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1 Introduction

The dynamic effects of Taylor-style policy rules (Taylor, 1993, 1999) have

arguably been one of the most debated issues in modern monetary economics.

When fiscal solvency is guaranteed, active monetary policies, i.e. interest rate

feedback rules increasing the nominal interest rate rule by more than a raise

in inflation, have often been proved to induce local rational-expectations

equilibrium uniqueness, thus ruling out sunspot fluctuations (e.g., Leeper,

1991; McCallum, 2003; Woodford, 2003). However, it is well known, at

least since the seminal contributions by Benhabib, Schmitt-Grohé and Uribe

(2001a, 2001b, 2002), that interest rate rules of Taylor’s type, ensuring the

respect of the zero lower bound for the nominal interest rate, are likely to lead

to multiple steady-state equilibria and global indeterminacy. In particular,

in a dynamic optimizing general equilibrium framework with infinite horizon,

Benhabib, Schmitt-Grohé and Uribe (2001b) demonstrate the existence of an

infinite number of equilibrium paths originating around the steady state at

which monetary policy is active and converging to a liquidity trap.

The main purpose of the present paper is to investigate whether wealth

effects are sufficient to rule out trajectories spiraling down into a liquid-

ity trap when the monetary authorities implement Taylor-type interest rate

rules. The stabilizing role of wealth effects in preventing the liquidity trap

dates back to the seminal works by Pigou (1943, 1947) and Patinkin (1965).

However, the implications of wealth effects for the liquidity trap have not

been investigated in modern theoretical setups for monetary analysis, that

combine dynamic optimizing general equilibrium modeling with monetary
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policy rules targeting the short-term nominal interest rate.

In order to rigorously micro-found wealth effects in an optimizing frame-

work, we construct a flexible price money-in-the-utility-function version of

the Yaari (1965)-Blanchard (1985)-Weil (1989) overlapping generations (olg)

setup, extended to the more general case of non-separable preferences. The

model we adopt embeds the standard infinitely lived representative agent

formulation as a special case and can be usefully employed to consider the

issue of global macroeconomic stability under the Taylor rule when wealth

effects are operative. In an olg framework à la Weil (1989), Ireland (2005)

shows how the real balance effect is capable of eliminating the liquidity trap

when the money supply is the policy instrument. Our model, on the other

hand, examines the implications of wealth effects under the assumption that

the monetary authority adopts a Taylor rule with the zero bound on nominal

interest rates.1

We demonstrate how wealth effects fail to act as automatic stabilizers

and can generate an additional source of multiple steady-state equilibria.

Our main result is that in the neighborhood of the steady states at which

the interest rate feedback rule is active, the operation of wealth effects is not

sufficient to avoid multiple perfect-foresight equilibrium trajectories leading

the economy to a deflationary trap.

The conventional wisdom that the presence of wealth effects is capable of

ruling out the liquidity trap does not hold in a dynamic general equilibrium

optimizing framework if the central bank adopts the Taylor rule. Our results

1In an olg model à la Weil (1989), Bénassy (2000, 2005) analyzes the issue of price
level determinacy under interest rate pegs and a conventional Taylor rule.
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thus provide additional theoretical support to the original findings obtained

by Benhabib, Schmitt-Grohé and Uribe (2001b) in the context of the infinite-

horizon representative agent paradigm. The possibility of liquidity traps

under the Taylor rules is a robust result, which still holds in the presence of

wealth effects.

The remainder of the paper is organized as follows. Section 2 presents

a monetary model with wealth effects and describes the monetary and the

fiscal regimes. Section 3 develops the steady state analysis. Section 4 studies

the model equilibrium dynamics and examines the issue of liquidity traps.

The concluding Section 5 summarizes the main findings.

2 The Model

The economy is described by a flexible-price monetary version of the Yaari

(1965)-Blanchard (1985)-Weil (1989) olg framework. Each individual faces

an age-independent instantaneous probability of death, µ > 0. Population is

assumed to grow at a constant rate n. At each instant t a new generation is

born and the birth rate is defined as β = n + µ.

Let Nt denote population at time t. For analytical convenience, popula-

tion at time t = 0 is normalized to one, N0 = 1. Given the birth rate β and

the death rate µ, the size of the generation born at time t is βNt = βent, while

the size of the surviving cohort born at time s ≤ t is βNse
−µ(t−s) = βe−µteβs.

