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1Introdu
tionAs many other te
hnologies and paradigms in the 
omputer s
i-en
e �eld, virtualization has a long history with periods withgreat momentum and periods when it has been put in then ba
k-ground. The advent of massive and e
onomi
 
omputer power,as predi
ted by Moore's Law, has �nally resulted in the avail-ability of system level virtualization te
hnologies on 
ommodityhardware. This will lead to a 
omplete new 
lass of problems,from provisioning to deployment, that arise when virtualizationis intended as an ar
hite
tural asset that 
ould bring value tothe 
omputing platform, an asset upon whi
h build value added1



1. INTRODUCTION 2servi
es.In this dissertation, I investigate a problem that 
ould be ex-pressed as: given a number of virtual ma
hines and some phys-i
al ma
hines, ea
h des
ribed respe
tively by a demand ve
torand a resour
e ve
tor, whi
h is the best allo
ation of the formerto the latter, for a given metri
?For a large data 
enter, an example of metri
 would be tominimize the number of physi
al ma
hines devoted to host vir-tual ma
hines, giving su�
ient resour
es to ea
h virtual ma-
hine. By minimizing this number, the data 
enter 
ould in-
rease the e�
ien
y of the physi
al ma
hines, and the underly-ing virtualization te
hnology will prevent ea
h virtual ma
hineto interfere with others, from both a performan
e and a se
urityprospe
tive.It will shown that this problem, stated in the most gener-ally form, is NP-hard (it's a generalization of the 
lassi
al 0/1knapsa
k problem), and its 
omplexity is daunting, requiring tode�ne an heuristi
 to �nd an approximate solution. We will alsopresent a geneti
 algorithm that appears promising in ta
klingthis problem.The dissertation is organized as follows.In Chapter 2, the di�erent virtualization te
hniques are pre-sented, analyzing them from an ar
hite
tural point of view,



1. INTRODUCTION 3broadly 
lassifying them in two 
ategories: te
hniques that doesnot rely on hardware feature to support virtualization, and te
h-niques that leverage on.In Chapter 3, we move from a te
hnology point of view to-wards an ar
hite
ture 
entri
 one, analyzing the performan
esproblems that virtualization fa
es. We put virtualization as anasset of multi-tier distributed systems, and we des
ribe it as afundamental blo
k for autonomi
 
omputing. Current works inthis �eld la
k of some degree of generality, and when we extendthe 
urrent available frameworks.In Chapter 4, the mapping problem is formally de�ned, weanalyze its 
omputational 
omplexity, and develop some heuris-ti
s [44℄ to solve it, 
omparing them to a geneti
 algorithm [45℄we also propose. In this 
hapter, we see that the mapping prob-lem is a generalization of the knapsa
k problem, and we brie�yanalyze the s
ar
e literature on generalization of knapsa
k prob-lems.In Chapter 5, we show simulation results for some interestingdata sets.Chapter 6 ends this dissertation, brie�y re
alling the resultswe have found and proposing future enhan
ements.



2Virtualizationte
hniques
2.1 A general de�nition of virtualiza-tionVirtualization 
ould be de�ned as a two phase pro
ess. In the�rst phase, some resour
es of the same kind will be grouped to-gether, hiding physi
al boundaries; in the se
ond phase, a por-tion is 
arved out from this aggregated 
ompound and presented4



2. VIRTUALIZATION TECHNIQUES 5to an user. There are many types of virtualization, dependingon the type of the aggregated resour
e:
• Virtual LAN (VLAN): a VLAN [23℄ is a set of hosts that
ommuni
ate as if they were on the same wire, unregard-ing their physi
al lo
ation. Even when the hosts are ondi�erent physi
al segment of the same LAN, the 
on�gu-ration made on network devi
es like swit
hes and routersallows the hosts to share the same virtual segment, sobroad
ast pa
kets are forwarded only on the VLAN. Thiswill in
rease se
urity, by avoiding unauthorized hosts to
onne
t to the virtual segment, and allows for the de�ni-tion of per-segment Quality of Servi
e poli
ies;
• Storage Virtualization: a bun
h of storage resour
es (disksor tapes) are grouped together, and the a

ess to them issele
tively de�ned by a management fun
tion. In a Net-work Atta
hed Storage (NAS) environment, and more ina Storage Area Network (NAS) [55℄, it is possible do 
arveout some resour
es and allow one or more hosts to a

essthem. As a result, the hosts are 
omputing nodes that areatta
hed to the data. This allows for better and 
heaperdata 
onsolidation, ba
kup and se
urity;
• Runtime environments: this is the 
ase of many web based



2. VIRTUALIZATION TECHNIQUES 6appli
ations, running on Java or Flash. As an example,when the user downloads a Java applet via the browser,the applet is exe
uted in the 
ontext of a Java RuntimeEnvironment (JRE) [74℄. The JRE virtualizes the 
om-puting resour
es to the applet in the sense that the appletis written in a so 
alled byte
ode, a ma
hine language thatthe JRE translates into real operations for the underlyingtarget pro
essor. As a result, the same applet 
ould be ex-e
uted over di�erent pro
essor ar
hite
tures, as long as aJRE is provided. Besides this, the JRE de�nes a sandboxthat has some se
urity 
onstraints, like an applet 
annota

ess system �les on the target ma
hine.All these examples, no way exhaustive, shows some of the ben-e�ts of virtualization. By adding an intermediate layer betweenphysi
al resour
e and resour
e demand, it's possible to multi-plex, demultipex and routing requests to a single managementpoint, a
hieving better s
alability, manageability, performan
esand se
urity.



2. VIRTUALIZATION TECHNIQUES 72.2 Virtualization at the operating sys-tem levelVirtualization at the operating system level has been imple-mented for the �rst time on the IBM S/360 system [8℄. In anfundamental arti
le on virtualization, Popek and Goldberg [86℄de�ned the formal requirements for a virtualization ar
hite
ture.We will base our exploration and taxonomy of virtualizationte
hniques on that paper, so it's worthy to re
ap it.First, it's de�ned the 
on
ept of Virtual Ma
hine Monitor(VMM) as a layer that separate the Virtual Ma
hine (VM) - thatis, the operating system to be exe
uted - from the underlyinghardware, as shown in �gure 2.1.Some of the instru
tions of the VM 
ould trap, that in theoriginal arti
le is de�ned by saving the program 
ounter to aspe
i�ed lo
ation and then jumping to the address 
ontained inanother lo
ation, where a trap routine is to be exe
uted, with thema
hine registers saved. The trap routine will do its own job,then it restores the registers and return 
ontrol to the addresssaved in the �rst pla
e. It's possibile to de�ne not blo
king traproutines. This me
hanism is the pre
ursor of today's system
alls, where a program request the operating system to performan operation on hardware resour
es.



2. VIRTUALIZATION TECHNIQUES 8
Virtual Virtual Virtual

machine 1 machine 2 machine N

. . . . .

. . . . . 

VMM

HardwareFigure 2.1: VMM ar
hite
ture.Trap are instrumental to 
lassify instru
tion in three di�er-ent groups:
• privileged instru
tions: are the instru
tions that 
auses atrap;
• sensitive instru
tions: they 
ame in two di�erent types,
ontrol sensitive instru
tions and behavior sensitive in-stru
tions. To de�ne them in terms of 
urrent ar
hite
-tures, we de�ne these instru
tions as the ones whi
h 
hangesthe pro
essor mode (or returns it) or whi
h exe
ution de-pends on the real memory address of their operands;
• inno
uous instru
tions: all the remaining.



2. VIRTUALIZATION TECHNIQUES 9The VMM should have some properties to allow for the exe
u-tion of a VM on top of it:
• E�
ien
y: Every instru
tion that is inno
uous is exe
uteddire
tly by the underlying hardware, with no interventionof the VMM;
• Resour
e 
ontrol: The VM 
annot 
hange its resour
esquota: every request for more resour
e is mediated by theVMM;
• Equivalen
e: Every program exe
uted in the 
ontext of aVM performs in an almost indistinguishable manner, as ifit were exe
uted without a VMM interposing between theVM and the hardware. In this 
ontext, almost indistin-guishable means that it's allowed a 
ertain degree of devi-ation, as performan
es may be a bit worse and resour
esavailability 
ould be not identi
al (be
ause the VM 
annota

ess dire
tly the hardware).The work of Papek and Goldberg is fundamental as they proofthe following theorem:For any [
onventional third generation℄ 
omputer, a virtualma
hine monitor 
ould be 
onstru
ted if the set of sensitive in-



2. VIRTUALIZATION TECHNIQUES 10stru
tions is a subset of the privileged instru
tion.The theorem still holds for 
urrent ar
hite
ture, and we useit as a 
riteria to dis
riminate between virtualizable pro
essorar
hite
ture (or so 
alled virtualization friendly) and the notvirtualizable ones: a pro
essor ar
hite
ture is virtualizable ifand only if the exe
ution of every sensitive instru
tion eventuallyresult in a trap, as the trap routine 
ould be implemented bythe VMM.It will be shown later that, surprisingly, the Intel x86 ar
hi-te
ture is not virtualization friendly.2.3 Virtualization te
hniquesIn spite of the unifying de�nition stated above, there are somedi�erent ways to virtualize an operating system. Broadly speak-ing, there is a trade o� between the resulting performan
es andthe spe
trum of pro
essors ar
hite
tures that 
ould be virtual-ized: to a
hieve speed it's usually ne
essary to fo
us on a spe
i�
instru
tion set and presenting the virtual ma
hine a more gen-eralized and less 
ustomizable abstra
tion of physi
al hardware,whilst the �exibility of having more instru
tion sets or virtu-alized resour
es usually in
urs in performan
es penalties. We



2. VIRTUALIZATION TECHNIQUES 11identify four di�erent virtualization te
hniques.2.3.1 Binary translationIn this approa
h, a software layer translates operations fromthe virtual ma
hine set to the physi
al ma
hine set, allowing for
ode optimization and translation 
a
he e�
ien
y. The virtual-ization layer 
ould do a so 
alled 
ross virtualization, where thevirtual ma
hine instru
tion set and physi
al ma
hine instru
tionset are 
ompletely di�erent - requiring to 
ompletely translatethe former into the latter - or a partial virtualization, whereinno
uous instru
tion are exe
uted dire
tly by the hardware (ina 
ontext set up by the VMM) and 
riti
al ones are translatedby the VMM that operates as a resour
es' broker.2.3.2 Para-virtualizationThe operating system of the virtual ma
hine is modi�ed in su
ha way that every system 
all that should have a

essed the hard-ware is instead mapped in an system 
all exe
uted by and in the
ontext of the VMM. The modi�
ation of the to be virtualizedoperating system 
ould be unfeasible when it's released only in
losed sour
e format.



2. VIRTUALIZATION TECHNIQUES 122.3.3 Hardware assisted virtualizationThe instru
tion set has been augmented with operations thaten
ompasses portion of ma
hine 
ode. This se
tions are exe-
uted in a virtual ma
hine 
ontext, whi
h is di�erent from thephysi
al ma
hine 
ontext. The VMM has some degree of 
ontrolover the operations made by a spe
i�
 virtual ma
hine, rangingfrom a no trust relationship (every I/O operation performed bythe virtual ma
hine is trapped and results in the exe
ution of theVMM that operates as a 
ontrol interfa
e) to a total trust rela-tionship, where the virtual ma
hine 
ould dire
tly a

ess everyhardware in the system. The latter results in in
reased speedand diminished se
urity.2.3.4 Light weight virtualizationThe operating system of the physi
al ma
hine is 
hanged toallow di�erent and not-
ommuni
ating namespa
es for the dif-ferent resour
e 
lasses. As a result, there are some zones (touse a typi
al terminology) and ea
h one has its own �le sys-tem, users, pro
esses namespa
e and hardware view. It 
ouldbe argued that this approa
h is not a virtualization, mainly be-
ause it la
ks generality (all the running instan
es are sharingthe same operating system), but it's widely adopted to solve



2. VIRTUALIZATION TECHNIQUES 13some problems that otherwise require a traditional virtualiza-tion te
hnique, while experien
ing nearly no performan
e penal-ties.2.4 VMM implementationsA number of 
ompeting produ
ts, both open and 
losed sour
e,are available as VMM. In this se
tion we see the most represen-tative of them, fo
using on the adopted virtualization te
hnique.2.4.1 QEMUQEMU [16℄, written by Fabri
e Bellard, is an open sour
e ma-
hine emulator and virtualizer. It 
ould operate as a virtualizer,when the virtual ma
hine instru
tion set and physi
al ma
hineinstru
tion set are the same, or as an emulator, 
apable of trans-lating instru
tion set from seven di�erent pro
essor ar
hite
tureto some target ar
hite
ture, plus virtualizing system hardwareto allow for a 
omplete operating system virtualization.QEMU is a dynami
 translator, i.e. the 
ode translated isstored in a translation 
a
he where it 
ould be reused to in
reasee�
ien
y. The translation pro
ess of QEMU is fully do
umentedin [38℄, and it will be brie�y shown here as it highlights the



2. VIRTUALIZATION TECHNIQUES 14general approa
h for binary translation.Consider the following PowerPC instru
tion:addi r1 , r1 ,−16 # r1 = r1 −16that must be translated into Intel x86 
ode. First, there willbe generated some mi
ro operations, that are independent ofthe �nal target:movl_T0_r1 # T0 = r1addl_T0_im −16 # T0 = T0 − 16movl_r1_T0 # r1 = T0the T0 and T1 register are typi
ally stored in host registerdue the optimization made by the GCC 
ompiler. The �rst ofthe mi
ro operation is typi
ally 
oded as:void op_molv_T0_r1( void ) {To = env−>regs [ 1 ℄ ;} where env is the stru
ture 
ontaining the CPU state of thevirtual ma
hine.The 
ode generated is then translated in physi
al ma
hine
ode by the GCC 
ompiler, and the result will be (for an Intelx86 target):# movl_T0_r1



2. VIRTUALIZATION TECHNIQUES 15# ebx = env−>regs [ 1 ℄mov 0x4(%ebp ) , %ebx# addl_T0_im −16# ebx = ebx − 16add $ 0X f f f f f f f 0 ,%ebx# movl_r1_T0# env−>regs [1 ℄= ebxmov %ebx , 0x4(%ebp )QEMU is a dynami
 translator as it uses a 16 MByte 
a
hethat holds the most re
ently used translation blo
ks (TB). Afterthe exe
ution of every TB, the next instru
tion to be exe
utedwill be determined by examining the state of the emulated CPU;if the jump point is in the 
a
he, the 
ode is exe
uted dire
tly,otherwise the translation pro
ess takes pla
e. A TB 
ould bepat
hed dire
tly to the logi
al following one when the jump des-tination is known.More 
omplex problem arises with self-modifying 
ode, asthe appli
ations written for the Intel x86 ar
hite
ture does notsignal 
a
he invalidation that 
ould trigger the removing of astale TB.With a dynami
 
ode translator is possible to exe
ute an ap-



2. VIRTUALIZATION TECHNIQUES 16pli
ation written for a di�erent pro
essor ar
hite
ture, but anentire operating system requires the virtualization of the hard-ware. QEMU allows for a limited set of virtualized hardware.It's possible to have up to two EIDE hard disks, a basi
 videoVGA 
ard, one or more Fast Ethernet NIC; while it's also pos-sible to 
onne
t dire
tly the USB subsystem of the virtual ma-
hine to the physi
al USB subsystem.The virtualized hard disks are mapped as �le on the physi-
al ma
hine. This will result in a signi�
ant performan
e loss,as every I/O request made from the virtualized ma
hine willtraverse the virtualized operating system sta
k, resulting in asequen
e of I/O operations intertwined with virtualized OS op-erations, and ea
h I/O operation will ultimately result in a I/Ooperation made on the image �le on the physi
al system, requir-ing for being made traversing again the sta
k of an operatingsystem, in this 
ase the physi
al one. The �nal result is that thedata path is doubled. QEMU has some �exibility in the image�le format, it's possibile to have a 
opy-on-write format �le, butthis ar
hite
ture won't help for performan
es.The network 
ard emulation has some interesting features.Ea
h virtual ma
hine 
ould have one or more NICs, and theseNICs 
ould be logi
ally organized in several ways. It's pos-sible to have two virtual ma
hines on the same private LAN,



