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Abstract

The measurement of core inflation can be carried out by optimal signal extraction tech-
niques based on the multivariate local level model, by imposing suitable restrictions on its
parameters. The various restrictions correspond to several specialisations of the model:
the core inflation measure becomes the optimal estimate of the common trend in a mul-
tivariate time series of inflation rates for a variety of goods and services, or it becomes a
minimum variance linear combination of the inflation rates, or it represents the compo-
nent generated by the common disturbances in a dynamic error component formulation of
the multivariate local level model. Particular attention is given to the characterisation of
the optimal weighting functions and to the design of signal extraction filters that can be
viewed as two sided exponentially weighted moving averages applied to a cross-sectional
average of individual inflation rates. An empirical application relative to U.S. monthly
inflation rates for 8 expenditure categories is proposed.

Keywords: common trends, dynamic factor analysis, homogeneity, exponential smoothing,
Wiener—-Kolmogorov filter.



1 Introduction

Core inflation measures are considered to be more appropriate for the assessment of the
trend movements in aggregate prices than is the official aggregate inflation rate. It is
usually thought that the raw inflation rate, obtained as the percentage change in the
consumer price index (CPI, henceforth) over a given horizon, is too noisy to provide a
good indication of the inflationary pressures in the economy.

Like many other key concept in economics, there is no consensus on the notion of core
inflation, despite the fact that quasi-official measures are routinely produced by statisti-
cal agencies. This is because the notion serves a variety of purposes. Nevertheless, an
increasing number of indices of core inflation are being produced in a variety of ways.

As a consequence, a large body of literature has been devoted to core inflation. An
excellent review is Wynne (1999), who makes a basic distinction between methods which
use only sectional information, and those which also use the time dimension. Another
useful distinction is between aggregate or disaggregate approaches.

The most popular measures fall within the disaggregate approach, using only the cross-
sectional distribution of inflation rates at a given point in time. They aim at reducing the
influence of items that are presumed to be more volatile, such as food and energy. Other
measures exclude mortgage interest costs, and some also exclude the changes in indirect
taxes.

Bryan and Cecchetti (1994) (see also Bryan, Cecchetti and Wiggins II, 1997) argue that
the systematic exclusion of specific items, such as food and energy, is arbitrary, and, after
remarking that the distribution of relative price changes exhibits skewness and kurtosis,
propose to use the median or the trimmed mean of the cross-sectional distribution.

Cross-sectional measures, using only contemporaneous price information, are not sub-
ject to revision as new temporal observations become available, and this is often, although
mistakenly, seen as an advantage. The corresponding core inflation measures tend to be
rather rough and do not provide clear signals of the underlying inflation. We show here
that measures that are constructed via a time series approach are better behaved.

Other approaches arise in the structural vector autoregressive (VAR) framework, start-
ing from the seminal work of Quah and Vahey (1995), who, within a bivariate stationary
VAR model of real output growth and inflation, defined core inflation as that component
of measured inflation which has no long run effect on real output.

This paper considers the measurement of core inflation in an unobserved components
framework; in particular, the focus will be on dynamic models that take a stochastic
approach to the measurement of inflation, such as those introduced in Selvanathan and
Prasada Rao (1994, ch. 4). We propose and illustrate measures of core inflation that arise
when standard signal extraction principles are applied to restricted versions of a workhorse
model, which is the multivariate local level model (MLLM, henceforth).

The parametric restrictions are introduced in order to accommodate several important
cases: the first is when the core inflation measure is the optimal estimate of the common
trend in a multivariate time series of inflation rates for a variety of goods and services.
In an alternative formulation it is provided by the minimum variance linear combination
of the inflation rates. In another it arises as the component generated by the common



disturbances in a dynamic error component formulation of the MLLM.

Particular attention is devoted to the characterisation of the Wiener—Kolmogorov op-
timal weighting functions and to the design of signal extraction filters that can be viewed
as a two sided exponentially weighted moving averages applied to a contemporaneously
aggregated inflation series.

