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Preface

Even in these post-industrial times, manufacturing is one of the cornerstones of our

society. For several years, research has focused on several aspects of manufacturing,

from the individual processes towards the management of virtual enterprises, but

several aspects, like coordination and control, still have relevant problems in industry

and remain challenging areas of research.

The application of advanced technologies and informational tools by itself does

not guarantee the success of control and integration applications. In order to get a

high degree of integration and efficiency, it is necessary to match the technologies

and tools with models that describe the existing knowledge and functionality in the

system and allow the correct understanding of its operation. In a global and wide

market competition, the manufacturing systems present requirements that lead to

distributed, self-organised, co-operative and heterogeneous control applications.

A Distributed Flexible Manufacturing System (DFMS) is a goal-driven and data-

directed dynamic system which is designed to provide an effective operation sequence

for the products to fulfil the production goals, to meet real-time requirements and to

optimally allocate resources. In contrast to a centralized or hierarchical structure,

the distributed control architecture reveals its advantages not only in providing

efficient and parallel processing, but also in flexible realizing of system integration

and maintenance. It is proved to be more suitable for a complex and heterogeneous

system where the enormous control complexities can be distributed to each separate

component and thus to gain a high system performance. However, on the other

hand, it results in the high autonomy and intelligence requirements for individual

components.

This thesis develops two models for managing two relevant issues in DFMS,

the task mapping problem and the task scheduling with multiple shared resources

problem.

Both arise at the operational level of the manufacturing system management

(see Section 1.2). A DFMS is designed to process a large variety of tasks in a

prespecified time. The challenges at operational management level are the real-time

coordination of operations between the parts (facilities, department, cells) of the

distributed manufacturing system, and the effective scheduling of jobs in the atomic

and operative parts (robotic cells).

The former challenge is addressed with the task mapping problem, which con-
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cerns how to divide the set of jobs and assign them to the parts of the system. In

this thesis we study the case in which the jobs are quite homogeneous, do not have

precedence constraints, but need some communications to be coordinated. So, jobs

assignment to different parts cause a relevant communication effort between those

parts, increasing the managerial complexity. The issue here is to assign the jobs to

reduce the communications, and to balance the work-load between the parts.

The latter challenge is the effective sequencing of operations in the atomic parts

of the manufacturing systems. Each distributed part of a DFMS is usual composed

by some automatic robotic cells, where the jobs are performed. The issue here is

that typically the jobs performed need the use of more than a single resource within

the cell, and the decisions involve which jobs process in a given unit time and using

which resources, in order to achieve a reduction of the completion time of all the

jobs in the system.

This thesis is organized as following.

In Chapter 1 DFMS are presented, and a layered approach for the modeling of

such production systems is proposed. According to that modeling representation

a DFMS may be seen as multi-layer resource-graph such that: vertices on a layer

represent interacting resources; a layer at level l is represented by a node in the layer

at level l − 1.

In Chapter 2 the Task Mapping problem in DFMS is addressed. We show that the

standard models usually used to formal represent such a problem are wrong and lack

of expressibility. Through some graph theoretical results we relate the problem to the

well-known hypergraph partitioning problem and briefly survey the best techniques

to solve the problem. A new formulation of the problem is then presented. Some

considerations on the improved formulation permit the computation of a good Lower

Bound on the optimal solution in the case of the hypergraph bisection.

In Chapter 3 the Task Scheduling with multiple shared resources problem is

addressed for a robotic cell. We study the general problem of sequencing multiple

jobs, where each job consists of multiple ordered tasks and tasks execution requires

simultaneous usage of several resources. NP -completeness results are given. A

heuristic with a guarantee approximation result is designed and evaluated.
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Distributed and Flexible

Manufacturing Systems

1.1 Introduction

World-wide competition among enterprises led to the need for new systems to per-

form the control and supervision of distributed manufacturing, through the integra-

tion of information and automation islands.

The market demands should be fulfilled by manufacturing enterprises to avoid

the risk of becoming less competitive.

The adoption of new manufacturing concepts combined with the implementation

of emergent technologies, is the answer to the improvement of productivity and

quality, and to the decrease of price and delivery time.

Nowadays, the distributed manufacturing organisational concept, e.g. the virtual

enterprises, requires the development of decentralised control architectures, capable

to react to disturbances and changes in their environment, and capable to improve

its performance.

The mass manufacturing, idealised by Henry Ford was a strap down system,

incapable to treat variations in the type of product. This rigidity started to be an

obstacle and with the worldwide competitiveness the mass manufacturing became

viable only in some products. In this way, the mass manufacturing emerged from

the era of manufacturing to the era of mass customisation.

Nowadays, each product has several models, and each model can be highly cus-

tomised in order to fulfil the requirements of the customers (a good example is the

1
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automobile industry), which requires an automated job shop type of production in

a truly coordinated production system.

Coordination and effectiveness can be reached only by an appropriate organi-

zation and management of the manufacturing system, therefore by a efficient and

effective implementation of manufacturing control.

