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Abstract

The penetration of mobile phones reached 50% of the worldwide population
in early 2008 [1]. In the US alone, this percentage will surge past 100% by
2013 [2]. Currently, most purchased mobile phones have enhanced application
capabilities and performances, regarding computational resources, connectiv-
ity and battery: these mobile devices are referred to smartphones, actually cell
phones with PDA functionalities which can host custom applications. Due to
those enriched capabilities, smartphones can collect large amounts of personal
information, which, if analyzed, could reveal important aspects of the owner’s
identity, such as the kind of relationship with his contacts.

In this work we address the problem of reconstructing the identity profile
of the owner, after a smartphone seizure, i.e., the social relationships which is
shared by her and her contacts. This goal is achieved by analyzing personal
data stored into the device’s internal memory, and by correlating it with the
Web publicly available information about the owner and her contacts. The re-
sulting social graph is further analyzed through spectral clustering algorithms,
in order to find communities of people sharing the same interests.

Each phase of the process is described, and the results obtained are shown.
In the interest of practical application, a workflow which disciplines several
stages of the profiling process is presented.
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1
Motivation

1.1 Introduction

The mobile phone can be considered the ultimate disruptive technology: in
fact, like telephony, radio, television, and the Internet, mobile phones are dra-
matically changing nearly every aspect of daily life, both inside businesses and
in the daily lives of individuals, providing more applications and collecting
more private data. The new smartphones (118 million in 2007, Canalys) are
mobile phones which have an outstanding computing capability, a sizeable
memory, a multi-connectivity (HDSPA, Bluetooth, IR, WLAN) and a multime-
dia recording system. Moreover, by running a complete operating system (OS)
software with a standardized interface and platform for application develop-
ers, such devices provide advanced features like e-mail and Internet capabili-
ties and a full keyboard. Such features, as well as the high portability of mobile
devices, give the owner the chance to carry a lot of personal data such as con-
tacts, call logs, messages, pictures, video, credit card and bank account codes.

Since these devices collect and store a large amount of personal data into
their memories, they can be used as evidence in investigations. Moreover,
personal data collected from their storage memories are the starting point to
reconstruct the identity of the owner. In this work we will use the following
definition for the Identity Profile concept:

An identity profile associated with an individual is given both
by the set of people she knows (the contacts) and by the type and
by the strength of the relationships that the individual has with her
contacts.
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Moreover, such a concept may be extended by the type and by the strength
of the relationships that the contacts share between them, introducing the pos-
sibility of grouping among them contacts who share similar interests.

1.2 Contributions

This thesis addresses the problem of reconstructing the identity profile of the
owner, after a smartphone seizure, by analyzing the personal data stored in
the device’s internal memory, and by correlating such information with the re-
lationships of the owner and her contacts available on the World Wide Web.
In order to achieve this objective, our work focuses on designing a workflow
which disciplines several stages of the process, starting with the seizure of
the device and ending with the identity profile. Such a workflow was imple-
mented in a software framework which can be used by forensic operators. In
particular our contributions cover the following areas:

1. Smartphone internal memory data seizure and acquisition: we studied
and developed an innovative approach to seize data from the device’s
internal memory.

2. Smartphone personal data decoding: we designed a data reverse engi-
neering methodology, which aims at collecting knowledge about the mo-
bile device’s internal database format, and facilitates the development of
format-specific parsers which are able to convert smartphone’s personal
data into a more suitable format.

3. Mobile identity profiling: we designed a process to analyze the smart-
phone’s personal data and to show which relationships exist between the
owner and its contacts, and, thanks to data collected by the Web search
engines, which interests are shared among the contacts.

In the following we will give a short motivation for each of the items above.

1.2.1 Smartphone internal memory data seizure and acquisi-
tion

The growing prominence of forensic sciences, in the investigation chain, has
led to the broad use of forensic tools to acquire mobile phone internal mem-
ory content, to provide evidence of a crime. However, as rule of thumb, the
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crime-scene usually offers many different mobile phone/smartphone models,
causing the forensic operators to be overwhelmed by using the one-on-one
connectors for every single mobile device. Obviously interoperability is not
assured for different manufacturer implementations and this leads to a great
unpredictability of the effectiveness of the tool on the crime scene. However,
the main disadvantage is the partial access of the file system, which relies on
the communication protocol. Due to the continuous upgrading of smartphone
hardware and software connection interfaces, a tool based on a protocol or
connected-via-cable approach could become obsolete in a very short time (less
than one year) if not upgraded frequently.

For this reason, we have designed an acquisition methodology which ex-
presses how to seize a device internal memory, and we developed a tool which
dumps the internal memory on a SD/MMC (Secure Digital / MultiMediaCard)
memory inserted in the available external slot, called MIAT1 (Mobile Internal
Acquisition Tool), making it unnecessary to connect the device to a PC.

1.2.2 Smartphone personal data decoding

After extracting a logical dump of the file system from the mobile device, we
need a method to decode and convert the personal data like contacts, messages,
logs, calendars, in a more suitable format. Regardless of the device’s manufac-
turer, model and OS version, we developed a methodology to support the data
reverse engineering on smartphone file systems. In such way the smartphone’s
DRE operators will be more flexible in the mobile file format knowledge and
they will be supported in developing software parsers for personal data of spe-
cific mobile devices and OS.

1.2.3 Mobile identity profiling

The final challenge addressed in this work is to analyze the personal data de-
coded from the mobile device, by building a model which connects the owner
with her contacts and by showing how strong such relationships are. This in-
formation is finally complemented with the personal information scattered on
the Internet. Nowadays, in fact, vast amount of personal data are left daily
on Web pages and are linkable to a person by the nearly-unique real-life iden-
tifiers like name-surname, or phone numbers or email addresses. Such pages
are crawled every day by most search engines and are available for querying

1For Symbian OS [3] and Windows Mobile [4]
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Figure 1.1: Social networks spread (october 2007).

by anyone. The causes of this data spreading may vary: before the advent of
Web 2.0 and of the user-generated content concept, the small amount of personal
data present could be published by the user on their web-sites, or by institu-
tions on their unprotected websites [5]. With the growth of Web 2.0 social net-
working communities such as Flickr, Facebook, LinkedIn, MySpace, YouTube
(see Figure 1.2.3), the users are called to contribute to the communities with
their personal assets: they are called to write their current activity, to tell which
users are real life friends, to send pictures and videos taken during their life,
and so on. Although Web 2.0 companies allow access to profile data only by its
owner and, if she agrees, by her friends, in some cases Web search engines are
granted access to a little portion of such data. This is justified by the fact that
search engines may increment the user visibility to real life friends who have
not an account on that community. This increments the chances of the word-of-
mouth marketing method to make new customers [6]. At the end of 2008, an
article appeared in the French magazine “Le Tigre” [7] showing that it is pos-
sible to piece together the life of a common person by collecting information
left on the Web. In such plethora of personal data it is possible to encounter
web pages which report two or more persons’ names and surnames, and by
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the topic of such web page it can be possible to outline the common ground
shared by such people: they could be colleagues, attend the same university or
cultivate the same hobbies.

By retrieving people’s public information on the World Wide Web, we com-
plete the information about relationships between the phone owner and his
contacts, and we are able to extend this investigation to the inter-contact rela-
tionships, in order to build a more complete social network. As the resulting
profile model is a graph, it lends itself very well to more accurate analysis. In
this work we propose two spectral clustering algorithms for finding commu-
nities of people in the graph.

1.3 Thesis Outline

This thesis is broadly organised in order of application. A detailed description
of each chapter follows below.

Chapter 2 is a survey on mobile phone technology and on the existing mobile
operating systems. This chapter also reviews the literature about exist-
ing approaches to the mobile forensics problem and resumes available
products.

Chapter 3 exposes the framework and the environment we developed in order
to implement the profiling workflow.

Chapter 4 describes technical aspects of the design of MIAT, the Mobile Inter-
nal Acquisition Tool, and discusses the results obtained from the compar-
ison with other products.

Chapter 5 proposes a wisdom-driven DRE methodological approach to de-
code smartphone’s personal data. The chapter also shows the results
obtained.

Chapter 6 presents the Mobile Identity Profiling (MIP) process, which is the
core concept of this work.

Chapter 7 summarises the findings of the thesis and considers directions for
future work, including ideas for extending the MIP process to multiple
device at a time and for automating the entire process through the remote
Forensic Farm.
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2
Background and Related Work

2.1 Introduction

This Chapter describes relevant background knowledge and related work for
readers to easily understand the analysis conducted in our work to be pre-
sented and discussed in Chapters 4, 5 and 6. This chapter will deal with two
different areas: mobile device forensics and identity profiling over the Web.
We will firstly review the literature about such areas, then we will give a report
of existing device examination products .

2.2 Mobile operating systems

2.2.1 Symbian

Symbian is a joint venture between Nokia, Motorola, Ericsson, Matsushita, and
Psion that became independent in June 1998. Symbian was established by lead-
ers in the computing and mobile industries to enable the mass market of com-
municators and smart phones. Symbian is an open operating system, designed
for mobile devices, with associated libraries, user interface frameworks and
reference implementations of common tools, produced by Symbian Ltd. Sym-
bian evolved from Psion’s EPOC in 1998. Symbian OS is currently owned by
BenQ, Ericsson, Panasonic, Nokia, Siemens AG and Sony Ericsson. There are
several variations of the Symbian OS that are tailored for different devices. The
capabilities of the Symbian OS depend on the device for which it was tailored.
Each variation is called a Device Family Reference Design (DFRD). The benefits
of Symbian OS are the following:
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CHAPTER 2. BACKGROUND AND RELATED WORK

• Faster time-to-market for platform vendors

• Open, standards-based platform for third-party application developers

• Excellent connectivity

• Advanced design

• Extensibility

• High-performance, 32-bit OS with pre-emptive multitasking

• Long battery life

• Wide industry support and commitment

• Applications that can be designed once and run on multiple devices

• Diversity of devices for consumers

2.2.2 Windows Mobile

Windows Mobile is an operating system that has both a look-and-feel and a
programmer API that are similar to Microsoft Windows but which runs in a
dramatically reduced footprint. Windows Mobile is the successor operating
system to Windows CE. Windows Mobile runs on multiple hardware plat-
forms including Pocket PCs, smartphones, Portable Media Center, and auto-
mobiles. These hardware platforms did not always exist from the inception
of Windows Mobile. Microsoft Pocket PC, sometimes referred to as P/PC or
PPC, is based upon the Windows CE framework. Variants of this operating
system include versions such as Pocket PC 2000, Pocket PC 2002, Windows
Mobile 2003/2003 SE, 5 and Windows Mobile 6.0. Variants also exist for Smart-
phones, such as Windows Mobile 2003 Smartphone edition. One of the key
benefits of Microsoft’s Windows Mobile platform is file format compatibility
with the desktop versions of the company’s productivity software. Mobile ver-
sions of Microsoft software, such as Pocket Word, Pocket Excel, and Pocket
PowerPoint, allow individuals to view and edit these files outside of the home
and office. Another benefit is integration with Microsoft’s cross-platform so-
lution, the .NET Framework. The .NET Framework and its associated class
libraries handle things such as memory management, file I/O, and many other
functions. The .NET Framework allows programmers to develop code in one
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of several .NET languages, such as C and VB.NET. Pocket PCs run a simplified
version of the framework called the .NET Compact Framework. In order to
maintain synchronization and connectivity with desktop computers, Microsoft
developed the ActiveSync program. The user merely has to connect the Pocket
PC to the desktop computer in order to synchronize items such as appoint-
ments, contact lists, and even multimedia files.

2.2.3 Palm

A Palm is a commonly referred to as a small-scale (hand-held) computer that
runs Palm’s PalmOS software. The Palm OS platform is an open architecture
that provides a basis for third-party developers and original equipment manu-
facturers (OEMs) to create mobile computing solutions. Palm Computing was
founded by Jeff Hawkins, Donna Dubinsky and Ed Colligan. The original pur-
pose of the company was to create handwriting recognition software for other
devices (Graffiti). The initial idea for the devices came from Hawkins’ habit of
carrying a block of wood in her pocket. There are several tools available for the
image acquisition and analysis of Palm devices.

EnCase, published by Guidance Software, is a complete cyber forensics
software package that handles all steps of the investigative process, from the
acquisition to the report creation. The software includes built-in capabilities for
performing MD5 hashing, data carving, deleted file recovery, and many other
functions. Although traditionally relegated to the realm of desktop computer
forensics investigations, EnCase does support the acquisition and analysis of a
limited number of Palm devices.

Paraben has a software application that is specifically designed for PDA
forensics, PDA Seizure. This comprehensive tool allows PDA data to be ac-
quired, viewed, and reported on, all within a Windows environment. The soft-
ware comes equiped with quite a few key features. These features include the
ability to encrypt saved case files, BlackBerry OS support, built-in recovery of
Palm passwords, enhanced viewing on file data, complete physical and logical
acquisition for Palm PDA devices, and many more. It has a few drawbacks,
in that some of the material acquired from the PDAs is hard to interpret by a
person that is not computer savi. Although, on the other hand it has features
like a search portion that allows you to enter a search term and PDA Seizure
will bring up all files that have that term in them. This allows the investigator
to look for case specific information easily and quickly.
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2.2.4 BlackBerry

The RIM BlackBerry is a personal wireless handheld device that supports e-
mail, mobile phone capabilities, text messaging, web browsing, and other wire-
less information services. It is most commonly utilized for business purposes.
The BlackBerry was first introduced in 1999 by a company called Research In
Motion (RIM). The BlackBerry OS provides easy access to applications such as
e-mail, to do list, memos, address book, and many other features. Forensics on
the RIM platform is complicated by the fact that this is a ”push” device, i.e., the
RIM server will push device to the PDA whenever the PDA’s radio is on and
there is data available. RIM devices also feature a remote self-destruct feature.
This feature cannot be activated if the radio is turned off, of course. Both of
these features mean that you need to be sure that the radio is off when doing a
forensic investigation. Depending on the setting, entering a wrong password a
certain number of times will wipe the device.

2.2.5 iPhone

The iPhone is an internet-connected multimedia smartphone designed and
marketed by Apple Inc. with a flush multi-touch screen and a minimal hard-
ware interface. The iPhone was initially released with two options for internal
storage size: 4 GB or 8 GB. On September 5, 2007, Apple discontinued the 4 GB
models. On February 5, 2008, Apple added a 16 GB model. All data is stored
on an internal flash drive; the iPhone does not contain any memory card slots
for expanded storage.

2.3 Literature review

2.3.1 Mobile device forensics

The term “Mobile Forensics” arose when the first PDA was able to store per-
sonal data about its owner and, thus, it could be used as evidence during an
investigation.

The Netherlands Forensic Institute (NFI) published a workflow for mobile
phone forensic examination ([8]). A lot of relevant work about mobile foren-
sics has been carried out by Jansen et al. [9, 10, 11, 12] on behalf of NIST.
Topics of interest covered by the authors are forensic tools, impediments, pro-
cedures and principles, preservation, acquisition, examination and analysis.

22



2.3. LITERATURE REVIEW

All phases are well described and they are currently used as guidelines. The
analysis phase lacks a contacts correlation activity.

Zdziarski in [13] describes a method that allows the examiner to perform
a bit-by-bit copy of the iPhone’s user partition and can provide an MD5 sum
to prove the copy was authentic. The method requires modifying a read-only
system partition to allow for this technique. Fortunately, this partition remains
completely isolated from the partition containing user data and is intended to
remain in a factory state throughout the life of the iPhone. This makes it an
ideal and forensically sound location to perform the necessary payload instal-
lation, without violating user data.

Hoog in [14] reviews the forensic tools available for the iPhone, performs
forensic analysis with each tool and reports on the installation, acquisition, re-
porting and accuracy of each tool.