2. VIRTUALIZATION TECHNIQUES 17
ompletely hidden from the rest of the world, bridged on thephysi
al LAN or even on a UDP multi
ast network that 
ouldspan several physi
al ma
hines.2.4.2 VMWareVMWare [24℄ is the market leader in the virtualization �eld,thanks to its performan
es and management tools. Produ
tsfrom VMWare range from VMWare Player, that is only 
apableof run a virtual ma
hine, to the VMWare Infrastru
ture suite,that has the ability to manage resour
es allo
ation, performinglive ba
kup of running virtual ma
hines, moving them from aphysi
al ma
hine to another with very little servi
e interruption.VMWare rea
ted to the introdu
tion of the open sour
e Xenhypervisor (dis
ussed below) by releasing its VMWare serverfree but 
losed sour
e, to gain and maintain market share atthe expenses of the new
omer. Unfortunately, the li
ense ofVMWare server di
tates that ben
hmark are possible only whenthe methodology has been approved by VMWare In
., and as aresult of this there are very few s
ienti�
 papers on the internalsof this VMM.One of these is [30℄, where the fo
us is in 
ontrasting thathardware assisted virtualization (hardware VMM in the arti
le)



2. VIRTUALIZATION TECHNIQUES 18has overall better performan
e.To a
hieve maximum speed, it's imperative that, as stated in[86℄, most part of the 
ode is exe
uted dire
tly by the underlyingphysi
al pro
essor, but this is impossible with the Intel x86 pro-
essor ar
hite
ture, as there are instru
tions that are sensitivebut not trappable. As an example, the Current Privilege Level(CPL) 
ould be obtained by reading the low two bits of the
ode segment sele
tor register (%
s), and the popf instru
tion(�pop �ags�) exe
uted by a privileged pro
ess 
ould modify theIF �ags that governs the interrupt delivery, an operation that anunprivileged guest 
annot do [92℄. As a result, it's ne
essary tohave a binary translator that, for su
h virtualization unfriendlyoperations, simulates their exe
ution in a virtual 
ontext. Thetranslator adopted by VMWare is:
• Binary: its input is Intel x86 
ode;
• Dynami
 and on demand: translation happens at runtime,and only when 
ode is about to be exe
uted;
• System level: the are no assumption about the guest 
ode,the ABI is the x86 Industry Standard Ar
hite
ture (ISA);
• Subsetting: the input is the full set of Intel x86 operations,the output is a subset of them (typi
ally only user-mode



2. VIRTUALIZATION TECHNIQUES 19instru
tions);
• Adaptive: translated 
ode is adjusted in response to guestbehavior 
hange to improve e�
ien
y.The last property is worthy noting. When a CPU en
ountersa trap for a privileged instru
tion, it has to jump to a traproutine (typi
ally an operating system entry point) to deal withit, and this 
ould be expensive. A binary translator 
ould avoidit, by repla
ing the original 
ode with a routine (that, beingexe
uted by a program, is in user mode and not in kernel mode).As an example, the rdts
 instru
tion for the Intel Pentiumar
hite
ture, takes 2030 
y
les for a 
lassi
al trap and emulateexe
ution, and only 216 for the binary translation. This 
oulddeal with a minor part of the sensitive instru
tions, as loads andstores 
ould a

ess sensitive data as page tables. The adoptedapproa
h is that an instru
tion is translated identi
ally (i.e., nottranslated) and exe
uted by the physi
al pro
essor. If a traphappens, next time the same instru
tion will be re-translated toavoid the trap, maybe invoking an interpreter.VMWare has put a lot of e�ort in the management and 
on-�guration tools, both for a single system and for an entire data
enter. Although the only virtualized operating system are theones for the Intel x86 ar
hite
ture, for ea
h virtual ma
hine is



2. VIRTUALIZATION TECHNIQUES 20possible to de�ne an arbitrary number of virtualized peripher-als, in
luding storage systems, network 
ards, video 
ards andUSB devi
es. Hard disks 
an be mapped into a �le image, adisk partition or an iSCSI target [13℄ to a
hieve maximum per-forman
es. The network 
ould be 
on�gurated to have a virtualma
hine that has an host-only network (i.e., it 
ommuni
atesonly with the physi
al ma
hine it's instantiated on), a NATnetwork (where the physi
al ma
hine a
ts as a Network Ad-dress Translator), or to have a unique, externally a

essible IPaddress.The real value of the VMWare suites 
omes with the VMWareInfrastru
ture, that allows for a 
entral administration of hun-dreds of virtual ma
hines, over dozens of di�erent physi
al ma-
hines, allowing for load balan
ing, high availability and livemigration (moving a virtual ma
hine from one physi
al node toanother [82℄) with little servi
e disruption.2.4.3 XenXen [25℄ was originally developed at the University of Cam-bridge Computer Lab [26℄ as a framework to have an homo-geneous 
omputing environment over a high performan
e 
om-puting grid. Performan
es were so good that a 
ompany was
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Figure 2.2: Xen ar
hite
ture.founded to gain paying 
ustomers for management tools (the hy-pervisor itself is released under the GNU Publi
 Li
ense); laterthe 
ompany has been a
quired by Citrix.In the Xen language, both physi
al and virtual operatingsystems are 
alled domains, with dom0 indi
ating the hyper-visor and domU for the unprivileged domains, i.e. the virtualma
hines. The �gure 2.2 shows the Xen ar
hite
ture [36℄.Xen adopts the para-virtualization approa
h, borrowed fromthe Denali system [102℄: the appli
ation ABI remains un
hanged,but the virtualized operating system has some modi�
ations (inthe order of thousands of lines of 
ode), with the introdu
tion
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alls.An hyper
all is essentially a way to 
ontrol intera
tions be-tween a virtual ma
hine operating system and the physi
al ma-
hine operating system. The hyper
all interfa
e allows domainsto perform a syn
hronous software trap to perform a privilegedoperation, analogous to the system 
alls found in the operatingsystem. Data transfers are managed via I/O rings, essentially aprodu
er-
onsumer bu�er of I/O �le des
riptors, with a generalinterfa
e that 
ould be used for almost every kind of I/O devi
eintera
tion.CPU s
heduling between di�erent domains is made withthree di�erent s
hedulers as Xen 3.0: the Borrowed Virtual Time(BVT) s
heduling algorithm [59℄, that is work-
onserving and
apable of a low laten
y wake up when a domain re
eives anevent; the Simple Earliest Deadline First (sEDF) that 
ouldbe both work-
onserving and not work-
onserving, but la
ks aglobal load balan
ing between di�erent CPUs; the Credit S
hed-uler that is also global load balan
ing although not preemptive,and has a s
heduling period hard-
oded at 30 ms [47℄.Network interfa
es are quite 
omplex [28℄: the foundation ofthe ar
hite
ture is a Virtual Firewall Router (VFR), with ea
hdomain using one or more Virtual Network Interfa
es (VIF).The end result is that ea
h domain sees one or more typi
al
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ould be 
hallenging.Storage systems for the domU are modeled as Virtual Blo
kDevi
es (VBD): the dom0 
ould map them into �les, partitionsor LUNs. It's also possible to bla
k list a PCI devi
e for thedom0, leaving it in the ex
lusive a

ess of one or more domU.Xen has the ability to perform a live migration, with verylittle QoS loss [49℄. On [97℄ it's exposed an ar
hite
ture thatallows for migration over a MAN/WAN, at the expense of hav-ing a dedi
ated 
ommuni
ation 
ir
uit. On [43℄ it's shown anextension that also allows for migration of the lo
al �le system(hypervisors assume that the lo
al �le system 
ould also be a
-
essed from the destination physi
al ma
hine, requiring a NASor SAN infrastru
ture).Che
kpointing, as the ability to save and restore often froma saved image that 
ontains also the persistent state, is underdevelopment, allowing for a global 
he
kpointing of an entire
luster of virtualized ma
hines [54℄.Xen performan
es are of the utmost interest, as the paravir-tualization has a very low impa
t, at the 
ost of requiring to
hange both the dom0 and the domU operating system. Thisis infeasible for operating systems released only in binary form(like Mi
rosoft's Windows line of produ
ts), but Xen also sup-ports the hardware assisted virtualization des
ribed below.



2. VIRTUALIZATION TECHNIQUES 24Xen has found its way in the mainline Linux kernel, aftersome time where its integration with the operating system wasthe premiere feature of enterprise oriented Linux distribution asRed Hat RHEL and Novell SuSE server.2.4.4 Hardware assisted virtualizationThe Intel x86 ar
hite
ture is not a virtualization-friendly one.As a result, until some years ago the only available hypervisorsare binary translator (as VMWare) or para-virtualizer (as Xen).In 2006, Intel has announ
ed the VT-x ar
hite
ture for hardwareassisted virtualization for the x86 pro
essor family, and the VT-ifor the Itanium family [12℄.With the VT-x extension, there are available two new CPUoperations, the VMX root operation and the VMX non-rootoperation.The VMX root operation is intended for a VMM, and it'svery similar to a traditional IA-32 operation. VMX non-root isintended to support and isolate the exe
ution of a virtual ma-
hine, allowing the VMM to de�ne a degree of trust for the vir-tual ma
hine, granting some dire
t intera
tions with the hard-ware.A VM entry is the transition from the VMX root operation



2. VIRTUALIZATION TECHNIQUES 25to the VMX non-root operation, the opposite transition is aVMX exit. The Virtual Ma
hine Control Stru
ture (VMCS)manages these transitions, being 
omposed of a guest state areaand an host state area. Pro
essor state is loaded from the guest-state area on every VM entry, while it's restored from the host-state area on every VM exit. Exits happen always for someinstru
tions, for others it depends on some variables and �agsin the VMCS, that 
ould be set only in the VMX root operationmode. As an example, the VMCS 
ould de�ne how to deliverinterrupts (every interrupt results in a VM exit with no mask, orthe guest is able to re
eive interrupts), 
hoose to allow the guestto dire
tly a

ess some spe
ial register (that de�nes paging or�oating point operation mode), whi
h ex
eptions 
ause a VMexit, whi
h I/O operations are allowed (by de�ning a

eptableI/O port range).This �exibility allows for a �ner grain of 
ontrol, be
ausea VMM 
ould 
hoose to give a spe
i�
 virtual ma
hine moreprivileges, resulting in fewer VM exits and entries. As notedin [30℄, ea
h entry or exit is analogous to a 
ontext swit
h, re-sulting in some performan
e losses. The exa
t penalty variesa lot, be
ause it depends on the number of privileged instru
-tions (in [30℄, one test is based on the virtualization of a 
odethat 
reates forty thousand pro
esses, a very un
ommon appli-



2. VIRTUALIZATION TECHNIQUES 26
ation behavior). Nevertheless, the performan
e problem mustbe addressed.As a result of the growing 
on
erns, the se
ond generation ofvirtualization 
apable pro
essor has some new features. AMD,that developed a similar ar
hite
ture 
alled Pa
i�
a, presentedthe Bar
elona pro
essor, that has a third level 
a
he and a vir-tualized address translation, instead of a shadow paging, thatshould substantially redu
e the memory performan
e loss. In-tel has instead developed the Virtualization Te
hnology for Di-re
ted I-O [10℄, that allows for a dire
t remapping of DMA trans-fers and devi
e generated interrupts.It must be noted that an hardware assisted virtualization isthe only way to virtualize an operating system that's availableonly in 
losed sour
e form (like Mi
rosoft Windows series), butto get the best performan
e it 
ould be required to use spe
i�
drivers in the guest kernel. The so 
alled para-virtualized (PV)drivers are drivers engineered to work optimally in a guest envi-ronment, where there's no need to a

ess dire
tly the hardware(and, in fa
t, trying to do that will usually 
auses a VM exit)[29℄.



2. VIRTUALIZATION TECHNIQUES 272.4.5 Lightweight virtualizationThe VMM seen so far allows for multiple and di�erent operatingsystems hosted on the same physi
al ma
hines, giving a highdegree of �exibility. In some s
enarios, there is no need forusing di�erent operating systems (or even di�erent version ofthe same), it's su�
ient to have multiple views of the samesystem. This approa
h is the generalization of the jail or 
hrootse
urity feature found on Unix system: a pro
ess is restri
tedto intera
t with a subset of the system �les, so a 
ompromissionof it wouldn't allow the atta
ker to manipulate others program�les and resour
es. From the system point of view, the �lesnamespa
e has been split, as two di�erent pro
esses may referto di�erent �les even when they use the same (lo
al) name. Ifthis splitting is extended to all the system's resour
es, we havea lightweight (or 
ontainer based) virtualization [96℄.Example of this are the OpenVZ extension to Linux kernel[18℄, the Linux-VServer proje
t [15℄ and the Solaris 10 operatingsystem [20℄.OpenVZ 
alls ea
h autonomous namespa
e as a virtual en-vironment (VE), 
alled zones in Solaris. With 
ontainer basedvirtualization there's only one operating system running on thehardware, and ea
h 
ontainer 
an use a spe
i�
 amount of sys-
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es. OpenVZ de�nes this resour
es limits as bean
ounters, and they are in pla
e for ea
h possible resour
e type.In fa
t, resour
es management within 
ontainers is far more sim-ple, as there's only one operating system that must be enhan
edto govern that, making also possible to 
hange these limits evenat run-time. Overhead is also negligible [95℄, allowing for in-stantiating even hundreds of 
ontainers in the same physi
alma
hine, making this solutions parti
ularly appealing for Inter-net Servi
e Providers where ea
h hosted site 
ould 
oin
ide witha virtual 
ontainer.2.4.6 Other VMMsThere are many VMM solutions today, from resear
h prototypesto produ
tion ready infrastru
tures. We 
ite here some of thempresenting interesting features:Terra: Terra [62℄ is a VMM that allows for Trusted Comput-ing. A virtual ma
hine 
ould be instantiated as an open-box, allowing for data a

ess and modi�
ation from theadministrator of the physi
al ma
hine, or as a 
losed box,where these operations are prohibited. Also, the Terrahypervisor automati
ally analyzes the images of a 
losedbox virtual ma
hines to get sure they have not been tam-
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h allows for high sensi-tive se
ure virtual ma
hines (e.g. voting ma
hine) to beallo
ated over 
ommodity hardware;P.R.O.S.E.: the Partitioned Reliable Operating Systems [63℄,based on the Logi
al Partitioning (LPAR). The hyper-visor, rHype, is a para-virtualization engine that uses around robin �xed slot CPU s
heduler. This simple s
hed-uler redu
es the OS interferen
e [64℄, whi
h happens whenthere's some jitter in the exe
ution sequen
e of di�erentvirtual ma
hine, a plague that is more evident on generalpurpose VMM like Xen or VMWare as the VMM are a
omponent of a general purpose operating system. Thisla
ks of stri
t timing 
oordination 
ould easily destroy ag-gregated performan
es in a High Performan
e Computings
enario;Virtual Box: it's a GPL released binary translator made byInnotek and now developed by Sun;KVM: it's a Linux kernel module that o�ers hardware assistedvirtualization. Due to its integration with the kernel andits limited 
omplexity, it will be the de fa
to standard forvirtualization with Linux in the next following years;



