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5.5 Generalized Lüscher quantization condition . . . . . . . . . . . 72

5.6 Singular solutions . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Reducing to S–waves . . . . . . . . . . . . . . . . . . . . . . . 74

5.8 Structure coefficients calculation . . . . . . . . . . . . . . . . . 74

5.8.1 Ewald’s sums . . . . . . . . . . . . . . . . . . . . . . . 77

5.8.2 Incomplete Gamma Function . . . . . . . . . . . . . . 79



CONTENTS v
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Introduction

Quantitative theoretical predictions on a large number of interesting physical
phenomena can be only made by relaying on numerical techniques. Highly
non–linear partial differential equations as well as equations modeling many–
body interacting systems are usually solved by replacing continuous space
and time variables with a finite number of discrete lattice points. It becomes
possible, in this way, to find solutions that however, because of the “gran-
ularity” of the space–time and the finite extension of the volume, come out
to be approximate. In order for these solutions to have a required level of
accuracy, upper limits on the sizes of the grid spacings and lower limits on
the sizes of the finite volumes to be used in numerical calculations have to be
met. It is usually not possible to fulfill such requirements at once because, for
a given physical system, the smallest possible ratio between the grid spacing
and the volume extension is limited by the available computing power. It
often happens that the required space–time grid cannot be allocated on the
computer memory or the time required to have a useful answer comes out to
be unacceptably long, e.g. larger than a man life.

The problems discussed so far have been encountered by people working
in different areas of physics and also in other fields of research. As a result of a
joint effort, a wealth of theoretical techniques have been developed in order to
extract phenomenological informations from the study of physical systems on
unphysical volumes, the so called “finite volume techniques” (FVT). In this
thesis three strong interacting physical systems are discussed that at first
sight could appear to be uncorrelated. Actually, these subjects are glued
together by the fact that in all of them it was necessary to use finite volume
techniques in order to extract useful physical informations that otherwise
would have been impossible to extract with the same level of accuracy.

The first physical system which will be considered is a heavy–light me-
son. Mesons are strong interacting particles and the study of their properties
(masses, decay constants, decay rates, etc.) requires a non–perturbative for-
mulation of the theory that can currently be achieved only by resorting to

vii



viii CONTENTS

the lattice regularization of Quantum Chromo Dynamics (QCD). In particu-
lar, heavy–light mesons represent a challenging system by the point of view
of lattice QCD. The physics of a B meson, for example, is characterized by
the presence of two largely separated energy scales, i.e. ΛQCD, that sets the
wavelengths of the light quark, and the b–quark mass. Dealing with these
two scales in the most naive way would require a very large lattice. It should
contain enough points to properly resolve the propagation of the heavy quark
and at the same time make the light quark insensitive to finite volumes ef-
fects. A typical size would be O(1004) points, hardly affordable in terms of
present day memory and CPU time. In ref. [1] it has been introduced a finite
size method, called “Step Scaling Method” (SSM), devised to handle two–
scale problems in lattice QCD and already applied to the study of typical
heavy–light meson properties. Part I of this thesis is dedicated to a detailed
presentation of the results of two lattice calculations that have been carried
out in [2, 3] by making use of the SSM: the quenched lattice calculation of
the b–quark mass and the Bs meson decay constant.

Part II is devoted to a discussion of the role played by the choice of
boundary conditions in lattice calculations. As already said, in the formula-
tion of quantum field theories on a lattice the introduction of a finite volume
is unavoidable. As a consequence of the limited box size, spatial momenta
come out to be quantized according to the choice of the boundary conditions
and the momentum quantization represents a severe limitation in various
phenomenological applications. In ref. [4] it has been pointed out that a
particular choice of boundary conditions (BC), the so called θ-BC, is quite
helpful in overcoming some of these difficulties. The application of this tech-
nique to the case of one and two particle states is discussed in chapters 4
and 5 respectively. In chapter 5 it is discussed how this choice of bound-
ary conditions can be useful in attacking the long standing problem of the
“∆I = 1/2 rule” in the non–leptonic weak decays such as in the case of
K 7→ ππ.
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Chapter 1

Heavy flavor physics from finite
volume calculations: the SSM

Lattice QCD evaluations of quantities characterized by two scales with a
large hierarchy require in general a very high lattice resolution and a sizable
total physical volume to correctly account the dynamics of the small distance
scale and to dispose of the finite size effects related to the large distance scale.
A concrete physical system in which this hierarchy problem appear and is
hard to overcome is given by a heavy flavored hadron like for example the B
meson.

Many different methods have been devised to study heavy flavor physics
on the lattice. In almost all the cases quantitative predictions have been
obtained by resorting to some approximation of the full theory, e.g. HQET on
the lattice [5], lattice NRQCD [6], or QCD sum rules [7, 8]. A novel approach
recently introduced solves the long standing problem of the non–perturbative
renormalization of the static theory and of its matching to QCD [9, 10].

An alternative approach to lattice heavy flavor physics is the so called
“Step Scaling Method” [1, 2, 3] or SSM in short. The main advantages of
this method are that the entire computation is performed with the relativistic
QCD Lagrangian and that the continuum limit can be taken, avoiding the
unfeasible direct calculation. The idea behind SSM consists in using a QCD
propagating b–quark on a small volume, calculating the finite volume effects
on a given heavy–light observable and, finally, using the very mild dependence
of these effects upon the heavy quark mass, to obtain a final result in a large
volume. This chapter is dedicated to a detailed explanation of the SSM.

3



4 CHAPTER 1. STEP SCALING METHOD

1.1 The “steps” of the SSM

On very general grounds, the method can be conveniently used in order to
compute physical observables O(E`, Eh) depending upon two largely sepa-
rated energy scales E` and Eh (E` � Eh), where direct simulation, without
introducing big lattice artifacts, would require a very demanding computa-
tional effort. A SSM calculation is based on a very simple identity

O(E`, Eh, L∞) = O(E`, Eh, L0)
O(E`, Eh, 2L0)

O(E`, Eh, L0)

O(E`, Eh, 4L0)

O(E`, Eh, 2L0)
. . . (1.1)

stating that the value of the observable on the infinite volume is given by
the product of its value on a finite volume L0 with an infinite number of
correcting factors called step scaling functions

σO(E`, Eh, L) =
O(E`, Eh, 2L)

O(E`, Eh, L)
(1.2)

The step scaling functions are a measure of the error made when the value
of O on the volume 2L is approximated with the corresponding value on
the volume L. When the volume is sufficiently large this error becomes
completely negligible and the step scaling functions cannot be distinguished
by one within the numerical precision (δσ)

σO(E`, Eh, 2Lmax) = 1 ± δσ (1.3)

The previous equation has to be considered an implicit definition of the value
Lmax.

The main assumption under a SSM calculation is that the step scaling
functions simplify in the region where Eh � E`. In principle, a total decou-
pling of Eh would determine an absolute insensitivity to variations of this
scale

σO(E`, Eh, L) ' σO(E`, L), Eh � E` (1.4)

In practice, Eh never completely decouples, but the mild residual dependence
can be suitably parametrized. A typical situation is when the residual de-
pendence upon Eh is linear in 1/Eh [1]. This assumption has to be checked
numerically during the calculation and the whole procedure has to be aborted
in case of a failure of this check.

The computation of the observable O proceeds according to the following
lines. First, O is computed on a small finite volume L0, where the high energy
scale Eh can match its phenomenological value with the lattice cutoff much
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larger than Eh. This computation is clearly unphysical, because the finiteness
of the volume produces a distortion of the result, that cannot be compared
with the experimental value. Second, the step scaling function is used in
order to evolve this finite size measurement to a larger volume, according to
eq. (1.1). Each step of the calculation can be extrapolated to the continuum
limit. In the large volumes the step scaling functions are evaluated at the
high energy scale Eh by extrapolation, relying on a suitable parametrization
as will be better explained in the following section.

1.2 Properties of the step scaling functions

The step scaling functions defined in eq. (1.2) have many useful properties
some of which can be derived by simple arguments.

By means of dimensional analysis it is easy to realize that since σ is
a dimensionless quantity it can only depend upon dimensionless variables.
The number of dimensionless independent quantities that can be obtained
by combining L, E` and Eh is two. It is convenient to choose these variables
to be LEh and LE`

σO(E`, Eh, L) = σO(LE`, LEh) (1.5)

Indeed, the step scaling function can be rewritten as the value it would
assume in the limit of very large volumes plus a “residual term” (γO)

σO(E`, Eh, L) = 1 + γO

(
1

LE`
,

1

LEh

)
(1.6)

This term retains all the functional dependence of the step scaling function.
In particular γO, as it has been defined in the previous equation, vanishes
when one (or both) of its arguments go to zero.

When the SSM has been introduced [1] the assumption of low sensitivity
of the step scaling functions with respect to the high energy scale has been
checked numerically in the case of the decay constants of heavy light mesons.
Numerical data for the σ’s at fixed volume had a residual linear dependence
upon the inverse heavy quark mass (the high energy scale in this case). This
leading linear behavior can be easily understood by considering a Taylor
series expansion of the previous equation

σO(E`, Eh, L) =
[
1 + γO

(
1

LE`
, 0
)]

+
γ′O
(

1
LE`

, 0
)

LEh
+ . . . (1.7)
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The number of sizable terms in the previous expansion depend upon the
particular observable and upon the required level of accuracy. When observ-
ables related to heavy flavor physics are considered, the dependence of the
step scaling functions upon the inverse heavy quark masses can be predicted
also by using HQET arguments (see sec. 1.4 below).

It should be noted that there are great advantages in considering the
Taylor series expansion of the step scaling functions with respect to that of
the observable. The first one is that the expansion parameter is the combina-
tion LEh instead of a dimensional variable. The second one stays in the fact
that one can reasonably expect some “cancellation” in the ratio between the
observable calculated on different volumes making the derivative γ ′ smaller
than the corresponding term arising in the expansion of O. For these reasons
it happens that in the case of the step scaling functions the high energy scale
decouples from the low energy one on the contrary to what happens in the
case of the observable itself. These points will be further clarified in the next
two sections.

1.3 One scale problems, Step scaling func-

tions and χ–PT

A deeper understanding of the properties of the step scaling functions can
be obtained by studying a single scale problem. In this case the situation
is simplified by the absence of the high energy scale and could be faced, for
example, by a direct lattice calculation without recurring to finite volume
techniques. Nevertheless, the simple identity of eq. (1.1) retains its validity
also in the case of a light–light meson observable and can in principle be used
to calculate the pion mass. In this case the step scaling function has the form

σmπ
(mπ, L) = 1 + γmπ

(
1

Lmπ

)
(1.8)

where again dimensional analysis it has been used to reduce the number of
independent variables from two to one, i.e. Lmπ.

The fact that the step scaling functions do not depend separately upon
the volume and upon the low energy scale (mπ ' ΛQCD) can be checked in
this case by using chiral perturbation theory [11, 12, 13, 14, 15, 16]. Indeed,
chiral perturbation theory is well suited for the study of long–distance effects
like those coming from the presence of a finite volume cutoff. Finite volume
effects for the pion mass and decay constant have been derived in ref. [17]
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in the case of θ–boundary conditions. It is a simple exercise to recast the
results reported in this paper into the following form

σmπ
(L,mπ) − 1 ∝ e−

Lmπ
2

(Lmπ)
3
4

σfπ
(L,mπ) − 1 ∝ e−Lmπ

(Lmπ)
3
2

(1.9)

The previous relations refer to the choice of periodic boundary conditions for
the pion interpolating operators. As can be seen, the step scaling functions
do depend upon the combination Lmπ and approach one when this variable
goes to infinity thus confirming the results obtained in the previous section
by means of dimensional analysis.

1.4 Step scaling functions and HQET

When the step scaling method is used to calculate a particular observable
that has a known expansion in terms of some of its arguments it is usually
possible to derive additional useful properties of the step scaling functions.
Obviously such kind of results will be valid only for the particular observable
under consideration and have to be considered on a different ground with
respect to the general properties of the σ’s discussed so far. In this section it
is considered the case of heavy–light mesons observables, the meson masses
and decay constants. In these cases additional properties of the step scaling
functions can be derived by using another effective theory of the QCD, the
heavy quark effective theory (HQET). For good introductions to heavy quark
effective theory and its applications see for example [18, 19].

In the infinite volume, heavy–light meson masses are predicted to have
the following expansion in terms of the heavy quark mass

MX(mh, ml) = mh + Λ̄(ml) +
αX(ml)

mh
+ . . . (1.10)

where X ∈ {P, V } refers to a pseudoscalar and a vector heavy–light meson
respectively. Because of the matching coefficients [18, 19] αX(ml) can retain
a small logarithmic dependence upon mh that makes the HQET expansion
different by a simple Taylor expansion. In the following this residual log-
arithmic dependence will not be considered because, although possible in
principle, it is too hard to appreciate numerically the variations of the first
order coefficients in the range of quark masses accessible to simulations of
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lattice QCD, even by using the SSM. Assuming the contribution of the 1/m2
h

corrections to be negligible, at finite volume one has

MX(mh, ml, L) = mh + Λ̄X(ml, L) +
αX(ml, L)

mh

(1.11)

where Λ̄X(ml, L) depends upon the spin of the meson state because of the
contamination of the excited states to the finite volume meson–meson cor-
relations1. By using eq. (1.11) it is straightforward to obtain the HQET
predictions for the step scaling functions of the heavy-light meson masses

σMX
(L,mh, ml) = 1 +

σ
(0)
MX

(ml, L)

mh
+
σ

(1)
MX

(ml, L)

m2
h

+ . . . (1.12)

This result requires some considerations. The first important thing to realize
is that in the infinite heavy–quark mass limit the step scaling functions have
to be exactly equal to one, σMX

(L,ml, mh → ∞) = 1. This represents a
strong constraint for the fits of the heavy–quark mass dependence of the
step scaling functions.

The second observation concerns the number of terms to be considered
in eq. (1.12). At order O(1/mh) one has

σ
(0)
MX

(ml, L) = Λ̄X(ml, 2L) − Λ̄X(ml, L) (1.13)

corresponding to the static approximation in eq. (1.11). By increasing the
physical volume L, the difference between Λ̄X(ml, 2L) and Λ̄X(ml, L) de-
creases because the two quantities have to be equal in the infinite volume
limit, making the heavy–quark mass expansion of the finite volume effects
rapidly convergent. The same arguments apply to the coefficient σ

(1)
X (ml, L)

that has to be considered when in the expansion of the meson masses,
eq. (1.11), the order O(1/mh) is taken into account.

Similar results can be derived in the case of the decay constants. In the
infinite volume the heavy-light mesons decay constants are predicted to have
the following expression

fX(ml, mh) = f (0)(ml)

{
1 +

GX(ml)

mh
+ . . .

}
(1.14)

1Meson masses and decay constants are extracted on the lattice by studying the two–
point functions of a meson interpolating operator. It is in general not possible on small
volumes to isolate the ground state contributions to these correlations. This point will be
discussed in detail in the next chapter (see section 2.4).
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where again the residual logarithmic dependence has not been considered.
The finite volume analogous of the previous expression is given by

fX(ml, mh, L) = f
(0)
X (ml, L)

{
1 +

GX(ml, L)

mh

+ . . .

}
(1.15)

where, as in the case of the finite volume binding energies, the so called
finite volume “static” constants f

(0)
X (L) acquire a dependence upon the spin

content of the meson state because of the excited state contaminations of the
meson–meson correlators. The step scaling functions are given by

σfX
(mh, ml, L) =

fX(ml, 2L)

fX(ml, L)

{
1 +

GX(ml, 2L) −GX(ml, L)

mh
+ . . .

}
(1.16)

As in the case of the meson masses step scaling functions, the expansion is
expected to be rapidly converging because GX(ml, 2L) and GX(ml, L) have
to be equal on large enough volumes. The difference with respect to the
case of the meson masses is that the static contribution in this case cannot
be exactly predicted. For this reason, in order to reach the same level of
accuracy in a SSM calculation of the meson masses and of the meson decay
constants it is advisable, in the last case, to calculate independently the step
scaling functions of the decay constants in the static approximation [20].
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Chapter 2

Calculation of the heavy quark
masses through the SSM

A precise calculation of the decay properties of the B mesons is required in
order to reduce the theoretical uncertainties in the determination of the CP
violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix but also
to confront theoretical predictions against the experimental data produced
at the B-factories with surprisingly high accuracy [21]. Crucial quantities in
the so called Unitarity Triangle analysis [22, 23, 24] are, among the others,
the B meson decay constant fB and the b–quark mass.

This chapter is dedicated to the presentation of the results of a non–
perturbative calculation of the b–quark mass through the application of the
step scaling method. These results have been obtained in the quenched ap-
proximation of the QCD and by making use of the lattice regularization [2].
The strategy of the calculation consists in using the SSM to obtain the heavy–
light and heavy–heavy meson masses as functions of the heavy quark masses
chosen in the simulation. The b–quark mass is finally extracted by the com-
parison of the numerical results with the experimental results for the same
quantities. As a byproduct of the calculation it has been also obtained a new
determination of the c–quark mass.

