
Chapter 3

Dynamics of Domain Walls

This chapter consists in two long sections, each of which is partitioned into
a number of subsections. The first section, which is taken with only minor
changes from [39], deals with flat walls in motion; the second section is where
new and unpublished material on the motion of curved walls is found.

Flat walls
In their path-breaking paper of 1935 [30], Landau and Lifshitz, besides de-
termining the internal structure of a static domain wall in the absence of an
external field, considered the case when an external magnetic field parallel to
the easy axis sets the wall in motion; they derived an approximate solution
of the traveling-wave form

m = m(ξ) , ξ := x− vt , (3.1)

with which they were able to estimate the dynamical magnetic permeability
of a ferromagnet. Some two decades later, in his doctoral thesis, Walker
[49, 43, 27] furnished an exact solution of the form (3.1) to the classical
(Landau-Lishitz and) Gilbert [22] evolution equation for the magnetization
as adapted to the flat-wall case. Walker’s solution, being explicit, permits us
to dispose of the somewhat casual asymptotics used by Landau and Lifhitz to
justify their approximations. Remarkably, constants apart, Walker’s dynamic
solution depends on the current variable ξ just as Landau-Lifshitz’ static
solution depends on the spatial coordinate x (Section 4); moreover, during
a Walker’s evolution, as noted in passing on p. 275 of [27], dissipation is
exactly compensated by external working.

This fact draws attention to the class of the Walker processes, that is to
say, those evolution processes of the magnetization field during which such a
compensation condition is fulfilled. One may ask whether, for ferromagnets
whose constitutive response is more general than the standard response, it
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24 CHAPTER 3. DYNAMICS OF DOMAIN WALLS

would still be true that, granted the compensation condition, the traveling-
wave solutions to the dynamic problem have the same form as the variational
solutions to the associated static problem. One may also ask whether there
are other Walker processes - in addition to the steady propagation motions
of type (3.1) discussed below - that solve the standard Gilbert equation, or
generalizations of it.

We introduce a procedure to derive Walker’s solution to the classical
Gilbert equation. By applying this procedure, we show that, when the
Gilbert equation is generalized by the addition of terms due to either higher-
order exchange energy or exchange dissipation (or both) [48, 38, 6, 40], the
Walker processes retain their form but do not solve the generalized Gilbert
equation. We apply our procedure again in the case when a dry-friction
dissipation term is added to the standard Gilbert equation, and we show
that, if the applied magnetic field has suitable, nonvanishing components in
the directions orthogonal to the easy axis, then there are exact solutions of
the Gilbert equation picturing 90o−walls; these solutions, however, are not
Walker processes.

Curved Walls
We model a curved domain wall by a regular, oriented surface S evolving
smoothly in time. We introduce the parameter ε = β−1, and, by using
suitable space and time coordinates, we cast the Gilbert equation in the
form:

ε2
(
(μγ)−1ṁ + m × ṁ

)
= m × (ε2Δm + (m · e)e + ε(hs + he)

)
. (3.2)

We suppose that, for each ε in a non-empty interval (0, ε), there is a vector
field mε which solves (3.2) and admits two regular expansions in powers of
ε: an outer expansion and an inner expansion; the outer expansion is valid
away from the domain wall, and captures the behavior of the magnetization
in the magnetic domains; the inner expansion describes the magnetization in
a narrow neighborhood of the domain wall.

Compatibility of the inner expansion with the field equations yields two
ODEs. The first ODE, when solved subject to the boundary data which
arise from the matching conditions for the inner and outer expansion, yields
the magnetization profile across the domain wall. In particular, for flat 180◦

walls, this solution is similar to that of Walker’s travelling wave.
Solvability of the second ODE requires that the domain wall evolves ac-

cording to:
ρ v + σ k = pe + ps . (3.3)

Here, given a time t, v = v(s, t) and k = k(s, t) are, respectively, the normal
velocity and twice the mean curvature of the wall at point s ∈ S(t); the
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quantities σ = σ(s, t) and ρ = ρ(s, t) depend on the magnetization profile
across the wall and are interpreted, respectively, as a surface tension and a
viscous-drag coefficient ; the quantities

pe(s, t) := he(s, t) · [[m]](s, t) ,
ps(s, t) := 〈〈hs〉〉(s, t) · [[m]](s, t) ,

(3.4)

are interpreted as the pressures that the external and internal magnetic field
produce on the domain wall.1

This result confirms2 that mean–curvature flow emerges in a natural way
from the Gilbert equation for high uniaxial anisotropies. Moreover, an anal-
ogy with the theory of phase transitions is suggested: since he is continuous
across the interface, the pressure exerted by the external field can be written
as

pe = [[he · m]] = [[ψe]] (3.5)

and interpreted as the jump in “chemical potential” which, together with
surface tension, drives the motion of a phase boundary in the standard theory
of phase transitions. Following a different approach, equation (3.3) may be
interpreted as a balance of configurational forces [32, 23].

The analogy becomes more evident if we note that the anisotropy–energy
density ψa(m) = 1

2
β(m · e)2 is a non–convex function on the unit sphere

(Figure 3.1.a).3 This allows us to regard the Gilbert equation as a vectorial
form of the scalar Ginzburg–Landau equation

ε2u̇− ε2Δu+ ∂uψ(u) = 0 (3.6)

which is a model equation used to describe first-order phase transitions and
to study mean-curvature flow. In the Ginzburg–Landau model, the order
parameter u, or phase field, characterizes the phase of the material; ∂uψ is the
derivative of a non-convex function ψ (Figure 3.1.b) with two local minima
ua and ub, which correspond to the two phases of the material. It has been

1Here 〈〈v〉〉 and [[v]] denote, respectively the arithmetic mean

〈〈v〉〉(s, t) =
1
2

(
lim

p→s+
v(p, t) + lim

p→s−v(p, t)
)

and the difference
[[v]](s, t) = lim

p→s+
v(p, t) − lim

p→s−v(p, t)

between the values that a vector field v assumes at each side of the surface at point
s ∈ S(t).