2. VIRTUALIZATION TECHNIQUES 30Lguest: it's a para-virtualizer for the Linux Kernel, made inless than 5000 lines of 
ode [14℄;Hyper-V: it's the virtualization te
hnology made by Mi
rosoftand made available for Windows Server 2008 andWindowsVista. It leverages on hardware support for virtualization.2.5 Hardware virtualizationIn this se
tion, we dis
uss in details how a 
omputer 
omponent
ould be virtualized, i.e. how it 
ould be abstra
ted and pre-sented to one or more virtual ma
hines, preventing ea
h one ofthem to a

ess or interferes with others' data.2.5.1 Pro
essorPro
essor virtualization is usually a simple topi
. For the Popekand Goldberg prin
iple stated above, the most portion of in-stru
tions are exe
uted dire
tly by the pro
essor itself, for a
-
ura
y and performan
es. Only sensitive instru
tions requireto be inter
epted and somehow managed by the VMM. Whenthis happens, there's a pro
ess analogous to a 
ontext swit
h:pro
essor's 
urrent registers are saved, the handling routine isexe
uted, and then saved registers are restored.
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tion for 
riti
al stru
-tures stored in memory, and this is usually done by leveragingon pro
essors' a

ess 
ontrol me
hanisms. In the Intel x86 ar-
hite
ture, ea
h pro
ess 
ould run in one of four privilege level,the less privileged numbered 3 and the most privileged num-bered 0. In a no virtualized s
enario, operating system runs at0 level, and appli
ations run at 3, leaving levels 1 and 2 unused.With a hypervisors like Xen or VMWare, the hypervisor andits operating system still running at level 0, meaning full a

essto memory and devi
es, and the virtualized ma
hines run in anintermediate level. This is the main reason why it is di�
ult tovirtualize an hypervisor.2.5.2 Memory and DMAIn a modern ar
hite
ture, ea
h pro
ess has asso
iated its ownunique address spa
e, and instru
tions and data are stored in avirtual address spa
e. The virtual address spa
e is implementedby the Memory Management Unit (MMU) that gets the virtualaddress and returns the physi
al address. This 
onversion isper pro
ess, meaning that two di�erent pro
esses will usuallyhave the same virtual address mapped into two di�erent phys-i
al addresses (although it's possible for two pro
esses to share
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ess will usually sharememory).This translation is made up by organizing the memory spa
eof a pro
ess in a hierar
hi
al stru
ture, the page dire
tory, theroot of whi
h is a part of the pro
ess 
ontext (on x86 ar
hite
-ture is a CPU register). A virtual address is 
omposed of twoparts, the dire
tory part and the o�set. The dire
tory part willbe 
ombined with the page dire
tory to determine the physi
alpage, whi
h is added to the o�set to get the physi
al address[58℄.This operation, 
alled page tree walking, will require travers-ing the multi-level tree page table. Ea
h Page Table Entry(PTE) has the same size of a page table, whi
h is 4 KiB or4 MiB on Intel x86 ar
hite
ture (other ar
hite
tures 
ould havedi�erent page size 
oexisting in the system): as there are manyof them, the PTEs are stored in memory. So, every time thedire
tory part of the virtual address 
hanges, it 
ould be re-quired to a

ess some PTEs in memory, resulting in very poorperforman
es. To avoid this, a MMU is equipped with a Trans-lation Look-Aside Bu�er (TLB), whi
h is a spe
ialized 
a
he forvirtual memory 
onversion lookups.The problem asso
iated with the TLB is that, as a 
a
he,must from time to time to be invalidated. When a 
ontext
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h o

urs, or when there is a transition between the kernelmode and the user mode (to adopt the Intel x86 nomen
lature),the TLB will refer to a page table that is no longer the 
urrentpage table, so it must be invalidated. As a result, the in
omingmemory a

esses will require a page tree walking, until the TLBgets re�lled.A typi
al pattern on a modern system is when a pro
ess(running on user mode) requires an operation to the operatingsystem by issuing a system 
all: the pro
essor swit
hes to kernelmode, the operating system will hopefully honor the requests,then the pro
essor goes ba
k to user mode and the pro
ess exe-
ution resumes. This �ow has two transitions in it (the �rst fromuser mode to kernel mode, and the se
ond from kernel mode touser mode), whi
h in a naive TLB implementation would requiretwo TLB invalidations. This is usually a waste of resour
es, be-
ause a better approa
h would be to sele
tively invalidate someof the TLB lines. If the kernel 
omputation is small (as usuallyit is), the number of the referen
ed memory addresses is alsosmall, so only some of the TLB lines must be invalidated.This optimization requires that ea
h TLB line is tagged, as-so
iating to it the page table whi
h it refers to. Tagging is alsouseful for pro
ess swit
hing (when pro
esses are swit
hed often)and when there's a thread swit
hing, as in su
h a 
ase no TLB
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heme formemory virtualization, stressing that the datapath required for
onverting a virtual memory address of a virtual ma
hine toa physi
al address is almost doubled with respe
t to the novirtualized s
enario: �rst, a virtual ma
hine virtual memoryaddress is translated into the physi
al ma
hine guest address,and then the latter is translated into a physi
al ma
hine realaddress.Software memory virtualizationThe VMWare hypervisor assumes that the hardware has notbeen enhan
ed for virtualization (although, when this is the
ase, it uses some of the available hardware features), so it worksby deriving shadow stru
tures from guest level primary stru
-ture.Some of these stru
ture 
ould be mapped into the state of avirtual ma
hine (i.e. pro
essor state), some others as the pagetable dire
tory will ne
essarily reside in memory. These stru
-tures are also privileged, so the VMM must prote
t them fromunauthorized a

ess, with the 
ompli
ation that modi�
ationsof these will usually not generate traps, and they 
ould even bemodi�ed by an I/O operation, when the I/O devi
e is memory



2. VIRTUALIZATION TECHNIQUES 35

Address
Memory

Virtual
Host

Address

Memory

Virtual

Offset

Virtual Machine OS

VMM

Page directories

Address

Page

Page

Physical

AddressFigure 2.3: Memory virtualization datapath.



2. VIRTUALIZATION TECHNIQUES 36mapped.VMWare use the hardware prote
tion me
hanism to pro-te
t and tra
e modi�
ation to the shadow stru
tures [30℄. Ifthe PTEs are prote
ted, every a

esses to them will be trapped(the virtual ma
hines are running de-privileged) and the 
on-trol is transferred to the VMM. The VMM de
odes the fault-ing instru
tion, emulates its e�e
t on the primary stru
ture,and then propagates the modi�
ation on the shadow stru
ture.VMM must distinguish between true page faults, 
aused by theviolation of the poli
y en
oded by the guest PTEs (this hap-pens when a virtualized pro
ess tries to a

ess another virtual-ized pro
ess's memory spa
e) and hidden page faults, 
aused bymisses in the page table. True page faults are forwarded to theguest (that 
ould faults and kills the o�ending pro
ess) whilsthidden page faults 
auses the VMM to 
onstru
t an appropriateshadow PTE, and then resuming guest exe
ution. The tra
esare used to keep in syn
 the shadow PTEs and the primaryPTEs.Hardware memory virtualizationIn the para-virtualized approa
h, the virtual ma
hine operatingsystem is slightly modi�ed, to made 
ooperation between it andthe hypervisor simpler and more e�
ient. In the Xen hypervi-



2. VIRTUALIZATION TECHNIQUES 37sor, the privileged dom0 and the less privileged domU domainsdon't have unrestri
ted a

ess to physi
al memory. The VMM
reates its own page table for ea
h domain, and the virtual ma-
hines 
onstru
t their page table in a way that is similar for thepara-virtualized and hardware virtualized 
ase. Every time thevirtual ma
hine operating system modi�es its page table, theVMM is invoked, and it will update its shadow page table.This approa
h is quite expensive, for the TLB invalidationto take pla
e and the 
reation and maintenan
e of a shadowpage table stru
ture.Intel has de�ned the Extended Page Tables (EPTs) [9℄, andAMD the Nested Page Table (NPTs) for the Bar
elona pro
es-sor [100, 3℄: both allow the virtual ma
hine operating systemto produ
e host virtual addresses from guest virtual addresses.The host virtual address is then translated into physi
al hostaddress by using a per-virtual ma
hine page tree, with a verylittle performan
e penalty, as this se
ond step is done at pro-
essor speed without external memory a

esses. At the timeof this writing, these extension are not generally available, butben
hmarks appear promising [68, 5, 35℄.Also, the result of this 
omplex address translation is storedinto a TLB line. AMD has proposed a 1-bit tag extension withthe Pa
i�
a virtualization extension, 
alled the Address Spa
e
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ould distinguish betweenVMM's address spa
e and guests' address spa
e, allowing theoperating system to avoid �ushing the entire TLB every timethe VMM is entered or exited. Intel has Virtual Pro
essor IDs(VPIDs) for the same purpose.Even with hardware support, the entire memory addresses
onversion pro
ess is quite 
omplex, as it requires that two dif-ferent memory s
hedulers (one for the virtual ma
hine and oneused by the VMM) must 
ooperate. As the memory s
heduleris the most 
omplex and tuned 
omponent of the operating sys-tem, this e�ort is daunting, and is for su
h reasons that theLinux KVM VMM [17℄ is gaining in popularity: There's onlyone s
heduler, enhan
ed with virtualization oriented featuresthat also leverage massively on hardware features, resulting inone single implementation to be maintained (if the running vir-tual ma
hine is Linux) instead of two.DMA Memory pinningDMA 
apable devi
es usually side-step the CPU while transfer-ring large amounts of data. To keep devi
e's implementationsimple, usually they don't have any idea about virtual memory,not to mention virtual ma
hines. This will require that, dur-ing an I/O operation, the used memory region must be �xed
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h should be extended when an I/O oper-ation is issued by a virtual ma
hine, and the 
ommon approa
his by the use of a lo
king me
hanism. The VMM should managelo
ks to avoid 
on�i
ts and deadlo
ks between virtual ma
hines.To help virtualization of DMA fun
tion, Intel has developedthe Intel Virtualization Dire
ted I/O [10℄ and AMD has intro-du
ed the IOMMU unit [4℄.2.5.3 StorageIn 
ontrast to other peripherals, the virtualization of the storageis mu
h more simpler. We stress out that in this paragraphwith �storage virtualization� we de�ne the reservation of spe
i�
portion of a system storage spa
e (made up of lo
al and remotedisks, tapes and whatever) for the ex
lusive use of one or morevirtual ma
hine. The most 
ommon 
ase is when a portionof storage spa
e is reserved for use by a single virtual ma
hine,analogously to the no virtualized s
enario, although it's possibilethat two or more virtual ma
hines share a data storage area (asan example, a quorum disk).All VMMs have some degree of �exibility in 
hoosing howto 
arve out the area to be assigned to a virtual ma
hine. It
ould be an image �le, i.e. a single big �le on the physi
al
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hine a

esses as an entire disk, withthe VMM that maps the read and write requests of the virtualma
hine to read and write requests on the �le. This approa
ho�ers a great degree of �exibility (all the storage of the virtualma
hines is 
ontained in a �le, whi
h 
ould be easily ba
ked upand restored) and it's possible to de�ne snapshots of the �le,whi
h are 
oherent point-in-time 
opies of the virtual ma
hinestorage, allowing for qui
kly restoring of the virtual ma
hine'sstatus. The main drawba
k of this approa
h is performan
epenalty: the datapath required for an I/O requests is doubled.On the other side, it's possible to assign an entire disk (or apartition on it) to a virtual ma
hine, at the expense of somemanagement and �exibility issues, gaining on performan
es asthe datapath is redu
ed (the �le system layer of the physi
alma
hine is skipped).It has to be noted that storage availability is, nearly, theavailability of the entire system, as it's the far most 
ommon
ause of system outages. A 
areful planning of a virtual ma-
hine installation should try to balan
e between easy of man-agement, ba
king up, migration and performan
es, avoiding un-ne
essary dupli
ation of e�orts, the most typi
al of it being aredundan
y system like RAID doubled on the physi
al and vir-tual ma
hine: it's usually su�
ient that the virtual ma
hine
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y, seeing only a sim-ple storage system, where the VMM 
ould better map it to aredundant data storage area.On the same side, today's storage for server is usually re-mote, by using NAS or SAN infrastru
tures. All of them aren'tvirtualization-aware. As an example, a SAN server 
ould be 
on-�gured to sele
tively presents LUNs to a physi
al server, identi-�ed by a physi
al 
onne
tion (zoning). If this LUN 
ontains datastorage for a virtual ma
hine running into the physi
al server, amigration of this virtual ma
hine will require to re
on�gure theSAN server, as the LUN 
ontaining the virtual ma
hine datashould be, from now on, only a

essed from the new server,whilst the old server must be disallowed to a

ess the data, asthe migration has been 
ompleted. This will require a 
oor-dination between the VMM and the SAN, and the SAN musttrust the VMM, whi
h in this s
enario is usually deployed anddistributed among di�erent servers. On [76℄ it's presented theN_Port Identi�er Virtualization extension for the Xen VMMto solve this. Others high availability solutions will programthe SAN swit
h to sele
tively allow or forbid data a

ess as thevirtual ma
hines are being moved over the infrastru
ture.



2. VIRTUALIZATION TECHNIQUES 422.5.4 NetworkNetwork virtualization refers to the ability to o�er to ea
h vir-tual ma
hine a NIC interfa
e, allowing it to send and re
eivenetwork tra�
 without interferen
e, snooping or servi
e degra-dation 
aused by the other virtual ma
hines.Network interfa
e is 
omplex as the network tra�
 is unso-li
ited, requiring the VMM to be prepared to re
eive and re-spond to tra�
 that 
ould be re
eived at any time.Private devi
esThe �rst approa
h, adopted by the IBM S/360, 
onsisted onassigning a physi
al network interfa
e to ea
h virtual ma
hine(this was also made for other devi
es su
h terminals, disks andso on). Transfers to and from the network 
ard were made by
hannel programs, doing programmed I/O to transfer data fromand to the memory.Modern virtualization systems also allow for the private de-vi
e I/O, as Xen does with the p
iba
k module. This approa
has a relative degree of �exibility, as it requires that the VMMmust boot with a 
on�guration that prevents some PCI devi
es(identi�ed by their slot and PCI number) to be 
on�gured bythe dom0 kernel, and then it's possible to 
on�gure a virtual
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hine to dire
tly intera
t with the PCI devi
e by 
on�guringits des
ription �le [27℄. Although it's possible to reassign a PCIdevi
e to another virtual ma
hine, the set of dire
tly a

esseddevi
es 
ould be 
hanged only by a VMM reboot.The same approa
h is also used by the IBM Logi
al Parti-tioning (LPAR) ar
hite
ture for the Power4 pro
essor, relyingon spe
i�
 pro
essor features.More re
ent approa
hes as the LPAR for the Power4 pro-
essor allow for isolated a

ess at the PCI-level, leveraging on aIOMMU unit that 
reates a I/O page table for ea
h devi
e, withmemory mappings from the pages owned by the virtual ma
hineto the assigned devi
e. As a result, for ea
h DMA operation thepro
essor 
onsults the IOMMU, disabling I/O a

ess to devi
esnot owned by the virtual ma
hine.The private devi
e approa
h has a 
lear advantage, perfor-man
es maximization, but at the expense of a possible under-utilization (or over-provisioning) of physi
al resour
es. Also, theDMA memory pinning problem dis
ussed in se
tion 2.5.2 
ouldalso severely restri
t the feasibility of this approa
h for a givennetwork devi
e.
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esIn the Xen ar
hite
ture, the shared a

ess to the network ismade by using a virtualized spool-�le interfa
e, 
alled an I/Odomain. The VMM interprets readings on this bu�er as re
eiv-ing a network pa
ket, and writing to it as sending a networkpa
ket. As the �gure 2.4 shows, the Xen VMM 
ould be de
om-posed in two elements, the hypervisor and the driver domain(the Xen ar
hite
ture is the 
ommon approa
h for shared de-vi
es virtualization). The hypervisor is the abstra
tion layerbetween the virtual ma
hine and the real hardware, and ea
hI/O devi
e is managed by a I/O domain, whi
h runs a Linuxkernel. Ea
h virtual ma
hine 
ould 
ommuni
ate with a devi
eby using a front-end driver, whi
h then 
onne
ts to a ba
k-enddriver.As an example, when a pa
ket is transmitted from a virtualma
hine, it's 
opied (or remapped) from the front-end driverto the ba
k-end driver, and then queued for transmission fromthe NIC. An interrupt is generated when a pa
ket is re
eived,triggering the 
opy (or remap) of the pa
ket from the ba
k-enddriver to the spe
i�
 front-end driver. The ba
k-end driver is
apable of dispat
hing the network pa
ket to the spe
i�
 vir-tual ma
hine be
ause it inspe
ts the pa
ket, sees the MAC ad-
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ordingly to the destination front-enddriver. After the 
opy of the network data, a virtual interruptis sent to the virtual ma
hine, whi
h will in turn wake up thefront-end driver and pro
ess the pa
ket.Data prote
tion and isolation between the di�erent virtualma
hine is ensured by the driver domain. This approa
h resultsin some overhead, as it's possible that data must be 
opied fromand to memory, and the number of interrupts required to pro
essa network pa
ket is doubled. A spe
ialized driver 
ould resultin a substantial in
rease in performan
e [29℄, by doing memorymapping and not memory 
opying and avoiding to 
he
k fortransmission errors, as this 
ontrol is also made by the ba
k-enddriver. Another problem is that the I/O domain must be s
hed-uled to allow for pa
ket pro
essing, and the only way to avoid itis to move the ba
k-end driver 
ode into the hypervisor, result-ing in a bigger hypervisor, more exposed to �aws and se
urityrelated problems.Con
urrent Dire
t Network A