The paper is organised as follows. Section [2] deals with aggregate measures of core
inflation and their limitations. The MLLM and its main characteristics are presented in
section Bl Signal extraction for the unrestricted MLLM is considered in sectiondl Section
introduces several measures of core inflation that can be derived from the MLLM under
suitable restrictions of its parameters. In particular, we entertain three classes of restric-
tions, namely the common trend, the homogeneity, and the dynamic error components
restrictions. Section [f] derives the signal extraction filters for the dynamic factor model
proposed by Bryan and Cecchetti (1994); and it compares them with those derived from
the MLLM. Inference and testing for the MLLM and its restricted versions are the topic
of section [7]). Finally, in section 8 the measures considered in the paper are illustrated
with reference to a set of U.S. time series concerning the monthly inflation rates for 8
expenditure categories.

2 Aggregate measure of core inflation

Statistical agencies publish regularly two basic descriptive measures of inflation that are
built upon a consumer or retail price index. The first is the percentage change over the
previous month. The second is the percent change with respect to the same month of the
previous year.

Unfortunately, neither index is a satisfactory measure of trend inflation. The first turns
out to be very volatile, as it is illustrated by the upper panel of figure[Il which displays the
monthly inflation rates for the for U.S. consumer price index (city average, source: Bureau
of Labor Statistics) for the sample period 1993.1-2003.8. By contrast, the annual changes
in relative prices are much smoother (see the lower panel of figure[I]), but, being based on
an asymmetric filter, they suffer from a phase shift in the signal, which affects the timing
of the turning points in inflation. Furthermore, if the consumer price index is strictly
non seasonal, then the series of yearly inflation rates is non invertible at the seasonal
frequencies. With p; representing the price index series, and with y; = In(p;/pi—1), the
yearly inflation rate is approximately S(L)y, where S(L) =1+ L+ L*+---+ L', which
is a one sided filter with zeros at the seasonal frequencies.

One approach, which is followed by statistical agencies, is to reduce the volatility of
inflation by discarding the goods or services that are presumed to be more volatile, such
as food and energy. The monthly and yearly inflation rates constructed from the CPI
excluding Food and Energy are indeed characterised by reduced variability, as figure [
shows; yet they are far from satisfactory and they can be criticised on several grounds,
not the least of which is their lack of smoothness.
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Figure 1: U.S. CPI Total and Excluding Food & Energy, 1993.1-2003.8. Monthly and
yearly inflation rates.



3 The multivariate local level model

The measures of core inflation proposed in this paper arise from applying optimal signal
extraction techniques derived from various restricted versions of a multivariate times series
model. The model in question is the multivariate generalisation of the local level model
(MLLM), according to which a multivariate time series can be decomposed into a trend
component, represented by a multivariate random walk, and a white noise (WN) compo-
nent. Letting y; denote an N x 1 vector time series referring to the monthly changes in
the prices of N consumer goods and services,

Yt = MKt €y t=1,2,....T, €t NWN(Ovze)v (1)
Ky = K1+ My, ny ~ WN(0, 3y).
The disturbances 77, and €; are assumed to be mutually uncorrelated and uncorrelated to

Ho-

Before considering restricted versions of the model, we review its main features both
in the time and the frequency domain (see Harvey, 1989, for more details). The model
assumes that the monthly inflation rates are integrated of order one (prices are integrated
of order two). This assumption can actually be tested. In section [1 we review the locally
best invariant test of the hypothesis that monthly inflation rates are stationary versus the
alternative that they are I(1). Taking first differences, we can reexpress model () in its
stationary form:

Ay =1, + A€y

The crosscovariance matrices of Ay, Ta(7) = E(Ay;Ay,_.) are then

LA(0) = X,+2%,
La(l) = Ta(-1)'=-X,
La(r) = 0, |7|>1.

Notice that the autocovariance at lag 1 is negative (semi)definite and symmetric:
LaA(l) =Ta(1) = Ta(—1). This symmetry property implies that the multivariate spec-
trum is real-valued. Denoting by F(X) the spectral density of Ay; at the frequency A,
we have F(\) = (27)7! [, +2(1 — cos \)E.]. The autocovariance generating function
(ACGF) of Ay is

G(L)=%,+ |1 - L*=.. (2)

The reduced form of the MLLM is a multivariate IMA(1,1) model:
Ayr =& + O&;_;.
Equating ([2) to the ACGF of the vector MA(1) representation for Ayy, it is possible to
show that the parameterisation () is related to the reduced form parameters via:

277 = (I =+ @)25(1 + @,), 25 = —@25 = —25@,.

The structural form has N(N + 1) parameters, whereas the unrestricted vector IMA(1,1)
model has N2 + N(N + 1)/2. In fact, £, = —O%; = —%,0’ imposes N(N — 1)/2
restrictions.