2.3.2 Mobile Data Reverse Engineering

At the time of writing, we are not aware of other works about how to decode
the personal information stored in the smartphone’s file system. Commercial
forensic products such as Paraben [15], extract a logical dump and they are able
to decode it, but they provide neither their source code nor information about
the storing formats.

More generally speaking, research in data reverse engineering has been
under-represented in the software reverse engineering area because the latter
appears to be “more challenging and interesting than data reverse engineer-
ing” [16]. Recently the attention to data reverse engineering techniques is in-
creasing, because they represent the key to making several assessments like
incorporating legacy data in data warehouses, measuring the software quality,
and, more generally, migrating from closed formats toward open standards.

Most of the works found in the literature about DRE deals with DBMS re-
verse engineering. Since DBMSs provide the functionality to extract initial in-
formation about the implemented physical data structure, database reverse en-
gineering has a higher potential for automation than data reverse engineering.
Consequently, most existing reverse engineering tools in this area consider in-
formation systems that employ a database platform. A relevant work about
the auto-reverse engineering of input file is given by Tupni [17], a tool which
is able to decode various sets of data, such as record sequences, record types,
and input constraints. The tool takes as input a set of different instances of a
file format, and an application which is able to read them, then it learns infor-
mation about the file format by tracing the application and by observing how

23



CHAPTER 2. BACKGROUND AND RELATED WORK

it reads the file. Tupni was tested on several common file formats and network
protocols, and performs very well. Tupni tracks I/O operations performed by
applications running on the device. This is unuseful for our scope since we are
interested in tracking the Mobile device OS.

A generic methodological approach has been proposed by Aiken in [18].
The author provides a DRE analysis template, which is a “system of ideas for
guiding DRE analysis, an overall meta-data-gathering strategy, a collection of
measures, and an activity structure that can be used to assess progress toward
specific re-engineering goals”. Since the mobile environment is populated by a
large amount of device manufacturers, operating systems, DBMS and file for-
mats, we think that a methodological approach is more convenient and flexible
than a vertical one. Therefore we started from Aiken’s work and we followed
a similar approach to deal with mobile environments. Thanks to this approach
we will be more tolerant if something changes in file formats and OS, when
new versions are released.

The most used tool to make DRE is the hex editor. Conti et al. in [19]
proposed several interesting techniques to retrieve information from hex dump
through visual inspection.

2.3.3 Identity profiling over the Web

In this work we have widely adopted the concept of identity as “that part of the
self by which we are known to others” ([20]). We fetch up the identity build
on the Internet through the analysis of Web pages where the subject appears
in conjunction with other contacts of her mobile contact list. Previous work
achieved interesting results. Mika et al. in [21, 22], dealing with the problem of
“bootstrapping” a Friend-Of-A-Friend (FOAF) based social network, proposed
“the traditional Web as source of information about the social networks in a
community”. So they introduced a system for collecting social network data
which fetches data from the traditional Web by mining the index of Google.
When the authors wrote (2005), they demonstrated their method through ex-
amples of specific community with a significant on-line presence, i.e., a scien-
tific community of computer science. Since social networks spread (see Figure
1.2.3), many “common” users put themself on the Web and, in particular, they
entered information about who their friends are. Thus, nowadays, we can ex-
tend Mika’s experiment to common users, thanks to the part of social networks
data that are available publicly on the Web and that is periodically crawled by
search engines. A remarkable work about the identity construction on social
networks is given by Zhao et al. in [23], where the authors study identity con-
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struction on Facebook (http://www.facebook.com), an emergent social net-
working site which became most popular among college students in the United
States and then spread across other life contexts and countries. Facebook, like
other social networking environments, can be considered as a nonymous envi-
ronment1, because the user is persuaded to publish her real name and typically
she knows her friends in the real world too, thus their digital identity is similar
to the face-to-face identity. The authors accomplish their study by reporting
that Facebook users claim their identities implicitly, because they “show rather
than tell”. The people they know are the most important data we need to re-
construct the person profile.

2.4 Available products

A collection of surveys on mobile phones and PDA forensics is maintained
by NIST. An (un)updated list of available tools is reported in [10, 11, 12]. In
order to achieve forensic seizure, closed and open source tools are available.
The tools currently in use perform the acquisition of the mobile device internal
memory in a remote way: a forensic tool is connected with the target device
and, using the OS services, it extracts the data like SMS, MMS, TODO list,
pictures, ring tones, etc. This approach has the advantage of minimizing the
interaction towards the device and automating the process of seized data inter-
pretation. The main disadvantage relies on the protocol closeness: we are not
able to measure any memory alteration caused by data exchange. Moreover,
to perform the acquisition process, a few of the available tools degrade the ev-
idence putting an utility file in the device’s file system. Moreover, currently
available products extract most data from the device, but they do not provide
any functionality to further analyze data, as the solution we have studied in
this work.

2.4.1 SIM forensics

The data that a SIM card can provide the forensics examiner can be invaluable
to an investigation. Acquiring a SIM card allows a large amount of information
that the suspect has dealt with over the phone to be investigated. In general,
some of this data can help an investigator to determine the phone numbers of

1The term “nonymous” is the opposite of “anonymous” and means an on-line relationship
which exists in the real world too. This type of on-line relationships is also called “anchored rela-
tionships” ([23]).
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International Mobile Subscriber Identity (IMSI): A unique identifying number that identifies the phone/-
subscription to the GSM network
Mobile Country Code (MCC): A three-digit code that represents the SIM card’s country of origin
Mobile Network Code (MNC): A two-digit code that represents the SIM card’s home network
Mobile Subscriber Identification Number (MSIN): A unique ten-digit identifying number that identifies the
specific subscriber to the GSM network
Mobile Subscriber International ISDN Number (MSISDN): A number that identifies the phone number
used by the headset
Abbreviated Dialing Numbers (ADN): Telephone numbers stored in sims memory
Last Dialed Numbers (LDN)
Short Message Service (SMS): Text Messages
Public Land Mobile Network (PLMN) selector
Forbidden PLMNs
Location Information (LOCI)
General Packet Radio Service (GPRS) location
Integrated Circuit Card Identifier (ICCID)
Service Provider Name (SPN)
Phase Identification
SIM Service Table (SST)
Language Preference (LP)
Card Holder Verification (CHV1) and (CHV2)
Broadcast Control Channels (BCCH)
Ciphering Key (Kc)
Ciphering Key Sequence Number
Emergency Call Code
Fixed Dialing Numbers (FDN)
Forbidden PLMNs
Local Area Identitity (LAI)
Own Dialing Number
Temporary Mobile Subscriber Identity (TMSI)
Routing Area Identifier (RIA) netowrk code
Service Dialing Numbers (SDNs)
Service Provider Name
Depersonalizatoin Keys

Figure 2.1: Technical data which can be extracted from the SIM card

calls sent and received, contacts, sms details, sms text. There are many software
solutions that can help the examiner to acquire the information from the SIM
card. Several products include 3GForensics SIMIS [24], SIMCon [25], or SIM
Content Controller, and Paraben Forensics’ SIM Card Seizure [26]. Information
which can be extracted from the SIM card are reported in Figure 2.1.

2.4.2 TULP2G
The most important open source tool is TULP2G (http://tulp2g.sourceforge.
net). TULP2G is a forensic software framework developed to make it easy to
extract and decode data from mobile phones and SIM cards. It holds on a
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modular architecture ([27]) which defines a general examination workflow for
investigators and offers an abstract design to developers of so called plug-ins.
These plug-ins contain the actual investigation methods. From a user’s per-
spective the advantage of using a framework concept is the “learn once apply
everywhere” principle. TULP2G implements the standard modem protocols
(e.g., Hayes commands) and OBEX protocol to communicate with the device.
Unfortunately, if a smartphone model does not implement these standards, the
tool is unusable for the investigation. Currently, TULP2G components have be-
come obsolete, as reported by its authors in the product’s Web page: “Current
TULP2G plug-ins do not contain state of the art technology for the examination
of mobile phones. Most plug-ins were made years ago to demonstrate frame-
work principles. Nowadays a lot of better (commercial and open source) tools
exist to assist you in the examination of mobile phones.”

2.4.3 Paraben Device Seizure

Among proprietary tools, the Paraben Device Seizure (http://www.paraben.
com) is one of the most important; it implements specific, proprietary protocols
(like D-Bus for Nokia smartphone) but, as for the TULP2G tool, unknown pro-
tocols make the acquisition impossible. Recently Paraben Corporation released
the “CSI stick” (http://www.csistick.com) a portable data gathering and
forensic tool, which allows the acquisition of data without using the forensic
workstation. This solution, however, still relies on proprietary plugs (currently,
Motorola and Samsung).

2.4.4 .XRY

The .XRY tool by MicroSystemation (http://www.msab.com/en) adopts a
quite similar approach to Paraben, with remote acquisition via hardware spe-
cific plugs.

2.4.5 Neutrino

Recently, Guidance Software (http://www.guidancesoftware.com) intro-
duced the Neutrino forensic acquisition device, which is capable of acquiring
data from a device connected through USB cables and able to analyze and cor-
relate data coming both from mobile phone and computer. Moreover, Neutrino
is the only device which integrates itself with EnCase package. Neutrino shares
the approach with Paraben and MicroSystemation solutions, and it supports
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roughly one hundred mobile phone models. It is bought with a subscription
service with monthly updates for acquiring newly-supported phones, includ-
ing any required cables.
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3
Profiling system’s architecture

3.1 The Profiling Workflow

As mentioned before, the identity profiling activity takes place in a wider pro-
cess, which can be modeled as a workflow. In Figure 3.1 the entire workflow is
depicted.

This process starts from the devices which have been seized. For each of
them, depending on the device’s manufacturer and model, and on the mobile
OS, the correct version of the tool (MIAT) which will acquire the content of the
internal memory must be chosen. After acquisition, the device file system’s
dump is processed by the personal data decoder and the personal data (i.e.,
contacts, calendar, messages and events log) are decoded and translated in a
more suitable XML format. From this point personal data can be imported
from the subsequent workflow’s components, that will be unaware of the de-
vice they come from.

After being extracted and decoded, personal information needs to be an-
alyzed in order to highlight the correlations among data and to help the in-
vestigation in increasing the efficiency and effectiveness of the process. The
Mobile Identity Profiler (MIP) process, that will be described in further detail
in Chapter 6, was developed in order to capture the logical equivalent meta-
information that data of a specific mobile device acquisition must contain (e.g.,
contacts information, calls details, etc.). The tool reorganises collected data us-
ing a specific proximity measure, and it also allows to consult the collected data
as they are recovered by the decoding tool. The innovative contribution of the
MIP component is to reconstruct the interaction between the phone’s owner
and her contacts, and to reconstruct the relationships among them through the
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Phone's Owner

Mobile
Identity
Profiler

Correlate mobile data to 
find social activities 
between the phone 
owner and his contacts

The resulting social graph is 
linked by edges between owner 
and contacts, and among them, 

which are weighted with the 
influence factor.

Personal Data (XML)
Contacts

SMS/MMS/Email
Events log

Personal
Data 

Decoder

MIAT

Personal
Data 

Decoder

MIAT

Personal
Data 

Decoder

MIAT

Other 
Architectures

Combine with Web data (search 
engines, social networks, blogs, etc...) 

to extend social correlations among 
contacts

Figure 3.1: The profiling workflow.
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Figure 3.2: The main interface of the analysis tool with example data.

Web analysis. The design of an integrated data analysis tool based on powerful
automatic analysis and manipulation data techniques represents a core activity
in the process of speeding up the profiling analysis.

3.2 The Identity Profiler Framework

The Identity Profiler Framework is a forensic analysis environment designed to
orchestrate the software components discussed earlier in this chapter. This
environment is able to take a logical dump acquired via MIAT, to decode it into
usable data and to analyze them through the profiling activity. The framework
is composed of several pieces of software. Besides the component which allows
the downloading of MIAT for the specific device and to install it on the external
memory, these components also include the data decoding parsers. The core
components of the framework are two:

• the collection of analysis tool that implements the MIP process, which
will be described in Chapter 6.

• a convenient user interface which allows the operator to easily interact
with collected data. In particular, the profile is represented as a graph
where the nodes are the contacts and the edges are the connections and
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the relationships existing between individuals. In Figure 3.2 is reported
a screenshot of the graphical interface.

The framework is written in Java 1.6 and SWING. We adopted an open-
source library, JUNG, which provides a common framework for graph/net-
work analysis and visualization. The clustering algorithms are written in C++,
using the GNU compiler g++. We used the uBLAS package in the BOOST
(http://www.boost.org/) library to manage graph and matrices, while
we used the library SVDPACKC (http://www.netlib.org/svdpack/) to
compute the Singular Value Decomposition (SVD) of a matrix.
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4
Smartphone’s internal memory

acquisition

The main results of this chapter have been presented in [4, 28, 29]

4.1 Introduction

In this Chapter we will describe the methodology we developed to seize data
contained in the smartphone’s internal memory by a logical dump on an ex-
ternal removable memory (if available), then we will present the tools we de-
signed to implement such methodology.

Forensics for mobile devices follows the same rules valid for general pur-
pose hardware. In [30] it is shown the general framework (Figure 4.1); this can
be assumed as valid even for mobile equipment forensics. We notice just one
very big difference between mobile and general purpose forensics: the acqui-
sition phase. In a mobile device there are three types of memories: Read Only
Memory (ROM), which stores the OS boot image as it is later hard reset; RAM
Memory containing processes and OS volatile data, and Flash Memory, that
stores the user’s files, information and documents, and programs non volatile
data. Flash memory is the device memory part in which we are interested.
This is a chip integrated in the device’s motherboard. As Flash memory can be
erased/written a limited number of times mobile devices adopt a logging file
system to grant the integrity of the transactions executed. In the acquisition
phase the SIM-card and the external memory are removed but there is no way
to remove the internal memory without damaging the device irreparably, as
this is not, like a hard disk, a removable piece-of-hardware. Because of this,
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Figure 4.1: DFRWS Digital Investigation Framework.

the most delicate operation to be done in a mobile environment is the seizure
of the internal memory’s data.

The Mobile Internal Acquisition Tool (MIAT) acquires data directly from
the internal memory to an external removable memory (like SD, mini SD, etc.),
spawning an acquisition application stored in the same memory card held by
the forensic operator. This task is performed without the need of connecting
the device to PC. Thanks to this, forensic operators can avoid traveling with
luggage full of one-on-one tools for every single mobile device. Even if the
NIST guidelines say that “to acquire data from a phone, a connection must be
established to the device from the forensic workstation” ([11]), we believe that
MIAT approach does not contrast those guidelines, but extends the forensic
workstation concept to the removable memory where the MIAT executable file
resides. The complete data seizure process is shown in Figure 4.2. In order
to acquire the memory content of a GSM, Bluetooth or Wi-Fi enabled mobile
device, it is mandatory to shield the device with a Faraday cage [31]. Indeed,
new incoming calls, SMS, e-mails, Bluetooth activity, connection status changes
or GSM cell switch, could trigger events which may modify some of the file
system’s objects.
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Figure 4.2: Data collection workflow

4.2 Our methodology

The MIAT is an alternative way to seize the internal memory data: it relies on
local execution of an application which explores recursively the file system tree
and copies each entry to a backup volume like an expansion memory card (Fig-
ure 4.3). Before proceeding with the acquisition, the device should be switched
off. Then, if the SIM and/or the memory card are inserted in the smartphone,
we must remove them to collect the stored data. We note that the SIM card is
usually located under the battery, for this reason we must turn off the device.
Once the SIM and the memory card have been acquired, we use the host mem-
ory card (different from the original memory card found in the device, part of
the seizure) for the internal memory seizure: a tool for seizing data is stored
in a memory card and the acquisition is performed locally. In order to grant
data integrity, during the acquisition process all files and directory are opened
in read-only mode to preserve integrity. Moreover, in order to detect further
corruptions, MIAT computes an MD5 hash before and after copying each file;
MIAT also compiles a log file with all remarkable events (as shown in Table
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Start more files? Stop

MD5

open opened? copying using 
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no
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no
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Figure 4.3: How MIAT works.

