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Abstract

In this thesis we study some queueing models that are worthwhile to understand the air-
traffic congestion. From the point of view of classical queueing theory the air traffic system is
difficult to study, mainly because it is hard even to define the basic quantities of the theory.
The system becomes complex, since there are a many factor, that influence the air-traffic
like weather conditions, technical problems, air turbulences caused by the different types of
aircrafts. Thus is necessary to investigate the impact of the arrivals of aircraft on air traffic.
A common hypothesis in literature is to assume that the arrivals of aircrafts are very well
modeled by a Poisson process. This assumption is suitable for mathematical modelling, due
to the memoryless property of Poisson process that simplifies the study of congestion in such
systems.
Our first goal is to study the property of a model of the arrival process to a system and to
compare its features to the Poisson process. We will show in this work why the Poissonian
hypothesis for air-traffic is doomed to failure even if the Poisson process is very similar to our
process if it is observed on a time scale sufficiently short. We found interesting connections
of this model with the statistical mechanics of Fermi particles.
Once one understands the properties of arrival process to the system, to study its evolution
we use the theory of Markov chain.
Our second goal is the study of the stochastic properties of other queueing systems, relevant in
the applications, where the arrivals are described according general independent stochastic
process and the service is delivered according to various disciplines. This corresponds to
the study of the stationary measure of a Markov chain. In order to find the stationary
distribution of such Markov chain we use the generating function technique. Part of this
thesis is a discussion of the criteria usually presented in literature to evaluate the goodness
of various approximation schemes. It will turn out, actually, that the generating function is
not always possible to compute explicitly, and some numerical procedures are necessary in
order to compute the relevant quantities of the system.

Keywords: Queueing system, air-traffic congestion, non Poissonian arrivals, tail approx-
imation, two class queue in parallel, priority and Bernoulli scheduling.





Riassunto

In questa tesi studiamo dei modelli di coda che sono utili per capire la congestione del traffico
aereo. Dal punto di vista della teoria delle code classica e’ difficile studiare il sistema del
traffico aereo, soprattutto perche’ e’ complesso definire le quantita’ di base della teoria. Il
sistema diventa complesso, poiche’ ci sono molti fattori che influiscano sul traffico aereo, ad
esempio le condizioni meteo, problemi tecnici, le turbolenze dell’aria causate da diversi tipi
di aeromobili. Quindi per capire il traffico aereo diventa necessario studiare la distribuzione
degli arrivi degli aeroplani. In letteratura l’ipotesi comune e’ di assumere che gli arrivi degli
aeroplani sono descritti molto bene dal processo di Poisson. Questa assunzione e’ adatto per
i modelli matematici, per la proprieta’ di assenza di memoria del processo di Poisson che
semplifica lo studio della congestione in tale sistema.
Il primo obiettivo di questa tesi e’ di studiare le proprieta’ di un processo degli arrivi degli
aeromobili al sistema e di confrontare tale processo con il processo di Poisson. In questo
lavoro mostriamo come l’ipotesi Poissoniana per il traffico aereo e’ destinato a fallire anche
se il processo Poissoniano e’ molto simile al nostro modello degli arrivi se viene osservato su
una scala di tempo opportunamente corta.
Troviamo poi, nella trattazione del nostro processo, una connessione interessante del nostro
modello con la meccanica statistica di Fermioni.
Una volta comprese le proprieta’ del processo degli arrivi al sistema, per studiare la sua
evoluzione usiamo la teoria Markoviana.
Il secondo obiettivo di questa tesi e’ lo studio delle proprieta’ stocastiche di altri sistemi di
coda, sempre rilevanti nelle applicazioni, in cui gli arrivi sono generali ma indipendenti, e
discipline di servizio particolari rendono non banale lo studio della distribuzione stazionaria
della catena. Questo corrisponde a studiare la misura stazionaria di certe catene di Markov.
Per trovare la distribuzione stazionaria usiamo il metodo della funzione generatrice. Una
parte di questa tesi e’ la discussione dei criteri, di solito presentati in letteratura, per valutare
l’ottimalita’ dei vari schemi di approssimazione.

Parole chiave: Sistema di coda, traffico aereo congestionato, arrivi non Poissoniani,
approssimazione coda, due classi di coda in parallelo, priorita’ e scheduling Bernoulliano.





Contents

Abstract iv

1 Introduction and Motivation 1
1.1 Stochastic point process as arrival process . . . . . . . . . . . . . . . . . . . . 2
1.2 Model with variable number of servers . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Two queues in parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 The map of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Queueing system with pre-scheduled random arrivals 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Description of the model: the arrival process . . . . . . . . . . . . . . . . . . 8
2.3 Queueing systems with PSRA process: independence approximation . . . . . 15
2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Queueing systems with PSRA process: autocorrelated arrivals . . . . . . . . . 20
2.6 Conclusions and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Discrete time Queueing System With Variable Number of Servers 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Description of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Steady state probability distribution . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Some details about the root of denominator . . . . . . . . . . . . . . . . . . . 32
3.5 The idea of approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Theorical results: case 𝐺𝐼/𝐷/𝑐 . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Theorical results: case 𝐺𝐼/𝐷/𝑐𝑖 . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Proof of theorem 3.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.9 Average queue size and variance . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9.1 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.10 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Two class queue in parallel: Priority and Bernoulli scheduling 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 The model I: Discrete time GI/Geom/1 queueing system with priority . . . . 60
4.3 The average length of the queue . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 The boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 The model II: Bernoulli schedules in two class 𝐺𝐼/𝐷/1 queueing system . . 66
4.6 Derivation of functional equation under stationary condition . . . . . . . . . . 67
4.7 Study of functional equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

i



4.7.1 Case 𝑝 = 0 and 𝑝 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7.2 Case 0 < 𝑝 < 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 The queue length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.9 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Acknowledgments 77

List of figures 79

List of tables 79

Bibliography 83



Chapter 1

Introduction and Motivation

To wait, or not to wait: that is the queue!

In this thesis we study some queueing models that are worthwhile to understand
the air-traffic congestion. From the point of view of classical queueing theory the air traffic
system is difficult to study, mainly because it is hard even to define the basic quantities
of the theory. The system becomes complex, since there are a many factor, that influence
the air-traffic like weather conditions, technical problems, air turbulences caused by the
different types of aircrafts. For instance it is clear that there is some congestion for landing
aircrafts, since they have to follow some holding paths, but it is not easy to quantify the
actual time spent in queue or even its instant length. On the other hand, even assuming
that the parameters of the system are known, it is not clear what kind of point processes
are suitable to describe arrivals and service times. Thus is obviously necessary, to investigate
the impact of the arrivals of aircrafts on air traffic. A common hypothesis in literature is
to assume that the arrivals of aircrafts are very well modeled by a Poisson process. This
assumption is very suitable for mathematical modelling, due to the memoryless property of
Poisson process that simplifies the study of congestion in such system.
Our first goal is to study the property of arrival process to a system. We will show in this
work why the Poissonian hypothesis for air-traffic is doomed to failure.
Once one understands the properties of arrival process to a system, to study the evolution of
system we use the theory of Markov chain.
Our second goal is the study of the stochastic properties of other queueing system, where
the arrivals are described according general independent stochastic process and the service
is delivered according to various disciplines. This corresponds to the study of stationary
measure of Markov chains. In order to find the stationary distribution of Markov chain we
use the generating function technique. Part of this thesis is a discussion of the criteria usually
presented in literature to evaluate the goodness of various approximation schemes. It will
turn out, actually, that the generating function is not always possible to compute explicitly,
and some numerical procedures are necessary in order to compute the relevant quantities of
the system.
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2 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.1 Stochastic point process as arrival process

Poissonian hypothesis for air traffic arrivals, to our knowledge, goes back to the 70’s when
Dunlay and Horonjeff gave in [17] a number of theoretical and statistical arguments to justify
this assumption, and, since then, several other statistical studies have supported the same
results. Even recently, see [16], a very careful study of the interarrival times of aircrafts to
major US airports shows a small difference between the Poisson and the observed distribution,
i.e. the actual arrivals are slightly less random than Poissonian ones, but the difference is
quite small in all observed airports. On this ground, in various papers, see for instance
[18], [21] and [22] and reference therein, Poisson arrivals have been assumed in the analysis
of judicious management of service times. It should be stressed that in all these papers
the statistical validation of the Poissonian hypothesis has been based on computations on
time scales smaller than the intrinsic randomness of the system. The fact that arrivals are
prescheduled clearly make the Poissonian hypothesis questionable. If we forecast a reduction
of the intrinsic variability of arrival times, which could be achieved by various technical
improvements (e.g. a rescheduling closer to the actual arrival times, or an en-route control
of the paths of the aircrafts), we should expect the Poissonian assumption to fail, because it
depends only on a single parameter 𝜌. About the stochastic models of aircraft arrivals we
consider a point process defined as follows

𝑡𝑖 =
𝑖

𝜆
+ 𝜉𝑖 (1.1)

where 𝑖 ∈ Z, the 𝜉𝑖 are i.i.d. random variables with variance 𝜎2 eventually much larger than
1
𝜆 and 1

𝜆 is the expected interarrival time between two aircrafts. From now on, we will call
this process pre-scheduled random arrivals (PSRA) process. Note that this arrival process,
excepted the presence of cancellations and pop-ups1, is exactly the actual arrival process
introduced in [4] using for 𝜉𝑖 a uniform distribution. This process that we will study in
chapter 2 is an arrivals model with two features. First, it shows a pattern of arrivals very
close to a Poisson process when we look at time scales smaller than the standard deviation
of aircraft delays, second, it provides the distribution of arrivals on time scales larger or
comparable to the standard deviation of aircraft delays.

We study more rigorously the features of arrival process presented in [4], which we suitably
generalize, and to understand its analytical properties, we show that this process, with a
suitable rescaling of the distribution of 𝜉𝑖’s, converges to the Poisson process in total variation
for large 𝜎, so

∞∑︁
𝑛=0

|𝑞(𝜎)
𝑛 − 𝑞𝑛| → 0 as 𝜎 →∞ (1.2)

where the sequence 𝑞
(𝜎)
𝑛 and 𝑞𝑛 are the coefficient of generating function of PSRA process and

Poisson process respectively. Moreover, we show, both analytically and numerically, that the
congestion related to this process is very different from the congestion of a Poisson process,
on any time scale. This is due to the negative autocorrelation of the process, as we prove
explicitly.

1Pop-ups are flights that arrive at the airport but were not expected on the time the GDP was imple-
mented. A Ground Delay Program (GDP) is a traffic flow initiative that is instituted by the Federal Aviation
Administrative (FAA) in the US.
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1.2 Model with variable number of servers

The multi-server queueing system, with Poisson arrivals and deterministic service time, de-
noted usually by 𝑀/𝐷/𝑐 has a long history. The system was initially ideated by Erlang (see
e.g. [11]) and later studied in [9, 10, 19], using theory of complex analysis. They describe
the generating function of the system in terms of the root of the denominator inside the
unit disc. Nevertheless, the problem to find the 𝑐 complex root inside the unit disc is still
studied. In this context, we will consider the systems with general arrivals, a variable number
of servers, that is a system in which 𝑐 is a random variable. This is because we want to study
simple models of a discrete time services in which the number of servers at each time is the
independent realization of a given random variable with distribution 𝛼𝑙 = 𝑃 (𝑐𝑖 = 𝑙) i.e. 𝛼𝑙 is
the probability that the users2 find 𝑙 available severs. A very natural example: in an airport,
due to the safety rules for air traffic, some runways may be momentarily unavailable when
some other runways are used by aircrafts in certain conditions. Hence the number of runways
available in each time slot3 may vary very rapidly.

We write the exact generating function in terms of 𝑐 singularities 𝑧1, ...𝑧𝑐 of denominator
in the unit disc, which represent the exact solution of problem, that gives us the knowledge
of the queueing system. Nevertheless, the solution has two main disadvantages. First, it is
not always easy to find complex zeroes of denominator, especially when 𝑐 is large. Second, a
small error (always present in numerical computations) on the values of 𝑧1, ...𝑧𝑐 generates a
sequence of 𝑃𝑛 that rapidly diverges from the true (probabilistic) expression. We show that
if 𝑧1, ...𝑧𝑐 do not cancel exactly the zeroes of the denominator in the generating function,
the latter diverges in some 𝑧𝑖 and their coefficients 𝑃𝑛 diverge exponentially, loosing their
probabilistic interpretation. We therefore define a suitable approximation schemes for infinite
Markov chain in order to avoid the explicit computation of such singularities.

The basic idea of this approximation scheme is as follows: we describe the system starting
from the cumulative probabilities 𝜎𝑛 :=

∑︀𝑛
𝑘=0 𝑃𝑛 and in order to have a probabilistic interpre-

tation, the sequence of 𝜎𝑛 has to be increasing, 𝜎𝑖 ≤ 𝜎𝑖+1 and lim𝑛→∞ 𝜎𝑛 = 1. Let {�̂�𝑛}𝑛≥0

and {𝜎}𝑛≥0 be the solution of the infinite system and truncated system respectively and also
let us define by Δ𝑛 := 𝜎𝑛− �̂�𝑛 the errors of approximation; thus due to the linearity of system
representing the 𝜎𝑛’s, we can write it in terms of Δ𝑛’s. We will study the property of errors
Δ𝑛’s of approximation. We will present a rephrasing of one of the most used approximation
schemes, the so-called last column augmentation, and we will discuss some theoretical and
numerical results about the errors involved in this approximation.

We will show that an optimal approximation scheme, the censored Markov chain, gives
often a bigger error than augmentation procedure in the part of the distribution that is
relevant in the computation of the average values. Also with our approximation scheme we
give an estimate on the errors in the sense of the 𝐿∞ norm, then

|𝑃𝑛 − 𝑃𝑛| = |𝜎𝑛 − 𝜎𝑛−1 − (�̂�𝑛 − �̂�𝑛−1)| = |Δ𝑛 −Δ𝑛−1| ≤ Δ�̄�+1 (2.1)

where �̄� is the order of truncation of Markov chain, 𝑃𝑛 and 𝑃𝑛 are the stationary probability
measure of infinite Markov chain and augmented Markov chain respectively.

2In this thesis we use the term “user” in a general sense.
3In this thesis we assume that the time is divided into fixed length intervals or slots. The users arrive in

the system according to a general arrival process during the consideration and the consecutive slot, but they
can receive service only at pre-defined discrete times, so at the beginning of slot
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1.3 Two queues in parallel

Let us now consider a simplified description of the following problem: the air traffic is com-
posed of different types of aircrafts, implying different queueing costs as well or different
service times. Hence a non realistic description has to take into account the existence of
different classes of users. Let us now consider the system, when two classes of users arrive
to a single server, according to a general independent stochastic process. We can think this
system composed of two separate queues in parallel, where the each one of users belonging
to each queue are served according to FIFO discipline. We discus two cases: 1) users of first
class have a higher priority than users of second class, or in other words the users of second
class can be served only if the users of first class are absent. 2) users of first class receive
service with probability 𝑝 (0 ≤ 𝑝 ≤ 1) and the users of second class receive service with
probability 1−𝑝 (Bernoulli scheduling) if the two classes are both non empty. To understand
these typology of system we describe it as a Markov chain with two dimensional probabil-
ity generating function. In this way we obtain a generating function which contain some
unknown functions. In order to find the unknown functions we use the theory of boundary
value problem. So, the problem to finding the stationary joint probability distribution can
be reduced to solve the boundary value problem.

Fayolle and Iasnogorodski in [12] studied two queueing in parallel, with Poisson arrivals
and exponential service times and single server; using the Riemann Hilbert boundary value
problem they found the joint generating function. Later Cohen and Boxma in [15] described
in general the boundary value problem in queueing theory.

In the first case i.e. a simple priority rule, that will we study in chapter 4, the generating
function contains a single unknown function. We study the condition for the existence of
solution of boundary value problem and we solve it. In this way we control completely the
generating function.

The study of second case is more difficult, because the generating function contain two
unknown functions. The idea to bypass this difficulty is to use the perturbative method.
Clearly the generating function depends on 𝑝 and for 𝑝 = 1 and 𝑝 = 0 the generating function
has the same structure as the generating functions of system discussed in the first case, hence
we have the exact solution of problem for 𝑝 = 1 and 𝑝 = 0 as we will prove in chapter 4.
Now expanding the generating function in powers of 1− 𝑝 and 𝑝 on appropriate domain we
obtain two sequence of functional coefficients that are symmetric in 𝑥 and 𝑦. Using these
coefficients and exact solution of problem for 𝑝 = 1 and 𝑝 = 0 we will give the approximate
solution of generating function. In order to prove the validity of approximation method we
present some numerical results for lower and heavy traffic intensity and varying of parameter
𝑝.

1.4 The map of thesis

The thesis is organized as follows:
In chapter 2, we propose the PSRA process as arrival process, that is alternative of Poisson
process to describe the arrivals of aircrafts. We study the property of this stochastic point
process through the use of generating function and compare its feature to Poisson process.
In chapter 3, we investigate the model with fixed and variable number of servers. We give
a suitable approximation scheme for infinite Markov chain in order to obtain the average of
the queue length.
In chapter 4, we study discrete time single server queueing systems with two classes of users,
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where the users of first class have a higher priority than users of second class. We obtain the
generating function of the joint stationary probability distribution through the solution of the
boundary problem. Moreover we study the discrete time single server queueing with Bernoulli
scheduling and two classes of users. We give the approximation solution of generating function
through perturbative method.
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Chapter 2

Queueing system with
pre-scheduled random arrivals

In this chapter we consider a point process obtained summing a random variable 𝜉𝑖

to each point 𝑖 of the set of integer Z. The 𝜉𝑖’s are i.i.d. random variables with variance 𝜎2

eventually much larger than 1. We compare the process obtained with this construction with
the Poisson process. Moreover, we show that, this process, with a suitable rescaling of the
distribution of 𝜉𝑖’s, converges to the Poisson process in total variation for large 𝜎. We then
study a simple queueing system with our process as arrival process, and we provide some
analytical and numerical results.

2.1 Introduction

The main aim of this chapter is to define a stochastic point process and to compare its
features to the Poisson process. It is well known that the memoryless property of the Poisson
process simplifies many technical steps in the analysis of queueing systems, but there are
arrival processes where such an assumption is not completely satisfied. In particular, we have
in mind air traffic models.

Stochastic models of aircraft arrivals based on statistical analysis and on simulations
have a long history. As a first attempt, Barnett et al. [1] studied the arrivals to Boston
Logan Airport. A version of the alternative model of arrivals we propose in this chapter
was introduced and studied numerically in [4]. The model is refined in [3], where seasonal
and daily effects are taken into account to describe random delays of departure times and,
with these corrections, the model is quite accurate in its predictions. The key feature of the
model is a soft a-prior scheduling of arrivals: indeed, both in US and in Europe, aircrafts
are supposed to take off and to land by a schedule dictated by the capacity constraint of the
runways, and by the assumption that each aircraft would land in a very narrow time slot.
However, on the day of operations, an aircraft will be declared ”on time” if it lands in a
time interval larger than ten times the original slot. In this sense the scheduling should be
considered ”soft”.

The process we study below is an arrivals model with two features. First, it shows a
pattern of arrivals very close to a Poisson process when we look at time scales smaller than
the standard deviation of aircraft delays, second, it provides the distribution of arrivals on

7
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time scales larger or comparable to the standard deviation of aircraft delays.
Thus, the aim of this chapter is an attempt to study more rigorously the features of

arrival process presented in [4], which we suitably generalize, and to understand its analytical
properties.

Moreover, we compare, both analytically and numerically, the queueing system in which
the arrivals are described according to a Poisson process and a PSRA process respectively
and for the second system we give the expression for the stationary probability distribution,
under the hypothesis that the number of arrivals in subsequent slot are independent random
variable. We can consider that stationary distribution like lower bound for the stationary
distribution for the 𝑀/𝐷/1 queueing system.

The analytical description of the system clarifies many interesting features of this kind of
traffic: for heavy traffic the system has a long memory of the initial conditions; its description
is obtained by the superposition of two processes, living on different time scales. This give
the possibility to investigate also systems with slowly variable traffic intensities.

The chapter is organized as follows: in section 2.2 we describe our arrival process, and
we list some results on the comparison to the Poisson process. In section 2.3 we present
a simplified computation, which shows that congestion levels according to our process are
quite different from the Poisson process. However, in section 2.4 we show numerically that
our approximation is bad for very congested systems, and the actual level of congestion is even
more different than the Poissonian one. In section 2.5 we describe completely our queueing
system at the price to enlarge suitably the state space of the Markov chain describing it. It
turns out that for our process we have a finite value of the expected queue length even in the
critical case 𝜚 = 1, while the Poisson queue diverges. Starting from the results on the critical
case, we propose an approximation scheme that works very well for highly congested (𝜚 near
to 1) systems. In this description a nice connection with the statistical mechanics of Fermi
gas emerges quite naturally. Section 2.6 is devoted to conclusions and open problems.

2.2 Description of the model: the arrival process

The queueing model we study is defined by a single server with deterministic service time and
an arrival process, which we will call pre-scheduled random arrivals (PSRA) process, defined
as follows. Let 1

𝜆 be the expected interarrival time between two users, we define 𝑡𝑖 ∈ R the
actual arrival time of the 𝑖-th user by

𝑡𝑖 =
𝑖

𝜆
+ 𝜉𝑖 𝑖 ∈ Z (2.1)

where 𝜉𝑖’s are i.i.d. random variables.
If the 𝜉𝑖’s are uniform, the model is the actual arrival times process introduced in [4]

without cancellations and pop-ups, which could be easily integrated into the process. From
now on, we will assume that 𝜉𝑖’s have continuous probability density 𝑓

(𝜎)
𝜉 (𝑡) with variance 𝜎2,

and we will set without loss of generality 𝐸(𝜉𝑖) = 0, since 𝐸(𝜉𝑖) ̸= 0 affects only the initial
configuration of the system. The main aim of this section is to compare the features of the
PSRA process to the Poisson process when 𝜎 is large. It is well known, e.g. [2, p.447], that the
Poisson arrival process is defined by the fact that probabilities 𝑃𝑗,𝑗+1(Δ𝑡) = 𝑃 (𝑛(𝑡 + Δ𝑡) =
𝑗 + 1|𝑛(𝑡) = 𝑗) of a ”jump” from the state 𝑗 to the state 𝑗 + 1 in the time interval (𝑡, 𝑡 + Δ𝑡]
have the form

𝑃𝑗,𝑗+1(Δ𝑡) = 𝑃+(Δ𝑡) = 𝜆Δ𝑡 + 𝑜(Δ𝑡) (2.2)
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where 𝜆 is a constant independent of 𝑡 and 𝑗; 𝜆 has the meaning of velocity of arrivals, i.e.
denoting with 𝑡𝑎 the interarrival time, 𝐸(𝑡𝑎) = 1

𝜆 . For pre-scheduled random arrivals the
probability 𝑃 (𝑖, 𝑡,Δ𝑡) that the 𝑖-th user arrives in the time interval (𝑡, 𝑡 + Δ𝑡] is given by

𝑃 (𝑖, 𝑡,Δ𝑡) = 𝑃

(︂
𝑡 <

𝑖

𝜆
+ 𝜉𝑖 < 𝑡 + Δ𝑡

)︂
= (2.3)

= 𝑃

(︂
𝑡− 𝑖

𝜆
< 𝜉𝑖 < 𝑡 + Δ𝑡− 𝑖

𝜆

)︂
=
∫︁ 𝑡+Δ𝑡− 𝑖

𝜆

𝑡− 𝑖
𝜆

𝑓
(𝜎)
𝜉 (𝑥)𝑑𝑥 (2.4)

and, for small Δ𝑡, it may be written as

𝑃 (𝑖, 𝑡,Δ𝑡) = 𝑓
(𝜎)
𝜉

(︂
𝑡− 𝑖

𝜆

)︂
Δ𝑡 + 𝑜(Δ𝑡) (2.5)

By (2.5), the probability 𝑃+(𝑡, Δ𝑡) of a single PSRA arrival in the interval (𝑡, 𝑡 + Δ𝑡] is

𝑃+(𝑡, Δ𝑡) =
∑︁
𝑖∈Z

𝑃 (𝑖, 𝑡,Δ𝑡)
∏︁
𝑗 ̸=𝑖

(1− 𝑃 (𝑗, 𝑡, Δ𝑡)) =

=
∑︁
𝑖∈Z

[︂
𝑓

(𝜎)
𝜉

(︂
𝑡− 𝑖

𝜆

)︂
Δ𝑡 + 𝑜(Δ𝑡)

]︂
exp

⎛⎝∑︁
𝑗 ̸=𝑖

log
[︂
1− 𝑓

(𝜎)
𝜉

(︂
𝑡− 𝑗

𝜆

)︂
Δ𝑡 + 𝑜(Δ𝑡)

]︂⎞⎠ (2.6)

and

𝑃+(𝑡, Δ𝑡) =
∑︁
𝑖∈Z

[︂
𝑓

(𝜎)
𝜉

(︂
𝑡− 𝑖

𝜆

)︂
Δ𝑡 + 𝑜(Δ𝑡)

]︂
exp

⎛⎝−∑︁
𝑗 ̸=𝑖

[︂
𝑓

(𝜎)
𝜉

(︂
𝑡− 𝑗

𝜆

)︂
Δ𝑡 + 𝑜(Δ𝑡)

]︂⎞⎠ (2.7)

Hence up to the first order in Δ𝑡 the rate of arrival 𝜆(𝑡) of the pre-scheduled random arrivals
is defined by

𝜆(𝑡) =
∑︁
𝑖∈Z

𝑓
(𝜎)
𝜉

(︂
𝑡− 𝑖

𝜆

)︂
(2.8)

This rate 𝜆(𝑡) is periodic in 𝑡 with period 1
𝜆 , but it has an explicit dependence on 𝑡. However

we are interested in the dependence of 𝜆(𝑡) on 𝜎, in particular when 𝜎 is large with respect
to 1

𝜆 . To prove limit properties for our process, we have to specify the way we want to send
𝜎 to infinity. We will require the following scaling property for the density 𝑓

(𝜎)
𝜉 (𝑡).

Assumptions 2.2.1. The probability density of 𝜉 has the form

𝑓
(𝜎)
𝜉 (𝑡, 𝜎2) =

1
𝜎

𝑓𝜉(𝑡/𝜎) (2.9)

i.e. it is the rescaling of a well defined continuous density 𝑓𝜉(𝑡) with finite variance. We will
also write max𝑡∈R 𝑓𝜉(𝑡) = 𝑀 .

This assumption is introduced in order to exclude pathological ways to send 𝜎 to infinity,
as, for instance, to have a bimodal distribution with fixed maxima, see figure 2.1.

For example Gaussian, Exponential, Gamma, and Uniform random variables satisfy this
property. It follows that, in the limit 𝜎 very large the expression

𝑅(𝜎, 1/𝜆) :=
∑︁
𝑖∈Z

1
𝜆

𝑓
(𝜎)
𝜉

(︂
𝑡− 𝑖

𝜆

)︂
(2.10)



10 CHAPTER 2. QUEUEING SYSTEM WITH PRE-SCHEDULED RANDOM ARRIVALS

Figure 2.1: A bimodal distribution with fixed shapes shifting to infinity for 𝜎 →∞.

is the Riemann integral of the function 𝑓
(𝜎)
𝜉 (𝑡).

For example, let 𝜉 be Gaussian 𝑁(0, 𝜎2),

𝑅(𝜎, 1/𝜆) =
∑︁
𝑖∈Z

1
𝜆

1√
2𝜋𝜎2

𝑒−
(𝜆𝑡−𝑖)2

2𝜎2𝜆2 =
∑︁
𝑖∈Z

1√
2𝜋

𝑒−
1
2( 𝑡𝜆−𝑖

𝜆𝜎 )2 1
𝜆𝜎

=
∑︁
𝑖∈Z

1√
2𝜋

𝑒−
𝑥2

𝑖
2 Δ𝑥 −→ 1

where 𝑥𝑖 = 𝜆𝑡−𝑖
𝜆𝜎 and Δ𝑥 = 1

𝜆𝜎 and the limit is for 𝜎 →∞.
For any random variable rescaled in the above sense it is clear that the result

lim
𝜎2→∞

𝑅(𝜎, 1/𝜆) = 1 (2.11)

holds, and therefore, in the same limit,

lim
𝜎2→∞

𝜆(𝑡) = lim
𝜎→∞

𝜆𝑅(𝜎, 1/𝜆) = 𝜆 (2.12)

It is interesting, for Gaussian 𝜉, to check numerically how fast the limit is reached. Table 2.1
shows it. For simplicity, we set 𝜆 = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

λ(
σ,

t)

λ(σ,0)
λ(.8,t)
λ(.2,t)

Figure 2.2: Behavior of the function 𝜆(𝜎, 𝑡)

The graph in figure 2.2 shows that, in terms of rate of arrivals, the pre-scheduled random
arrivals approach the Poisson process when 𝜎 is suitably large. In particular for Gaussian
variables with standard deviation 𝜎 of order 1/𝜆 we have that 𝜆(𝑡) tends to be constant. Note
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𝜎 𝜆(0) 𝜆(0.1) 𝜆(0.2) 𝜆(0.3) 𝜆(0.4) 𝜆(0.5)
.2 1.994726 1.760407 1.210523 0.651951 0.292114 0.175283
.3 1.340089 1.274318 1.103259 0.894087 0.726696 0.663191
.4 1.085005 1.068767 1.026261 0.973729 0.931237 0.915008
.5 1.014384 1.011637 1.004445 0.995555 0.988363 0.985616
.6 1.00164 1.001327 1.000507 0.999493 0.998673 0.99836
.7 1.000126 1.000102 1.000039 0.999961 0.999898 0.999874
.8 1.000007 1.000005 1.000002 0.999998 0.999995 0.999993
.9 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1.

𝜎 𝜆(0.6) 𝜆(0.7) 𝜆(0.8) 𝜆(0.9) 𝜆(1)
.2 0.292114 0.651951 1.210523 1.760407 1.994726
.3 0.726696 0.894087 1.103259 1.274318 1.340089
.4 0.931237 0.973729 1.026261 1.068767 1.085005
.5 0.988363 0.995555 1.004445 1.011637 1.014384
.6 0.998673 0.999493 1.000507 1.001327 1.00164
.7 0.999898 0.999961 1.000039 1.000102 1.000126
.8 0.999995 0.999998 1.000002 1.000005 1.000007
.9 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1.