4 Signal extraction

Assuming a doubly infinite sample, the minimum mean square linear estimator (MMSLE)
of the underlying level component is

By = W(L)yt7

with weighting matrix polynomial

W(L) = [1 - LFGu(L)G(L) ™! =2y (8 + 1 - LB
where G, (L) is the pseudo ACGF of the trend component and we have defined |1 —
LI? = (1 — L)(1 — L™'). This results from the application of the Wiener-Kolmogorov
(WK, henceforth) filtering formulae given in Whittle (1983), which apply also to the
nonstationary case (Bell, 1984).
The matrix polynomial W (L) performs two-sided exponential smoothing

W(L)=(1+0)Z(I+0)1+eL ) 'S (I+er)!

and it has W(1) = Iy, which generalises to the multivariate case the unit sum property
of the weights for the extraction of the trend component.

The filtered or real time estimator of the trend is an exponentially weighted average of
current and past observations:

ey = (I+0)(I+ @L)fl}’t
- 140 (-0 .

5 Measures of core inflation derived from the MLLM

In this section we explore that have to be imposed on the WK filter to make it yield
univariate summary measures of tendency of the form:

fir =w(L)y:, w(L)=q(L)w 3)

where ¢(L) is a univariate symmetric two-sided filter and w is a static vector of cross-
sectional weights. Purely static measures arise when ¢(L) = 1. The signal extraction
filters of (B are the basis of the measurement of core inflation, when y; represents N
inflation rates that have to be combined in a single measure.

The cross-sectional weights can be model based or they can originate from a priori
knowledge. It is instructive to look at the various ways that they can originate and at
their different various meanings.

5.1 Aggregate measures (known weights)

The first core inflation measures arise from the contemporaneous aggregation of the mul-
tivariate trend component in (] using known weights. The MLLM is invariant under



contemporaneous aggregation; thus, w'y;, where w is a vector of known weights (e.g.
expenditure shares in the core inflation example), follows a univariate local level model.

The aggregated time series, w'y;, has thus a local level model representation, and the
miminum-mean-square linear estimator of the trend component, w’p,, based on a doubly
infinite sample, has the above structure (B]), with:

1 (1+6)?

= = 4
1+q¢ I—LP2 [1+6L]2 )

q(L)

and ¢ = w'X,w/w'XEw, and 0 = [\/(¢* +4¢—2—¢]/2, -1 <0 < 0.

Alternatively, we could fit a univariate local level model to the aggregate time series.
The corresponding core inflation measure is given by (), but ¢ would be estimated directly,
rather than obtained from the aggregation of the covariance matrix of the disturbances of
the multivariate specification.

5.2 Common trend

Common trends arise when rank(3,) = K < N, so that
s, = 23,7

where Z is N x K and Enf is a full rank K x K matrix.
When there is a single common trend, K = 1, driving the w,’s in (IJ), we can write:

Y :Zﬂt+u0+€t7

where z is a N x 1 vector of loadings and s = pg—1 + 1, nr ~ WN(O, 0727).
The WK filter for p, assuming a doubly infinite sample, takes the form (B]) with

w= (2% '2)7 121z, (5)
and ¢(L) given by (@), where the signal-noise ratio is given by
q=o0.(2% 'z).

If 3 is diagonal (i.e. if it represents the idiosyncratic noise) and z is a constant vector
(the common trend enters the series with the same coefficient) then the cross-sectional
weights (B) applied to y; produce a weighted average 4 = w'y;, in which the more noisy
series are downweighted. The application of the univariate two sided filter ¢(L), which is
a bidirectional exponentially weighted average, to 7 yields the estimated component.

The expression (B) assumes that X, is full rank; if its rank is N — 1 then ¢(L) = 1
and w = (v'z)~!v, where v is the eigenvector corresponding to the zero eigenvalue of 3.
Hence, in this special case, the filter is fully static.



5.3 Homogeneity

The MLLM is said to be homogeneous if the covariance matrices of the disturbances are
proportional (see Enns et al., 1982, and Harvey, 1989, ch. 8):

Y, = qX..