4.1) in an XML format.

File Contents

checksum.xml File size, file typology, file name, MD5 hash, seizure, duration, and cre-
ation, access and modification time.

info.xml Information about the device seized (IMEI, device ID, platform type,
model, manufacturer), and about the seizure process (duration, battery
consumption date of seizure).

errors.xml Information about errors that may happen during the process.

Table 4.1: Files generated during the Seizure Process

The main advantage of this approach is to access the whole file system,
then to seize the files stored in non conventional location (for example pictures
hidden between system files). The tool uses the standard mobile OS APIs to
access the file system (like Open, Read and Write), which is typically invariant
during the OS’s evolution. The data seized on the removable storage support
can be accessed with a common MMC o SD reader, and analysed with ad-hoc
tools. The adoption of this methodology means saving hardware tools like
USB cables specific for each device or additional equipment like notebook PC
to perform the acquisition; the forensic workstation is now the seized Mobile
Equipment (ME) with a supplementary SD/MMC memory card with MIAT
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(a) (b)

Figure 4.4: These figures show screenshot version of MIAT we developed. In (a) MIAT
for Symbian. In (b) MIAT for Windows Mobile.

onboard.
The difference between MIAT and some other forensic tools (e.g., TULP2G)

is that the former interacts directly with the Operating System while the latter
requires an intermediary (located in the mobile phone) in charge of managing
the messages sent by remote forensic tool to the mobile phone. Since the inter-
mediary code is almost always closed, the second case makes it impossible to
verify how the intermediary code is written. Whenever the source code is not
available, obviously, it is impossible to state by code reading if the tool respects
integrity and the other required fundamental forensic properties.

We implemented MIAT for Symbian and Windows Mobile platforms. The
Figures 4.4(a-b) show the screenshots.

4.3 Implementation

4.3.1 Symbian

MIAT for Symbian, presented in [3], was developed to support and to test the
methodology described above. Symbian is an operating system derived from
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the Epoc operating system; Symbian OS supports a wide range of device cat-
egories with several user interfaces, including Nokia S60, UIQ and the NTT
DoCoMo common software platform for 3G FOMATM handsets. The com-
monality of Symbian OS APIs enables development that targets all of these
phone platforms and categories. In order to produce executable code which
does not need of any other software layer (e.g., a JVM to interpret the byte-
code) MIAT application was originally developed in C++, the native language
of the Symbian OS. Note that since there are many versions of each combina-
tion OS/UI, there is a different SDK for each combination. You have to build
application for specific devices using the appropriate SDK of the correct ver-
sion of the target phone. To improve the operational efficiency of the forensics
operator, different versions of MIAT were compiled based on the various SDK.
The specific required version of MIAT is recognized by the IMEI number as
mentioned in the methodology above.

Most relevant files are locked by system processes, many files on the sys-
tem are always open and locked by system processes. For example the file
Contacts.cdb, which contains the database of contacts, is locked by PhoneBook
that is the address book process. In the past ([3]) we made use of the OS Backup
service to perform seizure of locked data. Such service is an utility allowing the
backup of the memory contents, even if these contents are locked. An applica-
tion or a service can register itself and the files which locks. The Backup Server
notifies a backup request to registered applications, so they can release the lock
temporarily. Once the file had been seized, the MIAT application could notify
this to Backup Server and then the system process could re-acquire the lock.
In a recent work ([32]), we adopted a further alternative way to get access to
locked files. This way is accomplished by the Symbian RFs API method Read-
FileSection that allows a file to be read without opening it. By this method it is
possible to seize the entire file system tree including files which have a persis-
tent lock on; furthermore this strategy preserves integrity because the access is
established in read-only mode, guaranteed by the OS.

4.3.2 Windows Mobile

Besides the Symbian version, we developed a version of MIAT for Microsoft
Windows Mobile Edition and we presented it in [4].

The term PocketPC refers to a Microsoft specification that sets various hard-
ware and software requirements for a handheld-sized computer (PDA, Per-
sonal Digital Assistant) that runs the Windows Mobile operating system. As
reported in Table 4.2, many tools perform forensic operations on a PDA. How-
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ever, as Ayers et al. assert in [11, 12, 33], the only NIST certified tool on a
PocketPC is Paraben’s PDA Seizure. This tool performs data seizure of internal
memory in a remote way. Actually, the forensic tool is connected to a device
by cradle or USB cable and, through the Microsoft’s ActiveSync protocol, it
extracts data such as user’s files, call logs, SMS, MMS, TODO list, etc. This
approach has the advantage of minimizing the interaction towards the device
and automating the process of seized data interpretation. The main disadvan-
tage relies on the protocol closeness: we are not able to measure any memory
alteration caused by data exchange. Moreover, to perform the acquisition pro-
cess, PDA seizure degrades the evidence putting a dll file in the device’s file
system.

Palm OS PocketPC Linux PDA

pdd Acquisition NA NA
Pilot-Link Acquisition NA NA
PDA Seizure Acquisition, Examina-

tion, Reporting
Acquisition, Examina-
tion, Reporting

NA

EnCase Acquisition, Examina-
tion, Reporting

NA Examination, Reporting

POSE Examination, Reporting NA NA
dd NA NA Acquisition

Table 4.2: PDA forensic tools

In Windows Mobile 2003 PocketPC and earlier, the device’s memory was
split in two sections: a ROM section, containing all operating system core files,
and a RAM section aimed at keeping the user storage (Storage Memory) and
the memory space for running applications and their data (Program Memory).
The user can choose the amount of memory to be reserved to Storage Mem-
ory and then to the Program Memory. The RAM chip was built on a volatile
memory scheme, so a backup battery was required to keep the RAM circuitry
powered up, even if the device was just suspended. In case battery power sup-
ply went down, all the user’s data were lost. Such a scenario forced the user to
recharge the battery within a time limit of 72 hours (as mandatory by Microsoft
to devices manufacturers).

Since Windows Mobile 5, memory architecture has been redesigned to im-
plement a non-volatile user storage. Currently, the memory is split in two
sections (see Figure 4.5): the RAM holds running processes data, whereas the
ROM keeps core OS code and libraries (called modules), the registry, databases
and user’s files. Such memory, also called Persistent Storage and contained
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Figure 4.5: Windows Moble 5.0 memory architecture.

within a flash memory chip, can be built using many different technologies
(see [34]):

• XIP model, based on NOR memory and volatile memory, this technol-
ogy enables a device to store modules and executables in XIP (execute-
in-place) format and allows the operating system to run applications di-
rectly from ROM, avoiding coping them first in the RAM section. NOR
memory has poor writing performance.

• Shadow model, which boots the system from NOR and uses a NAND for
the storage. This model is power-expensive, because the volatile memory
requires it to be constantly powered on.

• NAND store and download model, which reduces costs replacing NOR
with OTP (one-time programmable) memory model.

• Hybrid store and download model, which mixes SRAM and NAND,
covering them with a NOR-like access interface (to support XIP model).

Windows Mobile 5 and above place most of the applications and system
data in the Persistent Storage. Core OS files, user’s files, databases and registry
are seen by applications and users in the same file system tree, which is held
and controlled by the FileSys.exe process. Such a process is also responsible
for handling the Object Store, which maps objects like databases, registry and
user’s files in a contiguous heap space. The Object Store’s role is to manage the
stack and the heap memory, to compress and to expand files, to integrate ROM-
based applications and RAM-based data. For a comprehensive explanation
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about how Windows Mobile uses the Object Store and manages linear flash
memory, see [35, 36].

The strategy for storing data is based on a transactional model, which en-
sures that a store is never corrupted after a power failure while data is being
written. Finally, the Storage Manager manages storage devices and their file
systems, offering a high-level layer over storage drivers, partition drivers, file
system drivers and file system filters.

Filename Location Description

System.hv /Documents And Settings/ System registry hive.
User.hv /Documents And Settings/default/ User registry hive for default user.
Default.vol /Documents And Settings/ Object store replacement volume for

persistent CEDB databases. This file
contains MSN contacts

Mxip system.vol,
Mxip lang.vol,
Mxip notify.vol,
Mxip initdb.vol

/ Metabase volumes, including
language-specific data and storage
for notifications.

Cemail.vol / Default SMS and e-mail storage.
Pim.vol / Personal Information Manager

(PIM) data, such as address book,
schedules, SIM entries, call logs.

Table 4.3: Windows Mobile relevant files

Unlike old Symbian smartphones, where the user is forced to remove the
battery supply to remove the memory card, in a standard PocketPC it is possi-
ble to plug-in a memory card (typically an SD) while the device is powered-on
(hotplug). This is a great chance for collecting data which, otherwise, could be
altered if the device was turned off before the seizure process. Moreover, we
developed the application using a native C++ approach, fulfilling the require-
ment of having a tool to be launched from an external memory card, without
the need of a pre-installed runtime environment (like java virtual machine),
nor the need to install the tool on the device.

4.4 Results and conclusions

A first intrinsic result obtained by MIAT philosophy is that as it is an open
source software, is it possible to state by code reading if the tool respects in-
tegrity and the other required fundamental forensic properties. Since other
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application (Paraben, TULP2G) codes are almost always closed, this makes it
impossible to verify how their intermediary code is written.

In order to evaluate the performance, we compared MIAT for Symbian and
WM with Paraben products. As a measure, we chose to detect which files
were modified after the data seizure. We noticed that MIAT (both versions)
performs as well as Paraben in coverage and in integrity. The results of the
comparison are reported in Tables 4.4 (Symbian) and 4.5 (Windows Mobile).
Moreover, in both versions for Symbian and for Windows Mobile, MIAT is
slower than Paraben in seizure times. Those are constrained by device type
and filesystem density. Moreover, MIAT copies the filesystem in a logical way,
instead Parabens seems to get a copy of the device ROM at a lower level, by
putting a library in the device’s filesystem.

Furthermore, MIAT can lower the effort for law enforcement agencies (LEAs),
due to the non-technical skills required for the forensic operators; hence, we ex-
pect the MIAT and the proposed methodology to speed up the forensic acquisi-
tion process, especially when the amount of devices to analyse can overwhelm
the high tech crime units. Currently the MIAT tool is being experimented by a
LEA, in order to establish if it could be proposed as a repeatable seizure tool in
respect of Italian laws.

Future developments of MIAT methodology will include (but are not lim-
ited to) the OS DRM mechanism, in order to maintain the highest level of de-
vice portability on Symbian phones and the development of an analysis farm,
where to forward all the seized images (from the crime scene) in order to pro-
vide a real time standard analysis of the mobile equipment.
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File Reboot Seiz. File Reboot Seiz.

100056c6.ini B 101f6df0.ini B B
AlarmServer.ini B P Applications.dat B M
backupdb.dat B P btregistry.dat B
cbtopicsmsgs.dat B CntModel.ini B P
CommonData.D00 B P DRMHS.dat B
ECom.lang B HAL.DAT B
LocaleData.D05 B P nssvasdatabase.db B B
ScShortcutEngine.ini B P smssmssegst.dat B
System.ini B

B Means that a change happens for both tools
P Means that a change happens for PARABEN
M Means that a change happens for MIAT

Table 4.4: MIAT for Symbian and Paraben’s Device Seizure comparison, and their
hashes consistency. This table also shows the event which trigger changes.

File Paraben MIAT-WM

/Documents And Settings/default.vol − −
/Documents And Settings/system.hv − −
/Documents And Settings/default/user.hv − −
/Windows/*.dll − −
/mxip notify.vol

√
?

/cemail.vol
√

?
/mxip system.vol

√ √

/mxip lang.vol
√ √

/pim.vol ?
√

− file not copied
? file copied but its hash does not match√

file copied and hash matches

Table 4.5: MIAT for Windows Mobile and Paraben’s PDA Seizure comparison, and their
hashes consistency.
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5
Smartphone’s data reverse

engineering

The main results of this chapter have been presented in [37]

5.1 Introduction

After extracting the file system’s logical dump from a smartphone, we need
a method to decode personal data stored within several mobile DBMS files
and to make them available to other applications. Such DBMS files contain
actual and obsolete data, i.e., old or deleted entities; this occurs because the
mobile OS, for performance reasons, defers the deletion as long as possible,
e.g., when the free space available in the file system is not enough. Often mo-
bile DBMS can be accessed via APIs provided by mobile OS manufacturers,
but they are prevented from accessing those data, therefore they are not useful
in the forensic environment. Therefore we chose a Data Reverse Engineering
(DRE) approach to retrieve and decode the storing format. In the traditional
architectures (PCs and mainframes) the DRE was studied as business solution
either for the control of data handled via legacy applications or in order to re-
construct deteriorated data. Developed models are too generic for mobile en-
vironments [18], or they aims at discovering mainly the data model [38, 39, 40],
or have been studied to address vertical problems like extracting data from
COBOL, DB/2 [41] or Access. For our scope, we are not interested in discov-
ering the data model because we know a priori which data we are looking for
(e.g., all the user controllable data attributes like contact’s name and surname
or SMS text), and we do not care about the relational structure. Moreover,

45



CHAPTER 5. SMARTPHONE’S DATA REVERSE ENGINEERING

a great facility given by a methodological DRE application, is that, when file
formats change, after re-applying the methodology we are able to update our
knowledge about how data are stored.

In this chapter we will propose a methodology allowing smartphone’s DRE
operators to be more flexible in the mobile file formats knowledge. As a matter
of fact, the mobile phone environment is composed of a plethora of manu-
facturers and operating systems, each of them is released in several versions
which stores data in different formats. Handling such heterogeneity through a
methodological approach is an important asset for mobile forensics and, more
generally, for smartphones’ businesses.

As a case study we applied these methods to the Symbian OS, and we ob-
tained several results, including the mapping between a given data and its lo-
cation into the file system, the obsolete data recovering, and the Symbian per-
sonal databases format reversed. The obtained results (see Section 5.3) show
that our methodology can be successfully applied to environments which are
different from our forensic starting point. The methodology helps to decode
databases files and to develop ad-hoc parsers; data extracted by such parsers
can be easily converted and used to perform tasks such as user profiling, device
syncing or data recovery.

5.2 Our step-by-step Methodology

Smartphone’s operating systems save personal data in many DBMS tables which
are stored in binary files. Often the format of such files is not public and the
tools available to read them rely on an operating system native API (if they run
on the device) or on a porting of their code (if they run on a PC), and they can
not extract data in a forensic way, i.e., they do not retrieve information of high
investigative value as deleted or modified data. Therefore, the solution is to
interpret the binary file directly in order to give a structure to the internal data.
Initially the problem was addressed through the comparison of multiple files
of the same type, relying on the analyst’s ability in the intuitive interpretation
of the data content. In such way the analysis of data was often confused and
led to performing redundant operations without any result. Therefore, in or-
der to preserve obsolete data, we chose to design a methodology for the binary
file interpretation, which was able to decode the information required without
performing redundant operations. Furthermore, the methodology will help to
retrieve the data alterations and deletions.

Our main contribution is to propose a wisdom-driven DRE methodologi-
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cal approach to decode smartphone’s personal data, that are stored in several
DBMS-managed files; with this work we provide the tools to reach the follow-
ing targets:

• understand where information is stored in the mobile device’s file sys-
tem;

• retrieve and decode personal actual and obsolete data;

• develop a suitable parser.

A flow-chart of the methodology is shown in Figure 5.1.

Stage 1:
Files of interest 

identification

Stage 2:
Data hypothesis 

and entities 
injection

Stage 3:
Sequences similarity 

discovery

Stage 4:
Data interpretation 

Stage 6:
Error correction

Stage 5:
Meta-format building

Stage 7:
Parser building

Stage 8:
Testing 

& 
debugging

Goal 
reached?

