Chapter 1

Micromagnetics

1.1 Ferromagnetic Materials

Within the framework of continuum mechanics, magnetizable matter is mod-
elled as the composition of two interacting continua each having its own
kinematics: the lattice continuum and the spin continuum [16, 33]. For a
deformable and magnetizable material body with reference shape a region €2
of the Euclidean space, at a fixed time, the kinematics of the lattice contin-
uum determines the placement of material points through the deformation
f: Q2 — &; the additional kinematics brought in by the spin continuum con-
sists in the magnetic moment per unit volume ms : ¢ — R3, a smooth vector
field defined over the current shape Q2 = f(2) of the body.

We restrict attention to undeformable, homogeneous ferromagnetic bodies
under isothermal conditions, below their Curie temperature. Such bodies
exhibit spontaneous magnetization: denoting with p the mass density, the
magnitude of the magnetic moment per unit mass mg = p~'myg is strictly
positive, and depends on the temperature only.

When, as we here do, deformational effects are ignored, the current and
the reference configuration coincide, and the only unknown is the orientation
of mg, identified with the vector field m : Q — S? defined by m = vers(my),
which we will refer to as the magnetization.

1.2 Micromagnetics

Micromagnetics [9] is a theory which predicts the equilibrium configurations
of the magnetization m. It is based on a variational approach: a functional
U is chosen, which associates an energy to each configuration of the mag-
netization; the system is presumed to attain those states which are local
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minimizers of V.

1.2.1 Euler-Lagrange equations

The Euler-Lagrange equation associated to the problem

‘m|inl U{m}, (1.1)
is
Sm¥ + Am =0, (1.2)

where 0,V is the variational derivative of ¥, and where \ is the Lagrange
multiplier which enforces the constraint on m. Equation (1.2) can be rewrit-
ten in the form

mxh=0, h=-/,V, (1.3)
where h is the effective magnetic field.

1.2.2 Internal and external energy

We write the energy as

U =0°+ 0 (1.4)

where U¢ is the external energy and W' is the internal energy. The external
energy is assumed to be the integral over €2 of an external-energy density:

v {m} = / e(m), ¥°=—h-m, (1.5)

where the h® is the ezternal magnetic field. According to (1.4), the effective
field splits as
h=h°+h!, h':=-§,0, (1.6)

with h! the internal magnetic field.

The external field accounts for the interaction between the body and its
environment, while the internal field accounts for the interactions of a body
part with other parts and with itself. Accordingly, the former is a quantity
that, in principle, may be prescribed at will; the latter is determined by the
magnetization field m in the body through constitutive prescriptions which
model the response of a particular class of materials (in a variational setting,
those prescriptions are specifications of the internal energy); their standard
form is illustrated in the next section.



1.2. MICROMAGNETICS )

1.2.3 Standard constitutive assumptions

The standard choice for the internal energy W', is
U= U 4 U S (1.7)

where the terms on the right-hand side are, in the order, the exzchange energy,
the anisotropy energy and the stray-field energy.

Exchange Energy

In ferromagnetic materials, exchange interactions penalize misalignment of
neighboring spins. At the macroscopic level, this effect is accounted for by
introducing an exchange-energy density ¢¥**(Vm), and writing:

U*{m} = /ﬂzﬁXC(Vm). (1.8)

A common assumption is that *¢ is isotropic and homogeneous of degree
two:

1
P*(Vm) = 3 o/Vm|*, o >0; (1.9)
« is called exchange constant.

Anisotropy energy

The energy of the system depends also on the orientation of the magnetiza-
tion with respect to the body’s lattice. Anisotropy effects are modeled by
introducing a “coarse-grain” energy with density *(m), whose value mea-
sures the alignment of m with certain “easy” (= preferred) directions or
planes. Accordingly, we write:

T {m} — /Q v (m) (1.10)

For uniaxial materials, a common choice for the anisotropy-energy density is

1
Y(m) = — Blm o)’ (1.11)
the sign of the anisotropy constant (3 indicates whether the material has an
easy axis of magnetization (8 > 0) or an easy plane (3 < 0); we restrict
attention to the former case.