Here, q denotes the proportionality factor.
Under homogeneity, the model is a seemingly unrelated IMA(1,1) process Ay, = &, +
0€,_,, with scalar MA parameter, 0 = [\/(¢? + 4¢ — 2 — ¢]/2, taking values in [-1,0], and
& ~ WN(O, Eﬁ)’ e = —3./0.
The trend extraction filter is scalar and can be applied to each series in turn:
1
14+q¢ 41— Lj

[I’t = 2 Yi-
As a matter of fact, the Kalman filter and smoother become decoupled, and inferences are
particularly simplified (see also section [1]).

Consider forming a linear combination of the trend component p,: iy = w’'p,. Obvi-

ously,
1

~ /
= W'y
:ut|oo 1+q,1‘1_L|2 Yt
If w is known (as in the case of expenditure shares), then the summary measure coincides
with that arising from the aggregate approach. The difference, however, lies with the
signal-noise ratio, which is estimated more efficiently if the model is homogeneous. Again,
the measure of core inflation is a static weighted average, with given weights, of the
individual trends characterising each of the series.
Consider now the alternative strategy of forming a measure of the type ([B) by means
of a static linear combination of the estimated trends, iy = w'f1,, with weights
>-lz

w = U . 6
Z’E;IZ (6)

It is easy to show that the weights w produce the linear combination w’p, which minimises
the variance w'X, w under the constraint w'z = 1, where z is an arbitrary vector. Hence,
these weights provide the smoothest (i.e. the least variable) component that preserves the
level (w'i = 1), where iis an N x 1 vector with unit elements, i =[1,...,1]".

Another interpretation of (@) is that w’u, is the GLS estimates of y; in the model
w, = zpg + pf, considered as a fixed effect; w'y, are known as Bartlett scores in factor
analysis (see Anderson, 1984, p. 575). Notice, however, that here z is a known vector,
that has to be specified a priori (e.g. we may look for weights summing up to unity, in
which circumstance, z = i). It is not a necessary feature of the true model.

5.4 Dynamic error components

Suppose that the level disturbances have the following error components structure (Mar-
shall, 1992):
mo =z +ni, m~WN(0,07), n; ~WN(O,N,),
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where 7, is disturbance that is common to all the trends and 7y is the idiosyncratic
disturbance (typically, but not necessarily, N,, is a diagonal matrix). Correspondingly,
3, = a%zz’ + N;,, and the trends can be rewritten as

pe = zpe 4 py, Ape =ne, Apy =n;.

In general, the WK filter for y; does not admit the representation (B]), as we have:

0,2

[y = U] "A(L)7! A(L)=N 1— LI’%..
Kt 1—1—0'72]Z/A(L)71ZZ ( ) yi, ( ) 77+| | €

However, if N, = ¢*3,, then the WK filter takes the form (3] with

2,/ N\ —1
0,z NT7 z
022Nz + 1+ ¢ 11— L|?

q(L) =

and . .
N77 z DI /

N z’N;lz N 23tz
This type of homogeneity may arise, for instance, when the idiosyncratic trend distur-
bances are a fraction of the irregular component, that is 9} = pe;, p?> = ¢*. This makes
the overall trend and irregular components correlated, but u; would still be uncorrelated
with €;.
Now let us consider the case when €; has the same error components structure: €; =
ze, + €f, with ¢, ~ WN(0,02), € ~ WN(0,N,), so that

e = ngz' + Ne.

The WK filter for p; is now

0.2

0 — U] 'A(L) A(L)* =N 1— LI>°N
Ht 1—|—0’727Z/A(L)_1*ZZ ( ) ¥, ( ) 77+| | €

and, under the homogeneity condition N, = ¢*N,, produces exactly the same filter as the
previous case, with ¢* replacing ¢ in ().

Gathering the components driven by the common disturbances into ¢ = p; + €, and
writing y; = zs; + i + €/, the MMSLE of ¢ is

_ c(L)
1+ c(L)ZA(L) 1z

St 2 A(L) Yy, o(L)=oy(L+q 1= L), =03/,

Moreover, if N, = ¢N,, with the same ¢, O'%A(L) = ¢(L)N,, then ¢ is extracted by a
static linear combination with weights

-1
N77 z

w:—_2+ NI,
on zZ’ N, "z

8



Notice that this last case arises when the system is homogeneous %, = ¢3., and 3, has
an error component structure. Otherwise, if N, = ag*I, N, = O'E*I, then the filter for ¢ is
as in (@) with w = z and

2 -1 2
(L) = —' “1x 2y 4 20727*/062*
on (14+q 11— L[?)