Is it sufficient 
to modify the 
hypothesis?

Objective 
reached?

Yes

Yes

Yes

No

No

No

Stage 0:
Choice of the 

objective

Figure 5.1: The methodology flow

Stage 0 aims at choosing which kind of information (the objective) we want
to find and how it can be decoded. An objective is composed by one or more
goals. We may think of an objective as an entity (e.g., a contact, or a call log, or
a SMS) composed of one or more fields (e.g., for a contact, the first name, the
last name, the phone number, etc.), which are the goals of our objective. Stage
1 aims at identifying which files (file of interest) could contain data (our goal)
we wish to decode. With Stage 1, the methodology enters in a iterative process
which allows to understand the binary format of data by comparing different
versions of it.

In Stage 2 some assumptions about the data type are made. Such assump-
tions lead the choice of sample instances of entities to be inserted into the de-
vice’s databases. Instances are stored as records which are contained in one or
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more binary files. If required, the hypotheses made in Stage 2 will be refined in
Stage 6 and the instances may change. The number of instances inserted will
determine the number of comparisons among binary records, that will affect
the precision of next Stage. Stage 3 deals with the binary files’ content format-
ting, in order to make the data instances inserted in Stage 2 identifiable and
comparable. Usually, we try to group similar zones within the same sample
binary file, and among different sample binary files, and then proceed to the
interpretation.

Formatting must take into account the data interpreted successfully in pre-
vious iterations, in order to cut them off (i.e., data already analyzed) from the
study of a new format. The Stage 4 comprises two sub-tasks: the first deals
with identifying candidate bytes sequences, and the second aims at decoding
the candidate bytes sequences. The identification of candidate bytes sequences
is performed by removing all the sequences that do not match with the hy-
pothesis of the Stage 2. The second task tries to find the connection between
the data inserted in Stage 2 (the instances) and its binary representation. As
depicted in Figure 5.1, the methodology iterates through Stage 1, 2, 3, 4, and 6
(error correction) until a goal is reached, i.e., the information about the format
of a entity’s field is exhaustive and a mapping between the field and its binary
storing format is found. The fifth Stage simply annotates in a meta-format all
mapping information found. If the joining of all meta-format found allows the
decoding of the entire objective (the information needed) identified in Stage
0, the methodology goes to Stage 7. At this Stage a piece of software able to
decode automatically the now-exposed file format will be designed and imple-
mented. All collected knowledge about the format turns into a set of software
requirements. This process must be repeated for each file marked as file of in-
terest. Such a piece of software will be tested at Stage 8.

In the following sections we will describe each methodology Stage.

5.2.1 Stage 0: Choice of the objective

Before starting, we must to choose from which data we want to start the de-
coding process. We define as objective the type of personal data (e.g., contacts,
SMS, email, calendar, events log, etc.) we want to find into the device’s file
system and to decode the binary format. An objective can be seen as the set
of “atomic” goals that must be completed in order to reach the objective. For
instance, in order to decode the contacts (the objective), after having detected
in which file (or files) they are stored, we have to find how the contact’s data
elements (goals) are encoded. Such goals are attributes such as name, surname,
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mobile phone number, e-mail, street address, etc.
Let an objective Γ be a set such that it contains the list of goals we want to

reach.
Γ = γ1 . . . γn

In this Stage we can only define roughly an approximation of Γ: thanks to
information about the objective’s data format that we will learn progressively
in the next Stages, we will be able to refine Γ with more accurate goals.

5.2.2 Stage 1: Files of interest identification
Given the objective chosen in the previous Stage, this step aims at identifying
files to be analyzed and decoded in next Stages. Mobile devices save personal
data in database files stored persistently in the file system. To identify the files
containing the information we are looking for, we first need to cause a lot of
changes inside these files in order to make them identifiable. These changes
are objective-dependent: if we are looking for contacts, we will generate activ-
ity like contact insertion; if we are looking for events log, we will make calls,
sim-changes, and send and receive SMS. Each of these operations generates an
entity (E) which will be stored as one or more records in the file system. Each
entity E is a set composed by m ∈ N attributes (ε).

For each goal γi ∈ Γ there is a set of attributes εj ∈ E such that, after
discovering the encoding of each εj in the set, the goal γi will be reached.

We define Ω as the sequence {E1, . . . , En} of entities we have to insert in
the device in order to modify all the files involved in the given objective.

The value of n depends on the objective’s type and on how its entities are
stored. Then, n can only be supposed as the process starts, but it could be
refined over the methodology’s iterations if needed.

For instance, let E be a contact’s card: each εi ∈ E will be an attribute such
as name, surname, date of birth, phone number, email address, and so on.

As a best practice, there is the need to fill every εi ∈ E attribute in order to
modify all possible files involved in Γ.

Let A be the fileset (in our case, the whole device’s file system) before per-
forming the Ω operation set on the device. Let B br the fileset after performing
Ω operation set. The application T of operations set Ω on the device is:

TΩ : A→ B
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John

Brown

+123423456

john@domain.com

ε1

some_info

ε2

ε3

ε4

εm

E1 E2 En

Peter

White

+19280023

peter@other.net

ε1

some_info

ε2

ε3

ε4

εm

Ω =｛ ｝
Figure 5.2: The format of the Ω operations sequence. In this figure is shown an example
with contacts discovery as objective

Let diff denote the function which computes the differences between two
filesets. The fileset C, which contains only files modified by the T application,
is:

C = diff (B,A)

C may contain garbage data, since other operations may occur when the
user performs T . Then, we must “clean” C, searching and deleting all irrele-
vant data. Let clean denote the function which cleans a fileset of garbage data.
The fileset Φ is:

Φ = clean(C)

5.2.3 Stage 2: Data hypotheses and entities injection

After the insertion of the Ω entities, the Φ set tells us which files have been
modified, but it still does not give us information about how the εi are encoded
in the storage.
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In Stage 2 we will perform three tasks:

1. We make assumptions about the possible εi format. The Λ set represents
the collection of assumptions we made at this Stage. Λ is composed by
assumption about data type, size and predictability. The latter indicates if
we can control the value of εi. Possible values of predictability can be the
following:

• controllable: the attribute correponds to any input field and the user
can fully control its value. An important property, for the method-
ology application, is that controllable attributes can be stored more
than once in the device, and the corresponding byte sequence is al-
ways the same. In contacts case, controllable attributes are input
fields like name, surname, phone number, etc. If we hit the right
type and size, we will be able to predict the binary (hexadecimal)
version of the data.

• uncontrollable: the attribute does not correspond to any input field
and the user is prevented from handling its value; there is no way
to predict the binary version of the data. In the contacts case, the
contact’s ID is an uncontrollable attribute, because it is transparently
assigned by the system.

• pseudo-controllable: the attribute does not correspond to any input
field and the user is prevented from handling its value, but it can be
partially predictable in its binary version. For instance, if we store
two contacts in the same day, the year/month/day part of the inser-
tion date (the 6 most meaningful bytes, for 8-bytes date format) will
be the same for both of them.

2. Once the assumptions at the previous point have been made, we generate
a set Ω′ of sample entities which have all attributes but the i-th set to
NULL:

Ω′ =




ε1 = NULL

. . .
εi = v1

. . .
εm = NULL

 , . . . ,


ε1 = NULL

. . .
εi = vk

. . .
εm = NULL




where |Ω′| = k, εi = va ∈ {v1 . . . vk}, εj = NULL, ∀ j 6= i. Values
va will be chosen as they will be easily identified trough all file bytes
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00 11 F2 66 B8 58 2A E1 00 01 
60 02 00 00 00 00 00 1B 00 00 
00 63 02 30 06 31 31 39 02 0C 
00 00 00 46 00 DD 6E 82 BD 58 
2A E1 00 01 60 03 00 00 00 00 
00 1B 00 00 00 63 02 30 06 31 
31 39 02 0C 00 00 00 46 00 9C 
7F 98 C3 58 2A E1 00 01 60 04 
00 00 00 00 00 46 00 00 00 63 
02 30 06 31 31 39 02 0C 00 00 
00 46 00 C1 EB 9C C9 58 2A E1 
00 01 60 05 00 00 00 00 00 46 
00 00 00 63 02 30 06 31 31 39  
02 0C 00 00 00 46 00 FB 96 CA 
CF 58 2A E1 00 01 60 06 00 00 
00 00 00 C8 00 00 00 63 02 30 
06 31 31 39 02 0C 00 00 00 46 

00 11 F2 66 B8 58 2A E1 00 01 
60 02 00 00 00 00 00 1B 00 00 
00 63 02 30 06 31 31 39 02 0C 
00 00 00 46 00 DD 6E 82 BD 58 
2A E1 00 01 60 03 00 00 00 00 
00 1B 00 00 00 63 02 30 06 31 
31 39 02 0C 00 00 00 46 00 9C 
7F 98 C3 58 2A E1 00 01 60 04 
00 00 00 00 00 46 00 00 00 63 
02 30 06 31 31 39 02 0C 00 00 
00 46 00 C1 EB 9C C9 58 2A E1 
00 01 60 05 00 00 00 00 00 46 
00 00 00 63 02 30 06 31 31 39  
02 0C 00 00 00 46 00 FB 96 CA 
CF 58 2A E1 00 01 60 06 00 00 
00 00 00 C8 00 00 00 63 02 30 
06 31 31 39 02 0C 00 00 00 46 

00 11 F2 66 B8 
58 2A E1 00 01 60 02 
00 00 00 00 00 1B 
00 00 00 63 02 30 06 31 31 39 
02 0C 00 00 00 46 
00 DD 6E 82 BD 
58 2A E1 00 01 60 03 
00 00 00 00 00 1B 
00 00 00 63 02 30 06 31 31 39
02 0C 00 00 00 46 
00 9C 7F 98 C3 
58 2A E1 00 01 60 04 
00 00 00 00 00 46 
00 00 00 63 02 30 06 31 31 39 
02 0C 00 00 00 46 
...
...

(a) (b) (c)

Figure 5.3: These figures show an example of a DBMS binary file before and after the
Stage 3. In (a) the sample file after making pairs of calls of the same duration (Stage 2).
In (b) equal sequences highlighted. In (c) the formatted file Φ̂′

in the next Stages. A good choice for va values critically influences the
subsequent steps; in the early iterations of the methodology, va should
be chosen with values that, disposed in the Ω′ entity sequence, follow a
periodical repetitive pattern (e.g., AABB, ABAB, AAAA, etc.). Thanks to
this approach, in the next Stages we will be able to retrieve them through
a pattern similarity matching, avoiding ambiguities in the modified file’s
zones caused by insertion side effects.

3. Finally, we have to insert Ω′ entities into the device through an applica-
tion TΩ′ , and then we have to perform a new file system dump in order
to analyze the files generated via the insertion performed in the previous
task.

The output of this Stage is Λ and Φ′, the set composed by all files containing
Ω′ entities.

5.2.4 Stage 3: Sequences similarity discovery

The goal of this Stage is to get the Φ′ fileset, containing the sample entities,
and to find all sequences of bytes which present the same similarities as the
attributes of Ω′ entity set inserted in Stage 2. In the previous Stage, we injected
entities which shared one or more attributes among them. The attributes of

52



5.2. OUR STEP-BY-STEP METHODOLOGY

entities was injected following a pattern, like pairs of calls with the same du-
ration or contacts with the same fields. In this Stage we have to highlight the
file’s byte sequences which are equal among them. In the call duration exam-
ple, if we made c pairs of calls with the same duration, we will find c equal
pairs of byte’s sequences in the events log file. Therefore, if the assumptions of
the previous Stage were correct, the current step simplifies the interpretation
tasks in the next Stages reducing the file’s complexity.

The Stage 3 process iterates through the following steps:

1. Discard file zones which are not directly affected by the operations in
Stage 2;

2. Identify attribute separation flags;

3. Identify, highlight and separate similar byte sequences.

In Figure 5.3 is shown an example in which we are going to format the
event log file to detect the storage format of the voice call duration. In the
previous Stage we made pairs of calls of the same duration (Figure 5.3a). All
the useless information (metadata, index and tables) was discarded and similar
zones were looked for in accordance with the methodology described.

Once similar zones are identified (Figure 5.3b), they have to be formatted
in the same way to enable the next Stage to refine the identification and to
understand which file parts were changed after the Ω′ entities insertion. We
must separate the user added information from other file data (Figure 5.3c). A
good file formatting is given by isolating different file zones from similar ones,
and then by isolating flags.

The output of this Stage is the Φ̂′ containing the formatted fileset.

5.2.5 Stage 4: Data interpretation

Stage 4 is composed of two steps; the candidate sequence identification and the
candidate sequence interpretation.

The candidate sequences are sequences of bytes, stored in the Φ̂′ fileset,
in which we are likely to find the data we are looking for. ΣΓ,Λ is the set of
candidate sequences for a given objective Γ, and under a given assumption Λ.

The candidate sequence identification relies on the hypothesis about at-
tribute data properties made in Stage 2, and it deals with simplifying the se-
quence, deleting all non-relevant data. In particular:
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• If the data is constant it is always stored in the same format, so the for-
matted files containing the data can be simplified by removing all the
different bytes; if the data’s size is equal to the size in the assumptions
made, such data is added to ΣΓ,Λ;

• If the data is variable probably the storing format will be always differ-
ent, so all the equal formatted files parts can be removed to simplify. If
the data size is equal to the size in the assumptions, such data is added
to ΣΓ,Λ;

• If the data is pseudo-variable the storing format will be partially constant
and partially variable; we have to look for the constant parts of the file
and, then, we can look at the proximity of the constant zone in an area
with its size equal to the hypothesis. Then the sequence is added to ΣΓ,Λ.

If ΣΓ,Λ = ∅ or |ΣΓ,Λ| is large (unmanageable quantity), in order to reduce the
number of resulting candidate sequences, we have to analyse the results and
understand how to change the Λ assumptions made in Stage 2 (through Stage
6). Once the assumptions are modified and the new Ω′ entities are inserted in
the device (reiteration through Stages 2, 3 and 4), the precision of this Stage
will improve.

When we reach a manageable size of |ΣΓ,Λ|, the candidate sequence inter-
pretation task can start. In this step we consider Λ to better understand which
part of the candidate sequence represents the data we are interested in. We look
at the Ω′ sequence of operations and check if the sequence does match in the
candidate sequence set. If the sequence of attended values of attributes in Ω′ is
the same in the ΣΓ,Λ, the sequence is ready to be interpreted. As the database
files are usually in hexadecimal format and the target data are in a different for-
mat (e.g., string, decimal format), it is necessary to transform data in a common
format (e.g., decimal).

The last step to be performed is to compare data contained in the database
with the data inserted in Ω′ entity sequence and, if those match, the storage
format is saved and the next Stage starts.

5.2.6 Stage 5: Meta-format building

After the data decoding in Stage 4, we need to store the information collected
in a intermediate format. This Stage should be seen as a “methodology inter-
mediate status saving”, which helps the operator to choose the next γ goal to
process, and to refine it if required. Before compiling the meta-format, this
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Stage requires the compilation of a “formats table”. In such a table a list of data
discovered at Stage 4 is reported, and for each data the following metadata are
shown:

Field Name Is a text placeholder associated with the data. This label will be
substituted to the data value in the Φ̂′, in order to make its retrieval easier.

Size The size of data, expressed in bytes.

Description Other information, useful to the parser building Stage, like: which
information is held by the field, type of data, endianess, suggestions for
the automatic data localization, etc.

Example An example value of the field.

Each discovered data needs a row in the table. An example of formats table is
shown in 5.4a.

After compiling the formats table, the meta-format file will be equivalent to
the sample binary file purged from non-relevant bytes. Data such as headers,
indexes, etc, can be deleted if they are not relevant for the purposes of the
objective. The first step to be performed is to identify, for each entry in the
table, the values with which the data is manifested into the meta-format file
(figure 5.4b) and to replace them with the related labels in the table (figure
5.4c). In this way all relevant data in the meta-format file will be replaced by
placeholders that will be easily detected at the parser building Stage.

