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Abstract

In this paper we deal with several issues related to the quantification of business
surveys. In particular, we propose and compare new ways of scoringthe ordinal
responses concerning the qualitative assessment of the state of the economy, such
as the spectral envelope and cumulative logit unobserved components models, and
investigate the nature of seasonality in the series. We conclude with an evaluation of
the type of business cycle fluctuations that is captured by the qualitative surveys.
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1 Introduction

An important set of indicators on current economic conditions arises from the monthly
business survey conducted by various national institutions. Their relevance stems from
the fact that they provide timely information on economic variables that are either diffi-
cult to measure, such as expectations or capacity utilisation, or whose measurement on
a quantitative scale is more expensive and time consuming (turnover and production in
volume).

The data collected are mostly categorical or ordinal and timeliness is achieved by a
suitable survey design. Survey questions are kept to a minimum and bear on the direction
of the trend in an economic variable, as perceived by the respondent. For instance, with
respect to orders and the level of production, the respondent is asked whether they are low,
normal, or high, abstracting from seasonal fluctuations. The individual data are finally
aggregated into a single time series by subtracting the percentage of responses falling in
the below normal category from the percentage of the above normal. These differences are
called balances and are often used for the quantification of the survey responses, insofar
as qualitative information is translated into a quantitative scale. See Pesaran and Weale
(2006) for a general exposition and review of alternative quantification methods.

With reference to the assessment of the current level of production, this paper discusses
two alternative quantification methods; the first is based onthe notion of the spectral enve-
lope and originates a signal extraction filter which has solely cross-sectional dimension,
i.e. only contemporaneous values are employed. As a result the quantification suffers
from excess roughness. The second is based on a dynamic cumulative logit model for
the time series of ordered proportions; the signal extraction filter for the underlying latent
cycle is nonlinear and has also a time series dimension. The paper also addresses ex-
plicitly whether a particular quantification adheres to a specific notion of business cycles.
According to the classical definition the business cycle is arecurrent, but not necessarily
periodic, sequence of expansions and contractions in the aggregate level of economic ac-
tivity (see Burns and Mitchell, 1946, p. 3). The growth cycle is defined instead in terms of
the deviation from trend or potential output, and thus within an additive or multiplicative
trend-cycle decomposition. The third definition is concerned with the cyclical upswings
and downswings in the growth rate of economic activity at a given horizon . Hence, a
recession is defined as a prolonged and sustained decline in underlying growth. See Artis
et al. (2003) for further details on the measurement issue related to each definition. The
paper also discusses the presence of seasonality and calendar components in the business
survey indicators.

The individual survey data take the form of a categorical time series,yt, t = 1, . . . , T ,
with k ordered response categories identified by the labelsc1, . . . , ck. For algebraic ma-
nipulation it is often convenient to represent the responsecategories introducing thek× 1
vectorsej, j = 1, . . . , k,, whereej has the value 1 in thej-th position and zero elsewhere.
We thus define a multinomial vector time series,Yt, taking the valueYt = ej if yt = cj,
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that is if thej-th category is selected. In the sequel we shall denoteπjt = P (Yt =
ej) = P (yt = cj),

∑

j πjt = 1. The unconditional mean and covariance matrix ofYt are
E(Yt) = πt = (π1t, . . . , πkt)

′ and Var(Yt) = diag(πt) − πtπ
′

t, respectively.
Givennt independent observations,Yit, i = 1, . . . , n, interest often centers on analysing

the number of responses in each category,Y.t =
∑

i Yit. We assume throughout that sam-
pling is such that at any given timet, Y.t has a multinomial distribution, that is it takes
the valuesnt = (n1t, . . . , njt, . . . , nkt)

′,
∑

j njt = nt, njt =
∑

i eij, with probability

P (Y.t = nt) =
nt!

n1t! · · ·njt! · · ·nkt!
πn1t

1t · · · π
njt

jt · · · πnkt

kt , nt =
∑

j

njt, 1 =
∑

j

πjt.

Typically, the total sample sizent does not change with time, although nonresponse
affects it. We assume anyway that nonresponse is fully ignorable, that is it only affects the
sample through a reduction of the sample size. Further, we definept = (p1t, . . . , pkt)

′ =
n−1

t Y.t, the proportion of responses in categoryj. The latter is suchi′kpt = 1, where
ik is a k × 1 vector of 1s, and has a scaled multinomial distribution withmeanπt and
covariance matrixn−1

t (diag(πt) − πtπ
′

t).
Finally, in the contemporaneous aggregation of the individual responses across groups

(e.g branches and sectors of economic activity), weights can be used that stands for the rel-
ative importance of the group. Often the data are made available to the public in the form
Y∗

.t =
∑

iswstYist wheres denotes the group to which uniti belongs, andwst,
∑

swst =
1, is the group weight (e.g. the share of gross domestic product or employment, or a
measure of size). The aggregate series can be writtenY∗

.t =
∑

swstY.st =
∑

swstnstpst,
wherepst is the vector containing the proportions of the responses ofeach category in
groups andnst are the number of respondents in the same group. The scaled series is thus
p∗

t =
∑

sw
∗

stpst, where the group weights arewstnst
∑

s
wstnst

. More often, the series
∑

swstpst

are made available (European Commission). In the sequel we will ignore the compli-
cations that arise due to the weighted aggregation of the responses and will continue to
assume that the observed counts or proportions arise from a multinomial distribution.