2See also [51, 52, 53, 54].
3Recall, from Section 1.2.2 that β is the anisotropy constant.
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Figure 3.1: (a) Anisotropy energy; (b) Ginzburg-Landau energy.

shown [41, 13, 19, 7] that, for ε→ 0, solutions of (3.6) are patchwise constant,
and phase boundaries evolve by mean curvature motion when driving forces
are absent:

v + k = 0 . (3.7)

By regarding the magnetization vector m as vectorial order parameter, one
is led to interpret magnetic domains as phases and domain walls as phase
boundaries. However, recourse to a phase–field theory is appropriate when
the two phases have distinct physical properties, sharply changing at the
phase boundary. In the case of ferromagnets, the situation is different: two
neighboring domains are made of the same physical substrate, and the jump
in the order parameter at the common wall is more a character of a class of
solutions to an initial/boundary–value problem than the result of a localized
physical process. Moreover, while a Ginzburg–Landau dynamics is intro-
duced as a somewhat artificial, “generic” tool for a better understanding of
phase transitions, the Gilbert equation rests on peculiar and explicit physical
grounds. In fact, at variance with, say, a solidification front, and ideal (i.e.
free from impurities,etc.) domain wall has no definite physical substance;
instead, it is merely the site of a spatial discontinuity.
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Figure 3.2: A Bloch wall of thickness Δ.

3.1 Flat Walls

We consider an infinite ferromagnetic body partitioned into two domains by
a flat wall parallel to the easy axis e. We suppose that the wall is of the 180o

type, i.e., that the magnetization field m, while having constant direction in
each domain, rotates from e to − e across the wall thickness Δ (Fig. 3.2).
For the external magnetic field driving the wall motion we choose

he = h e , h = a constant . (3.8)

Following the procedure of Landau & Lifshitz and Walker, for {o, c1, c2, c3}
an orthonormal cartesian frame with c3 = e and c1 orthogonal to the domain
wall, we consider solutions of the Gilbert equation in the form of a traveling
wave:

m = m(ξ) , ξ = x1 − vt . (3.9)

For the one-dimensional problem we address, the dependence of the stray
field hs on the magnetization m can be made explicit:

hs = −(m · c1 + c)c1 . (3.10)

If we set c = 0,4 the stray-field energy density (1.17) takes the form:

ψs =
1

2
(m · c1)

2 . (3.11)

4Whenever c �= 0 the physical effect of the part c1 of the stray field can be cancelled
by the addition of a suitable external field.
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To prove (3.10), we introduce the usual representation of the stray field in terms
of the scalar potential H:

hs = −∇H ; (3.12)

we note that, due to (3.9),5

div m = m′ · c1 = (m · c1)′ ; (3.13)

and, finally, we write equation (3.101)2 as

�H = (m · c1)′, (3.14)

where, for t fixed, the right side is depends at most on x1. But then the represen-
tation formula for the solutions of the Poisson equation implies that H=H(x1, t),
and hence the stray field is parallel to c1:

hs =−H ′ c1 , H ′(x1, t) = (m(x1, t) · c1) + c(t) . (3.15)

The desired conclusion follows when we dispose of the arbitrary function c(t) by
requiring that lim

x1→±∞hs(x1, t) = 0.

With (3.11), the density of internal energy can be given the following explicit
forms:

ψi =
1

2
α (m′)2 +

1

2
Tm · m , (3.16)

with
T := −β e ⊗ e + c1 ⊗ c1 , (3.17)

where use has been made also of (1.9) and (1.11). Substituting (3.16) in
(1.18) and using the definition (1.6)2 we find, for the internal magnetic field:

hi = αm′′ + β(e · m)e − (c1 · m)c1 , (3.18)

or rather, with the use of (3.17),

hi = αm′′ − Tm . (3.19)

3.1.1 Preliminaries

Let e, ϕ and ϑ be, respectively, the polar axis and the parallel and meridional
coordinates in a system of spherical coordinates. Moreover, let

a = a(ϕ) = − sinϕ c1 + cosϕ c2 (3.20)

be the unit vector orthogonal to both e and m = m(ϕ, ϑ, t) and such that
a · e × m > 0 (Fig. 3.3). Then, with the use of the orthonormal basis

5For f a function of a real variable, f ′ denotes its derivative.
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Figure 3.3: Polar coordinates.

(a, e,Ae), where A = A(ϕ) is the skew tensor uniquely associated to a:

Ae = a × e = cosϕ c1 + sinϕ c2 , (3.21)

we have that

m = cosϑ e + sinϑAe , (3.22)

ṁ = sinϑ ϕ̇ a + ϑ̇Am , (3.23)

where

Am = a × m = − sin θ e + cos θAe ; (3.24)

hence,

m × ṁ = ϑ̇ a − sinϑ ϕ̇Am , (3.25)

so that, in particular,

e · m × ṁ = sin2 ϑ ϕ̇ . (3.26)

3.1.2 Walker processes

We are especially interested in finding circumstances when the external work-
ing balances the dissipation pointwise:

−he · ṁ + d = 0 .6 (3.27)

6Trivially, this compensation condition implies that, if the external working is null, so
is dissipation; but then, as it is not difficult to deduce from (2.5), thermodynamics only
allows for static processes. As a matter of fact, the Landau-Lifshitz solution is a static
Walker process.
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Under such circumstances,

d

dt
Ψe +

∫
Ω

d = 0 , (3.28)

and hence, due to the Liapounov relation (2.6), the internal free-energy is
globally conserved :

d

dt
Ψi = 0 . (3.29)

More precisely, we are interested in finding solutions, if any, of the generalized
Gilbert equation (2.1) by looking into the set of the Walker processes, i.e.,
the solutions of the scalar equation (3.27); we refer to the latter as the Walker
condition.