essA modern NIC interfa
e is usually organized with more thanone queue for pa
ket transmission and re
eption. This is donebe
ause, to in
rease availability, it's usually better to bond to-gether two or more network 
ards, presenting them as a unique
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e, and then 
on�guring them with two or moreIP addresses: if a network 
ard fails, the others will 
ontinueto work, with a minimal servi
e disruption (also, on multi-
orema
hines, this prevents for global lo
king on network resour
es,as it's possible to assign a queue to one spe
i�
 
ore).This hardware feature is employed in the Con
urrent Dire
tNetwork A

ess (CDNA), where ea
h one of this queues 
ould beassigned to a spe
i�
 virtual ma
hines, as the �gure 2.5 shows.The hypervisor treats ea
h queue as if it were a physi
alnetwork 
ard, assigning ownership of it to a virtual ma
hine,without the need to de�ne an I/O domain, resulting in near zerooverhead: interrupts are routed dire
tly to the virtual ma
hineowner of the queue, and the virtual ma
hine reads and writesdire
tly on the queue.Memory prote
tion is a bit more 
omplex, as there's no morea driver domain that 
ould validate memory a

ess to the de-vi
e. The problem is exa
erbated in the Intel x86 ar
hite
ture,where I/O devi
es have only physi
al addresses. On this ar
hi-te
ture, the hypervisor must validate ea
h bu�er, ensuring thatevery virtual ma
hine does not add to or remove from the queuepa
kets belonging to a queue it does not own, and preventingthe queue ownership from 
hanging, 
onsidering this a privilegedoperation. It should be noted that these two tasks are the same
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t to memory a

ess, so the gen-eral availability of a IOMMU will eliminate these burdens fromthe hypervisor. The performan
es of CNDA are su
h that thetransmission throughput is linear with the in
reasing numberof virtual ma
hines, while the shared devi
e approa
h a la Xende
reases exponentially. The performan
e gap for re
eiving isredu
ed, as Xen works better when demultiplexes re
eived pa
k-ets [91℄. Intel has developed the Virtual Ma
hine Devi
e Queueto e�e
tively implement the CDNA network virtualization [11℄.2.6 Con
luding remarksVirtualization dates ba
k in 
omputer history, and 
omes inmany di�erent forms. Providing and leveraging hardware fea-tures to get the best from this approa
h to 
omputation is a 
om-plex pro
ess, as there are many inter-dependen
ies and manydi�erent approa
hes, that must be evaluated against require-ments and provided features.



3Virtualizationar
hite
turesThe di�erent hypervisors that have been presented throughoutChapter 2 are merely te
hniques that 
ould be used when vir-tualization has to be put in pla
e in a system. In this 
hapterwe analyze the next logi
al step, where virtualization is an ar-
hite
tural asset that brings value to a distributed system, andnot only an available feature. It has to be noted that hypervi-sors' makers put a lot of emphasis in the server 
onsolidation50
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enario, where some (and possibly many) lega
y systems arevirtualized. This is a 
ost-savvy strategy, but virtualization hasa lot more to o�er when it's an integral part of a distributedsystem.A distributed system is usually designed and built up (oftenwith a trial and error approa
h) with a list of desired features,both measurable and not-measurable, that drive the design pro-
ess. Some of the features that 
ould take a great bene�t fromvirtualization are:
• e�
ien
y: the average server usually works at 10-15% ofits 
apa
ity, with some temporary surges. By pa
kingsome (virtual) servers into a physi
al one, it's possible to
ut down ele
tri
ity and maintenan
e 
osts;
• availability: by leveraging on live migration, it's possibleto migrate a running virtual ma
hine from one physi
alhost to another, in a proa
tive way (allowing for ordinarymaintenan
e) or rea
tive (as in a disaster re
overy s
e-nario). Re
overy Oriented Computing [21℄ is a remarkableapproa
h to rea
h this goal;
• ease of deployment: by 
loning a virtual ma
hine, it's pos-sible to install it on several di�erent physi
al hosts;



3. VIRTUALIZATION ARCHITECTURES 52
• load distribution: virtualized ma
hines 
ould be the build-ing blo
k of a 
luster that spans over di�erent underlyingphysi
al ma
hines, hiding the heterogeneous underlyinghardware.Virtualization 
ould be e�e
tive in a
hieving these sometimes
on�i
ting goals, as it de�nes a 
entral management fun
tionthat is implemented by another intermediate layer. Having an-other layer means also adding 
omplexity, as 
omplex intera
-tions with the rest of the sta
k result in. As virtualization be-
omes pervasive, the �ghting arena for manufa
turers will pro-gressively shift from performan
es to management tools: newgeneration of 
omputer pro
essors, operating systems and pe-ripherals are designed with virtualization in mind, and the bur-den of hypervisors will move from making a 
omputing platformvirtualization friendly (i.e. virtualize a lega
y server) to man-aging hundreds and thousands of di�erent virtualized systems,that o�ers di�erent servi
es to di�erent users.This will be a 
ommon s
enario for a large data 
enter whi
htoday's o�er in
lude shared hosts for low-tra�
 sites and dedi-
ated hosting, but both of them are far less than ideal. Sharedhosting is a

eptable only when both tra�
 and requested levelof se
urity are low, whilst dedi
ated hosting requires 
arefulplanning (it will take some time to 
hange the footprint of an
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ially when the 
ustomer wants to downgrade)and it will usually result in a waste of money, from 
ustomer'spoint of view, as the average server is usually under-utilized.For this very reason a modern data 
enter should use virtualiza-tion in its 
ore ar
hite
ture, to rapidly adapt to its 
ustomers'needs. One of the pioneers in this approa
h is Amazon, withthe Amazon Elasti
 Computing Cloud (EC2) servi
e [1℄.With Amazon EC2, a 
ustomer 
ould lease a virtual server,and pay only for the time the server is up and running. Whenthe server is o�ine, the server's image is stored o�ine (a 
ol-lateral servi
e of Amazon, the Amazon Simple Storage Servi
e(S3) [2℄ 
ould take 
are of that). Amazon has a large pool ofma
hines, so it 
ould instantiate even thousands of server fora 
ustomer within minutes from the request. These ma
hines
ould be used for the time required to perform their job, as do-ing a number 
run
hing 
omputation (that was the 
ase whenNew York Times need to repro
ess and 
onvert its entire ar
hivein ele
troni
 format [19℄), a
ting as a ba
kup system or givingsome extra 
apa
ity power to o�oad some 
omputations for asite that is experien
ing a surge in tra�
. A start-up 
ompany
ould lease its servers and expanding its pool when it's needed,
on
entrating its e�ort on the produ
ts and developing a long-term strategy for its information system in the meantime. When
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Figure 3.1: A virtualization ar
hite
ture.all 
ost fa
tors are taken into a

ount, this approa
h is usually
heaper in the short-term than the traditional one.This unifying approa
h 
ould be worth to be used even whenthe 
ustomer and the provider (of 
omputing ma
hines) are thesame organization, i.e. by the IT department of a 
orporate.Instead of having many di�erent 
lusters, ea
h one devoted to aspe
i�
 business fun
tion, there 
ould be only one 
luster, withsome isles on top of it, ea
h one for a high level task. Theseisles 
ould be expanded or redu
ed with respe
t to their size(asso
iated resour
es) a

ording to the evolution of the business.Figure 3.1 shows an example where di�erent area sizes of thehigh level fun
tions remarks the di�erent amount of asso
iatedresour
es.
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e of a more 
omplex setup and planning, this ar-
hite
ture will bring bene�ts to the organization that uses it.Ea
h 
omputer is a 
omputing blo
k, that is globally managedand assigned. As long as the hypervisor remains the same, it'spossible to mix and mat
h di�erent hardware solutions, maxi-mizing the e�
ien
y of the infrastru
ture and obtaining, withless e�ort, high pro�le features like high availability, disasterre
overy, rapid deployment and so on.As a result, virtualization must be in
luded in the designpro
ess of a distributed system. In this 
hapter, we see somestandard te
hniques to develop a modern distributed system andhow virtualization 
ould be integrated in it sin
e the design pro-
ess. We 
onsider this in the more general 
ontext of autonomi

omputing, that will provide a useful framework.3.1 Referen
e ar
hite
tureThe referen
e ar
hite
ture we 
onsider is a multi-tier distributedsystem, shown in �gure 3.2.Ea
h tier is fun
tionally distin
t from the others. Ea
h tieris made up of nodes of the same type and with the same asso-
iated resour
es (CPU, disks, memory, ...). In this ar
hite
ture,in
oming requests are fa
ed by the top tier, N , whi
h, to serve
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. . . . . . . . . . . . . . . . . . . . . . . .Figure 3.2: A multi-tier distributed system.them, requires servi
es from the next tier, N − 1, whi
h in turnrelays to tier N − 2 and so on. It is assumed that a request�ows only from one tier to the next one to be served, althoughit 
ould be possible that it doesn't need to traverse all the tiers.After rea
hing the last tier, the 
omputed result �ows upwards,is aggregated by the di�erent traversed tiers, and is �nally sentto the 
lient. Requests are grouped in 
lasses, distinguished bythe amount of requests and type of resour
es they require byea
h tier in order to be served, and within the same 
lass theyare assumed statisti
ally indistinguishable.
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ontext of web servi
es, distributed systems are usu-ally made up of three tiers:
• front end tier, whi
h is the 
onne
tion point for external
lients a

essing the web servi
e, with its nodes servingonly stati
 
ontent. This tier usually does not su�er froms
alability problems as a modern web server 
ould servestati
 
ontent in su
h a fast way to saturate the availableInternet 
onne
tion;
• appli
ation tier, where the appli
ation logi
 resides. Thisis made up of programs running in the 
ontext of an HTTPrequest, written in languages like PHP, Java and so on.Ea
h 
ustomer intera
ting with the web servi
e usuallyprodu
es more than one servi
e request, and these areall interdependent (as an example, a buy order followsa sear
h 
atalog fun
tion), so requests are grouped intosessions. To avoid repli
ating session stateful informationalong all nodes 
onstituting the appli
ation tier, the loaddistribution fun
tion must be session aware, and this in-trodu
es some limits in the s
alability of this tier;
• database tier, whi
h handles all queries to the databasesystem. This tier is usually the most di�
ult to expand,as all low-level DBMS employ a shared-nothing approa
h,
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h makes di�
ult to realize 
on
urrent, write-a

ess tothe data.More tiers 
ould be added to this model, as an example a front-end tier 
ould manage web authorization and a

ess, and aninner tier 
ould model and intera
t with lega
y mainframe sys-tems. In ea
h 
ase, although this ar
hite
ture is the de fa
tostandard for web servi
es, s
alability of it must 
arefully ad-dressed: adding some extra nodes to a spe
i�
 tier wouldn'tne
essarily let to a general performan
es improvement as some
ommon 
apa
ity planning problems 
ould arise:
• the extra nodes are not added to the tier that is the bot-tlene
k of the distributed system;
• the extra nodes are added to a tier that has almost noneed of them;
• the speed-up of the tier being in
reased is su
h that there'sa waste of pro
essing power.The last point is 
riti
al. Ea
h tier has asso
iated a load dis-tribution fun
tion, that dispat
hes the in
oming requests fromthe upper tier to a spe
i�
 node. This dispat
hing �rst requiressome kind of strategy (as an example, in order to dispat
h re-quests to less busy nodes it's required to monitor and 
olle
t
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h node) and it 
ould be more or less e�
ient forthe spe
i�
 semanti
 of operations performed by the tier. As aresult, adding nodes to a tier that is already experien
ing thesaturation of its distribution fun
tion will result in no e�e
t.In some 
ases it will be required to 
hange the strategy usedto distribute the load between the nodes of the same tier, thatit 
ould in turn require to 
hange the implementation of thesoftware running on the nodes.3.1.1 Modeling of multi-tier systemsModeling of multi tier systems has attra
ted a lot of interest inthe last several years, as pervasive web servi
es are usually bestimplemented in this framework.As for ea
h performan
e model, there's a trade o� betweenits a

ura
y and the feasibility of the implementation: a morepre
ise model, that requires too mu
h instrumentation of thereal system to feed its model solver, or that has a 
omplex modelthat requires a lot of pro
essing time to be solved, is of no morethan theoreti
al interest, as the predi
tions originating from it
annot be applied in an on-line system, so the level of detail inthe models is 
hosen in a utilitarian fashion.In [61℄ the fo
us is in the modeling of a single server, 
om-
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al resour
es like CPU, memory and disks, that
ould intera
t with other servers to a

omplish the requestedfun
tions.In [98℄ the developed model is session-based and take intoa

ount 
a
hing e�e
ts and 
on
urren
y limit on the tiers. Inthis model, ea
h tier is modeled via a queue, and the systemis solved via the Mean Value Analysis algorithm ([90℄). Thismodel allows for performan
es predi
tion and dynami
 
apa
ityprovisioning, and it 
ould handle multi-
lass models.In [105℄ the most important input for the MVA model, theaverage servi
e time for the CPU at ea
h tier, is estimated via aregression te
hnique, minimizing the quadrati
 di�eren
e fromobserved and estimated utilization rate.In [99℄ the fo
us is in provisioning the appli
ation tier. First,it is shown that for limited times
ale a tier 
ould be modeled asa M/G/1/PS queue, i.e. the arrival rate of requests at the appli-
ation tier is des
ribed by a Poisson distribution (this of 
ourseis not true on large and di�erent times
ales, as self-similarityappears due to an high degree of 
orrelation between arrivals.The times
ales over whi
h 
orrelations exists are delimited byan upper bound, 
alled Criti
al Time S
ale [93℄). Then the 
or-re
t solution of the model, that requires some 
omplex 
al
ula-tions making it infeasible for on-line provisioning, is 
ompared
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hieve allo
ations with 
osts near the minimumpossible, while simpler heuristi
s in
ur in signi�
antly higher
osts. This model 
ould also be used to determine the opti-mal number of servers to bve deployed for the appli
ation tier,ignoring the provisioning of the other tiers.The assumption that all nodes are work 
onserving and thatthe dis
ipline is pro
essor sharing (PS) is generally appli
able,while it 
ould not be the 
ase that the arrivals are modeled via aPoisson distribution. To have the most general multi-tier model,we assume that ea
h server is modeled via a G/G/1 queue. Thebehavior of this server is des
ribed via the following equationfrom queuing theory [72℄:
λi ≥

[

si +
σ2

a + σ2
b

2 ∗ (di − si)

]−1 (3.1)where:
• λi is the arrival rate for tier i;
• si is the average servi
e time for requests on tier i;
• di is the mean response time for requests on tier i;
• σ2

a is the varian
e of inter-arrival time for requests on tier
i;
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• σ2

b is the varian
e of servi
e times for requests on tier i.Quantities as di and si and their varian
es are known or 
ouldbe on-line estimated (instrumenting the distributed system tore
ord, for ea
h transa
tion, request time and 
ompletion time),so a lower bound on λi 
ould be evaluated for ea
h server. Ifea
h session has a think time of Z, by Little's Law the sessionarrival rate of λ 
ould be translated in a request arrival rateof λτ
Z
, where τ is the average session duration. So, when the
apa
ity λi of a single server is 
omputed, the number ni ofserver required for tier i is simply de�ned as:

ni =

⌈

βiλτ

λiZ

⌉ (3.2)the βi is a 
orre
tion fa
tor spe
i�
 for ea
h tier, that takeinto the formula 
ompeting e�e
ts as 
a
hing, load distributionand speed-up. If the speed-up behavior is not 
onstant but afun
tion of n, then ni is de�ned as the minimum value of ni forwhi
h it holds:
niλiZ ≥ βi(ni)λτ (3.3)with the 
onstraint that ea
h tier has at least one node:
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ni ≥ 1, ∀i (3.4)Equation 3.2 is general, so more tier-spe
i�
 equations 
ouldlead to substantial improvements determining a lower numberof server ni, at the 
ost of more spe
i�
 tier-knowledge. As ourobje
tive is to investigate in the allo
ation of this servers overphysi
al ma
hines, we assume that an equation like 3.2 will besu�
ient for our needs.3.2 Virtualization performan
es and mea-surementVirtualization is an additional layer, so it has some 
omplexityby itself (espe
ially when is a foundation for the entire infras-tru
ture) and an asso
iated overhead. Re
alling the de�nitionof VMM made by Popek and Goldberg, this overhead must benegligible, but it must be evaluated.Virtualization is making some fast progresses, and as a resultthe performan
es of an hypervisor are 
hanging rapidly, makingof no interest to report them in a dissertation where the fo
usis on the ar
hite
tural 
omponent. Plus, very few 
omparativestudies are 
ondu
ted on this �eld, as some hypervisors' li
enses
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es of Xen and OpenVZ are
ompared on some s
enarios, founding that Xen has a lot ofoverhead, mainly due to level two 
a
he misses, up to ten timesthan the ones in OpenVZ. It's generally understood that thisgap will redu
e as the hardware features are made available, asdis
ussed throughout Chapter 1.From dis
ussion in Chapter 1 it's 
lear that performan
esare stri
tly dependent on the number of privileged instru
tionsthat the hypervisor has to emulate, be
ause the inno
uous in-stru
tion are exe
uted dire
tly by the hardware, with no perfor-man
es penalty.On [81℄ this formula is adopted to evaluate the slowdown ofa virtualization:
Sv = fp ∗Ne + (1− fp) = fp ∗ (Ne − 1) + 1 (3.5)where:

