Chapter 2

Dynamical Micromagnetics

2.1 The Generalized Gilbert Equation

In a saturated, undeformable ferromagnet occupying the region 2, the evo-
lution of the magnetization vector is ruled by the Gilbert equation:

v 'm=mx (h+d), (2.1)

where v > 0 is the gyromagnetic ratio, h the effective magnetic field (cf. eq.
(1.3)) and d the dissipation field. This equation is a formal generalization of
the classical model equation due to Landau & Lishitz and Gilbert, a general-
ization that can be given a precise physical status (cf. §2.3 and the references
quoted therein); provided m # 0, it can be written as the following system
of two scalar equations:

—ym-m = (h+d) -mxm,

0 = (h+d) . (22)

The effective magnetic field h is, we recall, the variational derivative of the
free-energy functional ¥{m} (cf. §1.2 and §1.2.2), while the dissipation field
d is the variational derivative of the dissipation potential X {m}:

h = —0,V, U{m}= / Y(m, Vm, VVm), (2.3)
Q
d = —6uX, Xf{m}— / \ (1, Vrin) (2.4)
Q
Thermodynamic compatibility is guaranteed if the dissipation density is non-
negative:

17



18 CHAPTER 2. DYNAMICAL MICROMAGNETICS

Provided that the appropriate homogeneous Neumann conditions prevail at
the boundary of €, it follows from (2.2),, (2.3), and (2.4), that

d
— d=0 2.6

a relation that embodies the Liapounov structure intrinsic to the Gilbert
equation, a structure that all of its generalizations must retain.

2.2 Standard Form of the Gilbert Equation

We now consider the classical choices of ¢ and x to which both Landau &
Lifshitz and Gilbert confined themselves. More general choices that have
been recently suggested will be illustrated at a later stage.

Free energy
As to the free energy ¥, we keep the constitutive prescritions outlined in
§1.2.2 (see eqs. (1.4) and (1.7)), which give, for the effective field:

h=aAm+ f(m-e)e+h*+h®°=0, (2.7)
where, for the reader’s sake, we recall that e is a constant unit vector (the

easy axis), a and 3 are two positive constants, h® is a prescribed external
field, and h® is the unique solution of the Maxwell equations

curl h®* =0,
div h® = —div (yom), (2:8)
such that
/|h5|2 < 0. (2.9)
£
Dissipation

As to the density of the dissipation potential, the standard choice is

1 .
X:§M‘m|27 ILL>O7 (210)

the so-called relativistic dissipation. According to (2.4) and (2.10), the rela-
tivistic dissipation field has the form

d=—pm, (2.11)
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and hence, by the definition in (2.5),
d-m+d=0. (2.12)

Substituting the standard prescriptions (2.7) and (2.11) in (2.1), we arrive
at the Gilbert equation with standard free energy and dissipation:

7'+ pm x m =m x (¢Am + $(m - e)e + h® + h°). (2.13)

2.3 The Gilbert Equation as a Balance Law

Within the framework of a broader theory, which account for both magnetic
and mechanical interactions [10, 18, 33, 16], the Gilbert equation can be
interpreted as the specialization of a balance law. As anticipated in Chapter
1, ferromagnetic bodies are modeled as the composition of a lattice continuum
and a spin continuum. Their kinematics is described by the deformation
with respect to a reference configuration and by the magnetization. Their
dynamics is described by systems of generalized forces which expend power in
a typical process, both on the lattice and on the spin continuum.? Following a
procedure which is customary in continuum mechanics, balance equations for
the dynamical descriptors can be obtained by postulating translational and
rotational invariance of the power ([16]). Evolution equations obtain when
the balance equations are completed with constitutive prescriptions, that is,
a set of relations between the kinematical and the dynamical descriptors.
Those constitutive prescriptions are supposed to model a specific class of
materials.

In order to determine the evolution of the magnetization vector in an
undeformable ferromagnetic body it suffices to consider the balance of torques
for the spin continuum ([16], [33]):

m x (divC+k+b)=0. (2.14)

Here C is the couple stress, m x k is the interaction couple and m x b is the
distance couple. By means of the decomposition

b =b" +b™, (2.15)

we split the distance couple in two contributions: an inertial part m x b,
which is related to the motion through a constitutive specification, and a non-
inertial part m x b™, which can be thought as a control field. Constitutive

! As pointed out in [16], the definition of the dynamical descriptors requires care, due
to the presence of magnetostatic interactions; see also [17].
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prescriptions are also needed for the interaction couple, the couple stress and
the free-energy density, respectively:

k = k(m, Vm; , Vi) ;
C = C(m, Vm; i, Vi) ; (2.16)
¢ =1(m, Vm).

Consistency with the second principle of thermodynamics, requires that
—k-m+T-Vm—1¢ >0 (2.17)

for every process. It can be shown [16, 38] that the above dissipation inequal-
ity sets the following constitutive restrictions on the material response:
k® := k(m, Vm; 0,0) = —dp1) ;

. 2.18
C:=C(m,Vm;0,0) = dym? . ( )

Restrictions (2.18) are only a part of the information that can be drawn from
the dissipation inequality. The remaining information can be expressed in a
compact form if we introduce the wviscous response, defined as

k¥*(m, Vm; h, Vi) := k(m, Vm; th, Vi) — k®(m, Vm; 0, 0)

R 2.19
C"(m,Vm;m, Vm) := C(m, Vm; m, Vm) — C*(m, Vm;0,0) . (2.19)

which gives the following decomposition of the dynamical descriptors:

o G (220)
Then, granted (2.18), the dissipation inequality (2.17) is equivalent to:
k" - m+C".-Vm > 0. (2.21)
Now, if we define .
— Jiv O 1 Teed 1 hni
b v e
we can write the balance equation (2.14) as
—m x b™ =m x (h+d), (2.23)

and dynamical micromagnetics obtains from the constitutive prescription?

b" = —v"'m x m, (2.24)

2A justification of such a choice in a mechanical setting is found in [37].
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which leads to the generalized Gilbert equation (2.1) and renders it appar-
ent the physical interpretation of the equilibrium and viscous part of the
dynamical descriptors.

Remark. Taking into account the constitutive restrictions (2.18), the def-
inition (2.22); of the effective field h coincides with (2.3). This confirms
that the latter is a necessity ruled by thermodynamics, and not an arbitrary
assumption. On the contrary, the choice (2.4) of the dissipation vector d as
the variational derivative of a potential is not mandatory. However, when
making a choice for d, one should keep in mind the restrictions which (2.21)
sets on d through (2.22),.

With respect to variational approaches, the above treatment has the advan-
tage that, once the basic principles have been stated, the evolution laws can
be deduced without recourse to any ad hoc reasoning. In addition, since bal-
ance laws and constitutive prescriptions are kept distinct, it becomes easier
to generalize the standard Gilbert equation in a manner consistent with the
scope of the theory, that is, without violating the principles on which the
theory is based: balance equations are stated once and for all, and we are
left with a great deal of freedom in the choice of the constitutive prescriptions
that model one or another material class.?

3In addition to obeying the general thermodynamic restrictions, those prescriptions
must also obey the principle of frame-indifference. The reader is referred to [16, 12] for
further details.