In conclusion, the Walker equation (3.27) becomes

(−h e + μ ṁ) · ṁ = 0 .7 (3.30)

Moreover, the generalized Gilbert equation (2.1) reduces to the standard
form

γ−1ṁ = m × (hi + h e − μ ṁ) ; (3.31)

the equivalent scalar system (2.2) is

− γ−1ṁ · ṁ = (hi + h e) · m × ṁ ,
0 = (hi + h e − μ ṁ) · ṁ .

(3.32)

Thus, for a Walker process (a solution of (3.30)) to be a Gilbert process (a
solution of (3.31)), it has to satisfy

− γ−1ṁ · ṁ = (α�m − Tm + h e) · m × ṁ ,
0 = (α�m − Tm) · ṁ .

(3.33)

We show that one such solution exists in the next section.

3.1.3 Satisfying the Walker condition

With (3.23), the Walker equation (3.30) becomes:

h sinϑ ϑ̇+ μ (sin2 ϑ ϕ̇2 + ϑ̇2) = 0 . (3.34)

7An interesting consequence of (3.30) is that

h(m · e)� ≥ 0

along all Walker processes.



3.1. FLAT WALLS 31

We here restrict attention to traveling-wave solutions to (3.34) being of type
(3.1) and such that

ϕ(ξ) = ϕo = a constant, (3.35)

so that, in particular,
ϑ̇ = − v ϑ′ . (3.36)

Under the provisional assumptions that both the propagation velocity v and
ϑ′ be not null and that the signs of v and the datum h be the same, we write
equation (3.34) in the simple form

ϑ′(ξ) = c sinϑ(ξ), ξ ∈ (−∞,+∞), c =
h

μv
. (3.37)

Equation (3.37) is directly reminiscent of the equation derived by Landau
and Lifshitz in their classical paper:

ϑ′2 =
β

α
sin2 ϑ , (3.38)

that is, equation (8) of [30]. The solution of (3.37) can be read off equation
(9) of [30], and is

ϑ(ξ) = arccos
1 − exp(2 c ξ)

1 + exp(2 c ξ)
. (3.39)

Remark 1. For a flat domain wall parallel to the easy axis e and perpendic-
ular to c1, centered at ξ = 0, and of thickness 2ξ0, we expect the conditions

m(∓ξ0) = ± e . (3.40)

to be satisfied at the boundary. However, Dirichlet-type conditions such as
(3.40) do not seem physically realizable in micromagnetics: instead, Neu-
mann conditions, such as

∂c1m(∓ξ0) = 0 , (3.41)

have a physical sense that is not questioned.8 Walker’s solution effectively
concentrates about ξ = 0 most of the rotation of m from e to − e, although
it spreads that rotation over the whole real line. Moreover, for any traveling-
wave process of the type we are considering,

∇m = m′ ⊗ c1, m′ = ϑ′Am . (3.42)

Thus, the boundary condition (3.41) takes for Walker’s solution the limit
form

ϑ′(±∞) = 0 , (3.43)

8In the present case, the boundary normal is n = ± c1 for ξ = ± ξ0; ∂c1m = (∇m)c1.
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or rather, with the use of (3.37)1,

sinϑ(±∞) = 0 ; (3.44)

this last condition, with (3.22), yields

m(ϑ(∓∞)) = ± e , (3.45)

in agreement with (3.40). ♦

3.1.4 Solving the Gilbert equation

Consider now the vectorial equation (3.31) and, with (3.23)-(3.26), replace
it by the following system of two scalar evolution equations:

−γ−1 ϑ̇ = (hi + d) · a ,
γ−1 sinϑ ϕ̇ = (hi + d) · Am − h sinϑ ,

(3.46)

where of course hi and d are given by (3.19) and (2.11), respectively. This
system is equivalent to system (3.32) and, as we proceed to show, more
convenient to arrive to a quick and complete derivation of the traveling-wave
solutions to equation (3.31); the derivations one finds in the literature move
instead from (3.32).

For a steadily propogating magnetization process consistent with (3.35),
that is to say, for m(ϑ(x− vt)), we have that

ṁ = −vm′, �m = m′′ , m′′ = ϑ′′ Am − ϑ′2 m , (3.47)

(cf. (3.17) and (3.19)) so that

d · a = 0 , d · Am = μv ϑ′ ,
hi = α(ϑ′′Am − ϑ′2m) − Tm , Tm = −β(m · e)e + (m · c1)c1 ,

(3.48)

moreover,
Tm · a = − sinϕo cosϕo sinϑ ,

Tm · Am = (β + cos2 ϕo) sinϑ cosϑ .
(3.49)

Thus, the system (3.46) reduces to

v ϑ′ = γ sinϕo cosϕo sinϑ ,
0 = αϑ′′ − (β + cos2 ϕo) sinϑ cosϑ+ μv ϑ′ − h sinϑ .

(3.50)

For the Walker solution (3.39) of equation (3.37) to be a solution of this
system as well, the second equation must further reduce to

αϑ′′ = (β + cos2 ϕo) sinϑ cosϑ .9 (3.51)

9Note that the system (3.33) reduces precisely to the system of this equation and the
first of (3.50).
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In addition, the so-far indeterminate constants v and ϕo must satisfy the two
consistency conditions with the datum h resulting from substitution of (3.39)
and its derivative into, respectively, (3.50)1 and (3.51). These conditions are:

h = μγ sinϕo cosϕo , (3.52)

and (
h

μv

)2

=
β + cos2 ϕo

α
. (3.53)

Just as the Walker condition (3.37), the first equation of the Gilbert system
(3.50) requires that ϑ′ and sinϑ be proportional; for it to be consistent with
the second, both (3.52) and (3.53) must hold. There is no need to determine
the actual shape (3.39) of the Walker solution to deduce directly from (3.52)-
(3.53) that, for whatever external field satisfying

h ≤ 1

2
μγ , (3.54)

the steady propagation of a plane magnetization wave m(ϑ(x − vt)) is pos-
sible, with the one or the other of the two velocities:

v =
h

μ

√
α

β + cos2 ϕo

, (3.55)

cos2 ϕo =
1

2

(
1 ±

√
1 −

(2h

μγ

)2 )
. (3.56)

Combination of the first of these relations with the last of (3.37) yields for
the constant c the value Δ−1, with

Δ :=

√
α

β + cos2 ϕo

; (3.57)

we can take Δ, the material parameter that would drive a conceivable sharp-
interface asymptotics, as a measure of the wall thickness.

