Elenco delle figure

1.1	Curve carico-cedimenti tipicamente osservate per fondazioni su sabbie addensate, argille consistenti (a) e su sabbie sciolte, argille tenere (b) .	7
1.2	Risposta meccanica delle argille. Sviluppo di deformazioni irreversibili	
	in una prova triassiale (a) ed in una prova di compressione isotropa (b)	9
1.3	Influenza della tensione media sulla risposta meccanica delle argille	10
3.1	Relazioni logaritmiche fra pressione p e volume specifico v	30
3.2	Applicazione di un incremento di pressione su argilla normal-consolidata	33
3.3	Cam clay (a) e Cam-clay Modificato (b). Curva di snervamento e linea	
	di stato critico nel piano $p - q$	35
3.4	Cam-clay Modificato. Superficie di snervamento e superficie di stato	
	critico nello spazio delle tensioni principali	36
3.5	Cam-clay Modificato. Superficie di snervamento e linea di stato critico	
	nello spazio $p - q - v$	37
3.6	Cam-clay Modificato. Implicazioni dell'ipotesi di flusso plastico associato	38
3.7	Cam Clay Modificato. Previsione della risposta di un campione di argilla	
	debolmente sovraconsolidata durante una prova triassiale drenata standard	39
4.1	Decomposizione elasto-plastica moltiplicativa del gradiente di deformazione	48
4.2	Legame elastico. Influenza della tensione media \breve{p} sulla rigidezza a taglio	
	(a) e della tensione deviatorica $\ \mathbf{t}\ $ sulla rigidezza volumetrica (b)	56
4.3	Relazione bilogaritmica fra pressione di Kirchhoff e volume specifico	60
4.4	Relazioni pressione-volume in termini di sforzi di Kirchhoff e di Cauchy	63
4.5	Legame elastico. Inversione di segno del modulo tangente	67
4.6	Legame elastico. Retta di massima tensione deviatorica	68
4.7	Calcolo del parametro elastico α utilizzando i risultati di una prova	
	triassiale non drenata	70
4.8	Valore iniziale della pressione di preconsolidazione in termini di sforzi di	
	Cauchy p_{c0} e di Kirchhoff \breve{p}_{c0}	71
4.9	Relazione fra il volume specifico iniziale v_0 ed il volume specifico v_{c1}	
	di un campione normalmente consolidato fino ad un valore unitario di	
	pressione p_{c1}	72
4.10	Legame elastico con rigidezza a taglio costante. Previsione della risposta	
	di un campione sottoposto a prova di compressione monoassiale	75

ELENCO DELLE FIGURE

4.11	Legame elastico definito da tre parametri. Condizioni di annullamento del determinante del tensore tangente (a) e suoi effetti sulla risposta meccanica prevista (b)	77
4.12	Legame elastico definito da tre parametri. Grafico delle condizioni di annullamento del determinante del tensore tangente sul piano $\breve{p}-\breve{q}$.	78
5.1	Schema di un algoritmo di return mapping per il caso di plasticità per- fetta. Stato di tentativo elastico: si calcola σ_{n+1}^{tr} per mezzo delle relazioni costitutive elastiche. Passo di correzione plastica: lo stato tensionale di tentativo viene proiettato sulla superficie di snervamento $f(\boldsymbol{\sigma}) = 0$	80
5.2	Schema dell'algoritmo. Passo di tentativo elastico: fissata la configura- zione intermedia, si porta quella corrente nella sua posizione definitiva. Passo di correzione plastico: la configurazione intermedia viene aggiornata	85
6.1	Simulazione di una prova di compressione isotropa. Pressione di Kirchhoff \breve{p} vs. deformazione volumetrica logaritmica θ	96
6.2	Simulazione di una prova di compressione isotropa. Velocità di conver- genza della procedura numerica. Carico applicato in 300 (a) ed in 6 incrementi (b)	97
6.3	Simulazione di una prova triassiale drenata su argilla debolmente sovra- consolidata. Risultati in termini di tensione media \breve{p} e tensione deviato- rica \breve{a} di Kirchhoff, deformazione volumetrica θ e deviatorica \breve{e}_{a} , volume	
	specifico v	98
6.4	Simulazione di una prova triassiale drenata su argilla debolmente sovra- consolidata. Velocità di convergenza della procedura numerica. Defor-	
6.5	mazione assiale applicata in 14 (a) ed in 6 incrementi (b) Simulazione di una prova triassiale drenata su argilla fortemente sovra- consolidata. Risultati in termini di tensione media \breve{p} e tensione deviato- rica \breve{q} di Kirchhoff, deformazione volumetrica θ e deviatorica $\breve{\varepsilon}_q$, volume	99
6.6	specifico v	100
6.7	mazione assiale applicata in 20 (a) ed in 10 incrementi (b)	101
	modello e dati sperimentali [1]. Pressione p vs. volume specifico v	102
6.8	Prova triassiale drenata su caolino spesimite normal-consolidato. Previ- sione del modello e dati sperimentali [1]. Rapporto q/p vs. deformazione	109
6.9	Prova triassiale drenata su caolino speswhite normal-consolidato. Previ- sione del modello e dati sperimentali [1]. Rapporto q/p vs. deformazione	103
6.10	deviatorica ε_q	104
6 1 1	Newton (5.47)	104
0.11	carichi nodali equivalenti alla pressione della fondazione sul piano di posal	105

ELENCO DELLE FIGURE

6.12 Fon	dazione nastriforme su argilla tenera. Mesh deformata e distribuzione	
dell	e tensioni verticali	106
6.13 Fon	dazione nastriforme su argilla tenera. Cedimento del centro della	
fond	dazione w in funzione del carico applicato	107
6.14 Fon	dazione nastriforme su argilla tenera. Velocità di convergenza della	
pro	cedura numerica. Carico imposto utilizzando incrementi da 2.0 kPa	
(a)	e da 5.0 kPa (b)	107