The hierarchy problem discussed in the previous chapter does not arise in
the case of charmed mesons because the number of points required to properly
accommodate on the lattice a D meson, for example, is not prohibitive for
current simulations of quenched QCD. Nevertheless charmed mesons spec-
trum have been calculated to cross check the results obtained by the SSM
finite volume recursion against those of a direct calculation [25, 26]. The
check has been successfully passed as will be explained below. In the case

11
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of heavy–heavy mesons the hierarchy problem does even not arise but the
heaviness of these hadrons makes the exponential decay of the meson corre-
lation functions too fast and the ground state effective mass, at large time
separations, cannot be disentangled from the numerical noise (at least on
single precision architectures). As will be better explained in the following
through the SSM it has been possible to handle also this problem.

2.1 Gauge action

Numerical calculations have been done within the quenched approximation of
the QCD. It has been used the lattice regularization within the “Schrödinger
Functional” (SF) formalism [27, 28]. The theory has been defined on a finite
volume having physical extension T along the time direction and L along the
spatial ones. All the simulated lattices had the topology T = 2L.

Gauge fields on the lattice are introduced by assigning to each point
x and for each direction µ an SU(3) matrix Uµ(x) representing the gauge
connection between the points x and x + aµ̂ respectively. The boundary
conditions satisfied by the Uµ(x) are chosen to be periodic along the spatial
directions

Uµ(x + Lk̂) = Uµ(x) (2.1)

and of the Dirichelet type along the time direction. In particular the links
at x0 = 0 and x0 = T have been fixed to be equal to the identity

Uµ(x)|x0=0 = 1 Uµ(x)|x0=T = 1 (2.2)

The gauge part of the action is chosen to be the usual Wilson plaquette
action

SG = − 1

β

∑

p

w(p) [1 − U(p)] + δSGB (2.3)

where U(p) is the gauge connection along the plaquette p and the sum runs
over all the oriented plaquettes on the lattice. The weight w(p) is one for all
the p except for the spatial ones attached at x0 = 0 or x0 = T where it takes
the value 1/2. The term δSGB is needed to implement O(a) improvement
within the SF formalism and is defined to be [27]

δSGB =
cs − 1

2g2
0

∑

ps

[1 − U(ps)] +
ct − 1

g2
0

∑

pt

[1 − U(pt)] (2.4)

the notations ps and pt mean that the sums run over all the spatial and time-
like boundary plaquettes respectively. Since it has been chosen a vanishing
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background field (2.2), spatial boundary plaquettes do not contribute to the
action. Regarding ct, the one loop result used in the simulations has been
derived in [29].

2.2 Fermion action

Quark and antiquark fields carry Dirac and color indexes and are assigned
to each lattice point. The boundary conditions, also in this case, have been
chosen to be periodic in the space directions

ψ(x + Lk̂) = ψ(x) ψ(x + Lk̂) = ψ(x) (2.5)

and fixed along the time direction. Only half of the Dirac components of the
ψ(x) are assigned at the two boundaries x0 = 0 and x0 = T

P+ ψ(x)|x0=0 = ζ(x) P− ψ(x)|x0=T = ζ ′(x) (2.6)

In the previous conditions use have been made of the two projectors P± =
(1 ± γ0)/2. The corresponding boundary conditions for the antiquark fields
are

ψ(x)P−
∣∣∣
x0=0

= ζ(x) ψ(x)P+

∣∣∣
x0=T

= ζ
′
(x) (2.7)

Quark fields into the bulk (0 < x0 < T ) satisfy the O(a) improved discrete
version of the Dirac equation

(DW + δDSW + δDB +m0)ψ(x) = 0 0 < x0 < T (2.8)

The leading Dirac operator have been fixed to be the standard Wilson oper-
ator DW

DW =
1

2

{
γµ

(
∇µ + ∇?

µ

)
− a∇?

µ∇µ

}
(2.9)

with the lattice covariant derivatives defined as

∇µψ(x) =
1

a
[Uµ(x)ψ(x + aµ̂) − ψ(x)] (2.10)

∇?
µψ(x) =

1

a

[
ψ(x) − U−1

µ (x− aµ̂)ψ(x− aµ̂)
]

(2.11)

The remaining terms are needed to ameliorate the theory to order O(a) [30,
31]. The improvement term δDSW is proportional to the Pauli term and is
given by

δDSWψ(x) = cSW
iaσµνF̂µν

4
ψ(x) (2.12)
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where F̂µν is a convenient lattice representation of the continuum gluon field
strength tensor

F̂µν(x) =
1

8a2
{Qµν(x) −Qνµ(x)}

(2.13)

Qµν(x) = Uµ(x)Uν(x+ aµ̂)U−1
µ (x + aν̂)U−1

ν (x)

+ Uν(x)U
−1
µ (x− aµ̂+ aν̂)U−1

ν (x− aµ̂)U(x− aµ̂, µ)

+ U−1
µ (x− aµ̂)U−1

ν (x− aµ̂− aν̂)Uµ(x− aµ̂− aν̂)Uν(x− aν̂)

+ U−1
ν (x− aν̂)Uµ(x− aν̂)Uν(x + aµ̂− aν̂)U−1

µ (x) (2.14)

The improvement boundary term is peculiar of the Schrödinger functional
formalism and is given by [30, 31]

δDBψ(x) = c̃t−1
a

{
δx0,a

[
ψ(x) − U−1

0 (x− a0̂)P+ψ(x− a0̂)
]

+ δx0,T−a

[
ψ(x) − U0(x)P−ψ(x+ a0̂)

]}
(2.15)

2.3 Green functions

The mass of a meson can be calculated on the lattice by studying the decay of
the two–point Green’s function of an operator O(x) that has the same quan-
tum numbers of the particle one is interested in. In this calculation have been
calculated the masses of several heavy–light and heavy–heavy pseudoscalar
and vector mesons made of quarks of masses covering the interesting physical
range. The following operators have been considered

Aµ(x) = ψi(x)γµγ5ψj(x)

P (x) = ψi(x)γ5ψj(x)

Vµ(x) = ψi(x)γµψj(x)

Tµν(x) = ψi(x)γµγνψj(x) (2.16)
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i.e. the axial current, the axial density, the local vector current and the tensor
bilinear operator respectively (i and j are flavor indexes). The improvement
of the axial and vector currents heave been implemented through the relations

AI
µ(x) = Aµ(x) + acA ∂̃µP (x)

V I
µ (x) = Vµ(x) + acV ∂̃νTµν(x) (2.17)

where ∂̃µ = (∂µ + ∂?
µ)/2 and ∂µ, ∂?

µ are given by

∂µψ(x) =
1

a
(ψ(x + aµ̂) − ψ(x))

∂?
µψ(x) =

1

a
(ψ(x) − ψ(x− aµ̂)) (2.18)

For what concerns the improvement coefficients, cA has been computed non
perturbatively in ref. [32] while, in the case of cV , non perturbative data have
been used only at the values of the bare couplings where they exist [33] and
perturbative results [34] have been used outside this range. The correlation
functions used to compute pseudoscalar and vector meson masses have been
defined by probing the previous operators with appropriate boundary sources

f I
A(x0) = −a

6

2

∑

y,z

〈ζj(y)γ5ζi(z)A
I
0(x)〉

fP (x0) = −a
6

2

∑

y,z

〈ζj(y)γ5ζi(z)P (x)〉 (2.19)

f I
V (x0) = −a

6

6

∑

y,z

〈ζj(y)γkζi(z)Vk(x)〉

where ζi(y) and ζ i(y) have been defined in sec. 2.3.

2.4 Excited states

In order to use the step scaling method in the calculation of the heavy meson
spectrum it is necessary to define a procedure to measure meson masses on
lattices of small physical volumes. Meson masses are usually extracted from
the so called “effective mass”

aMX(x0) =
1

2
ln [fX(x0 − a)/fX(x0 + a)] (2.20)
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Figure 2.1: The figure shows the excited states finite size effect as predicted
by a simplified qualitative model discussed in the text. The effective mass
step scaling functions are plotted, at different values of the meson masses, as
functions of the volume.

where fX is one of the correlations defined in (2.19). On a physical volume,
this quantity exhibits a plateau in the time region where the ground state
dominates the correlation and no boundary effects are present. On a small
volume the effective mass is affected by two different finite volume effects: the
first one is due to the compression of the low energy wavelength (if present)
and the second one comes from the presence of the excited states contribution
to the correlation (no plateau). A good definition of the meson mass that
suits the step scaling method is obtained by choosing the value of the effective
mass at x0 = T/2. All the lattices used in the present calculation have been
chosen to have T = 2L. The step scaling technique (see eq.(1.1)) connects
x0 = Lmin, where the meson mass has been defined on the smallest volume,
with x0 = Lmax, where one expects to be free from both sources of finite
volume effects.

The finite volume effects due to the excited states can be easily under-
stood by means of a “two mass” model for the correlation

fX(x0, L) = A(L) e−M(L)x0 +B(L) e−[M(L)+δM(L)]x0 (2.21)

Here A(L) and B(L) are coefficients, M(L) is the meson mass and δM(L)
is the mass shift. All these quantities depend upon the physical extension of
the volume L but, in order to isolate the effects due to the excited states, in
the following M and δM will be considered as constants. In this simplified
model the effective mass of eq. (2.20) takes the form

aMX(x0) = aM +
1

2
ln





1 + B(L)
A(L)

e−δM(x0−a)

1 + B(L)
A(L)

e−δM(x0+a)



 (2.22)
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As in numerical simulations, x0 = L is taken. The functional dependence
upon the volume of the ratio B(L)/A(L) can be inferred from the data on
the meson decay constants given in [1, 3]. A parametrization that fits well
the data is given by

A(L) = α
(
1 +

0.6

L2

)
B(L) = −0.5 (2.23)

In Figure [2.1] are shown the plots of the effective mass step scaling function,
as derived from this model, defined by

ΣX(L) =
MX(2L)

MX(L)
(2.24)

as functions of the volume and at different values of the meson masses. At
the volume L = 0.4 fm the step scaling functions are smaller than one while,
the pattern is reversed at L = 0.8 fm. Independently from the volume, the
heavier mesons are closer to unity than the lighter ones. The qualitative pre-
dictions of this simple model well reproduce the behavior of the numerically
measured step scaling functions, shown in Figure [2.3] for L = 0.4 fm and in
Figure [2.6] for L = 0.8 fm.

2.5 Quark mass definitions

Quark masses are fundamental parameters of the QCD Lagrangian. Their
accurate knowledge is required in order to give quantitative predictions of
fundamental processes. A direct experimental measurement of quark masses
is not possible because of confinement, and their determination can only
be inferred from a theoretical understanding of the hadron phenomenology.
Furthermore, quark masses are subject to renormalization and their values
depend upon the renormalization scheme and run with the renormalization
scale. For each scheme it can be written the following renormalization group
equation

µ
∂ms

∂µ
= τ(gs)ms ms(µ

0) = m0
s (2.25)

The renormalized coupling constant gs satisfies by its own the following equa-
tion

µ
∂gs

∂µ
= β(gs) gs(µ

0) = g0
s (2.26)

The QCD renormalized coupling gets vanishing for large values of the scale µ.
In this regime the two functions β(gs) and τ(gs) can be safely approximated
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by their perturbative expansions

β(gs) = −g3
s

∑

k

bkg
k
s

τ(gs) = −g2
s

∑

k

dkg
k
s (2.27)

The coefficients of the previous expansions do in general depend upon the
renormalization scheme. This is not the case of b0 and b1 and of d0 and
d1 that are universal. The renormalization group equation (2.25) can be
formally integrated with the following result

ms(µ) = mRGI(2b0g
2)

d0
2b0 e

∫ g

0
dx

[
τ(x)
β(x)

− d0
b0x

]
(2.28)

The previous equation implicitly defines the so called “renormalization group
invariant” quark mass mRGI that is a scheme and scale independent defini-
tion. In the following all the quark masses used in the calculation as well as
the final results of the physical b and c quark masses will be expressed in this
scheme.

The so–called bare current quark masses are defined through the lattice
version of the PCAC relation

mWI
ij =

∂̃0fA(x0) + acA∂
?
0∂0fP (x0)

2fP (x0)
(2.29)

These masses are connected to the renormalization group invariant quark
masses through a renormalization factor which has been computed non–
perturbatively in [35]:

mRGI
ij = ZM(g0)

[
1 + (bA − bP )

ami + amj

2

]
mWI

ij (g0) (2.30)

where ami is defined as

ami =
1

2

[
1

ki
− 1

kc

]
(2.31)

The combination bA − bP of the improvement coefficients of the axial current
and pseudoscalar density has been non–perturbatively computed in [36, 37].
The factor ZM(g0) is known with very high precision in a range of inverse
bare couplings that does not cover all the values of β used in the simulations.
Nevertheless, the results reported in table (6) of ref. [35] have been used
to parametrize ZM(g0) in the enlarged range of β values (5.9, 7.6). The
RGI mass of a given quark is obtained from eq. (2.30) using the diagonal
correlations

mRGI
i = mRGI

ii (2.32)
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From non–diagonal correlations in eq. (2.30) one obtains different O(a) im-
proved definitions of the RGI i–quark mass for different choices of the j–
flavor:

mRGI
i{j}

= 2mRGI
ij −mRGI

jj (2.33)

All these definitions must have the same continuum limit because the de-
pendence upon the j–flavor is only a lattice artifact. Further, in eq. (2.29)
for each definition have been used either standard lattice time derivatives
as well as improved ones [36, 37]. Another non–perturbative O(a) improved
definition of the RGI quark masses can be obtained starting from the bare
quark mass

m̂RGI
i = ZM(g0) Z(g0) [1 + bm ami] mi (2.34)

where the improvement coefficient bm and the renormalization constant

Z(g0) =
ZmZP

ZA
(2.35)

have been non-perturbatively computed in ref. [36, 37].

Equations (2.32), (2.33) and (2.34) offer different possibilities to identify
the valence quarks inside a given meson (fixed by the values of the bare quark
masses). The procedure is well defined on small volumes because the RGI
quark mass does not depend upon the scale and is defined in terms of local
correlations that do not suffer finite volume effects. Each pair

(
mRGI

i , mRGI
j

)

fixed a priori is matched, changing the values of the hopping parameters, by
the different definitions of equations (2.32), (2.33) and (2.34), and leads to
values of the corresponding meson mass differing by O(a2) lattice artifacts.
Advantage have been taken of this plethora of definitions to constrain in a
single fit the continuum extrapolations (see Figure [2.2,2.4,2.7]).

2.6 Lattice scale

In order to obtain physical predictions from a lattice QCD simulation, one
has to spend as many “experimental” input as are the free parameters of
the theory. One way to perform this task, in the case of a lattice extension
large enough to safely account the dynamics of the light quarks, is to use the
experimental inputs coming from the spectroscopy of the strange mesons.
Another way to set the scale, widely used since its proposal [38], is based on
the calculation of the force between static color sources; the physical input
in this case is a length scale, r0 ' 0.5 fm.
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In [39] and then in [40] the ratio between the lattice spacing in physical
units and the so called Sommer scale (a/r0) has been computed for a range of
β ≡ 6/g2

0 going from βmin = 5.7 to βmax = 6.92 and a parametric description
of ln(a/r0) as a function of g2

0 has been provided that describes the data
with an accuracy better than 1 % in the whole range. In ref. [41] these
results have been extended to larger values of β’s by using a renormalization
group analysis. In the following, physical results have been obtained by using
r0 = 0.5 fm.

2.7 Lattice simulations

As already explained in section 1.1 the step scaling method relies on the
simple identity of eq. (1.1) that is rewritten here below in the case of the
meson masses

MX(mRGI
` , mRGI

h , Lmax) = MX(mRGI
` , mRGI

h , Lmax) ×

×MX(mRGI
` , mRGI

h , 2L0)

MX(mRGI
` , mRGI

h , L0)

×MX(mRGI
` , mRGI

h , 4L0)

MX(mRGI
` , mRGI

h , 2L0)
(2.36)

where X ∈ {P, V } labels a pseudoscalar and a vector meson respectively. The
physical extension of the small volume has been chosen in order to properly
account the dynamics of quarks with masses in the region of the the physical
b–quark; it has been fixed to be L0 = 0.4 fm. Two evolution steps have
been shown (see section 2.7.3) to be sufficient so that the recursion has been
stopped at Lmax = 4L0 = 1.6 fm.

In the following the step scaling functions calculated at fixed lattice spac-
ing will be referred to as ΣX while the lower case symbol σX will be referring
to the corresponding continuum results

ΣX(mRGI
` , mRGI

h , L, a) =
MX(mRGI

` , mRGI
h , 2L, a)

MX(mRGI
` , mRGI

h , L, a)

σX(mRGI
` , mRGI

h , L) = lim
a7→0

ΣX(mRGI
` , mRGI

h , L, a) (2.37)



2.7. LATTICE SIMULATIONS 21

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0  0.001  0.002  0.003  0.004  0.005  0.006

M
P(

L 0
)

(a/r0)2

 

χ2
tot/dof = 5.40

χ2 = 37.42
χ2 = 2.57
χ2 = 0.15
χ2 = 4.37
χ2 = 4.74
χ2 = 4.40
χ2 = 4.77
χ2 = 4.41
χ2 = 4.78
χ2 = 1.88
χ2 = 3.06
χ2 = 1.70
χ2 = 2.91
χ2 = 0.55
χ2 = 0.15
χ2 = 6.79
χ2 = 2.16
χ2 = 7.17
χ2 = 3.15

Figure 2.2: Continuum extrapolation on the small volume, L0, of the mass
MP (L0) of the pseudoscalar heavy–heavy meson corresponding to the heavy
quark of mass mRGI = 7.10 GeV. The different values of the meson mass
correspond to different definitions of the RGI quark masses given in equations
(2.32), (2.33) and (2.34). Units are in GeV. Similar plots can be obtained,
from the data reported in Table [2.6,2.7,2.8], for the other combinations of
quark masses used in simulations, also in the case of MV (L0).