Remark 2. For h, and hence v, equal to zero, (3.52) gives ϕo = π/2: the
wall is a Bloch wall (no stray field), of thickness Δ = (α/β)1/2, as Landau
and Lifshitz [30] found by solving the extremum problem∫ +∞

−∞
(
1

2
αϑ′2 − 1

2
β cos2 ϑ) dx = min , (3.58)

whose Euler-Lagrange equation is

αϑ′′ − β sinϑ cosϑ = 0 (3.59)

(cf. (3.51)). ♦
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3.1.5 High-order exchange energy and exchange dissi-
pation

We now investigate whether the method we propose to generate the Walker
solution continues to work for ferromagnets of more general constitutive re-
sponse than the standard response. We take the expressions for the internal
energy density and for the dissipation potential to be

ψi =
1

2
α |∇m|2 +

1

2
Tm · m +

1

2
λ |�m|2 , λ > 0 , (3.60)

and

χ =
1

2
μ |ṁ|2 +

1

2
τ |∇ṁ|2 , τ > 0 (3.61)

(cf., respectively, (3.16) and (2.10)). Then, the Walker equation becomes

(−h e + μ ṁ) · ṁ + τ ∇ṁ · ∇ṁ = 0 . (3.62)

Moreover, the internal magnetic field and the dissipation field become

hi = α�m − Tm − λ��m (3.63)

and
d = −μ ṁ + τ �ṁ , 10 (3.64)

so that the corresponding generalized Gilbert equation is

γ−1ṁ = m × (α�m − Tm − λ��m

+h e − μ ṁ + τ�ṁ) . (3.65)

Remark 3. The scalar system equivalent to (3.65) can still be written in
the form (3.46), of course with hi and d now given by (3.63) and (3.64).
The mathematical effects of the high-order exchange terms in (3.65) have
been studied in [6] and [40] (see also [38], [24] ). From the physical point of
view, the relative importance of the these terms is measured by two additional
material parameters, both having the dimensions of a length: these are Δe :=
(λ/α)1/2 and Δd := (τ/μ)1/2. ♦

10Note that, in the place of relation (2.12), we now have

d · ṁ + d = τ(�ṁ + ∇ṁ · ∇ṁ) = τ div ((∇ṁ)tṁ) .
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Under the present circumstances, it is convenient to supplement (3.42) and
(3.47) with the additional relations

∇ṁ = − vm′′ ⊗ c1 , �ṁ = − vm′′′, ��m = m′′′′ ,

m′′′ = (ϑ′′′ − ϑ′3)Am − 3ϑ′ϑ′′ m , (3.66)

m′′′′ = (ϑ′′′′ − 6ϑ′2ϑ′′)Am − (4ϑ′ϑ′′′ − ϑ′4 + 3ϑ′′2)m .

With the help of these formulae, equation (3.62) can be written in the fol-
lowing form, when restricted to processes of the type m(ϑ(x− vt)):

−h sinϑϑ′ + μv ϑ′2 + τv (ϑ′′2 + ϑ′4) = 0 . (3.67)

It is not difficult to check that this equation admits solutions of the form
(3.37). In fact, the admissible value of the constant C := c2 is the only real
and positive solution C0 = C0(μ, τ, v, h) of the following algebraic system:

τ

μ
C3 + C − h

μv
= 0. (3.68)

(note that (3.53) is recovered from (3.68) for τ equal to zero).
It remains for us to check whether the solution we found for (3.67) also

solves the generalized Gilbert equation (3.65). It is easy to predict a negative
outcome. In fact, with the generalized energy density (3.60), the Landau-
Lifshitz functional (3.58) becomes∫ +∞

−∞
(
1

2
αϑ′2 − 1

2
β cos2 ϑ+

1

2
λϑ′′2) dx = min , (3.69)

and the associated Euler-Lagrange equation,

αϑ′′ − β sinϑ cosϑ− λϑ′′′′ = 0 , (3.70)

has no solution of type (3.39). However, to perform a thorough, conclusive
check, we observe that, when m = m(ϑ(x − vt)), the generalized Gilbert
equation reads

−vγ−1m′ = m × (αm′′ − Tm − λm′′′′

+h e + μvm′ − τvm′′′) , (3.71)

and is equivalent to a system consisting of the first equation of (3.50) (because
both higher-order terms have a null orthogonal projection in the direction of
a) and the following modification of the second

0 = αϑ′′ − (β + cos2 ϕo) sinϑ cosϑ+ μv ϑ′ − h sinϑ

−λ(ϑ′′′′ − 6ϑ′2ϑ′′) − τv(ϑ′′′ − ϑ′3) . (3.72)
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For these equations to be compatible, once again there must be such a con-
stant C that

ϑ′ = C sinϑ , (3.73)

with

v C = γ sinϕo cosϕo , (3.74)

and with the following algebraic condition satisfied whatever the angle ϑ in
(0, π):

0 = (αC2 − (β + cos2 ϕo)) cosϑ+ μv C − hext

−λC4(12 cos2 ϑ− 11) cosϑ− τv C3(3 cos2 ϑ− 2), (3.75)

However, this last requirement is impossible to satisfy exactly, unless of
course both λ and τ are equal to zero.11

3.1.6 Dry-friction dissipation

We now propose a generalization of Walker’s solution to the case when a
dry-friction term is included in the dissipation vector. Precisely, we take the
dissipation potential to be

χ =
1

2
μ |ṁ|2 + η |ṁ| , (3.78)

with μ and η positive constants, so that the dissipation vector d becomes

d = −μ ṁ + η f(ṁ) (3.79)

where
− f(ṁ) = |ṁ|−1ṁ for ṁ �= 0 ,
− f(0) ∈ {v | |v| ≤ 1} , (3.80)

11Relation (3.73) has the following differential consequences:

ϑ′′ = C2 sinϑ cosϑ,
ϑ′′′ = C3(cos2 ϑ− sin2 ϑ) sinϑ,
ϑ′′′′ = C4(cos2 ϑ− 5 sin2 ϑ) sinϑ cosϑ,

(3.76)

whence

ϑ′′′′ − 6ϑ′ 2ϑ′′ = C4(cos2 ϑ− 11 sin2 ϑ) sinϑ cosϑ
ϑ′′′ − ϑ′3 = C3(cos2 ϑ− 2 sin2 ϑ) sinϑ .