The example shown in Figure 5.4 takes into account a contacts file contain-
ing two records with following fields: name, surname and company.

After this Stage, the given binary file could be automatically interpretable,
if all the following conditions are satisfied:

1. The meta-format’s data and values not yet identified have a static size, so
they can be ignored. In this case the parser is able to skip them automat-
ically;

2. All required meta-format’s data and values are identified;

3. If after having tried different hypotheses of Ω′, the identified zones in
the meta-format did not change at all, then the meta-format file and the
formats table are stable.
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5.2.7 Stage 6: Error correction

This Stage will be performed if the current γi was not reached (e.g., Stage 4
was unable to find a correct interpretation for the εi representation) and it is
mandatory to re-iterate the methodology. The error leading to this Stage can be
caused by two cases. In the following list we show the actions to be performed
in the next iteration:

1. ΣΓ,Λ = ∅ or |ΣΓ,Λ| is high (unmanageable quantity): if there are no can-
didate sequences or there are too many, some backtracking needs to be
performed to obtain a manageable number of candidate sequences. Some
actions may be useful to do this:

(a) Changing the assumed data size. This implies reformatting the Φ′,
building up a new Φ̂′. If ΣΓ,Λ = ∅ and we are looking for matching
sequences, we need to decrease the size. Two different big sequences
might contain two matching smaller sequences. On the other hand,
if we are looking for non-matching sequences, the size needs to be
increased. In the case where |ΣΓ,Λ| being high, if we are looking for
matching sequences we need to increase the size, and decrease it for
non-matching sequences.

(b) Modifying Ω′, adding or deleting entities, or changing the εi values.
A new Ω′ could give as output more accurate results. The changes
should be done according to the feeling of the operator, this is the
hardest part of the whole process and the operator’s skills play the
starring role.

(c) Verifying Φ′ correctness. Verify that the file we are looking into is
the right one (the required information may reside in another file).

2. If the interpretation of candidate sequence did not decode any informa-
tion about the storing format:

(a) Changing the assumed data size.

(b) Modifying Ω′. If an ambiguity among different candidate sequences
happened, modify Ω′ in order to restrict the change to less bytes;

(c) Changing the data type. Changing the data type might help the
decoding from hex.
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If none of the above cases apply, or the suggested changes did not lead to
a correct data interpretation, we need to review the current γi goal in Stage 1.
Each reached γ reduces the space of assumptions we are free to choose to build
Λ (and Ω′ as a consequence) for other γ.

5.2.8 Stage 7: Parser building

This Stage takes as input all collected knowledge about the given binary file
format. The operator should be able to write a program that reads data from
the logical dump of the smartphone and converts them in a XML format. It
is mandatory to implement a quality monitor that measures the number of
entries in which the parser encounters problems. The ratio r = F

T between the
number of failures (F ) and the total number of entries (T ) will be an indicator of
the need to perform additional methodology’s iterations. The threshold below
which r is acceptable depends on the required accuracy.

5.2.9 Stage 8:
Testing and debugging

In this phase the parser produced in the last Stage will be applied on several
logical dumps, in order to test it and to debug it over real cases. In this Stage
the r values of the current parser it will be verified and will be established if
the implementation precision is sufficient or not.

5.3 Results

In order to verify and to refine the methodology’s Stages, we took the Symbian
S60 operating system as a case study. Applying the methodology produced the
results we are going to show in this section.

File of interest - Stage 1 helped us to find a list of files containing SMS, MMS,
contacts, and all user’s personal data, which are shown in Table 5.1.

Symbian personal data files format - Thanks to the methodology we have been
able to reverse engineer the Symbian S60 DBMS file format. We applied
the methodology to the contacts list, to the calendar, to the text/multime-
dia messages and to the phone’s event log (which contains calls, sent and
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Case Study Information Detailed Information

Logdbu.dat Event Log SMS previews, MMSs, e-mails, calls, video calls,
PRSConnection, SIM/MC change.

Calendar Memo Daynotes, meetings, anniversaries
Contacts.cdb Contacts Contacts information
Mail folder SMS/MMS/Email Sender, receiver and body

Table 5.1: Symbian files of interest

received SMS/MMS preview and SD card ad SIM changes). The com-
plete format is explained in Appendix A.

Obsolete data - Among information identified and retrieved in the case study,
we were able to find obsolete data which were not purged from the file
system. The DBMS resources optimization strategy, in fact, reduces the
high-cost of DB’s modify/delete operations by flagging them as “obso-
lete”: for these reasons the modify/delete operations are scheduled as
late as possible, and the circumstance when they are performed varies
depending the kind of file. For instance, in the Symbian case, in Con-
tacts.cdb the deleting operations are performed when the Compress()
syscall is invoked. Operating system tasks and third-party software as
well can invoke this function, and they are able to know whether or not
to perform compression by invoking CompressRequired() (see [42]).
Let S the disk total space, F the free disk space, and W the amount of
disk space wasted; the boolean function returns true if:

(W > 64K) ∨ (W > 16K ∧W > 1
2S )∨

(W > 16K ∧ F < 1
20S )∨

(W > 16K ∧ F < 16K)

After a compression is performed, the contacts are rearranged, the space
wasted by obsolete records is recovered and there is no way to recover
obsolete data. If the seizing operation occurs before the compression was
invoked, we will find a database file that will contain all data since last
compression. Often users are not aware that data they deleted are still
stored in their smartphone, therefore the value of obsolete information
recovered is valuable from a forensic perspective. For case studies related
to the contacts, calendar and event log, enough information was decoded
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in order to reconstruct the owner communication history. In the case
study of messages (SMS, MMS and emails, stored in the /System/Mail
folder) we were not able to find erased data, because OS purges immedi-
ately deleted messages to optimize the available storage.

Unexpected information - A part of data attributes are not controllable by the
user, i.e., she can not insert them into the system explicitly, thus we were
not conscious of their presence. During Stage 4, the nature of our method-
ology helped us to retrieve such “hidden” information, as the record’s ID
and its creation date. Such an important result enforces the methodology
effectiveness, since it is able to detect more goals than the identified ones
in Stage 0; from the forensic point of view, such a result completes the
scene by adding more information useful to trace the user’s activity. In
our case study, some unexpected information helped us to better under-
stand the data model, thus the application’s behaviour.

We applied the methodology to more than 50 device dumps. At the be-
ginning, the first dumps we studied came from Nokia N70 devices1, but we
realized that the knowledge we had about the S60 format was still incomplete
since the parser was unable to decode an older phone’s dump (Nokia 7610).
After applying a few iterations of the methodology, we built a parser able to
interpret the new format.

1Equipped with Symbian OS v8.1a, S60 Platform Second Edition, Feature Pack 3
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Field Name Size Description Example

ID 4 Int, Bigend B6 03 00 00
NAME LEN 1 Int, Littleend 0E
NAME ( NAME LEN

2
) String 43 6C 61 75 64

. . . . . . . . . . . .

(a)

B6 03 00 00
0E
43 6C 61 75 64 69 61
0A
44 72 61 67 6F
10
55 6E 69 72 6F 6D 61 32
09 13 00 10

(b)

ID
NAME LENGHT
NAME
SURNAME LENGHT
SURNAME
COMPANY NAME LENGHT
COMPANY NAME
CXF1

(c)

Figure 5.4: This three figures depict an example of the application of Stage 5 on a file
containing the phone’s address book. (a) A table with pseudo data type, got as output
by Stage 4. (b) The meta-format file before Stage 5. (c) The meta-format file after Stage
5.
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6
The MIP process

The main results of this chapter have been presented in [43]

6.1 Introduction

In this chapter we describe the Mobile Identity Profiling (MIP) process, which
aims at reconstructing a user’s profile by combining the smartphone’s data
analysis with social relationships data found on the Web. Such a process is split
into three stages: the Smartphone Data Analysis, the Web Data Analysis and the
Clustering Analysis. The goal of the process is to build a smartphone owner’s
social network, namely the profile graph, and to find all sub-graphs (clusters)
which represent the social groups within the graph.

6.2 Smartphone Data Analysis

The decoding phase aims at generating parsers which can export data in xml-
format, or that can be integrated directly in the analysis application (in order
to simplify the workflow). Data decoded as contacts list, sms list, event log
and calendar entries list can be hard to analyse manually by a human opera-
tor, because she has to correlate their unique identifier, in order to reconstruct
situations or conversations (or more precisely, the importance of relationships)
between a device’s owner and their contacts.

The Smartphone Data Analysis performs such tasks automatically; it is com-
posed of four sub-phases1: File Analysis, Contact Analysis, Event Analysis and

1In this work we do not deal with the calendar analysis.
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(a) (b)

Figure 6.1: The graph representation of contacts (a) and their relationships with the
phone’s owner (b), which are revealed by the number of calls and number of sms/mms.

Messages Analysis.
The File Analysis phase will load in the framework each file contained in

the logical dump, and will organize them by their MIME-Type and run the
decoding tool over personal data files.

The Contact Analysis phase will merge together duplicate contacts infor-
mation, highlighting those which provide incomplete data and which may rep-
resent potential source of noise for the next Web analysis.

The Event Analysis will mine the phone’s log in order to reconstruct the
user’s activity. Although the event type may depends on the device type,
events always belong to the following macro-classes: voice calls, data calls,
sms/mms sent or received, SIM change, SD change. Voice calls and sms/mms
logs are useful for the reconstruction of the phone owner’s social activity, in
fact they are used to determine the strength of a bond between the owner and
each contact.

The Messages Analysis completes the event analysis by extending it to all
sms/mms that have been deleted from event log but could still persist in the
saved sms/mms list.

After these analysis sub-phases have been completed, the profile graph G is
built and the information collected is organized and stored inside it. Such data
structure will give us the chance to represent the social network given by:
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6.2. SMARTPHONE DATA ANALYSIS

Algorithm 1: Communication links building algorithm
Input : A set of contacts C, the owner o, the graph G

foreach element c of C do
if one or more calls exist between c and o then

x← number of calls (sent/received) between c and o

if one or more sms/mms exist between c and o then
y ← is the number of sms/mms (sent/received) between c and o

w ← x + y
if w > 0 ∧ E = {c, o} 6∈ G then create E
w(E)← w ; /* Assigns w as weight of E */

max←MaxW (G) ; /* Maximum weight among graph’s edges */
foreach element E of G do

r(E)← 1− w(E)
max

; /* The link’s lenght (or radius) */

• phone interaction between the owner and the contacts,

• web relationships between the owner and the contacts, and among them.

Let G = (V,E) an undirected2 graph, comprising a set V = {1, . . . , n} of ver-
texes or nodes together with a set E of edges or lines, which are 2-element
subsets of V . Each edge has a value w ∈ [0 . . . 1] called “weight”. In our case,
the vertex V represent the contacts found on the phone and stores all its data,
while an edge E = {u, v} stores the phone interactions (mobile-edge) and/or
web relationships (web-edge) between the contacts u and v. The weight of E
indicates the importance of the link. We used a graph representation which
puts the phone’s owner in the center of a circle, where its contacts are drawn
along the circumference (Figure 6.1a). After the smartphone data analysis, the
graph is enriched with edges from the phone’s owner and the contacts we are
able to trace a link between the owner and all contacts with whom she has
communicated. The weight of these links is computed trivially as the sum be-
tween the number of calls (sent or received) and sms/mms (send and received)
between the owner and the contacts. Such weight is mainly used to compute
the proximity between the vertex (the edge length or radius), that will be used
to represent graphically these relationships in the graph by bringing the most
frequently contacted people near to the owner (Figure 6.1b). The algorithm

2A graph in which edges have no orientation, i.e., they are not ordered pairs, but sets {u, v} (or
2-multisets) of vertexes.
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Figure 6.2: After the smartphone analysis, the details about the calls and sms/mms are
accessible simply by clicking on the edge between the owner and the desired contact.

which traces those links and computes their attributes is shown in Algorithm
1. The framework also provide facilities which allow the operator to simply
click on an edge and retrieve the list of calls and sms/mms between the ends.
An example of this functionality is shown in Figure 6.2.

6.3 Web search analysis

The goal of the Web search analysis component is to find the social network
between the phone owner and her contacts, and among them, by retrieving
people’s public information on the World Wide Web. As mentioned before,
we follow the approach of Mika et al. [21] to retrieve relationships from search
engine records. In this section we will describe in greater detail the relation-
ships retrieving algorithm and the techniques used to estimate the web-edges
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(a) (b)

Figure 6.3: The graph representation of contacts before (a) and after (b) the SESORR ex-
ecution. Black links represents relationships extracted from the mobile phone (mobile-
edges). Blue links represents the relationships extracted from the Web (web-edges).

weight.

6.3.1 SESORR Algorithm

In order to reconstruct relationships among a phone’s contacts, we have used
the huge amount of data collected by search engines over the years to obtain
relational network data. Our approach is to submit all possible pairs of names
and surnames to the search engine and to retrieve the results, i.e., the pages
where the two pairs 〈name, surname〉i,j co-occur, by counting the number of
pages found (hits) and, for each of them, by saving the title and the short de-
scription returned by the search engine. Moreover, it counts non-stop words
contained in titles and description for further analysis. Serving this purpose,
we designed the SESORR (Search Engine SOcial Relationships Retrieving) al-
gorithm; the pseudocode is shown in Algorithm 2. As preliminary examina-
tion, SESORR submits the query

〈name, surname〉 ∨ 〈surname, name〉

for each contact and stores the results in the G nodes data structures. In such
way it is able to discard from subsequent queries the contacts which are not
present on the Web (i.e., the query returned a resultset R = ∅). Finally, for each
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CHAPTER 6. THE MIP PROCESS

pair of contacts i, j, SESORR submits the following query:

(〈namei, surnamei〉 ∨ 〈surnamei, namei〉)
∧

(〈namej , surnamej〉 ∨ 〈surnamej , namej〉)

and stores results. Name and surname pairs are sent to the search engine by en-
closing them within quotation marks: in such way the search engine is forced
to retrieve only pages which contain the adjacency of the search terms. The
piece of software which implements SESORR is able to contact both Google
and Yahoo. After the SESORR execution, the profile graph is enriched by web-

Algorithm 2: SESORR Algorithm
Input : A profile graph G, a search engine S
Output : The profile graph G, enriched by the web-edges

/* Phase 1: Contacts web search */
foreach c ∈ V (G) do

send c name and surname to S
retrieve the resultset Rc as list of 〈title, description, url〉
store Rc in c
remove stop-words from titles and descriptions
analyze word frequencies

/* Phase 2: Pair of contacts web search */
foreach a ∈ V (G) do

foreach b ∈ V (G) do
if a 6= b and Ra 6= ∅ and Rb 6= ∅ then

send a and b name and surname to S
retrieve the resultset Ra,b as list of 〈title, description, url〉
store Ra,b in E(a, b) ∈ E(G)
remove stop-words from titles and descriptions
analyze word frequencies

edges between owner and their contacts, and among contacts. An example is
reported in Figure 6.3.

For each web-edge, SESORR merges the titles and the descriptions of each
resultset entry in a single string. It firstly purges the symbols and the stop
words from the string, then it computes the occurring frequency of each re-
maining word. Such words are called keyword and the keyword-frequency lists
are stored in the web-edge data structures and are displayed to the user when
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Figure 6.4: Frequency distribution of URLs (domains) providing relationships. Each
graph refers to a distinct profile.

she clicks on the respective graph edges. Given a web-edge, the list of key-
words and their frequencies provides a kind of “semantic vision” of the re-
lationship and the user is able to figure out a meaning of the relationship at
glance.