2.7.1 Small volume

In order to have a continuum extrapolation of the numerical results, the
volume L0 = 0.4 fm has been simulated by three different discretization,
32 × 163, 48 × 243 and 64 × 323. By using the results reported in [26] two
heavy quark masses have been chosen in such a way to interpolate the physi-
cal b–quark mass. In the renormalization group invariant (RGI) scheme these
masses are 7.10 GeV and 6.60 GeV respectively. Two other heavy quarks
have been simulated in order to interpolate the mass region where, using
the results reported in [25, 26], one expects to find the physical c–quark, i.e.
1.70 GeV and 1.60 GeV respectively. An additional heavy quark has been
simulated with mass 4.00 GeV. Three light quark have been simulated with
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masses of 0.14 GeV, 0.10 GeV and 0.06 GeV. Using the accurate determina-
tion of the RGI strange quark mass given in [42] one of the simulated light
quarks have been fixed to be the physical s. All the parameters of the three
different simulations are summarized in Table [2.3]. The numerical results
of the pseudoscalar and vector meson masses, MP and MV , are shown in
Table [2.6,2.7,2.8] both for the heavy–heavy and for the heavy–light quark
anti–quark pairs.

In order to obtain physical predictions from the simulated data on this
finite volume the numerical results have been extrapolated to the continuum.
As explained in section 2.5, different set of data have been obtained by using
the different definitions of the RGI quark masses given in the equations (2.32),
(2.33) and (2.34). The continuum results have then be obtained trough a
combined fit of all the set of data, linear in (a/r0)

2, as shown in Figure [2.2]

in the case of the mass of the pseudoscalar heavy–heavy meson corresponding
to the heavy quark of mass mRGI = 7.10 GeV. A global χ2/dof = 5.40 is
obtained to be compared with the χ2s of each individual definition listed in
the figure. The points at the largest lattice spacing are shown but have not
been included in the fit. The errors included in the evaluation of the χ2 are
statistical only. These are calculated by a jackknife procedure, also in the
case of the step scaling functions. The systematics due to the uncertainty on
the lattice spacing has been estimated by repeating the fit using the different
values of the scale allowed by the uncertainties quoted in [39, 40, 41] and
considering the spread of the results. The same procedure has been used for
the systematics due to the uncertainties on the renormalization constants.
The resulting 2% percent for the renormalization constants and 1% percent
for the scale have been summed in quadrature and added to the statistical
errors at the end of the recursion.

2.7.2 First volume step

The finite volume effects on the quantities calculated at L0, are measured by
doubling the volume, L1 = 0.8 fm. In order to have results in the continuum,
also in the case of the step scaling functions three different discretizations
of L0 have been used, i.e 16 × 83, 24 × 123 and 32 × 163. The volume
L1 has been simulated starting from the discretizations of L0, fixing the
value of the bare coupling and doubling the number of lattice points in each
direction. The simulated quark masses have been halved with respect to the
masses simulated on the small volume in order to have the same order of
discretization effects proportional to am (see the discussion of section 1.2).
The set of parameters for the simulations of this evolution step is reported
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Figure 2.4: Continuum extrapolation on the first evolution step, L0 7→ L1, of
the step scaling function, ΣP (L0), of the pseudoscalar meson corresponding
to the heavy quark of mass mRGI

1 = 3.55 GeV. The two sets of data are
obtained using the two definitions of RGI quark masses of equations (2.32)
and (2.34). Units are in GeV. Similar plots can be obtained, from the data
reported in Table [2.9,2.10,2.11], for the other combinations of quark masses
used in simulations, also in the case of ΣV (L0).
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in Table [2.4] and the numerical results are given in Table [2.9,2.10,2.11].

The step scaling functions of the pseudoscalar mesons at β = 6.963 are
plotted, at fixed mRGI

2 , as functions of mRGI
1 in Figure [2.3]. The value of

the step scaling functions for the s quark are obtained trough linear interpo-
lation. Both ΣP and ΣV are almost flat in a region of heavy quark masses
starting around the charm mass. The hypothesis of low sensitivity upon the
high–energy scale is thus verified. In Figure [2.4] are reported the results
of the continuum extrapolation of the step scaling function, ΣP (L0), of the
pseudoscalar meson corresponding the heavy quark of mass mRGI

1 = 3.55
GeV. The residual heavy mass dependence of the continuum extrapolated
step scaling functions is very mild, as shown in Figure [2.5] in the plot of σP

as a function of the inverse quark mass. In the heavy–light case, as already
discussed in section 1.4, the values of the step scaling functions at the val-
ues of the heavy–quark masses simulated on the small volume are extracted
by interpolation between the numerical results and the theoretical point at
mRGI

h → ∞ using both a linear fit (SE) and a quadratic fit (RE). In the
heavy–heavy case the results are linearly extrapolated.

2.7.3 Second volume step

In order to have the results on a physical volume, L2 = 1.6 fm, a second
evolution step it has been required. This is done by computing the meson
mass step scaling functions of eq. (2.37) at L = L1, by the procedure outlined
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Figure 2.7: Continuum extrapolation on the second evolution step, L1 7→ L2,
of the step scaling function, ΣP (L1), of the pseudoscalar meson corresponding
to the heavy quark of mass mRGI
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reported in Table [2.12,2.13,2.14], for the other combinations of quark masses
used in simulations, also in the case of ΣV (L1).
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in the previous section. The parameters of the simulations are given in
Table [2.5] and the results are in Table [2.12,2.13,2.14].

Also in this case, the values of the simulated quark masses have been
halved with respect to the previous step, owing to the lower values of the
simulation cutoffs. In Figure [2.6] are shown the pseudoscalar step scaling
functions at β = 6.420 and in Figure [2.8] the residual heavy–quark mass
dependence with the SE and RE fits. Figure [2.7] shows the continuum ex-
trapolation of the step scaling function, ΣP (L1), of the pseudoscalar meson
corresponding to the heavy quark of mass mRGI

1 = 2.00 GeV. The contribu-
tions of the excited states, predicted from the simple model of eq. (2.24) and
present in our numerical data, should disappear in a third evolution step. A
check supporting this hypothesis is that on the larger volumes used in the
simulation of this evolution step, i.e. L2 at β = 6.420 and β = 6.211, the
values of the meson masses defined at x0 = T/2 coincide, within the errors,
with the values coming from a “single mass” fit to the correlations.

2.8 Physical results

In this section the results of the small volume are combined with the results
of the step scaling functions to obtain, according to eq. (1.1), the physical
numbers. In Table [2.1] are shown the pseudoscalar and vector meson masses
corresponding to the heavy quarks simulated on the small volume and, in the
heavy–light case, to strange and up light quarks. The results corresponding to
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mRGI
h

State MP MV

h̄h 10.11(22) 10.12(22)
7.10 h̄s 5.48(13) 5.52(13)

h̄u 5.40(16) 5.44(16)

h̄h 9.49(21) 9.50(21)
6.60 h̄s 5.18(12) 5.22(12)

h̄u 5.10(15) 5.14(15)

h̄h 6.18(14) 6.20(14)
4.00 h̄s 3.55(8) 3.62(8)

h̄u 3.46(10) 3.53(11)

h̄h 3.15(7) 3.21(7)
1.70 h̄s 1.97(5) 2.09(5)

h̄u 1.88(6) 2.00(6)

h̄h 3.01(7) 3.07(7)
1.60 h̄s 1.90(5) 2.01(5)

h̄u 1.80(5) 1.93(6)

Table 2.1: Meson masses in the infinite volume limit. Units are in GeV.

State mRGI
h

from P from V

b̄b 6.44(14) 6.57(14)
b̄s 6.91(16) 6.93(16)
b̄u 6.90(20) 6.91(20)

c̄c 1.603(35) 1.642(36)
c̄s 1.692(38) 1.741(39)
c̄u 1.690(50) 1.712(51)

Table 2.2: Determinations of the heavy quark masses from the heavy–heavy
and from the heavy–light states. The errors include our estimate of the
systematics. Units are in GeV.

the up quark have been obtained by extrapolating the continuum data in the
large volume from masses around the strange region. In Figure [2.9] we show
the extrapolation for the pseudoscalar meson corresponding to mRGI

h = 7.1
GeV. Having simulated three light quark on the largest volume we have fit-
ted the results linearly without trying complicated functional forms requiring
more than two parameters. Comparing these results with the experimental
determinations of the same quantities [26] have been obtained different de-
terminations of the b–quark mass, depending upon the physical state used
as experimental input. The results are summarized in Table [2.2].

Within the quenched approximation, the determinations of the quark
masses coming from the heavy–heavy or from the heavy–light spectrum in
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Figure 2.9: Chiral extrapolation of the continuum results for the pseudoscalar
meson corresponding to mRGI

h = 7.1. Units are in GeV.

principle differ because the theory does not account for the fermion loops.
In the present calculation have been obtained two determinations that are
marginally compatible within the errors and that might suggest the need for a
tiny unquenching effect. The good agreement between the determinations of
the quark masses coming from the heavy–up and heavy–strange sets of data
is an implicit check of the chiral extrapolations. Of course the heavy–strange
and the heavy–heavy case are not extrapolated at all and therefore only these
results are used to determine the heavy–quark masses. The numbers below,
i.e. the final results of the calculation, are obtained by averaging the four
results in the first two rows of the two sets of Table [2.2] for the heavy-heavy
and the heavy-strange cases and by keeping the typical error of a single case:

mRGI
b = 6.73(16) GeV mMS

b (mMS
b ) = 4.33(10) GeV (2.38)

for the b–quark and

mRGI
c = 1.681(36) GeV mMS

c (mMS
c ) = 1.319(28) GeV (2.39)

for the charm. The latter results compare favorably with the results of the
direct computations [25, 26].

As already explained in section 2.7.1, the error estimate includes both the
statistical error from the Monte Carlo simulation as well as the systematic

error coming from the uncertainty on the lattice spacing corresponding at
a given β value and to the uncertainty on the renormalization constants
in eqs (2.30) and (2.34). The final errors on the continuum quantities, of
the order of 2% percent for the renormalization constants and of about 1%
percent for the scale, are summed in quadrature and added to the statistical
errors. The evolution to the MS scheme has been done using four–loop
renormalization group equations [43, 44, 45].
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β L/a kc k mRGI (GeV)

0.120081 7.14(8)
0.120988 6.63(7)
0.126050 4.024(44)

6.963 16 0.134827(6) 0.131082 1.696(19)
0.131314 1.591(18)
0.134526 0.1381(30)
0.134614 0.0978(28)
0.134702 0.0574(28)

0.124176 7.11(8)
0.124844 6.61(20)
0.128440 4.018(44)

7.300 24 0.134235(3) 0.131800 1.695(19)
0.131950 1.592(18)
0.134041 0.1374(27)
0.134098 0.0971(24)
0.134155 0.0567(24)

0.126352 7.10(8)
0.126866 6.60(7)
0.129585 4.016(44)

7.548 32 0.133838(2) 0.132053 1.698(19)
0.132162 1.595(18)
0.133690 0.1422(27)
0.133732 0.1021(25)
0.133773 0.0618(23)

Table 2.3: Simulation parameters at L0 = 0.4 fm. The RGI quark masses
are obtained using eq. (2.32).

β L0/a kc k mRGI (GeV)

0.120674 3.543(39)
0.122220 3.114(34)
0.126937 1.927(21)

6.420 8 0.135703(9) 0.134304 0.3007(36)
0.134770 0.2003(28)
0.135221 0.1028(21)

0.1249 3.542(39)
0.1260 3.136(34)
0.1293 1.979(22)

6.737 12 0.135235(5) 0.1343 0.3127(38)
0.1346 0.2090(28)
0.1349 0.1080(21)

0.127074 3.549(39)
0.127913 3.153(35)
0.130409 2.003(22)

6.963 16 0.134832(4) 0.134145 0.3134(38)
0.134369 0.2112(28)
0.134593 0.1086(20)

Table 2.4: Simulation parameters for the first evolution step L0 → L1 = 0.8
fm. The RGI quark masses are obtained using eq. (2.32).
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β L1/a kc k mRGI (GeV)

0.118128 2.012(22)
0.121012 1.551(17)
0.122513 1.337(15)

5.960 8 0.13490(4) 0.131457 0.3154(36)
0.132335 0.2322(28)
0.133226 0.1466(44)

0.124090 1.984(22)
0.126198 1.584(17)
0.127280 1.389(15)

6.211 12 0.135831(8) 0.133574 0.3493(39)
0.134177 0.2550(29)
0.134786 0.1510(19)

0.126996 1.933(21)
0.128646 1.547(17)
0.129487 1.355(14)

6.420 16 0.135734(5) 0.134318 0.3016(34)
0.134775 0.2038(24)
0.135235 0.1055(15)

Table 2.5: Simulation parameters for the first evolution step L1 → L2 = 1.6
fm. The RGI quark masses are obtained using eq. (2.32).
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β mRGI
1 mRGI

2 MP MV

7.14(8) 7.14(8) 8.295(5) 8.318(5)
6.63(7) 8.092(5) 8.116(6)

4.024(44) 6.898(6) 6.924(6)
1.696(19) 5.590(7) 5.622(7)
1.591(18) 5.527(7) 5.559(8)
0.1381(30) 4.646(9) 4.691(10)
0.0978(28) 4.622(10) 4.668(10)
0.0574(28) 4.597(10) 4.645(10)

6.63(7) 6.63(7) 7.888(5) 7.913(6)
4.024(44) 6.693(6) 6.721(6)
1.696(19) 5.384(7) 5.417(7)
1.591(18) 5.320(7) 5.354(8)
0.1381(30) 4.438(9) 4.485(10)
0.0978(28) 4.414(10) 4.462(10)
0.0574(28) 4.390(10) 4.440(10)

6.963 4.024(44) 4.024(44) 5.491(6) 5.524(7)
1.696(19) 4.170(7) 4.215(8)
1.591(18) 4.106(7) 4.152(8)
0.1381(30) 3.207(10) 3.278(11)
0.0978(28) 3.183(10) 3.255(11)
0.0574(28) 3.158(10) 3.232(11)

1.696(19) 1.696(19) 2.826(8) 2.898(9)
1.591(18) 2.760(8) 2.835(9)
0.1381(30) 1.816(10) 1.952(12)
0.0978(28) 1.790(10) 1.928(12)
0.0574(28) 1.763(10) 1.905(12)

1.591(18) 1.591(18) 2.694(8) 2.771(9)
0.1381(30) 1.746(10) 1.888(12)
0.0978(28) 1.719(10) 1.864(12)
0.0574(28) 1.692(10) 1.840(12)

Table 2.6: Values of the pseudoscalar, MP , and vector, MV , meson masses
resulting from the simulations on the smallest volume L0 = 0.4 fm at β =
6.963. Units are in GeV.
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β mRGI
1 mRGI

2 MP MV

7.11(8) 7.11(8) 8.920(6) 8.944(7)
6.61(20) 8.678(6) 8.702(7)
4.018(44) 7.310(7) 7.336(8)
1.695(19) 5.926(9) 5.957(10)
1.592(18) 5.862(9) 5.893(10)
0.1374(27) 4.987(13) 5.031(14)
0.0971(24) 4.964(14) 5.009(14)
0.0567(24) 4.942(14) 4.987(15)

6.61(20) 6.61(20) 8.435(6) 8.459(7)
4.018(44) 7.066(7) 7.093(8)
1.695(19) 5.680(9) 5.713(10)
1.592(18) 5.616(9) 5.649(10)
0.1374(27) 4.739(13) 4.786(14)
0.0971(24) 4.717(14) 4.764(15)
0.0567(24) 4.694(14) 4.742(15)

7.300 4.018(44) 4.018(44) 5.689(8) 5.722(9)
1.695(19) 4.291(10) 4.336(11)
1.592(18) 4.226(10) 4.272(11)
0.1374(27) 3.334(14) 3.404(15)
0.0971(24) 3.310(14) 3.381(15)
0.0567(24) 3.287(14) 3.359(16)

1.695(19) 1.695(19) 2.869(11) 2.942(13)
1.592(18) 2.803(11) 2.878(13)
0.1374(27) 1.864(14) 1.999(17)
0.0971(24) 1.838(14) 1.976(17)
0.0567(24) 1.812(15) 1.953(17)

1.592(18) 1.592(18) 2.736(11) 2.813(13)
0.1374(27) 1.793(14) 1.934(17)
0.0971(24) 1.767(14) 1.911(17)
0.0567(24) 1.741(15) 1.888(18)

Table 2.7: Values of the pseudoscalar, MP , and vector, MV , meson masses
resulting from the simulations on the smallest volume L0 = 0.4 fm at β =
7.300. Units are in GeV.
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β mRGI
1 mRGI