A number of methods have been proposed in the literature for converting these pro-
portions into aggregate measures of perceived business conditions and expectations. The
paper evaluates some novel quantification methods based on the notion of spectral enve-
lope (section??) and cumulative logit unobserved components models (section??). Some
issues related to seasonality in survey data are also presented (section??) and finally the
evaluation of the type of business cycle fluctuations captured by the qualitative surveys is
attempted.

2 Quantification through balances

When the original survey question is balanced, the individual data are sometimes aggre-
gated into a single time series subtracting the proportion of responses falling in the two
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most extreme categories. These differences are called balances. This section illustrates
the conditions under which the balances are a “sufficient” summary of the information
provided by the original proportions.

Letpt = (p1t, p2t, p3t)
′, i′pt = 100, denote the vector containing the percentages of the

responses falling in categoryj = 1, 2, 3 (respectively low, normal and high, if we refer
to the assessment of the level of production). Defining the contrastsd1t = p2t − p1t =
(−1, 1, 0)′pt andd2t = p3t − p1t = (−1, 0, 1)′pt, we can rewrite the original series as a
linear combination of the two above contrasts:

pt =
100

3
i + θ1d1t + θ2d2t,θ1 =

1

3







−1
2

−1





 , θ2 =
1

3







−1
−1

2





 .

The contrastsd2t are used in the quantification of the survey results. They canbe justified
from the following scoring of the response categories: low:-1, normal:0, high: +1.

It is immediate to realize that they provide a complete summary of the information
contained inpt if and only if the other contrastd1t is linearly dependent ond2t. In this
case there is an additional deterministic linear combination (δ1 − 1, 1,−δ1)yt = δ0, so
that the three series are generated by the common cycled2t.

In general,d2t is a complete summary forl-step-ahead prediction if we can express
d1t = δ0 + δ1d2t + ǫt, whereǫt is a moving average process, orthogonal tod2t, of order
l − 1. As a matter of fact,

pt =
100

3
i + δ0θ1 + (δ1θ1 + θ2)d2t + δ1θ1ǫt,

implies that E(pt+l|pt, . . . ,p1) depends only on E(d2,t+l|pt, . . . ,p1).
For the level of production the balance is plotted in the lastpanel of figure??. The

graph highlights that the balances display sizable seasonal and high-frequency compo-
nents. The issue of seasonality will be considered in a latersection.

Alternative static quantifications could be based on a common cycles analysis of the
transformed proportions. For time series of proportions orpercentages, that are bounded
from high and low, there are several parametric transformations that map the (0,1) range
to the real interval. Atkinson (1985) discusses the folded power transformationut(λ) =
pλ

t + (1 − pt)
λ, where0 < pt < 1 denotes a generic proportion, which yields the un-

transformed observations forλ = 1 and the logit transformation forλ approaching 0,
ut(0) = ln(pt/(1−pt)). One serious drawback is that the transformation is not invertible,
that isyt is an implicit function ofut. Guerrero and Johnson (1982) proposed to apply the
Box-Cox transformation to the odds ratioot = pt/(1−pt), i.e.ut(λ) = (oλ

t −1)/λ, which
yields the logit transformation forλ = 0 and1/(1 − pt) for λ = 1. The inverse transfor-
mation can be calculated explicitly, but the fact thatut(λ) fails to give the untransformed
observations for any value ofλ can be seen as a limitation.
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Aranda-Ordaz (1981, AO henceforth) proposed a class of transformation that does not
suffer from the above drawbacks, being defined as:

ut(λ) =
2

λ

pλ
t − (1 − pt)

λ

pλ
t + (1 − pt)λ

=
2

λ

oλ
t − 1

oλ
t + 1

. (1)

For λ → 0 it yields the logit transformation,ut(0) = ln(pt/(1 − pt)), and the untrans-
formed series forλ = 1, u(1) = 2(2pt − 1). The reverse transformation is:

pt =
1

1 + exp(−vt)
, vt =

{

1
λ

ln
(

2+λut

2−λut

)

, λ 6= 0,

ut, λ = 0

Other types of transformations and generalizations are considered in Stukel (1988).
Given a trivariate time series of proportions pertaining toordered response categories

let

u1t =
2

λ

pλ
1t − (1 − p1t)

λ

pλ
1t + (1 − p1t)λ

, u2t =
2

λ

(p1t + p2t)
λ − (1 − p1t − p2t)

λ

(p1t + p2t)λ + (1 − p1t − p2t)λ

denote the AO transformation of the cumulative proportions, we can write down an en-
compassing bivariate measurement model for the pair(u1t, u2t) that nests the standard
quantification using the balances in the particular case in which λ = 1 and a common
cycle enters both series with a vector of loadings that is proportional to the unit vector.