Table 2.1:

that for applications mentioned in the introduction, we do expect the standard deviation to
be much larger than 1/𝜆. Note also that the explicit structure of the density of 𝜉 does not play
any particular role, and similar results may be obtained with different distributions. However
it is clear that a small dependence on 𝑡 is always present in the expression of 𝜆(𝑡), and hence
it is difficult to obtain a quantitative comparison between the pre-scheduled random arrivals
and the Poisson process on this basis, therefore we look at the distribution of the random
variable 𝑛(𝑡, 𝑡+𝑇 ), number of arrivals in the finite interval (𝑡, 𝑡+𝑇 ]. So the random variable
𝑛(𝑡, 𝑡 + 𝑇 ) count the number of arrivals in the interval (𝑡, 𝑡 + 𝑇 ]. Let us call 𝑝𝑖(𝑡, 𝑡 + 𝑇 ) the
probability that the 𝑖-th user arrives in the interval (𝑡, 𝑡 + 𝑇 ]. Clearly

𝑝𝑖(𝑡, 𝑡 + 𝑇 ) =
∫︁ 𝑡+𝑇

𝑡
𝑓

(𝜎)
𝜉

(︂
𝑥− 𝑖

𝜆

)︂
𝑑𝑥 (2.13)

Given the probabilities 𝑝𝑖(𝑡, 𝑡+𝑇 ) we can write the generating function of the random variable
𝑛(𝑡, 𝑡 + 𝑇 ), and, defining 𝑞

(𝜎)
𝑛 = 𝑃 (𝑛(𝑡, 𝑡 + 𝑇 ) = 𝑛) we get

𝑞(𝜎)
𝑛 =

∑︁
𝐼={𝑖1,...,𝑖𝑛}

∏︁
𝑖∈𝐼

𝑝𝑖(𝑡, 𝑡 + 𝑇 )
∏︁
𝑗 /∈𝐼

(1− 𝑝𝑗(𝑡, 𝑡 + 𝑇 )) (2.14)

where the sum runs over all the possible distinct subsets 𝐼 of indices of cardinality 𝑛. By
mean of this expression one obtains the generating function

𝑞(𝜎)(𝑧) =
∑︁
𝑛≥0

𝑞(𝜎)
𝑛 𝑧𝑛 =

∏︁
𝑖∈Z

(1 + (𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 )) (2.15)

To take into account also the possibility of random independent deletion as in [4], let us
outline here that a similar generating function can be introduced also when each arrival has
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an independent probability 1− 𝛾 to be deleted, and the complementary probability 𝛾 to be
an actual arrival. In other words, we construct the PSRA process for 𝑖 ∈ Z and then for each
𝑖 we cancel the corresponding 𝑖-th arrival with independent probability 1 − 𝛾. It is obvious
that in this case the generating function is

𝑞(𝜎)
𝛾 (𝑧) =

∑︁
𝑛≥0

𝑞(𝜎)
𝛾,𝑛𝑧𝑛 =

∏︁
𝑖∈Z

(1 + (𝑧 − 1)𝛾𝑝𝑖(𝑡, 𝑡 + 𝑇 )) (2.16)

The expression (2.15) are exact, and gives us all the information on the distribution of
𝑛(𝑡, 𝑡 + 𝑇 ), and it depends explicitly on 𝑡 and 𝑇 . However we can study 𝑞(𝜎)(𝑧) and 𝑞

(𝜎)
𝛾 (𝑧)

for large 𝜎, in the sense of the rescaling defined above, and show that they converges to a
Poisson distribution with parameter 𝜆𝑇 and 𝛾𝜆𝑇 . The main idea is to exploit the fact that,
for large 𝜎, 𝑝𝑖(𝑡, 𝑡 + 𝑇 ) goes to zero as 1

𝜎 .
We now prove the following results.

Lemma 2.2.2.

max
𝑖

𝑝𝑖(𝑡, 𝑡 + 𝑇 ) ≤ 𝑐𝑜𝑛𝑠𝑡(𝑇 )
𝜎

(2.17)

Proof.

𝑝𝑖(𝑡, 𝑡 + 𝑇 ) =
∫︁ 𝑡+𝑇

𝑡
𝑓

(𝜎)
𝜉

(︂
𝑥− 𝑖

𝜆

)︂
𝑑𝑥 =

∫︁ 𝑡− 𝑖
𝜆
+𝑇

𝑡− 𝑖
𝜆

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 =

1
𝜎

∫︁ 𝑡− 𝑖
𝜆
+𝑇

𝑡− 𝑖
𝜆

𝑓𝜉

(︁ 𝑠

𝜎

)︁
𝑑𝑠 (2.18)

by the Intermediate Value Theorem

𝑝𝑖(𝑡, 𝑡 + 𝑇 ) =
1
𝜎

𝑓𝜉

(︂
𝑠*𝑖
𝜎

)︂
𝑇 ≤ 𝑀𝑇

𝜎
(2.19)

where
𝑠*𝑖
𝜎
∈
(︂

𝑡− 𝑖

𝜆
, 𝑡− 𝑖

𝜆
+ 𝑇

)︂

Now we will use lemma 2.2.2 to bound the generating function

𝑞(𝜎)(𝑧) = exp

[︃∑︁
𝑖∈Z

ln(1 + (𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))

]︃
= (2.20)

= exp

[︃
(𝑧 − 1)

∑︁
𝑖∈Z

𝑝𝑖(𝑡, 𝑡 + 𝑇 )
(︂

1 + (𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 )
∫︁ 1

0

𝑠 𝑑𝑠

(1 + (𝑧 − 1)(1− 𝑠)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))2

)︂]︃
(2.21)

Lemma 2.2.3. With 𝑝𝑖(𝑡, 𝑡 + 𝑇 ) defined as above, the sum in (2.21) converges to 𝜆𝑇

lim
𝜎→∞

∑︁
𝑖∈Z

𝑝𝑖(𝑡, 𝑡 + 𝑇 )
(︂

1 + (𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 )
∫︁ 1

0

𝑠 𝑑𝑠

(1 + (𝑧 − 1)(1− 𝑠)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))2

)︂
= 𝜆𝑇

(2.22)
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Proof. First we prove that
lim

𝜎→∞

∑︁
𝑖∈Z

𝑝𝑖(𝑡, 𝑡 + 𝑇 ) = 𝜆𝑇. (2.23)

Let us define 𝑇 := 𝐾+Δ𝑇
𝜆 , where 𝐾 ∈ Z+ and 0 ≤ Δ𝑇 < 1. Then we can write

∑︁
𝑖∈Z

𝑝𝑖(𝑡, 𝑡 + 𝑇 ) =
∑︁
𝑖∈Z

∫︁ 𝑡− 𝑖
𝜆
+𝑇

𝑡− 𝑖
𝜆

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 =

∑︁
𝑖∈Z

∫︁ 𝑡+𝐾−𝑖
𝜆

+Δ𝑇
𝜆

𝑡− 𝑖
𝜆

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 =

=
∑︁
𝑖∈Z

∫︁ 𝑡+𝐾−𝑖
𝜆

𝑡− 𝑖
𝜆

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 +

∑︁
𝑖∈Z

∫︁ 𝑡+𝐾−𝑖
𝜆

+Δ𝑇
𝜆

𝑡+𝐾−𝑖
𝜆

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 (2.24)

The first term on the right hand side of (2.24) is 𝐾. Let 𝑖 = 𝑚𝐾 + 𝑙, where 𝑙 ∈ Z+ and
𝑚 ∈ Z,

∑︁
𝑖∈Z

∫︁ 𝑡+𝐾−𝑖
𝜆

𝑡− 𝑖
𝜆

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 =

𝐾−1∑︁
𝑙=0

∑︁
𝑚∈Z

∫︁ 𝑡− (𝑚−1)𝐾+𝑙
𝜆

𝑡−𝑚𝐾+𝑙
𝜆

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 =

𝐾−1∑︁
𝑙=0

∫︁
R

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 = 𝐾 (2.25)

The second term on the right hand side of (2.24) converges to Δ𝑇 for 𝜎 →∞:

∑︁
𝑖∈Z

∫︁ 𝑡+𝐾−𝑖
𝜆

+Δ𝑇
𝜆

𝑡+𝐾−𝑖
𝜆

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 =

∑︁
𝑖∈Z

∫︁ 𝑡+ 𝑖
𝜆
+Δ𝑇

𝜆

𝑡+ 𝑖
𝜆

𝑓
(𝜎)
𝜉 (𝑠)𝑑𝑠 =

∑︁
𝑖∈Z

1
𝜎

∫︁ 𝑡+ 𝑖
𝜆
+Δ𝑇

𝜆

𝑡+ 𝑖
𝜆

𝑓𝜉

(︁ 𝑠

𝜎

)︁
𝑑𝑠 (2.26)

and, by the Intermediate Value Theorem we get

∑︁
𝑖∈Z

1
𝜎

∫︁ 𝑡+𝐾−𝑖
𝜆

+Δ𝑇
𝜆

𝑡+𝐾−𝑖
𝜆

𝑓𝜉

(︁ 𝑠

𝜎

)︁
𝑑𝑠 =

∑︁
𝑖∈Z

1
𝜎

𝑓𝜉

(︂
𝑠*𝑖
𝜎

)︂
Δ𝑇

𝜆
(2.27)

where
𝑠*𝑖
𝜎
∈
(︂

𝑡 +
𝐾 − 𝑖

𝜆
, 𝑡 +

𝐾 − 𝑖

𝜆
+

Δ𝑇

𝜆

)︂
and finally,

Δ𝑇
∑︁
𝑖∈Z

𝑓𝜉

(︂
𝑠*𝑖
𝜎

)︂
1

𝜆𝜎
−→ Δ𝑇 (2.28)

as 𝜎 → ∞, where the sum on the last equality is the Riemann sum of 𝑓𝜉(𝑡). This ends the
proof of (2.23). In order to complete the lemma we need to show that, uniformly in 𝑖,

lim
𝜎→∞

(𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 )
∫︁ 1

0
𝑑𝑠

𝑠

(1 + (𝑧 − 1)(1− 𝑠)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))2
= 0

but this follows from lemma 2.2.2 and from the fact that

(𝑧 − 1)
∫︁ 1

0
𝑑𝑠

𝑠

(1 + (𝑧 − 1)(1− 𝑠)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))2
≤ 𝐶

for any 𝑝𝑖(𝑡, 𝑡 + 𝑇 ) < 1/2 and |𝑧| ≤ 1.
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Lemma 2.2.4. Let 𝑞(𝑧) = exp(𝜆𝑇 (𝑧 − 1)) be the probability generating function of the Pois-
son random variable 𝜁 with intensity 𝜆𝑇 , and 𝑞𝛾(𝑧) = exp(𝛾𝜆𝑇 (𝑧 − 1)) be the probability
generating function of the Poisson random variable 𝜁 with intensity 𝛾𝜆𝑇 , then

lim
𝜎→∞

𝑞(𝜎)(𝑧) = 𝑞(𝑧); lim
𝜎→∞

𝑞(𝜎)
𝛾 (𝑧) = 𝑞𝛾(𝑧) (2.29)

Proof. Follows immediately from lemma 2.2.3.

Theorem 2.2.5. If 𝑞(𝜎)(𝑧) −→ 𝑞(𝑧), then
∑︀∞

𝑛=0 |𝑞
(𝜎)
𝑛 − 𝑞𝑛| −→ 0 as 𝜎 → ∞. The same

result holds for the arrivals with random deletions.

Proof. The proof follows from the continuity theorem for probability generating function see
Feller [2, p.280].

Hence the PSRA process converges in distribution to the Poisson process in total variation
norm.

In order to show that the process has negative autocorrelation, we will compute the
expected value, the variance 𝜎𝑛 of the number 𝑛 of arrivals in a time slot (𝑡, 𝑡 + 𝑇 ], and
the covariance 𝐶𝑜𝑣(𝑛1, 𝑛2), where 𝑛1 and 𝑛2 are the numbers of arrivals in (𝑡, 𝑡 + 𝑇 ] and
(𝑡 + 𝑇, 𝑡 + 2𝑇 ], respectively.
Let 𝜒𝑖(𝑡𝑖 ∈ (𝑡, 𝑡+𝑇 ]) be the characteristic function of the event “user 𝑖 arrives in the interval
(𝑡, 𝑡 + 𝑇 ]”, so that E(𝜒𝑖) = 𝑝𝑖(𝑡, 𝑡 + 𝑇 ), then the expected number of arrivals in a time slot
(𝑡, 𝑡 + 𝑇 ] is

E(𝑛) = E

(︃∑︁
𝑖

𝜒𝑖

)︃
=
∑︁

𝑖

E(𝜒𝑖) =
∑︁

𝑖

𝑝𝑖(𝑡, 𝑡 + 𝑇 )

and also

E(𝑛2) = E

⎛⎝∑︁
𝑖

𝜒𝑖

∑︁
𝑗

𝜒𝑗

⎞⎠ = E

⎛⎝∑︁
𝑖

𝜒𝑖 +
∑︁
𝑖 ̸=𝑗

𝜒𝑖𝜒𝑗

⎞⎠ =

=
∑︁

𝑖

𝑝𝑖(𝑡, 𝑡 + 𝑇 ) +
∑︁
𝑖 ̸=𝑗

𝑝𝑖(𝑡, 𝑡 + 𝑇 )𝑝𝑗(𝑡 + 𝑇, 𝑡 + 2𝑇 )

=
∑︁

𝑖

𝑝𝑖(𝑡, 𝑡 + 𝑇 ) +

(︃∑︁
𝑖

𝑝𝑖(𝑡, 𝑡 + 𝑇 )

)︃2

−
∑︁

𝑖

(𝑝𝑖(𝑡, 𝑡 + 𝑇 ))2

Then the variance is:

𝜎2
𝑛 = E(𝑛2)− (E(𝑛))2 =

∑︁
𝑖

𝑝𝑖(𝑡, 𝑡 + 𝑇 )−
∑︁

𝑖

(𝑝𝑖(𝑡, 𝑡 + 𝑇 ))2 =
∑︁

𝑖

𝑝𝑖(𝑡, 𝑡 + 𝑇 )(1− 𝑝𝑖(𝑡, 𝑡 + 𝑇 ))

and we see again that 𝜎2
𝑛 → 𝜆𝑇 in the limit 𝜎 → ∞. Finally, let us define 𝜒

(1)
𝑖 := 𝜒𝑖(𝑡𝑖 ∈

(𝑡, 𝑡 + 𝑇 ]) and 𝜒
(2)
𝑖 := 𝜒𝑖(𝑡𝑖 ∈ (𝑡 + 𝑇, 𝑡 + 2𝑇 ])

E(𝑛1𝑛2) = E

⎛⎝∑︁
𝑖

𝜒
(1)
𝑖

∑︁
𝑗

𝜒
(2)
𝑗

⎞⎠ = E(
∑︁
𝑖 ̸=𝑗

𝜒
(1)
𝑖 𝜒

(2)
𝑗 ) =

∑︁
𝑖 ̸=𝑗

E(𝜒(1)
𝑖 )E(𝜒(2)

𝑗 ) =

=
∑︁
𝑖 ̸=𝑗

𝑝𝑖(𝑡, 𝑡 + 𝑇 )𝑝𝑗(𝑡 + 𝑇, 𝑡 + 2𝑇 )

=
∑︁
𝑖,𝑗

𝑝𝑖(𝑡, 𝑡 + 𝑇 )𝑝𝑗(𝑡 + 𝑇, 𝑡 + 2𝑇 )−
∑︁

𝑖

𝑝𝑖(𝑡, 𝑡 + 𝑇 )𝑝𝑖(𝑡 + 𝑇, 𝑡 + 2𝑇 )
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so that

𝐶𝑜𝑣(𝑛1, 𝑛2) = E(𝑛1𝑛2)− E(𝑛1)E(𝑛2) = −
∑︁

𝑖

𝑝𝑖(𝑡, 𝑡 + 𝑇 )𝑝𝑖(𝑡 + 𝑇, 𝑡 + 2𝑇 )

A negative covariance means that 𝑛1 and 𝑛2 are inversely correlated, as we should expect
in our arrival model: a congested time slot should be followed or preceded by a slot with
lower than expected arrivals. Moreover, this is a clear indication that the hypothesis of
independence for 𝑛1 and 𝑛2, numbers of arrivals in different time slots, is not correct, unless
we are in the limit 𝜎 →∞.

2.3 Queueing systems with PSRA process: independence ap-
proximation

In this section we want to try to use the classical results of queueing theory for a system in
which the arrivals are described in terms of our PSRA, there is a single server and the service
time is deterministic. For the air traffic applications the deterministic service (landing) times
are obviously an approximation, but neglecting the mix of aircrafts the actual landing times
have a low variability.

In order to study the queueing system given by our PSRA process we set a service time
𝑇 and define the instant traffic intensity 𝜚(𝜎, 𝑡) = 𝐸(𝑛(𝑡, 𝑡 + 𝑇 )). In fig. 2.3 and table 2.2 we
report numerical results for the convergence of 𝜚(𝜎, 𝑡) to 𝜆𝑇 , granted by lemma 2.2.3. For
simplicity we consider 𝜉 Gaussian, and 𝜆 = 1. In this case 𝜚(𝜎, 𝑡) converges as soon as 𝜎 gets
close to 1.

𝜎 𝑇 𝜚(𝜎, 0) 𝜚(𝜎, 0.1) 𝜚(𝜎, 0.2) 𝜚(𝜎, 0.3)) 𝜚(𝜎, 0.4))
.2 .9 0.808534 0.808534 0.850089 0.907951 0.954826
.3 .9 0.868214 0.868214 0.88048 0.900153 0.919615
.4 .9 0.892048 0.892048 0.895086 0.900001 0.904914
.5 .9 0.898654 0.898654 0.899168 0.9 0.900832
.6 .9 0.899847 0.899847 0.899905 0.9 0.900095
.7 .9 0.899988 0.899988 0.899993 0.9 0.900007
.8 .9 0.899999 0.899999 0.9 0.9 0.9
.9 .9 0.9 0.9 0.9 0.9 0.9
1. .9 0.9 0.9 0.9 0.9 0.9
𝜎 𝑇 𝜚(𝜎, 0.5) 𝜚(𝜎, 0.6) 𝜚(𝜎, 0.7) 𝜚(𝜎, 0.8) 𝜚(𝜎, 0.9)
.2 .9 0.9786 0.9786 0.954826 0.907951 0.850089
.3 .9 0.931537 0.931537 0.919615 0.900153 0.88048
.4 .9 0.907951 0.907951 0.904914 0.900001 0.895086
.5 .9 0.901346 0.901346 0.900832 0.9 0.899168
.6 .9 0.900153 0.900153 0.900095 0.9 0.899905
.7 .9 0.900012 0.900012 0.900007 0.9 0.899993
.8 .9 0.900001 0.900001 0.9 0.9 0.9
.9 .9 0.9 0.9 0.9 0.9 0.9
1. .9 0.9 0.9 0.9 0.9 0.9

Table 2.2:



16 CHAPTER 2. QUEUEING SYSTEM WITH PRE-SCHEDULED RANDOM ARRIVALS

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

λT
ρ(σ,0.1)
ρ(0.2,t)

Figure 2.3: Behavior of the function 𝜚(𝜎, 𝑡). On the 𝑥 axis we have time 𝑡 for 𝜚(0.2, 𝑡) and
standard deviation 𝜎 for 𝜚(𝜎, 0.1).

We want to compare the average queue size in 𝑀/𝐷/1 queueing system (Poisson arrivals)
with the 𝐺/𝐷/1 queueing system in which the arrivals are described in terms of PSRA. It is
well known, see e.g.[7], that the stationary probabilities for the discrete time 𝐺/𝐷/1 queueing
system are given by

𝑃0 = (𝑃0 + 𝑃1)𝑄0

...

𝑃𝑛 = 𝑃0𝑄𝑛 +
𝑛+1∑︁
𝑘=1

𝑃𝑘𝑄𝑛−𝑘+1

...

(3.1)

where 𝑄𝑛 is the probability to have n arrivals in a service time slot.
The corresponding generating function is given by

𝑃 (𝑧) =
𝑃0(1− 𝑧)
1− 𝑧

𝑄(𝑧)

(3.2)

where
𝑃0 = 1− 𝜚 (3.3)

In the case of Poisson arrivals with traffic intensity 𝜚, 𝑄(𝑧) = 𝑞(𝑧) = exp(𝜚(𝑧−1)). Denoting
by 𝑁 the average queue size, after straightforward computations we get

𝑃 ′(𝑧)
⃒⃒
𝑧=1

= 𝑁 =
𝜚(2− 𝜚)
2(1− 𝜚)

(3.4)

Consider now the PSRA process. In this case we can try to compute (3.2) by means of
the generating function (2.15). This is obviously an approximation, since the generating
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function (3.2) is obtained under the hypothesis that the number of arrivals in subsequent
slots are independent variables. Indeed this is not the case for PSRA arrivals, as it has been
shown in Section 2. However, assuming that such independence we neglect possible effects of
autocorrelation, then we have that 𝑄(𝑧) = 𝑞(𝜎)(𝑧). Now we employ the boundary condition
𝑃 (𝑧)|𝑧=1 = 1 and l’Hôpital rule, also using the fact that 𝑞(𝜎)(𝑧)

⃒⃒
𝑧=1

= 1, we find that

𝑃0 = 1−
∑︁
𝑖∈Z

𝑝𝑖(𝑡, 𝑡 + 𝑇 ) (3.5)

Now denoting by 𝑁(𝜎, 𝑡) the average queue size and applying l’Hôpital rule we get

𝑁(𝜎, 𝑡) = 𝑃 ′(𝑧)
⃒⃒
𝑧=1

=
𝑧𝑞(𝜎)(𝑧)𝑞(𝜎)

𝑧𝑧 (𝑧)− 2
(︀
𝑧𝑞

(𝜎)
𝑧 (𝑧)− 𝑞

(𝜎)
𝑧 (𝑧)

)︀(︀
𝑞
(𝜎)
𝑧 (𝑧)− 𝑧𝑞

(𝜎)
𝑧 (𝑧)

)︀
𝑞
(𝜎)
𝑧 (𝑧)

⃒⃒⃒⃒
⃒
𝑧=1

(3.6)

where

𝑞(𝜎)
𝑧 (𝑧) =

∏︁
𝑖∈Z

(1 + (𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))
∑︁
𝑖∈Z

𝑝𝑖(𝑡, 𝑡 + 𝑇 )
1 + (𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 )

𝑞(𝜎)
𝑧𝑧 (𝑧) =

∏︁
𝑖∈Z

(1 + (𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))
∑︁
𝑘 ̸=𝑙

𝑘,𝑙∈Z

𝑝𝑘(𝑡, 𝑡 + 𝑇 )𝑝𝑙(𝑡, 𝑡 + 𝑇 )
(1 + (𝑧 − 1)𝑝𝑘(𝑡, 𝑡 + 𝑇 ))(1 + (𝑧 − 1)𝑝𝑙(𝑡, 𝑡 + 𝑇 ))

After few calculations we find

𝑁(𝜎, 𝑡) =
2
∑︀

𝑖∈Z 𝑝𝑖(𝑡, 𝑡 + 𝑇 )− (
∑︀

𝑖∈Z 𝑝𝑖(𝑡, 𝑡 + 𝑇 ))2 −
∑︀

𝑖∈Z 𝑝2
𝑖 (𝑡, 𝑡 + 𝑇 )

2(1−
∑︀

𝑖∈Z 𝑝𝑖(𝑡, 𝑡 + 𝑇 ))
(3.7)

In order to give a complete description of our 𝐺𝐼/𝐷/1 queueing system in which the arrivals
are described in terms of PSRA, we can find the stationary probability distributions 𝑃𝑛. We
now consider (3.2). Using (3.5) and (2.15), we can rewrite (3.2) as

𝑃 (𝑧) =
(1−

∑︀
𝑖∈Z 𝑝𝑖(𝑡, 𝑡 + 𝑇 ))(1− 𝑧)

1− 𝑧∏︀
𝑖∈Z(1+(𝑧−1)𝑝𝑖(𝑡,𝑡+𝑇 ))

(3.8)

Note that ⃒⃒⃒⃒
𝑧∏︀

𝑖∈Z(1 + (𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))

⃒⃒⃒⃒
< 1 (3.9)

for all 𝑧 ∈ D, hence we can expand the the inverse denominator of (3.8) as a geometric series.
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Therefore,

𝑃 (𝑧) = 𝑃0(1− 𝑧)
∞∑︁

𝑘=0

𝑧𝑘(︀∏︀
𝑖∈Z(1 + (𝑧 − 1)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))

)︀𝑘
= 𝑃0(1− 𝑧)

∞∑︁
𝑘=0

𝑧𝑘
∏︁
𝑖∈Z

1

(1− (1− 𝑧)𝑝𝑖(𝑡, 𝑡 + 𝑇 )))𝑘

= 𝑃0(1− 𝑧)
∞∑︁

𝑘=0

𝑧𝑘
∏︁
𝑖∈Z

∞∑︁
𝑙=0

(︂
𝑙 + 𝑘 − 1

𝑙

)︂
((1− 𝑧)𝑝𝑖(𝑡, 𝑡 + 𝑇 ))𝑙

= 𝑃0(1− 𝑧)
∞∑︁

𝑘=0

𝑧𝑘
∞∑︁
𝑙=0

(︂
𝑙 + 𝑘 − 1

𝑙

)︂
(1− 𝑧)𝑙

∏︁
𝑖∈Z

(𝑝𝑖(𝑡, 𝑡 + 𝑇 ))𝑙

= 𝑃0(1− 𝑧)
∞∑︁

𝑘=0

𝑧𝑘
∞∑︁
𝑙=0

(︂
𝑙 + 𝑘 − 1

𝑙

)︂ 𝑙∑︁
𝑗=0

(︂
𝑙

𝑗

)︂
𝑧𝑗(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃

= 𝑃0(1− 𝑧)
∞∑︁

𝑘=0

∞∑︁
𝑙=0

(︂
𝑙 + 𝑘 − 1

𝑙

)︂ 𝑙∑︁
𝑗=0

(︂
𝑙

𝑗

)︂
(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃
𝑧𝑘+𝑗

= 𝑃0(1− 𝑧)
∞∑︁
𝑙=0

𝑙∑︁
𝑗=0

∞∑︁
𝑛=𝑗

(︂
𝑙 + 𝑛− 𝑗 − 1

𝑙

)︂(︂
𝑙

𝑗

)︂
(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃
𝑧𝑛

= 𝑃0(1− 𝑧)
∞∑︁

𝑛=0

∞∑︁
𝑙=0

𝑛∧𝑙∑︁
𝑗=0

(︂
𝑙 + 𝑛− 𝑗 − 1

𝑙

)︂(︂
𝑙

𝑗

)︂
(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃
𝑧𝑛

= 𝑃0

∞∑︁
𝑛=0

∞∑︁
𝑙=0

𝑛∧𝑙∑︁
𝑗=0

(︂
𝑙 + 𝑛− 𝑗 − 1

𝑙

)︂(︂
𝑙

𝑗

)︂
(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃
𝑧𝑛−

− 𝑃0

∞∑︁
𝑛=0

∞∑︁
𝑙=0

𝑛∧𝑙∑︁
𝑗=0

(︂
𝑙 + 𝑛− 𝑗 − 1

𝑙

)︂(︂
𝑙

𝑗

)︂
(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃
𝑧𝑛+1

= 𝑃0

∞∑︁
𝑛=0

∞∑︁
𝑙=0

𝑛∧𝑙∑︁
𝑗=0

(︂
𝑙 + 𝑛− 𝑗 − 1

𝑙

)︂(︂
𝑙

𝑗

)︂
(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃
𝑧𝑛−

− 𝑃0

∞∑︁
𝑛=1

∞∑︁
𝑙=0

(𝑛−1)∧𝑙∑︁
𝑗=0

(︂
𝑙 + 𝑛− 𝑗 − 2

𝑙

)︂(︂
𝑙

𝑗

)︂
(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃
𝑧𝑛

Hence we expand 𝑃 (𝑧) as a power series in 𝑧 and consequently we obtain an exact result for
𝑃𝑛,

𝑃𝑛 = (1−
∑︁
𝑖∈Z

𝑝𝑖(𝑡, 𝑡 + 𝑇 ))
∞∑︁
𝑙=0

𝑛∧𝑙∑︁
𝑗=0

(︂
𝑙 + 𝑛− 𝑗 − 1

𝑙

)︂(︂
𝑙

𝑗

)︂
(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃
−

− (1−
∑︁
𝑖∈Z

𝑝𝑖(𝑡, 𝑡 + 𝑇 ))
∞∑︁
𝑙=0

(𝑛−1)∧𝑙∑︁
𝑗=0

(︂
𝑙 + 𝑛− 𝑗 − 2

𝑙

)︂(︂
𝑙

𝑗

)︂
(−1)𝑗 exp

{︃
𝑙
∑︁
𝑖∈Z

log 𝑝𝑖(𝑡, 𝑡 + 𝑇 )

}︃



2.4. NUMERICAL RESULTS 19

Note that, it is well known the steady state probability distribution 𝑃𝑛 for 𝑀/𝐷/1 (see e.g.
[6]) queueing system is given by

𝑃𝑛 = (1− 𝜚)

{︃
𝑛∑︁

𝑘=0

(−1)𝑛−𝑘𝑒𝑘𝜚 (𝑘𝜚)𝑛−𝑘

(𝑛− 𝑘)!
−

𝑛−1∑︁
𝑘=0

(−1)𝑛−𝑘−1𝑒𝑘𝜚 (𝑘𝜚)𝑛−𝑘−1

(𝑛− 𝑘 − 1)!

}︃
(3.10)

For 𝜎 large 𝑁(𝜎, 𝑡) becomes independent of 𝑡, and it converges to 𝑁 by (2.23). Table 2.3
shows that for Gaussian 𝜉 and 𝜆 = 1 the convergence is quite fast.

𝜎 𝑇 𝑁(𝜎, 0) 𝑁(𝜎, 0.1) 𝑁(𝜎, 0.2) 𝑁(𝜎, 0.3) 𝑁(𝜎, 0.4) 𝑁(𝜎, 0.5)
.1 .9 0.89105 0.89105 1.00493 1.04024 1.02267 1.00905
.2 .9 1.61425 1.61425 1.58187 1.51872 1.42902 1.32201
.3 .9 2.26812 2.26812 2.21399 2.10656 1.95949 1.83453
.4 .9 2.75253 2.75253 2.68673 2.57205 2.44587 2.36133
.5 .9 3.03548 3.03548 2.9955 2.92993 2.86327 2.82151
.6 .9 3.24502 3.24502 3.23019 3.20614 3.18205 3.16714
.7 .9 3.43207 3.43207 3.42809 3.42165 3.41521 3.41123
.8 .9 3.59488 3.59488 3.59405 3.5927 3.59134 3.59051
.9 .9 3.73131 3.73131 3.73117 3.73094 3.73071 3.73056
1. .9 3.84462 3.84462 3.8446 3.84457 3.84454 3.84452

𝜎 𝑇 𝑁(𝜎, 0.6) 𝑁(𝜎, 0.7) 𝑁(𝜎, 0.8) 𝑁(𝜎, 0.9) 𝑁(𝜎, 1)
.1 .9 1.00905 1.02267 1.04024 1.00493 0.89105
.2 .9 1.32201 1.42902 1.51872 1.58187 1.61425
.3 .9 1.83453 1.95949 2.10656 2.21399 2.26812
.4 .9 2.36133 2.44587 2.57205 2.68673 2.75253
.5 .9 2.82151 2.86327 2.92993 2.9955 3.03548
.6 .9 3.16714 3.18205 3.20614 3.23019 3.24502
.7 .9 3.41123 3.41521 3.42165 3.42809 3.43207
.8 .9 3.59051 3.59134 3.5927 3.59405 3.59488
.9 .9 3.73056 3.73071 3.73094 3.73117 3.73131
1. .9 3.84452 3.84454 3.84457 3.8446 3.84462

Table 2.3:

2.4 Numerical results

In the previous section we have computed the average queue size for the 𝐺/𝐷/1 queueing
system in which the arrivals are described in terms of PSRA under the hypothesis that the
number of arrivals in subsequent slots are independent variables. and we have remembered
the formula for average queue size 𝑀/𝐷/1 queueing system. In this section we compare the
PSRA average queue size 𝑁(𝜎, 𝑡) obtained by numerical simulations to (3.7) and (3.4). We
recall that (3.7) is obtained assuming the independence of number of arrivals in different time
slots; (3.4) is the length of the queue for Poissonian arrivals. The numerical results can be
found in table 2.4. In this table we can compare the values of average queue obtained by
formula (3.4), (3.7) and simulation, for low traffic intensity (𝜚 = 0.5) and for heavy traffic
intensity (𝜚 = 0.9)



20 CHAPTER 2. QUEUEING SYSTEM WITH PRE-SCHEDULED RANDOM ARRIVALS

𝜎 𝑇 𝑁(3.3) 𝑁(3.4) 𝑁(𝑠𝑖𝑚)
0.1 0.5 0.75 0.5 0.4963
0.5 0.5 0.75 0.614554 0.5096
1 0.5 0.75 0.680202 0.5618
2 0.5 0.75 0.71483 0.6173
3 0.5 0.75 0.726519 0.6481
4 0.5 0.75 0.732381 0.6621
5 0.5 0.75 0.735901 0.6787
6 0.5 0.75 0.738249 0.6821
7 0.5 0.75 0.739927 0.6873
8 0.5 0.75 0.741186 0.6948
9 0.5 0.75 0.742165 0.6974
10 0.5 0.75 0.742949 0.7078

𝜎 𝑇 𝑁(3.3) 𝑁(3.4) 𝑁(𝑠𝑖𝑚)
0.1 0.9 4.95 1.00905 0.9153
0.5 0.9 4.95 2.8215 1.2258
1. 0.9 4.95 3.84452 1.5004
2. 0.9 4.95 4.38353 1.834
3. 0.9 4.95 4.57059 2.0145
4. 0.9 4.95 4.66498 2.2124
5. 0.9 4.95 4.72181 2.3278
6. 0.9 4.95 4.75976 2.4414
7. 0.9 4.95 4.7869 2.555
8. 0.9 4.95 4.80726 2.6249
9. 0.9 4.95 4.8231 2.7232
10. 0.9 4.95 4.83583 2.8007

Table 2.4:

In figure 2.4 𝑁(𝜎, 𝑡) is plotted as a function of 𝜎, for different values of 𝜚 = 0.5, 0.7, 0.9,
and 𝑡 = 0.5. The dotted straight lines represent 𝑁 obtained by (3.4) for different values of 𝜚.
As we can see from the graph, values of 𝑁(𝜎, 𝑡 = 0.5) for fixed 𝜚 given by (3.7) are larger than
the corresponding ones obtained by simulation. This is due to the fact that we neglected the
(negative) autocorrelations. Moreover, while for small 𝜚 (say 𝜚 ≤ 0.6) approximation (3.7)
gives relatively good results, the overestimate becomes very important when 𝜚 increases.