2 MP MV

7.10(8) 7.10(8) 9.203(7) 9.225(8)
6.60(7) 8.939(7) 8.960(8)

4.016(44) 7.480(8) 7.503(9)
1.698(19) 6.060(10) 6.088(10)
1.595(18) 5.996(10) 6.025(11)
0.1422(27) 5.115(14) 5.157(15)
0.1021(25) 5.093(14) 5.135(15)
0.0618(23) 5.070(15) 5.113(15)

6.60(7) 6.60(7) 8.674(7) 8.696(8)
4.016(44) 7.214(8) 7.238(9)
1.698(19) 5.792(10) 5.822(11)
1.595(18) 5.728(10) 5.759(12)
0.1422(27) 4.846(14) 4.891(15)
0.1021(25) 4.823(14) 4.869(15)
0.0618(23) 4.801(15) 4.847(15)

7.548 4.016(44) 4.016(44) 5.746(9) 5.776(10)
1.698(19) 4.314(10) 4.356(11)
1.595(18) 4.249(10) 4.292(12)
0.1422(27) 3.352(15) 3.420(15)
0.1021(25) 3.328(15) 3.398(16)
0.0618(23) 3.305(15) 3.377(16)

1.698(19) 1.698(19) 2.860(11) 2.930(13)
1.595(18) 2.794(11) 2.866(13)
0.1422(27) 1.852(15) 1.988(17)
0.1021(25) 1.827(15) 1.966(17)
0.0618(23) 1.801(16) 1.944(18)

1.595(18) 1.595(18) 2.727(12) 2.802(13)
0.1422(27) 1.781(15) 1.924(17)
0.1021(25) 1.756(15) 1.901(18)
0.0618(23) 1.730(16) 1.879(18)

Table 2.8: Values of the pseudoscalar, MP , and vector, MV , meson masses
resulting from the simulations on the smallest volume L0 = 0.4 fm at β =
7.548. Units are in GeV.
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β mRGI
1 mRGI

2 ΣP ΣV

0.1028(21) 0.1028(21) 0.996(28) 0.826(21)
0.2003(28) 1.010(23) 0.848(19)
0.3007(36) 1.017(20) 0.869(17)
1.927(21) 1.034(7) 0.998(8)
3.114(34) 1.032(5) 1.013(6)
3.543(39) 1.031(5) 1.015(5)

0.2003(28) 0.2003(28) 1.016(20) 0.867(17)
0.3007(36) 1.020(18) 0.885(15)
1.927(21) 1.036(7) 1.003(7)
3.114(34) 1.034(5) 1.015(5)
3.543(39) 1.037(5) 1.018(5)

6.420 0.3007(36) 0.3007(36) 1.022(16) 0.901(14)
1.927(21) 1.038(6) 1.007(7)
3.114(34) 1.036(5) 1.019(5)
3.543(39) 1.0349(46) 1.0205(47)

1.927(21) 1.927(21) 1.0520(34) 1.0425(37)
3.114(34) 1.0493(27) 1.0438(29)
3.543(39) 1.0479(25) 1.0433(27)

3.114(34) 3.114(34) 1.0471(21) 1.0440(23)
3.543(39) 1.0460(20) 1.0433(22)

3.543(39) 3.543(39) 1.0449(19) 1.0427(20)

Table 2.9: Values of the step scaling functions for the pseudoscalar, ΣP , and
vector, ΣV , meson masses resulting from the simulation at β = 6.420 of the
first evolution step L0 → L1. Units are in GeV.
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β mRGI
1 mRGI

2 ΣP ΣV

0.1080(21) 0.1080(21) 0.907(25) 0.789(19)
0.2090(28) 0.935(21) 0.810(17)
0.3127(38) 0.951(19) 0.830(16)
1.979(22) 1.009(7) 0.976(7)
3.136(34) 1.014(5) 0.995(5)
3.542(39) 1.014(5) 0.998(5)

0.2090(28) 0.2090(28) 0.950(18) 0.828(16)
0.3127(38) 0.960(16) 0.846(14)
1.979(22) 1.011(6) 0.980(7)
3.136(34) 1.0155(47) 0.998(5)
3.542(39) 1.0158(43) 1.0009(46)

6.737 0.3127(38) 0.3127(38) 0.967(14) 0.862(13)
1.979(22) 1.014(6) 0.985(6)
3.136(34) 1.0176(44) 1.0013(47)
3.542(39) 1.0178(40) 1.0039(43)

1.979(22) 1.979(22) 1.0376(30) 1.0279(33)
3.136(34) 1.0375(23) 1.0317(25)
3.542(39) 1.0367(21) 1.0317(23)

3.136(34) 3.136(34) 1.0372(18) 1.0338(19)
3.542(39) 1.0365(16) 1.0336(18)

3.542(39) 3.542(39) 1.0358(15) 1.0333(17)

Table 2.10: Values of the step scaling functions for the pseudoscalar, ΣP , and
vector, ΣV , meson masses resulting from the simulation at β = 6.737 of the
first evolution step L0 → L1. Units are in GeV.
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β mRGI
1 mRGI

2 ΣP ΣV

0.1086(20) 0.1086(20) 0.914(28) 0.783(24)
0.2112(28) 0.939(24) 0.807(21)
0.3134(38) 0.953(21) 0.830(19)
2.003(22) 1.012(8) 0.981(8)
3.153(35) 1.016(6) 0.999(6)
3.549(39) 1.016(5) 1.002(6)

0.2112(28) 0.2112(28) 0.951(21) 0.828(19)
0.3134(38) 0.960(18) 0.847(17)
2.003(22) 1.013(7) 0.984(8)
3.153(35) 1.017(5) 1.001(6)
3.549(39) 1.017(5) 1.003(5)

6.963 0.3134(38) 0.3134(38) 0.967(16) 0.864(16)
2.003(22) 1.015(7) 0.989(7)
3.153(35) 1.018(5) 1.004(5)
3.549(39) 1.0181(46) 1.006(5)

2.003(22) 2.003(22) 1.0365(35) 1.0281(39)
3.153(35) 1.0357(27) 1.0309(30)
3.549(39) 1.0348(25) 1.0307(28)

3.153(35) 3.153(35) 1.0349(21) 1.0321(23)
3.549(39) 1.0341(20) 1.0317(22)

3.549(39) 3.549(39) 1.0333(19) 1.0313(20)

Table 2.11: Values of the step scaling functions for the pseudoscalar, ΣP , and
vector, ΣV , meson masses resulting from the simulation at β = 6.963 of the
first evolution step L0 → L1. Units are in GeV.
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β mRGI
1 mRGI

2 ΣP ΣV

0.1466(44) 0.1466(44) 1.269(13) 1.308(15)
0.2322(28) 1.244(11) 1.286(12)
0.3154(36) 1.226(9) 1.267(10)
1.337(15) 1.1406(40) 1.1636(45)
1.551(17) 1.1332(37) 1.1539(42)
2.012(22) 1.1214(32) 1.1383(36)

0.2322(28) 0.2322(28) 1.224(9) 1.266(10)
0.3154(36) 1.209(8) 1.249(9)
1.337(15) 1.1337(35) 1.1557(40)
1.551(17) 1.1268(32) 1.1467(37)
2.012(22) 1.1158(29) 1.1322(32)

5.960 0.3154(36) 0.3154(36) 1.196(7) 1.235(8)
1.337(15) 1.1278(32) 1.1489(37)
1.551(17) 1.1213(30) 1.1405(34)
2.012(22) 1.1110(27) 1.1269(30)

1.337(15) 1.337(15) 1.0894(19) 1.029(21)
1.551(17) 1.0853(18) 1.0978(20)
2.012(22) 1.0785(16) 1.0895(17)

1.551(17) 1.551(17) 1.0814(17) 1.0931(18)
2.012(22) 1.0749(15) 1.0852(16)

2.012(22) 2.012(22) 1.0689(13) 1.0782(14)

Table 2.12: Values of the step scaling functions for the pseudoscalar, ΣP , and
vector, ΣV , meson masses resulting from the simulation at β = 5.960 of the
second evolution step L1 → L2. Units are in GeV.
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β mRGI
1 mRGI

2 ΣP ΣV

0.1510(19) 0.1510(19) 1.156(14) 1.255(18)
0.2550(29) 1.151(11) 1.235(15)
0.3493(39) 1.146(10) 1.219(12)
1.389(15) 1.1035(46) 1.131(6)
1.584(17) 1.1098(42) 1.123(5)
1.984(22) 1.0899(37) 1.1095(44)

0.2550(29) 0.2550(29) 1.147(10) 1.218(12)
0.3493(39) 1.142(8) 1.204(10)
1.389(15) 1.1010(40) 1.1258(48)
1.584(17) 1.0961(37) 1.1181(44)
1.984(22) 1.0879(33) 1.1056(39)

6.211 0.3493(39) 0.3493(39) 1.138(7) 1.193(9)
1.389(15) 1.0983(37) 1.1210(44)
1.584(17) 1.0936(34) 1.1137(40)
1.984(22) 1.0857(30) 1.1020(35)

1.389(15) 1.389(15) 1.0727(20) 1.0842(24)
1.584(17) 1.0695(19) 1.0799(22)
1.984(22) 1.0640(17) 1.0728(20)

1.584(17) 1.584(17) 1.0664(18) 1.0759(21)
1.984(22) 1.0611(16) 1.0692(18)

1.984(22) 1.984(22) 1.0564(14) 1.0633(16)

Table 2.13: Values of the step scaling functions for the pseudoscalar, ΣP , and
vector, ΣV , meson masses resulting from the simulation at β = 6.211 of the
second evolution step L1 → L2. Units are in GeV.
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β mRGI
1 mRGI

2 ΣP ΣV

0.1055(15) 0.1055(15) 1.167(27) 1.259(35)
0.2038(24) 1.162(22) 1.235(27)
0.3016(34) 1.156(18) 1.218(22)
1.355(14) 1.104(7) 1.125(9)
1.547(17) 1.098(7) 1.117(8)
1.933(21) 1.088(6) 1.103(7)

0.2038(24) 0.2038(24) 1.155(18) 1.217(21)
0.3016(34) 1.150(15) 1.203(18)
1.355(14) 1.101(6) 1.121(8)
1.547(17) 1.095(6) 1.113(7)
1.933(21) 1.086(5) 1.000(6)

6.420 0.3016(34) 0.3016(34) 1.144(13) 1.192(16)
1.355(14) 1.098(6) 1.118(7)
1.547(17) 1.093(5) 1.110(6)
1.933(21) 1.0839(46) 1.098(5)

1.355(14) 1.355(14) 1.0711(31) 1.0821(37)
1.547(17) 1.0676(29) 1.0777(34)
1.933(21) 1.0617(25) 1.0702(30)

1.547(17) 1.547(17) 1.0643(27) 1.0735(31)
1.933(21) 1.0587(24) 1.0665(27)

1.933(21) 1.933(21) 1.0538(21) 1.0604(24)

Table 2.14: Values of the step scaling functions for the pseudoscalar, ΣP , and
vector, ΣV , meson masses resulting from the simulation at β = 6.420 of the
second evolution step L1 → L2. Units are in GeV.
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Chapter 3

Calculation of heavy–light
mesons decay constants
through the SSM

In the previous chapter the step scaling method has been used to calculate
heavy meson masses and to extract the quenched value of the b–quark mass.
The method has been also applied to the calculation of the Bs meson decay
constant [3] and this chapter is dedicated to a presentation of these results.
As an outcome of the calculation it has been also determined the decay
constant of the Ds meson. In this way it has been possible to compare the
SSM result against that of a direct calculation with a successful outcome.
The calculation of the b–quark mass and that of the Bs meson decay constant
have been carried on in parallel on the same set of data. For this reason this
chapter inherits all the notations explained in the previous one and is mainly
focused on the numerical results.

3.1 Definition of the observable

Meson decay constants on a finite volume are defined through the correlations
introduced in section 2.3. In particular, the decay constant of a heavy–light
pseudoscalar meson is given by

fh` =
2√

L3MP (T/2)

fR
A (T/2)√

f1

(3.1)
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The correlation fR
A (x0) is defined as (see eq. (2.17))

fR
A (x0) = −a

6

2

∑

y,z

〈ζj(y)γ5ζi(z)A
R
0 (x)〉

AR
µ (x0) = ZA (1 + bA

ami + amj

2
) AI

µ(x0) (3.2)

where ami is the bare quark mass of the i quark and ZA is the axial current
renormalization constant that has been computed non perturbatively in [46].
For the improvement coefficient bA have been used the perturbative results
quoted in [34] (at the values of the bare coupling, β ' 7.0, used in the
numerical simulations the one–loop contribution to bA differs from the tree–
level of 10%). The pseudoscalar meson mass MP (x0) has been defined in
eq. (2.20) while f1 is the boundary–to–boundary correlation needed in order
to cancel, in the ratio, the renormalization constants of the boundary quark
fields:

f1 = − a12

3L6

∑

y,z,u,w

〈 ζj(y)γ5ζi(z) ζ ′i(u)γ5ζ
′
j(w) 〉 (3.3)

It is important to realize that the choice of defining the decay constant in the
middle of the lattice, x0 = T/2, does not introduces other length scales than
L into the calculation (see the analogous discussion in the case of the meson
masses, section 2.4). Indeed the topology of the simulated finite volumes
is such that T = 2L and the step scaling technique (see eq.(1.1)) connects
x0 = Lmin, where the decay constant has been defined on the smallest volume,
with x0 = Lmax, where one expects to be free from finite volume effects.

3.2 Lattice Simulations

As already mentioned, the results of the heavy–light mesons decay constants
have been extracted from the same simulations and from the same numerical
data produced in the calculation of the quark masses. The small volume
have been fixed to be L0 = 0.4 fm and the recursion has been stopped after
two steps, at the volume Lmax = 1.6 fm. The SSM identity in the case of the
decay constants is simply given by

fh`(Lmax) = fh`(L0)
fh`(2L0)

fh`(L0)

fh`(4L0)

fh`(2L0)
(3.4)

In the following, the step scaling functions at finite lattice spacing will be
referred to as Σ wile the continuum one will be called σ

Σh`(L, a) =
fh`(2L, a)

fh`(L, a)
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Figure 3.1: Continuum extrapolation on the small volume of fBs
(L0). The

different values of the decay constant correspond to different definitions of
the RGI quark masses given in equations (2.32), (2.33) and (2.34). For each
definition the two points at largest lattice spacing has been shown but not
included in the fit. Units are in GeV.

σh`(L) = lim
a7→0

Σh`(L, a) (3.5)

3.2.1 Small volume

Simulations of the decay constants on the smallest volume (L0 = 0.4 fm) have
been performed at five different lattice spacings using the geometries 24×123,
32×163, 40×203, 48×243 and 64×323 thus adding two more discretizations
with respect to the calculation of the quark masses. For each discretization,
a set of eight quark masses have been simulated. Two of the heavy masses
have been chosen around the bottom quark mRGI

b = 6.73(16) GeV [2]. Other
two have been chosen in the region of the charm quark mRGI

c = 1.681(36) [2].
An additional heavy quark has been simulated with mass 4.00 GeV. Three
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light quark have been simulated with RGI masses of 0.14 GeV, 0.10 GeV and
0.06 GeV. Using the accurate determination of the RGI strange quark mass
given in [42] one of the simulated light quarks has been chosen with the same
mass of the physical s. The results of this finite volume calculation will be
combined with the ones of the step scaling functions to provide results for
the heavy–light decay constants with light quarks with masses around that
of the strange. The final numbers will be in the continuum and on a large
volume. All the parameters of the five different simulations are summarized
in Table [3.1].

Different set of data have been obtained by using the different definitions
of the RGI quark masses given in equations (2.32), (2.33) and (2.34). The
continuum results have been extracted trough a combined fit of all the set of
data, linear in (a/r0)

2, as shown in Figure [3.1] in the case of the bs meson.
For each set of data the three points nearest to the continuum have been
included in the fit obtaining a global χ2/dof = 0.89 to be compared with the
χ2s of each individual definition listed in the figure. On this small volume,
it is legitimate to use perturbative values for the improvement coefficient
bA since the values of the bare couplings used in the simulations are small
(g2

0 ∼ 0.85). The systematics introduced in the calculation by the continuum
extrapolations have been estimated repeating the fits linear in (a/r0)

2 includ-
ing, for each set of data, only the two points nearest to the continuum. The
resulting systematic error has been found to be of the order of 1%. This error
will be given to the results on the large volume added in quadrature with an
error of about 2% coming from the uncertainties on the lattice spacing and
on the renormalization factors. The latter have been evaluated by moving
the points as a consequence of the change, within the errors, of the lattice
spacings and of the renormalization constants and by repeating the whole
analysis.

The finite volume results are:

fBs
(L0) = 475(2)MeV fDs

(L0) = 644(3)MeV (3.6)

The errors quoted at this stage are statistical only, evaluated by a jackknife
procedure. Due to the compression of the low energy scale, these results are
higher than the large volume ones obtained after the step scaling functions
multiplication chain (see eqs. (3.9) and (3.10)).