3 Seasonality

Although the respondent is explicitly asked to abstract from seasonal movement in form-
ing his/her judgement, a well known common feature of business survey indicators is the
presence of seasonality. The seasonal dynamics in the business survey indicators reflect
the seasonality in the underlying quantitative indicators(orders, turnover and industrial
production) as far as the location of seasonal peaks and troughs within the year is con-
cerned. This evidence has been advocated in support of the notion that seasonal fluctua-
tions are not independent of the trend-cycle, which impliesthat economic time series are
not decomposable (Franses, 1996).

The presence of seasonality can be illustrated from the month-by-month plots of the
Industrial production series and the percentagespit of responses high and low for the level
of production, which are presented in figure??. While Industrial production displays a
very deep seasonal trough in August and a minor one in December, the percentage of low
and high or no change (transformed into logits) display seasonal peaks in correspondence.

This descriptive evidence can be supported by formal statistical tests, such as the
Canova - Hansen (1995) and Busetti and Harvey (2003) test, concerning the presence
and the nature of the seasonal movements. A related issue is whether the responses are
affected by the number of working days in the month and any other calender effect, such
as the length of the month and Easter.
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These issues can be addressed in an unobserved components framework, according to
which a univariate time series,yt, is decomposed according to the following model:

yt = µt + γt + εt t = 1...T, (2)

whereµt is the level component,µt = x′

tδ, xt is a vector of linearly independent deter-
ministic regressors, e.g.xt = [1, t− (T +1)/2]′ for a linear trend,γt denotes the seasonal
component andεt ∼ NID(0, σ2

ε). Busetti and Harvey (2003) derive the locally best invari-
ant test of the null that there is no seasonality against a permanent seasonal component,
that can be either deterministic or stochastic, or both. Theseasonal component is decom-
posed into a deterministic term, a linear combination with fixed coefficients of sines and
cosines defined at the seasonal frequenciesλj = 2πj/s, j = 1...[s/2], wheres is the
number of seasons in a year (e.g. 12 for monthly time series),and [s/2] is the nearest
integer resulting from the division in the argument, and a nonstationary stochastic term, a
linear combination of the same elements with random coefficients:

γt = γD
t + γS

t .

Definingzt =
[

cosω1t, sinω1t, ..., cosωjt, sinωjt, ..., cosω[s/2]t, sinω[s/2]t

]

′

, γD
t = z′tγ0, γ0

fixed coefficients. The stochastic component isγS
t = z′t

∑t
i=1(ki) wherekt is a vector of

serially independent disturbances with zero mean and covariance matrixσ2
kW , indepen-

dently ofεt.
The null hypothesis is then formulated asH0 : γ0 = 0, σ2

k = 0; a permanent seasonal
component is present under the two alternatives:Ha : γ0 6= 0, σ2

k = 0 (deterministic
seasonality),Hb : γ0 = 0, σ2

k > 0 (stochastic seasonality). The test statistic proposed
by Busetti and Harvey (2003) is consistent against both alternative hypotheses, and it is
computed as follows:

̟ =
[s/2]
∑

j

̟j, ̟j =
aj

T 2σ2

T
∑

t=1

[

t
∑

i=1

(ei cosωji)
2 +

t
∑

i=1

(ei sinωji)
2

]

, (3)

whereei are the OLS residuals obtained from the regression ofyt on the explanatory
variablesxt. Under the null̟ is asymptotically distributed according to a Cramér von
Mises (CvM) distribution withs− 1 degrees of freedom.

The test of the null that the seasonal component is deterministic (Ha) against the al-
ternative that it evolves according to a nonstationary seasonal process (Hb), i.e. char-
acterised by the presence of unit roots at the seasonal frequenciesωj, is based on the
Canova-Hansen test statistic which is (??), with ei replaced by the OLS residuals that are
obtained by including the trigonometric functions inzt as additional explanatory variables
along withxt. Under the null of deterministic seasonality, the test has again a Craḿer von
Mises distribution, withs− 1 degrees of freedom.

In both cases the statistic̟j is used to test the hypothesis that the series display (non-
stationary, ifzt is included in the set of regressors) seasonality at a particular frequency.
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The null distribution of the test is CvM with 2 degrees of freedom if j = 1, ..., (s− 1)/2
and 1 degree of freedom forj = s/2, for an evens. If ωj = 0 the test statistic̟ 0 is the
usual KPSS test of stationarity at the long–run frequency.