Therefore, total population at time t is Nt = βe−µt
∫ t

−∞
eβsds.

The economy is characterized by absence of dynastic altruism. Hence,

financial wealth of newly born agents is zero. Individuals alive supply one
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unit of labor inelastically, which is transformed one-for-one into output.

The representative agent of the generation born at time s ≤ 0 chooses

the time path of consumption, cs,t, and of real money balances, ms,t, in order

to maximize the following expected lifetime utility function:

E0

∫ ∞

0

log Ω (cs,t, ms,t) e−ρtdt, (1)

where ρ > 0 is the rate of time preference. The sub-utility function, Ω (·), is

strictly increasing, strictly concave and linearly homogenous.2 Consumption

and real money balances are Edgeworth complements, hence Ωcm > 0, and

the elasticity of substitution between the two is less than one.3 Individuals

accumulate their financial wealth, as,t, in the form of real money balances and

interest bearing government bonds, bs,t. Let Rt denote the nominal interest

rate, πt the inflation rate and τ s,t real lump-sum taxes. Since the probability

at time 0 of being alive at time t ≥ 0 is given by e−µt, equation (1) can be

rewritten as: ∫ ∞

0

log Ω (cs,t, ms,t) e−(µ+ρ)tdt, (2)

The consumer’s instantaneous budget constraint is given by:

•
as,t = (Rt − πt + µ) as,t + ys,t − τ s,t − cs,t − Rtms,t, (3)

where µas,t is an actuarial fair payment that individuals receive from a per-

2The assumption of linear homogeneity of the sub-utility function makes aggregation
of individual variables across all cohorts analytically tractable.

3This assumption ensures that money is always essential. See Obstfeld and Rogoff
(1983) for details.

4



fectly competitive life insurance company as long as they survive.4 After

their death, the total amount of their financial wealth accrues to the insur-

ance company. In other words, insurance companies collect financial assets

from deceased members of the population and pay fair premia to surviving

individuals (Yaari, 1965). The operation of a life insurance market rules out

the possibility for individuals of passing away leaving unintended bequest to

their heirs.

The condition precluding agents’ Ponzi-games must also be satisfied:

lim
t→∞

as,te
−

∫ t

0
(Rk−πk)dk ≥ 0. (4)

The individual maximization problem can be solved using a two-stage

budgeting procedure. Let zs,t denote total consumption at time t for the

agent born at time s, defined as physical consumption plus the interest for-

gone on real money holdings, zs,t = cs,t+Rtms,t. In the first stage, consumers

solve an intra-temporal problem of choosing the optimal allocation between

consumption and real money holdings, in order to maximize their instanta-

neous utility function, Ω (·), for a given level of total consumption, zs,t. At

the optimum the marginal rate of substitution between consumption and real

money holdings is equal to the nominal interest rate:

Ωm (cs,t, ms,t)

Ωc (cs,t, ms,t)
= Rt. (5)

Since preferences are linearly homogenous, the optimal portfolio equilibrium

4There is uncertainty at the individual level, but not in aggregate. For this reason
there is scope for a life insurance market to be operative. See Yaari (1965) for details.
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condition (5) is of the form:

cs,t = Γ(Rt)ms,t, (6)

where Γ(·) is such that Γ′ (Rt) > 0 and Γ (Rt) − RtΓ
′ (Rt) > 0.5

In the second stage of maximization, consumers solve the intertemporal

problem of deriving the optimal time path of total consumption, zs,t, in order

to maximize their lifetime utility function (2), given the constraints (3), (4)

and the optimal condition (6). At the optimum the time path of individual

total consumption is (see Appendix B):

•
zs,t = (Rt − πt − ρ) zs,t. (7)

Using the equation of motion of total consumption (7) and condition (6),

and recalling that zs,t = cs,t + Rtms,t, one can derive the optimal path of

individual consumption:

•
cs,t = (Rt − πt − ρ) cs,t −

L′(Rt)

L(Rt)

•

Rtcs,t, (8)

where L(Rt) ≡ 1+ Rt

Γ(Rt)
and L′(Rt) > 0. Note that the optimal consumption

growth rate is the same for all generations.

