Introduzione

Questa tesi ha come obiettivi la deduzione dalla teoria dell'elettroelasticità tridimensionale di una teoria lineare di piastre capaci di compiere oscillazioni di spessore e la formulazione di un elemento finito bidimensionale che corrisponde a tale teoria di piastra. La capacità di compiere oscillazioni di spessore è un aspetto innovativo rispetto anche alle ordinarie teorie di piastra puramente meccaniche, le quali ignorano le variazioni di spessore.

In particolare nella tesi si studiano i materiali piezoelettrici. Lo studio di questi materiali e delle loro applicazioni rappresenta uno dei campi di maggior interesse nell'ambito dell'Ingegneria moderna (oltre ai piezoelettrici, rientrano nella categoria dei cosiddetti materiali intelligenti i materiali a memoria di forma, magnetostrittivi, etc.). I materiali intelligenti si utilizzano, in particolare, nelle realizzazioni di particolari strutture note come strutture intelligenti (in genere, sensori od attuatori). Queste hanno la proprietà di modificare il loro comportamento in funzione
delle variazioni che avvengono nell'ambiente, migliorando così la loro risposta alle azioni esterne. I materiali piezoelettrici risultano particolarmente idonei a queste applicazioni, perchè consentono di costruire sia sensori che attuatori.

Una delle possibili applicazioni della teoria di piastra qui sviluppata è la modellazione dei risonatori ad alta frequenza piezoelettrici con i quali, sfruttando l'accoppiamento elettromeccanico, vengono eccitati i modi di vibrazione di spessore di piastre sottili tramite l'applicazione di un campo elettrico alternato. Lo studio e la progettazione di questi risonatori ha richiesto fino ad oggi l'utilizzo di un modello elettroelastico tridimensionale. Per quanto riguarda la modellazione numerica di tali risonatori, il ricorso ad elementi finiti elettroelastici tridimensionali (Allik e Hughes [2]), è risultato eccessivamente oneroso dal punto di vista computazionale. Da qui l'opportunità di disporre di un modello di piastra elettromeccanica e di un relativo modello di elemento finito bidimensionale.

I modelli in grado di descrivere le oscillazioni di spessore che si trovano in letteratura (Eringen e Maugin [31], Tiersten [90], Bisegna e Maceri [11], Batra, Liang e Yang [5] e Yong, Stewart e Ballato [100]) non sono propriamente teorie di piastra, ma particolari soluzioni trovate nell'ambito della teoria tridimensionale dell'elettroelasticità, e quindi valide solo per domini, condizioni di carico e condizioni ai limiti particolari. La soluzione tridimensionale proposta in [11] verrà utilizzata per validare il modello di piastra proposto. Il modello presentato in [100] è un modello bidimensionale dedotto dalle equazioni tridimensionali dell'elettroelasticità assumendo come rappresentazione del campo di spostamento meccanico e del potenziale elettrico i primi termini di una particolare serie trigonometrica e trascurando il gradiente dello spostamento elettrico nel piano della piastra per soddisfare la condizione al bordo relativa al potenziale elettrico; inoltre, per rendere la risposta del modello coerente con quella della teoria tridimensionale, si fa uso di fattori correttivi.

Queste limitazioni sono superate dal modello di piastra qui proposto; questo
modello è una generalizzazione del classico modello di piastra di Reissner-Mindlin, nella quale la rappresentazione degli spostamenti meccanici è accompagnata dall'introduzione di un descrittore delle variazioni di spessore. Segue la necessità di affiancare a questo descrittore cinematico un descrittore dinamico capace di spendere potenza contro di esso; questo descrittore dinamico prende il nome di centro di forza risultante (DeSimone e Podio-Guidugli [28]), e si affianca ai descrittori standard di forza e di coppia risultante. In maniera analoga si procede per la parte elettrica dove l'incognita da rappresentare è il potenziale elettrico. Le equazioni del problema bidimensionale sono scritte sia in forma differenziale che in forma variazionale.

La tesi è organizzata come segue.
Nel primo capitolo sono illustrate le proprietà dei materiali piezoelettrici e richiamati alcuni elementi di elettrodinamica e di meccanica dei continui necessari allo sviluppo del lavoro.

Nel secondo capitolo si espongono le principali formulazioni del problema dell'equilibrio elettroelastico tridimensionale, incluse due formulazioni variazionali; di queste ultime, quella il cui funzionale ha un punto sella viene utilizzata per dedurre le equazioni del problema della piastra elettroelastica. Infine, si discutono gli operatori di campo e di bordo associati al problema dell'equilibrio e si introduce il concetto di condizione al bordo generalizzata.

Nel terzo capitolo si deducono le equazioni della teoria delle piastre elettroelastiche imponendo la stazionarietà del funzionale di cui sopra, definito per campi tridimensionali, introducendo opportune ipotesi di natura meccanica ed elettrica sulla rappresentazione di questi campi. Si danno le equazioni del problema bidimensionale sia in forma differenziale che in forma variazionale. Si dimostra, nel caso di materiale trasversalmente isotropo, di tipo generale, che il comportamento membranale è da ritenere di regola disaccoppiato da quello flessionale. Infine si convalida il modello continuo bidimensionale confrontandone le previsioni (per quello che concerne lo
spettro di frequenza) con quelle relative alla soluzione tridimensionale proposta in [11] al variare del rapporto spessore/lato.

Nel quarto capitolo si presenta un modello agli elementi finiti elettroelastico bidimensionale, dedotto dalla formulazione variazionale del problema bidimensionale. L'elemento finito viene validato confrontando una particolare soluzione del modello bidimensionale con la relativa soluzione discreta calcolata utilizzando l'elemento finito in questione. I risultati numerici sono ottenuti utilizzando i programmi Maple e Matlab (come ben si sa, il primo è un manipolatore simbolico, il secondo un programma integrato per il calcolo matriciale). Il modello di elemento finito viene implementato in un codice di calcolo agli elementi finiti realizzato in ambiente Matlab.