Moreover, besides title and description, SESORR stores each URL in the
result set. By calculating the frequency with which each URL occurs over all
relationships on a single profile, SESORR also provides a distribution of fre-
quency of domains related to the profile and its contacts (see Figure 6.4).
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6.3.2 Web-edge weight estimation
In order to measure a Web-edge weight, i.e., how similar are two contacts be-
tween which an Web-edge exists, we define a function σ(e) ∈ [0, 1] which mea-
sures the similarity between u and v individuals. In the semantic Web area,
the similarity between two classes is assessed by observing the number of in-
stances that these classes share, their individual number of instances, and the
total number of instances they contain. The most frequently used metrics are
the following:

Jaccard index between two sets X and Y is defined as the ratio between the
size of the intersection and the size of the union of the two sets being
compared:

σ(X,Y ) =
|X ∩ Y |
|X ∪ Y |

where |.| denotes the size, i.e., the number of elements in the set. σ(X,Y ) =
0 when the sets are disjoint; σ(X,Y ) = 1 when the sets are identical. This
is very intuitive measure for the given setting as it measures the rela-
tive overlap of the two sets. There is also a probabilistic interpretation,
namely the probability that a random instance from the union is in the
intersection of the two sets [44]. Independently the Dice coefficient has
been proposed, which is equal to the Jaccard index multiplied twice:

s = 2σ(X,Y ) =
2|X ∩ Y |
|X ∪ Y |

For further information see [45].

Normalized Google Distance (NGD) was introduced by Cilibrasi et al. [46]
and it takes advantage of the number of hits returned by Google to com-
pute the semantic distance between concepts. The concepts are repre-
sented with their labels which are fed into the Google search engine as
search terms. Given two search terms x and y, the the normalised Google
distance between x and y, NGD(x, y), can be obtained as follows:

NDG(x, y) =
max{log f(x), log f(y)} − log f(x, y)

logM −min{log f(x), log f(y)}

where f(x) is the number of Google hits for the search term x, f(y) is
the number of Google hits for the search term y, f(x, y) is the number of
Google hits for the tuple of search terms xy, and M is the number of web
pages indexed by Google, i.e., approximately ten billion pages.
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6.3. WEB SEARCH ANALYSIS

Figure 6.5: When user clicks on an Web link (left-side), the framework shows informa-
tion about indexes (right-side, top) and word frequencies found in the Web search result
set.

In our case, we want to compute the Jaccard similarity (σJ(e)) to an edge
e = 〈u, v〉: let X = Wu the list of Web results of individual u, Y = Wv the list of
Web results of individual v, X ∩ Y = We the list of Web results of edge e. The
Jaccard similarity can be obtained as following:

σJ(e) =
|We|

|Wu|+ |Wv|

If we compute σJ(e) only if |We| > 0, |Wu| > 0 and |Wv| > 0 because |We| =
|Wu ∩Wv|, thus σJ(e) will have not singularities. Finally we observe that 0 ≤
σJ(e) ≤ 1

2 . Thus, in order to be used as similarity weight, the Jaccard index has
to be normalized. The Dice’s similarity (σD) was introduced for such purpose:

σD(e) = 2σJ(e) =
2|We|

|Wu|+ |Wv|

To compute the Google similarity (σG(e)), we compute the normalized google
distances for each edge e = 〈u, v〉, assigning f(x) = |Wu|, f(y) = |Wv| and
f(x, y) = |We|:

σG(e) =
max{log |Wu|, log |Wv|} − log |We|
log(106)−min{log |Wu|, log |Wv|}
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In our experiments, Pearson’s correlation between the Jaccard index and
the NGD shows that their linear relationship is equal to 0.4. For this reason,
and in order to have a more flexible tool which is able to adapt itself to the user
experience, our software give the faculty to choose which of the above three
indexes to use to measure the weight of the web-edge.

6.4 Clustering

As the final analysis stage, we want to identify subgroups of contacts sharing
similarities. Generally speaking, the goal of clustering is to group together
similar elements and thereby to identify the skeleton structure of the input
data.

In this work we have employed clustering techniques to split the phone
owner’s social graph into small subgraphs (clusters). We chose spectral algo-
rithms because i) they are general and versatile, and ii) they proved to perform
effectively in the identification of locally dense subgraphs that are sparsely
inter-connected, also known as the paradigm of intra-cluster density versus
inter-cluster sparsity (see [47]). For each cluster, we expect to find nodes which
share strong similarities among them. Spectral methods have been frequently
adapted, for examples see [48, 49, 50, 51, 52, 53]. While most of these spectral
approaches have been deeply analyzed from a theoretical point of view, to the
best of our knowledge only few methods that involve eigenvalue decomposi-
tion (of the adjacency or related matrices) have been experimentally studied
and evaluated. An algorithm that embeds the graph using eigenvectors of the
normalized adjacency matrix has been tested as an example in [48]. We will see
that the tested algorithms performed effectively; however, the lack of a large
amount of available phone data prevented us from performing a broader ass-
esment of clustering algorithms.

6.4.1 Notation

Graphs and matrices

Let A = (ai,j)1≤i≤n;1≤j≤n ∈ Rn×n be an n × n square matrix over the real
numbers; its i-th row (j-th column) is denoted by A(i) (A(j)). We can represent
an n-node graph by an n-by-n matrix. The weighted adjacency matrix Aw(G)
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0

3 4

1
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2

Figure 6.6: Sample undirected graph.

is a square matrix of order |V | and its entries are defined by:

[Aw(G)]u,v :=
{
w if (u, v) ∈ E
0 otherwise

A matrixA is called symmetric ifAT = A. If the graphG is undirected,Aw(G) is
symmetric. For instance, the undirected graph shown in figure 6.6 is described
by the following symmetric matrix:

A =


0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 1 0 1
1 0 1 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0



Eigenvalues and eigenvectors

Eigenvalues are often introduced in the context of linear algebra or matrix the-
ory. Given a linear transformation, an eigenvector of that linear transforma-
tion is a nonzero vector which, when that transformation is applied to it, may
change in length, but not direction. For each eigenvector of a linear transforma-
tion, there is a corresponding scalar value called an eigenvalue for that vector,
which determines the amount the eigenvector is scaled under the linear trans-
formation. In the real-world applications, eigenvalues and eigenvectors appear
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as preferential axes of rotation of a rigid body, resonance frequencies, main
stress directions, and so on. The theory concerning eigenvalues and eigenvec-
tors is also called spectral theory. Let A a square n× n matrix. A column vector
xr is an right-eigenvector if:

A · xr = λxr

while a left-eigenvector is a row-vector xl that is:

xl ·A = xlλ.

We call λ an eigenvalue of A. The eigenvalues of a graph are defined as the
eigenvalues of its adjacency matrix. The set of eigenvalues of a graph is called
a graph spectrum [54].

Singular Value Decomposition

A singular value decomposition (SVD) of A is given by:

A = U · S · V

where:

U is an m×m orthogonal matrix, whose column vectors [u1 . . . um] are called
the left singular vectors, they are eigenvectors of A · AT , and therefore are
orthonormal3;

V is an n×n orthogonal matrix, whose column vectors [v1 . . . vn] are called the
right singular vectors, they are the eigenvectors ofAT ·A, and therefore are
orthonormal too;

S is anm×n diagonal matrix with nonnegative elements on the diagonal (and
with the same rank as A).

Such a decomposition exists for each matrix A. Conventionally, the singu-
lar values which are the nonzero diagonal elements of S are ordered in non-
increasing fashion. For further information see [55]. Please note that S is
uniquely determined, and the same does not hold for the matrices U and V .

3A square matrix M is orthonormal if it is regular (det(M) = 0) and if MT = M−1; for an
orthonormal matrix M it holds M−1 ·M = MT ·M = I . Also det(M) = ±1
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(a) (b)

Figure 6.7: A small example network. (a) Before the clustering. (b) After clustering
through Spectral (k = 3). The black node is the smartphone owner.

6.4.2 Clustering algorithms

In this section, we briefly describe the spectral-based clustering approaches we
will benchamark in order to choose the best one for our purposes. They are,
namely: Spectral and Full SVD. They are standard and frequently used meth-
ods for general data clustering. All algorithms have in common that the SVD
is performed using the adjacency matrix of the graph and the clusters are as-
signed based on the singular vectors. We selected these methods for our bench-
mark mainly for two reasons: first, all of them are simple and easy to imple-
ment, and second, these techniques form the basis of more complex methods,
e.g., [50] that presented a variation of Fast SVD using adaptive sampling.

Generally speaking, SVD is a dimensionality-reduction technique under the
constraint of maintaining contained variance. Furthermore, SVD is closely re-
lated to the k-means-clustering problem for an extensive discussion on this
refer to [51, 56, 57, 58].

Spectral

Algorithm 3: Spectral Algorithm
Input : An m× n matrix A, an integer k.
Output : An partition of the m rows (i.e., nodes) of the matrix A into k clusters.

compute the SVD of matrix A
find the top k right singular vectors v1, . . . , vk

let C be the matrix whose j-th column is given by Avj

place row (node) i in cluster j if Cij is the largest entry in the i-th row of C
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The Spectral algorithm is essentially a projection onto the first k right sin-
gular vectors. Its pseudocode is given in Algorithm 3. In [59, 52] it was called
Spectral Algorithm I and served Kannan et al. for their study of spectral graph
clustering. The intuition of this technique is that the matrix A describes the lo-
cation ofm points in an n-dimensional space. The projection onto the subspace
defined by the top k right singular vectors gives the best k-rank approximation
of A. In the context of graph clustering the input matrix A is just the adjacency
matrix of the considered graph. The different dimensions in this space are then
interpreted as clusters and the assignment of nodes is done by choosing that
dimension/cluster that has the largest corresponding entry.

Full SVD

Drineas et al. studied in [51] k-means and its continuous version. While the
discrete version is known to be NP-hard, the latter can be solved efficiently
using a projection onto the top k left singular values. Similar to the Spectral
algorithm, the cluster assignment is a discretization of the continuous solution.
We refer to this method as Full SVD in order to avoid ambiguities with the SVD
computation which is the core of all these algorithms. Its pseudocode is given
in Algorithm 4. The clustering algorithms (both the Spectral and the Full SVD)

Algorithm 4: Full SVD
Input : An m× n matrix A, an integer k.
Output : A partition of the m rows (i.e., nodes) of the matrix A into k clusters.

compute the SVD of matrix A
find the top k left singular vectors u1, . . . , uk

let C be the matrix whose jth column is given by uj , i.e., the first k columns of U
place row i in cluster j if Cij is the largest entry in the i-th row of C

output a matrix C which has on the rows the nodes (contacts) indexes, and on
the columns the clusters indexes. The matrix cells represent intuitively the
weight of how a contact belongs to a cluster. We choose to assign a node to the
cluster with the maximum absolute value. In Figure 6.8 is shown a screenshot
with the C matrix details and, for each contact, the chosen cluster.

6.4.3 Clustering quality indices
In order to give an evaluation of obtained clustering, we followed the approach
of Brandes et al. [60, 48], who used a set of quality indices that measured the
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Figure 6.8: Contact-to-cluster assignment.

density of the clusters and the sparsity of the connections between the clus-
ters. Their collection consisted of coverage, performance, intra- and inter-cluster
conductance. The problem of finding (non-trivial) graph clusterings optimiz-
ing any one of these measures is NP-hard [48]. Given a clustering C , in the
following we denote with m(C) the number of intra-cluster edges, and with
m(C̄) the number of inter-cluster edges; thus m = w(C) + w(C̄). In analogy, the
weight of intra-cluster edges is w(C), and the weight of inter-cluster edges is
w(C̄); obviously w(E) = w(C) + w(C̄).

Coverage

The coverage of a clustering C is defined as the ratio of the sum of the weights
of the edges contained inside clusters and the total weight of all edges, i.e.,
w(E). Intuitively, the larger the value of coverage the better the quality of the
clustering. Note that coverage is non-decreasing when merging two clusters as
the weight of edges inside clusters can only increase but never decrease. Thus it
favors coarse clusterings and has its (trivial) maximum of 1 for the 1-clustering.
Coverage was also used in [59, 52].

coverage(C) :=
w(C)
w(E)

=
w(C)

w(C) + w(C̄)

Performance

The idea of performance is to measure “correctly interpreted pairs of nodes” in
a graph. A pair of nodes is correctly interpreted by a clustering if both nodes
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belong to the same cluster and are adjacent or if they are not adjacent and be-
long to different clusters. Analogously to coverage, performance counts the
number of correctly interpreted pairs and is then normalized by the total num-
ber of node pairs. It was originally introduced in [61] and is closely related to
the editing distance of a clustering, i. e., the minimum number of edges that
have to be deleted or inserted in order to transform the graph into a set of
disjoint complete subgraphs. Although it is similar to coverage, it addition-
ally evaluates the sparsity between clusters and can thus favor fairly different
clusterings than coverage. Generally speaking, for sparse graphs performance
often prefers fine clusterings.

performance(C) :=
w(C) +

∑
{v,w}6∈E,v∈Ci,w∈Cj

1
n(n−1)

2

Intra- and Intercluster Conductance

The conductance measures the quality of a cut and the weight of edges in either
of the two induced subgraphs [60, 48]. The conductance ϕ(G) of a graph G is
then the minimum conductance value over all cuts of G. For a clustering C =
(C1, . . . , Ck) of a graph G, the intracluster conductance α(C) is the minimum
conductance value over all induced subgraphs G[Ci], while the intercluster
conductance δ(C) is the maximum conductance value over all induced cuts
(Ci, V \Ci). For a formal definition of the different notions of conductance, let
us first consider a cutC = (C, V \C) ofG and define conductance ϕ(C) and ϕ(G)
as follows:

a(C) :=
∑
v∈C

∑
cw∈V {v,w}∈E

ω({v, w}) = 2
∑

e∈E(C)

ω(e) +
∑

f∈E(C,V \C)

ω(f)

ϕ(C) :=


1, C ∈ {∅, V }
0, C 6∈ {∅, V } and ω(C) = 0

ω(C)
min(a(C),a(V \C)) , otherwise

ϕ(G) := min
CV

ϕ(C)

Based on the notion of conductance, we can now define intra- α(C) and inter-
cluster conductance δ(C).
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α(C) := min
i∈{1,...,k}

ϕ(G[Ci])

δ(C) :=

{
1, if C = {V }
1− max

i∈{1,...,k}
ϕ(Ci), otherwise

6.5 Results

All spectral clustering algorithms we proposed in this chapter take as input
the k parameter, i.e., the number of clusters. Although an operator can feel
free to specify any 0 ≤ k ≤ n, where n is the number of nodes in G, the clus-
tering indexes are heavily affected by the the number of clusters, as reported
in Figure 6.9. This Figure shows, for each clustering algorithm and for each
web-edge weight metric, the performance of clustering quality indexes to the
variation of k parameter. The estimation of best-k is an open research topic. A
rule of thumb is given by Mardia et al. in [62], in which the authors suggest
that an approximation of best-k is:

k′ =
√
n

2

with n the number of vertices.
Moreover, as shown in Figure 6.10, both Spectral and SVD algorithms pro-

duce a certain percentage of empty clusters if k > k′. In Figure 6.11 is shown
a graph with 218 contacts and 1242 web-edges. This graph has been clustered
via SVD clustering, with GND as web-edge weight metric and with k = k′.
The figure also shows some clusters sampled from the the graph. By looking
at each cluster’s web-edge keywords, we have been able to gather the area of
interest shared by individuals in the cluster.

In our specific case, we believe that there is no exact value of best-k that
could be estimated a priori, and that this parameter changes case-by-case. We
give the investigator all the instruments that can help her understand which
are reasonable values of k, and to develop a common sense to assess which are
the best values of clustering algorithms for each case.