The test statistics in (??) require an estimate ofσ2. A nonparametric estimate is ob-
tained by rescaling by2π the estimate of the spectrum of the sequenceet at the frequency
ωj, using a Bartlett window. Canova and Hansen (1995) further allow for seasonal het-
eroscedasticity.

The same framework can be used to test for the presence of calendar effects in the se-
ries. Provided that it is well known that the underlying quantitative indicators (production,
turnover) are highly affected by calendar effects, it seemsreasonable to detect the pres-
ence of such component also in the qualitative surveys. For this purpose the test statistic
̟j in (??) can be applied at the specific frequencies.348 × 2π, .432 × 2π, .304 × 2π,
which Cleveland and Devlin (1982) have shown to be corresponding to the spectral peaks
induced by the trading days effect.

In the sequel we discuss the empirical evidence arising fromthe application of season-
ality and stationarity tests on the first differences of the proportionspit emerging from the
ISAE survey for Italy. The results are invariant to the adoption of a transformation, such
as the logit transformation. The results are reported in thetables??– ??.

Table 1: Harvey-Busetti general tests for seasonality
overall test̟ single frequencies

0 π/6 π/3 π/2 2π/3 5π/6 π

Industrial production 7816.82 0.399 44.341 601.34 2306.1 1302.7 1517.7 2044.3
Low 171.79 0.049 3.531 11.097 50.207 14.804 53.772 38.331
Normal 156.48 0.052 4.530 12.666 48.338 15.956 54.804 20.132
High 134.36 0.043 7.570 6.566 38.069 23.934 23.892 34.287
Balance 165.34 0.046 4.524 9.565 48.200 16.779 45.580 40.650
Note: Critical values (see tab. 1 in Nyblom (1989)) are respectively:
CvM(11)=9.03 for overall test, CvM(1)=1.65 for 0 andπ and CvM(2)=2.63 for other frequencies

The null of no permanent seasonal effects is always rejectedfor all the three response
categories “low”, “normal”, “high”, either for each singlefrequencies or for all of them
(see tab.??). As for the nature of the seasonal pattern, for some of the seasonal frequen-
cies the null of a deterministic seasonal pattern cannot be rejected and the overall evidence
is against the null for all the series considered (see tab.??). The test results for the survey
data do not always mirror those concerning the Industrial production series.

Finally, as far as the trading-days effects are concerned, the overall test is significant
for all the response categories as well as for the balance series, although the test statistic
takes a much smaller value with respect to the Industrial production series (see tab.??).
More generally, the evidence is that calendar effects constitute a much less relevant source
of variation for the business survey series.
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Table 2: Canova-Hansen test for stationary seasonality withcorrection for heteroschedas-
ticity

overall test̟ single frequencies
0 π/6 π/3 π/2 2π/3 5π/6 π

Industrial production 3.496 0.093 0.596 0.714 0.785 0.353 0.879 0.076
Low 3.90 0.045 0.937 0.681 0.820 0.472 0.444 0.499
Normal 4.04 0.041 1.096 0.538 1.157 0.307 0.661 0.241
High 5.14 0.048 0.611 0.940 1.020 0.483 1.425 0.609
Balance 4.53 0.047 0.748 0.941 0.665 0.544 0.743 0.838
Note: Critical values (see tab. I(a) in Harvey (2001)) are respectively:
CvM(11)=2.739 for overall test, CvM(1)=.461 for 0 andπ and CvM(2)=.748 for other frequencies

Table 3: Harvey-Busetti test for calendar effects
overall test̟ single frequencies

.348 ∗ 2π .432 ∗ 2π 304 ∗ 2π
Industrial production 367.39 222.469 128.584 16.335
Low 11.23 8.931 2.020 0.283
Normal 11.36 3.672 6.504 1.179
High 18.76 16.090 2.227 0.441
Balance 13.58 12.123 1.165 0.290
Note: Critical values (see tab. 1 in Nyblom (1989)) are respectively:
CvM(6)=5.68 for overall test and CvM(1)=.461 for single frequencies

4 The spectral envelope

Stoffer, Tyler and McDougall (1993) proposed a frequency domain approach to scaling
categorical time series which can be applied to the quantification of business surveys.
They introduced the notion of spectral envelope for a categorical time seriesYt, which
can be defined at any angular frequencyω ∈ [0, π] as the spectral density of the univariate
synthetic time seriesb(ω)′Yt (or b(ω)′pt for time series of proportions) that is obtained
when the optimal scoresb(ω) are applied to the categories. The notationb(ω) stresses
the fact that the optimal scores vary with the frequency. Theoptimality lies on the fact
thatb(ω) provide the greatest evidence for periodicity at frequencyω, in that the scaled
time series has the greatest relative power at that frequency.