1.2 Manufacturing Control (MC)

1.2.1 Definition of Manufacturing Control

In a factory, a lot of activities have to be performed to produce the right goods for

the right customer in the right quantities at the right time [8]. Some activities are

concerned with the physical production and manipulation of the products. Other

activities refer to the management and control of the physical activities. These

production management and control activities can be classified in strategic, tactical

and operational activities, depending on the long term, medium term or short term

nature of their task [19, 12, 67].

Strategic production management issues relate to the determination of the prod-

ucts to be designed, manufactured and sold, considering the markets and the cus-

tomer expectations. It also relates to the design of the appropriate manufacturing

system to produce these products, including the generation of a master schedule

to check whether the manufacturing system has enough capacity for the estimated

market demand.

Tactical production management issues refer to the generation of detailed plans

to meet the demands imposed by the master schedule, including the calculation of

appropriate release and due dates for assemblies, sub-assemblies and components.

These detailed plans may refer to predicted orders, in a make-to-stock environ-

ment, or to real customer orders, in a make-to-order environment. Typically, MRP

or MRP-II systems (Material Requirements Planning and Manufacturing Resource

Planning) carry out this task.

Operational production management issues relate to the quasi-real time manage-

ment of the manufacturing system on the shop floor. It involves commanding the

appropriate machines, workers and other resources in a co-ordinated way, thereby

selecting the appropriate resources for each task and the appropriate sequencing of

these tasks on each resource. It includes the detailed planning and optimisation to
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fulfil the requirements of the MRP schedule as good as possible.

Manufacturing Control (MC) refers to the management and control decisions

on this operational level, and is the decision making activity concerned with the

short-term and detailed assignment of operations to production resources [18].

1.2.2 Manufacturing Control Functions

The main function of Manufacturing Control is resource allocation. As stated

above, resource allocation is also performed at the tactical and strategic level of

production management. MC refers to the operational level of resource allocation

only. This usually includes a detailed short-term scheduler, which plans and opti-

mises the resource allocation on beforehand, considering all production requirements

and constraints. Typically, scheduling has a total time span ranging between a few

weeks and a day, and a time granularity ranging from days till below minutes. When

the schedule is calculated, it is implemented on the shop floor by a dispatcher, tak-

ing into account the current status of the production system. This function is called

on-line manufacturing control (OMC). During OMC, the status of the vital

components in the system is monitored.

Manufacturing Control also covers process management [62]. Process manage-

ment includes machine and process monitoring and control, but also the operational

level activities for process planning. The process planning function defines how

products can be made, including the overall process plan defining the possible se-

quences of operations for to manufacture a product and the detailed operation pro-

cess planning, prescribing the parameters of the individual manufacturing steps. In

traditional manufacturing systems, process planning provides manufacturing control

with a single sequence of operations to be executed for each product. Recently, pro-

cess planning is considering more flexible solutions, based on the use of alternative

routings, and alternative machine allocations.

The use of alternative routings, modelled e.g. by precedence graphs [27], dynamic

precedence graphs [74] or Petri nets [24] enables manufacturing control to select

the best sequence of operations depending on the machine load and unforeseen

disturbances.

The use of alternative resources for an operation gives similar opportunities. Pro-

cess management also includes operational aspects of manufacturing system design,

layouting and configuration. Depending on the flexibility of the manufacturing sys-
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tem, the manufacturing system may be adaptable on short term. Those short-term

modifications and set-ups are managed by manufacturing control.

MC further needs to provide information to people and machines at the right

moment. It therefore has to collect, store and retrieve these data and provide them

to the people in the right quantity and level of aggregation. This function includes

data capturing from the machines and the analysis of these raw data. It also is

concerned with the management of the programs for NC-machines, and with quality

and labour management.

Manufacturing control relates to several other activities in an enterprise, like

marketing, design, process planning, sales, purchasing, medium and long term plan-

ning, distribution, and servicing, to which it has to interface. Via the sales function,

new orders are introduced in the shop. Orders can be directly assigned to customers,

or they may be stock replenishment orders, in a make-to-stock environment. In in-

dustry, very often mixtures of a make-to stock and make-to-order environment are

found and pragmatically dealt with. Traditionally, manufacturing control considers

sales as a black box, generating orders with a stochastic distribution. Medium-range

planning provides MC control with due dates and release dates for orders. It defines

for a large amount the performance objectives for manufacturing control.

1.2.3 Classification of Manufacturing Systems

The characteristics of a manufacturing system, like production volume, flexibility

and layout, have a major influence on its control.

The complexity of the resource allocation optimisation (scheduling, see below)

and on-line control problems depend strongly on the layout. Therefore, manufac-

turing control strategies differ considerably according to the corresponding layout.

Manufacturing systems and subsystems are often categorised according to their

production volume and their flexibility.

Traditionally, the targeted production volume and flexibility of a manufactur-

ing system are inversely proportional: high volume manufacturing systems have a

limited flexibility.