77



CHAPTER 6. THE MIP PROCESS

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

●

●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

spectral (unweighted)

●

●

●
●●●

●●●
●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

●

●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

spectral (Dice)

●

●

●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

●

●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

spectral (Google Similarity)

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●
●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

SVD (unweighted)

●

●

●

●●●

●
●●

●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

SVD (Dice)

●

●

●

●
●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

SVD (Google Similarity)

●
coverage
performance

inter−cluster conductance
intra−cluster conductance

Figure 6.9: Clustering metrics trends. The profile graph used in this example has 218
contacts and 1242 web-edges. k′ = 10 and its value is shown by the black vertical line.

6.6 Limitations of our method

Our profiling method relies on information stored in the smartphone and its
precision depends by the quantity and quality of such data.
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Figure 6.10: Spectral and SVD number of empty clusters to the variation of k parameter.
The profile graph used in this example has 218 contacts and 1242 web-edges. k′ = 10
and its value is shown by the black vertical line.

Since the method we used to find a person on the Web, and her relation-
ships with other phone contacts, relies on her first name and last name, preci-
sion is strongly dependent on the care used by the owner when she inserted
each first name and last name. Sometimes only the names or the nicknames of
a contact are inserted (e.g., most intimate contact); after submitting such weak
identity to a search engine, this will produce no or useless results. To deal with
this aspect, the framework performs a pre-processing of all contact entries (e.g.,
hightlights entries which have name or surname missing) and suggests the op-
erator identifies the contacts (where possible) and enters their correct names
and surnames.

An obvious limitation deals with the time frame that we can reconstruct.
The event log stored in the device is limited to a fixed size which restricts the
vision of user activity to the latest. Also the size of stored sent and received
sms/mms, if set, will limit precision.

Another obvious limitation of our method is that it relies on the page and
bag-word counts returned by querying the search engines index with name
and surname of two contacts; we do not download the pages themselves for
further processing, because of the large amount of time involved in this pro-
cess. We are unable to apply any automatic disambiguation technique in order
to reduce cases of homonyms. On the other hand, the bag-word frequency re-
lated to each edge of the graph is a valid help for the human operator to further
analyze and to validate such as relationship.

Moreover, our method ignores the fact that a contact’s name can occur more
than once on a given Web page. This approximation is justified, as Zhu et al.
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demonstrated in [63]: page counts and name counts are highly correlated on a
log-log scale.

Another source of noise is the fact that search engines4 will sometimes re-
turn pages that do not include the search term at all. This can happen if the
search term is contained in a link to the page (but not on the page itself).

4We noticed that this phenomenon happens on Google and Yahoo, but not Altavista[64]
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Work colleagues

Musician friends

Family members

Friends (from Facebook)

University colleagues

Figure 6.11: An example of clustering after applying the SVD method. At the top, an
overview of the entire graph. Each cluster has a colour associated, then each node is
coloured according with the cluster colour which it belongs to. At the bottom, some
cluster subgraphs extracted from the main graph.
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7
Conclusions and Future Work

In this work we have presented a complete workflow which allows the in-
vestigator to forensically extract the internal memory data contained in the
smartphones, to decode them, and to analyze such information in order to
reconstruct the importance of relationships between the owner and its con-
tacts, and, thanks to the data publicly available on the Web, to reconstruct the
intra-contacts relationships. The resulting graph, namely the Identity Profile,
is further analyzed with spectral clustering techniques coming from the graph
theory, and several groups of contacts sharing similar interest are found.

The MIP process illustrated in Chapter 6 analyzes a single device at a time.
In order to have a more comprehensive profiling, we plan to extend this anal-
ysis to more devices coming from different owners linked to the same case. In
this way, correlations between different personal datasets may come to light
and this may open a more complete social network graph. Another benefit of
this approach relies on the fact that if a contact belongs to two or more personal
datasets, its name and surname give a greater chance of disambiguation and
the limitations due to manual names refining can be mitigated.

The framework idea takes place in a wider concept, the remote Forensic
Farm. In such a scenario, when the device acquisition is completed, the seized
image is forwarded to the Forensic Farm, where all the data are collected and
analysed. The Forensic Farm is a laboratory specialised in Data Decoding and
Data Analysis of the mobile equipment’s internal memory copies. When a
new internal memory copy is received from the forensic operator’s device, the
Forensic Farm’s software starts the framework and the data decoding oper-
ation begins; the output of this operation consists of all the information re-
siding on the smartphone’s internal memory copy but in an standard format,
easy to be consulted, linked by the forensic investigator. As this phase fin-
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ishes, the analysis phase starts. In this step the software extracts standard cor-
relations among all the information extracted in the data decoding stage (e.g.,
contacts sending SMSes, with related content and details, incoming and out-
coming calls, calendar events related), reconstructs the relationships among
contacts through the Web analysis and identifies the clusters. After the smart-
phone’s file system has been analysed the results are sent back to the operator,
who receives via 3G/4G the results of the Forensic Farm’s work on her mobile
equipment and she can decide what to do directly at the crime scene.
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A
The Symbian S60 format

A.1 Address book

Type flag Meaning Type flag Meaning

04024008 fax 14020001 H fax
2402C003 job 04140280 home
24028004 mobile(work) 1C02C00C nickname
0402000D video 1402400D video (home)
0C02C00D wv user ID 0402C008 url
04024009 po.box 04028009 extension
0402400A city 0402800A state
14024002 extension (home) 14028002 street (home)
14024003 state (home) 14028003 country (home)
24024006 street (work) 24028006 postal code (work)
24024007 country (work) 3C02000B DTMF
Type flag Meaning Type flag Meaning

2402C004 W fax 04028007 general
0402C007 mobile 1402C000 mobile(home)
04028008 ? 04020008 pager
2402800D video (work) 24020004 work
14028001 url(home) 24024005 url(work)
0402C009 street 0402000A postal code
0402C00A country 14020002 po.box (home)
1402C002 postal code (home) 14020003 city (home)
2402C005 po.box (work) 24020006 extension (work)
2402C006 city (work) 24020007 state (work)
3402800B note

Table A.1: Possible values for the rows of table “DATA TYPE TABLE”. They describe
the type of attributes present in the “DATA BLOCK”. (Symbian S60 v2)

Contacts and their data are stored in the Contacts.cdb file (located un-
der C:\System\Data). During the methodology iterations, we found that
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contacts data were fragmented and spread across the entire file. In fact, after
a contact update, Symbian preserves the old contact entry and appends new
one at the end of the file with the same ID but fresh data. When the system
performs a DB compression, obsolete entries are purged. After a first analysis,
we found that data could grouped in three macro-areas (parts, see Table A.2).

For each contact, the three parts are connected because each of them shares
the same contact ID. The first part stores metadata about each contact and
a block containing attributes like phone/fax/mobile numbers, snail mail ad-
dress and notes:

D2 64
10 00 00 00
FF 09 13 00 10 FF FF FF FF
20 30 30 65 31 32
30 30 66 66 61 39
64 31 32 37 36
76 12 9D FA 0F 20 E1 00
76 12 9D FA 0F 20 E1 00
04 00 00 00 00 00
00 00 1F
1D
04 00 00 00 04
14 02 00 00 00 00 00 00 00 00 00 00
04 02 C0 07 00 00 00 00 00 00 00 00
04 00 00 00 00
1A
20 00
33 33 38 38 37 36 35 34 32 33

VD
ID
CXF1
20 30 30 65 31 32
30 30 66 66 61 39
64 31 32 37 36
EDIT DATE
CREATION DATE
04 00 00 00 00 00
00 00 1F
TYPE TABLE LEN
|

TYPE TABLE
|

04 00 00 00 00
DATA BLOCK LEN
FIELD FLAG
DATA BLOCK

The second part stores contact’s name, surname and company:

10 00 00 00
12
50 61 70 E0 20 43 65 6C 6C
09 13 00 10

ID
NAME LENGHT
NAME
CXF1

The third part stores email addresses:

1C
32
00 00 00 03
10 00 00 00
24
6F 64 6F 6D 65 6E 69 63 40
6C 69 62 65 72 6F 2E 69 74

EMAIL LENGHT
EMAIL ID
EMAIL FLAG
ID
EMAIL ADDRESS LEN
EMAIL ADDRESS

|
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A.2 Calendar

Calendar entries are stored in Calendar file (located under C:\System\Data).
A calendar’s entry belongs to one of the following categories: anniversary, meet-
ing or note. A sample of calendar’s entry, an anniversary without alarm, is
shown below:

03
0F 00 00 00
0A
52
02 00 00 00
01 00 00
A4 28 52 03
05
AA 28 A2 AC
01 00 00 01 00
08 00 00
20
41 6E 6E 69 76 65 72 73
61 72 79 41 6F 66 66
0E 20 29
AA 28
AA 28

FT
VS
AF
BL
ID
Flag1
CD (GG MM)
05
AD A2 AC
Flag3
Flag2
TL
Text
|

ET
SD
ED

An example of anniversary with the alarm setted to on is shown here below:

03
0F 00 00 00
1A
52
02 00 00 00
01 00 00
A4 28 5B 03
05
AA 28 A2 AC
01 00 00 01 00
3C
43 61 6C 65 6E 41 6C 61
72 6D 53 6F 75 6E 64 32
09 01 00
08 00 00
1E
41 6E 6E 69 76 65 72 73
61 72 79 41 6F 6E
0E 20 29
AA 28
AA 28

FT
VS
AF
BL
ID
Flag1
CD (GG MM)
05
AD AT
VS2
ANL
ATXT
|

09 01 00
Flag2
TL
Text
|

ET
SD
ED

An example of meeting with the alarm set to off is shown below:
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00
0F 00 00 00
0A
50
02 00 00 00
01 00 00
A4 28 C6 02
01
A6 28
A8 28
01 00 00 00 00
08 00 00
1A
4D 65 65 74 41 6F 66 66 52 64 61 79
0E 20 29
A6 28 64 05
A6 28 91 05

FT
SF 00 00 00
AF
50
ID
Flag1
CD (GGMM)
RF
ERD
A8 28
01 00 00 00 00
Flag2
TL
Text
ET
SD
ED

An example of meeting with the alarm set to on is shown below:

00
0F 00 00 00
1A
50
02 00 00 00
01 00 00
A4 28 34 03
01
A5 28
A6 28
01 00 00 00 00
3C
43 61 6C 65 6E 41 6C 61
72 6D 53 6F 75 6E 64 AF
05 00 00
08 00 00
18
4D 65 65 74 41 6F 6E 52 64 61 79
0E 20 29
A5 28 EC 01
A5 28 90 03

FT
SF 00 00 00
AF
50
ID
Flag1
CD (GGMM)
RF
ERD
A6 28
01 00 00 00 00
RTN LEN
RTN
|

05 00 00
Flag2
TL
Text
ET
SD
ED

Some meetings are saved in a different way, we call this kind of entries special
meetings; here below is shown a special meeting with the alarm set to off and
without repetition.
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00
0F 00 00 00
08
50
02 00 00 00
01 00 00
A4 28 7A 03
08 00 00
1C
53 6D 65 65 74 41 6F
66 66 52 6F 66 66
0E 20 29
A6 28 64 05
A6 28 91 05

FT
SF 00 00 00
AF
50
ID
Flag1
CD (GGMM)
Flag2
TL
Text
|

ET
SD
ED

An example of special meeting with the alarm set to on and repetition set to off
is shown below:

00
0F 00 00 00
18
50
02 00 00 00
01 00 00
A4 28 9C 03
3C
43 61 6C 65 6E 41 6C 61
72 6D 53 6F 75 6E 64 AF
05 00 00
08 00 00
1A
53 4D 65 65 74 41 6F
6E 52 6F 66 66
0E 20 29
A6 28 94 02
A6 28 C1 02

FT
SF 00 00 00
AF
50
ID
Flag1
CD (GGMM)
RTN LEN
RTN
|

05 00 00
Flag2
TL
Text
|

ET
SD
ED

Notes are stored in a similar format as special meeting. An example of note is
shown below:

02
0F 00 00 00
08
52
02 00 00 00
01 00 00
A4 28 6F 03
08 00 00
10
44 61 79 4E 6F 74 65
0E 20 29
A5 28
A5 28

FT
VS
AF
BL
ID
Flag1
CD {ID2}
Flag2
NL
Text
ET
SD
ED

89



APPENDIX A. THE SYMBIAN S60 FORMAT

A.3 Events log

Events and status changes are stored in Logdbu.dat file (located under C:
\System\Data), and can belong to the following categories: sms , mms, voice
and data calls, SIM changes. In the last case, the event is stored as an sms, so
we will not examine it. Details about the fields are reported in Table A.4.

An example of SMS is shown in the following:

03
BA A3 EB EB B6 2C E1 00
FF
B2
60 16 00 00
1C
52 61 6D 6F 6E 61 20 4D
6F 72 65 74 74 69
04 00 05 00 33
80
44 4F 4D 41 4E 49 20 53 45 52 41 20
54 49 20 49 4E 56 49 54 4F 20 41 44
20 55 53 43 49 52 45 20 49 4E 53 49
45 4D 45 20 58 20 55 4E 41 20 43 45
4E 41 2C 6F 76 76 69 61 6D 65 6E 74
65 20 6F 67
1A
2B 33 39 XX XX XX XX
XX XX XX XX XX XX
18
00
00 00 00 01 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 01 00 00 00 A4

03
DATE
FF
NAME FLAG
|

60 16 00 00
NAME LENGTH
NAME
04 00 05 00 33
MESS LENGTH
|
|

MESS
|
|
|

NUMBER LENGHT
NUMBER
|

18
DIRECTION
00 00 00 01 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 01 00 00 00 A4

A voice call example is shown below:

00
1F 66 4A EF C8 2C E1 00
01
70
63 16 00 00
1C
52 61 6D 6F 6E 61 20 4D
6F 72 65 74 74 69
01
00
00 00 00 00
67 02 36
1A
2B 33 39 XX XX XX XX
XX XX XX XX XX XX
20 03 00 00 02 A6
17 00 00 A4

00
DATE
01
NAME FLAG
63 16 00 00
NAME LENGHT
NAME
|

01
DIRECTION
CALL TIME
67 02 36
NUMBER LENGHT
NUMBER
|

20 03 00 00 02 A6
17 00 00 A4

An MMS example is reported below:
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05
41 47 86 12 05 2A E1 00
01
F0
00 00 00 00
0E
54 69 6D 20 6D 6D 73
00 00 07 00 00 00
02 00
30 08
36 34 31 38 2C 37 32 37
5A

05
DATA
01
F0
00 00 00 00
0E
PROVIDER
00 00 07 00 00 00
02 00
NS
NUMBER
5A

A data call, or data traffic log entry, may belong to two different categories
which are related to the type of storage format used: mms-type and sms-type.
The text body of sms or mms is used to store a single packet content. An ex-
ample of sms-type data call is reported below:

03
C1 36 5F 21 08 2A E1 00
FF
A2 03 00 00 00 03
00 04 00 33
7E 50 65 72 20 75 74 69 6C 69 7A 7A
61 72 65 20 69 6C 20 73 65 72 76 69
7A 69 6F 20 64 65 76 69 20 61 74 74
69 76 61 72 65 20 41 6C 69 63 65 20
4D 41 49 4C 20 65 20 61 73 73 6F 63
69 61 72 65
0A
34 39 30 30 31
18 00 00

03
DATA
FF
A2 03 00 00 00 03
00 04 00 33
|
|

PACKET CONTENT
|
|
|

SEP MES NUM
34 39 30 30 31
FLAG END

A.4 SMS

SMS are stored in the first folder (assuming that the folders are ordered al-
phabetically) in /System/Mail folder. An example of received message is
reported in the following table:

91

/System/Mail


APPENDIX A. THE SYMBIAN S60 FORMAT

68 3C 00 10 68 3C
. . .