• fp is the fra
tion of privileged instru
tion;
• Ne is the number of instru
tion required to emulate a priv-ileged instru
tion.As an example, when f = 0.1% and N = 500 the slowdown is
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S = 1.5, meaning that an appli
ation running on top of a virtualma
hine will see its exe
ution time in
reased by 50%. The mainadvantage of the equation 3.5 lies in its simpli
ity. The �xedvalue of Ne does not take into a

ount adaptive behavior or
a
hing me
hanism employed by the translator, and the fra
tion
fp of privileged instru
tions 
ould be substantially redu
ed withsome modi�
ation to the virtual ma
hine's 
ode base.But in even more general terms, the pa
e of progresses inthis �eld results in high performan
es variations, even betweentwo releases of the same hypervisors, as soon as it leverages onsome hardware features or modi�
ation of the virtualized 
ode.Nevertheless, it makes sense to measure the virtualizationoverhead, over a spe
i�
 s
enario and this 
an be done as seenin [81℄.In that paper, some metri
s have been 
olle
ted for a physi
alsystem that 
omprises of two virtual ma
hines, the �rst runninga bat
h system and a Transa
tion Pro
ess Manager (TPM), andthe se
ond devoted to testing purposes. Table 3.1 is an ex
erptthat we use to show the relevant results.To determine the CPU utilization fa
tor for the �rst virtualma
hine, we use this formula:
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 Value
T vmm

cpu,vm1 420 s
T vmm

cpu,vm2 220 s
Uvmm

cpu 0.40Table 3.1: Measurements for estimation of VMM overhead.
Uvm1

cpu = Uvmm
cpu ∗

T vmm
cpu,vm1

T vmm
cpu,vm1 + T vmm

cpu,vm2

= 0.2625 (3.6)Eq. 3.6 states that the utilization of the physi
al CPU forthe �rst virtual ma
hine is a fra
tion of the utilization of theCPU as seen by the hypervisor, Uvmm
cpu . The apportionmentfa
tor is the ratio between the total time that CPU is runningthe �rst virtual ma
hine as measured by the VMM, T vmm

cpu,vm1and the total time that CPU is running the virtual ma
hines,as seen by the VMM. The experiment spans over a 30 minutesinterval, and if we 
al
ulate the utilization of the physi
al CPUfor the �rst virtual ma
hine as:
Uvm1

cpu =
T vmm

cpu,vm1

30 ∗ 60
= 0.2333 (3.7)we get a result that does not take 
are of the 2.92% di�eren
e
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ed as the implemen-tation of the hypervisors are better. It has to be noted that thisoverhead is in fa
t a result of two 
ompeting phenomenons. The�rst is the overhead that result when privileged instru
tions areen
ountered and have to be somehow emulated by the VMM,the se
ond are the optimization that the VMM 
ould put inpla
e to redu
e penalties due, for example, to memory faults.Eq. 3.6 is made with the assumption that there isn't inter-feren
e between the two virtual ma
hines 
ompeting over thesame result, i.e. the �ow of operation for the two ma
hines arealmost the same as if they were exe
uted without an interposingVMM. This in turn requires that the VMM is perfe
tly 
apa-ble of isolating the two virtual ma
hines regarding to resour
es
ontention.We stress that a 
riti
al point is that the VMM must takeevery 
are in avoiding the interferen
e problem. As an exam-ple, if a virtual ma
hine is doing a lot of unexpe
ted I/O workwith the disk (i.e. is running out of memory and it's movingpages to and from disk) this behavior must not limit the I/Odisk bandwidth available for others virtual ma
hines, requiringa global monitoring of resour
es 
onsumption. This 
ould gener-ate a butter�y e�e
t, as the virtualized operating system 
ould
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hoose an aggressive I/O strategy that is greedy in the shortterm but it would have been resulted in a general performan
esimprovement in the long term (usually the virtualized operatingsystem has no idea that is running in a virtual ma
hine). Lim-iting the ability of the virtualized operating system 
ould be noperforman
e wise in the long term, so the VMM should �nd abalan
e between the fairness of the resour
es allo
ation and theresulting global throughput.3.3 Autonomi
 
omputingToday's 
omputer systems have an intrinsi
 daunting 
omplex-ity that stems from the wide range of te
hnologies and 
om-plexity of intera
tions. As a result, identifying problems in aprodu
tion system 
ould be quite 
hallenging, and optimizingand tuning for performan
es is often out of the question. Thiswill end up in very little e�
ien
y, redu
ed availability and se-
urity problems.In 2001, IBM has proposed autonomi
 
omputing as a long-term answer to these problems [67℄. Autonomi
 systems 
ouldmanage themselves, as the autonomi
 nervous systems governshuman body adapting it to 
hanging environments and repairingit, a damage 
ould o

urred, with little or now knowledge from
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tion as the 
ons
ien
e.Distinguishing properties of autonomi
 systems are [70℄:Self-optimization: an autonomi
 system 
ontinually seek waysto improve its operation, identifying options and a
tionsthat make it more e�
ient on performan
es or 
osts, a
-
ording to some built-in metri
;Self-healing: an autonomi
 system identi�es defe
tive 
ompo-nents and put them o�-line, re-organizing itself to 
ontinueto work with the remaining parts;Self-prote
tion: an autonomi
 system a
knowledges atta
ksfrom the outside, preventing them to have su

ess and
ompromise the entire system.These properties are usually 
olle
tive identi�ed as self-* prop-erties. All of them are, to say the least, appealing, as they solvea great share of the problems that everyday happen and arisein a produ
tion system. Autonomi
 
omputing is still in itsinfantry, as many problems have yet to be addressed [56℄.All the self-* properties 
ould be implemented leveraging onvirtualization. If we imagine an autonomi
 
omputing systemas a system made up of independent but 
ooperating systems,ea
h of them 
ould be implemented as a virtual ma
hine. Self-prote
tion 
ould take advantages by the isolation property that
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ould be more easily ob-tained if the failure of a 
omponent will be 
on�ned in its bound-aries, allowing for shutting down the 
omponent and eventuallyre-initialize it (hoping the failure is transient) or migrating itover di�erent physi
al resour
es (if the failure is due to hard-ware's �aws), giving some degree of �exibility over a traditionalapproa
h when the 
oupling between resour
es and 
omponentsis tighter.In this dissertation we mainly investigate how to deal withself-optimization, i.e. how to leverage on virtualization to al-low an autonomi
 
omputing system to adapt itself to di�erentworkloads.3.3.1 Self-optimizationSelf-optimization is the ability of a system to adapt itself ondi�erent 
onditions, and as a distributed system is intended togive servi
es to 
lients requesting them, the fo
us is on systemsthat adapt themselves on variable workloads. We 
onsider thear
hite
ture proposed in [80℄ as a general framework we wish toextend.The proposed ar
hite
ture evolves around a QoS Controller,depi
ted in �gure 3.3 whi
h has four main 
omponents:
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e Demand Computation: 
olle
ts utilization data onall system resour
es and 
ount of 
ompleted requests. Theservi
e demand of a request, de�ned as the total averageservi
e time of a request for a spe
i�
 resour
e, 
an thenbe 
omputed as the ratio between the resour
e utilizationand the system throughput [78℄. These servi
e demandsare used as input parameters for a Queuing Model solvedby the Performan
e Model Solver;Workload Analyzer: analyzes the arriving requests and 
om-putes statisti
s as average arrival rate. It 
ould also usestatisti
al te
hniques to fore
ast workload. These statis-ti
s are made on a per-interval basis, 
alled 
ontroller in-tervals;Performan
e Model Solver: re
eives requests from the QoSController Algorithm to solve the Queuing Model for aspe
i�
 
on�guration of the system. Its inputs are the
on�guration parameter values, servi
e demand values andworkload intensity values. Its output is the QoS value forthe 
on�guration used as input, given a

ording to somemetri
;QoS Controller Algorithm: it runs the 
ontroller algorithmat the beginning of ea
h 
ontroller interval. Its input
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esses, andit sear
hes a 
lose-to-optimal solution, by a mix of analyt-i
al models and 
ombinatorial sear
hing te
hniques. Ea
hpossible solution is evaluated by the Performan
e ModelSolver. After the best possible 
on�guration has been dis-
overed, it sends 
ommands to re
on�gure the system.This ar
hite
ture has been then validated for highly variableworkloads [39℄. In [40℄, this ar
hite
ture has been expandedto allow the 
o-existen
e of di�erent Appli
ation Environments(AEs) on the same physi
al ma
hine. On ea
h physi
al ma
hinethere's a QoS Controller analogous to the one of �gure 3.3 plusa 
entralized global 
ontroller.These ar
hite
tures �t in the general model for autonomi

omputing proposed in [103℄.In [101℄, a similar ar
hite
ture has been 
onsidered for ap-plian
e based autonomi
 provisioning. The ar
hite
ture de�nessome Virtual Appli
ation Environments (VAEs): a VAE spansover one or more virtual servers, and ea
h server is de�ned insidea physi
al ma
hine. Ea
h VAE has a On-Demand Router thatdispat
hes in
oming request to the less loaded virtual server in-side the VAE, in a round-robin fashion. A global, utility-driven,virtualization-aware model solver solves a performan
e model todetermine the better 
on�guration for the VAEs, for the given
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asted) workload. This arti
le is remarkable as it's the�rst to take into a

ount the time required for virtual ma
hineprovisioning, i.e. the time required to a
tivate a virtual ma-
hine and the time required for 
losing it, and o�ers a formulato evaluate the performan
e overhead of an hypervisor, as thisdatum is required by the model solver to avoid overloading aphysi
al ma
hine. Based on the works in [87, 88℄ it is assumedthat the 
apa
ity available for a spe
i�
 virtual ma
hine is afair share of the total (raw) 
apa
ity of the physi
al ma
hine,attenuated by a 
onstant fa
tor α that takes 
are of overheaddue to virtualization:
Cv = (1− α) ∗ Cp/N (3.8)where:

• Cv is the 
apa
ity of the virtual ma
hines;
• Cp is the 
apa
ity of the physi
al ma
hine;
• N is the number of virtual ma
hines instantiated over thesame physi
al ma
hine.In the aforementioned arti
le, α = 0.1. (in [31℄ authors 
hoosean overhead between 1.5 and 3, i.e. 1

3 ≤ α ≤ 2
3 . This di�erent
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hnolo-gies). The 
apa
ity is de�ned as a global index of the rela-tive performan
es of a physi
al server, i.e. the model is mono-dimensional. The mapping between the physi
al server and thevirtual ma
hine is des
ribed by an asso
iation matrix, and themodel solver returns, for a given matrix and a (fore
asted) work-load, a new asso
iation matrix. The time required to deploy thenew asso
iation matrix is 
onsidered as a linear sum of the timerequired to shut down the no longer ne
essary virtual ma
hinesand the time required to boot the new virtual ones.In [31℄ the model fo
uses on SLA violations, trying to mini-mize it. To get a solvable performan
e model, the probability ofa servi
e time bigger than the agreed value is bounded via theMarkov Inequality [71℄.Other approa
hes for self-optimization are possible. In [84℄it's exposed a 
ontrol of CPU shares of two 
ompeting virtualma
hines over the same physi
al node based on 
ontrol theory.3.3.2 Proposed extension to the modelAll the previous ar
hite
tures have some boundaries we wish toextend.First, they assume that the 
apa
ity of the servers are �xed,
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e demand times are only input variables. Thisis in general not true when virtualization deploys all of its powerin resour
e sharing: it's possible to dynami
ally vary the CPUshare assigned to a virtual ma
hine.But the most important limit is that all of these models as-sume that the only 
riti
al parameter for modeling is the CPUpower of the virtual ma
hines ([79℄, [89℄). A notable ex
eptionis [69℄ where are both 
onsidered a load dependent resour
e,as the CPU, and load independent resour
e as the main mem-ory; but performan
es of a (virtual) ma
hines stem from all theavailable resour
es. As an example, front end tier require a lotof bandwidth for 
onne
tion to external 
lients, and a databasetier is bounded by storage bandwidth. As is shown in [61℄, allof these (and possibly others) parameters are required to havea 
orre
t estimation of servi
e demand times.Consequently, if ea
h virtual ma
hine is des
ribed by a re-sour
es demand ve
tor, ea
h physi
al ma
hine must by des
ribedby a dimensionally analogous resour
es ve
tor, and it 
ould bepossible that a physi
al ma
hine has some spare resour
es thatare insu�
ient for instantiate a spe
i�
 virtual ma
hine in it.As an example, imagine we have a physi
al ma
hine with8 GiB of RAM and four pro
essors (for the sake of brevity we
onsider only two elements for the resour
e ve
tor). This ma-
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hine 
ould host 4 virtual ma
hines, ea
h one requiring 1.8 GiBof RAM and one pro
essor, but it 
annot a

ommodate morethan 3 virtual ma
hines requiring 3 GiB of RAM and one pro-
essor. In the latter 
ase, 2 GiB of RAM and one pro
essor arefree and unused, and they maybe a

ommodate another virtualma
hine, belonging to a di�erent tier, with a more 
ompatibleresour
es demand ve
tor.Last, in the 
urrent works it is often assumed that all theappli
ations are available on ea
h physi
al ma
hines, ready to bea
tivated should the workload variations require it ([69℄). Forproprietary appli
ations this is usually not a

eptable, as theli
ense fees are for ea
h installed 
opy and not only for running
opies.For a virtualized ar
hite
ture, migration times must be takeninto a

ount. In [89℄, it is assumed that the 
ontroller intervalare a lot bigger than the time required for server migration, andthis is a standard modeling option, as the 
ontroller time is inthe range of 5-30 minutes.So, in this dissertation we 
on
entrate on an allo
ation prob-lem. We assume that a multi-tier performan
e model solver hasdetermined the number of nodes that must be in ea
h tier forthe 
urrent (or fore
asted) workload. Ea
h one of these nodesis des
ribed via a resour
e demand ve
tor, and there are avail-
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al ma
hines des
ribed by a resour
e ve
tor. Wewant to map the former into the latter, i.e. assign ea
h virtualma
hine to only one physi
al ma
hine, without ex
eeding avail-able resour
es and possibly minimizing the number of requiredphysi
al ma
hine, to a
hieve maximum e�
ien
y.In Chapter 4 we formalize our model, dis
uss its 
omputa-tional 
omplexity and propose some algorithms to ta
kle it.