Since the distribution of the vector time seriesYt (or pt) is singular (i′Yt = 1 with
probability one), one of the series is redundant and can be assigned a score equal to
zero. LetZt = A′Yt be a linearly independent subset of series, whereA is a fixed
selection matrix, and letΓ(τ) denote the crosscovariance matrix at lagτ of Zt; then,
F(ω) = (2π)−1∑∞

τ=−∞
Γ(τ) exp(−ıωτ) is then the spectral density at frequencyω and

let Fr(ω) == (2π)−1∑∞

τ=−∞
Γ(τ) cos(ωτ) is its real part. In our case study concerning
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the assessment of the level of production we can assign a zeroscore to the central category
and chooseA = (e1, e3).

Defining b∗(ω) = A′b(ω) the vector of scores attached to the selected series, the
quantificationb∗

′

(ω)Zt takes place by choosing the scores so as to emphasize the peri-
odic features in the series. so as to maximize the power at frequencyω relative to the total
power. In particular, the spectral density of the scaled series is(2π)−1b∗

′

(ω)Fr(ω)b∗(ω),
whereasb∗

′

(ω)ΓY (0)b∗(ω) =
∫ π
0 (2π)−1b∗

′

(ω)Fr(z)b∗(ω)dz is the variance of the scaled
series. Thus,b∗(ω) is chosen so as to maximize the ratio:

b∗
′

(ω)Fr(ω)b∗(ω)

b∗
′(ω)ΓY (0)b∗(ω)

. (4)

Differentiating with respect tob∗(ω), and denoting byλ(ω) the supremum of??, the first
order conditions lead to the system of equationsFr(ω)b∗(ω) = λ(ω)Γ(0)b∗(ω). Hence,
λ(ω) is the largest eigenvalue ofΓ(0)−1/2Fr(ω)Γ(0)−1/2, Γ(0)1/2Γ(0)1/2 = Γ(0) (in
practice, the symmetric square root matrix is constructed from the spectral decomposition
of Γ(0)) andb∗(ω) = Γ(0)−1/2v(ω), wherev(ω) is the corresponding eigenvector. The
scalarλ(ω) is the spectral envelope at frequencyω.

It should be noticed that the scores are not a monotonic function of the category index
j, which may be regarded as a drawback; the estimation of a vector of scoresβj that is
monotonic inj is left to future research. It can however be argued that the monotonic
solution is bounded from above by the standard solution.

Given a realization ofYt or pt, the spectral envelope and the associated optimal scores
can be estimated using a nonparametric estimator of the realpart of the cross-spectrum.
In the application below we use a Parzen lag window with truncation parameter at 60.

Figure?? plots the spectral envelope for the assessment of the level of production. Its
main features are the concentration of power at the long run and business cycle frequen-
cies, along with the presence of spectral peaks at the seasonal frequencies. The estimated
optimal scaling corresponding to the spectral envelope areplotted against the angular fre-
quency in the central panel of figure??. It is very interesting to notice that the scores have
different signs, i.e. produce a contrast, only at a subset ofthe business cycle frequencies,
ranging from 2.5 to 5 years (shaded area). Since we have assigned the score 0 to the
central category (normal) the optimal scores are a monotonic function of the indexj. The
bottom panel of figure?? displays the scaled series using (linearly transformed so as to
match the mean and standard deviation of thed2t series). Essentially, for our particular
application, the spectral envelope validates the use of thebalance for quantification.

5 Cumulative logit model

The quantification method proposed in this section can be regarded as a dynamic version
of the probability approach initiated by Carlson and Parkin (1975), described, among
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others, in Pesaran and Weale (2006), which postulates the existence of a common latent
variable with known distribution function. The method, which is based on a dynamic
cumulative logit model, see Fahrmeir (1992) and Fahrmeir and Tutz (1994 sec. 3.3),
overcomes the independence assumption for the latent variable. As a consequence, the
quantification will be based on a dynamic nonlinear combination of the observed propor-
tions.

The most popular approach to the analysis of ordinal responses is to assume the exis-
tence of a latent continuous response variable,ςt such thatYt = ej, i.e. the individual
response is categoryi if qi−1 < ςt ≤ qi, whereqi is a thresholdq0 = −∞ < q1 < · · · <
qk = ∞. As we shall see shortly, the natural choice for the latent variable is a stochastic
cycle, but we need to take into account also the presence of seasonality by introducing a
seasonal feature into the latent variable.

The processςt is a linear Gaussian time series process that is parameterised according
to the state space model

ςt = z′αt + ǫt, αt+1 = Tαt + Hηt

whereǫt has logistic distribution functionF (ǫ) = 1/(1 + exp(−ǫ)).
The most popular approach to modelling the seriesyit uses logits of cumulative proba-

bilities, also termed cumulative logits. These can be related to the latent signal as follows:

P (yt ≤ ci) =
i
∑

j=1

πjt = P (ςt ≤ qi|αt) = P (ǫt ≤ qi − z′αt) =

(

1

1 + exp(z′αt − qi)

)

.