2.5 Queueing systems with PSRA process: autocorrelated ar-
rivals

As it is clear from the results of the previous section, neglecting the autocorrelation the
estimate of the average queue length is grossly overestimated in the interesting cases. If we
want to describe the system only by the length of the queue, the presence of autocorrelation
implies the loss of Markov property. In this section we show that if we enlarge suitably the
state space we may keep the Markov property, and describe completely the autocorrelation.
With this description some interesting features of the system are clarified, but at the moment
we are able to compute explicitly the quantities of interest with some approximations. Such
approximations, however, turn out to give almost negligible errors.
To simplify the analytical treatment of the system, we will consider from now on densities
𝑓

(𝜎)
𝜉 (𝑡) of the random i.i.d. variables 𝜉𝑖 that are compact support, i.e. such that 𝑓

(𝜎)
𝜉 (𝑡) = 0

for 𝑡 > 𝐿 for some 𝐿 < ∞. We are setting 𝜆 = 1, and we take 𝐿 ∈ N. This implies that
at a certain discrete time 𝑗 the 𝑖’th user is certainly arrived to the system for all 𝑖 ≤ 𝑗 − 𝐿,
while for all 𝑖 ≥ 𝑗 + 𝐿 it is certainly not yet arrived. Hence to completely describe the state
of the system we have to specify, beside the number 𝑛 of users waiting in queue right before
the service at time 𝑗 is delivered, also a finite set 𝐼𝑗 of 𝑖’s, 𝐼𝑗 ⊂ {𝑗−𝐿+1, ..., 𝑗 +𝐿− 1}, that
are the users that are already arrived at the service at time 𝑗. Note that the users in the set
𝐼𝑗 are not necessarily already served at time 𝑗, or, in other words, the set 𝐼𝑗 is the set of the
users with indices in {𝑗 − 𝐿 + 1, ..., 𝑗 + 𝐿 − 1} that are in the queue at time 𝑗, or that are
already served at time 𝑗. Note also that 0 ≤ |𝐼𝑗 | ≤ 2𝐿− 1. Finally, we want to outline that
due to the independence of the 𝜉’s 𝐼𝑗+𝑖 is independent of 𝐼𝑗 for all 𝑖 ≥ 2𝐿.
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Figure 2.4: Behavior of the function 𝑁(𝜎, 0.5), for different values of 𝜚. Dotted lines re-
fer to Poisson arrivals, continuous lines refer to approximation (3.7), dashed lines refer to
simulations.

We will treat first the case 𝜚 = 1, or in other words, the case 𝜆 = 𝑇 = 1 in (2.15). This special
case is important for several reasons. First, we will prove that for PSRA arrivals the system
has a finite average queue length, showing that, even if the PSRA process tends in distribution
to the Poisson process, for finite variance of the 𝜉’s the two systems are deeply different.
Second, we will show that in the 𝜚 = 1 case there is a conserved quantity in the system, when
the stationary distribution is reached. Third, it is possible, using an interest interpretation of
the system in terms of Fermi statistics, to compute the (very long) times needed to the system
to reach the stationary distribution. Fourth, and maybe more important, on the basis of the
computation of this relaxation times it is possible to approximate efficiently the distribution
of the length of the queue even for 𝜚 < 1.
Hence, we fix 𝜚 = 1 and we start from the obvious relation

𝑛(𝑗 + 1) = 𝑛(𝑗)− (1− 𝛿𝑛(𝑗)0) + 𝑚(𝑗) (5.1)

where 𝑛(𝑗) is the length of the queue immediately before the service at time 𝑗, 𝑚(𝑗) is the
number of users arrived in the time slot [𝑗, 𝑗 + 1), and the term (1− 𝛿𝑛(𝑗)0) indicates the fact
that if there is some user in the queue at time 𝑗, i.e. 𝑛(𝑗) > 0, the first of the queue is served,
while if 𝑛(𝑗) = 0 then 𝑛(𝑗 + 1) = 𝑚(𝑗).
Now we observe that with our notations we can write

𝑚(𝑗) = |𝐼𝑗+1| − |𝐼𝑗 |+ 1 (5.2)

This relation can be shown as follows: the total number 𝑛𝑎(𝑗) of users arrived to the service
from a certain fixed time, say from time 1, to time 𝑗, is obviously 𝑛𝑎(𝑗) = 𝑗 − 𝐿 + |𝐼𝑗 |,
because all the users 𝑘 up to user 𝑗 − 𝐿’th are already arrived, due to the compactness of
the support of 𝑓

(𝜎)
𝜉 (𝑡), while for 𝑘 > 𝑗 − 𝐿 the number of arrived users is |𝐼𝑗 | by definition.

Hence 𝑚(𝑗) = 𝑛𝑎(𝑗 +1)−𝑛𝑎(𝑗) = 𝑗 +1−𝐿+ |𝐼𝑗+1| − 𝑗 +𝐿− |𝐼𝑗 | = |𝐼𝑗+1| − |𝐼𝑗 |+1. Putting
(5.2) into(5.1) we obtain

𝑛(𝑗 + 1) = 𝑛(𝑗) + |𝐼𝑗+1| − |𝐼𝑗 |+ 𝛿𝑛(𝑗)0 (5.3)
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This relation shows that the quantity 𝛼(𝑗) = 𝑛(𝑗)−|𝐼𝑗 | is constant during a busy period, and
it increases by 1 at the end of each busy period. This implies that the stationary distribution
is reached once 𝛼 > 0. If the initial value of 𝛼 is strictly positive, the value 𝑛(𝑗) = 0 is never
realized, and then 𝛼 remains constant and

𝑁 = 𝐸(𝑛) = 𝛼 + 𝐸(|𝐼|) (5.4)

If the initial value of 𝛼 is 0 or it is negative, a sequence of busy periods is realized, giving in
the end the value 𝛼 = 1, and the expected queue length 𝑁 = 𝐸(𝑛) = 1 + 𝐸(|𝐼|). Once the
stationary value of 𝛼 > 0 is reached, the probability distribution of 𝑛 is given by

𝑃𝑘 = 𝑃 (𝑛 = 𝑘) = 𝑃 (|𝐼| = 𝑘 − 𝛼) (5.5)

giving the obvious result that 𝑘 ≥ 𝛼. The explicit expression of the 𝑃𝑘 depends therefore
from the distribution of the |𝐼|’s, and hence from the details of 𝑓

(𝜎)
𝜉 (𝑡). This solves completely

the stationary problem in the 𝜚 = 1 case. For application to the air traffic, however, it could
be also interesting to study some non stationary features of the system: in particular we
want to compute the probability to pass from some negative value of 𝛼 to the following value
𝛼 + 1. These quantities are interesting in this 𝜚 = 1 case because if the probability to reach
the state 𝑛 = 0 for a given 𝛼 ≤ 0 is much smaller that the inverse of the number of operation
in a single day of traffic, it is very likely that the system remains on states 𝑛 > 0. These
probability to jump from a definite value of 𝛼 to the following one are important also in the
description of the 𝜚 < 1 case, as it will be explained below.
Hence suppose that at time 𝑗 the system is in the state 𝑛(𝑗) = 0, with a given value of 𝛼 < 0.
Call 𝑡(𝛼) the quantity such that 𝑛(𝑗 + 𝑖) > 0 for all 0 < 𝑖 < 𝑡(𝛼), and 𝑛(𝑗 + 𝑡(𝛼)) = 0.
𝑡(𝛼) is therefore the length of the busy period with starting value 𝛼. We are interested
to the quantities 𝑇 (𝛼) = 𝐸(𝑡(𝛼)). By the definition of 𝛼 we have that |𝐼𝑗 | = −𝛼 + 1
and that the instant 𝑗 + 𝑡(𝛼) is the first instant after 𝑗 in which |𝐼𝑗+𝑡(𝛼)| = −𝛼, having
|𝐼𝑗+𝑖| > −𝛼 for all 0 < 𝑖 < 𝑡(𝛼). To compute 𝑇 (𝛼) we should evaluate the probability
𝑃 (|𝐼𝑗+𝑖| = −𝛼

⃒⃒
|𝐼𝑗 | = −𝛼 + 1). This probability are however hard to compute due to the

conditioning. Here we introduce our approximation: we will measure 𝑇 (𝛼) in terms of

𝑇 (𝛼) ≈ 1
𝑃 (|𝐼| = −𝛼)

(5.6)

i.e. we neglect the conditioning. This approximation is reasonable for 𝛼 such that 𝑃 (|𝐼| =
−𝛼) ≪ 1

2𝐿 : in these cases we have to expect that the probability to have 𝑃 (|𝐼𝑗+𝑖| = −𝛼
⃒⃒
|𝐼𝑗 | =

−𝛼+1) for 𝑖 < 2𝐿 is very small, and since 𝐼𝑗+𝑖 is independent of 𝐼𝑗 for the greater values of 𝑖,
that gives the bigger contribution to 𝑇 (𝛼), we have that the conditioning is almost ineffective.
On the other side, for 𝛼 such that 𝑃 (|𝐼| = −𝛼) ≥ 1

2𝐿 we have to expect a gross underestimate
of 𝑃 (|𝐼𝑗+𝑖| = −𝛼

⃒⃒
|𝐼𝑗 | = −𝛼 + 1), and therefore a gross overestimate of 𝑇 (𝛼). We will return

on this point later.
We want now to compute explicitly 𝑃 (|𝐼| = −𝛼). We will write general formulas, valid for
any density 𝑓

(𝜎)
𝜉 (𝑡), and we will also consider a concrete probability distribution for the delays

𝜉, namely the case of 𝑓
(𝜎)
𝜉 (𝑡) uniform in [−𝐿, 𝐿], in which many computations may be carried

out explicitly.
By straightforward computations one can see that

𝑃 (|𝐼| = 0) =
𝐿−1∏︁

𝑖=−𝐿+1

(1− 𝐹𝜉(𝑖)) =
(2𝐿)!

(2𝐿)2𝐿
≈ 𝑒−2𝐿

√
4𝜋𝐿 (5.7)
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where the last approximation is valid for uniform 𝜉’s, using Stirling formula, and

𝑃 (|𝐼| = 𝑘) = 𝑃 (|𝐼| = 0)
∑︁

−𝐿+1≤𝑖1<𝑖2<...<𝑖𝑘≤𝐿−1

𝐹𝜉(𝑖1)
1− 𝐹𝜉(𝑖1)

...
𝐹𝜉(𝑖𝑘)

1− 𝐹𝜉(𝑖𝑘)
=

= 𝑃 (|𝐼| = 0)
∑︁

−𝐿+1≤𝑖1<𝑖2<...<𝑖𝑘≤𝐿−1

𝐿− 𝑖1
𝐿 + 𝑖1

...
𝐿− 𝑖𝑘
𝐿 + 𝑖𝑘

(5.8)

where 𝐹𝜉(𝑡) is the probability distribution of the 𝜉’s, and the last equality is again valid for
uniform distribution.
It is worthy to observe that (5.8) may be interpreted as the canonical partition function
of a Fermi system with 2𝐿 energy level and 𝑘 particles, where the 𝑖-th level has energy
log(𝐹𝜉(𝑖))− log(1−𝐹𝜉(𝑖)). With this respect many computational techniques may be used in
order to compute the probabilities 𝑃 (|𝐼| = 𝑘). Note that, in the approximation (5.6), once
we are able to compute the quantities 𝑃 (|𝐼| = 𝑘) we know also the expected values 𝑇 (𝛼).
Let us list here a couple of possible way to evaluate 𝑃 (|𝐼| = 𝑘) using the fact that, since
it is possible to interpret it as a well known object in statistical mechanics, one can use
computational results that are classical in that framework. The number of energy level, as
mentioned above, is 2𝐿. In real traffic context one should expect that this value is of the
order 20 or 30. One of the available approximation of the quantity 𝑃 (|𝐼| = 𝑘), i.e. the so
called equivalence with the grand canonical ensemble, uses a method that is roughly speaking
the Lagrange multipliers method, giving very good approximations for 2𝐿 large (see e.g. [20,
chapter 5, section 53]. Since in our case 2𝐿 is not large enough to ensure the goodness of the
approximation, it is much better to use an exact expression for 𝑃 (|𝐼| = 𝑘), due to Ginibre.
For completeness, and for the fact that it is quoted in a very implicit sense in [43], we give
the proof of this formula.
Calling 𝑤𝑖 = 𝐹𝜉(𝑖)

1−𝐹𝜉(𝑖) , one can prove the following equality

𝑃 (|𝐼| = 𝑘) =
𝑘∑︁

𝑙=0

∑︁
1≤𝑗1≤...≤𝑗𝑙∑︀

𝑚 𝑗𝑚=𝑘

𝐶(𝑗1, ..., 𝑗𝑙)
𝑙∏︁

𝑚=1

∑︁
𝑖

(𝑤𝑖)𝑗𝑚 (5.9)

with

𝐶(𝑗1, ..., 𝑗𝑙) = 𝑃 (|𝐼| = 0)
(−1)𝑘−𝑙

𝑗1.....𝑗𝑙𝑚1!...𝑚𝑘!
(5.10)

where 𝑚𝑖 is the number of 𝑗’s equal to 𝑖. To prove (5.9) we observe that

𝑃 (|𝐼| = 𝑘) = 𝑃 (|𝐼| = 0)
1
𝑘!

𝑑𝑘

𝑑𝑡𝑘

∏︁
𝑖

(1 + 𝑡𝑤𝑖)

⃒⃒⃒⃒
⃒
𝑡=0

The quantity
∏︀

𝑖(1 + 𝑡𝑤𝑖) can be expanded in series as follows

1
𝑘!

𝑑𝑘

𝑑𝑡𝑘

∏︁
𝑖

(1 + 𝑡𝑤𝑖)

⃒⃒⃒⃒
⃒
𝑡=0

=
1
𝑘!

𝑑𝑘

𝑑𝑡𝑘
𝑒

∑︀
𝑖 log(1+𝑡𝑤𝑖)

⃒⃒⃒⃒
𝑡=0

=
1
𝑘!

𝑑𝑘

𝑑𝑡𝑘
𝑒

∑︀
𝑖

∑︀𝑘
𝑗=1(−1)𝑗−1 (𝑡𝑤𝑖)

𝑗

𝑗

⃒⃒⃒⃒
𝑡=0

=

=
1
𝑘!

𝑑𝑘

𝑑𝑡𝑘
𝑒

∑︀𝑘
𝑗=1(−1)𝑗−1 𝑡𝑗

𝑗

∑︀
𝑖(𝑤𝑖)

𝑗

⃒⃒⃒⃒
𝑡=0

=
1
𝑘!

𝑑𝑘

𝑑𝑡𝑘

𝑘∑︁
𝑙=1

(
∑︀𝑘

𝑗=1(−1)𝑗−1 𝑡𝑗

𝑗

∑︀
𝑖(𝑤𝑖)𝑗)𝑙

𝑙!

⃒⃒⃒⃒
⃒
𝑡=0

=
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=
𝑘∑︁

𝑙=0

(−1)𝑘−𝑙

𝑙!

∑︁
𝑗1,...,𝑗𝑙∑︀
𝑚 𝑗𝑚=𝑘

𝑙∏︁
𝑚=1

∑︁
𝑖

(𝑤𝑖)𝑗𝑚

𝑗𝑚
=

𝑘∑︁
𝑙=0

(−1)𝑘−𝑙

𝑙!

∑︁
1≤𝑗1≤...≤𝑗𝑙∑︀

𝑚 𝑗𝑚=𝑘

𝑙∏︁
𝑚=1

∑︁
𝑖

(𝑤𝑖)𝑗𝑚

𝑗𝑚

𝑙!
𝑚1!...𝑚𝑘!

which is (5.9).
We conclude then the discussion of the 𝜚 = 1 case observing that in a concrete framework of
air traffic, if we want to avoid to have lost slot but we want to keep the queue as short as
possible we have to choose initial condition in such a way that 𝛼 is the smaller possible value
such that 𝑇 (𝛼) > 𝐷, where 𝐷 is the number of operations in a day. This value of 𝛼 gives the
corresponding value of the length of the queue using (5.4).
A simple observation allows us to give an estimate of the average length of the queue also
when 𝜚 < 1. Let us suppose that we impose the condition 𝜚 < 1 keeping the time between two
expected arrivals equal to the service time, but assuming that the arrivals are described by
PSRA process with random deletion (see (2.16)), with probability of deletion equal to 1− 𝜚.
It is easy to realize that this corresponds to say that the value of 𝛼 has a probability 1− 𝜚 to
decrease by one. Hence we have this picture of our queueing system: the queue is described
by a superposition of a slow varying process, the process that describes the value of 𝛼, and
a fast varying process, the one describing the 𝑛 for fixed 𝛼. If we are able to compute the
distribution probabilities of the values of 𝛼, we can evaluate the expected length of the queue
(and even its distribution) by (5.4), weighted with the probabilities of the various values of
𝛼.
In the unconditioned approximation (5.6), the computation of the stationary probabilities 𝜋𝛼

of 𝛼 is a standard task of the theory of the birth-and-death processes: the evolution of 𝛼 is
a discrete time birth-and-death process, with transition probabilities

𝑃𝛼,𝛼′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− 𝜚 ≡ 𝜇𝛼 if 𝛼′ = 𝛼− 1
𝑃 (|𝐼| = −𝛼) ≡ 𝜆𝛼 if 𝛼′ = 𝛼 + 1
1− 𝜆𝛼 − 𝜇𝛼 if 𝛼′ = 𝛼

0 otherwise

and boundary conditions 𝜇−𝐿+1 = 𝜆0 = 0. We get the following linear system

𝜋−𝐿+1 = 𝜋−𝐿+1(1− 𝜆−𝐿+1) + 𝜋−𝐿+2𝜇−𝐿+2

𝜋𝑖 = 𝜋𝑖−1𝜆𝑖−1 + 𝜋𝑖+1𝜇𝑖+1 + 𝜋𝑖(1− 𝜆𝑖 − 𝜇𝑖) − 𝐿 + 1 < 𝑖 < 0
𝜋0 = 𝜋−1𝜆−1 + 𝜋0(1− 𝜇0)

whose solution is

𝜋𝑖 = 𝜋−𝐿+1

𝑖∏︁
𝑘=−𝐿+2

𝜆𝑘−1

𝜇𝑘

The stationary distribution 𝜋 is defined by the normalization condition
∑︀

𝑖 𝜋𝑖 = 1, then

𝜋−𝐿+1 =
1

1 +
∑︀0

𝑛=−𝐿+2

∏︀𝑖
𝑘=−𝐿+2

𝜆𝑘−1

𝜇𝑘

(5.11)

This approximation is good for 1 − 𝜚 sufficiently small, because the probability to increase
𝛼 = −𝐿 + 1 is much bigger than the probability to decrease it, and at the same time the un-
conditioned transition probabilities to increase 𝛼 when 𝛼 > −𝐿 + 1 are a good approximation
of the actual transition probabilities.
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In the following figure we show the value of the expected length of the queue obtained by the
formula

𝑁 =
∑︁
𝛼

𝜋𝛼 (𝛼 + 𝐸𝛼(|𝐼|)) (5.12)

Note that 𝐸𝛼(|𝐼|) is 𝛼-dependent, because in its computation we neglect the terms with
|𝐼| < −𝛼, since they do not contribute to the evolution of the process with that value of 𝛼.
As it can be seen from the figure, the estimate of the average length of the queue is extremely
near to the simulations, also for highly congested systems. In the figure we have shown for
completeness also the (wrong, for high 𝜚) values of the length of the queue computed by
means of formula (3.7), which neglects the autocorrelations.
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Figure 2.5: The length of the queue for highly congested systems, computed by means of
numerical simulations (red line) and our analytical approximation (blue line). It can be seen
that the uncorrelated approximation (black line) obtained by formula (3.7) gives for these
values of 𝜚 a gross overestimate. The simulations are run for a time sufficiently long to have
fluctuations on the result negligible in the scale of the figure.

2.6 Conclusions and open problems

The main aim of this chapter is to study a stochastic process close to the Poisson process, but
more suitable to describe the arrivals to a queueing systems when such arrivals are scheduled
in advance, and some randomness is added to the schedule. We looked into this problem as
an attempt to describe the congestion in air traffic systems, but the same construction can
be used in different contexts.

We found some analytical results, in particular we showed that our process can be indistin-
guishable from a Poisson process if one wants to study the distribution either of the number
of arrivals or of the interarrival times in a time slot shorter than the standard deviation of
the randomness imposed to the scheduled arrivals.

However we have shown that from the point of view of the resulting congestion, due to
the autocorrelation of this stochastic process, the queueing properties of this model are quite
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different from the analogous problem with Poisson arrivals. Interesting connection with the
statistical mechanics emerged in the analytical solution of the problem. We proposed some
approximation in our computations, but the results we obtained are in very good agreement
with numerical simulations. An important question is the discussion of the accuracy of this
description with respect to actual air traffic data. We have with this respect some preliminary
results showing that the description of the distribution of the length of the queue using the
PSRA as arrival process is much more accurate than the description assuming Poisson process,
that is well known to be unfit.



Chapter 3

Discrete time Queueing System
With Variable Number of Servers

We consider in this chapter a multi-server queueing system in a discrete time frame-
work such that the number of servers in each time slot is the independent realization of a
random variable. For this model we give a complete theoretical description and we discuss
some numerical approximations.

3.1 Introduction

In classical queueing theory the number of servers 𝑐 is usually a fixed parameter of the
theory. When 𝑐 = 1, the single server queue case, many results may be obtained in a very
general framework, by studying the generating function of the process (see e.g. [14]). For a
multi servers queue, i.e. 𝑐 > 1, on the other hand, there are few analytical results, due to
the fact that for general service times the system is not Markovian. With the exception of
the completely memoryless case, it is possible to obtain exact results only for deterministic
service times, since in this case the natural language to describe the system is the discrete time
Markov chain approach. Even in this particular case, however, the description of the system
is complicated because for 𝑐 servers the generating function has exactly 𝑐 singularities in the
closed complex circle of radius 1, and therefore its study becomes much more complicated. In
general the direct approach, involving the explicit study of the singularities, is quite heavy,
and ingenious numerical techniques (see e.g. [7]) have been created in order to bypass this
difficulty. These techniques are also useful to obtain approximated formulas in the case of
general service times.

In this context, the study of systems with a variable number of servers, that is a system
in which 𝑐 is a random variable, was not even tried so far. Nevertheless, it is not difficult to
imagine concrete frameworks where the number of servers could vary with time. In addition
to the example give in the introduction of this thesis, we point out an another example of
possible application of our model in telecommunication systems, that is a set of servers which
process simultaneously a real time and a best effort traffic, in such a way that the number
of server available for the best effort traffic is a random variable, given by the difference
between the total number of servers and the number of servers occupied by the real time
traffic. In this chapter we study a relatively simple model of a discrete time service in which
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the number of servers at each time is the independent realization of a given random variable.
The choice of a discrete time service is motivated by the fact that in this framework the
system is Markovian, and the equations for the stationary measure have a very transparent
meaning. For the sake of simplicity, the actual value of 𝑐 is chosen independently in each
time slot. From a physical point of view the possibility of studying a service in which, for
example, the number of servers is described by a Markov chain would be of great interest,
basically because it would provide a tool to circumvent the difficulties of the description of
systems with different class of users and non trivial rules of priority (see [15]). This point,
however, is slightly more complicated and it will be the subject of further studies.
In the study of our model of queueing systems with a variable number of servers the compu-
tations of the probability distribution of the states of the system have to face a complicated
structure, in terms of singularities of the generating function. From a numerical point of
view it is then useful to define suitable approximation schemes in order to avoid the explicit
computation of such singularities.
This is a classical problem discussed widely in literature (see e.g.[23, 24, 25, 27, 28]). The
first idea of approximating an infinite Markov chain is due to Seneta [23, 24]. He introduced
the augmentation concept to compute the finite approximation of the stationary distribution
of an infinite Markov chain. The efficiency of the augmentation method is discussed in[25].
Wolf [27] used another approach to study the approximation of an infinite Markov chain and
he investigated the conditions which assure that at least one subsequence of finite stationary
distributions converges pointwise to the true infinite stationary distribution. Later Zhao and
Liu [28] introduced the censoring method, that gives the best approximation in sense of the
𝐿1 norm, but in general it is not easy to compute directly.
We will present a rephrasing of one of the most used approximation schemes, the so-called
last column augmentation, and we will discuss some theoretical and numerical results about
the errors involved in this approximation. We will compare also our results with the other
approximation schemes usually discussed in literature.

The chapter is organized as follows. In section 3.2 we give a description of our model
and introduce some basic notations. In section 3.3 we give the stability condition in order
to obtain the equations of the stationary state of the system. In section 3.4 we give some
details about the root of denominator of generating function and we write it in terms of
root of denominator. In section 3.5 we introduce our approximation and and recall some
results on augmentation concept. In sections 3.6 and 3.7 prove the basic theoretical results of
this chapter for the system 𝐺𝐼/𝐷/𝑐 and 𝐺𝐼/𝐷/𝑐𝑖 respectively. In section 3.9 we give some
analytical result for average queue size and variance. In section 3.10 there are some numerical
results. The section 3.11 is devoted to the conclusions.

3.2 Description of the model

In this section we will describe a multi-server discrete time queueing system with variable
number of identical servers. Users are processed accordingly to the FIFO discipline and
each service starts at discrete time 𝑡𝑖 = 𝑖𝐷. For the sake of simplicity, we will make three
assumptions: first, without loss of generality, that 𝐷 = 1, i.e unit service time slots; second
that the number of servers 𝑐𝑖 at time 𝑖 is the independent realization of a random variable
with distribution 𝛼𝑙 = 𝑃 (𝑐𝑖 = 𝑙), and, finally, that there exists a finite maximum number of
servers 𝑐, i.e. 𝛼𝑐 > 0 and 𝛼𝑖 = 0 for all 𝑖 > 𝑐. We call 𝑞𝑛 the probability of 𝑛 arrivals in a
single time slot, and 𝑋𝑖 the number of users waiting in queue at time 𝑖, and ready to be served
in the time interval (𝑖, 𝑖 + 1). {𝑋𝑖}∞𝑖=0 is a Discrete Time Markov Chain with countable state
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space {0, 1, 2, . . .}. This queueing system will be denoted from now on as 𝐺𝐼/𝐷/𝑐𝑖.
Let 𝑃 𝑖

𝑛 be the probability of 𝑛 users in the system at time 𝑖, immediately before the beginning
of the time slot (𝑖, 𝑖 + 1).

𝑃 (𝑖)
𝑛 = 𝑃 [𝑋(𝑖) = 𝑛] (2.1)

Our interest is the distribution of {𝑋𝑖}. The description above maps into the following linear
system for the probabilities 𝑃

(𝑖)
𝑛

𝑃
(𝑖+1)
0 =

𝑐∑︁
𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃
(𝑖)
𝑘 𝑞0

𝑃
(𝑖+1)
1 =

𝑐∑︁
𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃
(𝑖)
𝑘 𝑞1 +

𝑐∑︁
𝑙=0

𝛼𝑙𝑃
(𝑖)
𝑙+1𝑞0

...

𝑃 (𝑖+1)
𝑛 =

𝑐∑︁
𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃
(𝑖)
𝑘 𝑞𝑛 +

𝑐∑︁
𝑙=0

𝛼𝑙

𝑛+𝑙∑︁
𝑘=𝑙+1

𝑃
(𝑖)
𝑘 𝑞𝑛−𝑘+𝑙 𝑛 ≥ 1

...

(2.2)

Remark 3.2.1. We are assuming that probabilities 𝛼𝑙 are time independent. One might
think on interesting cases of time-dependent probabilities 𝛼𝑙(𝑖), e.g., arrivals with retrials or
even finite waiting room. This will be the subject of further studies.

Example 1: As an example of application of the above system, let us describe a model
of the landing procedure of aircraft at an airport, equipped with 𝑐 runways1. Accordingly
the procedure and management in air traffic control each of runways can be used in either
direction, hence for takeoff or landing of aircraft. If in each time slot the runways is empty2

with probability 𝑝, then the probability that the aircraft find 𝑙 runways available has binomial
distribution with parameter 𝑐 and 𝑝,

𝛼𝑙 =
(︂

𝑐

𝑙

)︂
𝑝𝑙(1− 𝑝)𝑐−𝑙 (2.3)

Example 2: In order to give an another example of application of the system introduced in
this section, let us describe a model of the realtime best-effort traffic on same cable in UMTS
systems. We assume that there are two classes of users. The first class has the priority over
the second. Let 𝑍𝑇 be the number of arrivals of first class users in each time slot. We assume
𝑍𝑇 be a truncated version of a Poisson RV 𝑍, with parameter 𝜆.

𝑝𝑘 := 𝑃 (𝑍𝑇 = 𝑘) =

⎧⎨⎩
𝜆𝑘

𝑘!∑︀𝑐
𝑛=0

𝜆𝑛

𝑛!

𝑘 ≤ 𝑐

0 𝑘 > 𝑐
(2.4)

with

𝐸(𝑍𝑇 ) = 𝜆

(︃
1−

𝜆𝑐

𝑐!∑︀𝑐
𝑛=0

𝜆𝑛

𝑛!

)︃
:= 𝜆𝑇 < 𝜆 (2.5)

1We assume that in each time slot the operations on each runways do not take into account the operations
on other runways

2In sense of there are not takeoffs aircrafts.
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The truncation has been chosen so as to describe, naively, either a system where the probabil-
ity of a number of first class users exceeding, at each time 𝑡𝑖, the number of servers 𝑐 is very
small or (in the case of large 𝜆) a system in which the exceeding real time traffic cannot wait
in queue and it is lost. When we look at the second class users, the relevant information is
the number of servers available after first class users have been served. We define the random
variable 𝑌 = 𝑐−𝑍𝑇 and the probability 𝛼𝑙 := 𝑃 (𝑌 = 𝑐−𝑍𝑇 = 𝑙) = 𝑃 (𝑍𝑇 = 𝑐− 𝑙), i.e. 𝛼𝑙 is
the probability that second class users find 𝑙 available servers.

This model, hence, can be thought of as a service with a variable number of servers,
assuming the following:

∙ the arrival process has a well defined distribution as far as the number of users in each
time slot is concerned;

∙ service time is deterministic and the service may start only at pre-defined discrete times;

∙ the waiting room for the second class users has an infinite capacity, so that users are
not lost.