6 Dynamic factor models

This section discusses the signal extraction filters that are optimal for a class of dynamic
factor models proposed by Stock and Watson (1991) for the purpose of constructing a
model-based index of coincident indicators for the U.S. econonomy.

This class has been adopted by Bryan and Cecchetti (1994) for the measurement of
core inflation, and it applies to a vector of monthly inflation rates, y;, which are expressed
as as follows:

yi =z + py,
e(L)pe = ne ~ WN(O, U%) (8)
D(Ljuj = . n; ~ WN(0,N,)

where D(L) = diag{d;(L),i =1,...,N}, and ¢(L) and d;(L) are AR scalar polynomials,
possibly nonstationary, N, = diag{o2,i = 1,..., N}, and 7 is uncorrelated with n; at
all leads and lags.

The autocovariance generating function of u; and the cross-covariance generating func-
tion of y; are respectively:

L= O r,(L L)zz' +M(L
g,“( ) ’SO(L)‘Q, y( ) g#( )ZZ + ( )?

where we have written

M(L) = D(L)"'N,D(L ")~ ! = diag{oZ|d;(L)| i =1,...,N}.

Moreover, the cross-covariance generating function between j; and y, is simply g, (L)z’.
Hence, the WK signal extraction formula is:

fir = gu(L)Z[Ty(L)] e
= [gu(D) +ZM(L)12] ML)y,
_ _97—1 _
= [0 2e(D)1? + X ldi( D) P07 Sk, |di( L) 2oy
When ¢(L) = d;(L),i = 1,..., N, which is a seemingly unrelated time series equations
(SUTSE) system, the WK specialises as follows:

Ny -1 N 1
= loy2+ Y 02] > v =loy” +2N 2 Ny
i=1 ¢ i=1 _ix

Hence, ji; results only from the contemporaneous aggregation of the individual time series,
with weights that do not sum to unity, although they are still proportional to the reciprocal
of the specific variances. If (L) = A, then the dynamic factor model (8) is a special case
of the MLLM ({J), with no irregular component.



7 Inference and testing

The state space methodology provides a means of computing the minimum-mean-square
linear estimators (MMSLE) of the core inflation component, p;, and of any latent variable
in the model. In finite samples the MMSLE of p, in (IJ) is computed by Kalman filter and
the associated smoothing algorithm (see Durbin and Koopman, 2001).

The Kalman filter (KF) is started off at ¢ = 2 with Fop = y1 and Py = X + %,
computes for t =2,...,T":

Vi =Yt~ Hyi—1; Fy =Py + X
K= Pt\t—lFfl,
P = By—1 + Ky, Py = Py1 + 3, — KiF K.

Denoting the information up to time t by Y; = {yi1,y2,...,y:}, the above quantities
have the following interpretation: vy =yt — E(y¢|Yi-1),Ft = Var(yi|Yi-1), fyp—1 =
E(p|Yi-1), Pyy—1 = Var(py|[Yi-1) fp = E(p,|[Ye), Py = Var(p,|Yy).

The Kalman filter performs the prediction error decomposition of the likelihood func-
tion. The latter can be maximised using a quasi-Newton numerical optimisation method.

When the model is homogeneous, inferences are made easier by the fact that the Kalman
filter and smoother become decoupled. In fact, at ¢ = 2, fio); = y1 and Py; = (¢+2)%. =
P21 2e, where we have written py; = (¢ + 1). Now, consider the KF quantities that are
independent of the data:

Fy = Ppat+3, K= Pt\t—lF;17
Piiigp = Py +q3¥e— Pt\t—lF;IPﬂt—l;

F; and P; y; will be proportional to ¥.: F; = fi3, Py = pyi—13; also, Ky =
Pepe—1/(1 + pt|t_1)IN, where the scalar quantities are delivered by the univariate KF' for
the LLM with signal to noise ratio q.

Hence, the innovations and inferences about the states can be from N univariate KF's.
Correspondingly, it can be shown that 3. can be concentrated out the likelihood function,
and the concentrated likelihood can be maximised with respect to ¢ (see Harvey, 1989, p.
439).