3.2.2 First volume step

The finite volume effects on the decay constants calculated on L0, are mea-
sured by doubling the volume, L1 = 0.8 fm, and by using the step scaling
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Figure 3.2: The figure shows the step scaling functions Σ(L0) as functions
of mRGI

1 , for the simulation of the first evolution step corresponding to β =
6.963. The different sets of data correspond to the values of mRGI

2 . As can be
seen the step scaling functions approach a plateau for high values of mRGI

1 .
Similar plots can be obtained for the other values of the bare couplings.

function of eq (3.5).

The continuum extrapolations have been obtained by simulating the step
scaling functions with three different discretizations of L0, i.e 16 × 83, 24 ×
123 and 32 × 163. The volume L1 has been simulated starting from the
discretizations of L0, fixing the value of the bare coupling and doubling the
number of lattice points in each direction.

The simulated quark masses have been halved with respect to the masses
simulated on the small volume in order to have the same amount of discretiza-
tion effects proportional to am. The set of parameters for the simulations of
this evolution step is reported in Table [3.2]. The step scaling functions at
β = 6.963 are plotted, at fixed mRGI

2 , as functions of mRGI
1 in Figure [3.2]. As

can be seen, Σ(L0) is almost flat in a region of heavy quark masses starting
around the charm mass. The hypothesis of low sensitivity upon the high–
energy scale is thus verified. The value of the step scaling functions for the
s quark are obtained trough linear interpolation. In Figure [3.3] are reported
the results of the continuum extrapolation of the step scaling function, Σ(L0),
of the pseudoscalar hs meson corresponding to the heaviest quark simulated
in this step (mRGI

h = 3.55 GeV). The residual heavy mass dependence of
the continuum extrapolated step scaling functions is very mild, as shown in
Figure [3.4] in the plot of σBs

as a function of the inverse quark mass. The
continuum results are linearly extrapolated at the values of the heavy quark
masses used in the small volume simulations.
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Figure 3.3: Continuum extrapolation on the first evolution step, L0 7→ L1,
of the step scaling function, Σ(L0), of the pseudoscalar meson corresponding
to the heavy quark of mass mRGI

1 = 3.55 GeV and to the s–quark. The two
sets of data are obtained using the two definitions of RGI quark masses of
equations (2.32) and (2.34). Units are in GeV. Similar plots can be obtained
for the other combinations of quark masses used in the simulations.

The numbers obtained at this step are:

σBs
(L0) = 0.417(3) σDs

(L0) = 0.414(3) (3.7)

The step scaling functions are free from the systematic errors coming from
uncertainties on ZA and bA since the multiplicative improvement and renor-
malization factors cancel exactly in the ratio, being the numerator and the
denominator evaluated at the same lattice spacing.

3.2.3 Second volume step

In order to have results on a physical volume, L2 = 1.6 fm, as in the case of
the meson masses, a second evolution step has been necessary. This is done
computing the step scaling functions of eq. (3.5) at L = L1, by the procedure
outlined in the previous section. The parameters of the simulations are given
in Table [3.3].

Also in this case, the values of the simulated quark masses have been
halved with respect to the previous step, owing to the lower values of the
simulation cutoffs. Even if the values of the quark masses have been lowered
again, the linear extrapolations at the values of the heavy quark masses
used on the small volume appears to be still valid and under control; see
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Figure [3.5,3.7]. This outcome have been predicted in section 1.2 by using
dimensional analysis arguments. The value of the step scaling functions
for the s quark have been obtained trough linear interpolation. Figure [3.6]

shows the continuum extrapolation of the step scaling function, Σ(L1), of
the hs meson corresponding to the heaviest quark simulated in this step
(mRGI

h = 2.00 GeV).

The numbers for this step are:

σBs
(L1) = 0.97(3) σDs

(L1) = 0.90(2) (3.8)

The step scaling functions do not differ to much from one suggesting that an
additional volume step it is not required.

3.3 Physical results

In this section the results of the small volume are combined with those of the
step scaling functions to obtain, according to eq. (1.1), the physical numbers.
In the end, the following physical results are obtained:

fBs
= 192(6)(4) MeV fDs

= 240(5)(5) MeV (3.9)

The first error is statistical while the second one is an estimate of the system-
atics due to the uncertainties on the continuum extrapolations, on the scale
and on the renormalization factors, as already discussed in sec. 3.2.1. The
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1 , for the simulation of the first evolution step corresponding to β =
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seen the step scaling functions approach a plateau for high values of mRGI
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Similar plots can be obtained for the other values of the bare couplings.

value for fDs
agrees with the average of dedicated calculations performed

on large volumes [47, 48]. This result validates the choice of stopping the
recursion at L = 1.6 fm that, of course, could have been explicitly checked
to be safe by performing further evolution steps.

The chiral behavior of heavy–light pseudoscalar decay constants has been
shown [49, 50, 51, 52] to contain logarithmic terms (χ–logs) that are diverging
in the chiral limit, at variance with the unquenched case where these terms
only affect the form of the extrapolation. In Figure [3.8] are shown the chiral
extrapolations of the continuum heavy–light pseudoscalar decay constants.
The data corresponding to the different values of the parameter Λ have been
extrapolated using the parametrization suggested in [52]. As can be seen
from the figure, the presence of the unphysical quenched χ–logs make the
extrapolations unreliable down to the u–quark mass while the strange region
seems to be dominated by a linear behavior. Nevertheless, in the literature
values extrapolated linearly in the light quark mass have been quoted. For a
historical comparison here below are given the corresponding results obtained
in the present calculation:

f linear
B = 171(8)(4) MeV f linear

D = 221(7)(5) MeV

fBs

f linear
B

= 1.12(2)(1)
fDs

f linear
D

= 1.09(1)(1) (3.10)
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Figure 3.6: Continuum extrapolation on the first evolution step, L1 7→ L2,
of the step scaling function, Σ(L1), of the pseudoscalar meson corresponding
to the heavy quark of mass mRGI

1 = 2.00 GeV and to the s–quark. The two
sets of data are obtained using the two definitions of RGI quark masses of
equations (2.32) and (2.34). Units are in GeV. Similar plots can be obtained
for the other combinations of quark masses used in the simulations.

that differ by a large factor from the unreliable values obtained from the fits
shown in Figure [3.8] because of the diverging χ–logs.
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β L0/a kc k mRGI (GeV)

0.115528 7.51(9)
0.116762 6.91(8)
0.123555 4.019(43)

6.737 12 0.13520(1) 0.130384 1.702(20)
0.130089 1.604(18)
0.134801 0.1347(31)
0.134925 0.0929(29)
0.135048 0.0513(29)

0.120081 7.14(8)
0.120988 6.63(7)
0.126050 4.024(44)

6.963 16 0.134827(6) 0.131082 1.696(19)
0.131314 1.591(18)
0.134526 0.1381(30)
0.134614 0.0978(28)
0.134702 0.0574(28)

0.122666 7.03(11)
0.123437 6.53(10)
0.127605 3.97(6)

7.151 20 0.134492(5) 0.131511 1.716(27)
0.131686 1.617(25)
0.134277 0.1257(36)
0.134350 0.0829(33)
0.134422 0.0407(32)

0.124176 7.11(8)
0.124844 6.61(20)
0.128440 4.018(44)

7.300 24 0.134235(3) 0.131800 1.695(19)
0.131950 1.592(18)
0.134041 0.1374(27)
0.134098 0.0971(24)
0.134155 0.0567(24)

0.126352 7.10(8)
0.126866 6.60(7)
0.129585 4.016(44)

7.548 32 0.133838(2) 0.132053 1.698(19)
0.132162 1.595(18)
0.133690 0.1422(27)
0.133732 0.1021(25)
0.133773 0.0618(23)

Table 3.1: Simulation parameters at L0 = 0.4 fm. The RGI quark masses
are obtained using eq. (2.32).
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β L0/a kc k mRGI (GeV)

0.120674 3.543(39)
0.122220 3.114(34)
0.126937 1.927(21)

6.420 8 0.135703(9) 0.134304 0.3007(36)
0.134770 0.2003(28)
0.135221 0.1028(21)

0.1249 3.542(39)
0.1260 3.136(34)
0.1293 1.979(22)

6.737 12 0.135235(5) 0.1343 0.3127(38)
0.1346 0.2090(28)
0.1349 0.1080(21)

0.127074 3.549(39)
0.127913 3.153(35)
0.130409 2.003(22)

6.963 16 0.134832(4) 0.134145 0.3134(38)
0.134369 0.2112(28)
0.134593 0.1086(20)

Table 3.2: Simulation parameters for the first evolution step L0 → L1 = 0.8
fm. The RGI quark masses are obtained using eq. (2.32).

β L1/a kc k mRGI (GeV)

0.118128 2.012(22)
0.121012 1.551(17)
0.122513 1.337(15)

5.960 8 0.13490(4) 0.131457 0.3154(36)
0.132335 0.2322(28)
0.133226 0.1466(44)

0.124090 1.984(22)
0.126198 1.584(17)
0.127280 1.389(15)

6.211 12 0.135831(8) 0.133574 0.3493(39)
0.134177 0.2550(29)
0.134786 0.1510(19)

0.126996 1.933(21)
0.128646 1.547(17)
0.129487 1.355(14)

6.420 16 0.135734(5) 0.134318 0.3016(34)
0.134775 0.2038(24)
0.135235 0.1055(15)

Table 3.3: Simulation parameters for the first evolution step L1 → L2 = 1.6
fm. The RGI quark masses are obtained using eq. (2.32).
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Chapter 4

One–particle states

The study of quantum field theories on a finite volume is motivated by both
theoretical and phenomenological reasons. In particular, a finite volume is
required when the lattice regularization is adopted. The choice of the lattice
regularization with respect to other useful continuum schemes is motivated
by the fact that it is mathematically well defined from the beginning, it offers
the unique opportunity to study non–perturbatively and from first principles
a given quantum field theory and also because it has been shown to be the
only known regularization to be able to account, in the case of vector–like
theories, at the same time for gauge and the chiral invariance (see [53] for a
complete introduction to chiral gauge theories on the lattice).

In their numerical applications lattice gauge theories are formulated in a
finite 4–dimensional volume T × L3. The introduction of a low energy scale
(1/L) does regulate possible infrared divergences arising in the theory but it
has also the consequence that the allowed physical momenta come out to be
discretized in units of 2π/L. The discretization of 3–momentum leads to a
series of complications in the phenomenological applications of the lattice. A
simple example in which such problems arise is represented by the two body
decay of a given particle parametrized by the following matrix element

M(A→BC) = out〈 B(pB) C(pC) | A(pA) 〉in (4.1)

In this case the energies of the decay products are fixed by 4–momentum
conservation but, because of the discretization of the 3–momenta, ~pB and ~pC

cannot assume their physical values unless the masses of the three particles
involved in the decay are chosen in such a way to fulfill the quantization rule.

In this chapter it is described a simple method devised in order to over-
come some of these difficulties. The key points are that the momentum
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quantization condition depends upon the choice of the boundary conditions
and that different particles species (different fields) can have different bound-
ary conditions. By using these simple observations it is possible to handle in
lattice simulations physical momenta smaller than the lowest allowed excita-
tion (2π/L) in the case of standard periodic boundary conditions for all the
fields.

4.1 Periodic fields

In this section it is briefly reviewed the derivation of the momentum quan-
tization rule in the case of a field satisfying periodic boundary conditions
(PBC) on a finite volume T × L3. In the following no hypotheses are made
on the boundary conditions satisfied by the field ψ(x) in the time direction
while, in the spatial directions, ψ(x) is required to satisfy

ψ(x + ~ei L) = ψ(x) , i = 1, 2, 3 (4.2)

This condition can be re–expressed by Fourier transforming both members
of the previous equation

∫
d4p e−ip(x+~ei L) ψ̃(p) =

∫
d4p e−ipx ψ̃(p) , i = 1, 2, 3 (4.3)

It follows directly from the previous relation that, in the case of periodic
boundary conditions, one has

eipiL = 1 =⇒ pi =
2π ni

L
, i = 1, 2, 3 (4.4)

where the ni’s are integer numbers. As already mentioned, the first allowed
momentum on a volume of the order of 2 fm is given by

p =
2π

L
' 600 MeV L ' 2 fm (4.5)

and it is usually not possible to explore the interesting kinematic region of a
given physical process by varying the particle momenta by quanta of 0.6 GeV.

4.2 θ–periodic fields

The authors of refs. [54, 55, 56, 57, 58, 59, 60, 61] have considered a general-
ized set of boundary conditions, in the following referred to as θ–boundary
conditions (θ–BC), depending upon the choice of a topological 3–vector ~θ

ψ(x + ~ei L) = e−iθi ψ(x) , i = 1, 2, 3 (4.6)
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The modification of the boundary conditions shifts the zero of the momenta.
Indeed, by re–expressing equation (4.6) in Fourier space, as already done in
the case of PBC in equation (4.3), one has

∫
d4p e−ip(x+~ei L) ψ̃(p) =

∫
d4p e−i(px+θi) ψ̃(p) , i = 1, 2, 3 (4.7)

form which

ei(pi− θi
L

)L = 1 =⇒ pi =
θi

L
+

2π ni

L
, i = 1, 2, 3 (4.8)

It comes out that the spatial momenta are still quantized as for PBC but
shifted by the amount (θi/L). The observation that this continuous shift
in the allowed momenta is physical and can thus be profitably used in phe-
nomenological applications is the key point of this chapter (see also ref. [4]).

4.3 Bloch’s theorem and θ–BC

The physical meaning of θ–boundary conditions can be clarified by analogy
with the wavefunction of an electron in a crystal. Indeed, a quark on the
lattice experiences a periodic potential as well as the electron does in a solid
and they both satisfy the Dirac equation. The analogy is completed by
identifying the lattice extension L with the extension of the unit cell (that
unfortunately is often called a as the lattice spacing) and not with the linear
extension of the crystal. The well known Bloch’s theorem holds

theorem 1 The wavefunctions of the “crystal Hamiltonian” can be written

as the product of a plane wave of wave-vector ~k from within the first Brillouin

zone, times an appropriate periodic function:

ψ~k(~r) = ei~k·~r u~k(~r) (4.9)

where

u~k(~r + ~nL) = u~k(~r) and 0 ≤ ki <
2π

L
(4.10)

It should be noted that the wavefunctions ψ~k(~r) do not satisfy periodic
boundary conditions but the more general b.c.’s

ψ~k(~r + ~nL) = ei~k·~nL ψ~k(~r) (4.11)
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These boundary conditions are identical to those introduced in the previous
section and the complete matching is obtained by recognizing

~k =
~θ

L
(4.12)

4.4 Numerical implementation

The generalized θ–dependent boundary conditions of equation (4.6) can be
implemented in lattice simulations in a simple way. It useful to consider a
unitary Abelian transformation on the fields satisfying θ–BC

ψ(x) −→ U (θ, x)ψ(x) = e−
iθx
L ψ(x) (4.13)

As a consequence of this transformation the resulting field satisfies periodic
boundary conditions but obeys a modified Dirac equation

S[ψ̄, ψ] −→
∑

x,y

ψ̄(x) U(θ, x)D(x, y)U−1(θ, y) ψ(y)

=
∑

x,y

ψ̄(x) Dθ(x, y) ψ(y) (4.14)

where the θ–dependent lattice Dirac operator Dθ(x, y) is obtained by starting
from the preferred discretization of the Dirac operator and by modifying
the definition of the covariant lattice derivatives, i.e. by passing from the
standard forward and backward derivatives:

∇µψ(x) =
1

a
[Uµ(x)ψ(x+ a µ̂) − ψ(x)]

∇?
µψ(x) =

1

a

[
ψ(x) − U−1

µ (x− a µ̂)ψ(x− a µ̂)
]

(4.15)

to the θ–dependent ones

∇µ(θ)ψ(x) =
1

a
[λµ Uµ(x)ψ(x + a µ̂) − ψ(x)]

∇?
µ(θ)ψ(x) =

1

a

[
ψ(x) − λ−1

µ U−1
µ (x− a µ̂)ψ(x− a µ̂)

]
(4.16)

where

λµ = e
iaθµ

L θ0 = 0 (4.17)
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4.5 A simple numerical test

The physical significance of ~θ/L as a true physical momentum can be checked
by performing a simple numerical test. It has been calculated the energy of
a meson made up of two different quarks with different θ–BC for the two
flavors. The work has been done by using the O(a)–improved Wilson–Dirac
lattice formulation of the QCD within the Schrödinger Functional formalism
(see sections 2.1 and 2.2) but, as already mentioned, the use of θ–BC in the
spatial directions is completely decoupled from the choice of time boundary
conditions and can be profitably used also outside the Schrödinger Func-
tional formalism, for example when using standard periodic time boundary
conditions. The following correlators have been considered

f ij
P (θ; x0) = −a

6

2

∑

~y,~z,~x

〈 ζ̄i(~y)γ5ζj(~z) ψ̄j(x)γ5ψi(x) 〉 (4.18)

where i and j are flavor induces, all the fields satisfy periodic boundary
conditions and the two flavors obey different θ–modified Dirac equations, as
explained in equations (4.14), (4.15) and (4.16). In practice it is adequate
to choose the flavor i with θ = 0, i.e. with ordinary PBC, and the flavor
j with θ 6= 0. After the Wick contractions the pseudoscalar correlator of
equation (4.18) reads

f ij
P (θ; x0) =

a6

2

∑

~y,~z,~x

Tr 〈 γ5 Sj(θ; ~z, x) γ5 Si(0; x, ~y) 〉 (4.19)

where S(θ; x, y) and S(0; x, y) are the inverse of the θ–modified and of the
standard Wilson–Dirac operators respectively. Note that the projection on
the momentum ~θ/L of one of the quark legs in equation (4.19) it is not
realized by summing on the lattice points with an exponential factor but it
is encoded in the θ–dependence of the modified Wilson–Dirac operator and,
consequently, of its inverse S(θ; x, y).