Consider now the assessment of the level of production and leti = 1, 2, 3 label the three
response categories. Then,

ln

[

P (yt ≤ ci)

1 − P (yt ≤ ci)

]

= ln

[

P (ςt ≤ qi)

1 − P (ςt ≤ qi)

]

= qi − z′αt.

Hence, we can express the cumulative probabilities

π1t =
exp(θ1t)

1 + exp(θ1t)
, π1t + π2t =

exp(θ2t)

1 + exp(θ2t)
,

and writeθ1t = logit(π1t), θ2t = logit(π1t + π2t).
Assuming that, conditionally onαt, the observations are independent, the multinomial

density of the countsnit is

p(nt|πt) =
∑

t=1

{

lnKt + nt lnπkt +
k−1
∑

i=1

nit [lnπjt − lnπkt]

}
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whereKt denotes the multinomial coefficientnt!/
(

∏k
i=1 nit!

)

. The likelihood can be
expressed in terms of the cumulative logitsθit = qi − z′αt. In particular, whenk = 3:

p(n1t, n2t|θ1t, θ2t) =
∑

t=1 {lnKt + n1t [θ1t + ln(1 + exp(θ2t))] +
n2t[exp(θ2t) − exp(θ1t)] − (n1t + n2t) ln(1 + exp(θ1t))} .

(5)
When the sample size is constant,nt = n, we can reexpress the likelihood in terms of

the proportionspjt = njt/nt and the parametersθit, i = 1, 2.

p(p1t, p2t|θ1t, θ2t) =
∑

t=1 {lnK
∗

t + p1t [θ1t + ln(1 + exp(θ2t))] +
p2t[exp(θ2t) − exp(θ1t)] − (p1t + p2t) ln(1 + exp(θ1t))} .

(6)

As for as the specification of the linear and Gaussian state space model for the latent
component, we have

z′αt = ψt + γt,

whereψt is a stochastic cycle, generated by the dynamic equation:
[

ψt

ψ∗

t

]

= ρ

[

cosλc sinλc

− sinλc cosλc

] [

ψt−1

ψ∗

t−1

]

+

[

κt

κ∗t

]

whereκt ∼ NID(0, σ2
κ) andκ∗t ∼ NID(0, σ2

κ) and E(κtκ
∗

t ) = 0. The seasonal compo-
nent is parameterised according to the trigonometric seasonal model (see Harvey, 1989),
which results from the sum of[s/2] nonstationary stochastic cycles defined at the seasonal
frequencies:γt =

∑[s/2]
j=1 γjt,

[

γjt

γ∗jt

]

=

[

cosλj sinλj

− sinλj cosλj

] [

γj,t−1

γ∗j,t−1

]

+

[

χjt

χ∗

jt

]

, j = 1, ...., [s/2],

with χjt andχ∗

jt being a set of serially and mutually uncorrelated WN sequences with
common varianceσ2

χ.
The cumulative logit model is a particular instance of dynamic generalised linear

model. Inference on the unknown parameters and the underlying cycle can be made using
the approach based on importance sampling Durbin and Koopman (2001). The linear and
Gaussian approximating model is derived as follows. Let us suppose that we are able to
start from trial values̃θit = qi − z′α̃t, i = 1, 2, and set̃θt = [θ̃1t, θ̃2t]

′. Consider the
first order Taylor expansion of the gradient of the logarithmof the multinomial density,
denotedg(θt), with respect to theθit, i = 1, 2.

g(θt) = g(θ̃t) + D(θ̃t)(θt − θ̃t),g(θt) =
∂p(nt|θ)

∂θ
, D(θ) =

[

∂2p(nt|θt)

∂θt∂θ
′

t

∣

∣

∣

∣

∣

θt=
˜θt

]

.

(7)

10



Equating (??) to zero and rearranging yields the pseudo-linear approximating state space
model

ỹt = qi − i2z
′αt + ut, ut ∼ NID(0,D−1(θ̃t)), αt+1 = Tαt + Hηt

where the pseudo-observations areỹt = θ̃t − D−1(θ̃t)g(θ̃t), q = [q1, q2]
′. The lin-

ear Gaussian approximating model that is used for simulation is found by iterating the
Kalman filter and Smoother on the linearised model, that is, starting fromα̃t (and thus
θ̃t) the KFS is applied to the pseudo observations to get a new estimated of the state vector
α̃t, and ofθ̃t, which are in turn replaced into the gradient and the hessianso as to give a
new set of pseudo observations and to update the system matrices of the linear Gaussian
approximating model. This process, iterated until convergence, yields the estimates of
the posterior mode ofθt andαt, conditional on the available data. The Gaussian density
is used to draw samples and to estimate functions of the stateby means of importance
sampling techniques, and a Monte Carlo estimate of E(αt|nt) is available. Importance
sampling is used also for Monte Carlo estimation of the likelihood, which can be max-
imised using a quasi-Newton method.