7.1 Homogeneity tests

The Lagrange multiplier test of the homogeneity restriction, Hg : X, = ¢X,, was derived
in the frequency domain by Fernandez and Harvey (1970). The frequency domain log-
likelihood function is built on the stationary representation of the local level model, Ay; =
1n; + A€ and it takes the form:

L) = N o - 13_:1 {m G| + 27 - trace [Gj—ll*(xj)] } ,
2 2 £

where T* = T — 1, v is a vector containing the p = N (NN + 1) unknown parameters of
the disturbance covariance matrices, G is the spectral generating function at frequency

10



N =2mj/T*, Gj = X, +2(1 —cos \j) X is the spectral generating function of the MLLM
evaluated at the Fourier frequency A; and I*();) is the (real part of) multivariate sample
spectrum at the same frequency.

The LM test of the restriction Hy : 9 = 1 takes the form

LM = DL(%0)Z () 'DL(3y)' (9)

where DL(4)) is 1 x p vector containing the partial derivatives with respect to the pa-
rameters evaluated at the null and Z(v),) is the information matrix evaluated at .
Expressions for DL(1,) and Z (1)) are given in Fernandez and Harvey (1990).

The unrestricted local level model has N(N + 1) parameters, whereas the homogenous
model has N(N + 1)/2 + 1, so the test statistic (@) is asymptotically distributed as a x?
random variable with N(N + 1)/2 — 1 degrees of freedom.

The homogeneous dynamic error component model further restricts X, = o¢ii’ + N,
and when the disturbances €} are fully idiosyncratic, the model has only N +2 parameters.
This restriction can be tested using (@), which gives a x? test with N(N +1) — N — 2
degrees of freedom.

7.2 Testing for a multivariate RW and for common trends

Nyblom and Harvey (2000, NH henceforth) have developed the locally best invariant test
of the hypothesis Hy : 3, = 0 against the homogenous alternative H; : 3, = ¢X.. The
test statistic is

where

[Z(Yi =y)(yi — 5’)’]
1 X

I'= T Z(Yt -y —v)

t=1

and has rejection region £n > ¢. Under the null hypothesis, the limiting distribution of £
is Cramer-von Mises with N degrees of freedom. Although the test maximises the power
against a homogeneous alternative, it is consistent for any 3.

A non parametric adjustment, along the lines of the KPSS test, is required when ¢, is
serially correlated and heteroscedastic. This is obtained by replacing I' with

~ ~ ! T ~ A /
I, =T(0) +T§::1 <1 - 1) [T(7) + (7]
where T'(7) is the autocovariance of y; at lag 7.

When the test is applied to the linear transformation A’y;, where A is a known r x
N matrix, testing the stationarity of A’y, amounts to testing the null that there are r
cointegrating relationships. If A’3, A = 0, then we can rewrite y; = Zp, + p + €, with
A'Z =0, so that A'y; = A'py + Ale.

11



The test statistics for this hypothesis is
&(A) = tr[(A'TA)1A'SA],

and its limiting distribution is Cramer-von Mises with r degrees of freedom.
NH also consider the test of the null hypothesis that there are k common trends, versus
the alternative that there are more.

Hy : rank(X,) =k, vs. Hj : rank(X,) > k.
The test statistic is based on the sum of the N — k smallest eigenvalues of IA‘ils,

(ks N) = Ap1 + ..+ An

The significance points of ((k, N) are tabulated in NH (2000) for a set of (k, N) pairs.

8 Illustration

Our illustrative example deals with extracting a measure of core inflation from a multi-
variate time series consisting of the monthly inflation rates for 8 expenditure categories.

The series are listed in table [I] and refer to the U.S. city average for the sample pe-
riod 1993.1-2003.8 (source: Bureau of Labor Statistics). The relative importance of the
components of the U.S, inflation rate in building up the U.S. inflation rate, i.e. their CPI
weights, is reported in the second column of table Bl Figure 2 displays the eight series
Yit,t =1,2,...,8.

Table 1: Description of the series and their CPI weights.

Ezpenditure group CPI weights
1. Food and beverages 0.162
2. Housing 0.400
3. Apparel 0.045
4. Transportation 0.176
5. Medical care 0.058
6. Recreation 0.059
7. Education and communication 0.053
8. Other goods and services 0.048

Fitting the univariate local level model to w'y;, where w is the vector containing
the CPI weights reproduced in the second column of table Bl that is w'y; = u; + €, 6 ~
WN(0,02), py = pr—1+n,m: ~ WN(0, go?), gives the maximum likelihood estimate G = 0.

The estimated signal to noise ratio implies that CPI monthly inflation is stationary
and that the corresponding aggregate core inflation measure is represented by the time
average of the CPI all items monthly inflation rates, that is o =T"13, w'y,.