4The mapping problemAs seen throughout previous 
hapters, virtualization 
ould playa fundamental role in de�ning a distributed ar
hite
ture that
ould self-adapt to workload variations. In Chapter 3 we havesurveyed studies that deal with the problem of de�ning the nu-merousness of ea
h of the tier 
omprising a multi-tier distributedsystem, espe
ially in the 
ontext of web servi
es. To the best ofour knowledge, there are no studies that model these systemsfor more than one (or two) resour
es as CPU power (and avail-able memory) and no one that deal with the mapping problemthat we de�ne as: given a set of virtual ma
hines, ea
h one de-79
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ribed by a resour
e demand ve
tor, and a group of physi
alma
hines, ea
h one des
ribed by an available resour
es ve
tor,whi
h is the best mapping of the former to the latter, i.e. howto asso
iate ea
h virtual ma
hine to one and only one physi-
al ma
hine, without ex
eeding available physi
al resour
es andmaximizing a given metri
?Current studies ignore 
ompletely this problem, and ofter
hara
terize performan
es of a virtual ma
hine only by its CPUpower. Instead, we 
hoose to work, for this mapping problem, ina multi-dimensional spa
e, where we have both quantitative andqualitative 
hara
teristi
s of the physi
al (and therefore virtual)ma
hines.4.1 Problem formalizationWe formalize the mapping problem to allow for maximum gen-eralization.To do so, we assume that the virtual ma
hines are groupedtogether, and that for ea
h group we must allo
ate one and oneonly ma
hine to a physi
al one. Ma
hines in the same grouprepresent di�erent servi
e levels and are 
hara
terized by dif-ferent resour
e demand ve
tors, and for ea
h virtual ma
hinethere's an asso
iated pro�t that is earned when the ma
hine is



4. THE MAPPING PROBLEM 81
hosen to be instantiate.We want to maximize the grand total of pro�ts, while mini-mizing the number of physi
al ma
hine we have to use. It's pos-sible that, for some or even all groups, we have only one virtualma
hine for ea
h group, meaning that we 
annot do anythingbut instantiate that ma
hine, and in su
h a 
ase the problemis only to �nd where to instantiate it. As the virtual ma
hinesare pooled in groups, we indi
ate ea
h one of them by two in-dexes, the �rst denoting the group and the se
ond the ma
hinein the group (i.e. the servi
e level). Following this 
onvention,if X is a generi
 s
alar (or ve
tor), X ij is the s
alar (or ve
tor)pertaining to the j−th ma
hine of the i−th group.We stipulate that:
• G is the number of groups. Ea
h group is 
omposed of gidi�erent ma
hines (it's possible that gi = 1 );
• ea
h virtual ma
hine is des
ribed by a K−dimensionaldemand ve
tor Dij = (dij

1 , dij
2 , ...dij

k );
• ea
h virtual ma
hine has an asso
iated pro�t P ij ;
• M is the number of physi
al ma
hines;
• ea
h physi
al ma
hine is des
ribed by a K−dimensionalresour
e ve
tor, Rl = (rl

1, r
l
2, ..., r

l
k), 1 ≤ l ≤M ;
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• for ea
h i, we have Di1 ≤ Di2 ≤ ... ≤ Digi , 
oordinatewise, and P i1 ≤ P i2 ≤ ... ≤ P igi .The de
ision variables xij

m are de�ned as:
xij

m =







0 ma
hine ij is not on physi
al ma
hine m

1 ma
hine ij is on physi
al ma
hine m
(4.1)We want to 
hoose one and one only virtual ma
hine fromea
h group, and allo
ate it on a physi
al ma
hine, with the
onstraint that we 
annot ex
eed the available resour
es, max-imizing the total pro�t earned and minimizing the number ofphysi
al ma
hines that are used.To do so, we de�ne the variables ul as:

um =







0 if physi
al ma
hine m is not used
1 if physi
al ma
hine m is used (4.2)Our obje
tive fun
tion is:

P =
G

∑

i=1

gi
∑

j=1

M
∑

m=1

xij
mP ij − C ∗

M
∑

m=0

um (4.3)
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h is the total pro�t of the virtual ma
hines that are in-stantiated minus the number of physi
al ma
hines used timesa 
onvenient 
onstant C. We assume C as a 
onstant as theoperational 
osts for running the infrastru
ture (e.g. ele
tri
-ity 
osts, maintenan
e fees, 
o-lo
ation expenses) are usuallyproportional to the number of ma
hines 
omprising the infras-tru
ture: as we want to maximize their usage (by allowing fordi�erent servi
e levels) we also want not to use more than thestri
tly ne
essary.We extend the ≤ operator from s
alar to ve
tors in a 
oor-dinate wise fashion: if X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn)we say that X ≤ Y i� xi < yi for ea
h i s.t. 1 ≤ i ≤ n, so
onstraints are formally de�ned as:
∀i ,

M
∑

m=1

gi
∑

j=1

xij
m = 1 (4.4)

∀m ,
∑

i

∑

j

xij
mDij ≤ Rm (4.5)

∀m, i, j , um ≥ xij
m (4.6)Eq. 4.4 means that we 
hoose only one virtual ma
hine forea
h group, and eq. 4.5 means that, on ea
h physi
al ma
hine,we 
annot allo
ate more resour
es than available ones, while eq.
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m a

ording to def. 4.2 .4.1.1 Dis
ussion of formalizationThe key issue of the proposed formalization is that we assume a�xed number of available physi
al ma
hines, ea
h one with pre-de�ned asso
iated resour
es. We re
all that the mapping prob-lem arise when we have already solved a multi-tier performan
emodel, whi
h in turn requires to have, besides others, parame-ters as the servi
e average time that is determined, analyti
allyor by live system instrumentation, only after ea
h tier has been
hara
terized by its 
omputing power. Therefore, the only po-tentially limiting fa
tor for the proposed formalization is thatthe number of available physi
al ma
hines M is �xed, and it'spossibile that we would experien
e over-provisioning (we 
ouldbe able to solve the same mapping problem with lesser physi
alma
hine) or, on the 
ontrary, that we have too few ma
hines tosolve it.Determining the minimum value of M that leads to a solu-tion satisfying 
onstraint 
ould be quite 
hallenging. We observesome basi
 fa
ts.First, we 
an de�ne easily ne
essary but not su�
ient 
on-ditions that would help in de�ning an a

eptable value for M .
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h group of virtual ma
hines, we 
onsider that theresour
e ve
tors are non de
reasing ordered, i.e. that we have
Di1 ≤ Di2 ≤ Digi , for ea
h i. This means that, for ea
h group
i, we 
ould 
onsider Di1 as the minimum level of resour
es thatmust be instantiated by the pool of physi
al ma
hines. Now, ifthe sum of these Di1 ex
eeds, even for only one resour
e, thesum of available resour
es provided by the physi
al ma
hines(∑ Ri), a solution 
ould not exist.As an example, if we need to allo
ate four virtual ma
hines,ea
h one requiring 4 GiB of RAM, and we have 2 physi
al hostsof 5 GiB of RAM ea
h, we have less memory than needed, anda mapping 
annot be determined.This is a ne
essary but not su�
ient 
ondition: if, insteadof 2 physi
al hosts of 5 GiB, we have had 10 physi
al ma
hineswith 3 GiB of RAM ea
h, the grand total of available memorywould be of 30 GiB, but nevertheless a mapping 
ouldn't befound, as ea
h physi
al ma
hine is too small to a

ommodateeven just a single virtual ma
hine.Formally, we say that a solution does not exist if :

G
∑

i=1

Di1 >
M
∑

i=1

Ri (4.7)or
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∃i s.t. Di1 > Rj ∀j (4.8)so we 
ould start from a small set of physi
al ma
hines, verifyby eq. 4.7 and eq. 4.8 if a solution whether 
ould exist or not.If not, we in
rease the set of physi
al ma
hines: sooner or laterwe �nd a feasible set, and we 
ould try to map over it. If we �nda solution, we 
ould assume that this is the smallest availableset of required physi
al ma
hines.The proposed model allow for 
oexisten
e of quantitative re-sour
es (like CPU power or number of 
ores, memory size) andqualitative resour
es. As an example, we might want to deploythe multi-tier distributed system in two di�erent areas (two dif-ferent LANs, or two geographi
ally remote sites). To do so, weextend the quantitative model, by de�ning two new qualitativeresour
es, 
alled q1 and q2. Resour
e q1 means �allo
ation inthe �rst area�, whilst resour
e q2 means �allo
ation in the se
-ond area�. Re
all that ea
h tier is 
omprised of virtual ma
hinesof the same type, i.e. with the same resour
e demand ve
tor: weextend this ve
tor to a

ommodate for the new resour
es, andwe put q1 = 1 for the �rst half of nodes of the tier, and q2 = 1for the se
ond half, meaning we want half nodes in the �rst areaand half nodes in the se
ond area. Lastly, for the physi
al ma-
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hines lo
ated in the �rst area, we put the provided resour
e
q1 = M/2 and the provided resour
e q2 = 0, and the 
onversefor the physi
al ma
hines lo
ated in the se
ond area.As a result, ea
h solution of the mapping problem will maphalf nodes of ea
h tier (ones for whi
h q1 = 1) on the physi-
al ma
hines lo
ated in the �rst area, and remaining nodes onphysi
al ma
hines lo
ated in the se
ond area, thus giving us ageographi
al distribution of the system.This approa
h 
ould be applied for other qualitative resour
esas better 
onne
tion to storage area networks, software li
ensesrestri
tions, hardware support for virtualization and so on.4.2 The mapping problem as a gener-alization of the knapsa
k problemThe mapping problem is a generalization of the well knownknapsa
k problem [75℄.The generalization stems from these 
onsiderations:
• the knapsa
k problem is mono-dimensional, whilst the map-ping problem is multi-dimensional;
• the knapsa
k problem is with only one knapsa
k (physi
al
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hine), whilst the mapping problem deals with multipleknapsa
ks (physi
al ma
hines);
• the knapsa
k problem doesn't group items (virtual ma-
hines), the mapping problem does.To the best of our knowledge, there are no published studies(in the �eld of 
omputing performan
e modeling or operationalresear
h) that ta
kle all these generalizations together.Multi-dimensional knapsa
ks, 
alled MDKP, are dis
ussed in[41, 48℄. Multi-knapsa
ks problems are studied in [60, 53, 46℄.Multiple-
hoi
e knapsa
ks, problems where items are groupedtogether, are 
alled MCKP and a minimal algorithm to solvethem is shown in [85℄. In [104℄ the algorithm is used in the
ontext of QoS for web servi
es.Some interse
tions have been evaluated: MMKP are multiple-
hoi
e, multiple-dimensional knapsa
k problems, and heuristi
sto solve them are dis
ussed in [32, 65, 33, 66℄The only referen
e we have found to a multi-dimensional,multiple-
hoi
e, multiple knapsa
ks problem, that hen
eforthwe 
all MMMKP problem, is in [94℄, but only as a de�nition.The 
ontext there was the de�nition of an admission 
ontrol sys-tem for multimedia servers, but in that 
ase the only arbitratedresour
e was Internet bandwidth.
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hine for ea
h group, i.e. gi = 1 ∀i. Althoughthe performan
e models �nd an estimation of the number of re-quired nodes for ea
h tier, they usually assume that workloadwould not experien
e transient surges. To try to a

ommodatefor peaks in workload intensity, we 
ould over-provision the ar-
hite
ture: it wouldn't 
hange the tier's size or the ar
hite
-ture, but it will improve e�
ien
y in resour
es using. This iseven more realisti
 if the provider and the owner of the multi-tier system belong to the same organization, as in this s
enariothe solution of the mapping problem is the minimum requiredlevel of servi
e, while every extra 
omputing power put in use(and therefore not wasted) will be appre
iated. The MMKP,as stated, is studied in the s
ienti�
 literature, so we 
hoose to
on
entrate on its MMMKP generalization, as the algorithms wedevise to solve it are equally appli
able to the MMKP problem.Another point is that being the number M �xed or not willlead us to di�erent problems: if M is �xed, we have a knapsa
kproblem, otherwise we have a multiple-dimensional, multiple-
hoi
e bin pa
king problem, a generalization of the bin pa
kingproblem that has the same popularity of the MMMKP in theliterature, being almost unknown (a survey of bin pa
king prob-lems is [50℄). To maintain our pragmati
 approa
h, we prefer to
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hes we will develop to solveit 
ould be easily applied to a generalization of the bin pa
kingproblem.Last, we assume that the hypervisor te
hnology that weadopt to manage the virtual ma
hines su�ers of no or little in-terferen
e, meaning that is 
apable of perform a robust and fair(physi
al) resour
es sharing. If this is not the 
ase, the mappingproblem 
ould be more easily de�ned as a generalization of theGeneralized Assignment Problem ([51℄).4.3 Computational 
omplexity of themapping problemIt's easy to show that ea
h 
lassi
al knapsa
k problem 
ould beformulated as a MMMKP.First, we 
an generalize a mono-dimensional knapsa
k prob-lem to a multi-dimensional by substitution of ea
h item weight
Wi and knapsa
k 
apa
ity C (both s
alar) with respe
tively ve
-tor Wi = (Wi, 0, ..., 0) and C′ = (C, 0, ..., 0). Then we 
an addmore dummy knapsa
ks to have a multiple knapsa
ks general-ization, and these knapsa
ks are des
ribed via 
apa
ity ve
tors
C′′ = (0, 0, ..., 0), C′′′ = (0, 0, ..., 0). Generalization to have a
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hoi
e problem 
ould be obtained if, for ea
h item de-s
ribed via a Wi ve
tor, we de�ne a group, with the �rst element,
W 0

i = (0, 0, ..., 0) and the se
ond element W 1
i = Wi. Pro�t for

W 0
i is 0, and pro�t for W 1

i is the pro�t asso
iated with theoriginal item i in the knapsa
k problem.As a result, be
ause the knapsa
k problem is NP-hard [75℄,we get that MMMKP is NP-hard.A knapsa
k problem with N items has a solution spa
e ofthe size Θ(2N ) as the de
isional variables asso
iated with ea
hitem are expressed as xi = 1 if we 
hoose the item or xi = 0otherwise.In the MMMKP, we observe that we 
hoose one only vir-tual ma
hine from ea
h group, and the 
hosen one is mappedover only one of the available M physi
al ma
hine. So, for agroup made up of gi elements, we have gi ∗M di�erent de
isionvariables, of whi
h only one will be set to 1.For all the groups, this leads to a solution spa
e size of Θ(g1∗

M ∗ g2 ∗M ∗ ... ∗ gG ∗M) = Θ(
∏

gi ∗M
G), where we have the Θnotation as the mappings are not independent from ea
h other(when one virtual ma
hine is mapped over a physi
al ma
hine,there are less available physi
al resour
es).To 
omplete analysis, if we assume that gi = k for ea
h i,the solution spa
e size is Θ(kG ∗MG). For M = 1 and k = 2,
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e size of a 
lassi
al knapsa
k problem.4.4 Optimal solution of the mappingproblemA naive approa
h to �nd the optimal solution of the mappingproblem will 
onsist of enumerating all the 
ombinations of thede
ision variables: for ea
h 
ombination we �rst 
he
k if the
onstraints are not violated; for all the feasible 
ombinations theasso
iated pro�t P is 
ompared against the previous maximum:if it's bigger the 
urrent 
on�guration of the de
isional variablesis 
onsidered the best solution found insofar.The enumeration will keep 
are of guarantee for the 
on-straints 4.4, as for ea
h group it 
onsider only all the a

eptable
ombinations that are, as seen in paragraph 4.3, in number of
gi ∗M . For ea
h one of these 
ombination for the �rst group,the 
ombination of the se
ond group are evaluated, and for ea
h
ombination of these, the 
ombination of the third group areevaluated and so on in an iterative way.The enumeration tuples we produ
e in this approa
h 
ouldbe represented in a hierar
hi
al way, putting them in a de
isiontree (see �gure 4.1).
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x(1,1)=1                

Root

x(2,1)=2x(2,1)=1   x(2,1)=2x(2,1)=1

x(1,1)=2 x(1,2)=1

Figure 4.1: A partial de
ision tree for a MMMKP problem.In the double 
he
ked leaf, set de
isional variables are x11
1 =