(3.77)

Condition (3.75) obtains when we substitute (3.77) into (3.72).
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is the dry-friction mapping. Next, we replace the prescription (3.8) for the
applied magnetic field by the following more general prescription:

he = h e + haa + hAeAe, (3.81)

where all three components of he, not only h, are control parameters we can
assign the constant values we wish. With (3.79)-(3.81), the Walker condition
(3.27) takes the general form

−ha sinϑ ϕ̇+ (h sin θ − hAe cos θ)ϑ̇

+μ(sin2 ϑ ϕ̇2 + ϑ̇2) + η |(sin2 ϑ ϕ̇2 + ϑ̇2)1/2| = 0 ,
(3.82)

and the simpler form

−h sin θ + hAe cos θ + μv ϑ′ + η sign (vϑ′) = 0 (3.83)

for processes of the type m(ϑ(x − vt)). Likewise, with (3.81) we can write
the Gilbert system as

−γ−1 ϑ̇ = (hi + d) · a + ha ,
γ−1 sinϑ ϕ̇ = (hi + d) · am − h sinϑ+ hAe cosϑ ;

(3.84)

with (3.79) and (3.80), and for processes of the type m(ϑ(x−vt)), this system
becomes

v ϑ′ = γ sinϕo cosϕo sinϑ− γha ,
0 = αϑ′′ − (β + cos2 ϕo) sinϑ cosϑ+ μv ϑ′ − h sinϑ

+ hAe cosϑ+ η sign (vϑ′) .

(3.85)

As a glance to (3.83) and the first of (3.85) makes evident, no solution of
the former equation can also solve the latter, unless perhaps hAe = 0. Now,
mutual consistency of the equations (3.85) is guaranteed provided that the
constants h, v and ϕo satisfy the conditions (3.52)-(3.53) and that, in addi-
tion, the remaining components of the control field be such that

ha =
η

μγ
sign (vϑ′) , hAe =

αη

(μv)2
h sign (vϑ′) . (3.86)

Thus, for hAe to be null, h should be null as well, a circumstance when, as
is easily seen, the system (3.85) has no solution for η �= 0. We must then
conclude that, in the presence of dry friction, no Walker process solves the
Gilbert equation. This notwithstanding, an explicit solution to the Gilbert
equation can be found. Assuming that all consistency conditions hold, we
can write (3.85)1 in the form

ϑ′(ξ) =
1

Δ
(sinϑ(ξ) + r) , r = − η

|h| signϑ′ , (3.87)
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with Δ given by (3.57). An easy continuity argument shows that the sign of
ϑ′ must be constant for class-C1 solutions of (3.87).12 Hence, we treat r in
(3.87) as a constant parameter. Granted this, solutions of (3.87) exist only
for |r| < 1, and have the form

ϑ(ξ) = −sign (r) arccos
1 − f 2(ξ)

1 + f 2(ξ)
, (3.88)

(cf. (3.39)), where

f(ξ) =
f2 F exp (ξ/Δr) − f1

F exp (x/Δr) − 1
, (3.89)

f1 =
−1 +

√
1 − r2

r
, f2 =

−1 −√
1 − r2

r
, (3.90)

F =
1 − |r| − √

1 − r2

1 − |r| + √
1 − r2

; (3.91)

moreover,

Δr =
1√

1 − r2
Δ (3.92)

is the thickness of the transition layer when dry-friction is accounted for.
Note that, for r small, f1 ≈ −r/2, f2 ≈ −2/r and F ≈ r/2; therefore,
when the dry-friction coefficient η is small, f(ξ) ≈ − exp(ξ/Δ) and Walker’s
solution is recovered. Note also that the wall thickness becomes larger when
the dry-friction coefficient increases (Figure 3.4). Finally, as to the limit
values of the magnetization, one finds that

lim
ξ→±∞

m(ξ) = ±
√

1 − r2 e + r e × a . (3.93)

3.2 Curved Walls

3.2.1 Dimensionless equations

We begin by introducing the dimensionless variables

x =
x̄

L
, t =

t̄

T
, (3.94)

where x̄ and t̄ are the original space and time variables, and L and T are suit-
able length and time scales to be selected at a later stage. In dimensionless

12Interestingly, it also follows from (3.87) that, for class-C0 solutions, the jump in ϑ′

must equal 2 |r|.
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Figure 3.4: The effect of dry friction.

variables, the Gilbert equation (2.13) reads

1

β

μ

T

(
(μγ)−1ṁ + m × ṁ

)
= m ×

(
1

β

α

L2
Δm + (m · e)e +

1

β
(hs + he)

)
,

(3.95)
while the Maxwell’s equations are unchanged.

Next, with a view toward a formal asymptotic analysis of (3.95), we
introduce the smallness parameter

ε = β−1 . (3.96)

From a physical point of view, we are considering a class of hard ferromagnetic
materials with increasing anisotropy energy, with a view toward constructing
a corresponding class of solutions. The aim is to fetch as much information
as we can about the behavior of these solutions when the anisotropy energy
goes to infinity.