Stray-field energy
The stray field hi,{m} generated by a magnetized body with magnetization
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m occupying the region 2 is the unique square-integrable solution of the
quasistatic Maxwell’s equations

curl h® = 0;

div h® = —div (yom), (1.12)

where yq is the characteristic function of Q. Equation (1.12); implies that
there is scalar potential H such that

h® = —VH. (1.13)

By taking the potential as the unknown, the remaining equation (1.12),
becomes the Poisson equation

AH = div (xyom), (1.14)

and a standard representation formula applies:

H(p) 1 div m 1/ m-n
p = —— —_
o0 P —

R _|_ J—
Ar Jolp—y| 7 Am
The stray-field energy is the energy needed to assemble the magnetic dipoles
so as to constitute the magnetic body under examination; it is given by

Vm) = / I, {m} [ (1.16)

and, by virtue of a standard reciprocity theorem, it can also be written as
the integral over €2 of a suitable energy density [10]:

ds,. (1.15)

1
q:s_/gllps, Ut =~ m- iy {m} (1.17)

From (1.15) we see that the stray-field energy vanishes if div m = 0 in the
interior of the body and m - n = 0 on the boundary. This means that, from
a qualitative point of view, the stray-field energy is minimized whenever the
magnetization vector follows closed paths inside the body; this statement is
also known as principle of pole avoidance (see [4], §7.1).

Internal field and effective field

With the standard constitutive choices, from (1.7), (1.8), (1.10) and
(1.17);, the internal energy can be represented as the integral over € of
an internal energy density:

o [ e gt (118)
Q
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with the use of (1.6), (1.9), (1.11), (1.17)5 we find, for the internal field:
h' = aAm + B(m-e)e + h°, (1.19)

where h® is a shorthand for h§,{m}. The explicit form of the energy is

T{m} — /Q (%a\vmﬁ _ %5 (e m)® — (%hs + b ~m) . (1.20)
and, from (1.6); and (1.19), we have that
h=aAm+ f(m-e)e+h®+h°. (1.21)
Finally, the Euler-Lagrange equation (1.3) takes the form:
m X (eAm + f(m-e)e+h*+h®) =0. (1.22)

1.3 Magnetic Domains and Domain Walls

Measurements performed at the surface of a ferromagnetic specimen may
show a patchwise-constant magnetization, indicating that the interior of the
body is partitioned into regions in each of which the orientation of m is
spatially constant; these regions are called magnetic domains. The rotation
of the magnetization from one domain to the other does not take place with
an abrupt jump, but with a continuous transition in a narrow layer, called
domain wall; typically, the thickness of domain walls is 10* times smaller
that the size of magnetic domains and, at the length scale of observation of
magnetic domains, a domain wall appears as a sharp interface.

Magnetic domains and domain walls are not the rule, and the magne-
tization observed in some specimens is not patchwise-constant. One may
ask why magnetic domains develop in some bodies and not in others. The
answer, in principle, might be drawn from micromagnetics through energy
minimization. However, this turns out to be a difficult task to accomplish,
because the functional ¥ is both nonlinear and nonlocal.

A detailed discussion of the solutions of the variational problem of mi-
cromagnetics is beyond the scope of this thesis. The rest of this section is a
brief account of the features of a ferromagnetic body that are believed to be
the most relevant to the formation of domains and walls.

