, S
alability Comparisonof Four Host Virtualization Tools, in Journal of Grid Com-puting, 2006[88℄ B. Quetier, V. Neri, F. Cappello, Sele
ting a Virtual-ization System for Grid/P2P Large S
ale Emulation, inPro
eedings of EXPGRID (HPDC-15's Workshop), Paris,Fran
e, 2006[89℄ S. Ranjan, J. Rolia, H. Fu, E. Knightly, QoS-DrivenServer Migration for Internet Data Centers, in Pro
eed-ings of Tenth International IEEE Workshop on Quality ofServi
e, 2002.

BIBLIOGRAPHY 146[90℄ M. Reiser, S. S. Lavenberg,Mean-Value Analysis of ClosedMulti
hain Queueing Networks, Journal of the ACM, vol.27 issue 2, April 190.[91℄ S. Rixner, Network Virtualization: Breaking the Perfor-man
e Barrier, ACM Queue January/February 2008[92℄ J.S. Robin, C. E. Irvine, Analysis of the Intel Pentium'sability to support a se
ure virtual ma
hine monitor, in Pro-
eedings of the 9th USENIX Se
urity Symposium, Denver,CO, USA, August 2000[93℄ B. Ryu, A. Elwalid, The importan
e of long-range de-penden
e of VBR video tra�
 in ATM tra�
 engineer-ing: myths and realities, in Pro
eedings of the ACM SIG-COMM'96, Palo Alto, CA, USA[94℄ S. Shelford, M. M. Akbar, E. G. Manning, G. C. Shoia,Distributed Optimal Admission Controllers for Servi
eLevel Agreements in Inter
onne
ted Networks, in Pro
eed-ings of the 21st IASTED International Conferen
e on Ap-plied Informati
s, Innsbru
k, Austria, 2003[95℄ S. Soltesz, H. Potzl, M. E. Fiu
zynski, A. Bavier, L. Pe-terson, Container-Based Operating System Virtualization:a S
alable, High-performan
e Alternative to Hypervisors,

BIBLIOGRAPHY 147in Pro
eedings of the EuroSys 2007 Conferen
e, Lisbon,Portugal, 2007[96℄ S. J. Vaughan-Ni
hols, New Approa
h to Virtualization isLightweight, Computer, IEEE Computer So
iety, Vol. 39Number 11, 2006[97℄ F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat,J. Mambretti, I. Monga, B. van Oudenaarde, S. Raghu-nath, P. Yonghui Wang, Seamless Live Migration of Vir-tual Ma
hines over the MAN/WAN, Future GenerationComputer Systems, Volume 22 Issue 8, 2006[98℄ B. Urgaonkar, G. Pa
i�
i, P. Shenoy, M. Spreitzer, A.Tantawi, An Analyti
al Model for Multi-tier Internet Ser-vi
es and Its Appli
ations, in Pro
eedings of SIGMET-RICS'05, 2005, Canada[99℄ D. Vilella, P. Pradhan, D. Rubenstein, ProvisioningServers in the Appli
ation Tier for E-Commer
e Systems,ACM Transa
tions on Internet Te
hnologies, vol. 7 No. 1,2007[100℄ E. Wahlig, W. Huang, AMD Bar
elona and Nested PagingSupport in Xen, Xen Summit Spring 2007,http://xen.xensour
e.
om/�les/xensummit_4/

BIBLIOGRAPHY 1482007XenSummit-AMD-Bar
elona_Nested_Paging_WahligHuang.pdf[101℄ X. Y. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y.Chen, Q. Wang, Applian
e-based Autonomi
 Provision-ing Framework for Virtualized Outsour
ing Data Center,in Pro
eedings of the Fourth International Conferen
e onAutonomi
 Computing (ICAC'07)[102℄ A. Whitaker, M. Shaw, S.D. Gribble, Denali: LightweightVirtual Ma
hines for Distributed and Networked Appli
a-tions, Te
hni
al Report 02-02-01, University of Washing-ton, 2002[103℄ S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, J. O.Kephart, An Ar
hite
tural Approa
h to Autonomi
 Com-puting, in Pro
eedings of the International Confere
ne onAutonomi
 Computing (ICAC'04), 2004[104℄ T. Yu, K. Lin, Servi
e Sele
tion Algorithms for Web Ser-vi
es with End-to-End QoS Constraints, Information Sys-tems and E-Business Management, vol. 3 n. 2, SpingerVerlag, 2005[105℄ Q. Zhang, L. Cherkasova, E. Smirni, A Regression-based Analyti
 Model for Dynami
 Resour
e Provision-

BIBLIOGRAPHY 149ing of Multi-Tier Appli
ations, in Pro
eedings of theFourth International Conferen
e on Autonomi
 Comput-ing (ICAC'07), 2007

	Introduction
	Virtualization techniques
	A general definition of virtualization
	Virtualization at the operating system level
	Virtualization techniques
	Binary translation
	Para-virtualization
	Hardware assisted virtualization
	Light weight virtualization

	VMM implementations
	QEMU
	VMWare
	Xen
	Hardware assisted virtualization
	Lightweight virtualization
	Other VMMs

	Hardware virtualization
	Processor
	Memory and DMA
	Storage
	Network

	Concluding remarks

	Virtualization architectures
	Reference architecture
	Modeling of multi-tier systems

	Virtualization performances and measurement
	Autonomic computing
	Self-optimization
	Proposed extension to the model

	The mapping problem
	Problem formalization
	Discussion of formalization

	The mapping problem as a generalization of the knapsack problem
	Computational complexity of the mapping problem
	Optimal solution of the mapping problem
	Approximate solutions for the mapping problem
	A packing oriented heuristic
	A genetic algorithm

	Simulations results
	Implementation of the bin packing heuristics
	Implementation of the genetic algorithm
	Models dataset

	Conclusions