00 10 00 00 00 00
25 3A 00 10
0C 52 69 63 65 76
0E
20 29 34 18
00 10 45 04 01 00
01 00 00 00 02 00
01
00 00 00 00 00 00
00 01 00 00 00
FA 54 17 46 F2 29 E1 00
28
33 34 39 34 36 37 37 31 34 36 34
44
69 73 74 65 66 61 6E 6F 20 41 6C 65
00 00 00 00 00 02
00 00 00 02 03 00
00 00 01 00 00 00
00 00 00 00
F1 5A 15 41 F2 29 E1 00
02 91
34
2B 33 39 33 32 30 35
38 35 38 35 30 30
15 00 81
28
33 34 39 34 36 37 37 31 34 36

68 3C 00 10 68 3C
. . .

00 10 00 00 00 00
f l a g 1
Text
ET
Received Flag Mar
00 10 45 04 01 00
01 00 00 00 02 00
Received Flag
00 00 00 00 00 00
00 01 00 00 00
Date
SNL
Number
NL
Name
00 00 00 00 00 02
00 00 00 02 03 00
00 00 01 00 00 00
00 00 00 00
SCRD
SCF
SCNL
SCN
|

ESNF
ESNL
ESN

An example of sent message is reported in the following table:

68 3C 00 10 68 3C
. . .

00 10 00 00 00 00
25 3A 00 10
10
49 6E 76 69 61 74 6F
0E
20 29 34 18
00 10 F5 02 01 00
00 00 00 00 00 00
00
00 02 03 00 00 00
01 00 00 00 01 00
00 00
00 0C 09 22 F2 1C 32 E1 00
00 91
34
2B 33 39 33 34 39 32
30 30 30 38 39 38
04 91
34
2B 33 39 33 34 39 34
36 37 37 31 34 36
00 00
00 93 2D 4B F2 29 E1 00

68 3C 00 10 68 3C
. . .

00 10 00 00 00 00
f l a g 1
TL
Text
ET
Received Flag Mar
00 10 F5 02 01 00
00 00 00 00 00 00
Received Flag
00 02 03 00 00 00
01 00 00 00 01 00
00 00
Date
f l a g 2
UNL
UN
|

RNF
RNL
RN
|

00 00
SCRD
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Field Name Size (Bytes) Description Example

VD 2 (Uncertain) Used by DB indexing D2 64
ID 4 Contact identifier (stored as little-endian) 10 00 00 00
CXF1 9 Flag. The first byte have to be equal to the last four. The second byte depends

on Symbian version; values can be 09, 0B, 10. ”13 00 10” is constant.
FF 09 13 00 10 FF
FF FF FF

EDIT DATE (ED) 8 17 bytes-offset from CXF1. Represents the number of microseconds from year
zero.

76 12 9D FA 0F 20
E1 00

CREATION DATE (CD) 8 Represents the number of microseconds from year zero. 76 12 9D FA 0F 20
E1 00

TYPE TABLE LEN
(T T L)

1 41 bytes offset from CXF1. Stores the lenght (in bytes) of the TYPE TABLE 1D

TYPE TABLE (T T ) T T L Table of 12-bytes lenght rows, describing the types of the corrisponding data
in the DATA BLOCK. The first 5 bytes are the table start flag. The last 5 bytes
indicate the end table flag. The first 12-bytes row does not contain useful infor-
mation. For further information about data types, see Table A.1.

04 00 00 00 04
14 02 00 00 00 00
00 00 00 00 00 00
04 02 C0 07 00 00
00 00 00 00 00 00
04 00 00 00 00

DATA BLOCK LEN
(DBL)

1 Stores the size in bytes of DATA BLOCK 1A

FIELD FLAG (F F ) 2 Flag which is repeated as many times as the number of fields in DATA BLOCK. 20 00

DATA BLOCK (DB) DBL−2F F−1
2 Stores contact’s information, according to fields type described in

TYPE TABLE. Each field is separated by 00.
33 33 38 38 37 36
35 34 32 33

ID 4 Contact identifier (stored as little-endian) - The same as above. 10 00 00 00
NAME LENGHT (NL) 1 The size in nibbles of the name field. 0E

NAME NL
2 The contact’s name 43 6C 61 75 64 69

6F
SURNAME LENGHT
(SL)

1 The size in nibbles of the surname field. 08

SURNAME SL
2 The contact’s surname 43 65 71 61

COMPANY NAME LENGHT
(CNL)

1 The size in nibbles of the company field. 0C

COMPANY NAME
(CN )

1 The contact’s company 44 72 2E 77 68 79

CONTACT END 4 Flag. Denotes the end of a contact’s details. The first byte depends on symbian
version (09, 0B, 10, as in CXF1 field). The other bytes are constant.

09 13 00 10

EMAIL LENGHT (EL) 1 The size in nibbles of the email address block. 1C

EMAIL ID EL
2 The ID of email address 32

EMAIL FLAG 4 Flag. 00 00 00 03
ID 4 Contact identifier (stored as little-endian) - The same as above. 10 00 00 00
EMAIL ADDRESS LENGHT
(EF L)

1 The size in nibbles of the email address string. 24

EMAIL ADDRESS EF L
2 The email address string. 6F 64 6F 6D 65 6E

69 63 40 6C 69 62
65 72 6F 2E 69 74

Table A.2: This table lists all contact’s data which can be found in the Contacts.cdb.
Since data are located in three logical file areas, the table is split in three parts.
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Field Name Size (Bytes) Description Example

FT 1 Indicates the event type: if 00 is a Meeting if 02 is a daynote if 03 is an anniver-
sary.

00

VARIABLE SEQUENCE(V S) 4 A four bytes variable secuence if the entry represents a Meeting and the first
byte is 10 this indicates the meeting needs to be processed in a different way

0F OO OO OO

ALARM FLAG (AF ) 1 This byte indicates if the alarm is set to ON (1A for normal events 18 for Special
Meetings) or OFF (0A for normal events 08 for Special Meetings).

0A

BODY LENGTH (BL) 1 Represents the length of the in nebbles of the following part of the entry. 52
ID 4 Calendar entry identifier (stored as little-endian) 02 00 00 00
Flag1 3 Indicates a calendar entry in this area 10 00 00
CREATION DATE (CD) 4 Stores the creation date of the Calendar entry, is composer by GG and MM. A4 28 52 03
DAY (GG) 2 Represents the day part of the CD field. A4 28
MONTH (MM ) 2 Represents the month part of the CD field. 52 03
REP FLAG (RF ) 1 Appears only for meeting type entryes; indicates if the repetition of the meeting

is daily (value 01), weekly (value 02), montly (value 03).
01

REPEAT UNTIL 2 Appears only for meeting type entryes; indicates the date until the event has
to be repeated.

A5 28

ANNIVER DATE (AD) 2 Stores the date of the event, is an integer counting the number of days since
1-1-1980. This field appears only if the entry type is Anniversary.

AA 28

ALARM TIME (AT ) 2 If the alarm is set to on stores the information about the alarm time, else is
unused. For the day note this field does not appear.

A2 AC

VAR SEQ 5 is a variable secuence, in case of Anniversary the first 3 bytes are 01 00 00 if the
anniversary’s alarm is set to off the lasttwo are 01 00 may vary but their value
is always lass than 32.,

01 00 00 01 00

AL NAME LEN (ANL) 1 Indicates the size in nibbles of the ALARM NAME field 3C

AL NAME (AN ) ANL
4 Stores a text field indicating the ringtone name for the alarm 43 61 6C 65 6E 41

6C 61 72 6D 53 6F
75 6E 64 32

Flag2 3 is a flag characterizing a calendar event 08 00 00
TEXT LENGTH (T L) 1 Indicates the size in nibbles of the TEXT field 20

TEXT T L
2 − 1 Stores the text field of the calendar entry 41 6E 6E 69 76 65

72 73 61 72 79 41
6F 66 66

END TEXT (ET ) 3 Is the end flag of the TEXT field the value is always 0E 20 29 0E 20 29
START DATE (SD) 2 Stores the starting date of the entry if is a note or an anniversary else it does

not appear
A5 28

START DATE M
(SDM )

4 Stores the starting date of the entry if is a meeting else it does not appear A5 28 EC 01

END DATE (ED) 2 Stores the ending date of the entry if is a note or an anniversary else it does not
appear

A5 28

END DATE M (EDM ) 4 Stores the ending date of the entry if is a meeting else it does not appear A5 28 90 03

Table A.3: This table lists all calendar entries such as Notes Meetings Anniversaries
stored in the Calendar file.
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A.4. SMS

Field Name Size (Bytes) Description Example

COMMON PART

START DATA FLAG
(SDF )

1 Indicates a date starting at next byte, this flag combined with the EDF in-
dicates what kind of data are stored in the session. (03 DATA FF indicates an
SMS, GPRS traffic or ‘DATAMESSAGE’ MMS, 05 DATA 01 MMS recived from
the operator or GPRS traffic to the operator, 00 DATE 01 indicates incoming
and outgoing calls)

03

DATE 8 Stores the date in wich the operation has been performed. The date in stored
in big endian format.

BA A3 EB EB B6 2C E1 00

END DATA FLAG
(EDF )

1 Is located with an offset of 8 after the SDF and indicates that a date finishes
here.

FF

NAME FLAG (NF ) 1 Is located with an offset of 1 after the EDF and if the entry refers to a con-
tact present in the address book (for the SMS the value is B2 if the message is
to/from a contact in the address book for calls the value can be 70 if present
else 60).

B2

NAME LENGTH
(NL)

1 If the contact is present in the address book is located with an offset of 4 after
the NF and indicates the length in nibbles of the subsecuent field NAME.

1C

NAME NL
2 If the contact is present in the address book is located with an offset of 1 after

the NL and stores the name of the contact stored in the address book.
52 61 6D 6F 6E 61 20 4D 6F
72 65 74 74 69

SMS PART

MESS LENGTH
(ML)

1 If the contact is present in the address book is located with an offset of 5 after
the NAME field and indicates the length in nibbles of the subsecuent field
MESS, else is st with an offset of 5 after NF .

80

MESS ML
2 Is located with an offset of 1 after the ML and stores the message sent/re-

cived.
44 4F 4D 41 4E 49 20 53 45
52 41 20 54 49 20 49 4E 56
49 54 4F 20 41 44 20 55 53
43 49 52 45 20 49 4E 53 49
45 4D 45 20 58 20 55 4E 41
20 43 45 4E 41 2C 6F 76 76
69 61 6D 65 6E 74 65 20 6F
67 1A

NUMBER LENGTH
(NUL)

1 Is located with an offset of 1 after the MESS and indicates the length in
nibbles of the subsecuent field NUMBER.

1A

NUMBER NUL
2 Is located with an offset of 1 after the NUL and stores the number of the

sender/recipient of the message.
2B 33 39 XX XX XX XX XX XX
XX XX XX XX

DIR 1 Is located with an offset of 2 after the NUMBER and stores the informa-
tion about the direction of the data stored in the section (value 00 indicates a
sent message else the value will be 02).

02

CALL PART

DIRECTION 1 If the contact is present in the address book is located with an offset of 2 after
the NAME and stores the information about the direction of the data stored
in the section (value 00 indicates an exiting call else the value will be 02).

02

CALL TIME (CT ) 4 Is located with an offset of 2 after the DIR field and stores the information
about the duration of the call, data is atored in big endian format.

00 00 00 00

NUMBER LENGHT
(NUL)

1 Is located with an offset of 4 after the CT and indicates the length in nibbles
of the subsecuent field NUMBER.

1A

NUMBER NUL
2 Is located with an offset of 1 after the NUL and stores the number of the

sender/recipient of the message.
2B 33 39 XX XX XX XX XX XX
XX XX XX XX

MMS PART

PROV LEN (P L) 1 is located with an offset of 5 after the EDF and indicates the length in nibbles
of the subsecuent field P ROV IDER.

0E

PROVIDER P L
2 Is located with an offset of 1 after the P L field and stores the information

about the mms service provider’s name.
54 69 6D 20 6D 6D 73

NUM START (NS) 2 Is located with an offset of 4 after the CT and indicates the length in nibbles
of the subsecuent field NUMBER.

30 08

NUMBER NUL
2 Is located with an offset of 1 after the NUL and stores the number of the

sender/recipient of the message.
36 34 31 38 2C 37 32 37

Table A.4: This table lists all event entries such as SMS, MMS, voice and data calls, SIM
change.
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Field Name Size (Bytes) Description Example

COMMON PART

flag 1 4 If this flag is in the starting part of the file or at offset 5 the file does not contain
SMS so there will be no need to parse it.

25 3A 00 10

REC FLAG MARK
(RF M )

4 Received Flag Marker indicates a recived message 20 29 34 18

REC FLAG (RF M ) 1 Starts at byte 13 after the (RF M ). If its value is 01 then the message is recived
else if the value is 00 the message is a sent message.

10

TEXT LEN (T L) 1 Generally is just after the flag 1 indicates the message’s text length. 10
SPEC MES (SM ) 1 If appears after TEXT LEN indicates a message from a special number. 02

TEXT T L
2 − 1 Stores the text of the SMS message. 49 6E 76 69 61 74

6F
END TEXT (ET ) 1 Indicates the end of the message text. 0E

RECEIVED MESSAGE

DATE 8 This field starts 12 bytes after the recived flag (REC FLAG). FA 54 17 46 F2 29
E1 00

SEND NUM LEN
(SNL)

1 This is an otiponal field: appears only if the sender’s number is stored in the
address book. Indicates the length of the sender NUMBER field.

28

NUMBER SNL
4 Stores the number of the sender if the sender appears in the address book. 33 34 39 34 36 37

37 31 34 36 34
NAME LENGTH (NL) 1 This is an otiponal field: appears only if the sender’s number is stored in the

address book. Indicates the length of the following NAME field.
44

NAME NL
4 Stores the name of the sender if the sender appears in the address book. 69 73 74 65 66 61

6E 6F 20 41 6C 65
SERV CENT REC DATE
(SCRD)

8 Is stored with an offset of 23 bytes after the name field. F1 5A 15 41 F2 29
E1 00

SERV CENT FLAG
(SCF )

2 Indicates that the message service center’s number starts here. 02 91

SERV CENT NUM LEN
(SCNL)

1 Indicates the length of the following SERV CENT NUM field. 34

SERV CENT NUM
(SCN )

SCNL
4 Stores the number of the messge service provider. 2B 33 39 33 32 30

35 38 35 38 35 30
30

EFF SERV CENT FLAG
(ESCF )

3 Indicates that the effective message service center’s number starts here. 15 00 81

EFF SERV NUM LEN
(ESNL)

1 Indicates the length of the following EFF SERV NUM field. 28

EFF SERV NUM (ESN ) ESNL
4 Stores the effective number of the SMS message service provider. 33 34 39 34 36 37

37 31 34 36

SENT MESSAGE

DATE 8 Is stored with 14 bytes offset from the end of REC FLAG. 00 0C 09 22 F2 1C
32 E1 00

Flag 2 2 Is a flag indicating the presence of a recived message. 00 91
UNDEF NUMB LEN
(UNL)

1 Indicates the length of the following UNDEFINED NUMBER field. 34

UNDEFINED NUMBER
(UN )

RNL
4 It is not clear which number does this field stores. Maybe the number of the

sender’s message service provider.
2B 33 39 33 34 39
32 30 30 30 38 39
38

RECIVER NUMB FLAG
(RNF )

2 This flag indicates the presence of the sender’s number in the next bytes. 04 91

RECIVER NUMBER LEN
(RNL)

1 Indicates the length of the following RECIVER NUMBER field. 34

RECIVER NUMBER
(RN )

RNL
4 Stores the reciver’s number. 2B 33 39 33 34 39

34 36 37 37 31 34
36

SERV CEN REC DATE
(SCRD)

8 Stores the reciving date for the message service provider, it is stored with an
offset of 2 bytes from the end of RECIVER NUMBER.

00 93 2D 4B F2 29
E1 00

Table A.5: This table lists all fields characterizing an SMS.
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