2, x21
1 = 1.Ea
h node of the tree 
ontains the values of the de
isionalvariables that have already been 
hosen, while the leafs 
ontainthe values of the de
isional variables that are under evaluation.Evaluation 
onsists of two phases. In the �rst phase we 
he
kif, for the (partial) solution whi
h is des
ribed by the nodes inthe path from the 
urrent leaf to the root of the tree, some ofthe 
onstraints are violated. If so, there is no need to furtherdevelop the tree, be
ause the 
urrent node and all its des
en-dants will violate the 
onstraints. The node is then marked andwe move on to evaluation of another node. Se
ond phase ofthe evaluation is the generation of all the possible des
endants,that are proposed assignments for the de
isional variables of the
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isional variables for the i-th group). If there are no leafs to beevaluated, the enumeration pro
ess is done, and we have found(one of) the optimal solution for the problem.This algorithm uses a simple method to 
ut the developingof the tree, that 
ould be improved implementing a bran
h andbound te
hnique.To do so, we 
onsider a linear relaxation of original problem,where the 
onstraints 4.4 and 4.5 are relaxed by these:
gi

∑

j=1

xij
m = 1, ∀m (4.9)

∑

xij
mDij ≤ Rm, ∀m (4.10)where de
isional variables xij

m are real numbers in the range
[0..1].For ea
h leaf of the de
ision tree, we have some of thesevariables that are �xed, and others that are free. We �nd theoptimal solution that maximizes 4.3 via the Simplex Method.This solution is an upper bound of the solution for the origi-nal (integer) problem, be
ause allowing for de
isional variablesto take fra
tional values potentially lead to a better use of theavailable knapsa
ks 
apa
ities. This upper bound will be evalu-
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urrent optimal found for the integer problem,and the 
orresponding sub-tree will no further expanded if theupper bound is less than the optimal found insofar. Otherwise,the sub-tree is promising, and we 
ould a�ord to expand it.The Simplex Method 
ould grow exponentially in the time ittakes to �nd an optimal solution for a given set of free variables,and the number of trees to be expanded and evaluated will beexponential in the number of de
isional variables. This 
on�rmsthat the MMMKP problem is an NP-hard problem, and that anoptimal solution 
ouldn't sear
hed but for problems of limitedsize.4.5 Approximate solutions for the map-ping problemAs the mapping problem is NP-hard, we are for
ed to developalgorithms to �nd approximate solutions of it. We both devel-oped an heuristi
 to deal with it [44℄ and a geneti
 algorithm[45℄.
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king oriented heuristi
As dis
ussed, the MMMKP problem is very similar to the binpa
king problem, so we 
ould de�ne some heuristi
s that resem-ble the ones used for the bin pa
king problem. In all of theproposed heuristi
s, we start sear
hing for a basi
 solution, thatlater we try to improve.A basi
 solution is when we 
onsider, for ea
h group i, onlythe item i1 - with asso
iated resour
e demand ve
tor Di1 - tobe mapped: we start solving the mapping problem by redu
ingit to a multi-dimensional multi-knapsa
k problem. If we �nda solution for it, we try to improve the solution, 
onsidering ifwe 
ould map Di(j+1) instead of the 
urrently Dij in solution.In the following, we adopt naming 
onventions from operationalresear
h, so item ij, will be indi
ateb by its size Dij .Next Fit For ea
h item Di1 we sear
h for a knapsa
k withsu�
ient available spa
e. If there is one, we put Di1 into it, andwe 
orrespondingly redu
e the available spa
e. We start with allthe knapsa
ks open, and we 
lose one when the available spa
eis insu�
ient for the Di1 item. When a knapsa
k is 
losed, weno further inspe
t it to see if has su�
ient available spa
e foran item. We have a basi
 solution if ea
h Di1 item has beenput into a knapsa
k (some knapsa
ks will be open, other 
losed,
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k 
ompletely unused),otherwise the heuristi
 fails.First Fit In the First Fit heuristi
, we sear
h for a destinationof the item Di1 by inspe
ting all available knapsa
ks, i.e. we nolonger have open or 
losed knapsa
ks. We �nd a basi
 solutionin the same sense of Next Fit, i.e. when ea
h item Di1 has beenput into a knapsa
k.Best Fit The Best Fit heuristi
 sear
hes between all the avail-able knapsa
ks the best where to put the item Dij , usuallyde�ning best with a metri
 that tries to minimize the unusedresour
es. A monodimensional example is where we have twoknapsa
k, with available spa
e respe
tively R1 = 3 and R2 = 4and we need to insert the item i1 su
h thatDi1 = 3. Both knap-sa
ks 
ould host it, but the heuristi
 
hoose the �rst, to make it
ompletely used and leave a little unused 
apa
ity in the se
ond.In a multi-dimensional bin-pa
king problem, ties are resolved infavor of lower (resour
e) index ore more 
omplex evaluation ofrelative s
ar
ity of ea
h resour
e, as we'll do. We �nd a basi
solution in the same sense of Next Fit, i.e. when ea
h item Dijhas been put into a knapsa
k.
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 solution We improve the solution foundinsofar in an iterative way.At the generi
 step, we have 
hosen a spe
i�
 item fromea
h group. Assume that for the group i we have item j 
hosenon ma
hine m, i.e. xij
m = 1 and x

i(j+1)
m = 0. If j = gi wealready have the most pro�table item from group i so we moveon another group to 
he
k for possible in
reases.Otherwise, we 
ould remove item j from group i from solu-tion, releasing asso
iated resour
es on knapsa
k m, and we seeif and where we 
ould put in solution item j + 1 of the samegroup. This requires 
onsidering all available knapsa
ks, �ndingthe most suitable one to 
ontain su
h item. If a generi
 knap-sa
k k as enough free resour
es for the item, we evaluate thegoodness of the mapping by this formula:

Goodness(i, k) =
‖R‖

P i(j+1) − P ij − (1− uk) ∗ C
(4.11)In eq. 4.11:

• the numerator is the ve
tor norm of the residual amount ofresour
es available on knapsa
k k after we put item i(j+1)in it;
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• the denominator is the in
rease in pro�t we have (P i(j+1)−

P ij) minus the possibility that we may end up using aknapsa
k k that was not yet used (1− uk ∗ C);Eq. 4.11 makes sense only if the denominator is bigger than zero,i.e. only if we have some pro�t gain. In ea
h phase of the im-provement pro
ess, we 
al
ulate Goodness(i, k) for ea
h a

ept-able value of i (groups with more valuable items) and k (knap-sa
ks with available resour
es). Lowest values of Goodness(i, k)are better, so we 
hoose the minimum positive one, and we per-form the ne
essary 
orre
tions on the solution we are workingon (i.e., we set xij
m = 0 and x

i(j+1)
k = 1). We repeat this pro
essas long as we have made improvements on the 
urrent solution.Ea
h pass has a 
omputational 
omplexity of θ(G ∗M).Randomization of data The proposed heuristi
s are stronglybased on the order by whi
h groups and knapsa
ks are de�ned.We 
annot stipulate that it exists an order of these variable su
hthat the proposed heuristi
 
ould always �nd the optimal solu-tion, but we are 
on�dent that if we permute the groups and thema
hines before a
tually building up a basi
 solution we 
ouldin
rease the �nal pro�t as a result of the appli
ation of the basi
heuristi
s shown before. We observe that there is not a general
riterion to dis
riminate between good permutations that lead
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ally rare, unless that P=NP.Other bin pa
king heuristi
s In most of the s
ienti�
 lit-erature for the bin-pa
king problem ([50℄) it is assumed thatall the resour
es are dimensionally homogeneous. As an exam-ple, if the problem is to put 
ans into a 
ontainer maximizingused spa
e, the 
ans 
ould be rotated, so elements of ve
tors
Dij 
ould be inter
hanged. This is not the 
ase of the mappingproblem. Also, heuristi
s are evaluated with a predeterminedset of elements, that are used as a 
omparative basis. Theseelements are de�ned as out
omes of some random variables, as-sumed independent of ea
h other, while in our problem this isgenerally not true, for two distin
t reasons. First, there is somedegree of intra-dependen
ies, i.e. if a virtual ma
hines requiresa lot of CPU power it will requires (on average) more memorythan a ma
hine that requires less CPU power. Se
ond, there isa degree of inter-dependen
ies, as all ma
hines belonging to thesame tier will share their resour
e demand ve
tor.4.5.2 A geneti
 algorithmA geneti
 algorithm 
ould be seen as an intelligent probabilisti
sear
h in the spa
e of solutions for an hard problem.
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algorithms is derived from the evolutionary biology, where in-dividuals stem from a population by a re
ombination of geneti

hara
teristi
s of their parents, plus a small probability of somerandom geneti
 mutation. Some mutations are for the better,giving the individual an higher 
han
e to be
ome a parent of anew individual (that 
ould inherit this advantageous mutation),other mutations are for the worst, and the individual 
arryingthem will have a smaller 
han
e to be
ome parent.Geneti
 algorithms have been widely 
onsidered as an op-timization strategy for hard optimization problems, where it'seasy to �nd some solutions but it's very di�
ult to �nd the op-timal, as these initial solutions 
ould be the initial populationfrom whi
h start the sear
h for the optimal one.In the �eld of integer programming, the mapping betweenan individual and a solution is usually really simple, as he i-th
hromosome of the individual is 0 (or 1) if and only if the i-thde
ision variable of the portrayed solution is 0 (or 1). Althoughmore 
omplex representations are possible [52℄ we 
hoose to sti
kwith this.Geneti
 algorithm are not a free lun
h in the �eld of opti-mization when they are applied to a 
onstrained optimizationproblem, as the result of re
ombination and mutation of two fea-
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ould not be feasible. The mapping problem is parti
ularly 
om-plex from this point of view. In fa
t we have two di�erent set of
onstraints, the �rst that requires we 
hoose only one elementfrom ea
h group, the other that we don't over�ll a knapsa
k.As these two set of 
onstraints must be enfor
ed together, we
annot adapt a simple 'repair' operator to deal with unfeasibleindividual (i.e., individual representing unfeasible solutions), ashas been done in [48℄ where, should a knapsa
k be over�lled,elements are removed from it until the violation is �xed: we
annot do that as we must allo
ate exa
tly one element fromea
h group. The approa
h we have adopted is to 
onsider our
onstraints as belonging to two di�erent sets: easy and hard.An easy 
onstraint is a 
onstraint that, should an individualviolate it, we 
ould easily �x, while hard 
onstraints require a
omplementary approa
h, based on the use of penalty fun
tion.Formally speaking, if we have this optimization problem:


















max f(x)x ∈ Ex ∈ H

(4.12)where E and H represents respe
tively easy and hard 
on-
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





max f(x)− p(d(x, H))x ∈ E
(4.13)where d(x, H) is a metri
 fun
tion des
ribing the distan
eof solution x from the set H of feasible solutions, and p(·) isa monotoni
ally non-de
reasing fun
tion su
h that p(0) = 0.Penalty fun
tions are surveyed in [34℄. For our model, 
onstraint4.4 is easy, so we de�ne a repair operator for individuals thatviolate it, while 
onstraint 4.5 is hard, and it will be handledvia a penalty fun
tion.Outline Our geneti
 algorithm starts with a population thatis made up of individuals representing basi
 solution for theproblem, i.e. solutions where only the lowest SLA of ea
h virtualma
hine has been 
hosen to be allo
ated. We generate thesesolutions by using the �rst-�t, best-�t and next-�t heuristi
 fromthe bin-pa
king problem, with a randomization of the data togenerate initial di�erent solutions.We must take 
are that we don't insert into the populationan element that is already in, to avoid that we unne
essarilyredu
e the initial population size. After this initialization step,
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ess, ea
h 
y
le of it 
alled a generation,where we:1. Choose the two parents of the new individual, by a tour-nament pro
ess;2. Create the new individual by a 
rossover operator;3. Mutate some variables of the new individual with a mu-tation operator;4. Cal
ulate the �tness of the individual, taking 
are of un-feasibility due to over�lling;5. Fix the easy 
onstraint with the repair operator;6. Insert this individual into the population, and remove theindividual with the lowest �tness.These steps are all tunable by some parameters, resulting indi�erent instan
es of the same geneti
 algorithm. We dis
ussea
h of these steps in the following paragraphs.Tournament Pro
ess To 
hoose the two parents that willgenerate a new individual, we randomly de�ne two di�erentpools of all di�erent elements from the population. From ea
hpool, we 
hoose the element with the highest �tness as one of
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rease the 
ompetitivepressure.Crossover Operator After the sele
tion of the two parents,the new individual will be de�ned as the 
rossover of them. In-stead of adopting a random 
rossover we do an uniform 
rossover[37℄, where the probability that the i-th variable of the new in-dividual is equal to the i-th variable of the �rst or se
ond parentis proportional to the �tness of the �rst or se
ond parent.Mutation Operator Mutation rate is �xed. A more 
omplexapproa
h would be a dynami
 mutation rate, with an higher ratefor the initial generations (when we are probably away fromthe optimal solution, so we 
an 
hange a lot of variables) anda lower rate as the generations pass away. This is a 
riti
alparameter, as an high rate 
ould destroy the stability of thegeneti
 algorithm, and a low rate 
ould end up in being trappedin a lo
al minimum.Fitness and penalty fun
tion At a �rst glan
e, one shouldbe tempted to 
onsider the obje
tive fun
tion 4.3 as the �tnessfun
tion, but this will result in even 
ompletely di�erent indi-viduals with the same �tness, when we want to di�erentiate as
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h as possible in order to pi
k up, from the tournament pro-
ess, the potentially best individuals by looking at their �tnessand not only by 
han
e.We have also to in
lude the penalty fun
tion in the �tness
omputation, so we are already 
onsidering a di�erent problemthan the original one, but we must de�ne the �tness fun
tionso individuals with better values of the �tness are, on average,better solutions for the original problem.We observe that, if we have two di�erent and feasible so-lutions x and x′ with the same value of the obje
tive fun
tion4.3 and the same number of physi
al hosts used, we 
an stillsay that x is better than x′ if x pa
ks more virtual ma
hines inthe same physi
al host, while x′ allo
ate virtual ma
hines moreevenly; this be
ause it's more probable that, from the solution
x, we have more unused resour
es in some physi
al hosts and we
an use these resour
es to allo
ate some others virtual ma
hines,without 
hanging the number of physi
al hosts used; while forsolution x′ unused resour
es are not aggregated together. For-mally speaking, for a solution x of the formal problem, we de�nethe relative amount of unused resour
es for ea
h physi
al hostsas:
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relmk =

rm
k −

∑G

i=1

∑gi

j=1 xij
k ∗ dij

k

rm
k

(4.14)From this de�nition, we have that relmk is not negative whenthe knapsa
k l has some unused resour
e k, and it's less thanzero when we have over�lled it with respe
t to that resour
e. We
an leverage on this property of relmk using it both for rewardingfeasible individuals and for penalizing unfeasible individuals.To do so, we need also to de�ne the portion of the pro�t ona per physi
al hosts basis, i.e. the pro�t we earn for the virtualma
hines allo
ated on a spe
i�
 physi
al hosts:
Gain(m) =

∑

xij
m ∗ P ij (4.15)we need this value to deal with the unfeasibility that arises af-ter over�lling a physi
al host: in su
h a 
ase, we 
annot saywhi
h virtual ma
hines is 'guilty', and we have to de
rease thetotal pro�t for the portion of the pro�t we earn from all thevirtual ma
hines allo
ated over this over�lled physi
al host (theinability to say whi
h virtual ma
hines is guilty is what makesdi�
ult to de�ne a repair operator and for
es use to sear
h asuitable penalty fun
tion).Conversely, when the host is not over�lled, we 
ould in
rease
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es are relatively free (hosts byhosts), the more we in
rease the �tness. Putting all together,we de�ne the �tness fun
tion as:
F (x) = P (x) +

K
∑

i=1

M
∑

m=1

Gain(m) ∗
α

K
∗ relmk (4.16)The quantity α is used as a stati
 multiplier: if α

K
we rewardand penalize individuals more aggressively.The Repair Operator We de�ne a repair operator to ensurethat eq. 4.4 holds for ea
h individual. This equation requiresthat, for ea
h group i, we have exa
tly one element set to 1, allothers being 0. We 
ould express in a di�erent way by statingthat, for ea
h group i: 1) there is at least an element di�erentthan 0; 2) there is no more than one element di�erent than0. By su
h separation, we 
an de�ne two spe
ialized operators.Ea
h individual is an ordered 
olle
tion of groups, and eq. 4.4
ould hold for some groups and not for others. So we s
an allthe groups 
omprising the individual to 
he
k for property 1, wesomehow �x the groups that don't verify it, and then we res
anall the groups to 
he
k and possibly �x for property 2.To des
ribe the pro
ess, 
onsider an individual made up of3 groups (whi
h means that we are sear
hing for the optimal al-
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X X