3.3 Steady state probability distribution

It is not difficult to think of pathological arrival processes 𝑞𝑛 and distributions of servers 𝛼𝑙

such that the Markov chain {𝑋(𝑡𝑖)} is periodic or reducible. However under mild conditions
the aperiodicity and the irreducibility are guaranteed. In the literature, in section 6 of [27]
the condition

𝑞0, ..., 𝑞𝑐 > 0 (3.1)

has been proposed in the case of the 𝐺𝐼/𝐷/𝑐 service. This condition is sufficient, but it is
not necessary. In our case, in which 𝑐 represents the maximum number of available servers,
the condition (3.1) is sufficient too, but milder conditions can be imposed. For example it
is enough in order to guarantee the aperiodicity that for some 𝑙 one has 𝛼𝑙 > 0 and 𝑞𝑙 > 0
simultaneously. Once the aperiodicity is guaranteed, a necessary and sufficient condition for
the irreducibility is the following. Call 𝐽 ⊂ N the set of integers 𝑗 such that for some 𝑙 and
𝑛 such that 𝑛 − 𝑙 = 𝑗 we have 𝛼𝑙 > 0 and 𝑞𝑛 > 0 simultaneously. 𝐽 is then the set of the
possible jumps of the state of the system in a unit time. The chain is irreducible if and only
if the greatest common factor of 𝐽 is 1.
In what follows we will assume that the choice of 𝑞𝑛 and 𝛼𝑙 is ”reasonable” in the sense that
{𝑋(𝑡𝑖)} is aperiodic and irreducible, and we need to impose a further technical condition, i.e.

𝛼𝑙 > 0, 0 <

𝑙−1∑︁
𝑖=0

𝑞𝑖 < 1 for some 𝑙 ≤ 𝑐 (3.2)

Note that (3.1) implies condition (3.2), too. If one of the relations above is satisfied the
system is ergodic under the stability condition∑︁

𝑛≥0

𝑛𝑞𝑛 < 𝑐 (3.3)

where

𝑐 =
𝑐∑︁

𝑙=0

𝑙𝛼𝑙 (3.4)
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The physical meaning of this condition is that the average value of available servers has to
exceed the average numbers of arriving users in each time slot. We will refer to the case∑︁

𝑛≥0

𝑛𝑞𝑛 = 𝑐 (3.5)

as the critical regime. Define the stationary probability 𝑃𝑛 by

𝑃𝑛 = lim
𝑖→∞

𝑃 [𝑋𝑖 = 𝑛] (3.6)

Under the stability condition (3.3), the limit exists for any 𝑛, and the stationary probability
satisfies the following infinite linear system

𝑃0 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃𝑘𝑞0

𝑃1 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃𝑘𝑞1 +
𝑐∑︁

𝑙=0

𝛼𝑙𝑃𝑙+1𝑞0

...

𝑃𝑛 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃𝑘𝑞𝑛 +
𝑐∑︁

𝑙=0

𝛼𝑙

𝑛+𝑙∑︁
𝑘=𝑙+1

𝑃𝑘𝑞𝑛−𝑘+𝑙 𝑛 ≥ 1

...

(3.7)

Define the generating functions

𝑃 (𝑧) =
∞∑︁

𝑛=0

𝑃𝑛𝑧𝑛 𝑞(𝑧) =
∞∑︁

𝑛=0

𝑞𝑛𝑧𝑛 |𝑧| ≤ 1 (3.8)

Now we multiply both side of (3.7) by 𝑧𝑛 and summing from 𝑛 = 0 to ∞ we have

𝑃 (𝑧) =
∞∑︁

𝑛=0

𝑐∑︁
𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃𝑘𝑞𝑛𝑧𝑛 +
∞∑︁

𝑛=0

𝑐∑︁
𝑙=0

𝛼𝑙

𝑛+𝑙∑︁
𝑘=𝑙+1

𝑃𝑘𝑞𝑛−𝑘+𝑙𝑧
𝑛

= 𝑞(𝑧)
𝑐∑︁

𝑙=0

𝑙∑︁
𝑘=0

𝛼𝑙𝑃𝑘 +
∞∑︁

𝑛=1

𝑐∑︁
𝑙=0

𝑛∑︁
𝑖=1

𝛼𝑙𝑃𝑖+𝑙𝑞𝑛−𝑖𝑧
𝑛−𝑖𝑧𝑖

= 𝑞(𝑧)
𝑐∑︁

𝑙=0

𝑙∑︁
𝑘=0

𝛼𝑙𝑃𝑘 +
∞∑︁
𝑖=1

∞∑︁
𝑛=𝑖

𝑐∑︁
𝑙=0

𝛼𝑙𝑃𝑖+𝑙𝑞𝑛−𝑖𝑧
𝑛−𝑖𝑧𝑖

= 𝑞(𝑧)
𝑐∑︁

𝑙=0

𝑙∑︁
𝑘=0

𝛼𝑙𝑃𝑘 + 𝑞(𝑧)
∞∑︁
𝑖=1

𝑐∑︁
𝑙=0

𝛼𝑙

𝑧𝑙
𝑃𝑖+𝑙𝑧

𝑖+𝑙

= 𝑞(𝑧)
𝑐∑︁

𝑙=0

𝑙∑︁
𝑘=0

𝛼𝑙𝑃𝑘 + 𝑞(𝑧)
∞∑︁

𝑘=𝑙+1

𝑐∑︁
𝑙=0

𝛼𝑙

𝑧𝑙
𝑃𝑘𝑧

𝑘

(3.9)

A straightforward computation shows that

𝑃 (𝑧) =
𝑛(𝑧)
𝑑(𝑧)

|𝑧| ≤ 1 (3.10)
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where

𝑛(𝑧) = 𝑞(𝑧)𝑧𝑐
𝑐∑︁

𝑙=0

𝑙−1∑︁
𝑘=0

𝛼𝑙𝑃𝑘(𝑧𝑘−𝑙 − 1)

𝑑(𝑧) = 𝑞(𝑧)
𝑐∑︁

𝑙=0

𝛼𝑙𝑧
𝑐−𝑙 − 𝑧𝑐

(3.11)

The explicit expression of 𝑛(𝑧) depends on the first 𝑐 probabilities 𝑃0, ..., 𝑃𝑐−1: we only
need to know 𝑃0, ..., 𝑃𝑐−1 in order to describe explicitly the whole distribution 𝑃𝑛. In next
section we give the solution of problem using the same idea given by Crommelin [9] and by
Bailey [19].

3.4 Some details about the root of denominator

The correct values of 𝑃0, ..., 𝑃𝑐−1 may be computed on the basis of the zeroes of 𝑑(𝑧) inside the
complex disk of radius 1, see e.g. [7]. Indeed the function 𝑃 (𝑧) has to be holomorphic in such
a disk in order to have a probabilistic interpretation, and hence the parameters 𝑃0, ..., 𝑃𝑐−1

have to be such that the zeroes of 𝑑(𝑧) are exactly canceled. Since (as it is always done
because 𝑞(𝑧) has a probabilistic interpretation) that 𝑞(𝑧) is holomorphic in the unit disc D,
by Rouché’s theorem (Ahlfors [5, p.152]), 𝑞(𝑧)

∑︀𝑐
𝑙=0 𝛼𝑙𝑧

𝑐−𝑙 − 𝑧𝑐 has 𝑐 − 1 complex zeros in
|𝑧| < 1, and a single zero in 𝑧 = 1 see [8, Lemma 2.2, 3.1]. Let call 𝑧0, 𝑧1, . . . , 𝑧𝑐−1 the zeros
of such denominator and we assume that 𝑧0 = 1. In such zeroes the numerator has to vanish.
So in this way we obtain the following 𝑐− 1 equations.

𝑐∑︁
𝑙=0

𝑙−1∑︁
𝑘=0

𝛼𝑙𝑃𝑘(𝑧𝑐
𝑗 − 𝑧𝑐+𝑘−𝑙

𝑗 ) = 0 for 𝑗 = 1, 2, . . . 𝑐− 1 (4.1)

Now for 𝑧0 = 1 we employ the boundary condition 𝑃 (𝑧)|𝑧=1 = 1 and L’Hôpital’s rule, getting
the following condition

𝑐∑︁
𝑙=0

𝑙−1∑︁
𝑘=0

(𝑙 − 𝑘)𝛼𝑙𝑃𝑘 =
𝑐∑︁

𝑙=0

𝑙𝛼𝑙 − 𝑞′(𝑧)
⃒⃒
𝑧=1

(4.2)

We remark that the condition (4.2) make sense if and only if

𝑞′(𝑧)
⃒⃒
𝑧=1∑︀𝑐

𝑙=0 𝑙𝛼𝑙
< 1 (4.3)

which ensure us the existence of stationary probability distribution, otherwise the queue
length tends to infinity. As we see the condition (4.3) is the stability condition given in (3.3)

When we make together the equations (4.1) and (4.2), these constitute a system of 𝑐
equations with 𝑐 unknown 𝑃0, ..., 𝑃𝑐−1. The matrix of this system is given by

A =

⎡⎢⎢⎢⎣
∑︀𝑐

𝑘=1 𝑘𝛼𝑘
∑︀𝑐

𝑘=2(𝑘 − 1)𝛼𝑘 . . . 𝛼𝑐∑︀𝑐
𝑘=1 𝛼𝑘(𝑧𝑐

1 − 𝑧𝑐−𝑘
1 )

∑︀𝑐
𝑘=2 𝛼𝑘(𝑧𝑐

1 − 𝑧𝑐−𝑘+1
1 ) . . . 𝛼𝑐(𝑧𝑐

1 − 𝑧𝑐−1
1 )

...
...

. . .
...∑︀𝑐

𝑘=1 𝛼𝑘(𝑧𝑐
𝑐−1 − 𝑧𝑐−𝑘

𝑐−1 )
∑︀𝑐

𝑘=2 𝛼𝑘(𝑧𝑐
𝑐−1 − 𝑧𝑐−𝑘+1

𝑐−1 ) . . . 𝛼𝑐(𝑧𝑐
𝑐−1 − 𝑧𝑐−1

𝑐−1)

⎤⎥⎥⎥⎦ (4.4)
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and the column vector of constant terms with all entries zero except for the first entry that
is
∑︀𝑐

𝑙=0 𝑙𝛼𝑙− 𝑞′(𝑧)
⃒⃒
𝑧=1

. It possible to solve the system of 𝑐 equations in 𝑐 unknowns by using
the Cramer rule. To do this we need to show that the determinant of matrix A, det(A) do
not to vanish. We assume that the zeros of denominator are simple.

det(A) =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

∑︀𝑐
𝑘=1 𝑘𝛼𝑘

∑︀𝑐
𝑘=2(𝑘 − 1)𝛼𝑘 . . . 𝛼𝑐∑︀𝑐

𝑘=1 𝛼𝑘(𝑧𝑐
1 − 𝑧𝑐−𝑘

1 )
∑︀𝑐

𝑘=2 𝛼𝑘(𝑧𝑐
1 − 𝑧𝑐−𝑘+1

1 ) . . . 𝛼𝑐(𝑧𝑐
1 − 𝑧𝑐−1

1 )
...

...
. . .

...∑︀𝑐
𝑘=1 𝛼𝑘(𝑧𝑐

𝑐−1 − 𝑧𝑐−𝑘
𝑐−1 )

∑︀𝑐
𝑘=2 𝛼𝑘(𝑧𝑐

𝑐−1 − 𝑧𝑐−𝑘+1
𝑐−1 ) . . . 𝛼𝑐(𝑧𝑐

𝑐−1 − 𝑧𝑐−1
𝑐−1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ (4.5)

Now we can write the matrix A in following way,

A = BC (4.6)

where

B =

⎡⎢⎢⎢⎣
𝑐 𝑐− 1 . . . 1

𝑧𝑐
1 − 1 𝑧𝑐

1 − 𝑧1 . . . 𝑧𝑐
1 − 𝑧𝑐−1

1
...

...
. . .

...
𝑧𝑐
𝑐−1 − 1 𝑧𝑐

𝑐−1 − 𝑧𝑐−1 . . . 𝑧𝑐
𝑐−1 − 𝑧𝑐−1

𝑐−1

⎤⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎣
𝛼𝑐 0 . . . 0

𝛼𝑐−1 𝛼𝑐 . . . 0
...

...
. . .

...
𝛼1 𝛼2 . . . 𝛼𝑐

⎤⎥⎥⎥⎦
Since det(A) = det(B) det(C), we can calculate easily the det(B) and the det(C), we have

det(B) =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝑐 𝑐− 1 . . . 1
𝑧𝑐
1 − 1 𝑧𝑐

1 − 𝑧1 . . . 𝑧𝑐
1 − 𝑧𝑐−1

1
...

...
. . .

...
𝑧𝑐
𝑐−1 − 1 𝑧𝑐

𝑐−1 − 𝑧𝑐−1 . . . 𝑧𝑐
𝑐−1 − 𝑧𝑐−1

𝑐−1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ =

=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝑐 𝑧𝑐
1 − 1 . . . 𝑧𝑐

𝑐−1 − 1
𝑐− 1 𝑧𝑐

1 − 𝑧1 . . . 𝑧𝑐
𝑐−1 − 𝑧𝑐−1

...
...

. . .
...

1 𝑧𝑐
1 − 𝑧𝑐−1

1 . . . 𝑧𝑐
𝑐−1 − 𝑧𝑐−1

𝑐−1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

1 𝑧1 − 1 . . . 𝑧𝑐−1 − 1
1 𝑧2

1 − 𝑧1 . . . 𝑧2
𝑐−1 − 𝑧𝑐−1

...
...

. . .
...

1 𝑧𝑐
1 − 𝑧𝑐−1

1 . . . 𝑧𝑐
𝑐−1 − 𝑧𝑐−1

𝑐−1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ =

=
𝑐−1∏︁
𝑗=1

(𝑧𝑗 − 1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

1 1 . . . 1
1 𝑧1 . . . 𝑧𝑐−1
...

...
. . .

...
1 𝑧𝑐−1

1 . . . 𝑧𝑐−1
𝑐−1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ =

𝑐−1∏︁
𝑗=1

(𝑧𝑗 − 1)
∏︁

0≤𝑙<𝑗≤𝑐−1

(𝑧𝑗 − 𝑧𝑙)

where we have used the fact that: det(A) = det(AT) on the first equality, then we added a
row 𝑗 the row 𝑗 + 1 multiplied by (-1), for 𝑗 = 1, . . . , 𝑐− 1 on the second equality; finally we
used the expression for determinant of a Vandermonde matrix applies on the last equality.
Finally we find

det(A) = 𝛼𝑐
𝑐

𝑐−1∏︁
𝑗=1

(𝑧𝑗 − 1)
∏︁

0≤𝑙<𝑗≤𝑐−1

(𝑧𝑗 − 𝑧𝑙) 𝑗 = 1, . . . , 𝑐− 1 (4.7)
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Then we have shown that the det(A) ̸= 0, so the system of 𝑐 equations has a unique solution
𝑃0, . . . , 𝑃𝑐−1. Now we rewrite the generating function (3.11) as follows

𝑃 (𝑧) =
𝑛(𝑧)
𝑑(𝑧)

|𝑧| ≤ 1 (4.8)

where

𝑛(𝑧) =
𝑐∑︁

𝑙=0

𝑙−1∑︁
𝑘=0

𝛼𝑙𝑃𝑘(𝑧𝑐 − 𝑧𝑐+𝑘−𝑙)

𝑑(𝑧) =
𝑧𝑐

𝑞(𝑧)
−

𝑐∑︁
𝑙=0

𝛼𝑙𝑧
𝑐−𝑙

(4.9)

By the Fundamental Theorem of Algebra there are 𝑐 roots of the numerator 𝑛(𝑧), then we
can write the 𝑛(𝑧) on factorial form

𝑛(𝑧) =
𝑐∑︁

𝑙=0

𝑙−1∑︁
𝑘=0

𝛼𝑙𝑃𝑘(𝑧𝑐 − 𝑧𝑐+𝑘−𝑙) =
𝑐−1∑︁
𝑛=0

𝑃𝑛

𝑐∑︁
𝑘=𝑛+1

𝛼𝑘

𝑐∏︁
𝑙=1

(𝑧 − 𝑧𝑙) = (𝑧 − 1)𝛽
𝑐∏︁

𝑙=1

(𝑧 − 𝑧𝑙) (4.10)

with

𝛽 =
𝑐−1∑︁
𝑛=0

𝑃𝑛

𝑐∑︁
𝑘=𝑛+1

𝛼𝑘 (4.11)

Now consider the system of 𝑐 + 1 equations (4.11), (4.1) and (4.2) with 𝑐 unknowns. This
system has unique solution if it satisfy the following condition⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

∑︀𝑐
𝑘=1 𝛼𝑘

∑︀𝑐
𝑘=2 𝛼𝑘 . . . 𝛼𝑐 𝛽∑︀𝑐

𝑘=1 𝑘𝛼𝑘
∑︀𝑐

𝑘=2(𝑘 − 1)𝛼𝑘 . . . 𝛼𝑐 𝛾∑︀𝑐
𝑘=1 𝛼𝑘(𝑧𝑐

1 − 𝑧𝑐−𝑘
1 )

∑︀𝑐
𝑘=2 𝛼𝑘(𝑧𝑐

1 − 𝑧𝑐−𝑘+1
1 ) . . . 𝛼𝑐(𝑧𝑐

1 − 𝑧𝑐−1
1 ) 0

...
...

. . .
...

...∑︀𝑐
𝑘=1 𝛼𝑘(𝑧𝑐

𝑐−1 − 𝑧𝑐−𝑘
𝑐−1 )

∑︀𝑐
𝑘=2 𝛼𝑘(𝑧𝑐

𝑐−1 − 𝑧𝑐−𝑘+1
𝑐−1 ) . . . 𝛼𝑐(𝑧𝑐

𝑐−1 − 𝑧𝑐−1
𝑐−1) 0

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒ = 0 (4.12)

where 𝛾 =
∑︀𝑐

𝑙=0 𝛼𝑙 − 𝑞′(𝑧)|𝑧=1.
After a few calculations we obtain

𝛽

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

∑︀𝑐
𝑘=1 𝑘𝛼𝑘

∑︀𝑐
𝑘=2(𝑘 − 1)𝛼𝑘 . . . 𝛼𝑐∑︀𝑐

𝑘=1 𝛼𝑘(𝑧𝑐
1 − 𝑧𝑐−𝑘

1 )
∑︀𝑐

𝑘=2 𝛼𝑘(𝑧𝑐
1 − 𝑧𝑐−𝑘+1

1 ) . . . 𝛼𝑐(𝑧𝑐
1 − 𝑧𝑐−1

1 )
...

...
. . .

...∑︀𝑐
𝑘=1 𝛼𝑘(𝑧𝑐

𝑐−1 − 𝑧𝑐−𝑘
𝑐−1 )

∑︀𝑐
𝑘=2 𝛼𝑘(𝑧𝑐

𝑐−1 − 𝑧𝑐−𝑘+1
𝑐−1 ) . . . 𝛼𝑐(𝑧𝑐

𝑐−1 − 𝑧𝑐−1
𝑐−1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ =

= 𝛾

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

∑︀𝑐
𝑘=1 𝛼𝑘

∑︀𝑐
𝑘=2 𝛼𝑘 . . . 𝛼𝑐∑︀𝑐

𝑘=1 𝛼𝑘(𝑧𝑐
1 − 𝑧𝑐−𝑘

1 )
∑︀𝑐

𝑘=2 𝛼𝑘(𝑧𝑐
1 − 𝑧𝑐−𝑘+1

1 ) . . . 𝛼𝑐(𝑧𝑐
1 − 𝑧𝑐−1

1 )
...

...
. . .

...∑︀𝑐
𝑘=1 𝛼𝑘(𝑧𝑐

𝑐−1 − 𝑧𝑐−𝑘
𝑐−1 )

∑︀𝑐
𝑘=2 𝛼𝑘(𝑧𝑐

𝑐−1 − 𝑧𝑐−𝑘+1
𝑐−1 ) . . . 𝛼𝑐(𝑧𝑐

𝑐−1 − 𝑧𝑐−1
𝑐−1)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
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𝛽𝛼𝑐
𝑐

𝑐−1∏︁
𝑗=1

(𝑧𝑗 − 1)
∏︁

0≤𝑙<𝑗≤𝑐−1

(𝑧𝑗 − 𝑧𝑙) =

= 𝛾

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

1 1 . . . 1
𝑧𝑐
1 − 1 𝑧𝑐

1 − 𝑧1 . . . 𝑧𝑐
1 − 𝑧𝑐−1

1
...

...
. . .

...
𝑧𝑐
𝑐−1 − 1 𝑧𝑐

𝑐−1 − 𝑧𝑐−1 . . . 𝑧𝑐
𝑐−1 − 𝑧𝑐−1

𝑐−1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝛼𝑐 0 . . . 0
𝛼𝑐−1 𝛼𝑐 . . . 0

...
...

. . .
...

𝛼1 𝛼2 . . . 𝛼𝑐

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ =

= 𝛾𝛼𝑐
𝑐

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

1 𝑧𝑐
1 − 1 . . . 𝑧𝑐

𝑐−1 − 1
1 𝑧𝑐

1 − 𝑧1 . . . 𝑧𝑐
𝑐−1 − 𝑧𝑐−1

...
...

. . .
...

1 𝑧𝑐
1 − 𝑧𝑐−1

1 . . . 𝑧𝑐
𝑐−1 − 𝑧𝑐−1

𝑐−1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ = 𝛾𝛼𝑐

𝑐

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

0 𝑧1 − 1 . . . 𝑧𝑐−1 − 1
0 𝑧2

1 − 𝑧1 . . . 𝑧2
𝑐−1 − 𝑧𝑐−1

...
...

. . .
...

1 𝑧𝑐
1 − 𝑧𝑐−1

1 . . . 𝑧𝑐
𝑐−1 − 𝑧𝑐−1

𝑐−1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

= (−1)𝑐+1𝛾𝛼𝑐
𝑐

𝑐−1∏︁
𝑗=1

(𝑧𝑗 − 1)
∏︁

0≤𝑙<𝑗≤𝑐−2

(𝑧𝑗 − 𝑧𝑙)

Therefore

𝛽 =

(︃
𝑐∑︁

𝑙=0

𝑙𝛼𝑙 − 𝑞′(𝑧)|𝑧=1

)︃
𝑐−1∏︁
𝑙=1

1
1− 𝑧𝑙

(4.13)

In conclusion, from (3.11), (4.10) and (4.13), we obtain the exact generating function of the
system

𝑃 (𝑧) =
𝑞(𝑧)(𝑧 − 1) (

∑︀𝑐
𝑙=0 𝑙𝛼𝑙 − 𝑞′(𝑧)|𝑧=1)

𝑧𝑐 − 𝑞(𝑧)
∑︀𝑐

𝑙=0 𝛼𝑙𝑧𝑐−𝑙

𝑐−1∏︁
𝑙=1

𝑧 − 𝑧𝑙

1− 𝑧𝑙
(4.14)

From (4.14) one can write the expression for all 𝑃𝑛, we give only the expression for 𝑃0

evaluating 𝑃 (𝑧) at 𝑧 = 0

𝑃0 = (−1)𝑐−1

∑︀𝑐
𝑙=0 𝑙𝛼𝑙 − 𝑞′(𝑧)|𝑧=1

𝛼𝑐

𝑐−1∏︁
𝑙=1

𝑧𝑙

1− 𝑧𝑙
(4.15)

Note that the 𝐺𝐼/𝐷/𝑐 service is a particular case of our system, namely

𝛼𝑙 =

{︃
0 𝑙 < 𝑐

1 𝑙 = 𝑐
(4.16)

In this case the (4.14) becomes

𝑃 (𝑧) =
𝑞(𝑧)(𝑧 − 1) (𝑐− 𝑞′(𝑧)|𝑧=1)

𝑧𝑐 − 𝑞(𝑧)

𝑐−1∏︁
𝑙=1

𝑧 − 𝑧𝑙

1− 𝑧𝑙
(4.17)

as it is well known by Crommelin [9]. Than in this way we give the generalization of the
results given in [9] and in [19].

3.5 The idea of approximation

Although the construction described in the above section is in principle the complete solution
of the problem, it has two main disadvantages.
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∙ First of all it is not always easy to find complex zeroes 𝑧1, ...𝑧𝑐 of 𝑑(𝑧), especially when
𝑐 is large.

∙ Second, a small error (always present in numerical computations) on the values of
𝑧1, ...𝑧𝑐 generates a sequence of 𝑃𝑛 that rapidly diverges from the true (probabilistic)
expression. We will show that if 𝑧1, ...𝑧𝑐 do not cancel exactly the zeroes of the denom-
inator in the generating function, the latter diverges in some 𝑧𝑖 and their coefficients
𝑃𝑛 diverge exponentially, loosing their probabilistic interpretation.

Suitable approximation schemes have to be found in order to overcome these issues. For
memoryless arrivals and a fixed number of servers, the problem is solved in [7]p.119 by the so
called geometric tail approach. The idea is to reduce the the system (3.7) to a finite linear
algebraic system fixing a suitably chosen �̄� and assuming that for 𝑛 > �̄� the following relation
is approximately true

𝑃𝑛 = 𝑃�̄�𝜏𝑛−�̄� 𝜏 < 1 (5.1)

It is easy to see that 𝜏 is the inverse of the absolute value of the zero of the denominator
outside the circle of radius 1. The solution of the finite algebraic linear system obtained in
this way converges numerically very fast to a set of fixed values, which are then assumed to
be a good approximated solutions of the first �̄� values of 𝑃𝑛, and in particular of 𝑃0, ..., 𝑃𝑐−1.

There are other possible approaches to the solution of the problem above. An approximated
solution of the probability distribution 𝑃𝑛 can be obtained from the infinite set of equations of
the process by restricting it to a finite set of states 𝐸𝑓 = {0, 1, ..., �̄�}. When the distribution
of the (true) infinite system is such that the probability of being in the complement of 𝐸𝑓

is suitably small, then the probability of the truncated finite system should be quite near to
the true probabilities of the infinite system. The transition probability matrix of the finite
system, however, may not be just the finite truncation of the infinite matrix, since in this way
the resulting finite matrix would not be Markovian. Indeed the terms of the truncated matrix
have to be suitably increased in order to restore the Markov property, i.e. the sum of each
row has to be one. This process is usually called in literature augmentation (see [25, 28]).
Since the first idea of approximating an infinite Markov chain is due to Seneta and the much
of literature on this topic is collected in his book we recall some definition and theorem given
on his book [26]. Let 𝑋𝑖 be a positive recurrent discrete time Markov chain on the countable
state space {0, 1, 2, . . . }, with transition matrix P and stationary distribution 𝜋. Let P(�̄�)

denote the truncation of size �̄�. Consider 𝜋(�̄�) obtained from a �̄�x�̄� stochastic matrix P̂(�̄�)

where P̂(�̄�) ≥ P(�̄�) elementwise.

Definition 3.5.1. A stochastic matrix P = {𝑝𝑖𝑗} is said to be a Markov matrix if the elements
of at least one column are away from 0, i.e. there exists a 𝑗0 and 𝜖 > 0 such that 𝑝𝑖𝑗0 > 𝜖,
all i.

Such matrix has a single essential class, which is positive recurrent and aperiodic and
contains 𝑗0.

Definition 3.5.2. A stochastic matrix P = {𝑝𝑖𝑗} is said to be upper Hessenberg if 𝑝𝑖𝑗 > 0
for 𝑖 > 𝑗 + 1.

Theorem 3.5.3. Let P = {𝑝𝑖𝑗} be a Markov matrix and for each �̄� ∈ N, let P̂(�̄�) be an �̄�x�̄�
stochastic matrix satisfying P̂(�̄�) ≥ P(�̄�). Then for all �̄� sufficiently large P̂(�̄�) has a unique
stationary distribution 𝜋(�̄�) and 𝜋(�̄�) → 𝜋 as �̄� →∞.
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Proof. See [25].

There has been, also recently, a certain emphasis on the problem of finding the augmen-
tation procedure that gives the smaller errors with respect to the true infinite distribution.
If the notion of distance between the finite distribution 𝑃

(𝑓)
𝑛 and the infinite distribution 𝑃𝑛

is the so called total variation distance

𝑑𝑇𝑉 (𝑃 (𝑓), 𝑃 ) =
1
2

∑︁
𝑛≥0

|𝑃 (𝑓)
𝑛 − 𝑃𝑛| (5.2)

A consequence of theorem 1 in [28] for the errors is

𝑑𝑇𝑉 (𝑃 (𝑓), 𝑃 ) =
�̄�∑︁

𝑛=0

𝑃
(𝑓)
𝑛 >𝑃𝑛

|𝑃 (𝑓)
𝑛 − 𝑃𝑛| (5.3)

It is clear that a lower bound of this distance is given by the total weight of the tail of the
infinite distribution:

𝑑𝑇𝑉 (𝑃 (𝑓), 𝑃 ) ≥ 1
2

∑︁
𝑛>�̄�

𝑃𝑛 (5.4)

An augmentation is considered optimal if the equality is realized in (5.4). Two different aug-
mentation procedures are particularly discussed in literature: the last column augmentation
and the augmentation given by the censored Markov chain. The following lemma is stated
in [31, Lemma 6.6].

Lemma 3.5.4. Let P be the transition probability matrix of an arbitrary Markov chain
partitioned according to subsets 𝐸𝑓 and 𝐸𝑐

𝑓

𝐸𝑓 𝐸𝑐
𝑓

P = 𝐸𝑓

𝐸𝑐
𝑓

[︂
T U
D Q

]︂
(5.5)

Then, the censored process is Markov chain and its transition probability matrix is given by

Pf
𝐸 = T + UQ̂D (5.6)

with Q̂ =
∑︀∞

𝑘=0 Q𝑘

The last column augmentation is easy to implement numerically, as we shall see explicitly
below, but it not always optimal. The censored Markov chain, having the first �̄� probabilities
proportional to the true 𝑃𝑛 is always optimal, but it is hard to compute explicitely, unless it
is exactly the augmentation of the last column, e.g the case of an upper Hessenberg matrix.

In this chapter we will present an approach that is actually a different way to write the last
column augmentation. The basic idea of this approach is simple: we describe the system
starting from the cumulative probabilities 𝜎𝑛 defined by

𝜎𝑛 =
𝑛∑︁

𝑘=0

𝑃𝑘.
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In order to have a probabilistic interpretation, the sequence of 𝜎𝑛 has to be increasing,
𝜎𝑖 ≤ 𝜎𝑖+1, and lim𝑛→∞ 𝜎𝑛 = 1. We can rewrite the equations (3.7) in terms of the 𝜎’s to get

𝜎0 =
𝑐∑︁

𝑙=0

𝛼𝑙𝜎𝑙𝑞0

𝜎1 =
𝑐∑︁

𝑙=0

𝛼𝑙(𝜎𝑙𝑞1 + 𝜎𝑙+1𝑞0)

...

𝜎𝑛 =
𝑐∑︁

𝑙=0

𝛼𝑙(𝜎𝑙𝑞𝑛 + 𝜎𝑙+1𝑞𝑛−1 + · · ·+ 𝜎𝑛+𝑙𝑞0) 𝑛 ≥ 1

...