The analysis of flat walls yields the following estimates for the dimension-
less thickness Δ and velocity c of a flat domain wall:

Δ ≈
√
α

β

1

L
; (3.97)

c ≈ 1

μ

√
α

β

T

L
|he| . (3.98)

If we are to regard a domain wall as a sharp interface, it is natural to ask
that Δ be a O(ε) quantity. Further, it is reasonable to select a time scale T
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such that c is O(1). This motivates us to select

L = ε−1

√
α

β
, T = ε−1μ . (3.99)

The Gilbert equation now reads

ε2
(
(μγ)−1ṁ + m × ṁ

)
= m × (ε2Δm + (m · e)e + ε(hs + he)

)
, (3.100)

where, we recall, hs is the stray field, and he is the external field.

The Maxwell equations retain their form:

div (hs + χΩεm) = 0 ,
curl hs = 0 ,

(3.101)

where Ωε is the image of Ω under the scaling (3.99)1.

3.2.2 Normal coordinates with respect to an evolving
surface

Consider a smooth oriented surface S(t) evolving smoothly in an Euclidean
space E , and let n = ň(s, t) be the positively-oriented unit vector orthogonal
to S(t) at point s ∈ S(t). We denote with Wε(t) the tubular neighborhood of
thickness 2ε(t) of S(t), that is, the set formed by points p ∈ E such that

p = s + q ň(s, t) , s ∈ S(t) , q ∈ (−ε,+ε) . (3.102)

Moreover, we let ε(t) be the largest ε such that for each p ∈ Wε(t) there is
exactly one point s ∈ S(t) which solves the minimum problem

min
y∈S(t)

|p− y| . (3.103)

Now, fix a time t1 ∈ R, and an interval T = (t0, t2) containing t1. If T is
small enough, the set defined by

Wε =
⋂
t∈T

Wε(t) , ε = min
t∈T

ε(t) (3.104)

(see Fig. 3.5) is not empty, and for each (p, t) ∈ Wε × T , the minimum
problem (3.103) has exactly one solution s ∈ S(t). We denote by ŝ the
mapping that associates such minimal distance point to p:

s = ŝ(p, t) ; (3.105)
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Figure 3.5: The set Wε.

and we denote by r the scaled and signed distance map

r = r̂(p, t) := ε−1
(
(p− ŝ(p, t)) · ň(ŝ(p, t), t)

)
. (3.106)

We observe that: (i) for each t ∈ T , the image of Wε under the mapping
ŝ(·, t) is the surface S(t); (ii) εr is the signed distance of the point p from
S(t), and r ∈ (−1,+1); (iii) the relation

p = ŝ(p, t) + ε r̂(p, t)n̂(p, t) , n̂(p, t) := ň(ŝ(p, t), t) , (3.107)

is identically verified in Wε × T .
Differentiating the identity (3.107) with respect to time, we obtain

0 = ṡ + ε(ṙn + rṅ) , (3.108)

whence the following expression for V := ṡ · n, the normal velocity of the
surface S(t):

V = −εṙ ; (3.109)

the field V = V̂ (p, t) delivers the normal velocity of the point s = ŝ(p, t) of
S(t). Furthermore, taking the gradient of (3.107) we obtain

1 = ∇s + ε(r∇n + n ⊗∇r) . (3.110)

Since the normal field is unitary and since (∇st)n, it follows from this rela-
tion that

∇r = ε−1n ; (3.111)

consequently, (3.110) yields

∇s = P − εr∇n , P := 1 − n ⊗ n , (3.112)

where P is orthogonal projector on the tangent plane to S(t).
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3.2.3 Matched asymptotic expansions

We assume that the domain wall has the form of the regular surface S(t)
devised in the previous section.

Let mε and hs
ε be solutions of the scaled Gilbert equation (3.100) and the

Maxwell equations (3.101) for ε in an open interval (0, ε), and assume that
there exist two regular expansions in powers of ε:
the outer expansion

mε(p, t)=m̂0(p, t) + εm̂1(p, t) + o(ε) ,

hs
ε(p, t)=ĥs

0(p, t) + εĥs
1(p, t) + o(ε) ;

(3.113)

and the inner expansion

mε(p, t)= m̌0r̂(p, t), ŝ(p, t), t) + εm̌1(r̂(p, t), ŝ(p, t), t) + o(ε) ,

hs
ε(p, t)=ȟs

0(r̂(p, t), ŝ(p, t), t) + εȟs
1(r̂(p, t), ŝ(p, t), t) + o(ε) .

(3.114)

At time t, the fields which compose the outer expansion (3.113) are assumed
to be smooth in E\S(t), and are presumed to represent the solution mε in
E\Wε(t), that is, away from the domain wall; the inner expansion (3.114) is
supposed to hold in a tubular neighborhood Wh(ε)(t) of S(t), with h(ε) such
that

lim
ε→0

h(ε) = 0 , lim
ε→0

h(ε)/ε = ∞ . (3.115)

Since the domains of validity of the two expansions overlap, we stipulate that
the matching conditions

lim
r→±∞

m̌0(r, s, t) = m̂0(s±, t) (3.116)

hold for all s ∈ S(t) at time t (a justification is given below in small writ-
ings). Here m̂0(s+, t) and m̂0(s−, t) denote the limits of m̂0(p, t) obtained
by letting p approach s ∈ S(t), respectively, from the positive and negative
side of the oriented surface S(t). Analogous relations hold for hs.

Both the inner and the outer expansion are valid for 1 < r < h(ε)/ε, therefore we
can write (omitting time dependence for brevity)

N∑
n=0

εn (m̌n(r, s) − m̂n(s + εrn)) + o(εN ) = 0 , ∀ ε, r s.t. 1 < r <
h(ε)
ε

.

By expanding the right-hand side in powers of ε we obtain

N∑
n=0

εn (m̂n(r, s) − Pn(r, s)) + o(εN ) = 0 ,
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where

Pn(r, s) =
n∑

k=0

rn−k

(n− k)!
∂

(n−k)
n m̂k(s)

is a polynomial in the variable r, of order at most n. Therefore, we have

m̌n(r, s) → Pn(r, s) for r → ∞ .

The matching condition (3.116) obtains for n = 0.