1.3.1 Small and large bodies

Following a scaling argument taken from [14], let |©2] = A* be the volume of
2 and ¥ = g(Q2) be the image of {2 under the scaling

g:p— A '(p—o)+o, o€ fixed. (1.23)



8 CHAPTER 1. MICROMAGNETICS

We say that A is the size of the body, and X is its shape.! Consider the vector
field my : ¥ — S? and the functional ¥, defined, respectively, as

my :=mo g_l , \II,\{m,\} = \I/{m}/|Q| . (124)
It is easily checked that the solution h§ of the Maxwell’s equations (1.12) with
m, and X in the place of, respectively, m and €, is given by h§ = h¥og™!. If

we assume h® = 0, the problem of minimizing the functional ¥ is equivalent
to the minimization of the scaled energy

e

where

> IV, |2 ——ﬁ(e m, )2 —%hi-mA> o (1.25)

Mew 1= 1/ = (1.26)

is the exchange length.

The formulation (1.25) shows that anisotropy and stray-field energy do not
scale with the size of the body, while exchange energy does. This suggests that,
for a fixed shape, the relative importance of these energetic contributions is
determined not only by the material parameters a and (3, but also by the
size A, whose natural unit appears to be A.;; accordingly, we say that {2 is
large if X >> Aoy, small if X << Ay

1.3.2 Exchange vs. stray-field energy: size effects

Exchange interactions induce states in which the orientation of the magneti-
zation is spatially uniform; on the other hand, according to the principle of
pole avoidance, stray-field energy is minimized whenever the magnetization
follows closed paths inside the body. These energy contributions are in com-
petition the one with the other in the sense that they both want to be as
small as possible, although they cannot achieve this at the same time (Fig.
1.1). We expect that exchange prevails in small bodies, and that stray-field
effect are important in large bodies.

It can be shown? that the limiting behavior for large bodies, i.e., for Aoy /X —
0, is captured by the functional

U{m} = _%/2 (ﬁ(e -m)? + h}{m} - m) , (1.27)

'Note that ¥ has unit volume.
2See [14] and the references quoted therein.
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Figure 1.1: For a body of small size (a), a uniform magnetization is favored,
although such a magnetization generates a stray field. As the size A in-
creases, divergence-free magnetizations become energetically convenient. If
anisotropy is negligible (§ << 1), a “vortex” configuration (b) may develop
in a sphere-shaped body; this configuration does not generate a stray field.

by dropping some regularity assumptions on m and by extending in a suitable
manner the notion of minimizer of Wy. It can also be shown that the limiting
behavior for small bodies, i.e., for A.,./A — 00, is recovered by the functional
(1.27), provided that the following additional constraint is set on m:

/ |Vm|* = 0. (1.28)

This result shows that, in order for a nonuniform magnetization to develop,
it is necessary that the body be large in the sense just explained. However,
for the formation of magnetic domains and domain walls this condition is, in
general, insufficient.

1.3.3 Shape anisotropy

Anisotropy and stray-field energy scale with A according to the same law, as
pointed out in §1.3.1. However, they do not behave in the same way with
respect to a change in the shape ¥. We illustrate this fact by considering the
case when X is an ellipsoid and \ is so small that m is spatially constant.?

3Tt can be shown that there exists a critical size Ay, such that spatially constant mini-
mizers of U, are also local minimizers of Wy for A < Ay, that is to say, the magnetization
is constant if A is small enough. An explicit computation of Ay, for a body of spherical
shape may be found in [8].
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With these assumptions, the stray field inside the body has the simple form*
h®* = —-Bm, (1.29)

with B = Zle 0; e;®e;, where the unit vectors e; are parallel to the principal
axes of the ellipsoid and the demagnetizing factors {;,i = 1...3} are posi-
tive quantities which depend on the ratios between the lengths {p;,i = 1...3}
of the principal axes, and satisfy 51 + 32 + 3 = 1. For an ellipsoid of revo-
lution having elongated shape (p3 > p1 = p2), it is found that §3 < 51 = (s
and hence, while the scaled anisotropy energy

A3 = —% B(es - m)? (1.30)

is not affected by X, the scaled stray-field energy does, and, modulo an ad-
ditive constant, we may write

1
A3 = -5 Br(es-m)?, (1.31)

where 3,, = 01 — #3 > 0. In this particular case, the effect of the stray field is
equivalent to that of a material anisotropy, and is often referred to as shape
anisotropy, since its easy axis and anisotropy constant depend on the shape
of the body (Figure 1.2). Shape anisotropy is responsible for the fact that the
size up to which a specimen admits a stable state of uniform magnetization
is larger for an elongated shape than for a spherical shape.