This correlation is expected to decay exponentially at large times as

f ij
P (θ; x0)

x0�1−→ fij e
−ax0Eij(θ,a) (4.20)

where, a part from corrections proportional to the square of the lattice spac-
ing, Eij is the physical energy of the meson state

Eij(θ, a) =

√√√√√M2
ij +



~θ

L




2

+O(a2) (4.21)
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β L/a k r0 mRGI

0.132054 0.645(7)
5.960 16 0.132609 0.520(6)

0.133315 0.362(5)
0.133725 0.269(4)

0.134208 0.655(9)
6.211 24 0.134540 0.521(7)

0.134954 0.354(6)
0.135209 0.251(5)

0.134517 0.676(15)
6.420 32 0.134764 0.540(12)

0.135082 0.365(10)
0.135269 0.262(9)

[θx, θy, θz] = [0.0, 0.0, 0.0] [1.0, 1.0, 1.0] [2.0, 2.0, 2.0] [3.0, 3.0, 3.0]

Table 4.1: Parameters of the simulations. The values of the bare couplings
has been chosen in order to fix the extension of the physical volume L =
3.2 r0. For each value of the k parameter all the values of ~θ have been
simulated.

here Mij is the mass of the pseudoscalar meson made of a i and a j quark
anti–quark pair. After the continuum extrapolations the expected relativistic
dispersion relations have to be recovered

E2
ij = M2

ij +



~θ

L




2

(4.22)

see Figure [4.2].

4.5.1 Simulations

All the results of this section have been obtained in the quenched approxi-
mation of the QCD. A physical volume of topology T ×L3 with T = 2L and
linear extension L = 3.2 r0 has been simulated (see section 2.6). In order to
extrapolate numerical results to the continuum limit the same physical vol-
ume has been simulated by using three different discretizations with 32×163,
48× 243 and 64× 323 points respectively. The bare couplings corresponding
to the different discretizations have been fixed by using the r0 scale with
the numerical results given in [40]. All the parameters of the simulations
are given in Table [4.1]. The values of the RGI quark masses reported in
Table [4.1] have been calculated according to equation (2.32). For each value
of the simulated quark masses reported in Table [4.1] the Wilson–Dirac op-
erator has been inverted for three non–zero values of ~θ. Setting the lattice
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Figure 4.1: Effective energies E ij
eff (θ, a; x0), as defined in eq. (4.24) at fixed

cut–off. The results correspond to the simulation done at β = 6.211 with
r0 m

RGI
1 = 0.655 and r0 m

RGI
2 = 0.354. Similar figures could have been

shown for other combinations of the simulated quark masses and for the
other values of the bare coupling.

scale by using the physical value r0 = 0.5 fm, the expected values of the
physical momenta associated with the choices of ~θ given in Table [4.1] are
simply calculated according to the following relation

|~p| =
|~θ|
L

' 0.125 |~θ| GeV =





0.000
0.217
0.433
0.650

GeV L ' 1.6 fm (4.23)

These values have to be compared with the value of the lowest physical
momentum allowed on this finite volume in the case of periodic boundary
conditions, i.e. |~p| ' 0.785 GeV.

At fixed cut–off, for each combination of flavor indexes and for each
value of ~θ reported in Table [4.1] was extracted the effective energy from the
correlations of eq. (4.18), f ij

P (θ; x0), as follows

a Eij
eff(θ, a; x0) =

1

2
log

(
f ij

P (θ; x0 − 1)

f ij
P (θ; x0 + 1)

)
(4.24)
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Figure 4.2: Continuum extrapolations of the plateau averaged effective ener-
gies Eij(θ, a). The results correspond to the quark masses r0 m

RGI
1 = 0.650

and r0m
RGI
2 = 0.350. Similar figures could have been shown for other com-

binations of the simulated quark masses.

In Figure [4.1] this quantity is shown for the simulation performed at β =
6.211 corresponding to r0 mRGI

1 = 0.655 and r0 mRGI
2 = 0.354, for each

simulated value of ~θ. As can be seen, the energies with higher values of
|~θ| are always greater than the corresponding ones with lower values of the
physical momentum

|~θ1| > |~θ2| ⇒ Eij
eff (θ1, a; x0) > Eij

eff (θ2, a; x0) (4.25)

a feature that is confirmed in the continuum limit, as discussed below.

In the continuum extrapolations the physical values of the quark masses
have been fixed by slightly interpolating the simulated sets of numerical
results. The effective energies have been averaged over a ground state plateau
of physical length depending upon the quark flavors. The result of the average
is referred to as Eij(θ, a) and in Figure [4.2] a typical continuum extrapolation
of this quantity is shown. Similar figures could have been shown for the other
values of simulated quark masses.

The continuum results verify very well the dispersion relations of equa-
tion (4.22) as can be clearly seen from Figure [4.3] in which the square of
Eij(θ) for various combinations of the flavor indexes is plotted versus the

square of the physical momenta |~θ|/L. The plotted lines have not been fitted
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Figure 4.3: Continuum dispersion relations. The data correspond to different
combinations of the simulated quark masses and reproduce very well the
expected theoretical behavior, i.e. straight lines having as intercepts the
meson masses and as angular coefficients one (see eq. 4.22).

but have been obtained by using as intercepts the simulated meson masses
and by fixing their slope to one.

4.6 θ–BC vs. unquenched simulations

The usefulness of θ–boundary conditions in the case of unquenched simu-
lations is limited by severe algorithmic limitations. The discussion of this
section is restricted to the case of numerical simulations of a Nf = 2 theory
but can be generalized to the case in which a larger number of dynamical
fermions is included in the simulation.

Current unquenched simulation algorithms [62, 63, 64, 65, 66, 67, 68]
include the effect of dynamical fermions by generating gauge configurations
with the distribution

w[U ] = detD1[U ] detD2[U ] e−SG[U ] (4.26)

where SG[U ] is the gauge action while D1[U ] and D2[U ] are the discretized
Dirac operators acting on ψ1(x) and ψ2(x) respectively. The determinants
are evaluated by introducing bosonic fields, called “pseudo fermions”, with
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the action

SPF [φ1, φ1, φ2, φ2, U ] =
∫
d4x φ1(x)D

−1
1 φ1(x) +

∫
d4x φ2(x)D

−1
2 φ2(x)

(4.27)
The pseudo fermion action has to be non negative and this requirement
puts stringent limits on the choice of the discretized version of the Dirac
operator. When the Wilson–Dirac formulation is used the single Di[U ] is not
positive definite and the theory can be only simulated by considering two
mass degenerate fermions with exactly the same operator

w[U ] = (detD[U ])2 e−SG[U ] (4.28)

and
SPF [φ, φ, U ] =

∫
d4x φ(x)D−2φ(x) (4.29)

Hence, by using this formulation the two flavors must satisfy exactly the
same Dirac equation and, consequently, it is not possible to chose different
θ–angles for the different fermion species.

The problem can be overcome by considering a discrete formulation of
the theory in which the single Dirac operator is non negative by its own.
This is the case of the so called “Ginsparg–Wilson” (GW) formulations (for
a recent review on GW fermions and a complete list of references see [69]) that
have the great advantage to preserve exact chiral symmetry at finite lattice
spacing. On the other hand, current algorithms to simulate GW fermions
are extremely demanding in terms of computing power and are seldom used
in phenomenological applications where θ–BC would be very useful.



Chapter 5

Scattering states

In the previous chapter the role played by the choice of the boundary con-
ditions it has been extensively discussed in the case of one particle states on
a finite volume. This chapter is dedicated to the study of the spectrum of
two scattering particles on a finite volume in the case of θ–boundary condi-
tions. The main result is the derivation of a quantization condition relating
the energy of a scattering state on a finite volume with the infinite volume
scattering phases. This condition is derived by matching the quantum field
system with a simple quantum mechanical analog and can, in principle, be
used to calculate the scattering phases when the energy of the state is known
or vice versa.

A generalization of the so called Lellouch–Lüscher (LL) formula [70] it
is also derived, connecting the finite volume amplitude for a two body non
leptonic decay with the corresponding result in the infinite volume. This
formula is a step toward the solution of the long standing problem of the
explanation of the ∆I = 1/2 puzzle in the decay of a kaon into two pions.

From the numerical point of view, the usefulness of the quantization con-
dition and of the generalized LL formula, as given in this chapter, is strongly
limited by two problems. The first one has been already discussed in the pre-
vious chapter and is related to the fact that different boundary conditions for
the up and down quarks in unquenched simulations of lattice QCD cannot
be chosen for Wilson fermions. The second problem has been pointed out
in ref. [17] and concerns the breaking of the isospin symmetry by the choice
of different θ–angles for the two light running quarks (see section 5.11). A
possible solution to the isospin problem can be found by using a general-
ization of the KKR method discussed in this chapter by including in the
calculation different two–particle states with different boundary conditions

65



66 CHAPTER 5. SCATTERING STATES

(see section 5.2).

5.1 Two–particle states in a finite volume

The spectrum of a two–particle state on a finite volume in quantum field
theory has been already studied in great detail in refs. [71, 72, 73, 74] in
the case in which the two particles satisfy periodic boundary conditions. An
energy quantization condition has been found by establishing in ref. [71, 75]
a connection between quantum field theory and non–relativistic quantum
mechanics. Indeed, by assuming that the two particles are spinless bosons
of equal mass m whose dynamics can be described by a scalar field theory
of the φ4–type with unbroken reflection symmetry φ 7→ −φ and one–particle
states odd under this symmetry, an effective Schrödinger equation can be
written for the two–particle state. In the center-of-mass reference frame this
equation reads

− 1

2µ
4ψ(~r) +

1

2

∫
d~r′ UE(~r, ~r′) ψ(~r′) = Eψ(~r) (5.1)

where the parameter E does not represent the true energy of the system,
that here is called E , but it is connected to the last through

E = 2
√
m2 +mE (5.2)

In eq. (5.1) the parameter µ represent the reduced mass of the two–particle
system while UE(~r, ~r′) is the Fourier transform of the modified Bethe–Salpeter

kernel ÛE(~k,~k′) introduced in [71]. The “pseudo–potential” UE(~r, ~r′) depends
analytically on E in the range −m < E < 3m, is a smooth function of the co-
ordinates ~r and ~r′ decaying exponentially in each direction and is rotationally
invariant so that one can pass to the radial effective Schrödinger equation.

Thanks to these observations, in the following the calculation of the spec-
trum of a two–particle state in a finite volume will be carried out by using
a purely non–relativistic Hamiltonian that, separating the center of mass
motion from the internal motion, comes out to depend upon the relative
coordinate ~r = ~x− ~y only

Ĥ = − 1

2µ
4 + V (r), r = ‖~r‖ (5.3)

where 4 is the Laplacian operator with respect to ~r. The potential is assumed
to be spherically symmetric, a smooth function of its argument and of finite
range, i.e.

V (r) = 0 for r > R (5.4)
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The problem will be solved on a finite cubical box of linear extension L greater
than the potential radius (L > R) in each direction. It will be assumed that
the potential is periodic of period L

V (‖~r + ~nL‖) = V (r) for ~n ∈ Z3 (5.5)

One can imagine to start from a given finite–range potential V(r) that de-
scribes the interactions of the two particles and to build a periodic potential
as follows

V (~r) =
∑

~n∈Z3

V(‖~r + ~nL‖) (5.6)

By construction V (~r) satisfies the periodicity condition stated in eq. (5.5).

There are two differences between the potential V (~r) that has been in-
troduced so far and the pseudo–potential UE(~r, ~r′). The first one concerns
the energy dependence of UE but this does not represent a problem because
all the results will be obtained at fixed E. The second difference between
the quantum field system and the non–relativistic one is that UE(~r, ~r′) does
not vanish if either ~r or ~r′ is greater than R, but it has exponentially small
corrections. Furthermore in the quantum field system there are additional
exponentially small finite volume corrections that arise from polarization ef-
fects. For these reasons the results derived in the non–relativistic theory
retain their validity also in the relativistic theory up to exponentially small
corrections.

The matching with a quantum mechanical system could have been avoided
by following an approach similar to that developed in ref. [76]. In the follow-
ing sections this strategy has not been pursued because, as will be clear later
on, the quantum mechanical analogy allows one to benefit without additional
effort of a series of theoretical results obtained in the framework of solid state
physics and useful also in the present case.

5.2 Quantization condition

In this section a powerful relation, connecting the energy eigenvalues of a two–
particle state on a finite volume with the infinite volume scattering phases
of the two particles, it is derived. Thanks to the observations of the previous
section the calculation is done in NRQM since the results retain their validity
also in QFT up to exponentially vanishing finite volume corrections.

In order to obtain the energy quantization condition one has to solve
the Schrödinger equation for a particle in a periodic potential, i.e. the same
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equation satisfied by electrons, holes and excitons in a periodic crystal. Useful
results well known to the solid state physics community since a long time
can thus be exported to the present problem, provided the “cell size” of the
crystal is interpreted as the physical extension of the finite volume, i.e. L.

It is useful to solve the problem by using θ–boundary conditions intro-
duced in the previous chapter

ψ~k(~r + ~nL) = ei~k·~nL ψ~k(~r) (5.7)

or

ψ~θ(~r + ~nL) = ei~θ·~n ψ~θ(~r)
~k =

~θ

L
(5.8)

As discussed in section 4.3 this choice of the boundary conditions finds its
physical interpretation in terms of the well known Bloch’s theorem 1.

5.2.1 Korringa–Kohn–Rostoker theory

Another fundamental result obtained within the context of solid state physics
is the computational framework developed independently by Korringa [77],
Kohn and Rostoker [78] and known as the KKR method or the Green’s
function method. This method can be straightforwardly used in the present
calculation in order to derive the two–particle state energy quantization con-
dition in a simple way.

The KKR method can be applied under the hypotheses of a so called
“muffin thin potential”, i.e. a periodic, spherical symmetric potential that
vanishes beyond a given distance R within each cell of the crystal. All these
hypotheses are satisfied by the potential defined in eq. (5.6). The KKR pro-
cedure starts by considering the time–independent form of the Schrödinger
equation (

4 + q2
)
ψ~k(~r) = V ′(~r)ψ~k(~r) (5.9)

where it has been defined

q2 = 2µE (5.10)

and 2µV (~r) has been substituted with V ′(~r). In order to have a formal
solution of this non–homogeneous partial differential equation it is customary
to introduce the free–particle Green’s function as the solution of

(
4~r + q2

)
g(~r − ~r0; q) = δ(~r − ~r0) (5.11)
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The solution of eq. (5.9) can be formally written in terms of the Green’s
function as

ψ~k(~r) = φ~k(~r) +
∫ +∞

−∞
d~r0 g(~r − ~r0; q)V

′(~r0)ψ~k(~r0) (5.12)

where φ~k(~r) is a solution of the homogeneous equation associated with eq. (5.9)
with the additional requirement to satisfy the Bloch’s condition of eq. (5.7).
In the previous equation the integration variable ~r0 spans the whole three
dimensional space and not only a period. In the rest of this section it will
be assumed φ~k(~r) = 0 while the case in which the homogeneous solution is
present will be discussed later on. Eq. (5.12) can be rewritten as

ψ~k(~r) =
∫ +∞

−∞
d~r0 g(~r − ~r0; q)V

′(~r0)ψ~k(~r0) (5.13)

It should be observed that no particular conditions are requested to the
Green’s function in order ψ~k(~r) to satisfy the Bloch’s condition; indeed since
ψ~k(~r) is present in both the members of the previous equation and since the
potential is periodic, the condition of eq. (5.7) is self–consistently satisfied.
For this reason, g(~r−~r0; q) is not required to satisfy any particular periodicity
condition and is given by

g(~r − ~r0; q) = − 1

4π

eiq‖~r−~r0‖

‖~r − ~r0‖
(5.14)

The domain of integration in eq. (5.13) can be reduced from the entire
world to a single periodicity cell by introducing the “greenian” of the equation
defined as

g~k(~r − ~r0; q) =
∑

~n∈Z3

ei~k·~nLg(~r − ~r0 − ~nL; q) (5.15)

Using the greenian definition together with the Bloch’s condition and the
periodicity of the potential, the formal solution of the Schrödinger equation
can be rewritten as an integral spanning only a period

ψ~k(~r) =
∫

period
d~r0 g~k(~r − ~r0; q)V

′(~r0)ψ~k(~r0) (5.16)

but, since the potential is identically zero for distances greater than R, the
integration domain can be further reduced to a sphere of radius R

ψ~k(~r) =
∫

SR

d~r0 g~k(~r − ~r0; q)V
′(~r0)ψ~k(~r0) (5.17)
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Thank to the Schrödinger equation (5.9), the previous relation can be rewrit-
ten in a form suitable for the application of the Green’s theorem

ψ~k(~r) =
∫

SR

d~r0 g~k(~r − ~r0; q)(4~r0 + q2)ψ~k(~r0) (5.18)

Using the simple identity

g4ψ = ψ4g + ~∇ · (g~∇ψ − ψ~∇g) (5.19)

and the Green’s theorem, a vanishing surface integral is finally obtained

∫

∂SR

dS0

[
g~k(~r − ~r0; q)

∂ψ~k(~r0)

∂r0
− ψ~k(~r0)

∂g~k(~r − ~r0; q)

∂r0

]

r0=R

= 0 (5.20)

The previous equation is the quantization condition that the wavefunction
in the center–of–mass reference frame of a two particle state with θ–BC has
to satisfy in a finite volume L3. In the following, by using the expansion in
spherical harmonics of both the greenian and the wavefunction, this condition
will be shown to be equivalent to a system of equations expressing the two–
particle scattering phases as functions of the energy eigenvalues and vice
versa.