5Condition Γ′ (Rt) > 0 follows from Ωcc −ΩcmΩc/Ωm < 0 and Ωmm −ΩcmΩm/Ωc < 0;
whereas the sign of Γ (Rt)−RtΓ

′ (Rt) depends on the the elasticity of substitution between
consumption and real money balances. See Appendix A for details.
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2.1 Aggregation

The population aggregate for a generic economic variable at individual level,

xs,t, is defined as Xt = βe−µt
∫ t

−∞
xs,te

βsds, while the corresponding quantity

in per capita terms is xt = Xte
−nt.

Assuming that each agent faces identical age-independent income and

tax flows, ys,t = yt and τ s,t = τ t, for analytical convenience, and recalling

that the wealth of newly born consumers is zero, as,s = 0, we can express

the budget constraint (3) and the optimal time path of consumption in per

capita terms (8) as (see Appendix C for details):

•
at = (Rt − πt − n) at + yt − τ t − ct − Rtmt, (9)

•
ct = (Rt − πt − ρ) ct −

L′(Rt)
•

Rt

L(Rt)
ct −

β(ρ + µ)

L(Rt)
at. (10)

The rate of change of per capita consumption depends on the level of finan-

cial wealth at. Ricardian equivalence is not verified, since future cohorts’

consumption is not valued by agents alive today. Total government liabili-

ties are net wealth for private agents. Older generations are wealthier than

younger generations and consume more. Since at each instant of time a new

generation is born with no financial wealth, the rate of growth of per capita

consumption is lower than individual consumption growth. If the birth rate

β were equal to zero, consumption would evolve as in the infinitely-lived

representative agent case.
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2.2 Monetary and Fiscal Regimes

Following Benhabib, Schmitt-Grohé and Uribe (2001b), monetary policy is

conducted according to an interest rate feedback rule of the form:

Rt = R(πt) ≡ R∗e(A/R∗)(πt−π∗), (11)

where π∗ is the target level of inflation, A > 0 and R∗ = π∗ + ρ. Rule (11)

stipulates the impossibility for the monetary authorities to force the nominal

interest rate below zero.

Definition 1. An interest rate rule Rt = R(πt) is active (passive) if

R′(πt) > (<)1.

According to Definition 1, the interest rate rule (11) is active (passive)

at π∗ if A > (<)1.

The flow budget constraint of the government in per capita terms is:

•
at = (Rt − πt − n) at − τ t − Rtmt, (12)

where for expositional simplicity public expenditure is set equal to zero at all

times. Taxes are an increasing function of government liabilities adjusted for

interest savings on the monetary base, as in Benhabib, Schmitt-Grohé and

Uribe (2001a, 2001b):

τ t + Rtmt = θat, (13)

where θ > 0. This parameter restriction ensures that fiscal policy is “Ricar-

dian”, that is, the present discounted value of per-capita total government
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liabilities converges to zero for all possible, equilibrium and off-equilibrium,

sequences of endogenous variables, namely the price level, the money supply,

inflation, and the nominal interest rate:

lim
t→∞

ate
−

∫ t

0
(Rk−πk−n)dk = 0. (14)

To make the implications of our model as much comparable as possible with

the results of the standard theory on Taylor rules, we assume θ > R(π∗) −

π∗−n. This parameter restriction is necessary to guarantee that fiscal policy

is “passive” (see Leeper, 1991) or “locally Ricardian” (see Woodford, 2003)

around the steady state at which the inflation rate is at its target level, π∗. In

other words, the dynamics of per capital total government liabilities remains

bounded for any bounded path of endogenous variables.

2.3 Equilibrium

Total output is assumed to grow at the constant rate n, without loss of

generality. It follows that per capita output is constant and can be normalized

to one, yt = y = 1, for analytical convenience. Equilibrium in the goods

market requires that ct = y = 1.

Using the equation of motion of per capita consumption (8), we obtain

an expression for the equilibrium real interest rate:

Rt − πt = ρ +
L′(Rt)

•

Rt

L(Rt)
+

β(ρ + µ)

L(Rt)
at. (15)

The interest rate rule (11) allows us to derive the following dynamic equation
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for the inflation rate:

•
πt = [R(πt) − πt − ρ]

L [R(πt)]

L′ [R(πt)] R′(πt)
−

β(ρ + µ)

L′ [R(πt)] R′(πt)
at. (16)

Substituting (11) and (13) into (12) gives:

•
at = [R(πt) − πt − n − θ] at. (17)

The initial level of per capita government liabilities a0 must satisfy a0 =

an
0/P0, where an

0 is the nominal value of the initial per capita liabilities and

P0 the initial price level.