(5.7)

that we can rewrite in a compact form as

𝜎𝑛 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑛+𝑙∑︁
𝑘=𝑙

𝜎𝑘𝑞𝑛+𝑙−𝑘 (5.8)

Now multiplying both sides of (5.8) by 𝑧𝑛 and summing from 0 to ∞ we have

𝜎(𝑧) =
∞∑︁

𝑛=0

𝑐∑︁
𝑙=0

𝛼𝑙

𝑛+𝑙∑︁
𝑘=𝑙

𝜎𝑘𝑞𝑛−𝑘+𝑙𝑧
𝑛

=
∞∑︁

𝑛=0

𝑐∑︁
𝑙=0

𝑛∑︁
𝑖=0

𝛼𝑙𝜎𝑖+𝑙𝑞𝑛−𝑖𝑧
𝑛−𝑖𝑧𝑖

=
∞∑︁
𝑖=0

∞∑︁
𝑛=𝑖

𝑐∑︁
𝑙=0

𝛼𝑙𝜎𝑖+𝑙𝑞𝑛−𝑖𝑧
𝑛−𝑖𝑧𝑖

= 𝑞(𝑧)
∞∑︁
𝑖=1

𝑐∑︁
𝑙=0

𝛼𝑙

𝑧𝑙
𝜎𝑖+𝑙𝑧

𝑖+𝑙

= 𝑞(𝑧)
∞∑︁

𝑘=𝑙

𝑐∑︁
𝑙=0

𝛼𝑙

𝑧𝑙
𝜎𝑘𝑧

𝑘

(5.9)

So the explicit form of the generating function 𝜎(𝑧) =
∑︀∞

𝑛=0 𝜎𝑛𝑧𝑛 is given by

𝜎(𝑧) =
𝑚(𝑧)
𝑑(𝑧)

|𝑧| ≤ 1 (5.10)

where

𝑚(𝑧) = 𝑞(𝑧)𝑧𝑐
𝑐∑︁

𝑙=0

𝑙−1∑︁
𝑘=0

𝛼𝑙𝜎𝑘𝑧
𝑘−𝑙 (5.11)

and 𝑑(𝑧) is defined as in (3.11). Since we know that the asymptotic value of the 𝜎′𝑠 is
lim𝑛→∞ 𝜎𝑛 = 1, we can construct an approximated solution of the system (5.7) imposing
that 𝜎𝑖 = 1 for all 𝑖 > �̄�. In this way the system (5.7) becomes a finite dimensional linear
algebraic system, which can be solved numerically.
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3.6 Theorical results: case 𝐺𝐼/𝐷/𝑐

The main results of this section are:
1) A generic choice of the initial probabilities 𝜎0, ..., 𝜎𝑐−1 induces on all terms of the

sequence 𝜎𝑛, 𝑛 ≥ 𝑐, an error that increases exponentially in 𝑛. Hence the idea of computing
approximately the first 𝑐 𝜎’s and then use them to solve the system (5.7) is completely useless
if we are interested in a numerical solution. The proof of this theorem is straightforward but
complicated. Hence we decided to prove that even in a simplified case, the 𝐺𝐼/𝐷/𝑐 queueig
system with constant 𝑐, the same problem arises.

2) Fixing, as we outlined in the above section, the value �̄� such that we assume the
differences 1 − 𝜎𝑛 negligible for all 𝑛 > �̄� is, on the other side, an approach that allows us
to control explicitly the error we do on all the values 𝜎𝑛, 𝑛 < �̄�. We prove this result first
for the 𝐺𝐼/𝐷/𝑐 queueig system, where the expressions are less heavy, and then we show how
the similar proof can be used to control the flow of our 𝐺𝐼/𝐷/𝑐𝑖, as we see in section 3.7.

Hence we start choosing (𝐺𝐼/𝐷/𝑐 service) the 4.16, hence in this case the stationary
probability satisfies the following linear system

𝑃0 =
𝑐∑︁

𝑘=0

𝑃𝑘𝑞0

𝑃1 =
𝑐∑︁

𝑘=0

𝑃𝑘𝑞1 + 𝑃𝑐+1𝑞0

𝑃2 =
𝑐∑︁

𝑘=0

𝑃𝑘𝑞2 + 𝑃𝑐+1𝑞1 + 𝑃𝑐+2𝑞0

...

𝑃𝑛 =
𝑐∑︁

𝑘=0

𝑃𝑘𝑞𝑛 +
𝑛+𝑐∑︁

𝑘=𝑐+1

𝑃𝑘𝑞𝑛−𝑘+𝑐 𝑛 ≥ 1

(6.1)

Let again 𝜎𝑛 be defined by, 𝜎𝑛 =
∑︀𝑛

𝑘=0 𝑃𝑘. We obtain directly from (6.1) the following
infinite linear system for {𝜎𝑛}𝑛≥0,

𝜎0 = 𝜎𝑐𝑞0

𝜎1 = 𝜎𝑐𝑞1 + 𝜎𝑐+1𝑞0

𝜎2 = 𝜎𝑐𝑞2 + 𝜎𝑐+1𝑞1 + 𝜎𝑐+2𝑞0

...

𝜎𝑛 = 𝜎𝑐𝑞𝑛 +
𝑛+𝑐∑︁

𝑘=𝑐+1

𝜎𝑘𝑞𝑛−𝑘+𝑐 =
𝑛+𝑐∑︁
𝑘=𝑐

𝜎𝑘𝑞𝑛−𝑘+𝑐 𝑛 ≥ 1

...

(6.2)

Define the generating functions

𝜎(𝑧) =
∞∑︁

𝑛=0

𝜎𝑛𝑧𝑛 𝑞(𝑧) =
∞∑︁

𝑛=0

𝑞𝑛𝑧𝑛 (6.3)
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we can derive easily the following functional equation from (6.2) multiplying both side of
(6.2) by 𝑧𝑛 and summing from 0 to ∞ or using the condition (4.16) in (5.11), to obtain

𝜎(𝑧) =
𝜎0 + 𝜎1𝑧 + · · ·+ 𝜎𝑐−1𝑧

𝑐−1

1− 𝑧𝑐𝑞−1(𝑧)
(6.4)

From (6.4), writing the denominator as a geometric series in |𝑧𝑐/𝑞(𝑧)| < 1, we obtain

𝜎(𝑧) = (𝜎0 + 𝜎1𝑧 + · · ·+ 𝜎𝑐−1𝑧
𝑐−1)

∞∑︁
𝑘=0

[︂
𝑧𝑐

𝑞(𝑧)

]︂𝑘

(6.5)

which can be rewritten as

𝜎(𝑧) =
𝑐−1∑︁
𝑘=0

𝜎𝑘𝑧
𝑘
∞∑︁

𝑛=0

𝑎𝑛𝑧𝑛 =
∞∑︁

𝑛=0

𝑐−1∑︁
𝑘=0

𝑎𝑛𝜎𝑘𝑧
𝑛+𝑘 =

∞∑︁
𝑛=0

⎡⎣min(𝑐−1,𝑛)∑︁
𝑘=0

𝑎𝑛−𝑘𝜎𝑘

⎤⎦ 𝑧𝑛 (6.6)

Thus, we get for 𝜎𝑛:

𝜎𝑛 =
min(𝑐−1,𝑛)∑︁

𝑘=0

𝑎𝑛−𝑘𝜎𝑘 (6.7)

from this expression we can find the explicit form of the probabilities 𝜎𝑛 as functions of
𝜎0, . . . , 𝜎𝑐−1. To be explicit, let us consider first the case of Poisson arrivals, 𝑞(𝑧) = 𝑒𝜚(𝑧−1).

𝜎(𝑧) = (𝜎0 + 𝜎1𝑧 + · · ·+ 𝜎𝑐−1𝑧
𝑐−1)

∞∑︁
𝑘=0

[︁
𝑒𝜚(1−𝑧)𝑧𝑐

]︁𝑘
= (𝜎0 + 𝜎1𝑧 + · · ·+ 𝜎𝑐−1𝑧

𝑐−1)
∞∑︁

𝑘=0

𝑒𝑘𝜚𝑒−𝑘𝜚𝑧𝑧𝑘𝑐

= (𝜎0 + 𝜎1𝑧 + · · ·+ 𝜎𝑐−1𝑧
𝑐−1)

∞∑︁
𝑘=0

𝑒𝑘𝜚𝑧𝑘𝑐
∞∑︁

𝑚=0

(−𝑘𝜚𝑧)𝑚

𝑚!

= (𝜎0 + 𝜎1𝑧 + · · ·+ 𝜎𝑐−1𝑧
𝑐−1)

∞∑︁
𝑘=0

∞∑︁
𝑚=0

(−1)𝑚𝑒𝑘𝜚 (𝑘𝜚)𝑚

𝑚!
𝑧𝑚+𝑘𝑐

= (𝜎0 + 𝜎1𝑧 + · · ·+ 𝜎𝑐−1𝑧
𝑐−1)

∞∑︁
𝑘=0

∞∑︁
𝑛=𝑘𝑐

(−1)𝑛−𝑘𝑐𝑒𝑘𝜚 (𝑘𝜚)(𝑛− 𝑘𝑐)
(𝑛− 𝑘𝑐)!

𝑧𝑛

(6.8)

We have

𝜎(𝑧) = (𝜎0 + 𝜎1𝑧 + · · ·+ 𝜎𝑐−1𝑧
𝑐−1)

∞∑︁
𝑛=0

⌊𝑛
𝑐 ⌋∑︁

𝑘=0

(−1)𝑛−𝑘𝑐𝑒𝑘𝜚 (𝑘𝜚)𝑛−𝑘𝑐

(𝑛− 𝑘𝑐)!
𝑧𝑛 (6.9)

Hence in this case

𝑎𝑛 =
⌊𝑛

𝑐 ⌋∑︁
𝑘=0

(−1)𝑛−𝑘𝑐𝑒𝑘𝜚 (𝑘𝜚)𝑛−𝑘𝑐

(𝑛− 𝑘𝑐)!
(6.10)

From (6.7) it is clear that the explicit expression of all the 𝜎’s is known once we know
the first 𝑐 sigmas, i.e. the set {𝜎0, . . . , 𝜎𝑐−1}. In what follows we shall see that an infinite



3.6. THEORICAL RESULTS: CASE 𝐺𝐼/𝐷/𝐶 41

set {𝜎} = {𝜎0, 𝜎1, . . . , 𝜎𝑛, . . . } is generated by a choice {𝜎0, . . . , 𝜎𝑐−1}. In other words the
equations (6.2) may be interpreted as the equations of a flow {𝜎} which is uniquely determined
by its initial condition {𝜎0, . . . , 𝜎𝑐−1}. Note that the flow {𝜎} is linear in any of the element
of the set {𝜎0, . . . , 𝜎𝑐−1}, and hence the flow generated by {𝑟𝜎0, . . . , 𝑟𝜎𝑐−1} with 𝑟 ∈ R+

is simply {𝑟𝜎}. This means that the initial conditions are determined modulo an overall
constant factor 𝑟. Such factor will be fixed by the normalization condition lim𝑛→∞ 𝜎𝑛 = 1.
This behavior does not depend on the explicit form of 𝑞(𝑧) as we see below: the set {𝜎} is
always generated modulo constant factor by {𝜎0, . . . , 𝜎𝑐−1}.

It is now clear that the flow generated by an initial condition {𝜎0, . . . , 𝜎𝑐−1} such that
the generating function 𝜎(𝑧) has singularities in the circle |𝑧| < 1 has to be such that a
subsequence of 𝜎𝑛 diverges exponentially. Such a choice of {𝜎0, . . . , 𝜎𝑐−1} has hence to be
excluded if we want to keep a probabilistic meaning for the flow {𝜎}.

Let us go back to the general form of 𝜎(𝑧)

𝜎(𝑧) =
𝑞(𝑧)(𝜎0 + 𝜎1𝑧 + · · ·+ 𝜎𝑐−1𝑧

𝑐−1)
𝑞(𝑧)− 𝑧𝑐

=
𝑁(𝜎0, . . . , 𝜎𝑐−1, 𝑧)

𝑑(𝑧)
(6.11)

In what follows we assume that 𝑞(𝑧) is holomorfic in the unit disc D, hence by Rouché’s
theorem (Ahlfors [5, p.152]), 𝑞(𝑧) − 𝑧𝑐 has 𝑐 − 1 zeros in |𝑧| < 1, and a single zero in 𝑧 = 1
see [8, Lemma 2.2, 3.1]. Therefore 𝑑(𝑧) = 𝑞(𝑧)− 𝑧𝑐 will be of the following form

𝑑(𝑧) = ℎ(𝑧)(𝑧 − 1)(𝑧 − 𝑧1) · · · (𝑧 − 𝑧𝑐−1)

Where ℎ(𝑧) is an analytic function and ℎ(𝑧) ̸= 0 on |𝑧| ≤ 1.
Since 𝜎(𝑧) must be analytic in D, there must be values {�̂�0, . . . , �̂�𝑐−1} for the coefficients

so that
�̂�0 + �̂�1𝑧 + · · ·+ �̂�𝑐−1𝑧

𝑐−1 = �̂�𝑐−1(𝑧 − 𝑧1) · · · (𝑧 − 𝑧𝑐−1)

in order to cancel the divergences corresponding to the roots of the denominator 𝑑(𝑧). Since
there are 𝑐 − 1 zeros in D the choice {�̂�0 . . . , �̂�𝑐−1} is unique modulo the overall factor. For
sake of simplicity we define

�̂�(𝑧) :=
𝑁(�̂�0, . . . , �̂�𝑐−1, 𝑧)

𝑑(𝑧)

as the actual generating function, analytic in D, and from now on we will consider 𝜎(𝑧) as
a function of the parameters {𝜎0, · · · , 𝜎𝑐−1}. Such a dependence can be translated into a
variational factor 𝑔(𝑧):

𝜎(𝑧) = 𝑞(𝑧)
[︂
(𝑧 − 𝑧1) · · · (𝑧 − 𝑧𝑐−1)

𝑞(𝑧)− 𝑧𝑐

]︂ [︂
𝜎0 + 𝜎1𝑧

1 + · · ·+ 𝜎𝑐−1𝑧
𝑐−1

(𝑧 − 𝑧1) · · · (𝑧 − 𝑧𝑐−1)

]︂
:= �̂�(𝑧)𝑔(𝑧) (6.12)

where

𝑔(𝑧) =
1

𝜎𝑐−1

[︂
𝜎0 + 𝜎1𝑧

1 + · · ·+ 𝜎𝑐−1𝑧
𝑐−1

(𝑧 − 𝑧1) · · · (𝑧 − 𝑧𝑐−1)

]︂
By the Fundamental Thm of Algebra, there are 𝑐− 1 roots of the numerator of 𝑔(𝑧), which
we write as 𝑧𝑖 + Δ𝑖 for 𝑖 = 1, . . . , 𝑐− 1, then

𝑔(𝑧) =
(𝑧 − 𝑧1 −Δ1) · · · (𝑧 − 𝑧𝑐−1 −Δ𝑐−1)

(𝑧 − 𝑧1) · · · (𝑧 − 𝑧𝑐−1)
(6.13)

and 𝜎(𝑧) is now written in terms of a function of Δ1, . . . ,Δ𝑐−1.
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Theorem 3.6.1. Let {Δ1, . . . ,Δ𝑐−1} be given as above in (6.13), and let the parameters Δ𝑖

satisfy the following conditions:
when the smaller root 𝑧1 is real

−Δ1 = 𝑧1 − 𝑧𝑗 0 < 𝑗 < 𝑐, 𝑗 ̸= 𝑖 (6.14)

when the smaller roots 𝑧1 and 𝑧2 are complex conjugates

|Δ1

∏︁
𝑗 ̸=1

(Δ𝑗 + 𝑧𝑗 − 𝑧1)| ≠ |Δ2

∏︁
𝑗 ̸=2

(Δ𝑗 + 𝑧𝑗 − 𝑧2|) (6.15)

Then there exist constants 𝐴 > 0 and 𝐾 > 1 such that asymptotically in 𝑛

|𝜎𝑛| ≥ 𝐴𝐾𝑛

The proof of this theorem is straightforward but quit delicate, we give the proof of this
theorem in section 3.8 The meaning of the result, on the other side, is quite clear: not only
a subsequence of 𝜎𝑛 diverges exponentially, but every term of the sequence. Hence the
rounding error due to the numerical evaluation of the zeroes of the denominator of (6.4)
brings to errors on the 𝜎’s that tend to become exponentially large, and it is difficult to
evaluate a priori the numerical relevance of this errors up to a defined 𝑛.

For these reason we propose in what follows a different approximation scheme. We us
introduce the following notations

∙ {�̂�𝑛}𝑛≥0 is the solution of the infinite system (6.2), satisfying 𝜎𝑖 ≤ 𝜎𝑖+1, and 𝜎𝑖 → 1 for
𝑖 →∞.

∙ {𝜎}𝑛≥0 is the solution of the truncated system, where 𝜎�̄�+𝑘 = 1 for any 𝑘 ≥ 1.

∙
Δ𝑛 = 𝜎𝑛 − �̂�𝑛 (6.16)

and Δ�̄�+𝑘 is a non negative decreasing sequence in 𝑘 ≥ 1.

By linearity, {Δ𝑛}𝑛≤�̄� satisfy the same linear system of equations (6.2) truncated at �̄�.

Δ𝑖 =
𝑖+𝑐∑︁
𝑗=𝑐

Δ𝑗𝑞𝑖+𝑐−𝑗 0 ≤ 𝑖 ≤ �̄� (6.17)

Theorem 3.6.2. Δ𝑛 = 𝜎𝑛 − �̂�𝑛 is non negative for any 𝑛 ≤ �̄�

Proof. We know that Δ�̄�+1 ≥ · · · ≥ Δ�̄�+𝑐 ≥ 0 and lim�̄�→∞Δ�̄�+1 = 0.
Let Δ ≡ min0≤𝑖≤�̄�+𝑐{Δ𝑖}. Let 𝑗 = max{0, 1, · · · , �̄� + 𝑐|Δ𝑗 = Δ}

From the definition it follows that

Δ𝑗 < Δ𝑖 for 𝑖 such that 𝑗 < 𝑖 ≤ �̄� + 𝑐 (6.18)
Δ𝑗 ≤ Δ𝑖 for 𝑖 such that 𝑖 < 𝑗 (6.19)

We will prove that Δ𝑛 ≥ 0 by contradiction: Let
∑︀𝑐−1

𝑖=0 𝑞𝑖 = 𝛽. By the stability condition
(3.3), we can assume 𝛽 > 0. Consider the 𝑗th equation in 6.17, if 𝑗 < 𝑐

Δ𝑗 =
𝑗+𝑐∑︁
𝑘=𝑐

Δ𝑘𝑞𝑗+𝑐−𝑘 > Δ𝑗

𝑗+𝑐∑︁
𝑘=𝑐

𝑞𝑗+𝑐−𝑘 (6.20)
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which is false if Δ𝑗 < 0. The case 𝑗 > 𝑐 is treated similarly. Since for all 𝑖 > 𝑗 Δ𝑗 < Δ𝑖,

Δ𝑗 =
𝑗∑︁

𝑘=𝑐

Δ𝑘𝑞𝑗+𝑐−𝑘 +
𝑗+𝑐∑︁

𝑘=𝑗+1

Δ𝑘𝑞𝑗+𝑐−𝑘 > Δ𝑗

𝑗+𝑐∑︁
𝑘=𝑐

𝑞𝑗+𝑐−𝑘 (6.21)

we have strict inequality since 𝛽 > 0; again the statement is false if Δ𝑗 < 0, given that the
sum in the last term is at most one.

Similarly we will prove, in the next theorem, that Δ𝑖 ≤ Δ�̄�+1 ∀0 ≤ 𝑖 ≤ �̄�

Theorem 3.6.3. For Δ𝑛, as defined in (6.16)

Δ𝑖 ≤ Δ�̄�+1 ∀0 ≤ 𝑖 ≤ �̄� (6.22)

Proof. As already noted in Thm 3.6.2, Δ�̄�+1 ≥ · · · ≥ Δ�̄�+𝑐 ≥ 0, and we have by stability
condition

∑︀𝑐−1
𝑖=0 𝑞𝑖 = 𝛽 > 0.

Let
Δ = max

0≤𝑖≤�̄�+1
{Δ𝑖}

and let
𝑗 = max{1, 2, . . . , �̄� + 1|Δ𝑗 = Δ}

From the definition it follows that

Δ𝑗 > Δ𝑖 for 𝑖 such that 𝑗 < 𝑖 ≤ �̄� + 1 (6.23)
Δ𝑗 ≥ Δ𝑖 for 𝑖 such that 𝑖 < 𝑗 (6.24)

Consider the 𝑗th equation in 6.17, if 𝑗 < 𝑐 then from (6.23) we have

Δ𝑗 =
𝑗+𝑐∑︁
𝑖=𝑐

Δ𝑖𝑞𝑗+𝑐−𝑖 < Δ𝑗

𝑗+𝑐∑︁
𝑖=𝑐

𝑞𝑗+𝑐−𝑖 ≤ Δ𝑗𝛽 (6.25)

The case 𝑗 > 𝑐 is treated similarly. Since, for all 𝑖 > 𝑗, Δ𝑗 > Δ𝑖,

Δ𝑗 =
𝑗∑︁

𝑖=𝑐

Δ𝑖𝑞𝑗+𝑐−𝑖 +
𝑗+𝑐∑︁

𝑖=𝑗+1

Δ𝑖𝑞𝑗+𝑐−𝑖 < Δ𝑗

𝑗+𝑐∑︁
𝑖=𝑐

𝑞𝑗+𝑐−𝑖 ≤ Δ𝑗𝛽 (6.26)

Thus in both case we have strict inequality, since 𝛽 > 0. On the other side 𝛽 ≤ 1, and hence
(6.18) cannot be true, and we have proven that there are no 𝑗 < �̄� + 1 satisfying (6.23).
Hence

Δ𝑖 ≤ Δ�̄�+1

Using the results of the two theorem above, we have shown that the errors that we have
on the first 𝑐 𝜎’s 𝜎0, . . . , 𝜎𝑐−1 are bounded by Δ�̄�+1 = 1− �̂��̄�+1 =

∑︀∞
𝑘=�̄�+1 𝑃𝑘. For a generic

choice of the arrival process, assuming that the stability condition is satisfied, 𝑃𝑛 vanishes
exponentially because there exists a zero of the denominator of the generating function on
the real axis for |𝑧| > 1, and hence the error on 𝜎0, . . . , 𝜎𝑐−1 vanish exponentially in �̄� as
well.
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3.7 Theorical results: case 𝐺𝐼/𝐷/𝑐𝑖

In this section we will give some results for 𝐺𝐼/𝐷/𝑐𝑖 queueing system that are a generalization
of results obtained in section 3.6.
As in subsection 3.6 we use the same notations

∙ {�̂�𝑛}𝑛≥0 is the solution of the infinite system (5.8), satisfying �̂�𝑖 ≤ �̂�𝑖+1, and �̂�𝑖 → 1 for
𝑖 →∞. Such solution exists and it is unique since the system is ergodic.

∙ {𝜎}𝑛≥0 is the solution of the truncated system, where 𝜎�̄�+𝑘 = 1 for any 𝑘 ≥ 1.

∙
Δ𝑛 = 𝜎𝑛 − �̂�𝑛 (7.1)

and Δ�̄�+𝑘 is a non negative decreasing sequence in 𝑘 ≥ 1.

By linearity, {Δ𝑛}𝑛≤�̄� satisfy the same linear system of equations (5.8) truncated at �̄�.

Δ𝑖 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑖+𝑙∑︁
𝑘=𝑙

Δ𝑘𝑞𝑖+𝑙−𝑘 0 ≤ 𝑖 ≤ �̄� (7.2)

where the terms Δ�̄�+1 ≥ · · · ≥ Δ�̄�+𝑐 ≥ 0 have to be considered fixed.

Theorem 3.7.1. If the system is ergodic Δ𝑛 = 𝜎𝑛 − �̂�𝑛 is non negative for any 𝑛 ≤ �̄�

Proof. Fix 𝑙 such that 0 < 𝛼𝑙 < 1 for 𝑙 ∈ {1, 2 . . . 𝑐} and
∑︀𝑙

𝑖=0 𝑞𝑖 = 𝛽 > 0. Such an 𝑙 exists
because if for all 𝑙 such that 𝛼𝑙 ̸= 0 we have

∑︀𝑙
𝑖=0 𝑞𝑖 = 0 then the stability condition (3.3)

can not be satisfied.
By definition Δ�̄�+1 ≥ · · · ≥ Δ�̄�+𝑐 ≥ 0 and lim�̄�→∞Δ�̄�+1 = 0.
Let

Δ ≡ min
0≤𝑖≤�̄�+𝑐

{Δ𝑖}

and let
𝑗 = max{0, 1, · · · , �̄� + 𝑐|Δ𝑗 = Δ}

From the definition it follows that

Δ𝑗 < Δ𝑖 for 𝑖 such that 𝑗 < 𝑖 ≤ �̄� + 𝑐

Δ𝑗 ≤ Δ𝑖 for 𝑖 such that 𝑖 < 𝑗
(7.3)

We will prove that Δ𝑗 ≥ 0 by contradiction. Considering the 𝑗-th equation in (7.2), we can
write it in the following way:

Δ𝑗 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

Δ𝑘𝑞𝑗+𝑙−𝑘

= 𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

Δ𝑘𝑞𝑗+𝑙−𝑘 +
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

Δ𝑘𝑞𝑗+𝑖−𝑘 (7.4)

≥ Δ𝑗𝛾(𝑗, 𝑙) (7.5)

where 𝛾(𝑗, 𝑙) is a positive number and we have used that Δ𝑗 is minimum. We want to show
that 𝛾(𝑗, 𝑙) < 1. In this case the inequality Δ𝑗 ≥ Δ𝑗𝛾(𝑗, 𝑙) can not be satisfied if Δ𝑗 < 0.
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Consider two cases, 𝑗 < 𝑙 and 𝑗 > 𝑙. If 𝑗 < 𝑙 we have again two cases: if 𝑞𝑖 = 0 for 𝑖 = 0, 1, ..., 𝑗
then

𝛾(𝑗, 𝑙) = 𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

𝑞𝑗+𝑙−𝑘 +
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘 =
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘 ≤ 1− 𝛼𝑙 < 1

if
∑︀𝑗+𝑙

𝑘=𝑙 𝑞𝑗+𝑙−𝑘 =
∑︀𝑗

𝑖=0 𝑞𝑖 > 0

Δ𝑗 > Δ𝑗

⎡⎢⎣𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

𝑞𝑗+𝑙−𝑘 +
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘

⎤⎥⎦
because Δ𝑗 < Δ𝑘 for 𝑘 = 𝑙, ..., 𝑗 + 𝑙, and then 𝛾(𝑗, 𝑙) < 1. The case 𝑗 > 𝑙 is treated similarly

Δ𝑗 = 𝛼𝑙

⎛⎝ 𝑗∑︁
𝑘=𝑙

Δ𝑘𝑞𝑗+𝑙−𝑘 +
𝑗+𝑙∑︁

𝑘=𝑗+1

Δ𝑘𝑞𝑗+𝑙−𝑘

⎞⎠+
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘

and since Δ𝑗 < Δ𝑘 for the Δ𝑘 appearing in the second sum in parentheses, we have again

Δ𝑗 > Δ𝑗

⎡⎢⎣𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

𝑞𝑗+𝑙−𝑘 +
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘

⎤⎥⎦
and then 𝛾(𝑗, 𝑙) < 1.

Similarly we will prove, in the next theorem, that Δ𝑖 ≤ Δ�̄�+1 ∀0 ≤ 𝑖 ≤ �̄�

Theorem 3.7.2. If the system is ergodic and the condition (3.2) is verified then

Δ𝑖 ≤ Δ�̄�+1 ∀ 0 ≤ 𝑖 ≤ �̄� (7.6)

Proof. Fix an 𝑙 satisfying condition (3.2). As already noted Δ�̄�+1 ≥ · · · ≥ Δ�̄�+𝑐 ≥ 0.
Let

Δ = max
0≤𝑖≤�̄�+1

{Δ𝑖}

and let
𝑗 = max{1, 2, . . . , �̄� + 1|Δ𝑗 = Δ}

Assume that 𝑗 < �̄� + 1. From the definition it follows that

Δ𝑗 > Δ𝑖 for 𝑖 such that 𝑗 < 𝑖 ≤ �̄� + 1
Δ𝑗 ≥ Δ𝑖 for 𝑖 such that 𝑖 < 𝑗

(7.7)

Consider the 𝑗-th equation in 7.2, we can write it in following way

Δ𝑗 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

Δ𝑘𝑞𝑗+𝑙−𝑘

= 𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

Δ𝑘𝑞𝑗+𝑙−𝑘 +
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

Δ𝑘𝑞𝑗+𝑖−𝑘 (7.8)

≤ Δ𝑗𝛾(𝑗, 𝑙) (7.9)



46
CHAPTER 3. DISCRETE TIME QUEUEING SYSTEM WITH VARIABLE NUMBER OF

SERVERS

where in the last line we have used that Δ𝑗 is max and we defined

𝛾(𝑗, 𝑙) = 𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

𝑞𝑗+𝑙−𝑘 +
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘 ≤ 1 (7.10)

We want to show that inequality 𝑗 < �̄� + 1 is a contradiction, and therefore the maximum
of the Δ’s must be Δ�̄�+1. Consider two cases, 𝑗 < 𝑙 and 𝑗 > 𝑙. If 𝑗 < 𝑙 we have again two
cases: if 𝑞𝑖 = 0 for 𝑖 = 0, 1, ..., 𝑗 then

𝛾(𝑗, 𝑙) = 𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

𝑞𝑗+𝑙−𝑘 +
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘 =
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘 ≤ 1− 𝛼𝑙 < 1

and then the inequality (7.9) Δ𝑗 ≤ Δ𝑗𝛾(𝑗, 𝑙) can not be satisfied. If
∑︀𝑗+𝑙

𝑘=𝑙 𝑞𝑗+𝑙−𝑘 =
∑︀𝑗

𝑖=0 𝑞𝑖 >
0 then the inequality (7.9) becomes

Δ𝑗 < Δ𝑗

⎡⎢⎣𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

𝑞𝑗+𝑙−𝑘 +
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘

⎤⎥⎦ = Δ𝑗𝛾(𝑗, 𝑙)

because Δ𝑗 > Δ𝑘 for 𝑘 = 𝑙, ..., 𝑗 + 𝑙 and again we have a contradiction. The case 𝑗 > 𝑙 is
treated similarly:

Δ𝑗 = 𝛼𝑙

⎛⎝ 𝑗∑︁
𝑘=𝑙

Δ𝑘𝑞𝑗+𝑙−𝑘 +
𝑗+𝑙∑︁

𝑘=𝑗+1

Δ𝑘𝑞𝑗+𝑙−𝑘

⎞⎠+
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

Δ𝑘𝑞𝑗+𝑖−𝑘

and since ∀𝑘 > 𝑗 Δ𝑗 > Δ𝑘 and the condition (3.2) is satisfied, the second sum in parentheses
gives again the strict inequality

Δ𝑗 < Δ𝑗

⎡⎢⎣𝛼𝑙

𝑗+𝑙∑︁
𝑘=𝑙

𝑞𝑗+𝑙−𝑘 +
𝑐∑︁

𝑖=0
𝑖 ̸=𝑙

𝛼𝑖

𝑗+𝑖∑︁
𝑘=𝑖

𝑞𝑗+𝑖−𝑘

⎤⎥⎦ = Δ𝑗𝛾(𝑗, 𝑙)

Hence the inequality 𝑗 < �̄� + 1 cannot hold. Thus

Δ𝑖 ≤ Δ�̄�+1

Using the results of the two theorem above, we have shown that the errors we have on the
first 𝑐 𝜎’s 𝜎0, ..., 𝜎𝑐−1 are bounded by Δ�̄�+1 = 1 − �̂��̄�+1 =

∑︀∞
𝑘=�̄�+1 𝑃𝑘. For a choice of the

arrival process such that there exists a zero of the denominator of the generating function
on the real axis for |𝑧| > 1, we have that 𝑃𝑛 vanishes exponentially, and hence the error on
𝜎0, ..., 𝜎𝑐−1 vanish exponentially in �̄� as well.

The results above give in our case an estimate on the errors of our approximation scheme
in the sense of the 𝐿∞ norm. We can write
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|𝑃𝑛 − 𝑃𝑛| = |𝜎𝑛 − 𝜎𝑛−1 − (�̂�𝑛 − �̂�𝑛−1)| = |Δ𝑛 −Δ𝑛−1| ≤ Δ�̄�+1 (7.11)

where in the last equality we used the fact that both Δ𝑛 and Δ𝑛−1 are positive (theorem
3.7.1) and the fact that they are both bounded by Δ�̄�+1 (theorem 3.7.2).

Our approach using the cumulative probabilities 𝜎’s gave us some results about the prob-
ability distribution 𝑃𝑛. It is easy to show, however, that our approximation scheme is com-
pletely equivalent to a procedure well known in the literature: the last column augmentation.
To see this, note that the solution of the system (5.7) truncated at �̄� is equivalent to the
solution of the following system for the 𝑃𝑛

𝑃0 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃𝑘𝑞0

𝑃1 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃𝑘𝑞1 +
𝑐∑︁

𝑙=0

𝛼𝑙𝑃𝑙+1𝑞0

...