3.2.4 Magnetic domains

For the first expansion to be compatible with the constraint |m| = 1 we
stipulate that:

|m̂0| = 1 , m̂0 · m̂1 = 0. (3.117)

Substituting the expansion (3.113) in the Maxwell equations (3.101), we have

div ĥs
i = −div m̂i ,

curl ĥs
i = 0 ,

(3.118)

for all i. Substituting (3.113) in the the scaled form (3.100) of the Gilbert
equation, and retaining the O(1) and O(ε) terms, we obtain, respectively,

m̂0 × (e · m̂0)e = 0 (3.119)

and

m̂1 × (e · m̂0)e − m̂0 × (e ⊗ e)m̂1 − m̂0 × (ĥs
0 + he) = 0. (3.120)

Equation (3.119) implies that, in the limit ε→0, m̂0 must be either parallel
or orthogonal to e.

3.2.5 Estimates

We now compute some estimates of the derivatives of the fields m and hs in
terms of the variables r, s and t. As pointed out in [21], some care is needed
because (r, s) is a time-dependent coordinate system.

To fix ideas, let φ = φ̂(p, t) be a scalar field, and let

φ̌t : R × S(t) → R , t ∈ R , (3.121)

be a family of mappings such that

φ̂(p, t) = φ̌t(r(p, t), s(p, t)) . (3.122)
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In order to compute φ� in terms of the function φ̌t, we may be tempted to
apply the chain rule to (3.122) to obtain:

φ� = ∂sφ̌t · ṡ + ∂rφ̌t ṙ + ∂tφ̌t . (3.123)

However, the partial derivative of φ̌t with respect to t holding s fixed is not
defined because s belongs to the time-dependent surface S(t). We overcome
this difficulty by introducing the smooth mapping φ̌ : R×E×R → R defined
by

φ̌(r, p, t) := φ̌t(r, ŝ(p, t), t) . (3.124)

Note that the requirement that S(t) evolves smoothly in time is crucial to
ensure that the mapping φ̌ be smooth with respect to all its arguments.

Now, the partial derivatives of φ̌ are well defined, and we can apply the
chain rule to obtain

∇φ̂(p, t) = ε−1∂rφ̌(r, s, t)∇r̂(p, t) + ∇ŝ(p, t)t∇sφ̌(r, s, t) , (3.125)

φ̂�(p, t) = ∂tφ̌(r, s, t) + ∂rφ̌(r, s, t)r̂�(p, t) + ∇sφ̌(r, s, t) · ŝ�(p, t) , (3.126)

where we have set
∇sφ̌(r, s, t) := ∇yφ̌(r, y, t)|y=s . (3.127)

Note that
∇sφ̌(r, s, t) · n̂(s, t) = 0. (3.128)

To give (3.125) and (3.126) a more usable format, some further computations
are needed. To make our notation lighter, we will use φ as a shorthand both
for φ̂ and for φ̌, being understood that we are referring to the former when
we write ∇φ and φ�, and to the latter when we write ∂rφ, ∇sφ and ∂tφ. In
addition, we will omit the dependence on the variables (p, t) or (r, s, t) when
there is little risk of confusion.

By virtue of (3.109)-(3.112) and (3.128), equations (3.125) and (3.126)
become, respectively,

∇φ = ε−1∂rφn + ∇sφ− εr∇nt∇sφ (3.129)

and
φ� = −ε−1V ∂rφ+ ∂tφ− εr∇sφ · ṅ . (3.130)

By applying the above considerations to a vector field v, we find, in a similar
fashion:

∇v = ε−1∂rv ⊗ n + ∇sv − εr∇sv∇n ; (3.131)

v̇ = −ε−1V ∂rv + ∂tv − εr∇sv · ṅ . (3.132)
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Finally, by making repeated use of the identitities (3.129) and (3.131), we
can compute Δv:

Δv = ε−2∂rrv + ε−1(div n)∂rv + div ∇sv − εrdiv (∇sv∇n). (3.133)

By applying (3.131) to n and taking into account that ∂rn = 0, we have
∇n = ∇sn(P − εr∇n). Moreover, since the surface gradient of n does not
depend on r, 13 we can write

∇sn = −L , (3.134)

where

L(s, t) ≡ −∇sn(0, s, t)

is the Weingarten Tensor, and hence

div n = −tr (L + εr∇n) = −K − εr∇sn · ∇n , (3.135)

where K is twice the the mean curvature of S(t) at the point s = ŝ(p, t),
and we conclude that:

Δv = ε−2∂rrv − ε−1K∂rv + div ∇sv − r(∇sn · ∇n)∂rv − εrdiv (∇sv∇n).
(3.136)

By applying (3.131), (3.132) and (3.136) to the inner expansions (3.114), we
obtain the following estimates:

ṁ = −ε−1V ∂rm0 + ∂tm0 − V ∂rm1 +O(ε);

div m = tr∇m = ε−1∂rm0 · n + tr∇sm1 + ∂rm1 · n +O(ε);

Δm = ε−2∂rrm0 − ε−1(K∂rm0 − ∂rrm1) +O(1).

(3.137)

Similar estimates hold for the stray field hs; in particular, we need the fol-
lowing:

curl hs = ε−1n × ∂rh
s
0 + (curlsv)n + n × ∂rh

s
1 +O(ε) , (3.138)

where curlsv = tr∇s(n × v).

13By definition
∇sn(r, s, t) = ∇yn(r, y, t)|y=s,

and hence ∂r(∇sn) = ∂r(∇yn) = ∇y(∂rn) = 0.
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3.2.6 Motion by curvature of domain walls

Substituting the estimates (3.137) in the scaled Gilbert equation (3.100),
and retaining the O(1) term, we find that m̌0(·, s, t) must solve the following
ODE

0 = m̌0(r, s, t) × (∂rrm̌0(r, s, t) + (m̌0(r, s, t) · e)e) , (3.139)

with boundary data at r = ±∞ determined by the outer expansion through
the matching conditions (3.116).