6 Application to the Level of Production

6.1 Description of the available data

Business surveys are a well established source of timely information on the current state
of the economy and its future developments. In the European Union theJoint Harmonised
EU Programme of Business and Consumer Surveys (see European Commission, 1997) has
contributed to enhance the comparison and the harmonisation both in terms of sampling
design and questionnaire.

The Manufacturing Survey for Italy is carried out on a monthly basis by ISAE from
1962. Several modifications and improvements on the sampling design and survey ques-
tions have occurred through time in order to improve the accuracy and to enforce the
harmonisation with other EU countries. More recently, particular attention has been de-
voted to the issue of weighting the individual responses to produce sectoral aggregates.
After the last revision which took place in 2003, the currentweights are based on eco-
nomic activity (3-digit l NACE Rev 1.1 classification), 20 administrative regions and firm
size.

The questionnaire is divided into three parts, the first concerning the assessment of
the situation for the current month and the last relating to the expectations for the next 3
months. The central part is devoted to a specific question formulated in terms of the varia-
tion with respect to the previous month. The survey refers tothe main aspect of economic
activity: level of production and orders, unsold stocks, liquidity, selling prices, employ-
ees. In addition, in the last month of each quarter the questionnaire is supplemented with
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questions that relate to capacity utilization, raw materials, worked hours, export and the
presence of economic constraints that hindered growth. Foreach question the respondent
firm should provided a qualitative answer on a ordinal balanced closed scale, with 3 or 5
response categories, always formulated with a central neutral category.

As for the assessment of the level of production, which is thefocus of this paper,
the survey question is formulated as follows: “Excluding seasonal patterns, the level of
production is: high, normal, low?”. No attempt at providinga detailed explanation of the
reference, or “normal”, value is made. The number of firms participating to the survey has
increased steadily: from about 2,500 in 1991 to almost 4,000in 2005. The selection of
the sample is made by ISAE purposively, according to the representativeness of the firm
(an implicit measure of size is used for sample selection), and the dataset takes the form
of a panel, even though only 14 firms have a continuous participation record from 1991
to 2005; this number does not increase considerably if we restrict our analysis to the last
decade (from 1996 to 2005 only 59 complete records are available). Partial nonresponse
is widespread and may be detrimental to the quality of the survey especially in August,
which is the traditional holiday period in Italy. In the following application we use a
monthly sample of firms from 1991.1 to 2005.12 and the number of responses is weighted
by using firm size and sector, following the ISAE aggregationscheme (see tab. 5 pag 27
in Malgarini et al, 2005). Proportions of responses for the level of production survey
question are shown in Figure??.

6.2 Main results

In the sequel no account is made for the fact that the responses refer to the same units;
we will postulate that at each time point an independent sample of manufacturing units is
drawn, and that the autocorrelation of the responses is fully explained by a latent variable
which expresses the state of the economy. We leave to future research the modelling and
the investigation accounting for a panel time series.

For the ISAE survey question related to the level of production estimation was carried
out using Ssfpack 3.0 beta by Koopman et al. (1999). The maximum likelihood esti-
mates of the threshold parameters resultedq̂ = [−1.4, 2.1], the asymptotic standard error
obtained by the delta method resulted 0.07 for both parameters. The estimates of the pos-
terior mean of the latent cyclical factor, E(ψt|nt), obtained via importance sampling using
1000 replications and an antithetic variable (see Durbin and Koopman, 2001, p. 205), are
displayed in Figure??, along with an approximated 95% confidence interval. The esti-
mated cycle has a period of 69 months, that is about 5 years andhalf, and is a persistent
component with an estimated damping factor equal to 0.97; moreover, seasonality is a
smaller source of variation, witĥσ2

κ = 0.004σ̂2
χ.

In order to asses the accuracy of the model we provide some graphic diagnostics both
for residuals than for the importance sampler. The Pearson’s residuals, presented in the
top left panel in Figure??, show a not desirable cyclical pattern in the first years of the
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sample. On the other hand survey data in the late ’90s referred to a different sample design
and size, which perhaps is one of the motivation for a different composition of proportions
as shown by the Figure??. The remaining graphs in Figure??are dedicated to importance
sampling weights diagnostics. The weights for a simulationof 1.000 replications are
presented, together with the largest 100 weights. In addition, the bottom right panel
shows the recursive estimation of the standard deviation, which provide evidence that the
variance exists and this is not seriously affect by outliers.

Figure??compares the estimated latent cycle with the cycle in the corresponding quan-
titative indicator, the index of Industrial production forthe Italian manufacturing sector,
and with the balancesp3t − p1t, appropriately rescaled. For computing the balances we
considered the seasonally adjusted proportions. The deviation cycle in Industrial produc-
tion was estimated by the Harvey and Jaeger (1993) model withseasonality, using the
time series produced by ISTAT for the sample period 1990.1–2005.12. Accordingly, the
series is decomposed into a local linear trend (see Harvey, 1989), a stochastic cycle with
the same representation asψt above and a trigonometric seasonal component including
trading days effect correction.