5.3 Partial wave expansion of the wavefunc-

tion

For distances greater than the potential radius but smaller than the period
(the volume), the wavefunctions ψ~k(~r) satisfy the free particle equation and
can thus be written as

ψ~k(~r) =
∑

lm

clm(~k)Rl(r; q)Ylm(r̂0) (5.21)

where clm(~k) are coefficients to be determined by using eq. (5.20) and Ylm(θ, φ)
are the spherical harmonics. The radial part Rl(r, q) can be expressed as

Rl(r, q) = cos δl(q) jl(qr) − sin δl(q) nl(qr) r ≥ R (5.22)

where δl(q) are the two–particle infinite volume scattering phases, jl(qr) are
the spherical Bessel functions and nl(qr) are the spherical Neumann func-
tions. For later use it is useful to recall the Wronskian relations satisfied by
the Bessel and Neumann functions

[jl, Rl] = −sin δl(q)

qr2
[nl, Rl] = −cos δl(q)

qr2
(5.23)
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where, as usual, the Wronskian of two functions is defined as

[f(x), g(x)] = f(x)
∂g(x)

∂x
− ∂f(x)

∂x
g(x) (5.24)

5.4 Partial wave expansion of the greenian

In this section it is derived the partial wave expansion of the greenian. To
this end, it is useful to recall the well known Neumann’s expansion of the
Green’s function

− 1

4π

eiq‖~r−~r′‖

‖~r − ~r′‖ = q
∑

lm

jl(qr)Ylm(r̂) [nl(qr
′) − ijl(qr

′)]Y ∗
lm(r̂′) (5.25)

The previous relation is valid provided that r < r′ otherwise one has to
exchange ~r and ~r′ in the right–hand side. The Neumann expansion has to be
inserted in the expression for the greenian that it is rewritten here below for
the sake of clarity

g~k(~r − ~r0; q) = − 1

4π

∑

~n∈Z3

ei~k·~nL eiq‖~r−~r0−~nL‖

‖~r − ~r0 − ~nL‖ (5.26)

It is convenient to separate out the term with ~n = ~0 from the remaining
terms and to use the Neumann expansion by identifying ~r′ with ~r0 in the
first case and with ~nL in the remaining terms. In the end one obtains

g~k(~r − ~r0; q) =

= − 1

4π

cos ‖~r − ~r0‖
‖~r − ~r0‖

+
∑

lm

Dlm(~k, q) jl(q ‖~r − ~r0‖) Ylm( ̂~r − ~r0)(5.27)

where the so called reduced structure coefficients are given by

Dlm(~k, q) =

=
∑

~n∈Z3−{~0}
ei~k·~nLYlm(n̂) [nl(qnL) − ijl(qnL)] − i

q√
4π
δl0δm0 (5.28)

There are many different, although equivalent from the mathematical point
of view, ways to express the reduced structure coefficients some of which
are more convenient than the previous relation for a numerical computation
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of these quantities. In section 5.8 an expression suitable for the numerical
calculation is derived.

It is useful to recall also the following well known identity that can be
easily proved by using the expansion in spherical harmonics of a plane wave
(see eq. (5.50))

iJKjJ(qR)YJK(R̂) =

= 4π
∑

lm,l′m′
il−l′CJK;lm,l′m′ jl(qr) jl′(qr0) Ylm(r̂)Yl′m′(r̂0) (5.29)

where R = ‖~r − ~r0‖. In the previous relation, use has been made of the
Gaunt coefficients defined as follows

CJK;lm,l′m′ =
∫
dΩ~kYJK(k̂)Y ∗

lm(k̂)Yl′m′(k̂) (5.30)

Inserting the identity of eq. (5.29) in the partial wave expansion of the gree-
nian, as given in eq. (5.27), it is possible to rewrite this expansion in a form
that will be used in the following section to write the quantization condi-
tions in the same form obtained by Lüscher in ref. [73] in the case of periodic
boundary conditions, namely

g~k (~r − ~r0; q) = q
∑

lm

jl(qr) Ylm(r̂)nl(qr0) Y
∗
lm(r̂0)

+
∑

lml′m′
jl(qr) Ylm(r̂) Γlm,l′m′(~k, q) jl′(qr0) Yl′m′(r̂0) (5.31)

where r < r0 < nL 6= 0, and where the so called “structure coefficients” are
defined as follows

Γlm,l′m′(~k, q) = 4π il−l′
∑

JK

i−JDJK(~k, q) CJK;lm,l′m′ (5.32)

5.5 Generalized Lüscher quantization condi-

tion

The Lüscher quantization condition [73] can be now derived by substituting in
eq. (5.20) the partial wave expansion of the wavefunctions given in eq. (5.21)
and that of the greenian given in eq. (5.31). The result of this calculation is

q
∑

lm jl(qr) Ylm(r̂) [nl, Rl] clm +

+
∑

lml′m′
jl(qr)Ylm(r̂) Γlm,l′m′ [jl′, Rl′ ] cl′m′ = 0 (5.33)
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By making use of the Wronskian relations of eq. (5.23), one gets

q cos δl(q) clm +
∑

l′m′
Γlm,l′m′ sin δl′(q)cl′m′ = 0 (5.34)

The previous one is a linear homogeneous system of equations having as
unknowns the coefficients clm. The following compatibility determinantal
equation

det
[
Γlm,l′m′(~k, q) + qδll′δmm′ cot δl(q)

]
= 0 (5.35)

is the quantization conditions for the energy of the two–particle states on a
finite volume. This equation can be used to calculate the scattering phases
once the energy eigenvalues are know (for example from lattice calculations)
or vice versa to calculate the spectrum of the two–particle state given the
scattering phases (for example by the analytical knowledge of the interaction
potential).

It is important to remember that the results obtained in this section are
valid up to exponentially small corrections. In particular, eq. (5.35) can be
used in quantum field theory only if the physical size of the finite volume is
large enough to exclude the presence of residual polarization effects. These
observations apply also to the results of the following sections.

5.6 Singular solutions

In the derivation of the quantization conditions it has been assumed that the
solutions of the homogeneous time–independent Shrödinger equation

(
4 + q2

)
φ~k(~r) = 0 (5.36)

were absent. In order for φ~k(~r) to be different from zero the condition

q =

∥∥∥~θ + 2π~n
∥∥∥

L
(5.37)

has to be satisfied for some integer vector ~n at fixed ~θ together with a quan-
tization condition that can be derived along the same lines that have been
followed to obtain eq. (5.35). This can happen only on particular volumes L
and/or for particular interactions. In the following these situations will not
be discussed and the interested reader is referred to ref. [73] for a detailed

discussion of the ~θ = ~0 case.
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5.7 Reducing to S–waves

From the phenomenological point of view the relevant situation is the one in
which all the scattering phases can be assumed to vanish except the S–wave
phase

δl(q) = 0 , l > 0 (5.38)

In this case the quantization conditions simplify enormously. Indeed one has

C00;00,00 =
1

(
√

4π)3

∫
dΩ~k =

1√
4π

(5.39)

that substituted in eq. (5.35) together with eq. (5.38) gives

tan δ0(q) = − q√
4π D00(~k, q)

(5.40)

or, equivalently,

tan δ0(q) = −
√
π Q

d00(θ, Q)
(5.41)

As it is shown in eqs. (5.71), the right hand side of the previous equation is
a dimensionless quantity that can be computed once and forever. It is useful
to define

tanφ(θ, Q) =

√
π Q

d00(θ, Q)
(5.42)

The definition of φ(θ, Q) is completed by requiring the continuity of this
function by respect the variable Q for each value of θ and by the condition

φ(θ, Q = 0) = 0 , 0 ≤ θi < 2π (5.43)

5.8 Structure coefficients calculation

In this section a mathematical expression useful for the numerical calculation
of the structure coefficients it is derived. From eq. (5.32) it comes out that
the non trivial part of this problem consists in the calculation of the reduced
structure coefficients. In the following an expression of the reduced structure
coefficients, different from that already given in eq. (5.28), is derived in order
to get a formula suitable for numerical evaluation. The starting point is again
the greenian definition

g~k(
~R; q) = − 1

4π

∑

~n∈Z3

ei~k·~nL e
iq‖~R−~nL‖
∥∥∥~R − ~nL

∥∥∥
(5.44)
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With the aim of expressing it in the Fourier space, the following well known
identities are recalled

1

(2π)3

∫
d~x ei(~p1−~p2)·~x = δ(~p1 − ~p2) (5.45)

1

L3

∑

~pm

ei~pm·~x =
∑

~n∈Z3

δ(~x− ~nL) , ~pm =
2π

L
~m (5.46)

lim
ε→0+

1

(2π)3

∫
d~p

ei~p·~x

p2 − (q2 + iε)
=

1

(4π)

eiqx

x
(5.47)

that allow one to write the following chain of equalities

g~k(
~R; q) = − 1

(2π)3
lim

ε→0+

∑

~n∈Z3

ei~k·~nL
∫
d~p

ei~p·(~R−~nL)

p2 − (q2 + iε)

= − 1

(2π)3
lim

ε→0+

∫
d~p

ei~p·~R

p2 − (q2 + iε)

∑

~n∈Z3

ei(~k−~p)·~nL

= − lim
ε→0+

∫
d~p

ei~p·~R

p2 − (q2 + iε)

1

(2π)3

∫
d~x

∑

~n∈Z3

δ(~x− ~nL)ei(~k−~p)·~x

= − lim
ε→0+

1

L3

∑

~pm

∫
d~p

ei~p·~R

p2 − (q2 + iε)

1

(2π)3

∫
d~xei(~k+~pm−~p)·~x

= − lim
ε→0+

1

L3

∑

~pm

∫
d~p

ei~p·~R

p2 − (q2 + iε)
δ(~k + ~pm − ~p)

= − 1

L3

∑

~pm

ei(~k+~pm)·~R

(~k + ~pm)2 − q2
(5.48)

Thus, the greenian expression in the reciprocal space is given by

g~k(
~R; q) = − 1

L3

∑

~qm

ei~qm·~R

~q2
m − q2

, ~qm = ~k +
2π

L
~m (5.49)

It is now possible to derive an expression for the KKR reduced structure coef-
ficients in the reciprocal space. To this end one has to consider the following
identity expressing a plane wave as an expansion in spherical harmonics

ei~qm·~R = 4π
∑

lm

iljl(qmR) Y ∗
lm(q̂m) Ylm(R̂) (5.50)
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so that the greenian can be expanded as follows

g~k(
~R; q) =

∑

lm


−4π il

L3

∑

~qm

jl(qmR)

jl(qR)

Y ∗
lm(q̂m)

~q2
m − q2


 jl(qR) Ylm(R̂) (5.51)

In order to reproduce the same structure given in eq. (5.27) it should be
noted that

g~k(
~R; q) = g~k(

~R; q) − 1

4π

cos(qR)

R
+

1

4π

cos(qR)

R

= g~k(
~R; q) − 1

4π

cos(qR)

R
+

q

4π
cot(qR)

sin(qR)

R

= g~k(
~R; q) − 1

4π

cos(qR)

R
+

q

4π
cot(qR) j0(qR) (5.52)

By inserting the last identity in eq. (5.51) one obtains

g~k(
~R; q) = − 1

4π

cos(qR)

R
+
∑

lm

Dlm(~k, q;R)jl(qR) Ylm(R̂) (5.53)

where

Dlm(~k, q;R) = −4πil

L3

∑

~qm

jl(qmR)

jl(qR)

Y ∗
lm(q̂m)

~q2
m − q2

+
q√
4π

cot(qR) δl0 δm0 (5.54)

This expression requires some comments. First it should be noted that

Y ∗
lm(q̂m) = Ylm(q̂′m) ~qm = (q1

m, q
2
m, q

3
m) ~q′m = (q1

m,−q2
m, q

3
m) (5.55)

so that, being the rest of the ~qm dependence only through the modulus, one
gets

Dlm(~k, q;R) = −4πil

L3

∑

~qm

jl(qmR)

jl(qR)

Ylm(q̂m)

~q2
m − q2

+
q√
4π

cot(qR) δl0 δm0 (5.56)

The second observation concerns the R–dependence of the reduced structure
coefficients. Indeed, by comparing eq. (5.28) with the previous equation,
it follows that this functional dependence is fictitious. This can be also
understood by a careful analysis of eq. (5.53). The term

n0(qR) =
cos(qR)

qR
(5.57)
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satisfies by its own the equation

(
4 + q2

)
n0(qR) = −4π

q
δ(~R) (5.58)

so that the remaining terms of the sum in eq. (5.53) must be regular solutions
of the homogeneous Helmholtz’s equation. A general solution of this kind
can be expressed as a linear combination of the form

ĝ~k(
~R; q) =

∑

lm

Dlm(~k, q)jl(qR) Ylm(R̂) (5.59)

where theDlm(~k, q) do not depend upon R. Furthermore, the spherical Bessel
functions near the origin behave as

jl(qR)
R→0−→ (qR)l (5.60)

The fictitious R–dependence of the reduced structure coefficients as given in
eq. (5.56) can be eliminated by taking the limit for R that goes to zero and
by using the previous equation.

One has to consider eq. (5.56) as a properly regulated form of the KKR
reduced structure coefficients and think to

Dlm(~k, q) = − 4πil

qlL3

∑

~qm

ql
m Ylm(q̂m)

~q2
m − q2

+
δl0 δm0√

4π
lim
R→0

1

R
(5.61)

as a formal expression of the same objects.

5.8.1 Ewald’s sums

In ref. [78] Kohn and Rostoker considered a method particularly convenient
from the numerical point of view to evaluate the reduced structure coeffi-
cients. They pointed out that, following a prescription due to Ewald [79],
the sum

S(x) =
∑

~qm

jl(qmR) Ylm(q̂m)

q2
m − q2

e
q2−q2m

x (5.62)

approximate the needed result S(∞) with an exponentially vanishing error.
In ref. [80] the original observation of Kohn and Rostoker was further refined
by Ham and Segall. They first recall two identities both due to Ewald; the
first one is

eiq‖~R−~nL‖
∥∥∥~R− ~nL

∥∥∥
= lim

ε→0

2√
π

∫ ∞

0
dx e−(~R−~nL)2x2+ q2+iε

4x2 (5.63)
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The second identity can be proved as done before in order to express the
greenian in the reciprocal space starting from its expression in the direct
space and states

∑

~n∈Z3

e−(~R−~nL)2x2+i~k·(~nL−~R) =
(
√
π)3

(Lx)3

∑

~pm

ei~pm·~R− q2m
4x2 ~pm =

2π

L
~m (5.64)

By starting again from the expression of the greenian in the direct space as
given in eq. (5.44) one can write, by using the first identity (5.63),

g~k(
~R; q) = − 1

2(
√
π)3

lim
ε→0

∑

~n∈Z3

∫ ∞

0
dx ei~k·~nL−(~R−~nL)2x2+ q2+iε

4x2 (5.65)

The integration domain can be split in
[
0,

√
η

2

]
and

[√
η

2
,∞

]
, where η is a

positive arbitrary constant. The greenian can be thus re-expressed as the
sum of two terms

g~k(
~R; q) = g1

~k
(~R; q) + g2

~k
(~R; q) (5.66)

where, by performing the integration in the first term and by using the
identity of eq. (5.64) in the second one, one obtains

g1
~k
(~R; q) =

1

L3

∑

~qm

ei~qm·~R+
q2−q2m

η

q2 − q2
m

g2
~k
(~R; q) = − 1

2(
√
π)3

∑

~n∈Z3

∫ ∞
√

η

2

dx ei~k·~nL−(~R−~nL)2x2+ q2

4x2 (5.67)

These series are absolutely convergent for any finite η > 0 and each term is an
analytic function of q throughout the complex plane except for simple poles
at q2 = q2

m. By expanding term-wise both g1
~k

and g2
~k

in spherical harmonics

with respect to ~R, taking the limit R → 0, and comparing the result with
the definition of the reduced structure coefficients, one gets

Dlm(~k, q) = D1
lm(~k, q) +D2

lm(~k, q) +D3
lm(~k, q) (5.68)

where

D1
lm(~k, q) =

4π

L3ql
e

q2

η

∑

~qm

ql
m

q2 − q2
m

Ylm(q̂m) e−
q2m
η

D2
lm(~k, q) = −2l+1Llil

ql
√
π

∑

~n∈Z3−{~0}
nl ei~k·~nL Ylm(n̂)

∫ ∞
√

η

2

dx x2l e−(x~nL)2+ q2

4x2

D3
lm(~k, q) = −δl0 δm0

√
η

2π

∞∑

s=0

q2s

ηs

1

s!(2s− 1)
(5.69)
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In order to make more explicit the dependence of the reduced structure co-
efficients upon the volume it is convenient to define

dlm(θ, Q) = LDlm(~k, q)

= d1
lm(θ, Q) + d2

lm(θ, Q) + d3
lm(θ, Q) (5.70)

and rewrite eqs. (5.69) as follows

d1
lm(θ, Q) =

il

πQl
e

Q2

η′
∑

~Qm

Ql
m Ylm(Q̂m)

Q2 −Q2
m

e
−Q2

m
η′

d2
lm(θ, Q) = −4l+1il

√
π

Ql

∑

~n∈Z3−{~0}
(πn)lei~θ·~nYlm(n̂)

∫ ∞
√

η′
2

dxx2le−(2πx~n)2+ Q2

4x2

d3
lm(θ, Q) = −δl0 δm0

√
η′

∞∑

s=0

Q2s

η′s
1

s!(2s− 1)
(5.71)

where the following definitions have been also used

Q = Lq
2π

Qm =

∥∥∥∥∥∥
~m +

~θ

2π

∥∥∥∥∥∥
(5.72)

~k =
~θ
L

η′ =
(
L

2π

)2

η (5.73)

5.8.2 Incomplete Gamma Function

The computation of the reduced structure coefficients is complicated from
the numerical point of view by the presence of an integral in the definition
of d2

lm(θ, Q). In order to simplify the numerical task it is useful to introduce
the “incomplete gamma function”:

Γ(α, y) =
∫ ∞

y
dx xα−1e−x (5.74)

By using it, d2
lm(θ, Q) can be rewritten in the form

d2
lm(θ, Q) = − i

l
√
π

Ql
×

×
∑

p

Q2p

p!