A perfect-foresight equilibrium of the model can be defined as follows.

Definition 2. A perfect-foresight equilibrium is a set of sequences {πt, at}

and an initial price level P0 > 0 satisfying (14), (16) and (17), given an ini-

tial stock of government liabilities, an
0 > 0.

3 Steady State Analysis

Steady state equilibria are defined from equations (16) and (17) setting

•
πt,

•
at = 0. In the general case with a positive birth rate and A 6= 1, the

model exhibits four steady-state equilibria.6

Let (π∗, a∗) and (π, a) indicate the pair of steady states characterized

by zero net financial wealth, a∗ = a = 0, and by inflation rates such that

6The system of equations (16) and (17) displays a degenerate Bogdanov-Takens bifur-
cation at A = 1 and θ = ρ − n. See Appendix E for the proof.
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R(π∗) − π∗ = R(π) − π = ρ, where π∗ > (<)π if A > (<)1. From equation

(8), at these steady states individual consumption is constant overtime, since

the real interest rates, r∗ = R(π∗) − π∗ and r = R(π) − π, are equal to

rate of time preference ρ. The steady states (π∗, a∗) and (π, a) replicate the

equilibrium in which generations are not linked and aggregate consumption is

optimally distributed among those alive: each individual only consumes her

endowment at all times, so that individual marginal utilities of consumption

and real money balances are identical across all generations.

Let (π̃, ã) and (π̂, â) denote the pair of steady states characterized by

inflation rates such that R(π̃) − π̃ = R(π̂) − π̂ = n + θ and by a pos-

itive level of per capita wealth, ã = (n + θ − ρ) L [R(π̃)] /β(µ + ρ) and

â = (n + θ − ρ) L [R(π̂)] /β(µ + ρ), respectively. Let π̂ < (>)π̃ if A > (<)1.

It follows that â < (>)ã if A > (< 1). At the steady states (π̃, ã) and (π̂, â),

the real interest rates, r̃ = R(π̃) − π̃ and r̂ = R(π̂) − π̂, are higher than the

rate of time preference ρ. As a result of equation (8), individual consumption

is increasing over time, as agents accumulate financial wealth during their

life. An asymmetric distribution of aggregate consumption among different

generations emerges. Older individuals consume more than the young.

From the interest rate rule (11), using the fact that θ > ρ − n, we can

state the following proposition.

Proposition 1. The steady state equilibria of the model (16) and (17)

satisfy the following inequalities: π̃ > π∗ > π > π̂ and ã > â > 0 if A > 1;

π̃ < π∗ < π < π̂ and 0 < ã < â if A < 1.
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4 Dynamic Analysis and Liquidity Traps

We now analyze local and global equilibrium dynamics making use of the

following definitions.

Definition 3. The model displays nominal determinacy (indetermi-

nacy) around a steady state if for any set of perfect-foresight equilibrium

sequences {πt, at}, there exists a unique price level (an infinite number of

initial price levels) P0 > 0 consistent with a perfect-foresight equilibrium.

Definition 4. The model displays real determinacy (indeterminacy)

around a steady state if there exists a unique (an infinite) set of perfect-

foresight equilibrium sequences {πt, at} converging asymptotically to the steady

state.

Close inspection of (16) and (17) reveals that nominal determinacy occurs

because, given an equilibrium sequence of the inflation rate {πt}, evolving

according to equation (16), and an initial level of nominal liabilities, an
0 , there

exists a unique price level P0 > 0 consistent with the equilibrium sequence.7

By contrast, in the infinite horizon representative agent setup where β =

0, inflation dynamics do not depend on the time path of real government

liabilities. The unique equilibrium sequence {πt} would be consistent with

infinite possible initial price levels and the model would display nominal

indeterminacy (see Benhabib, Schmitt-Grohé and Uribe, 2001a).