Remark 4. For a 180◦ wall, with m̂0(s−, t) = e and m̂0(s+, t) = −e (Fig.
3.6a), the ODE (3.139) is solved if

m̌0(r, s, t) · e = − tanh(r + r0) , r0 = a constant , (3.140)

and m̌0(r, s, t)× e has constant direction. In this case, a Walker-like magne-
tization profile is recovered (Fig. 3.6b). ♦

Figure 3.6: (a) A curved 180◦-wall; (b) the magnetization goes from the e to
−e along a meridian of the unit sphere.

Substituting the inner expansions into the Maxwell equations and retaining
the O(1) terms, we have:

∂r(ȟs
0 + m̌0) · n = 0 , ∂rȟs

0 × n = 0 . (3.141)

Using again (3.116) for m̂, and the analogous relation

lim
r→±∞

ȟs
0(r, s, t) = ĥs

0(s±, t) , (3.142)
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for ĥs, equations (3.141) yields the jump conditions at the surface:

[[ĥs
0 + m̂0]] · n = 0 ;

[[ĥs
0]] × n = 0 .

(3.143)

Collecting all the O(ε)-terms in the Gilbert equation, we obtain

0 = m̌0 × (∂rrm̌1 −K∂rm̌0 + (e ⊗ e)m̌1 + he + ȟs
0)

+ m̌1 × (∂rrm̌0 + (m̌0 · e)e)
+ V ((γμ)−1∂m̌0 + m̌0 × ∂rm̌0) .

(3.144)

Taking the cross product of both sides of (3.144) with m̌0 we obtain the ODE

A0[m̌1(·, r, t)] = b0(·, s, t) , (3.145)

where A0 is the differential operator defined by

A0[v] = −P0(∂rrv + (e ⊗ e)v) +
(
(m · e)2 − |∂rm̌0|2

)
v , (3.146)

with P0 = I − m̌0 ⊗ m̌0, and14

b0 = V
(
∂rm̌0 − (μγ)−1m̌0 × ∂rm̌0

)−K∂rm̌0 + P0(h
e
0 + ȟs

0) . (3.147)

Differentiating (3.139) with respect to r, and taking the cross-product with
m̌0, one finds 15

A0∂rm̌0 = 0; (3.148)

furthermore, a standard integration-by-parts argument yields:∫ +∞

−∞
Am̌1 · ∂rm̌0dr = −

∫ +∞

−∞
A ∂rm̌0 · m̌1dr . (3.149)

By taking the scalar product of both sides of (3.145) with ∂rm̌0, integrating
with respect to r, and using (3.148) and (3.149), we find∫ +∞

−∞
b0 · ∂rm̌0 dr = 0 . (3.150)

This is a necessary condition that b0 must fulfill in order for (3.145) to admit
a solution, and it can be written as

(V −K)g − pe − ps = 0, (3.151)

14We recall that V is the normal velocity of the surface andK is twice its mean curvature.
15This reflects the fact that equation (3.139) is translation invariant with respect to r.
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where16

g(s, t) =

∫ +∞

−∞
|∂rm̌0(r, s, t)|2dr, (3.152)

and

pe(s, t) = −
∫ +∞

−∞
he(s, t) · ∂rm̌0(r, s, t) dr

ps(s, t) = −
∫ +∞

−∞
ȟs

0(r, s, t) · ∂rm̌0(r, s, t)dr.

(3.153)

As proven below in small writings, equations (3.153) may be rewritten as

pe = −he · [[m̂0]] , ps = −〈〈ĥs
0〉〉 · [[m̂0]] , (3.154)

where

〈〈ĥs
0〉〉 =

1

2

(
ĥs

0(s+) + ĥs
0(s−)

)
(3.155)

is the mean between the values assumed by ĥs
0 at the two sides of the surface.

The first of (3.154) is a straightforward consequence of the matching conditions
between m̌0 and m̂0, repeated here for the reader’s sake:

lim
r→±∞ m̌0(r, s, t) = m̂0(s±, t) . (3.156)

To prove (3.154)2, note that, as a consequence of (3.141), the vector

ȟs
0(r, s, t) + (m̌0 · n)(r, s, t)n(s, t) (3.157)

is constant with r. Then, use the matching conditions (3.156) and the analogous
conditions for ȟs

0 and ĥs
0:

lim
r→±∞ ȟs

0(r, s, t) = ĥs
0(s±, t) (3.158)

to obtain

ȟs
0(r, s, t) = 〈〈ĥs

0〉〉(s, t) +
(
〈〈m̂0 · n〉〉(s, t) − (m̌0 · n)(r, s, t)

)
n(s, t) . (3.159)

Finally, substitute the above equation in (3.153)2 and integrate to find

−ps = 〈〈ĥs
0〉〉 · [[m̂0]] + 〈〈m̂0 · n〉〉[[m̂0 · n]] − 1

2
[[(m̂0 · n)2]] , (3.160)

then use the identity
[[a2]] = 2[[a]]〈〈a〉〉 (3.161)

16For a 180◦-wall (cf. Remark 4), we have g = 1.
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to obtain the desired conclusion. �

Going back to the original space and time variables, the normal velocity v
and the curvature k are given by

v = T−1LV , k = L−1K , (3.162)

and equation (3.151) reads

ρ v − σ k = pe + ps , (3.163)

where,

ρ := gμ

√
β

α
(3.164)

is the viscous–drag coefficient and

σ := g
√
αβ (3.165)

is the surface tension of the domain wall; pe and ps are the driving forces
produced, respectively, by the external and the stray field.

Remark 5. If the effect of curvature and stray field is negligible (k = 0,
hs = 0), the normal velocity is proportional to he:

v = (gμ)−1

√
α

β
[[m̂0]] · he . (3.166)

Moreover, for 180◦-domain walls (see Remark 4), we have g = 2 and [[m̂0]] =
2e, and the above equation becomes:

v =
h

μ

√
α

β
, h = e · he . (3.167)

Note that the same result obtains by differentiating with respect to h the
velocity of Walker’s travelling solution as given by (3.55) and (3.56). ♦