∑

~n∈Z3−{~0}

ei~θ·~n

(πn)l−2p+1
Ylm(n̂) Γ

(
l − p+

1

2
, (πn)2η′

)
(5.75)
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The great advantage of this expression with respect to the one given in
eq. (5.71) is that the incomplete gamma function can be computed numeri-
cally using a continued fraction representation:

Γ(α, y) =
e−y yα

x + 1−α
1 + 1

x +
2−α

1 + 2

x + 3−α
1 + ...

(5.76)

5.9 Generalized Lellouch–Lüscher formula

In this section a generalization of the LL formula [70] is derived that connects
the weak matrix element of the decay K → (ππ)I (being I the isospin of
the state) calculated on a finite volume with the corresponding quantity in
the infinite volume limit up to exponentially vanishing corrections. In the
following it is considered a theory of spinless pions and kaons of masses such
that the condition

2mπ < mK < 4mπ (5.77)

is satisfied. It is further assumed that the pions scatter purely elastically
below the threshold for the production of four pions and that the kaon is
stable in the absence of weak interactions. When the weak interactions are
switched–on the kaon is allowed to decay into two pions and the transition
amplitude is given by

T (K 7→ ππ) = A(q) eiδ0(q) (5.78)

where A is real, δ0 is the S–wave scattering phase of the outgoing two–pion
state and q is the pion momentum in the center-of-mass frame

q =
1

2

√
m2

K − 4m2
π (5.79)

In writing eq. (5.78) use has been made of the standard relativistic normal-
izations for the one–particle states together with the LSZ constraints on their
phases

〈0|ϕπ(x)|π(p)〉 =
√
Zπ e

−ipx , 〈0|ϕK(x)|K(p)〉 =
√
ZK e−ipx (5.80)

where ϕπ and ϕK are the pion and kaon interpolating fields respectively.

The same theory is now considered on a finite volume of linear extension
L. The finite volume one–particle states are normalized to unity and their
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phases can be chosen arbitrarily. The transition amplitude on the finite
volume is referred to as

AL(q) = 〈ππL|HW |KL〉 (5.81)

where HW is the weak interactions Hamiltonian. The generalized LL formula
is given by

‖A(q)‖2 = 8π

{
Q
∂φ(θ, Q)

∂Q
+ q

∂δ0(q)

∂q

}

q=q

(
mK

q

)3

‖AL(q)‖2 (5.82)

where φ(θ, Q) has been defined previously in eq. (5.42). This powerful rela-
tion is valid under the same hypotheses that have been made in section 5.7
in order to derive eq. (5.41) plus two additional assumptions on the outgo-
ing two–pion state. It has to be non degenerate and must have the same
energy of the decaying kaon, in order for the resulting infinite volume decay
amplitude to be computed at the physical point.

In the LL derivation one has θ = 0 and the two–pions state of definite
isospin happens to have an energy equal to the kaon mass only on a certain
particular volume. In the present generalization of the LL formula the θ–
dependence of φ(θ, Q) can be used in order to obtain a sequence of volumes
of growing sizes on which the calculations can be actually performed (see
the section 5.10). Within this approach, by studying the residual functional
dependence of the results upon the volume it will also be possible to answer to
the questions raised in ref. [76] about the size of the finite volume corrections
coming from the presence of the inelastic threshold.

In the particular case θ = 0 the first seven energy levels of the outgoing
two–pion states are non degenerate, as shown in ref. [73]. Care about the
possible degeneracies of the outgoing states has to be taken also in the case
θ 6= 0 for the particular choices of the Bloch’s angles used in the calculations.

A further generalization of eq. (5.82) with respect to the LL result can
be achieved by following the arguments of ref. [76] where the LL formula is
shown to be valid for all the states below the inelastic threshold and even
outside the physical point (q = q).

5.9.1 Derivation of eq.(5.82)

The generalized LL formula in eq. (5.82) is a direct consequence of the quan-
tization condition. As already discussed, the kaon is assumed to be stable
when weak interactions are switched off. Conversely, on the volumes where
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K

Figure 5.1: Kaon exchange contribution to the pion–pion scattering ampli-
tude.

the energy of the scattering two–pion state equals the kaon mass, weak in-
teractions are able to mix the two degenerate energy eigenstates |KL〉 and
|ππL〉. The relevant part of HW for this process is the strangeness changing.
The energy of both the two–pion state and the kaon state is referred to as
W . At the lowest order in the weak expansion W is given by

W = mK = 2
√
m2

π + q2
π (5.83)

At first order, degenerate perturbation theory yields

W = mK ± ‖AL‖ q = qπ ± mK

4qπ
‖AL‖

︸ ︷︷ ︸
∆q

(5.84)

These energy shifts can be calculated by including the presence of the kaon
resonance in the scattering amplitude of the two pions. This contribution
corrects the scattering phase as follows

δ̃0(q) = δ0(q) ∓
qπ ‖A‖2

32πm2
K ‖AL‖

(mod π) (5.85)

The previous relation has been obtained by considering the graph of Figure

[5.1] and by noting that the momenta flowing into the three–point vertexes
are all on shell up to higher order corrections. As a consequence, the vertices’s
are proportional to the infinite volume kaon decay amplitude A and the kaon
propagator is

iZK

p2
K −m2

k

= ± iZK

2mK ‖AL‖
(5.86)

The last step in the derivation consists in inserting δ̃0 into the quantiza-
tion condition and in expanding all the terms in power series with respect to
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Figure 5.2: The red points represent − tanφ(θ, Q) as function of Q for θ =
0.0. The different branches are the two–particle eigenvalues curves. The
straight lines are the tangents of the scattering phases of two pions, having
isospin I = 0 or I = 2, computed in chiral perturbation theory at the kaon
mass.

the weak interactions

−∆q

{
∂δ0(q)

∂q

}

q=qπ

+
qπ ‖A‖2

16πm2
K ‖AL‖

= ∆Q

{
∂φ(θ, Q)

∂Q

}

Q=Qπ

(5.87)

This relation is in fact equivalent to eq. (5.82).

5.10 Spectrum of a two–pion state

In this section the spectrum of a two–pion system on finite volumes is stud-
ied assuming that the scattering phases for l ≥ 4 are small in the elastic
region (note that δl(q) is proportional to q2l+1 at low momenta). Under
these hypotheses the energy quantization condition takes the simple form of
eq. (5.41).

In fig. 5.2 the opposite of tan [φ(θ, Q)] for the particular choice θ = 0.0 is
shown. The points in which this function coincide with the function tan δ0(q)
at fixed θ and L represent the two–particle eigenvalues on the given volume.
Here below the following procedure will be carried on:

• the energy of the two particle state is fixed so that q = q
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Figure 5.3: The points represent − tanφ(θ, Q) as functions of Q for different
values of θ. The case θ = 2.5 is not shown to help the eye. The straight lines
are the tangents of two pions scattering phases, with isospin I = 0 or I = 2,
computed in chiral perturbation theory at the kaon mass.

• the corresponding scattering phase δ0(q) is computed by using the one–
loop chiral perturbation theory results for these quantities [81, 82, 11,
83, 84]

• the solutions Qn(θ) of the condition

tan δ0(q) = − tanφ(θ, Q) (5.88)

are found

• the volume Ln(θ) on which the nth two–particle eigenvalue is equal to
q is computed according to

Ln(θ) = 2π
Qn(θ)

q
(5.89)

Following these steps it is possible to find for each value of θ the finite volumes
on which a given energy level of a two–pion state equals the kaon mass. In
ref. [70] the authors have not considered the possibility of having θ 6= 0 and
their analysis, that is reproduced in Figure [5.2], gives the following results

I = 0 Q1(0) = 0.89 L1(0) = 5.34 fm

I = 2 Q1(0) = 1.02 L1(0) = 6.09 fm (5.90)
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θ I Q1 L1

0.0 0 0.890 5.34
0.0 2 1.015 6.09

2.5 0 0.295 1.78
2.5 2 0.415 2.49

3.0 0 0.400 2.40
3.0 2 0.490 2.94

4.0 0 0.569 3.41
4.0 2 0.645 3.86

Table 5.1: Volumes on which the energy of the first eigenvalue two–pion state
equals the K–meson mass. I is the isospin of the state.

In Figure [5.3] the same analysis is repeated for other allowed values of θ. As
can be seen a careful choice of the “Bloch angle” shifts the position of the
first eigenvalue curves at lower values of Q and consequently, being q fixed,
at lower values of the physical volume. The resulting volumes corresponding
to some particular choices of θ are given in Table [5.1].

5.11 Generalized LL–formula vs. lattice sim-

ulations

The generalization of the Lellouch–Lüscher formula derived in section 5.9 has
been obtained under the hypothesis of a theory including in its spectrum pi-
ons and kaons. In particular the pions have been asked to satisfy θ–boundary
conditions. A further assumption, implicitly made in the derivation, is that
the isospin was a symmetry of the theory. Unfortunately, it is not possible
to satisfy all these hypotheses in lattice simulations because of two different
reasons.

The first problem has been already discussed in the previous chapter,
precisely in section 4.6, and concerns the impossibility of choosing different
boundary conditions for up and down quarks in unquenched simulations when
the Wilson formulation is used. This does not allow the charged pions to
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satisfy θ–BC with θ different from zero. The problem is better explained by
considering, for example, the decay of a neutral kaon in charged pions. In
order to have the kaon at rest, since the anti–quarks have a θ–angle opposite
to that of the corresponding quarks, one has to chose strange and down
quarks boundary conditions so that

~θs = ~θd (5.91)

At the same time, the positive charged pion interpolating field will have an
overall θ–angle given by

~θπ+ = ~θu − ~θd (5.92)

while for the negative pion one has ~θπ− = −~θπ+ , so that the total momentum
of the two–pion system is zero. There is no problem to fulfill these conditions
in the quenched theory but, when one considers the full theory, some tech-
nical complications arise. Indeed current simulation algorithms require the
product of the quark determinants (that depend upon θ) to be non negative
and, when Wilson fermions are considered, this implies that

~θu = ~θd (5.93)

i.e. a vanishing θ–angle for the interpolating fields of the charged pions. Nev-
ertheless this complication does not arise when Ginsparg–Wilson fermions are
considered because in this case the determinant of each quark is non negative.

The second problem has been pointed out in ref. [17] and concerns the
breaking of the isospin symmetry by the choice of different θ–angles for the
two light quarks. It is useful to write the action of the theory in the following
compact form

SF [ψ, ψ, U ] =
∫
d4xψ(x)

[
/D +m

]
ψ(x) (5.94)

where

ψ(x) =

(
u(x)
d(x)

)
(5.95)

and the boundary conditions satisfied by ψ(x) are

ψ(x+ ~nL) =

(
ei ~θu~n 0

0 ei ~θd~n

)
ψ(x) (5.96)

The isospin problem is better realized by making the following transformation
on the fields

q(x) =


 e−i θux

L 0

0 e−i
θdx

L


ψ(x) (5.97)
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As a consequence of this transformation, the two component field q(x) satisfy
periodic boundary conditions but the action take the form

SF [q, q, U ] =
∫
d4xq(x)

[
/D − i

6 θu+ 6 θd

2L
− i

6 θu− 6 θd

2L
τ3 +m

]
q(x) (5.98)

In this form it is easy to realize that the isospin rotations generated by τ3 are
symmetries of the theory while those generated by τ1 or τ2 do not commute
with the Lagrangian anymore.

Since isospin is broken it is no more possible to distinguish between neu-
tral two–pion states with I = 2 or I = 0 and, consequently, it is not possible
to resolve the ∆I = 1/2 puzzle, even if Ginsparg–Wilson fermions are used in
lattice simulations. Nevertheless, isospin is broken only by boundary terms
and the the eigenvalues of τ3 are still good quantum numbers to label the
energy eigenstates of the theory. Actually1, the isospin problem can be over-
come by repeating the calculations that led to the derivation of the quantiza-
tion condition and the generalized LL formula with the inclusion of different
pion species (π+,π− and π0) satisfying different θ–boundary conditions. The
new calculation is underway.

1The author gratefully acknowledges many useful discussions with M. Lüscher on this
point
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Conclusions

In all the problems discussed in this thesis it has been shown that relevant
phenomenological informations can be extracted by a clever use of finite
volume calculations (recursion, boundary conditions, etc.).

In the first part it has been introduced a finite volume recursion tech-
nique, the step scaling method, devised in order to study systems character-
ized by two largely separated energy scales. The method has been applied in
chapter 2 to perform the first quenched calculation of the b–quark mass in the
continuum limit of lattice regularization. The step scaling method has been
also applied in chapter 3 to calculate the decay constant of the Bs meson
in the continuum limit of quenched lattice QCD. Although these quantities
had already been calculated in previous works, the results discussed in this
thesis are more accurate than the past ones because the step scaling method
introduces much less systematics with respect to other methods commonly
used to handle the same problems. For example, in the SSM calculation of
the b–quark mass one need to use extrapolations only to connect numerical
data with the continuum results; in other methods, on the contrary, one has
to resort to effective theories or to extrapolations hardly controllable from
the numerical point of view. In the SSM calculation of the heavy–light decay
constants extrapolations are needed again to obtain results in the continuum
but also to obtain the step scaling functions at the high energy reference
scale. The extrapolated step scaling functions differ from the calculated ones
by an amount of the order of 2− 3% while in a typical HQET calculation of
the same quantities, the extrapolated results differ from the calculated ones
of the order of 20%. At the present, the step scaling method has been used
to calculate observables related to one–particle states. This is the case of
the meson masses as well as of the decay constants. The method is expected
to retain its validity also in the case of more complicate heavy–light observ-
ables. It can be used for example to calculate the Isgur–Wise function or even
light–light form factors at high momentum transfer. Finally, the step scaling
method retains its validity also in the case of simulations of the full theory
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(unquenching). In this case it would be possible to calculate, among other
things, the decay constant of the B meson since the chiral extrapolations are
not affected by the presence of unphysical chiral logs.

In part II of this thesis it has been argued that a particular choice of
boundary conditions, the so called θ–BC, helps in overcoming the problem
represented by the 3–momenta quantization rule on finite volumes. To this
end, in chapter 4 it has been shown by means of a simple numerical test that
it is possible to handle “continuous” momentum transfers in finite volume
lattice simulations by using different θ–BC for the different particles involved
in the process under consideration.

In chapter 5, θ–boundary conditions have been used to study finite vol-
ume two–particle scattering states. The energy of a scattering state on a finite
volume is subject to a quantization rule. In this thesis the quantization con-
dition has been derived in the case of particles satisfying θ–BC. In chapter 5
it has been also derived a generalization of the so called Lellouch–Lüscher
formula to the θ–BC case. This formula maps the non leptonic matrix ele-
ment for the decay of a kaon into two pions with the corresponding quantity
in the infinite volume and is valid, up to corrections exponentially vanishing
with the volume, in a λφ4 theory describing the interactions between kaons
and pions. The usefulness of the formula in the case of QCD lattice simu-
lations is hardly limited by the fact that it is not possible to enforce θ–BC
on the pions interpolating fields without breaking isospin at the quark level.
Further work is needed to overcome these difficulties but a solution can be
found by repeating the calculations along the same lines discussed in the
present work.
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