Let J(πt,at,) be the Jacobian matrix of the system of equations (16) and

7This result is consistent with the findings obtained by Bénassy (2005) in the context
of an olg monetary model à la Weil (1989) when monetary policy is conducted according
to a conventional Taylor rule.
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(17). At the steady states (π∗, a∗), (π, a), (π̃, ã) and (π̂, â), the Jacobians

are, respectively:

J(π∗,a∗) =




[R′(π∗) − 1] L[R(π∗)]
L′[R(π∗)]R′(π∗)

−β (ρ+µ)
L′[R(π∗)]R′(π∗)

0 ρ − n − θ


 , (18)

J(π,a) =




[R′(π) − 1] L[R(π)]
L′[R(π)]R′(π)

−β (ρ+µ)
L′[R(π)]R′(π)

0 ρ − n − θ


 , (19)

J(π̃,ã) =




[R′(π̃)−1]L[R(π̃)]
L′[R(π̃)]R′(π̃)

+ [R(π̃) − π̃ − ρ] − β(ρ+µ)
L′[R(π̃)]R′(π̃)

[R′(π̃) − 1] (n+θ−ρ)L[R(π̃)]
β(ρ+µ)

0


 , (20)

J(π̂,â) =




[R′(π̂)−1]L[R(π̂)]
L′[R(π̂)]R′(π̂)

+ [R(π̂) − π̂ − ρ] − β(ρ+µ)
L′[R(π̂)]R′(π̂)

[R′(π̂) − 1] (n+θ−ρ)L[R(π̂)]
β(ρ+µ)

0


 . (21)

In the system of equations (16) and (17), πt is a jump variable and at

is predetermined. Hence the system exhibits a unique convergent solution

around a steady state if the real parts of the eigenvalues are of opposite

sign (real determinacy), has multiple convergent solutions if the real parts

of both eigenvalues are negative (real indeterminacy) and is unstable if they

are positive.

Recalling that if A > (<)1, R′(π∗), R′(π̃) > (<)1 and R′(π), R′(π̂) <

(>) 1, matrices (18)-(21) enable us to establish the following propositions.
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Proposition 2. If A > 1, the model displays real determinacy around

(π∗, a∗) and (π̂, â), instability around (π̃, ã) and real indeterminacy around

(π, a).

Proof. If A > 1, the model displays real determinacy around (π∗, a∗)

and (π̂, â), instability around (π̃, ã) and real indeterminacy around (π, a)

since det J(π∗,a∗), det J(â,π̂) < 0 and det J(π,a), det J(ã,π̃) > 0, with trJ(π,a) < 0

and trJ(ã,π̃) > 0. ¥

Proposition 3. If A < 1, the model displays real determinacy around

(π, a) and (π̃, ã), instability around (π̂, â) and real indeterminacy around

(π∗, a∗).

Proof. If A < 1, the model displays real determinacy around (π, a) and

(π̃, ã), instability around (π̂, â) and real indeterminacy around (π∗, a∗) since

det J(π,a), det J(ã,π̃) < 0 and det J(â,π̂), det J(π∗,a∗) > 0, with trJ(â,π̂) > 0 and

trJ(π∗,a∗) < 0 . ¥

The results stated in Propositions 2 and 3 have the following inter-

pretations. At the two steady states (π∗, a∗) and (π, a) characterized by zero

net financial wealth all individuals have the same level of consumption, i.e.

there is no intergenerational inequality. Examining the Jacobian matrices

(18) and (19), when πt and at remain in a small neighborhood around the

steady states (π∗, a∗) and (π, a), inflation does not affect the dynamics of per

capita real government liabilities, since at (π∗, a∗) and (π, a) ∂
•
at/∂πt = 0,

and hence does not generate redistributions of wealth across generations. In

these cases, the determinacy results obtained in the infinitely lived repre-

sentative agent setup are replicated. An active monetary policy yields local
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equilibrium determinacy. A passive monetary policy causes the equilibrium

to be locally indeterminate.

However, there exist two additional steady states, (π̃, ã) and (π̂, â), with

positive non-human wealth. At this pair of steady states individual con-

sumption varies across individuals of different generations. Examining the

Jacobian matrices (20) and (21), it emerges that in a small neighborhood

around the steady states (π̃, ã) and (π̂, â), inflation does affect real finan-

cial wealth dynamics, since at (π̃, ã) ∂
•
at/∂πt = [R′(π̃) − 1] (n+θ−ρ)L[R(π̃)]

β(ρ+µ)
6= 0

and at (π̂, â) ∂
•
at/∂πt = [R′(π̂) − 1] (n+θ−ρ)L[R(π̂)]

β(ρ+µ)
6= 0, thereby giving rise to

redistributions of wealth across generations. In particular, a positive devia-

tion of inflation from its steady state value produces a redistribution of real

financial wealth from currently alive private agents to future generations.