4See [9] or [4].
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Figure 1.2: In an ellipsoid of revolution, shape anisotropy alignes the mag-
netization with the longest axis.
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Figure 1.3: (a) Vortex configuration in a soft material; (b) domain configu-
ration in a hard material.

1.3.4 Hard and soft materials

A ferromagnetic material is said to be soft if 3 << 1, hard if § is of the
order of the unity or larger. Magnetic domains are more likely to develop in
a body made of a hard material.

To understand the role of material anisotropy, consider the functional
(1.25), with § << 1, so that the effect of material anisotropy is negligible,
and with A\ >> )\, so that a divergence-free magnetization field develops
which minimizes the stray-field energy (Fig. 1.3a). By letting § gradu-
ally increase, regions where the magnetization points in an easy direction
grow bigger and become magnetic domains, regions where the magnetization
points in difficult directions shrink (Fig. 1.3b) and become domain walls.
Although this argument does not indicate for what value of # domains de-
velop, it shows that the formation of magnetic domains and domain walls
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Figure 1.4: A Bloch wall.
may be driven by anisotropy.®

1.3.5 Anisotropy vs. exchange: the internal structure
of a domain wall

Domain walls are commonly classified according to the relative directions that
the magnetization has in the two magnetic domains that the wall separates;
180° wall separate magnetic domains in which the magnetization points in
opposite directions.

Denoting with n the unit-vector orthogonal to a flat wall, a Bloch wall
is defined as a 180° wall in which the magnetization is perpendicular to n
(Fig. 1.4). The problem of estimating the thickness of a Bloch wall was
tackled by Landau and Lifshitz [30] with a reasoning that runs as follows.
They consider a uniaxial, homogeneous body €2 with easy axis e, and they
conjecture that: 1) the body is partitioned in magnetic domains in which
the magnetization is constant; 2) in the bulk, i.e., away from the boundary
0 of the body, those domains are arranged in parallel layers of thickness D,
with alternating magnetization m = +e; 3) the rotation that m undergoes in
passing from one such magnetic domain to the other is localized in a narrow
layer in between (Fig. 1.5), with thickness much smaller than D. To estimate
the thickness of this layer, Landau and Lifshitz consider the ideal situation
in which an infinite ferromagnetic body with easy axis e is partitioned in two
magnetic domains by a flat wall. For {o; ¢, c2,c3} an orthonormal frame
with ¢; perpendicular to the wall plane and c3 = e (Fig. 6), they look for a
magnetization m which

- depends on the coordinate x; only;
- agrees with the direction of the magnetization in each of the two do-
mains:

5Magnetic domains may also be observed in soft ferromagnets. For example, magnetic
domains develop in thin film elements with straight edges (see [27], §3.3.3).
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Figure 1.5: (a) Magnetic domains; (b) domain wall.

m(+o0) = +e; (1.32)
- minimizes the energy per unit wall area, that is to say,’

7= %/_: o (21)* = B(e-m(e))? + (1 - m(ey))? doy,  (133)

where m’ = dm/dx,."

Landau and Lifshitz note that ¢ is minimized when m - ¢; = 0,® hence by
introducing a scalar function ¢ such that cosd(z;) = m(z;) - e, the magne-
tization can be represented as

m(xy) = cos¥(z1)cs + sind(xy)ca, (1.34)

6The dependence of the stray field h® on the magnetization m can be made explicit
(see Chapter 3):
h®=—(m-cj)cy,
and hence the stray-field energy density (1.17) takes the form:
1
1/}5: 5 (m'C1)27

which is the last term in the integrand of (1.33).

"Here and henceforth, for functions of a real variable, a superscript prime denotes
differentiation with respect to the argument.

