## Considerazioni conclusive

Nel lavoro è stato proposto un metodo per la deduzione dalla teoria dell'elettroelasticità tridimensionale di una teoria lineare di piastre capaci di compiere oscillazioni di spessore. Inoltre, è stata data la formulazione di un elemento finito bidimensionale che corrisponde a tale teoria.

La validazione del modello ha mostrato che la teoria di piastra proposta descrive ottimamente la dinamica del comportamento flessionale di un solido tridimensionale a forma di piastra, anche per rapporti spessore/lato alti (per $h / L=1 / 5$ nel valutare la prima frequenza del modo ( 1,1 ) della deflessione trasversale $w$ si compie un errore di $1.4 \%$ ). Invece, nella descrizione della dinamica del comportamento membranale il modello presenta una rigidezza più alta di quella del solido tridimensionale di confronto. Questo comporta un errore medio del $10 \%$ nel valutare la prima frequenza naturale del modo $(1,1)$ della deformazione di spessore $u$ al variare dei rapporti $h / L$.

Un modo per superare questa difficoltà è di arricchire la rappresentazione di $(\mathbf{u}, \phi)$ di termini in $\zeta$ di ordine superiore al primo (Lo, Christensen e Wu [54] [55]).

Questo però comporterebbe un aumento del numero delle equazioni di equilibrio, e di conseguenza dell'onere computazionale.

In alternativa, e ciò sarà oggetto di un lavoro futuro, si può pensare di determinare i parametri di rigidezza in modo più significativo al fine di descrivere con maggior precisione la dinamica del comportamento membranale di una piastra piezoelettrica (in particolare, la dinamica delle oscillazioni di spessore).