Inflation decreases the current amount of per capita government liabilities

in real terms, thus reducing the need for future fiscal restrictions necessary

to guarantee the respect of the public solvency condition. The wealth effect

tends to dampen the current value of per capita consumption and there is no

need for the central bank to implement a more than proportional increase in

the nominal interest rate to ensure equilibrium uniqueness. The determinacy

results under interest rate policies break down. Passive monetary policy rules

generate local determinacy. Under active monetary policy rules, on the other

hand, there is no local perfect-foresight equilibrium in which the sequences

{πt, at} converge asymptotically to the steady state.

In order to show how perfect-foresight self-fulfilling deflationary paths

characterize global equilibrium dynamics in the presence of wealth effects, we

consider particular functional forms for preferences and perform a numerical
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analysis.

Let the instantaneous utility function be a ces aggregate of consumption

and real money balances of the form:

Ω(cs,t,ms,t) =
[
ηcγ

s,t + (1 − η)mγ
s,t

] 1

γ , (22)

where 0 < η < 1 and γ < 0. The elasticity of substitution between con-

sumption and real money balances is σ ≡ 1/(1− γ). It follows that Γ (Rt) =

[η/ (1 − η)]σ Rσ
t . The model is calibrated under the assumption that each in-

stant of time corresponds to a quarter of year. We set η = 0.94 and σ = 0.39,

consistently with the estimates by Chari, Kehoe and McGrattan (2000). We

calibrate the instantaneous probability of death at µ = 0.02 and the rate of

population growth at n = 0.004. The fiscal parameter θ is set at 0.0015.

When monetary policy is active at π∗ the interest rate rule policy parameter

A is set equal to 1.5 (see Taylor, 1993, 1999). We set π∗ = 0.042/4 and

ρ = 0.018/4, as in Benhabib, Schmitt-Grohé and Uribe (2001b). Table 1

reports the baseline calibration.

Figure 1 plots the associated phase diagram. The four steady states of our

model, (π∗, a∗), (π, a), (π̃, ã), and (π̂, â), are denoted by SS1, SS2, SS3, and

SS4, respectively. The figure reveals the existence of a number of decelerating

inflation paths that originate around SS1 and SS4, at which monetary policy

is active, and converge either to SS2 or to SS3, at which monetary policy

is passive. The decelerating inflation trajectories characterizing the model

global dynamics appear to be robust to changes in the baseline parameter

values, as shown in Figures 2 and 3.
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The economic intuition of our results can be explained as follows. Sup-

pose agents expect a decrease in inflation. If the central bank follows the

Taylor rule, agents must also expect a decrease in the nominal interest rate.

The expected decrease in the opportunity cost of holding money brings about

an expected increase in the demand for real balances. According to equation

(10), for a given level of current real financial wealth, the expected increase

in real balances generates an expected aggregate excess demand for goods.

Equilibrium in the goods market requires a fall in the current real interest

rate (see equation 15). Since monetary policy is active according to the Tay-

lor rule, the decrease in the current real interest rate can occur only if current

inflation falls. The decline in inflation is not offset by the presence of wealth

effects on aggregate demand since the decrease in the real interest rate has a

negative impact on the aggregate accumulation of total real financial wealth

(see equation 17), hence amplifying the deflationary pressures over time. Un-

der the Taylor rule, the associated self-fulfilling decelerating inflation path is

exacerbated by the operation of wealth effects.

5 Conclusions

We have analyzed the role of wealth effects in an general equilibrium model

with overlapping generations where the monetary authorities adopt interest-

rate feedback rules of the the Taylor-type. Since the original contributions by

Pigou (1943, 1947) and Patinkin (1965), wealth effects have been regarded as

a channel to avoid the liquidity trap. We demonstrate that this cannel is not

at work in our optimizing model. The explicit consideration of these effects
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implies the existence of four steady-state equilibria under feedback monetary

policy rules, that set the nominal interest rate as an increasing function of

inflation, with the zero bound on nominal interest rates. The main conclusion

of our analysis is that, also in the presence of wealth effects, the Taylor rule

gives rise to an infinite number of perfect-foresight equilibrium paths, in the

vicinity of the steady states at which the interest rate rule is active, leading

the economy to a liquidity trap.