𝑃𝑛 =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃𝑘𝑞𝑛 +
𝑐∑︁

𝑙=0

𝛼𝑙

𝑛+𝑙∑︁
𝑘=𝑙+1

𝑃𝑘𝑞𝑛−𝑘+𝑙 1 < 𝑛 ≤ �̄�− 𝑐 + 1

...

𝑃�̄� =
𝑐∑︁

𝑙=0

𝛼𝑙

𝑙∑︁
𝑘=0

𝑃𝑘𝑞�̄� +
𝑐∑︁

𝑙=0

𝛼𝑙

�̄�+1∑︁
𝑘=𝑙+1

𝑃𝑘𝑞�̄�−𝑘+𝑙

(7.12)

where the 𝑃𝑛’s with 𝑛 > �̄� + 1 in (3.7) vanish due to the fact that the 𝜎𝑛 are all equal
to 1 for 𝑛 > �̄�. The system (7.12) is an homogeneous system of �̄� + 1 equations in �̄� + 2
unknowns, and, since it has rank �̄� + 1, it has a unique solution if we impose further the
normalization condition 𝑃0 +𝑃1 + ...+𝑃�̄�+1 = 1. Such solution is exactly the one that would
be obtained augmenting the last column (the one giving the equation for 𝑃�̄�+1) and finding
the corresponding stationary measure for the finite Markov chain so obtained. Actually, this
means to solve an homogeneous system of �̄� + 2 equations in �̄� + 2 unknowns. The first
�̄� + 1 equations of such system are exactly the ones in (7.12). The last one is the equation
for 𝑃�̄�+1 in which the coefficients are chosen in such a way that the matrix has vanishing
determinant. Hence the system, having again rank �̄� + 1, may be solved neglecting one
equation and imposing the normalization condition 𝑃0 + 𝑃1 + ... + 𝑃�̄�+1 = 1. If the equation
neglected is the last one, the two systems become identical.
Hence our results can be interpreted as bounds on the 𝐿∞ norm of the last column augmen-
tation procedure. Such procedure is well known in literature, and it is known that, despite
its simplicity, it is not always optimal in the sense of the total variation distance. However,
as we will show in the last part of this section, it is not at all obvious that the total variation
distance is the more natural notion of distance when, for instance, we want to compute the
average value of the queue’s length or its variance. We will show in the section 3.10 that an
optimal approximation procedure, the censored Markov chain (which is very hard to compute
explicitly in our model, and which we compute only indirectly using its properties), gives of-
ten a bigger error in the part of the distribution that is relevant in the computation of the
average values.
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3.8 Proof of theorem 3.6.1

Proof. We will consider first the case in which we have simple roots. Later we will show the
general case of multiple roots.
Simple roots: Assume that 𝑧𝑖 ̸= 𝑧𝑗 for 𝑖 ̸= 𝑗. By (6.12)

𝑔(𝑧) =
(𝑧 − 𝑧1 −Δ1) · · · (𝑧 − 𝑧𝑐−1 −Δ𝑐−1)

(𝑧 − 𝑧1)...(𝑧 − 𝑧𝑐−1)
=

∑︁
𝐼⊆{1,...,𝑐−1}

∏︁
𝑖∈𝐼

Δ𝑖

(𝑧𝑖 − 𝑧)
=

=
∑︁

𝐼⊆{1,...,𝑐−1}

∑︁
𝑖∈𝐼

Δ𝑖

𝑧𝑖 − 𝑧

∏︁
𝑗∈𝐼

𝑗 ̸=𝑖

Δ𝑗

𝑧𝑗 − 𝑧𝑖
:= 1 +

∑︁
𝐼 ̸=∅

∑︁
𝑖∈𝐼

Δ𝐼

𝑧𝑖 − 𝑧
𝑆(𝑖, 𝐼) (8.1)

where: 1) the first sum in each term is over all ordered subsets of indices, i.e. 𝐼 = {𝑖1, . . . , 𝑖𝑘}
with 𝑖𝑗 < 𝑖𝑗+1, with the understanding that, for 𝐼 = ∅, the empty product is 1;
2) the Heaviside Cover-up method applies on the third equality;
3) last term is to define Δ𝐼 and 𝑆(𝑖, 𝐼):

Δ𝐼 =
∏︁
𝑖∈𝐼

Δ𝑖 and 𝑆(𝑖, 𝐼) =
∏︁
𝑗∈𝐼

𝑗 ̸=𝑖

1
𝑧𝑗 − 𝑧𝑖

(8.2)

Plugging (8.1) in (6.12) we get

𝜎(𝑧) = �̂�(𝑧) +
∑︁
𝐼 ̸=∅

∑︁
𝑖∈𝐼

Δ𝐼 �̂�(𝑧)𝑆(𝑖, 𝐼)
𝑧𝑖 − 𝑧

(8.3)

and for any 𝐼 and 𝑖 ∈ 𝐼 we analyze the 𝑧-dependent term �̂�(𝑧) 1
𝑧𝑖−𝑧

�̂�(𝑧)
1

𝑧𝑖 − 𝑧
=

1
𝑧𝑖

∞∑︁
𝑚=0

�̂�𝑚𝑧𝑚

(1− 𝑧
𝑧𝑖

)
=

1
𝑧𝑖

∞∑︁
𝑚=0

�̂�𝑚𝑧𝑚
∞∑︁

𝑛=0

[︂
𝑧

𝑧𝑖

]︂𝑛

=

=
1
𝑧𝑖

∞∑︁
𝑚=0

∞∑︁
𝑛=0

�̂�𝑚
𝑧𝑚+𝑛

𝑧𝑛
𝑖

=
1
𝑧𝑖

∞∑︁
𝑘=0

[︂
𝑧

𝑧𝑖

]︂𝑘 𝑘∑︁
𝑚=0

�̂�𝑚𝑧𝑚
𝑖 :=

1
𝑧𝑖

∞∑︁
𝑘=0

[︂
𝑧

𝑧𝑖

]︂𝑘

𝑇𝑘�̂�(𝑧𝑖) (8.4)

where last step is a definition for 𝑇𝑘�̂�(𝑧𝑖), which is the power expansion truncated at 𝑘-th
order of �̂�(𝑧), computed in 𝑧𝑖. Note that for 𝑘0 large enough and for all 𝑘 > 𝑘0, 𝑇𝑘�̂�(𝑧𝑖) ̸= 0
Hence we got an expression for 𝜎𝑘:

∑︁
𝜎𝑘𝑧

𝑘 =
∑︁

𝑘

[︃
�̂�𝑘 +

∑︁
𝐼

∑︁
𝑖∈𝐼

Δ𝐼𝑆(𝑖, 𝐼)𝑇𝑘�̂�(𝑧𝑖)
𝑧𝑘+1
𝑖

]︃
𝑧𝑘 (8.5)

and therefore

𝜎𝑘 = �̂�𝑘 +
∑︁

𝐼

∑︁
𝑖∈𝐼

Δ𝐼𝑆(𝑖, 𝐼)𝑇𝑘�̂�(𝑧𝑖)
𝑧𝑘+1
𝑖

(8.6)

Let us define the complex coefficients 𝑎(𝐼, 𝑖, 𝑘) := Δ𝐼𝑆(𝑖, 𝐼)𝑇𝑘�̂�(𝑧𝑖). Clearly

sup
𝐼

sup
𝑖

sup
𝑘
|𝑎(𝐼, 𝑖, 𝑘)| ≤ 𝐶𝑜𝑛𝑠𝑡
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To show that the coefficient 𝜎𝑘 in (8.6) is exponentially divergent let us now focus the second
term in right hand side of (8.6). We can sort the roots 𝑧1, 𝑧2, . . . 𝑧𝑐−1 so that |𝑧1| < |𝑧2| ≤
· · · ≤ |𝑧𝑐−1|.
Assume first that 𝑧1 is a real root, then the integral in right hand side of (8.6) by after
elementary algebraic computation yields

∑︁
𝐼

∑︁
𝑖∈𝐼

𝑎(𝐼, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

=
1

𝑧𝑘+1
1

∑︁
𝐼

∑︁
𝑖∈𝐼

𝑎(𝐼, 𝑖, 𝑘)(︁
𝑧𝑖
𝑧1

)︁𝑘+1

=
1

𝑧𝑘+1
1

⎡⎢⎣∑︁
𝐼∋1

⎡⎢⎣𝑎(𝐼, 1, 𝑘) +
∑︁
𝑗∈𝐼

𝑎(𝐼, 𝑗, 𝑘)(︁
𝑧𝑗

𝑧1

)︁𝑘+1

⎤⎥⎦+
∑︁
𝐼 ̸∋1

∑︁
𝑖∈𝐼

𝑎(𝐼, 𝑖, 𝑘)(︁
𝑧𝑖
𝑧1

)︁𝑘+1

⎤⎥⎦
=

1
𝑧𝑘+1
1

[︃∑︁
𝐼∋1

𝑎(𝐼, 1, 𝑘) + 𝑜

(︂
𝑧1

𝑧𝑗

)︂𝑘+1
]︃

We need to show that |
∑︀

𝐼∋1 𝑎(𝐼, 1, 𝑘)| ̸= 0. To show this we can write
∑︀

𝐼∋1 𝑎(𝐼, 1, 𝑘) in
following way

∑︁
𝐼∋1

𝑎(𝐼, 1, 𝑘) =
∑︁
𝐼∋1

Δ𝐼𝑆(1, 𝐼)𝑇𝑘�̂�(𝑧1) = 𝑇𝑘�̂�(𝑧1)
∑︁
𝐼∋1

Δ𝐼𝑆(1, 𝐼) (8.7)

= 𝑇𝑘�̂�(𝑧1)
∑︁
𝐼∋1

Δ1

∏︁
𝑗∈𝐼

𝑗 ̸=1

Δ𝑗

𝑧𝑗 − 𝑧1
= 𝑇𝑘�̂�(𝑧1)Δ1

𝑐−1∏︁
𝑗=2

[︂
Δ𝑗

𝑧𝑗 − 𝑧1
+ 1
]︂

= 𝑇𝑘�̂�(𝑧1)Δ1

𝑐−1∏︁
𝑗=2

𝜌𝑗𝑒
𝑖𝜃𝑗 (8.8)

Now we take the norm of the last term

|𝑇𝑘�̂�(𝑧1)Δ1|
𝑐−1∏︁
𝑗=2

𝜌𝑗 (8.9)

Clearly 𝜌𝑗 ̸= 0 unless Δ1 = 𝑧1 − 𝑧𝑗 , thus |
∑︀

𝐼∋1 𝑎(𝐼, 1, 𝑘)| ≠ 0.
Let us now consider the case in which 𝑧1 and 𝑧2 are complex conjugate and they are the
smallest zero in 𝐼; clearly |𝑧1| = |𝑧2|. We can partition the set 𝐼 of subset {1, 2, . . . , 𝑐− 1} by
𝐼1 = {𝐼|𝐼 ∈ 1, 𝐼 ̸∋ 2}, 𝐼2 = {𝐼|𝐼 ̸∋ 1, 𝐼 ∈ 2}, 𝐼12 = {𝐼|𝐼 ∈ 1, 𝐼 ∈ 2} and 𝐼0 = {𝐼|𝐼 ̸∋ 1, 𝐼 ̸∋ 2}.
Then in this case the second term in right of (8.6) becomes



50
CHAPTER 3. DISCRETE TIME QUEUEING SYSTEM WITH VARIABLE NUMBER OF

SERVERS

∑︁
𝐼

∑︁
𝑖∈𝐼

𝑎(𝐼, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

=
∑︁
𝐼1

∑︁
𝑖∈𝐼1

𝑎(𝐼1, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

+
∑︁
𝐼2

∑︁
𝑖∈𝐼2

𝑎(𝐼2, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

+

+
∑︁
𝐼12

∑︁
𝑖∈𝐼12

𝑎(𝐼12, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

+
∑︁
𝐼0

∑︁
𝑖∈𝐼0

𝑎(𝐼0, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

=
1

𝑧𝑘+1
1

∑︁
𝐼1

∑︁
𝑖∈𝐼1

𝑎(𝐼1, 𝑖, 𝑘)(︁
𝑧𝑖
𝑧1

)︁𝑘+1
+

1
𝑧𝑘+1
2

∑︁
𝐼2

∑︁
𝑖∈𝐼2

𝑎(𝐼2, 𝑖, 𝑘)(︁
𝑧𝑖
𝑧2

)︁𝑘+1
+
∑︁
𝐼0

∑︁
𝑖∈𝐼0

𝑎(𝐼0, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

+

+
∑︁
𝐼12

⎡⎣𝑎(𝐼12, 1, 𝑘)
𝑧𝑘+1
1

+
𝑎(𝐼12, 2, 𝑘)

𝑧𝑘+1
2

+
∑︁

1,2̸=𝑖∈𝐼12

𝑎(𝐼12, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

⎤⎦
=

1
𝑧𝑘+1
1

∑︁
𝐼1

[︃
𝑎(𝐼1, 1, 𝑘) + 𝑜

(︂
𝑧1

𝑧𝑖

)︂𝑘+1
]︃

+
1

𝑧𝑘+1
2

∑︁
𝐼2

[︃
𝑎(𝐼2, 2, 𝑘) + 𝑜

(︂
𝑧2

𝑧𝑖

)︂𝑘+1
]︃

+

+
∑︁
𝐼12

[︃
𝑎(𝐼12, 1, 𝑘)

𝑧𝑘+1
1

+
𝑎(𝐼12, 2, 𝑘)

𝑧𝑘+1
2

]︃
+
∑︁
𝐼12

∑︁
𝑖∈𝐼12
𝑖 ̸=1,2

𝑎(𝐼12, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

+
∑︁
𝐼0

∑︁
𝑖∈𝐼12

𝑎(𝐼0, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

Neglecting now the terms in 𝑜
(︁

𝑧1
𝑧𝑖

)︁𝑘+1
and 𝑜

(︁
𝑧2
𝑧𝑖

)︁𝑘+1

∑︁
𝐼

∑︁
𝑖∈𝐼

𝑎(𝐼, 𝑖, 𝑘)
𝑧𝑘+1
𝑖

=
1

𝑧𝑘+1
1

⎡⎣∑︁
𝐼1

𝑎(𝐼1, 1, 𝑘) +
∑︁
𝐼12

𝑎(𝐼12, 1, 𝑘)

⎤⎦+

+
1

𝑧𝑘+1
2

⎡⎣∑︁
𝐼2

𝑎(𝐼2, 2, 𝑘) +
∑︁
𝐼12

𝑎(𝐼12, 2, 𝑘)

⎤⎦
=

1
𝑧𝑘+1
1

∑︁
𝐼∋1

𝑎(𝐼, 1, 𝑘) +
1

𝑧𝑘+1
2

∑︁
𝐼∋2

𝑎(𝐼, 2, 𝑘)

=
1

𝑧𝑘+1
1

∑︁
𝐼∋1

Δ1

∏︁
𝑗∈𝐼

𝑗 ̸=1

Δ𝑗

𝑧𝑗 − 𝑧1
𝑇𝑘�̂�(𝑧1) +

1
𝑧𝑘+1
2

∑︁
𝐼∋2

Δ2

∏︁
𝑗∈𝐼

𝑗 ̸=2

Δ𝑗

𝑧𝑗 − 𝑧2
𝑇𝑘�̂�(𝑧2)

=
𝑇𝑘�̂�(𝑧1)

𝑧𝑘+1
1

Δ1

∏︁
𝑗 ̸=1

[︂
Δ𝑗

𝑧𝑗 − 𝑧1
+ 1
]︂

+
𝑇𝑘�̂�(𝑧2)

𝑧𝑘+1
2

Δ2

∏︁
𝑗 ̸=2

[︂
Δ𝑗

𝑧𝑗 − 𝑧2
+ 1
]︂

=
𝑇𝑘�̂�(𝑧1)

𝑧𝑘+1
1

Δ1

∏︁
𝑗 ̸=1

1
𝑧𝑗 − 𝑧1

∏︁
𝑗 ̸=1

(Δ𝑗 + 𝑧𝑗 − 𝑧1)+

+
𝑇𝑘�̂�(𝑧2)

𝑧𝑘+1
2

Δ2

∏︁
𝑗 ̸=2

1
𝑧𝑗 − 𝑧2

∏︁
𝑗 ̸=2

(Δ𝑗 + 𝑧𝑗 − 𝑧2)

Since the roots are real or pairs of complex conjugates we have that

|
∏︁
𝑗 ̸=1

1
𝑧𝑗 − 𝑧1

| = |
∏︁
𝑗 ̸=2

1
𝑧𝑗 − 𝑧2

| (8.10)
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Then we deduce that for

|Δ1

∏︁
𝑗 ̸=1

(Δ𝑗 + 𝑧𝑗 − 𝑧1)| ≠ |Δ2

∏︁
𝑗 ̸=2

(Δ𝑗 + 𝑧𝑗 − 𝑧2|) (8.11)

the term
∑︀

𝐼

∑︀
𝑖∈𝐼

𝑎(𝐼,𝑖,𝑘)

𝑧𝑘+1
𝑖

grows exponentially for 𝑘 large enough.

Multiple roots: Let us now consider the case of multiple roots. The function 𝑔(𝑧)
becomes

𝑔(𝑧) =
(𝑧 − 𝑧1 −Δ1)𝑘1 · · · (𝑧 − 𝑧𝑚 −Δ𝑚)𝑘𝑚

(𝑧 − 𝑧1)𝑘1 · · · (𝑧 − 𝑧𝑚)𝑘𝑚
(8.12)

=
∑︁

𝐼⊆{1,...,𝑚}

𝑘1,...,𝑘|𝐼|∑︁
𝑙1,...,𝑙|𝐼|=1

∏︁
𝑖∈𝐼

(︂
𝑘𝑖

𝑙𝑖

)︂(︂
Δ𝑖

𝑧𝑖 − 𝑧

)︂𝑙𝑖

=

=
∑︁

𝐼

∑︁
𝑙𝐼

∏︁
𝑖∈𝐼

𝑏(𝑘𝑖, 𝑙𝑖, Δ𝑖)
(𝑧𝑖 − 𝑧)𝑙𝑖

= (8.13)

=
∑︁

𝐼

∑︁
𝑙𝐼

∑︁
𝑖∈𝐼

𝑙𝑖∑︁
𝑗=1

𝐴
(𝑖)
𝑗

(𝑧𝑖 − 𝑧)𝑗
= (8.14)

=
∑︁

𝐼

∑︁
𝑖∈𝐼

𝑘𝑖∑︁
𝑗=1

𝐶
(𝑖)
𝑗

(𝑧𝑖 − 𝑧)𝑗
(8.15)

where: 1) the first sum in each term is over all ordered subsets of indices, i.e. 𝐼 = {𝑖1, . . . , 𝑖𝑘}
with 𝑖𝑗 < 𝑖𝑗+1, with the understanding that, for 𝐼 = ∅, the empty product is 1 and

∑︀𝑚
𝑖=1 𝑘𝑖 =

𝑐− 1;
2) the Heaviside Cover-up method applies on the fourth equality;
3) we defined 𝑏(𝑘𝑖, 𝑙𝑖, Δ𝑖), 𝐴

(𝑖)
𝑗 and 𝐶

(𝑖)
𝑗

𝑏(𝑘𝑖, 𝑙𝑖, Δ𝑖) :=
(︂

𝑘𝑖

𝑙𝑖

)︂
Δ𝑖

𝑙𝑖 𝐴
(𝑖)
𝑗 :=

∏︁
𝑖∈𝐼

𝑏(𝑘𝑖, 𝑙𝑖, Δ𝑖)𝐵
(𝑖)
𝑗 𝐶

(𝑖)
𝑗 :=

∑︁
𝑘𝑖≥𝑙𝑖≥𝑗

𝐴
(𝑖)
𝑗

where

𝐵
(𝑖)
𝑗 =

∏︁
𝑘∈𝐼
𝑘 ̸=𝑖

(︂
1

𝑧𝑘 − 𝑧𝑖

)︂𝑙𝑘 ∑︁
𝑝1...𝑝|𝐼|≥0∑︀

𝑘 𝑝1...𝑝|𝐼|=𝑙𝑖−𝑗

1
𝑝𝑖!

∏︁
𝑘∈𝐼
𝑘 ̸=𝑖

[︂(︂
𝑙𝑘 + 𝑝𝑘 − 1

𝑙𝑘 − 1

)︂
1

(𝑧𝑘 − 𝑧𝑖)𝑝𝑘

]︂
(8.16)

From (8.1) and (8.12) we have

𝜎(𝑧) = �̂�(𝑧) +
∑︁
𝐼 ̸=∅

∑︁
𝑖∈𝐼

𝑘𝑖∑︁
𝑗=1

𝐶
(𝑖)
𝑗 �̂�(𝑧)

(𝑧𝑖 − 𝑧)𝑗
(8.17)

Now we study the term �̂�(𝑧)
(︁

1
𝑧𝑖−𝑧

)︁𝑗
for any 𝐼 and 𝑖 ∈ 𝐼. For the sake of simplicity in this

proof we consider the case 𝑘𝑖 ≤ 2, but the case 𝑘𝑖 ≥ 2 can be easily treated along the same
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way.

�̂�(𝑧)
(︂

1
𝑧𝑖 − 𝑧

)︂2

= �̂�(𝑧)
𝑑

𝑑𝑧

(︂
1

𝑧𝑖 − 𝑧

)︂
= �̂�(𝑧)

1
𝑧𝑖

𝑑

𝑑𝑧

∞∑︁
𝑘=0

(︂
𝑧

𝑧𝑖

)︂𝑘

=
1
𝑧2
𝑖

∞∑︁
𝑚=0

�̂�𝑚𝑧𝑚
∞∑︁

𝑘=0

(𝑘 + 1)
(︂

𝑧

𝑧𝑖

)︂𝑘

=
1
𝑧2
𝑖

∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

(𝑛−𝑚 + 1)
�̂�𝑚

𝑧𝑛−𝑚
𝑖

𝑧𝑛 =
∞∑︁

𝑛=0

(︂
1
𝑧𝑖

)︂𝑛+2 [︂
(𝑛 + 1)𝑇𝑛�̂�(𝑧𝑖)− 𝑧𝑖

𝑑

𝑑𝑧
𝑇𝑛�̂�(𝑧)

⃒⃒
𝑧=𝑧𝑖

]︂
(8.18)

Hence equation (8.17) in this case becomes

𝜎(𝑧) =
∞∑︁

𝑘=0

⎡⎣�̂�𝑘 +
∑︁
𝐼 ̸=∅

∑︁
𝑖∈𝐼

1
𝑧𝑘+1
𝑖

{︂
𝐶

(𝑖)
1 𝑇𝑘�̂�(𝑧𝑖) + 𝐶

(𝑖)
2

1
𝑧𝑖

(︂
(𝑘 + 1)𝑇𝑘�̂�(𝑧𝑖)− 𝑧𝑖

𝑑

𝑑𝑧
𝑇𝑘�̂�(𝑧)

⃒⃒
𝑧=𝑧𝑖

)︂}︂⎤⎦ 𝑧𝑘

thus

𝜎𝑘 = �̂�𝑘 +
∑︁
𝐼 ̸=∅

∑︁
𝑖∈𝐼

1
𝑧𝑘+1
𝑖

{︂
𝐶

(𝑖)
1 𝑇𝑘�̂�(𝑧𝑖) + 𝐶

(𝑖)
2

1
𝑧𝑖

(︂
(𝑘 + 1)𝑇𝑘�̂�(𝑧𝑖)− 𝑧𝑖

𝑑

𝑑𝑧
𝑇𝑘�̂�(𝑧)

⃒⃒
𝑧=𝑧𝑖

)︂}︂
(8.19)

From now on, the control of the lower bound of 𝜎𝑘 proceeds as in the case of the simple roots.
The final condition is the same since the leading term in (8.19) is 𝐶

(𝑖)
2

1
𝑧𝑖

(𝑘 + 1)𝑇𝑘�̂�(𝑧𝑖). This
concludes the proof.

3.9 Average queue size and variance

Consider the generating function (3.11) obtained in section 2. In order to simplify the calcu-
lation we rewrite (3.11) in the following way

𝑃 (𝑧) =
𝑁(𝑧)
𝐷(𝑧)

|𝑧| ≤ 1 (9.1)

where

𝑁(𝑧) =
𝑐∑︁

𝑙=0

𝑙−1∑︁
𝑘=0

𝛼𝑙𝑃𝑘(𝑧𝑘−𝑙 − 1)

𝐷(𝑧) = − 1
𝑞(𝑧)

+
𝑐∑︁

𝑙=0

𝛼𝑙

𝑧𝑙

(9.2)

Let 𝐿 be the average queue size (expected number of users in the system at steady state)
given by definition

𝐿 = lim
𝑧→1

𝑃 ′(𝑧) = 𝑃 ′(𝑧)
⃒⃒
𝑧=1

= lim
𝑧→1

𝑁 ′(𝑧)𝐷(𝑧)−𝑁(𝑧)𝐷′(𝑧)
𝐷(𝑧)2

(9.3)

To calculate 𝑃 ′(𝑧)
⃒⃒
𝑧=1

we apply De Hôpital’s rule so as to get

lim
𝑧→1

𝑃 ′(𝑧) = lim
𝑧→1

1
2

[︁𝑁 ′′(𝑧)
𝐷′(𝑧)

− 𝑁(𝑧)
𝐷(𝑧)

𝐷′′(𝑧)
𝐷′(𝑧)

]︁
(9.4)
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Hence from 9.4 and by the boundary condition 𝑃 (𝑧)
⃒⃒
𝑧=1

= 1 we get

𝑃 ′(𝑧)
⃒⃒
𝑧=1

=
1
2

[︁𝑁 ′′(𝑧)
𝐷′(𝑧)

− 𝐷′′(𝑧)
𝐷′(𝑧)

]︁
𝑧=1

(9.5)

where

𝑁 ′(𝑧) =
𝑐∑︁

𝑙=0

𝑙−1∑︁
𝑘=0

(𝑘 − 𝑙)𝑃𝑘𝛼𝑙𝑧
𝑘−𝑙−1

𝑁 ′′(𝑧) =
𝑐∑︁

𝑙=0

𝑙−1∑︁
𝑘=0

(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑃𝑘𝛼𝑙𝑧
𝑘−𝑙−2

𝐷′(𝑧) =
𝑞′(𝑧)

(𝑞(𝑧))2
−

𝑐∑︁
𝑙=1

𝑙𝛼𝑙𝑧
−(𝑙+1)

𝐷′′(𝑧) =
𝑞′′(𝑧)

(𝑞(𝑧))2
− 2(𝑞′(𝑧))2

(𝑞(𝑧))3
+

𝑐∑︁
𝑙=1

𝑙(𝑙 + 1)𝛼𝑙𝑧
−(𝑙+2)

(9.6)

After few calculations we find

𝐿 =
∑︀𝑐

𝑙=0

∑︀𝑙−1
𝑘=0(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑃𝑘𝛼𝑙 − 𝑞′′(1) + 2(𝑞′(1))2 −

∑︀𝑐
𝑙=1 𝑙(𝑙 + 1)𝛼𝑙

2(𝑞′(1)−
∑︀𝑐

𝑙=1 𝑙𝛼𝑙)
(9.7)

in the Poisson case we have

𝐿𝑃 =
∑︀𝑐

𝑙=0

∑︀𝑙−1
𝑘=0(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)𝑃𝑘𝛼𝑙 + 𝜌2

2 −
∑︀𝑐

𝑙=1 𝑙(𝑙 + 1)𝛼𝑙

2(𝜌2 −
∑︀𝑐

𝑙=1 𝑙𝛼𝑙)
(9.8)

3.9.1 Variance

By definition the variance is given by

𝑉 𝑎𝑟 = 𝑃 ′′(1) + 𝑃 ′(1)− 𝑃 ′(1)2 (9.9)

To compute it, we need 𝑃 ′′(𝑧)
⃒⃒
𝑧=1

:

𝑃 ′′(𝑧) =
𝑁 ′′(𝑧)𝐷(𝑧)2 −𝑁(𝑧)𝐷(𝑧)𝐷′′(𝑧)− 2𝑁 ′(𝑧)𝐷′(𝑧)𝐷(𝑧) + 2𝑁(𝑧)𝐷′(𝑧)2

𝐷(𝑧)3
(9.10)

To find 𝑃 ′′(𝑧)
⃒⃒
𝑧=1

we use De L’Hôpital rule

𝑃 ′′(𝑧)
⃒⃒
𝑧=1

=

=
𝑁 ′′′(𝑧)𝐷(𝑧)2 − 3𝐷′′(𝑧)

[︁
𝑁 ′(𝑧)𝐷(𝑧)−𝑁(𝑧)𝐷′(𝑧)

]︁
−𝑁(𝑧)𝐷(𝑧)𝐷′′′(𝑧)

3𝐷(𝑧)2𝐷′(𝑧)

⃒⃒⃒⃒
⃒
𝑧=1

=
𝑁 ′′′(𝑧)− 3𝐷′′(𝑧)

[︁
𝑁 ′(𝑧)𝐷(𝑧)−𝑁(𝑧)𝐷′(𝑧)

𝐷(𝑧)2

]︁
− 𝑁(𝑧)

𝐷(𝑧)𝐷
′′′(𝑧)

3𝐷′(𝑧)

⃒⃒⃒⃒
⃒
𝑧=1
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where

𝑁 ′′′(𝑧) =
𝑐∑︁

𝑙=0

𝑙−1∑︁
𝑘=0

(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)(𝑘 − 𝑙 − 2)𝑃𝑘𝛼𝑙𝑧
𝑘−𝑙−3

𝐷′′′(𝑧) =
𝑞′′′(𝑧)
(𝑞(𝑧))2

− 6𝑞′(𝑧)𝑞′′(𝑧)
(𝑞(𝑧))3

+
6(𝑞′(𝑧))3

(𝑞(𝑧))4
−

𝑐∑︁
𝑙=1

𝑙(𝑙 + 1)(𝑙 + 2)𝛼𝑙𝑧
−(𝑙+2)

(9.11)

hence
𝑃 ′′(𝑧)

⃒⃒
𝑧=1

=
1

3𝐷′(1)

[︁
𝑁 ′′′(1)− 3𝐷′′(1)𝑃 ′(1)− 𝑃 (1)𝐷′′′(1)

]︁
(9.12)

By 9.12 and 9.3 we get

𝑉 =
∑︀𝑐

𝑙=0

∑︀𝑙−1
𝑘=0(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)(𝑘 − 𝑙 − 2)𝑃𝑘𝛼𝑙

3(𝑞′(1)−
∑︀𝑐

𝑙=1 𝑙𝛼𝑙)
+ 𝐿− 𝐿2

−3𝐿(𝑞′′(1)− 2(𝑞′(1))2 −
∑︀𝑐

𝑙=1 𝑙(𝑙 + 1)𝛼𝑙)− 𝑞′′′(1)
3(𝑞′(1)−

∑︀𝑐
𝑙=1 𝑙𝛼𝑙)

+

+
6𝑞′(1)𝑞′′(1)− 6(𝑞′(1))3 +

∑︀𝑐
𝑙=1 𝑙(𝑙 + 1)(𝑙 + 2)𝛼𝑙

3(𝑞′(1)−
∑︀𝑐

𝑙=1 𝑙𝛼𝑙)

in the Poisson case we have

𝑉𝑃 =
∑︀𝑐

𝑙=0

∑︀𝑙−1
𝑘=0(𝑘 − 𝑙)(𝑘 − 𝑙 − 1)(𝑘 − 𝑙 − 2)𝑃𝑘𝛼𝑙

3(𝜌2 −
∑︀𝑐

𝑙=1 𝑙𝛼𝑙)
−3𝐿(𝜌2

2 −
∑︀𝑐

𝑙=1 𝑙(𝑙 + 1)𝛼𝑙)− 𝜌3
2 +

∑︀𝑐
𝑙=1 𝑙(𝑙 + 1)(𝑙 + 2)𝛼𝑙

3(𝜌2 −
∑︀𝑐

𝑙=1 𝑙𝛼𝑙)
+ 𝐿𝑃 − 𝐿2

𝑃

Remark 3.9.1. Note that only the first 𝑐 values of the distribution of the 𝑃𝑛 appear in the
expected queue length and in its variance .