12
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Figure 2: U.S. CPI, 1993.1-2003.8. Monthly relative price changes for the eight expendi-
ture categories.
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8.1 Stationarity and common trends

The issue concerning the stationarity of CPI monthly inflation can be also be handled
within a multivariate framework. Assuming that y: = (yi¢,...,yst)" is modelled as in (),
we can use the NH statistic {x to test Hp : 3, = 0 versus the alternative that X, = ¢X..

The values of the NH statistic are reported in the second column of table 2] for various
values of the truncation lag [ used in computing the Newey-West nonparametric correc-
tion for autocorrelation and heteroscedasticity. They lead to reject the null that y; is
stationarity for values of [ up to 5.

Table 2: Nyblom and Harvey (2000) stationarity test, cointegration test and common

trend test.
Truncation lag (I) NH  NH-coint CT(1)
0 3.334 2.510 1.112
1 2.876 2.306 0.982
2 2.638 2.134 0.894
5 2.214 1.787 0.720
10 1.682 1.346 0.605

5% crit. value 2.116 1.903 0.637

The third column reports the values of the NH-cointegration test. The latter tests
the null hypothesis that A’y; is stationary, where A is chosen such that A’i = 0, which
corresponds to the hypothesis that there is a single common trend which enters each of
the series with the same loading; this is also known as the balanced growth hypothesis:
as the series share the same common trend, the difference between any pair is stationary.
This hypothesis is clearly rejected for low values of the truncation parameter, up to [ = 2.

Finally, CT(1) is the statistic for testing the null hypothesis that a single common
trend is present (the 5% critical value has been obtained by simulation), based on the
statistic ((1,8) = Z?:Q A\i(S71C), where \;(+) is the i-th ordered eigenvalue of the matrix
in argument.

Taken together, the results of the NH-coint and CT(1) tests do not suggest the presence
of a single common trend driving the eight CPI monthly inflation rates. Nevertheless, if
the MLLM is estimated with a single common trend (see section [5.2]) then the estimated
vector of loadings is

7z’ = [1.000,0.038,0.069, 0.081,0.016, 0.086, 0.023, —0.021],

and the estimated trend disturbance variance is &727 = 0.00065282. Estimation of the
MLLM with common trends was carried out in Stamp 6 by Koopman et al. (2000). The
other computations and inferences were performed in Ox 3 by Doornik (2001). It can
be seen that the series Food and beverages plays a dominant role in the definition of the
common trend.
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Table 3: Core inflation measures: weights defining fi; = w’ ;.

Expenditure group CPI weights MYV weights DECM weights
Food and beverages 0.162 0.119 0.114
Housing 0.400 0.174 0.215
Apparel 0.045 0.025 0.023
Transportation 0.176 -0.005 0.007
Medical care 0.058 0.435 0.435
Recreation 0.059 0.146 0.126
Education and communication 0.053 0.079 0.068
Other goods and services 0.048 0.026 0.010

8.2 Homogeneous MLLM

Maximum likelihood estimation of the local level model ([{l) with the homogeneity restric-
tion is particularly straightforward, since the innovations and inferences about the states
can be obtained by running N univariate Kalman filters (this is known as decoupling). The
matrix Y. can be concentrated out the likelihood function and the concentrated likelihood
can be maximised with respect to the signal-noise ratio q.

The estimation results are the following: ¢ = 0.0046, and

0.04 -0.10 0.04 0.0r 0.02 -0.04 -0.03 -0.01
-0.00 0.02 0.04 023 0.05 013 0.07 —-0.10
0.00 0.00 0.17 0.0r —-0.01 -0.00 —-0.08 -—0.08
0.01 0.02 0.02 055 004 010 =022 0.02
0.00 0.00 -0.00 0.00 0.01 -0.14 -0.02 -0.07
-0.00 0.00 -0.00 0.01 —-0.00 0.03 —-0.06 —-0.04
-0.00 0.00 -0.01 -0.04 —-0.00 —0.00 0.06 —0.14
| -0.00 -0.01 -0.02 0.01 -0.00 —-0.00 -0.02  0.39

mtﬂz
|

where in the upper triangle we report the correlations, which are usually very low.

The frequency domain test for homogeneity (Fernandez and Harvey, 1990) takes the
value 31.275 on 35 degrees of freedom and therefore it is not significant (the p-value is
0.65). This suggests that the homogenous specification is a good starting point for building
up core inflation measures.