There are indeed “perils” in adopting Taylor rules, as originally demon-

strated by Benhabib, Schmitt-Grohé and Uribe (2001b). Liquidity traps can

occur since the automatic stabilizing role of the Pigou-Patinkin effects is not

at work when Taylor rules are implemented.
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Appendix A

Function Γ(·) is such that Γ′ (Rt) > 0 and Γ (Rt) − RtΓ
′ (Rt) > 0, where the

latter condition follows from the assumption that the elasticity of substitution

between consumption and real money balances, σ =
d

cs,t

ms,t
cs,t

ms,t

/dRt

Rt
, is less than

one. From (6), in fact:

d
cs,t

ms,t

= Γ′ (Rt) dRt. (23)

Dividing both sides of (23) by cs,t

ms,t
and using (6) yield:
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d cs,t

ms,t

cs,t

ms,t

=
Γ′ (Rt)

Γ (Rt)
Rt

dRt

Rt

. (24)

It follows that the elasticity of substitution between consumption and real

money balances can be expressed as:

σ =
d cs,t

ms,t

cs,t

ms,t

/
dRt

Rt

=
Γ′ (Rt)

Γ (Rt)
Rt. (25)

Appendix B

In the second stage of the individual optimization problem, the representative

consumer born at time s solves an intertemporal optimization problem and

derives the optimal time path of total consumption, zs,t, to maximize the

lifetime utility function (2), given (6) and the constraints (3) and (4). Using

the definition of total consumption, zs,t = cs,t+Rtms,t, and the optimal intra-

temporal condition (6), the instantaneous utility function can be expressed

in function of total consumption:

log Ω (cs,t, ms,t) = log qt + log zs,t, (26)

where qt ≡ Ω
(

Γ(Rt)
Γ(Rt)+Rt

, 1
Γ(Rt)+Rt

)
can be interpreted as the utility-based cost

of living index of the basket of physical goods and real balances.

Using this result, the intertemporal optimization problem can be stated

as follows:

max
{zs,t}

∫ ∞

0

(log qt + log zs,t) e−(µ+ρ)tdt, (27)
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subject to
•
as,t = (Rt − πt + µ) as,t + ys,t − τ s,t − zs,t, (28)

and given as,t.

The optimal solution yields the Euler equation characterizing the optimal

path of total consumption for an individual:

•
zs,t = (Rt − πt − ρ)zs,t. (29)

Integrating forward the instantaneous budget constraint (28), given the transver-

sality condition (4), and using (29) we can formulate total consumption as a

linear function of total wealth:

zs,t = (µ + ρ)
(
as,t + hs,t

)
, (30)

where hs,t is human wealth, defined as the present discounted value of after-

tax labor income, hs,t =
∫ ∞

t

(
ys,v − τ s,v

)
e−

∫ v

t
(Rk−πk+µ)dkdv.

Using the definition of total consumption and recalling (6) give:

zs,t = L(Rt)cs,t, (31)

where L(Rt) = 1 + Rt

Γ(Rt)
with L′(Rt) = Γ(Rt)−RtΓ′(Rt)

[Γ(Rt)]
2 .

Time-differentiating (31) yields:

•
zs,t = L′(Rt)cs,t

•

Rt + L(Rt)
•
cs,t. (32)

Using the above results, it is straightforward to obtain the following dy-
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namic equation for individual consumption:

•
cs,t = (Rt − πt − ρ) cs,t −

L′(Rt)
•

Rt

L(Rt)
cs,t. (33)

This shows equation (8).

Appendix C

By definition, per capita aggregate financial wealth is:

at = β

∫ t

−∞

as,te
β(s−t)ds. (34)

Differentiating with respect to time the above equation using Leibnitz’s rule,

one obtains:

•
at = βat,t − βat + β

∫ t

−∞

•
as,te

β(s−t)ds, (35)

where βat,t is the newborns’ financial wealth and is equal to zero by assump-

tion (agents are born with zero wealth since there is no bequest motive).

Using (3), (35) can be re-written as:

•
at = −βat + µat + (Rt − πt) at + yt − τ t − ct − Rtmt (36)

= (Rt − πt − n) at + yt − τ t − ct − Rtmt.