3.10 Numerical results

In this section we will present some numerical results obtained with the approximation define
in section 3.5, moreover we calculate the average queue size and its variance as a function of
the first 𝑐 probabilities 𝑃0, . . . , 𝑃𝑐−1. The approximated (truncated) system (5.7), as described
on section 3.5, can be written as

(QA− I) 𝜎 = b (10.1)

where 𝑄, 𝐴, and 𝑏 are given below and 𝐼 is the identity matrix.

Q =

⎛⎜⎜⎜⎜⎜⎝
𝑞0 0 0 . . . 0
𝑞1 𝑞0 0 . . . 0
𝑞2 𝑞1 𝑞0 . . . 0
...

...
...

. . .
...

𝑞𝑛 𝑞𝑛−1 𝑞𝑛−2 . . . 𝑞0

⎞⎟⎟⎟⎟⎟⎠ A =

⎛⎜⎜⎜⎜⎜⎝
𝛼0 . . . 𝛼𝑐 0 . . .
0 𝛼0 . . . 𝛼𝑐 . . .
0 0 𝛼0 . . . 𝛼𝑐
...

...
...

. . .
...

0 0 0 . . . 𝛼0

⎞⎟⎟⎟⎟⎟⎠ (10.2)

b𝑇 =
(︁
0, · · · , 0,−𝑞0𝛼𝑐,−𝑞0𝛼𝑐−1 − (𝑞0 + 𝑞1)𝛼𝑐, · · · ,−𝑞0𝛼1 − . . .− (𝑞0 + . . . + 𝑞𝑐−1)𝛼𝑐

)︁
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Such a system can be solved numerically, so that we can get the values of the first 𝑐 cumulative
probabilities 𝜎𝑛 and, by definition of 𝜎𝑛, the values of the first 𝑐 probabilities 𝑃0, . . . , 𝑃𝑐−1

(at least to six decimals). We’ll show in two tables the values of 𝜎𝑛 listed as a function of
the dimension 𝑛 of the linear system. In both tables the values of the parameters {𝑐, 𝜌1, 𝜌2}
are such that

𝑐− 𝜌1 − 𝜌2

𝑐
<< 1

and therefore the system is very close to its critical condition. It is clear that the value �̄�
such that the exact probabilities are found up to the requested precision is very sensitive to
the value of 𝜌 = 𝜌1 +𝜌2, but �̄� remains reasonable small even for very small values of 𝑐−𝜌1−𝜌2

𝑐

𝑐 𝜌1 𝜌2 �̄� 𝜎0 𝜎1 𝜎2 𝜎3 𝜎4

5 1.5 3.2 15 0.011935 0.054177 0.132078 0.233745 0.34185
5 1.5 3.2 25 0.01057 0.04798 0.116971 0.20701 0.30275
5 1.5 3.2 35 0.010263 0.046583 0.113565 0.200982 0.293935
5 1.5 3.2 45 0.010185 0.04623 0.112705 0.199459 0.291708
5 1.5 3.2 55 0.010165 0.046139 0.112481 0.199064 0.291129
5 1.5 3.2 65 0.010159 0.046115 0.112423 0.19896 0.290978
5 1.5 3.2 75 0.010158 0.046108 0.112408 0.198933 0.290938
5 1.5 3.2 85 0.010158 0.046107 0.112404 0.198926 0.290928
5 1.5 3.2 95 0.010157 0.046106 0.112403 0.198924 0.290925
5 1.5 3.2 105 0.010157 0.046106 0.112402 0.198924 0.290924
5 1.5 3.2 115 0.010157 0.046106 0.112402 0.198924 0.290924
𝑐 𝜌1 𝜌2 �̄� 𝑃0 𝑃1 𝑃2 𝑃3 𝑃4

5 1.5 3.2 115 0.010157 0.035949 0.066296 0.086522 0.092000

Table 3.1:

𝑐 𝜌1 𝜌2 �̄� 𝜎0 𝜎1 𝜎2 𝜎3 𝜎4

5 3. 1.7 15 0.086316 0.25791 0.444882 0.600331 0.715614
5 3. 1.7 25 0.085818 0.256424 0.442318 0.596871 0.71149
5 3. 1.7 35 0.085801 0.256371 0.442227 0.596749 0.711344
5 3. 1.7 45 0.0858 0.25637 0.442224 0.596744 0.711339
5 3. 1.7 55 0.0858 0.25637 0.442224 0.596744 0.711339
5 3. 1.7 65 0.0858 0.25637 0.442224 0.596744 0.711339
5 3. 1.7 75 0.0858 0.25637 0.442224 0.596744 0.711339
5 3. 1.7 85 0.0858 0.25637 0.442224 0.596744 0.711339
5 3. 1.7 95 0.0858 0.25637 0.442224 0.596744 0.711339
5 3. 1.7 105 0.0858 0.25637 0.442224 0.596744 0.711339
5 3. 1.7 115 0.0858 0.25637 0.442224 0.596744 0.711339
𝑐 𝜌1 𝜌2 �̄� 𝑃0 𝑃1 𝑃2 𝑃3 𝑃4

5 3 1.7 115 0.0858 0.17057 0.185854 0.15452 0.114595

Table 3.2:
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Figure 3.1: On the left 𝜎0 vs �̄�, on the right 𝜎1 vs �̄�

The following numerical results show that the errors on the first 𝑐 components of the
stationary probability distribution of the finite Markov Chain by augmenting the last column
are smaller than the errors on the the first 𝑐 components of the stationary probability distri-
bution of the censored Markov Chain. This fact shows that the censoring is an augmentation
method optimal in the sense of the 𝐿1 norm, but may lead to approximations far from optimal
when the average values of the relevant quantities of the system are computed.
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Figure 3.2:

3.11 Conclusions

The results of this chapter are a first encouraging attempt to describe a queueing system with
a variable number of servers. We want to outline that the good numerical results we obtained
are explained from an analytical point of view, and the accuracy of the approximation is in
this case completely under control. Since the expected length of the queue and its variance
are linear in the first 𝑐 probabilities computed in our approximation scheme, it is trivial to
give an a priori estimate of the error in the expectations computed in this way.

The work presented in this chapter could be generalized in order to describe systems
interesting in the applications. In particular the explicit study of the case of bulk arrivals
can be easily performed, and other interesting generalizations are possible. For example the
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Figure 3.3:

number of servers may vary accordingly to a Markov chain. These generalizations will be the
subject of further studies.
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Chapter 4

Two class queue in parallel:
Priority and Bernoulli scheduling

We study a discrete time single server system with generic independent distribution
of the number of arrivals in a time slot and two classes of users. We consider two models:
the first one has geometric distribution of the service time and the user of second class can
be served only if the users of the first class are absent. The users can be served only when
each time slot begins. We give a complete description of this model. The second model
has deterministic sevice times and the server serves the user of first class with probability 𝑝
(0 ≤ 𝑝 ≤ 1) and serves the users of second class with probability 1 − 𝑝. This model is more
complicated to study due to the complicated structure of the generating functional equation.
We give the approximation solution of the generating functional equation using perturbative
method by starting from the exact solution of first model. Moreover we give some numerical
results.

4.1 Introduction

This chapter is a simplified description of the following problem: the air traffic is composed of
different types of aircrafts, implying different queueing costs as well or different sevice times.
Hence a non realistic description has to take into account the existence of different classe of
users. We will introduce the variable service time simply assuming geometric distribution.
In this chapter we study two discrete time models: the first is GI/Geom/1 queueing model,
when the users belong to two different priority classes and the first class has to be served
with priority. The second is the single server model Bernoulli scheduling with two different
class of users. In both cases the resulting generating function is not simply the product of
two functions, one for each class of users. Even it the first model presented in this chapter
is clearly simple, this computation shows that in discrete time queues it is possible to solve
the boundary value problem, always arising in multiclass queues, when the service discipline
is a simple priority rule. In other words, this work points out that: 1) even for a simple
priority rule the generating function does not factorize, preventing the possibility to treat
the systems as the superposition of two independent probability distributions. 2) A judicious
treatment of the zeroes of the denominator of the generating function allows nevertheless to
control completely the problem. This is not completely trivial, because the zeroes lie on a

59
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manifold, but it can be solved.
These problems, in context of discrete time services, are widely studied in literature (see

e.g.[32]) Some amount of results about geometric or general service time distribution appeared
in literature. Some of these results deals with the GI/Geom/c system, with general arrivals,
geometric service time and c servers (see [33, 34, 35]), but various generalization of this model
has been proposed. For example in [36] a model with variable arrival rates has been studied,
in [37] has been attached the problem of random vacations of the server, while [39] and [41]
deal with finite buffers models. All these papers study systems with a single class of users.
The problem to describe a system with more than one class of users has been attached in
[38], where however the generatingfunction has to be of product form.

The second model is also simple, but more complicated to study because the generating
functional equation contains two unknown function that are not easily to find. Usually these
problems are solved by the means of the solution of a boundary value problem (see e.g. [15]).
In this chapter we propose an alternative method to study these generating functionals that
is a perturbative method, starting from the exact solution of generating functional of first
model. In this way we obtain an approximation solution of generating functional which give
a very good results for lower traffic intensity, and is accurate also in some cases with heavy
traffic intensity.

A more complex and realistic model can be studied, taking into account the structure of
the arrivals and the number of user classes, which in general is greater than two. However for
simple priority the structure of the zeroes of the denominator of the generating function is
invertible, and therefore the resulting queueing model will be more complicated but concep-
tually analogous to the one presented here. Clearly, the possibility to compute analytically
the stationary distribution of the system has the great advantage that the dependence on the
relevant parameters is much more clear and useful than in a simulative approach.

The chapter is organized as follows: in section 4.2 we describe the first model, we write the
evolution equations of the joint probabilities of the process and we write the two dimensional
generating function of the system. The generating function so obtained can be completely
determined solving a boundary value problem. In section 4.3 we study the derivatives of the
generating function around the point (1, 1), in order to obtain by elementary considerations
the expected value of the length of the queues of the two classes of users. In section 4.4 we
give the complete form of the generating function, solving the boundary value problem, by
means of the explicit computation of the zeroes of the kernel of the generating function. In
section 4.5 we describe the second model. In section 4.6 we derive the functional equation
under stationary condition. In section 4.7 we study the generating function using perturbative
method. In section 4.8 we give the approximation formula for average queue length of both
classes of users. In section 4.9 we present some numerical results in order to check the validity
of perturbative method on the second model. The last section is devoted to the summary of
our results and to the description of some possible development of these models.

4.2 The model I: Discrete time GI/Geom/1 queueing system
with priority

In our system two classes of users arrive to a single server, according to a general stochastic
process, that may be obviously different for the two classes. The server may start his service
only at discrete time 𝑡𝑙 = 𝑙𝐷, and hence the service time can be always decomposed in a
integer number of time slots. Without loss of generality we will assume in the rest of the



4.2. THE MODEL I: DISCRETE TIME GI/GEOM/1 QUEUEING SYSTEM WITH PRIORITY61

paper 𝐷 = 1, i.e unit service time slots. The service time for each class of users is distributed
according to a geometrical probability distribution. This means that the probability 𝑃

(𝑖)
𝑘 that

the service time of the users of the class 𝑖, 𝑖 = 1, 2 has length 𝑘 is given by the expression

𝑃
(𝑖)
𝑘 = (1− 𝜇𝑖)𝑘−1𝜇𝑖 (2.1)

Note that denoting with 𝑡
(𝑖)
𝑠 the service time of the class 𝑖 we have

E(𝑡(𝑖)𝑠 ) =
∑︁
𝑘≥0

𝑘𝑃
(𝑖)
𝑘 =

∑︁
𝑘≥0

𝑘(1−𝜇𝑖)𝑘−1𝜇𝑖 = −𝜇𝑖

∑︁
𝑘≥0

𝑑

𝑑𝜇𝑖
(1−𝜇𝑖)𝑘 = −𝜇𝑖

𝑑

𝑑𝜇𝑖

(︂
1
𝜇𝑖

)︂
=

1
𝜇𝑖

(2.2)

and hence 𝜇𝑖 < 1 is the service rate of the users of the class 𝑖. Note also that the distribution
(2.1) means that each user has probability 𝜇𝑖 independent on its past to finish its service at
the end of each time slot. Since the time is discretized by the server, the relevant description
of the arrival process is the distribution of the number of arrivals in each time slot. We assume
that the number of arrivals in each time slot are independent realization of a well defined
random variable with integer values. We will denote by 𝑞

(𝑖)
𝑘 the (stationary) probability to

have in a single time slot 𝑘 arrivals of users of class 𝑖. In this paper the arrivals of the two
classes are therefore independent, but this assumption may be weakened, see section 4.10 for
more details. As we will see in section 4.3, in order to compute the expected value of the
length of the queues we just need to know the expected value 𝜆𝑖 =

∑︀
𝑘≥0 𝑘𝑞

(𝑖)
𝑘 of the number

of arrivals of users of class 𝑖 in each time slot, and its variance 𝜎2
𝑖 . The users are served on

the basis of a FIFO discipline, but a user of class 2 may start its service at the beginning of
a time slot only if there are no users of class 1 in the system. The service of a user of class
2 is interrupted when a time slot begins if in the previous time slot a user of class 1 arrived,
and it starts again when the queue of users of class 1 is empty We will denote with 𝑃 𝑙

𝑚,𝑛 the
probability to have 𝑚 users of class 1 and 𝑛 users of class 2 in the system immediately before
the beginning of the time slot [𝑙, 𝑙 + 1], and with 𝐿𝑙

𝑚,𝑛 the probability to have 𝑚 users of
class 1 and 𝑛 users of class 2 in the system immediately after the beginning of the time slot
[𝑙, 𝑙 + 1]. By the description above it is easy to see that the system obeys to the following
evolution equations

𝑃 𝑙+1
𝑚,𝑛 =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝐿𝑙
𝑖,𝑗𝑞

(1)
𝑚−𝑖𝑞

(2)
𝑛−𝑗 (2.3)

where

𝐿𝑙
𝑚,𝑛 = 𝑃 𝑙

𝑚,𝑛(1− 𝜇1) + 𝑃 𝑙
𝑚+1,𝑛𝜇1 for 𝑚 > 0, 𝑛 ≥ 0

𝐿𝑙
0,𝑛 = 𝑃 𝑙

1,𝑛𝜇1 + 𝑃 𝑙
0,𝑛(1− 𝜇2) + 𝑃 𝑙

0,𝑛+1𝜇2 for 𝑛 > 0

𝐿𝑙
0,0 = 𝑃 𝑙

0,0 + 𝑃 𝑙
1,0𝜇1 + 𝑃 𝑙

0,1𝜇2 (2.4)

The stationary distribution has to solve the set of equations

𝑃 𝑙+1
𝑚,𝑛 = 𝑃 𝑙

𝑚,𝑛 = 𝑃𝑚,𝑛, 𝐿𝑙+1
𝑚,𝑛 = 𝐿𝑙

𝑚,𝑛 = 𝐿𝑚,𝑛 (2.5)

So the system (2.4) becomes

𝐿𝑚,𝑛 = 𝑃𝑚,𝑛(1− 𝜇1) + 𝑃𝑚+1,𝑛𝜇1 for 𝑚 > 0, 𝑛 ≥ 0
𝐿0,𝑛 = 𝑃1,𝑛𝜇1 + 𝑃0,𝑛(1− 𝜇2) + 𝑃0,𝑛+1𝜇2 for 𝑛 > 0
𝐿0,0 = 𝑃0,0 + 𝑃1,0𝜇1 + 𝑃0,1𝜇2 (2.6)



62
CHAPTER 4. TWO CLASS QUEUE IN PARALLEL: PRIORITY AND BERNOULLI

SCHEDULING

and therefore, defining the generating functions

𝑃 (𝑥, 𝑦) =
∑︁

𝑚,𝑛≥0

𝑃𝑚,𝑛𝑥𝑚𝑦𝑛, 𝐿(𝑥, 𝑦) =
∑︁

𝑚,𝑛≥0

𝐿𝑚,𝑛𝑥𝑚𝑦𝑛 (2.7)

𝑞(𝑥, 𝑦) = 𝑞(1)(𝑥)𝑞(2)(𝑦) =
∑︁

𝑚,𝑛≥0

𝑞(1)
𝑚 𝑞(2)

𝑛 𝑥𝑚𝑦𝑛 (2.8)

we have by (2.3)
𝑃 (𝑥, 𝑦) = 𝐿(𝑥, 𝑦)𝑞(𝑥, 𝑦) (2.9)

and by (2.4)
First we compute the 𝐿(𝑥, 𝑦). Now multiplying both side of (2.6) by 𝑥𝑚 and 𝑦𝑛 and summing
over all 𝑚 and 𝑛 we have

𝐿(𝑥, 𝑦) =
∑︁
𝑚≥1

∑︁
𝑛≥0

(𝑃𝑚,𝑛(1− 𝜇1)𝑥𝑚𝑦𝑛 + 𝑃𝑚+1,𝑛𝜇1𝑥
𝑚𝑦𝑛) +

+
∑︁
𝑛≥1

(𝑃1,𝑛𝜇1𝑦
𝑛 + 𝑃0,𝑛(1− 𝜇2)𝑦𝑛 + 𝑃0,𝑛+1𝜇2𝑦

𝑛) + 𝑃0,0 + 𝑃1,0𝜇1 + 𝑃0,1𝜇2

=
∑︁
𝑚≥0

∑︁
𝑛≥0

(𝑃𝑚,𝑛(1− 𝜇1)𝑥𝑚𝑦𝑛 + 𝑃𝑚+1,𝑛𝜇1𝑥
𝑚𝑦𝑛)−

∑︁
𝑛=0

(𝑃0,𝑛(1− 𝜇1)𝑦𝑛 + 𝑃1,𝑛𝜇1𝑦
𝑛) +

+
∑︁
𝑛≥0

(𝑃1,𝑛𝜇1𝑦
𝑛 + 𝑃0,𝑛(1− 𝜇2)𝑦𝑛 + 𝑃0,𝑛+1𝜇2𝑦

𝑛)− 𝑃0,0(1− 𝜇2) + 𝑃0,0

(2.10)

After elementary algebra we get

𝐿(𝑥, 𝑦) =
[︂
1− 𝜇1

(︂
1− 1

𝑥

)︂]︂
𝑃 (𝑥, 𝑦)+

[︂
𝜇1

(︂
1− 1

𝑥

)︂
− 𝜇2

(︂
1− 1

𝑦

)︂]︂
𝑃 (0, 𝑦)+𝜇2

(︂
1− 1

𝑦

)︂
𝑃 (0, 0)

(2.11)
Now plugging this value of 𝐿(𝑥, 𝑦) into (2.9) to finally obtain[︂

𝑥𝑦

𝑞(𝑥, 𝑦)
− 𝜇1𝑦 − (1− 𝜇1)𝑥𝑦

]︂
𝑃 (𝑥, 𝑦) = [𝜇1(𝑥𝑦 − 𝑦)− 𝜇2(𝑥𝑦 − 𝑥)]𝑃 (0, 𝑦) + 𝜇2(𝑥𝑦 − 𝑥)𝑃 (0, 0)

(2.12)
and hence

𝑃 (𝑥, 𝑦) =
[𝜇1(𝑥𝑦 − 𝑦)− 𝜇2(𝑥𝑦 − 𝑥)]𝑃 (0, 𝑦) + 𝜇2(𝑥𝑦 − 𝑥)𝑃 (0, 0)

𝑥𝑦
𝑞(𝑥,𝑦) − 𝜇1𝑦 − (1− 𝜇1)𝑥𝑦

(2.13)

As we see the functional equation (2.13) contain two unknown that 𝑃 (0, 0) and 𝑃 (0, 𝑦).
𝑃 (0, 0) it easy to calculate using the boundary condition 𝑃 (𝑥, 𝑦)|(1,1) = 1 and remand the
computation of 𝑃 (0, 𝑦) in section 4.4.

4.3 The average length of the queue

In this section we will compute the average number of users of the two classes in the system
by a simple study of the behavior of the numerator of (2.13) around the point (1, 1), which
is obviously a zero of the denominator. The next section will be devoted to the explicit
computation of the function 𝑃 (0, 𝑦), i.e. to the solution of the (easy) boundary value problem
represented by equation (2.12).
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To fulfill this program we start with the normalization condition. Defining 𝑁(𝑥, 𝑦) and
𝐷(𝑥, 𝑦) by

𝑁(𝑥, 𝑦) = [𝜇1(𝑥𝑦 − 𝑦)− 𝜇2(𝑥𝑦 − 𝑥)]𝑃 (0, 𝑦) + 𝜇2(𝑥𝑦 − 𝑥)𝑃 (0, 0)

𝐷(𝑥, 𝑦) =
𝑥𝑦

𝑞(𝑥, 𝑦)
− 𝜇1𝑦 − (1− 𝜇1)𝑥𝑦

and hence

𝑃 (𝑥, 𝑦) =
𝑁(𝑥, 𝑦)
𝐷(𝑥, 𝑦)

(3.1)

and denoting 𝜕
𝜕𝑥𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦), 𝜕

𝜕𝑦𝑓(𝑥, 𝑦) = 𝑓𝑦(𝑥, 𝑦), we have the obvious relations
(l’Hopital rule)

lim
𝑥,𝑦→1,1

𝑃 (𝑥, 𝑦) =
𝑁𝑥(𝑥, 𝑦)
𝐷𝑥(𝑥, 𝑦)

⃒⃒⃒⃒
1,1

=
𝑁𝑦(𝑥, 𝑦)
𝐷𝑦(𝑥, 𝑦)

⃒⃒⃒⃒
1,1

= 1 (3.2)

To compute the derivatives in (3.2) we note that 𝑞𝑥(1, 1) = 𝜆1, 𝑞𝑦(1, 1) = 𝜆2, and denoting
with 𝜚𝑖 = 𝜆𝑖

𝜇𝑖
, 𝑖 = 1, 2, 𝜚 = 𝜚1 + 𝜚2, we get

1 =
𝑁𝑥(𝑥, 𝑦)
𝐷𝑥(𝑥, 𝑦)

⃒⃒⃒⃒
1,1

=
𝜇1𝑃 (0, 1)
𝜇1 − 𝜆1

⇒ 𝑃 (0, 1) = 1− 𝜚1 (3.3)

and equivalently

1 =
𝑁𝑦(𝑥, 𝑦)
𝐷𝑦(𝑥, 𝑦)

⃒⃒⃒⃒
1,1

=
−𝜇2𝑃 (0, 1) + 𝜇2𝑃 (0, 0)

−𝜆2
⇒ 𝑃 (0, 0) = 1− 𝜚 (3.4)

From a physical point of view the meaning of (3.3) and (3.4) is quite obvious, since they
represent the traffic intensity in the system, respectively of users of class 1 and of total
traffic. This implies that the existence condition of a stationary distribution is 𝜚 < 1. Now
we compute the expected values of the length of the queues. We first note that∑︁

𝑚,𝑛≥0

𝑚𝑃𝑚,𝑛 ≡ 𝑁1 = 𝑃𝑥(1, 1) =
𝑁𝑥𝑥(1, 1)−𝐷𝑥𝑥(1, 1)

2𝐷𝑥(1, 1)∑︁
𝑚,𝑛≥0

𝑛𝑃𝑚,𝑛 ≡ 𝑁2 = 𝑃𝑦(1, 1) =
𝑁𝑦𝑦(1, 1)−𝐷𝑦𝑦(1, 1)

2𝐷𝑦(1, 1)

(3.5)

where in the last equalities of (3.5) we made use of (3.2). Moreover we have that, always by
l’Hopital rule and again by (3.2),

𝐷𝑥(1, 1)𝑁2 + 𝐷𝑦(1, 1)𝑁1 = 𝑁𝑥𝑦(1, 1)−𝐷𝑥𝑦(1, 1) (3.6)

To compute 𝑁1 and 𝑁2 we need also the derivatives 𝑞𝑥𝑥(1, 1) = 𝜎2
1 − 𝜆1(1− 𝜆1), 𝑞𝑦𝑦(1, 1) =

𝜎2
2 − 𝜆2(1− 𝜆2). Then we get from (3.5)

𝑁1 =
𝜆1(1− 𝜆1) + 𝜎2

1

2(𝜇1 − 𝜆1)

𝑁2 =
2𝜇2𝑃𝑦(0, 1)− 𝜆2(1− 𝜆2)− 𝜎2

2

2𝜆2

(3.7)
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and from (3.6)

(𝜇1−𝜆1)𝑁2−𝜆2𝑁1 = (𝜇1−𝜇2)(1−𝜚1)+𝜇1𝑃𝑦(0, 1)+𝜇2(1−𝜚)−(1−𝜆1)(1−𝜆2)+1−𝜇1 (3.8)

Hence we can write explicitly 𝑁2 solving (3.7)-(3.8), which represent a linear system in the
unknown 𝑁1, 𝑁2 and 𝑃𝑦(0, 1). We obtain

𝑁2 =
1

1− 𝜚

[︂
−(1− 𝜆1)(1− 𝜆2) + 1− 𝜇1

𝜇1
+

𝜆2𝜆1(1− 𝜆1) + 𝜆2𝜎
2
1

2𝜇1(𝜇1 − 𝜆1)
+

𝜎2
2

2𝜇2

]︂
+ (3.9)

+
[︂
𝜇2(1− 𝜚)

𝜇1
+

𝜇1 − 𝜇2

𝜇1
(1− 𝜚1) +

𝜚2

2
(1− 𝜆2)

]︂
(3.10)

(3.11)

By formula (3.7) we remark that the users of first class do not are influenced by presence of
user of second class, so we can sei that the number of users of first class present in the system
are the same of the single server queue 𝐺𝐼/𝐺𝑒𝑜𝑚/1. Note that in the simplified case of the
service 𝑀/𝐷/1 with priority, i.e. in the case of poissonian arrivals and deterministic services
(𝜇1 = 𝜇2 = 1), the formulas (3.7) and (3.9) becomes

𝑁1 =
2𝜚1 − 𝜚2

1

2(1− 𝜚1)
, 𝑁2 =

𝜚2

2(1− 𝜚1)(1− 𝜚)
+ 𝜚2 (3.12)

4.4 The boundary value problem

In order to obtain the complete stationary distribution of the system we need to compute the
generic derivative of the generating function, according to the well-known relation

𝑃𝑚𝑛 =
𝑑𝑚

𝑑𝑥𝑚

𝑑𝑛

𝑑𝑦𝑛
𝑃 (𝑥, 𝑦)

⃒⃒⃒⃒
𝑥=0
𝑦=0

(4.1)

To do this we have to impose that 𝑃 (𝑥, 𝑦) is analytic for all 𝑥, 𝑦 in the complex unit circle
𝐷 = {𝑥, 𝑦 : |𝑥| ≤ 1, |𝑦| ≤ 1}. Since we shall easily see that the denominator 𝐷(𝑥, 𝑦) vanishes
at least on a real curve 𝒞 ⊂ 𝐷, we have to impose that the numerator 𝑁(𝑥, 𝑦) vanishes on
the same set . This will give us a condition on 𝑃 (0, 𝑦). We first show the existence of 𝒞. For
a given 0 ≤ 𝑦 < 1, 𝐷(𝑥, 𝑦) vanishes for the values of 0 ≤ 𝑥 < 1 satisfying

𝑥

𝑞(𝑥, 𝑦)
= 𝜇1 + (1− 𝜇1)𝑥 (4.2)

i.e.
𝑥

𝜇1 + (1− 𝜇1)𝑥
= 𝑞(1)(𝑥) 𝑞(2)(𝑦) (4.3)

For 0 ≤ 𝑦 < 1 fixed, we can think to 𝑞(2)(𝑦) < 1 as a fixed parameter. The function

𝑓(𝑥) =
𝑥

𝜇1 + (1− 𝜇1)𝑥
(4.4)

has the following properties:

𝑓(0) = 0
𝑓(1) = 1

𝑓 ′(𝑥) =
𝜇1

(𝜇1 + (1− 𝜇1)𝑥)2
< 𝜇1 ∀ 0 < 𝑥 < 1

(4.5)
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On the other side the function 𝑞(1)(𝑥) 𝑞(2)(𝑦) satisfies

𝑞(1)(0) 𝑞(2)(𝑦) > 0

𝑞(1)(1) 𝑞(2)(𝑦) < 1 ∀ 0 ≤ 𝑦 < 1
𝑑

𝑑𝑥
𝑞(1)(𝑥) 𝑞(2)(𝑦) < 𝜆1 < 𝜇1 ∀ 0 ≤ 𝑥, 𝑦 < 1

(4.6)

It is then obvious that (4.5) and (4.5) imply that, for each 0 ≤ 𝑦 < 1, (4.3) is satisfied for a
unique 0 ≤ 𝑥 < 1. We shall denote such value of 𝑥 with 𝑥(𝑦), i.e. 𝑥(𝑦) is the solution of

𝑥(𝑦) =
𝜇1

𝜇1 − 1 + 𝑞−1(𝑥(𝑦), 𝑦)
(4.7)

Note that in case of service 𝑀/𝐷/1 with priority, we have

𝑞(𝑥, 𝑦) =
∞∑︁

𝑚=0

∞∑︁
𝑛=0

𝑞𝑚𝑛𝑧𝑚𝑧𝑛 =
∞∑︁

𝑚=0

∞∑︁
𝑛=0

(𝜚1𝑥)𝑚

𝑚!
𝑒−𝜚1

(𝜚2𝑦)𝑛

𝑛!
𝑒−𝜚2𝑧𝑚𝑧𝑛 = 𝑒𝜚1(𝑥−1)𝑒𝜚2(𝑦−1) (4.8)

so in this case the equation (4.2) becomes

𝑥 = 𝑒𝜚1(𝑥−1)𝑒𝜚2(𝑦−1) (4.9)

We remark that the root 𝑥(𝑦) in case of 𝑀/𝐷/1 queue can be interpreted as the generating
function of arrival process. In figure 4.1 we have plotted the solution of equation (4.9).

0 0.2 0.4 0.6 0.8 1
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1
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ρ1(x-1)
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Figure 4.1: Graphical representation of the solution of (4.9).

It is now clear that in the points (𝑥(𝑦), 𝑦) The numerator 𝑁(𝑥, 𝑦) has to vanish. This
implies that

𝑃 (0, 𝑦) =
𝜇2(1− 𝑦)(1− 𝜚)

𝜇1(𝑦 − 𝑦/𝑥(𝑦)) + 𝜇2(1− 𝑦)
(4.10)

This expression, together with (4.7), represents the solution of the boundary value problem
given by the expression (2.13). In this case the solution of this problem had been possible
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because 𝑃 (𝑥, 𝑦) is independent on 𝑃 (𝑥, 0), and therefore the singularity of the denominator
was easy to study in terms of condition on the numerator. To obtain explicitly the whole
stationary distribution 𝑃𝑚𝑛 using (4.1), we have now to perform explicitly the derivatives of
𝑥(𝑦). To do this we observe that by (4.7) we have

𝑥′(𝑦) =
𝑥(𝑦) 𝑑

𝑑𝑦 ln 𝑞(2)(𝑦)
𝜇1

𝜇1+(1−𝜇1)𝑥(𝑦) − 𝑥(𝑦) 𝑑
𝑑𝜉 ln 𝑞(1)(𝜉)|𝜉=𝑥(𝑦)

(4.11)

The relation (4.11) may be now used iteratively to compute all the derivatives of 𝑥(𝑦).