X XFigure 4.2: An individual for a problem with 3 groups. Ea
h Xmarks a variable set to 1.lo
ation of 3 virtual ma
hines) where �rst group has no elementset to 1, and se
ond and third group both have 2 elements setto 1 (see �gure 4.2 for a pi
torial representation).To ensure that ea
h group has at least one non-zero element,we need to �x the �rst group. We 
ould this randomly, by
hoosing one element of the �rst group and setting it to 1, or we
ould start a neighborhood sear
h. In this sear
h, we generate
g1 new individuals, ea
h one of them 
ompletely equal to theindividual we are �xing, but with the i-th variable of the �rstgroup set to 1. (see �gure 4.3).For ea
h of these individuals, we evaluate the �tness (our�tness fun
tion takes 
are of unfeasibility, so we 
an safely useit) and we 
hoose the individual with the highest �tness as therepaired individual. If we have more than one group that needsthis �xing, we perform it in an iterative way, group after group.
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X X

X X

XX

X X X X XX

X

X XX XX XFigure 4.3: Fixing the �rst group with di�erent individuals.Now we have to ensure that ea
h group has no more thanone non-zero element, so we need to �x the se
ond group. Wegenerate two individuals, where the i-th individual has set to 1only the i-th non-zero variable of the se
ond group, and againwe 
hoose the best among them. Then we repeat the pro
essfor the third group (see �gure 4.4).We stress that, when we 
reate the neighborhood list, wehave partially unfeasible individuals in it, but we 
an 
ope withthis as the �tness fun
tion is robust enough. We 
ould havebeen put in pla
e a more 
omplex resear
h when we 
onsider allthe possible 
ombinations (see �gure 4.5), but we have 
hosennot to do this for this version of the geneti
 algorithm, as ef-�
ien
y should be 
arefully evaluated, espe
ially for the size of
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X

X X

X X

X X
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5Simulations resultsIn this 
hapter we analyze the performan
es of the heuristi
s andthe geneti
 algorithm we have proposed in Chapter 4, 
onsider-ing four di�erent problem sets. In the �eld of the operationalresear
h and integer programming, there are some datasets forthe most 
lassi
al problems that one 
ould use to test againsta new algorithm, so it's possible to 
ompare the relative per-forman
es between di�erent resear
hers. At the time being, wedon't have the same for virtualized ar
hite
tures, and we wereunable to �nd publi
ly known data depi
ting a distributed sys-tem that has been virtualized: we were for
ed to 
onsider some-113



5. SIMULATIONS RESULTS 114what arbitrary models of distributed systems, and we are alsoaware that the performan
es of our solvers (parti
ularly for thegeneti
 algorithm) 
annot be fully understood and determinedwithout knowing the 
lass and the stru
ture of the problems.From an implementation stand-point, all the programs wehave made are written in C, and they extensively use the GNUS
ienti�
 Library (GSL) [7℄ as we need to to deal with randomnumbers. We don't stress too mu
h in the sense of their e�-
ien
y, as we are more interested in their robustness: neverthe-less, ea
h dataset is solved within few minutes, on a 
ommodity
omputer.5.1 Implementation of the bin pa
kingheuristi
sAll the proposed bin pa
king heuristi
s �nd a basi
 solution,whi
h is a solution when only the lowest SLA of ea
h virtual ma-
hine is instantiated over a physi
al host. We de�ne mapping[i]has su
h physi
al host, so if we have mapping[i] = j we have,in our formal model, that xj
i1 = 1. We have implemented theNext Fit, First Fit and Basi
 Fit bin pa
king heuristi
s.



5. SIMULATIONS RESULTS 115Next Fit In the Next Fit (algorithm 1) we start 
onsideringall physi
al host as initially available (open). Then, for ea
hvirtual ma
hine, we 
onsider ea
h open physi
al host: if it 
ould
ontain the virtual ma
hine, we put the latter in the former,thus redu
ing the available resour
es, and setting mapping[i]properly; otherwise, we 
lose the physi
al host, so we'll no longer
onsider it in further iterations. These 
losings redu
e the setof available physi
al host over iterations. It's easy to show that
omputational 
omplexity of this heuristi
 is Θ(G ∗M).First Fit In the �rst �t (algorithm 2), we 
onsider all physi
alhosts as possible destinations for the lowest SLA of ea
h virtualma
hine, in a stri
t order starting from the �rst physi
al hostand then moving on. The �rst host we �nd that has su�
ientavailable resour
es, will be the 
hosen host. As in the Next Fit,
omputational 
omplexity is Θ(G ∗M).Best Fit In the Best Fit heuristi
 (algorithm 3), we have �rstto de�ne whi
h resour
es of the K we have in our model isthe s
ar
est. The s
ar
est resour
e is the one where the ratiobetween the grand total of it, as provided by the physi
al hosts,and the grand total of requested by the lowest SLA of all virtualma
hines, is lowest. The s
ar
est resour
e r is the resour
e



5. SIMULATIONS RESULTS 116Algorithm 1 Next Fit Algorithmfor i = 1 to M do
open[i]← trueend forfor i = 1 to G do
mapping[i]← −1end forfor ea
h virtual ma
hine i dofor ea
h host j doif open[j] thenif host j has su�
ient resour
es for lowest SLA of vir-tual ma
hine i then

mapping[i]← jredu
e available resour
es for host jmove to next value of ielse
open[j]← falseend ifend ifend forend forif ∃i s. t. mapping[i] = −1 thenprint Unable to �nd a basi
 solutionend if
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Algorithm 2 First Fit Algorithmfor i = 1 to G do

mapping[i]← −1end forfor ea
h virtual ma
hine i dofor ea
h host j doif host j has su�
ient resour
es for lowest SLA of virtualma
hine i then
mapping[i]← jredu
e available resour
es for host jmove to next value of iend ifend for host jend for virtual ma
hine iif ∃i s. t. mapping[i] = −1 thenprint Unable to �nd a basi
 solutionend if
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h should drive our mapping pro
ess, as there is not so mu
hof it.After this determination, for the lowest SLA of ea
h virtualma
hine, we �rst determine the set of physi
al hosts that havesu�
ient available resour
es (de�ning has_space[j] = true ifhost j has this property). From all these hosts, we asso
iatethe virtual ma
hine and the best host. The best host is thehost where mapping of the virtual ma
hine will result in theminimization of the residual resour
e r. This heuristi
 has a
omputational 
omplexity of Θ(G ∗M) but the hidden propor-tionality fa
tor is the highest.Randomization of data The three heuristi
s pro
ess datain a stri
t order, while the mapping problem does not 
hangeif data are reordered (as an example, by swapping elements ofgroup i with elements of group j). So we de
ide to allow for apermutation of the D ve
tor (and the asso
iated P ) ve
tor. Per-mutation is de�ned randomly by using the gsl_ran_shuffle()fun
tion of the GSL library.The random number generator used is the Mersenne Twister[77℄ implemented by GSL, and we 
onsider 10,000 runs of ea
hof the heuristi
s, ea
h time 
hanging the random number seed.For ea
h of these runs, we improve the solution by the heuristi
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Algorithm 3 Best Fit Algorithmfor i = 1 to G do

mapping[i]← −1end forfor ea
h virtual ma
hine i dofor ea
h hosts j do
has_space[j]← falseend forfor ea
h host j doif host j has su�
ient resour
es for lowest SLA of virtualma
hine i then

has_space[j]← trueend ifend forfor ea
h host j s.t. has_space[j] is true do
hoose the best host, bredu
e available resour
es for host b
mapping[i]← bend forend forif ∃i s. t. mapping[i] = −1 thenprint Unable to �nd a basi
 solutionend if
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ussed before.5.2 Implementation of the geneti
 al-gorithmAs is for ea
h geneti
 algorithm, the tuning of the parametersis parti
ularly 
omplex, and more an art than a s
ien
e. Webelieve that we 
annot �nd the best parameters without a deepunderstanding and analysis of real models; as our models aresomewhat arbitrary, we 
hoose to make the more simplisti
 as-sumptions:1. The size of the tournament pro
ess is 5, so we draw apool of all di�erent 5 individuals to �nd ea
h parent: thismeans a very high 
ompetitive pressure (usually ea
h poolis made up of 2 individuals);2. The mutation rate is proportional to 3 times the numberof de
isional variables set to 1, and it's �xed all along thesimulation. It's a rather high value;3. The value of α from eq. 4.16 is set to 2.4; being K = 2this means that the multiplier α
K

is bigger than 1;



5. SIMULATIONS RESULTS 1214. The initial population 
onsists of 300 individuals, 100 forea
h of the bin-pa
king basi
 heuristi
s seen before; aswe remove the individual with the lowest �tness at ea
hgeneration, the population size remains stable throughoutthe simulation;5. We run the geneti
 algorithm for 2,000 generations.5.3 Models datasetWe 
onsider two models to test the heuristi
, plus two di�erentmodels to test the geneti
 algorithm. For all but the smallest ofthem, the time it takes to �nd the optimal solutions via a toollike GLPK [6℄ is so long that we didn't see the linear program-ming solver 
oming to an end.Tables 5.1 and 5.2 show the 
hara
terization for the �rst andse
ond model, the ones on whi
h the heuristi
 is tested. Bothmodels depi
t a three-tier; as an example for the �rst model(table 5.1) the �rst tier (the web tier) is made up of 2 nodes,ea
h one having three di�erent servi
es of levels: the lowest levelof servi
e requires 1 CPU 
ore, 2 GiB of RAM and gives a pro�tof 2 units, where the intermediate level requires 2 CPU 
ores and4 GiB of RAM, and the pro�t goes up to 4. The highest level



5. SIMULATIONS RESULTS 122returns us a pro�t of 8, but it requires 3 CPU 
ores and 4 GiBof RAM. All the fourth models are 2-dimensional, as it will bedi�
ult to �nd reasonable 
hara
terization of other resour
es.Table 5.3 reports the grand total of physi
al resour
es for allthe four models. Note that not all hosts are equal in the amountof resour
es they provide.Although the se
ond model is not so mu
h bigger than the�rst, the in
rease in its size (both in virtual ma
hines number,SLAs and number of physi
al hosts available) makes di�
ult to�nd the optimal solution: the linear programming solver takessome se
onds to �nd the optimal solution for the �rst model,while on the se
ond we have only the range where the pro�t ofthe optimal solution lies after hours of 
omputation (on an IntelXeon 1.86 GHz).So, while in table 5.4 we 
ompare the pro�t for the optimalsolution and the best pro�t found by the heuristi
, on table 5.5we 
annot do better than 
ompare the range of pro�t with thebest pro�t found by the heuristi
. We 
onsider, for this twodi�erent models, di�erent values of C.There is a 
ommon result we 
an see: for small value of C theheuristi
 performs extremely well, being 
apable to �nd the op-timal solution or a solution really 
lose to it. When C in
reases,the heuristi
 is no more able to �nd an optimal solution. This



5. SIMULATIONS RESULTS 123Tier Size CPU 
ores RAM (GiB) Pro�tWeb 2 1/2/3 2/4/4 2/4/8Appli
ation 6 2/2 2/4 2/6Database 2 2/4 2/4 2/4Table 5.1: First model SLAs and pro�ts.Tier Size CPU 
ores RAM (GiB) Pro�tWeb 2 1/2/4 2/4/6 2/4/8Appli
ation 6 2/4/4 2/4/6 2/4/6Database 2 2/2 4/6 2/6Table 5.2: Se
ond model SLAs and pro�ts.may indi
ate that the value of Goodness(i, k) as 
omputed byeq. 4.11 is too mu
h sensitive to the value of C.Tables 5.6 and 5.7 des
ribe the third and fourth model, in-puts for the geneti
 algorithm. These models have a stru
tureanalogue to the �rst two models, with some minor variations.In both 
ases, the value of C is set to 1.Table 5.8 reports the �tness of the best individual of theinitial population and the �tness of the best individual at theend of the simulation.The in
rease in individual's �tness is 
learly evident. On�gure 5.1 the average �tness of the population over the simula-
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ores RAM size (GiB)First 6 48 48Se
ond 8 64 88Third 8 64 88Fourth 12 96 192Table 5.3: Physi
al hosts 
hara
terizations for all models.C Optimal Heuristi
0 60 601 55 532 50 463 45 39Table 5.4: Comparisons of pro�ts for the optimal solution andthe approximate solution for the �rst model, for di�erent valuesof C.C Range of optimal pro�t Heuristi
s0 87÷ 96 841 79÷ 95 692 71÷ 93 543 63÷ 89 39Table 5.5: Se
ond model: range of pro�t and approximate solu-tion pro�t, for di�erent values of C.



5. SIMULATIONS RESULTS 125Tier Size CPU Cores RAM (GiB) Pro�tWeb 4 1/2/4 2/4/6 2/4/8Appli
ation 8 2/4/4 2/4/6 2/4/6Database 3 2/2 4/6 2/6Table 5.6: Third model SLAs and pro�ts.Tier Size CPU 
ores RAM (GIB) Pro�tWeb 6 1/2 2/4 2/4Appli
ation 12 1/4 2/4 2/4Database 4 2/2 4/6 2/6Table 5.7: Fourth model SLAs and pro�ts.Model Initial best �tness Final best �tnessThird 33 109Fourth 39 166Table 5.8: Initial and �nal �tness of best individual for thirdand fourth model, as seen by the geneti
 algorithm.
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6Con
lusionsIt is the fate of every voyager, when he has justdis
overed what obje
t in any pla
e is more parti
-ularly worthy of his attention, to be hurried from it.(Charles Darwin, Voyage of the Beagle)
Operating system level virtualization will be fundamental in de-signing and deploying 
omputing ar
hite
tures int the next fol-lowing years. 128



6. CONCLUSIONS 129The in
reasing 
on
erns for environment prote
tion and therising pri
es of ele
tri
ity are some of the drivers for maximize
omputing e�
ien
y. Virtualization will be helpful in a
hievingthese goals, and has also some more te
hnologi
al bene�ts, asit's 
apable of isolating systems to allow for better se
urity andmakes easier to implement disaster re
overy solutions.These key bene�ts are possible as virtualization is anotherlayer 
onne
ting to and interposing between hardware and op-erating system, thus hiding physi
al heterogeneity and bound-aries. As virtualization is progressively made in hardware, re-du
ing at a fra
tion the penalty due to the layer itself, its adop-tion will further in
rease, and this will in turn lead to a newgeneration of problems.These problems begins to appear in the �eld of autonomi
systems, where the ability to self-adapt the system to the 
hang-ing workload 
ondition is of the utmost importan
e, but other�elds with similar resour
es allo
ation problems are the emerg-ing 
loud 
omputing and, to some extent, the grid 
omputing.In this dissertation we have formalized the mapping problem,whi
h is a generalization of the 
lassi
al 0/1 knapsa
k problem,unknown before this work. The mapping problem requires to�nd, for a given set of virtual ma
hines, ea
h one 
hara
terizedby a multi-dimensional resour
e demand ve
tor, one physi
al



6. CONCLUSIONS 130ma
hine that has su�
ient resour
es to host it. Physi
al ma-
hines are from a given set, and are also 
hara
terized by ananalogous multi-dimensional ve
tor, des
ribing their allowableresour
es. Ea
h one of the virtual ma
hines has possibly somedi�erent servi
e levels, with in
reasing resour
es and in
reasingpro�ts that are earned when the allo
ation is made. The obje
-tive fun
tion is represented by a sum of pro�ts, that 
ould bemitigated by the number of physi
al ma
hines that are used.We have determined the 
omplexity of the mapping problem,showing that is a NP-hard problem, and we have proposed anheuristi
 and a geneti
 algorithm to deal with it.Both the proposed approa
hes have been valuable in �ndingan approximate solution for the mapping problem. We believethat they would both perform well and 
omplement ea
h otherin a real s
enario.Operating system level virtualization is, in some sense, anew territory to explore, that 
ould lead us to better, moree�
ient and more resilient distributed systems. Some of theassumptions we have made in the past about how to build amulti-tier distributed systems must be redis
ussed, and to do solimits and bene�ts of virtualization must be 
learly understood,properly formalized and methodologi
ally analyzed.This dissertation aims to be a �rst step in that dire
tion.
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