8.3 Homogeneous Dynamic Error Components model

Within the homogeneous model of the previous subsection we considered the error com-
ponent structure 3. = o2ii’ + N, in which there is a common disturbance linking the
trends and the irregular component; N, was specified as a diagonal matrix.

When estimated by maximum likelihood, the signal-noise ratio is close to that of the
homogenous case, ¢ = 0.0043; moreover, the common irregular disturbance variance is
estimated 62 = x10~" and

bN. = diag(0.035,0.019, 0.173, 0.546, 0.009, 0.032, 0.059, 0.391).
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However, the DECM restriction, Hy : X, = oZii’ + N, X, = ¢35, is strongly rejected,
with the LM test taking the value 153.43 on 60 degrees of freedom.

8.4 Core inflation measures

Bearing in mind the empirical results of the previous sections, we now discuss three mea-
sures of core inflation obtained from the multivariate MLLM.

The first is derived from the homogeneous local level model and is defined as w’ By
where fi,1 are the smoothed estimates of the trends and w is the vector of CPI weights,
equal to the budget share of the expenditure groups. This is reproduced along with the
95% confidence interval in the first panel of figure Bl

The second measure uses the minimum variance (MV) weights w = 371i/(i'2 1),
reproduced in the third column of table Bl Housing and Transportation result heavily
downweighted (the MV weight is negative for the latter). The corresponding core inflation
measure, displayed in the right upper panel of figure[3, is much smoother than the previous,
and characterised by lower estimation error variance.

The last measure of core inflation is derived from the dynamic error component local
level model with homogeneity and is defined as w'fiy, where w = N~ 'i/(i'N, i) where
N, is a diagonal matrix. Although the DECM restriction was strongly rejected, the weights
and the corresponding core inflation measure agree very closely with the minimum variance
one.

The overall conclusion is that the point estimates of the three core inflation measures
agree very closely.

For comparison purposes, in the last panel of figure [l we display the core inflation
measure estimated using the structural VAR approach by Quah and Vahey (1995, QV
henceforth). A bivariate vector autoregressive (VAR) model was estimated for the series
u = [Ays, Axy]',

®L)w=8+¢&, ®L)=1-®L—---—@,[F,

where y; is the monthly inflation rate, computed using the CPI total, and x; is the loga-
rithm of the industrial production index (source: Federal Reserve Board, sample period:
1993.1-2003.8). The VAR lag length which minimises the Akaike information criterion
resulted p = 11, which is close to the value adopted by QV in their original paper. QV
define core inflation as the component of inflation that can be attributed to nominal distur-
bances that have no long run impact on output. Their identification proceeds as follows:
the structural disturbances, ¢, = [(1t, (o), are defined as linear transformations of the
time series innovations, & = B(;, where B = {b;;;7,j = 1,2} is a full rank matrix such
that ®(1)"!'B is upper triangular (i.e. the nominal disturbance (j; has no permanent
effect on z;). Correspondingly, the core inflation measure is:

me = [p11(L)b11 + ¢12(L)b21]Cit,

where ® (L)™' = {p;;(L);i,j = 1,2}.
Several differences arise with the measures extracted from the MLLM. The QV measure
tracks actual inflation very closely; this lack of smoothness can be partly attributed to
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Figure 3: U.S. CPI, 1993.1-2000.12. Core inflation measures derived from a multivariate
local level model with homogeneity and variance components restrictions.

the fact that this measure is based on a one sided filter. The plot clearly show that m;, is
indeed very volatile.

9 Conclusions

The paper has illustrated how core inflation measures can be derived from optimal signal
extraction principles based on the multivariate local level model. The approach is purely
statistical, in that a coherent statistical representation of the dynamic features of the
series the model is sought, along with sensible ways of synthesizing the dynamics of a
multivariate time series in a single indicator of underlying inflation. The advantage over
indices excluding particular items, such as food and energy, is that maximum likelihood
estimation of the parameters of the model indicate what items have to be downweighted
in the estimation of core inflation.

Two main directions for future research can be envisaged: the first is enlarging the
cross-sectional dimension by using more disaggregate price data. The second is to provide
more economic content to the measurement by including in the model a Phillips’ type
relationship featuring among the inflation determinants measures of monetary growth,
the output gap and inflation expectations.
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