4.5 The model II: Bernoulli schedules in two class 𝐺𝐼/𝐷/1
queueing system

We consider a single server queue with two class of users. Users of class 𝑖 (𝑖 = 1, 2) arrive at
system according arbitrary general independent stochastic processes. Let 𝑞𝑛,𝑖 the probability
to have 𝑛 arrivals of 𝑖𝑡ℎ class of users in single time slot. The class of users are served
according the following discipline. If only a single queue is nonempty then the first user
is served. Whenever both queues are nonempty the users of class 1 receive service with
probability 𝑝 (0 ≤ 𝑝 ≤ 1) and the users of class 2 receive service with probability 1 − 𝑝
independently in each time slot. The server serves the users according to the 𝐹𝐼𝐹𝑂 discipline
on each class of users and each service starts only at discrete time 𝑡𝑗 = 𝑗𝐷. Without loss
of generality we will assume that 𝐷 = 1, i.e unit service time slots. Let us denote by 𝑋𝑖(𝑗)
the number of 𝑖𝑡ℎ class users waiting in queue at time 𝑡𝑗 , and ready to be served in the time
interval [𝑗, 𝑗 + 1). The two dimensional stochastic process {𝑋𝑖(𝑗)}∞𝑗=0 is a Discrete Time
Markov Chain with countable state space {0, 1, 2, . . .}𝑥{0, 1, 2, . . .}. Further, we denote with
𝑃 𝑗

𝑚,𝑛 the probability to have 𝑚 users of first class and 𝑛 users of second class in the system
at time 𝑗, i.e. immediately before the beginning of the time slot [𝑗, 𝑗 + 1),

𝑃 𝑗
𝑚,𝑛 = 𝑃 [𝑋1(𝑗) = 𝑚, 𝑋2(𝑗) = 𝑛] (5.1)

In view of the description above, the following linear system describes the probability distri-
bution 𝑃 𝑗

𝑚,𝑛.

𝑃 𝑗
00 =

(︁
𝑃 𝑗

00 + 𝑃 𝑗
10 + 𝑃 𝑗

01

)︁
𝑞00

...

𝑃 𝑗
𝑚,𝑛 = 𝑃 𝑗

00𝑞𝑚,𝑛 +
𝑚+1∑︁
𝑘=1

𝑃 𝑗
𝑘0𝑞𝑚−𝑘+1,𝑛 +

𝑛+1∑︁
𝑙=1

𝑃 𝑗
0𝑙𝑞𝑚,𝑛−𝑙+1 +

+ 𝑝
𝑚+1∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝑃 𝑗
𝑘𝑙𝑞𝑚−𝑘+1,𝑛−𝑙 + (1− 𝑝)

𝑚∑︁
𝑘=1

𝑛+1∑︁
𝑙=1

𝑃 𝑗
𝑘𝑙𝑞𝑚−𝑘,𝑛−𝑙+1

...

(5.2)
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4.6 Derivation of functional equation under stationary condi-
tion

The Markov chain {𝑋𝑖(𝑗)}∞𝑗=0 for 𝑖 = 1, 2 is aperiodic and positive recurrent, therefore it is
ergodic under the stability condition

2∑︁
𝑖=1

∑︁
𝑛≥0

𝑛𝑞𝑛,𝑖 < 1 (6.1)

Let us define the stationary probability 𝑃𝑚,𝑛 by

𝑃𝑚,𝑛 = lim
𝑗→∞

𝑃 [𝑋1(𝑗) = 𝑚, 𝑋2(𝑗) = 𝑛] (6.2)

Under the stability condition (6.1), the limit exists for any 𝑚 𝑛, and the stationary probability
satisfies the following linear system

𝑃00 =
(︁
𝑃00 + 𝑃10 + 𝑃01

)︁
𝑞00

...

𝑃𝑚,𝑛 = 𝑃00𝑞𝑚,𝑛 +
𝑚+1∑︁
𝑘=1

𝑃𝑘0𝑞𝑚−𝑘+1,𝑛 +
𝑛+1∑︁
𝑙=1

𝑃0𝑙𝑞𝑚,𝑛−𝑙+1 +

+ 𝑝

𝑚+1∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝑃𝑘𝑙𝑞𝑚−𝑘+1,𝑛−𝑙 + (1− 𝑝)
𝑚∑︁

𝑘=1

𝑛+1∑︁
𝑙=1

𝑃𝑘𝑙𝑞𝑚−𝑘,𝑛−𝑙+1

...

(6.3)

Now define the generating function

𝑃 (𝑥, 𝑦) =
∞∑︁

𝑚=0

∞∑︁
𝑛=0

𝑃𝑚,𝑛𝑥𝑚𝑦𝑛 𝑞(𝑥, 𝑦) =
∞∑︁

𝑚=0

∞∑︁
𝑛=0

𝑞𝑚,𝑛𝑥𝑚𝑦𝑛 |𝑥| ≤ 1 |𝑦| ≤ 1 (6.4)

Multiplying both side of (6.3) by 𝑥𝑖𝑦𝑗 and summing over all 𝑖 and 𝑗 we have

𝑃 (𝑥, 𝑦) =
∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝑃00𝑞𝑖𝑗𝑥
𝑖𝑦𝑗 +

∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝑖+1∑︁
𝑘=1

𝑃𝑘0𝑞𝑖+1−𝑘,𝑗𝑥
𝑖𝑦𝑗 +

∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝑗+1∑︁
𝑙=1

𝑃0𝑙𝑞𝑖,𝑗+1−𝑙𝑥
𝑖𝑦𝑗 +

+ 𝑝
∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝑖+1∑︁
𝑘=1

𝑗∑︁
𝑙=1

𝑃𝑘𝑙𝑞𝑖+1−𝑘,𝑗−𝑙𝑥
𝑖𝑦𝑗 + (1− 𝑝)

∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝑖∑︁
𝑘=1

𝑗+1∑︁
𝑙=1

𝑃𝑘𝑙𝑞𝑖−𝑘,𝑗+1−𝑙𝑥
𝑖𝑦𝑗

= 𝑃00𝑞(𝑥, 𝑦) +
1
𝑥

∞∑︁
𝑘=1

𝑃𝑘0𝑥
𝑘𝑞(𝑥, 𝑦) +

1
𝑦

∞∑︁
𝑙=1

𝑃0𝑙𝑦
𝑙𝑞(𝑥, 𝑦) +

+
𝑝

𝑥

∞∑︁
𝑘=1

∞∑︁
𝑙=1

𝑃𝑘𝑙𝑥
𝑘𝑦𝑙𝑞(𝑥, 𝑦) +

(1− 𝑝)
𝑦

∞∑︁
𝑘=1

∞∑︁
𝑙=1

𝑃𝑘𝑙𝑥
𝑘𝑦𝑙𝑞(𝑥, 𝑦)

After standard computation we obtain the following generating functional equation

𝑃 (𝑥, 𝑦) =
𝑁(𝑥, 𝑦)
𝐷(𝑥, 𝑦)

(6.5)



68
CHAPTER 4. TWO CLASS QUEUE IN PARALLEL: PRIORITY AND BERNOULLI

SCHEDULING

where

𝑁(𝑥, 𝑦) := (𝑥− 𝑦) (𝑝𝑃 (0, 𝑦)− (1− 𝑝)𝑃 (𝑥, 0)) + (𝑥𝑦 − (1− 𝑝)𝑦 − 𝑝𝑥)𝑃 (0, 0)

𝐷(𝑥, 𝑦) :=
𝑥𝑦

𝑞(𝑥, 𝑦)
− 𝑝𝑦 − (1− 𝑝)𝑥

The functional equation (6.5) contains two unknown functions 𝑃 (𝑥, 0) and 𝑃 (0, 𝑦) which
are crucial to determine completely 𝑃 (𝑥, 𝑦). We give the following theorem that is stated in
[13].

Theorem 4.6.1. For the irreducible aperiodic Markov chain to be ergodic, it is necessary and
sufficient that there exist 𝑃 (𝑥, 𝑦), 𝑃 (𝑥, 0), 𝑃 (0, 𝑦) holomorphic in |𝑥|, |𝑦| < 1 and a constant
𝑃 (0, 0) satisfying the generating functional equation (6.5) together with the 𝐿1 condition

∞∑︁
𝑚=0

∞∑︁
𝑛=0

𝑃𝑚,𝑛 < ∞ (6.6)

In this case the function are unique.

It is easy to compute the constant 𝑃 (0, 0) we employing the normalization condition rule
lim𝑥→1

𝑦→1
𝑃 (𝑥, 𝑦) = 1 and we obtain

𝑃 (0, 0) = 1− 𝜕𝑞(𝑥, 𝑦)
𝜕𝑥

⃒⃒⃒
𝑥=1
𝑦=1

− 𝜕𝑞(𝑥, 𝑦)
𝜕𝑦

⃒⃒⃒
𝑥=1
𝑦=1

(6.7)

In case of independent arrivals the equation (6.7) becomes

𝑃00 = 1− 𝜌1 − 𝜌2 (6.8)

Clearly the constant 𝑃 (0, 0) is independent of 𝑝 and this fact is reasonable considering the
first equation of the system (6.3).

4.7 Study of functional equation

In this section we will study the generating function 𝑃 (𝑥, 𝑦), by using an approach different
to the one given by Cohen and Boxma [15].

4.7.1 Case 𝑝 = 0 and 𝑝 = 1

If 𝑝 = 1 we can see our model like two class of users in parallel, where the users of first class
has to be served with priority over users of second class and the users of second class received
service whenever the users of first class are absent. This case is well known see e.g [42], when
the service time has geometric distribution. In this case the (6.5) becomes

𝑃 (𝑥, 𝑦) =
(𝑥− 𝑦)𝑃 (0, 𝑦) + (𝑥𝑦 − 𝑥)𝑃 (0, 0)

𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦
(7.1)

To find the unknown function 𝑃 (0, 𝑦) in (7.1) we need to study the zero of denominator of
(7.1). Let 𝒞 ⊂ 𝐷 be a real curve given by equation

𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦 = 0 (7.2)
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Since 𝑃 (𝑥, 𝑦) is regular in |𝑥| < 1, |𝑦| < 1, we have that for any couple (𝑥, 𝑦) such that the
denominator of (7.1) vanishes, the numerator of (7.1) must be vanish

(𝑥− 𝑦)𝑃 (0, 𝑦) + (𝑥𝑦 − 𝑥)𝑃 (0, 0) = 0 (7.3)

This fact give us a condition to obtain 𝑃 (0, 𝑦). Thus the unknown function 𝑃 (0, 𝑦) in (7.1)
is given by

𝑃 (0, 𝑦) =
𝑥(𝑦)(1− 𝑦)𝑃 (0, 0)

𝑥(𝑦)− 𝑦
(7.4)

where 𝑥(𝑦) is the zero of the denominator of functional equation (7.1),and then it is solution
of

𝑥(𝑦) = 𝑞(𝑥(𝑦), 𝑦) (7.5)

Now plugging this value of 𝑃 (0, 𝑦) into (7.1), we obtain

𝑃 (𝑥, 𝑦) =
(𝑥(𝑦)− 𝑥)(𝑦 − 1)𝑃 (0, 0)

(𝑥𝑞−1(𝑥, 𝑦)− 1)(𝑥(𝑦)− 𝑦)
(7.6)

If 𝑝 = 0 the (6.5) becomes

𝑃 (𝑥, 𝑦) =
(𝑦 − 𝑥)𝑃 (𝑥, 0) + (𝑥𝑦 − 𝑦)𝑃 (0, 0)

𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑥
(7.7)

and in the some way we have,

𝑃 (𝑥, 0) =
𝑦(𝑥)(1− 𝑥)𝑃 (0, 0)

𝑦(𝑥)− 𝑥
(7.8)

where 𝑦(𝑥) is solution of
𝑦(𝑥) = 𝑞(𝑥, 𝑦(𝑥)) (7.9)

Now plugging (7.8) in (7.7), finally to get

𝑃 (𝑥, 𝑦) =
(𝑦(𝑥)− 𝑦)(𝑥− 1)𝑃 (0, 0)

(𝑦𝑞−1(𝑥, 𝑦)− 1)(𝑦(𝑥)− 𝑥)
(7.10)

4.7.2 Case 0 < 𝑝 < 1

In this subsection we want to study the functional equation (6.5) using perturbative method.
Let 𝜖 := 1 − 𝑝 perturbation parameter. Expanding (6.5) in powers of 𝜖 and ignoring 𝜖𝑛 we
can write,

𝑃𝜖(𝑥, 𝑦) = 𝑃0(𝑥, 𝑦) + 𝜖𝑃1(𝑥, 𝑦) + 𝜖2𝑃2(𝑥, 𝑦) + · · ·+ 𝑂(𝜖𝑛) (7.11)

and the expansion of 𝑃 (𝑥, 0) and 𝑃 (0, 𝑦) is

𝑃𝜖(𝑥, 0) = 𝑃0(𝑥, 0) + 𝜖𝑃1(𝑥, 0) + 𝜖2𝑃2(𝑥, 0) + · · ·+ 𝑂(𝜖𝑛)

𝑃𝜖(0, 𝑦) = 𝑃0(0, 𝑦) + 𝜖𝑃1(0, 𝑦) + 𝜖2𝑃2(0, 𝑦) + · · ·+ 𝑂(𝜖𝑛)
𝑃𝜖(0, 0) = 𝑃0(0, 0)

(7.12)

Consider the inverse of denominator 𝐷(𝑥, 𝑦). We can write it in the following way

1
𝐷(𝑥, 𝑦)

=
1

(𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦)
(︁
1− 𝜖(𝑥−𝑦)

𝑥𝑦𝑞−1(𝑥,𝑦)−𝑦

)︁ = (7.13)

=
1

(𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦)

(︂
1 + 𝜖

(𝑥− 𝑦)
𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦

+ 𝜖2
(𝑥− 𝑦)2

(𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦)2
+ · · ·+ 𝑂(𝜖𝑛)

)︂
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In the last equality we use the expansion of geometric series in some region granted by the
statement of following lemma.

Lemma 4.7.1. For 0 < 𝜖 < 1/2 and for 𝛿1 > 0 sufficiently small one can find a 𝛿2 > 0 such
that ⃒⃒⃒ 𝜖(𝑥− 𝑦)

𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦

⃒⃒⃒
< 1 (7.14)

Proof. For |𝑥| = 1−𝛿1 and |𝑦| = 1−𝛿2, we study (7.14) neglecting the terms up to the second
order, we have⃒⃒⃒ 𝜖(𝛿2 − 𝛿1)

(1− 𝛿1)(1− 𝛿2)(1 + 𝜚1𝛿1 + 𝜚2𝛿2)− 1 + 𝛿2

⃒⃒⃒
=
⃒⃒⃒ 𝜖(𝛿2 − 𝛿1)
(𝜚1 − 1)𝛿1 + 𝜚2𝛿2

⃒⃒⃒
< 1 (7.15)

It easy to see that the (7.14) is satisfied in the region given by solution of inequality (7.15).

Substituting the (7.12) in (6.5) and considering the expansion in (7.13), after some alge-
braic calculation we find for instance

𝑃0(𝑥, 𝑦) =
(𝑦 − 𝑥)𝑃0(0, 𝑦) + (𝑥− 𝑥𝑦)𝑃 (0, 0)

𝑦 − 𝑥𝑦𝑞−1(𝑥, 𝑦)
(7.16)

𝑃1(𝑥, 𝑦) =
(𝑥− 𝑦)

(︁
𝑃0(𝑥, 𝑦)− 𝑃0(0, 𝑦)− 𝑃0(𝑥, 0) + 𝑃1(0, 𝑦) + 𝑃 (0, 0)

)︁
𝑦 − 𝑥𝑦𝑞−1(𝑥, 𝑦)

(7.17)

and

𝑃2(𝑥, 𝑦) =
(𝑥− 𝑦)

(︁
𝑃1(𝑥, 𝑦)− 𝑃1(0, 𝑦)− 𝑃1(𝑥, 0) + 𝑃2(0, 𝑦)

)︁
𝑦 − 𝑥𝑦𝑞−1(𝑥, 𝑦)

(7.18)

where 𝑃0(𝑥, 𝑦), 𝑃1(𝑥, 𝑦) and 𝑃2(𝑥, 𝑦) are defined in (7.11),(7.12). Itering this procedure we
obtain the following theorem.

Theorem 4.7.2. The functional coefficient of the expansion of (6.5) in powers of 𝜖

𝑃𝜖(𝑥, 𝑦) =
𝑛∑︁

𝑘=0

𝜖𝑘𝑃𝑘(𝑥, 𝑦) + 𝑂(𝜖𝑛) (7.19)

is given by

𝑃𝑘(𝑥, 𝑦) =
𝑥− 𝑦

𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦

[︁
𝑃𝑘−1(𝑥, 𝑦)− 𝑃𝑘−1(0, 𝑦)− 𝑃𝑘−1(𝑥, 0) + 𝑃𝑘(0, 𝑦) + 𝛿𝑘,1𝑃 (0, 0)

]︁
+

𝛿𝑘,0(𝑥𝑦 − 𝑥)𝑃 (0, 0)
𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦

(7.20)

with condition 𝑃𝑘−1(𝑥, 𝑦) = 𝑃𝑘−1(0, 𝑦) = 𝑃𝑘−1(𝑥, 0) = 0 for 𝑘 = 0.

Using the recurrent formula for 𝑃𝑘(𝑥, 𝑦) we can write the functional equation (6.5) in
terms of the well known function 𝑃0(𝑥, 𝑦) given by (7.1). In a similar way expanding (6.5) in
powers of 𝑝 and ignoring 𝑝𝑛 we obtain the following theorem
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Theorem 4.7.3. The functional coefficient of the expansion of (6.5) in powers of 𝜖

𝑃𝑝(𝑥, 𝑦) =
𝑛∑︁

𝑘=0

𝑝𝑘𝑃𝑘(𝑥, 𝑦) + 𝑂(𝑝𝑛) (7.21)

is given by

𝑃𝑙(𝑥, 𝑦) =
𝑦 − 𝑥

𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑥

[︁
𝑃𝑙−1(𝑥, 𝑦)− 𝑃𝑙−1(0, 𝑦)− 𝑃𝑙−1(𝑥, 0) + 𝑃𝑙(𝑥, 0) + 𝛿𝑙,1𝑃 (0, 0)

]︁
+

𝛿𝑙,0(𝑥𝑦 − 𝑦)𝑃 (0, 0)
𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑥

(7.22)

with condition 𝑃𝑙−1(𝑥, 𝑦) = 𝑃𝑙−1(0, 𝑦) = 𝑃𝑙−1(𝑥, 0) = 0 for 𝑙 = 0.

4.8 The queue length

In this section we give the expression for the queue length of class 1 and class 2 users. In
the begin we work with expansion (7.19), so by starting the exact generating function (7.6)
obtained from (6.5) for 𝑝 = 1. Denote by 𝑁

(𝑛)
1 the average values of the queue length of class

1 user, where 𝑛 give the order of expansion. Differentiating (7.19) whith respect to 𝑥 and
evaluating in point (1, 1) and applying l’Hôpital rule gives

𝑁
(𝑛)
1 =

𝑛∑︁
𝑘=0

𝜖𝑘 𝜕

𝜕𝑥
𝑃𝑘(𝑥, 𝑦)

⃒⃒⃒
(1,1)

=
𝑛∑︁

𝑘=0

𝜖𝑘 1
1 + 𝜕

𝜕𝑥𝑞−1(𝑥, 𝑦)|(1,1)

[︁ 𝜕

𝜕𝑥
𝑃𝑘−1(𝑥, 𝑦)− 𝜕

𝜕𝑥
𝑃𝑘−1(𝑥, 0)

]︁
(1,1)

=
𝑛∑︁

𝑘=0

𝜖𝑘
(︁ 1

1 + 𝜕
𝜕𝑥𝑞−1(𝑥, 𝑦)|(1,1)

)︁𝑘
𝑁

(0)
1 −

𝑛∑︁
𝑘=0

𝑘−1∑︁
𝑙=0

𝜖𝑘
(︁ 1

1 + 𝜕
𝜕𝑥𝑞−1(𝑥, 𝑦)|(1,1)

)︁𝑘−𝑙 𝜕

𝜕𝑥
𝑃𝑙(𝑥, 0)|(1,1)

(8.1)

with

𝑁
(0)
1 = −

2 𝜕
𝜕𝑥𝑞−1(𝑥, 𝑦)|(1,1) + 𝜕2

𝜕𝑥2 𝑞−1(𝑥, 𝑦)|(1,1)

2(1 + 𝜕
𝜕𝑥𝑞−1(𝑥, 𝑦)|(1,1))

(8.2)

Remains to determinate 𝑃𝑙(𝑥, 0). To do this, now take the limit of (7.20) as 𝑦 tends to zero
for 𝑘 ≥ 1

𝑃𝑘(𝑥, 0) = lim
𝑦→0

𝑥− 𝑦

𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑦

[︁
𝑃𝑘−1(𝑥, 𝑦)− 𝑃𝑘−1(0, 𝑦)− 𝑃𝑘−1(𝑥, 0) + 𝑃𝑘(0, 𝑦) + 𝛿𝑘,1𝑃 (0, 0)

]︁
=

𝑥

𝑥𝑞−1(𝑥, 0)− 1
lim
𝑦→0

𝑃𝑘−1(𝑥, 𝑦)− 𝑃𝑘−1(0, 𝑦)− 𝑃𝑘−1(𝑥, 0) + 𝑃𝑘(0, 𝑦) + 𝛿𝑘,1𝑃 (0, 0)
𝑦

=
𝑥

𝑥𝑞−1(𝑥, 0)− 1
𝜕

𝜕𝑦
𝑃𝑘−1(𝑥, 𝑦)|𝑦=0

=
(︁ 𝑥

𝑥𝑞−1(𝑥, 0)− 1

)︁𝑘 𝜕𝑘

𝜕𝑦𝑘
𝑃0(𝑥, 𝑦)|𝑦=0

(8.3)
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Plugging the last result for 𝑃𝑙(𝑥, 0) into (8.1) we obtain

𝑁
(𝑛)
1 = 𝑁

(0)
1

𝑛∑︁
𝑘=0

𝜖𝑘
(︁ 1

1 + 𝜕
𝜕𝑥𝑞−1(𝑥, 𝑦)|(1,1)

)︁𝑘
−

−
𝑛∑︁

𝑘=0

𝑘−1∑︁
𝑙=0

𝜖𝑘
(︁ 1

1 + 𝜕
𝜕𝑥𝑞−1(𝑥, 𝑦)|(1,1)

)︁𝑘−𝑙(︁ 1
𝑞−1(1, 0)− 1

)︁𝑙 𝜕𝑙+1

𝜕𝑥𝜕𝑙𝑦
𝑃0(𝑥, 𝑦)|(1,0)

(8.4)

In order to obtain the queue length 𝑁
(𝑛)
2 we use the following observation: we compute

the total average queue of the system described in section 4.5. Considering the generating
function (6.5), if we pose 𝑦 = 𝑥 into the (6.5), we have

𝑃 (𝑥, 𝑥) =
(𝑥− 1)𝑃 (0, 0)
𝑥𝑞−1(𝑥, 𝑥)− 1

(8.5)

Differentiating both side of (8.5) with respect to 𝑥 and taking the limit as 𝑥 tends to one, we
obtain

𝑁1 + 𝑁2 = −
2 𝜕

𝜕𝑥𝑞−1(𝑥, 𝑥) + 𝜕2

𝜕𝑥2 𝑞−1(𝑥, 𝑥)

2(1 + 𝜕
𝜕𝑥𝑞−1(𝑥, 𝑥))

⃒⃒⃒
(1,1)

=
2(𝜚1 + 𝜚2)− (𝜚1 + 𝜚2)2

2(1− 𝜚1 − 𝜚2)
(8.6)

where the second equality is implied by the fact the arrivals are independent. Since we have
just computed the average of first queue, we obtain by (8.6) also the value of 𝑁

(𝑛)
2 . In this

way we have the approximate solution of problem near 𝑝 = 1.
Now we proceed with expansion (7.21) in order to have the approximate solution of prob-

lem near 𝑝 = 0. Differentiating (7.21) whith respect to 𝑦 and evaluating in point (1, 1) and
applying l’Hôpital rule gives

𝑁
(𝑛)
2 =

𝑛∑︁
𝑙=0

𝑝𝑙 𝜕

𝜕𝑦
𝑃𝑙(𝑥, 𝑦)

⃒⃒⃒
(1,1)

=
𝑛∑︁

𝑙=0

𝑝𝑙 1
1 + 𝜕

𝜕𝑦 𝑞−1(𝑥, 𝑦)|(1,1)

[︁ 𝜕

𝜕𝑦
𝑃𝑙−1(𝑥, 𝑦)− 𝜕

𝜕𝑦
𝑃𝑙−1(0, 𝑦)

]︁
(1,1)

=
𝑛∑︁

𝑙=0

𝑝𝑘
(︁ 1

1 + 𝜕
𝜕𝑦 𝑞−1(𝑥, 𝑦)|(1,1)

)︁𝑘
𝑁

(0)
2 −

𝑛∑︁
𝑙=0

𝑙−1∑︁
𝑚=0

𝑝𝑘
(︁ 1

1 + 𝜕
𝜕𝑦 𝑞−1(𝑥, 𝑦)|(1,1)

)︁𝑙−𝑚 𝜕

𝜕𝑦
𝑃𝑚(0, 𝑦)|(1,1)

(8.7)

with

𝑁
(0)
2 = −

2 𝜕
𝜕𝑦 𝑞−1(𝑥, 𝑦)|(1,1) + 𝜕2

𝜕𝑦2 𝑞−1(𝑥, 𝑦)|(1,1)

2(1 + 𝜕
𝜕𝑦 𝑞−1(𝑥, 𝑦)|(1,1))

(8.8)

Remains to determinate 𝑃𝑚(0, 𝑥). To do this, now take the limit of (7.22) as 𝑥 tends to zero
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for 𝑙 ≥ 1

𝑃𝑙(0, 𝑦) = lim
𝑥→0

𝑦 − 𝑥

𝑥𝑦𝑞−1(𝑥, 𝑦)− 𝑥

[︁
𝑃𝑙−1(𝑥, 𝑦)− 𝑃𝑙−1(0, 𝑦)− 𝑃𝑙−1(𝑥, 0) + 𝑃𝑙(𝑥, 0) + 𝛿𝑙,1𝑃 (0, 0)

]︁
=

𝑦

𝑦𝑞−1(0, 𝑦)− 1
lim
𝑥→0

𝑃𝑙−1(𝑥, 𝑦)− 𝑃𝑙−1(0, 𝑦)− 𝑃𝑙−1(𝑥, 0) + 𝑃𝑙(𝑥, 0) + 𝛿𝑙,1𝑃 (0, 0)
𝑥

=
𝑦

𝑦𝑞−1(0, 𝑦)− 1
𝜕

𝜕𝑥
𝑃𝑘−1(𝑥, 𝑦)|𝑥=0

=
(︁ 𝑦

𝑦𝑞−1(0, 𝑥)− 1

)︁𝑙 𝜕𝑙

𝜕𝑦𝑙
𝑃0(𝑥, 𝑦)|𝑥=0

(8.9)

Plugging the last result for 𝑃𝑙(0, 𝑦) into (8.1) we obtain

𝑁
(𝑛)
2 = 𝑁

(0)
2

𝑛∑︁
𝑙=0

𝑝𝑙
(︁ 1

1 + 𝜕
𝜕𝑦 𝑞−1(𝑥, 𝑦)|(1,1)

)︁𝑙
−

−
𝑛∑︁

𝑙=0

𝑙−1∑︁
𝑚=0

𝑝𝑙
(︁ 1

1 + 𝜕
𝜕𝑦 𝑞−1(𝑥, 𝑦)|(1,1)

)︁𝑙−𝑚(︁ 1
𝑞−1(0, 1)− 1

)︁𝑚 𝜕𝑚+1

𝜕𝑦𝜕𝑚𝑥
𝑃0(𝑥, 𝑦)|(0,1)

(8.10)

4.9 Numerical results

In this section we present some numerical results on the average queue size obtained with
approximation (8.4) and by simulation. To do this we consider the case of Poisson arrivals
for users of both classes with different traffic intensity 𝜚1 and 𝜚2 for the first and second class
respectively. Clearly the parameters which influences the average of the queues are 𝜚1, 𝜚2 and
𝑝. We did the numerical results varying these parameters. In particular we compare these
results in order to see the efficiency of approximation (8.4) taking into account the case of
lower traffic and heavy traffic intensity and varying parameter 𝑝 ∈ [0, 1]. In Table 4.1 we have
listed the results of both average queues for lower traffic intensity (𝜚1+𝜚2 = 0.6) and in figure
4.2 we have plotted these results. As we see comparing results in this table and in figure 4.2
for the respective average queue the perturbative method give us a good result excepted for
𝑝 near the point 0.7 (𝑝 ∈ [0.66, 0.74]). Note that the numerical results for the case 𝑝 = 0 and
𝑝 = 1 are obtained by the complete solution of problem given in section 4.7. In Table 4.2 we
have listed the results of both average queue for heavy traffic intensity (𝜚1 + 𝜚2 = 0.9) and
in figure 4.3 we have plotted these results. In this case as we see comparing results in this
table and in figure 4.2 for the respective average queue the perturbative method give us a
good results for 𝑝 ∈ [0.3] and (𝑝 ∈ [0.76, 1]).

4.10 Conclusions

In this chapter we have studied two models of two class queue in parallel: priority and
Bernoulli scheduling in which the generating function is not in the factorized form. We
have obtained a complete solution for the discrete time 𝐺𝐼/𝐺𝑒𝑜𝑚/1 queueing system with
priority. This has been possible because of the simple structure of the service discipline. For
the single server with Bernoulli scheduling we have obtained an approximation solution of
the generating function near the value 𝑝 = 0 and 𝑝 = 1. This approximation give a good
results for lower intensity traffic and relatively good results for heavy traffic intensity.
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𝜌1 𝜌2 𝑝 𝑁1(𝑠𝑖𝑚) 𝑁1(𝑎𝑝𝑝) 𝑁2(𝑠𝑖𝑚) 𝑁2(𝑎𝑝𝑝)
0.2 0.4 0 0.514 0.516 0.531 0.533
0.2 0.4 0.1 0.479 0.484 0.570 0.569
0.2 0.4 0.2 0.439 0.444 0.607 0.605
0.2 0.4 0.3 0.401 0.408 0.645 0.641
0.2 0.4 0.4 0.366 0.372 0.684 0.677
0.2 0.4 0.5 0.333 0.336 0.713 0.713
0.2 0.4 0.6 0.305 0.300 0.742 0.749
0.2 0.4 0.66 0.289 0.278 0.758 0.771
0.2 0.4 0.7 0.28 0.264 0.767 0.785
0.2 0.4 1. 0.225 0.225 0.8232 0.825
0.2 0.4 0.9 0.241 0.239902 0.8055 0.810098
0.2 0.4 0.8 0.259 0.25499 0.7869 0.793491
0.2 0.4 0.74 0.272 0.264131 0.7774 0.785869
0.2 0.4 0.7 0.28 0.270263 0.7671 0.779737

Table 4.1:

𝜌1 𝜌2 𝑝 𝑁1(𝑠𝑖𝑚) 𝑁1(𝑎𝑝𝑝) 𝑁2(𝑠𝑖𝑚) 𝑁2(𝑎𝑝𝑝)
0.6 0.3 0 4.573 4.58571 0.364 0.364286
0.6 0.3 0.04 4.5541 4.56656 0.3826 0.383437
0.6 0.3 0.1 4.515 4.53401 0.4158 0.415987
0.6 0.3 0.14 4.476 4.50944 0.4411 0.440564
0.6 0.3 0.2 4.4508 4.46769 0.4851 0.482311
0.6 0.3 0.24 4.4037 4.43627 0.5207 0.513725
0.6 0.3 0.3 4.3211 4.38322 0.5839 0.566785
0.6 0.3 0.34 4.2722 4.34355 0.6364 0.606445
0.6 0.3 0.4 4.1778 4.27707 0.7314 0.672932
0.6 0.3 1 1.0447 1.05 3.8695 3.9
0.6 0.3 0.94 1.196 1.19858 3.7455 3.75142
0.6 0.3 0.9 1.3191 1.3182 3.5725 3.6318
0.6 0.3 0.84 1.5542 1.53348 3.335 3.41652
0.6 0.3 0.8 1.7678 1.70383 3.1336 3.24617
0.6 0.3 0.76 2.0331 1.89797 2.8596 3.05203

Table 4.2:
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Figure 4.2: Average queue for 𝜚1 = 0.2 and 𝜚1 = 0.4
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