As mentioned before survey data has become more reliable andhomogeneous in the
last decade, fact that appear also by the inspection of Figure ??. Therefore we applied
the same model to the sample: (1996.1-2005.12). Results, shown in Figure??, are very
similar to the previous: although the Pearson’s residuals show a better pattern for the
resticted sample (Figure??), the survey data cycle on the whole sample is more to close
to the balance series (Figure??).

6.3 Time varying thresholds

In the model presented above we implicitly assume thresholds constant over time, al-
though is likely to expect that during periods with an high growth rate of production, the
upper threshold in the indifference intervalq = [q1, q2]

′ would increase (ad so for a de-
crease in low rate periods of production). This restrictioncould be relaxed in order to
provide more generality. In the State Space Form it is straightforward adding the follow-
ing equation in the state vector:qit = qit−1 + ϑt with ϑt ∼ NID(0, σ2

ϑ) and independent
from other errors in the model. The estimated thresholds, shown in Figure??, suggest
that the indifference interval has moved to the right part ofthe real axe during the last ten
years. Diagnostics are very similar to the fixed thresholds model, although the compari-
son with the Industrial production deviation cycle is slightly improved (compare Figure
??and Figure??).

The log-likelihood for the two model is very similar (-85.055 and -85.096 respectively
with fixed and time varying thresholds), which suggests not significant difference between
the two models, nevertheless any test of model choice based on the likelihood, like the
Likelihood Ratio test (LR), needs some additional considerations. If the order of integra-
tion do not change between one specification and the other, the LR has a distribution that
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is a mixture of Chi-squared, otherwise we will end to a Cramèr-von-Mises distribution.
We omit the presentation for the time varying thresholds model on the restricted sample
from 1996 because this is a degenerate case that could be included in the time constant
thresholds model shown in Figure??.

Several interesting considerations emerge: first and foremost, our model based quan-
tification can be seen as a smoothed version of the balances. The amount of smoothing is
dictated by the parameters of the model; the turning points are more clearly identifiable
and the assessment of cyclical stance is made much easier. Secondly, the latent cycle is
highly coherent with that in Industrial production which was estimated independently.

7 Conclusions

This paper has investigated several issues related to the quantification and the analysis of
business survey variables. The presence and nature of seasonal fluctuations and trading
days variation was addressed and two novel quantification methods were proposed and
investigated. The first is based on a purely cross–sectionalfilter derived from the notion
of a spectral envelope. The second is based on a dynamic cumulative logit model, which
extracts the latent cycle from the available time series of proportions and yields signal
extraction filters that have both time series and cross-sectional dimensions. As a result the
quantification has a smoother appearance, which is more amenable for the identification
of turning points and for the characterization of the perceived cyclical stance.

The underlying cycle is highly coherent with the deviation cycle in the corresponding
quantitative indicator, the index of Industrial production. This raises the important issue
of understanding what notion of business cycle (deviation or growth rate) the economic
agents have in mind when they answer the qualitative survey question. We leave to future
research this important issue.
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Figure 1: Monthplots.
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Figure 2: Spectral envelope, scores and quantification of survey questions on the level of
production.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

5

10

15

Spectral Envelope

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

−25

0

25

ScoresScores

Below normal Above normal 

1995 2000 2005

−0.2

0.0

0.2

Quantification 

Spectral envelope balances 

18



Figure 3: Proportion of responses for the assessment of the level of production, ISAE
Survey on Business Tendency for Italy

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

10

20

30

40

50

60

70

Low 
High 

Normal 
 

19



Figure 4: Dynamic cumulative logit model: estimates of the conditional mean of the latent
cyclical factor, E(ψt|nt) obtained via importance sampling using 1000 replications.
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Figure 5: Pearson’s residuals and importance sampling diagnostics for the cumulative
logit model
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Figure 6: Comparison of Industrial production deviation cycle, survey data latent cycle
with constant thresholds, quantification through balances
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Figure 7: Dynamic cumulative logit model: estimates of the conditional mean of the
latent cyclical factor, E(ψt|nt) obtained via importance sampling using 1000 replications-
(1996-2005).
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Figure 8: Pearson’s residuals and importance sampling diagnostics for the cumulative
logit model (1996-2005)
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Figure 9: Comparison of Industrial production deviation cycle, survey data latent cycle
with constant thresholds, quantification through balances-(1996-2005)
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Figure 10: Dynamic Cumulative Logit model with time varying thresholds: estimates
of the conditional mean of the latent cyclical factor, E(ψt|nt) obtained via importance
sampling using 1000 replications.
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Figure 11: Pearson’s residuals and importance sampling diagnostics for the cumulative
logit model with time varying thresholds
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Figure 12: Comparison of Industrial production deviation cycle, survey data latent cycle
with time varying thresholds, quantification through balances
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