8By expressing the magnetization as m(z1) = cos¥(z1) e +sind(z1) a(z1), with a-e =
0, we may write

20{m} = /a (92 + (sin9)2[a'[2) — B(cos 9)? + (sin¥)%(a - c1)?.

Then, by defining m(z1) = cos ¥(z1)c3 + sin ¥(x1)ca, we easily check that o{m} > o{m}.
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Figure 1.6: Magnetization profile in a Bloch wall.
and the functional (1.33) becomes

+o0
o= %/ a0 — Beos® 9 da . (1.35)

(e 9]

Then, under the assumption that lim 9'(x;) = 0, which is the natural bound-

T1—00

ary condition for (1.33), the Euler-Lagrange equation

ad” + [fsind =0 (1.36)
obtains which, with another integration, gives

a0’ = cos? . (1.37)

Solutions of (1.37) have the form

Y¥(z1) = varctan exp (951A— C) ) (1.38)

where v = £1, ¢ is a constant, and A = \/a/3; Landau & Lifshitz’ choice is
v =—1,c=0 (Fig. 5). Noting that most of the the rotation is concentrated
in the interval (—%, —i—%), Landau and Lifhitz estimate the wall thickness
with the parameter A, and the wall energy per unit area with

o=2ap. (1.39)
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Equation (1.37) states the important fact that inside an ideal Bloch wall the
density of exchange energy is equal to the density of anisotropy energy. This
suggests the interpretation of the thickness of a domain wall as the optimal
tradeoff between making A small to reduce the volume of the regions where m
is unfavorably oriented, and making A large to avoid rapid spatial variations
of m.

1.4 Domain Theory as a Sharp-Interface The-
ory

Domain theory is a simplification of micromagnetics which presumes that
the energy is minimized by a patchwise-constant magnetization, and regards
domain walls as sharp interfaces endowed with surface energy. An additional
simplification may be introduced by appealing to the principle of pole avoid-
ance: if the magnetization is assumed to be divergence free,” the stray-field
energy vanishes, and the total energy may be computed as the sum of the
surface energy contained in the walls, plus the anisotropy energy contained
in the magnetic domains. Usually, a solution is sought by choosing a domain
configuration which is believed to be a good candidate for minimization; for
this configuration, the geometry of the domains is made dependent on a
set of scalar parameters, and these parameters are adjusted to minimize the
energy; this procedure may be repeated for several configurations, and the
configuration which attains the lowest energy is retained.

The basic ideas behind domain theory are contained in the paper of Lan-
dau and Lifshitz; further developments are due to Néel [35], Kittel [29], and
many others. As anticipated in the previous section, Landau and Lifshitz ap-
proached the problem in two steps involving different scales. The first step
consists in the computation of the magnetization profile in an ideal Bloch
wall, which allows for an estimate of the wall thickness A and the total en-
ergy per unit wall area o for a specific choice of the material parameters.
With this result at hand, Landau and Lifshitz considered a homogeneous
body with size much larger that A, and assumed it to be partitioned in

9For a patchwise-constant magnetization m this requirement corresponds to asking
that the difference between the magnetizations in two neighboring magnetic domains be
parallel to the domain wall in between. In other words, if [m] is the difference between
the two magnetizations, and n is a vector orthogonal to the wall, it is required that

[m] - n=0.
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domains. They postulated a specific geometry for the magnetic domains, fol-
lowing the principle of pole avoidance, and computed the total energy of the
system as the sum between a “bulk” term, obtained by performing a volume-
integration of the anisotropy energy density in the domains, and a “surface”
term, given by the total area of the domain walls times their surface energy,
assumed to be . By letting the geometry of that domain structure to depend
on a restricted set of scalar parameters, they reduced the original problem to
an easier minimization over a finite dimensional space, which allowed them
to estimate the size D of the magnetic domains obtaining D >> A, a result
consistent with the starting assumptions that domain walls have a thickness
which is much smaller than the typical size of magnetic domains.