This shows (9).

Substituting (6) into (31) and using the definition of total consumption,
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the individual consumption function is obtained as:

cs,t =
µ + ρ

L(Rt)

(
as,t + hs,t

)
. (37)

The per capita consumption is thus given by:

ct =
µ + ρ

L(Rt)
(at + ht) , (38)

where ht =
∫ ∞

t
(yv − τ v) e−

∫ v

t
(Rk−πk+µ)dkdv. Differentiating with respect

to time the definition of per capita consumption, ct = βe−βt
∫ t

−∞
cs,te

βsds,

yields:

•
ct = βct,t − βct + β

∫ t

−∞

•
cs,te

β(s−t)ds, (39)

where the term βct,t denotes consumption of the newborn generation and is

equal to βct,t = β(µ+ρ)ht/L(Rt). Using (8) and (38) into (39) results in the

following time path of consumption per unit of labor:

•
ct = (Rt − πt − ρ) ct −

L′(Rt)
•

Rt

L(Rt)
ct −

β(ρ + µ)

L(Rt)
at. (40)

This shows (10).

Appendix D

In order to translate the interior equilibrium to the origin and simplify no-

tation, we set ιt ≡ πt − π∗ and ℓt ≡ − β(ρ+µ)
L′(R∗)A

at. The model (16)-(17) given
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the Taylor rule (11) can be re-written as:

•
ιt =

[
R∗e(A/R∗)xt − ιt − π∗ − ρ

] L
[
R∗e(A/R∗)ιt

]

L′ [R∗e(A/R∗)ιt ] Ae(A/R∗)ιt
+ (41)

+
L′ (R∗) A

L′ [R∗e(A/R∗)ιt ] Ae(A/R∗)ιt
ℓt

•

ℓt =
[
R∗e(A/R∗)ιt − ιt − π∗ − n − θ

] L′ (R∗) A

β(ρ + µ)
ℓt (42)

At (0, 0), for A = 1 and θ = ρ − n, there is a double zero eigenvalue. In

fact, the Jordan block is of the form:

J =




0 1

0 0


 , (43)

which is a necessary condition for a Bogdanov-Takens bifurcation.

The bifurcation scenario near the Bogdanov-Takens point depends on

the coefficients of the critical normal form on the two-dimensional center

manifold which is of the form (Kuznetsov, 2004, 2005):

•
u1 = u2, (44)

•
u2 =

∑

k≥2

(
aku

k
1 + bku

k−1
1 u2

)
. (45)

In order to compute the simplest normal form of this Bogdanov-Takens sin-

gularity, we use the matching pursuit technique proposed by Yu and Yuan

(2003) under the assumption that the sub-utility function is of the form
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Ω(cs,t,ms,t) =
[
ηcγ

s,t + (1 − η)mγ
s,t

]1/γ
. We get the following result:

•
u1 = u2, (46)

•
u2 = b1u1u2 + b2u

2
1u2 + a4u

4
1, (47)

where

b1 ≡
π∗ +

(
η

1−η

)σ

(π∗ + ρ)σ + ρ

(π∗ + ρ) (1 − σ)
,

b2 ≡
(π∗ + ρ)σ

(
η

1−η

)σ

(3σ − 2) + (2 − σ) (π∗ + ρ)

2 (π∗ + ρ)2 (1 − σ)
,

a4 ≡ −
1

4

π∗ +
(

η
1−η

)σ

(π∗ + ρ)σ + ρ

(π∗ + ρ)2 (1 − σ)
.

Since a2 = 0, the Bogdanov-Takens bifurcation at (0, 0) for A = 1 and

θ = ρ − n is of a degenerate type (Kuznetsov, 2005).
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Table 1: Baseline Calibration

Rate of population growth n 0.004

Probability of death µ 0.02

Rate of time preference ρ 0.018/4

Elasticity of substitution between consumption and real money balances σ 0.39

Weight of consumption in the utility function η 0.94

Monetary policy parameter A 1.5

Fiscal rule parameter θ 0.0015

Target inflation rate π∗ 0.042/4
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Figure 1: Phase Diagram under the Baseline Calibration
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Figure 2: Sensitivity Analysis
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Figure 3: Sensitivity Analysis
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