Typical production types range from continuous production, over mass pro-

duction, large batch manufacturing, discrete manufacturing, to one-of-a-kind and

project-wise manufacturing.

This thesis is restricted to discrete manufacturing in a distributive environment.
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Within discrete manufacturing, manufacturing systems are classified by their

layout (usually related to the way products flow through the manufacturing system).

The rest of this subsection surveys the main production layouts relevant for this

thesis.

The single machine model [8] has the most simple layout. It consists of

a single machine that performs all operations. Therefore, orders usually are not

further decomposed into operations.

The identical processors model [8] is similar to the single machine model,

but consists of multiple, identical machines.

A flow shop consists of different machines, processing orders with multiple

operations, where:

• each operation is to be executed on a specific machine;

• all operations of an order have to be executed in a fixed sequence;

• all orders have to visit the machines in the same sequence.

The main features of flow shop systems are high through-put, low variability in

the output product-mix (often, only one type of product is processed by a line),

short flow time, low work-in-process (WIP), high machine utilization rate, uniform

quality, high automation, high investments, high unreliability (risk of production-

stops in case of a machine breakdown), and high time to market for developing a

new product/process.

A job shop is the same as a flow shop, except that each order can visit the

machines in a different sequence. Hence, the workload is characterized by different

products concurrently flowing through the system. Each part requires a series of

operations which are performed at different work stations according to the related

process plan. Some work centers are interchangeable for some operations, even if

costs and quality standards are slightly different from machine to machine. This

feature greatly increases the flexibility of the system and, at the same time, the cost

and quality variability in the resulting output.

The manufacturing control system is responsible to choose the best option based

on the status of the system. In a job-shop, the machines are generally grouped to-

gether by technological similarities. On one side, this type of process-oriented layout

increases transportation costs due to the higher complexity of the material-handling



Chapter 1 6

control. On the other side, manufacturing costs decrease due to the possibility of

sharing common resources for different parts.

The main features of a job-shop are high flexibility, high variability in the output

product-mix, medium/high flow time, high WIP, medium/low machine utilization

rate, non-uniform quality, medium/low automation level, medium/low investments,

high system reliability (low risk of production-stop in case of a machine breakdown),

and for developing a new product/process.

A cell manufacturing system is a job shop in which the machines are grouped

in work-cells. In fact, following the criteria of group technology, some homogeneous

families of parts may be manufactured by the same group of machines. A group of

machines can be gathered to form a manufacturing cell. Thus, the manufacturing

system can be split into several different cells, each dedicated to a product fam-

ily. Material-handling cost decreases, while at the same time flexibility decreases

and design cost increases. The main features of cell-manufacturing systems range

between the two previously mentioned sets of system characteristics.

This thesis is focused on the cellular job shop layout, as it is the most general case,

and as it reveals the most suitable system to reach the flexibility in a distributive

environment.

Those layout models refer to more specific manufacturing systems, like factories

with a bottleneck, lines, flexible manufacturing systems (FMS), or flexible flow shops

(FFS). For some aspects of the control of factories with a bottleneck, the single

machine model performs quite adequately [8, 32].

Assembly lines usually are flow shops with limited or no opportunities for orders

overtaking each other.

Flexible manufacturing systems are extended job shops [25], where:

• operations of orders follow a sequence allowed by a precedence graph instead

of a fixed operation sequence;

• different workstations can perform the same operation;

• transport and set-up have to be modelled.

Recently [55], flexible flow shops are becoming more important: they inherit the

layout and properties of flow shops, but have an increased flexibility with respect

to machines selection, operation sequencing and sometimes even routing flexibility.
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In this respect, they are mathematically more similar to job shops. However, while

all routings are feasible, some routings are highly preferable. In this way, they com-

bine the efficiency and transparency of a flow line with the reactivity and flexibility

of a job shop. Such manufacturing systems are promising to break the compro-

mise between flexibility and high volume production as it is found in traditional

manufacturing systems.

1.2.4 Flow Shop and Job Shop: characteristics and limita-

tions

A comparison of the Flow Shop (FSM) and Job Shop (JSM) manufacturing systems

can be summarized as follows. The main difference occurs in the production capabil-

ity for the former and the technological capability for the latter. This is translated

into high throughput for FSM and high flexibility for JSM. A number of scheduling

issues become apparent during different phases in these systems. These phases and

different issues are:

1. Design phase. In case of FSM, great care is to be taken during this phase.

FSM will operate according to its design features, therefore, if the speed of a

machine is lower than the others, it will slow down the entire line, causing a

bottleneck. Similar problems will occur in the case of machine breakdowns.

Availability and maintenance policies for the machines should be taken into

account during the design phase. Higher levels of automation generate further

concern during the design phase because of the risk stemming from the high

investment and specialization level, e.g., risk of obsoleteness. On the other

hand, the JSM is characterized by medium/low initial investment, a modular

structure that can be easily upgraded and presents less problems in the design

phase. The product-mix that will be produced is generally not completely

defined at start-up time, therefore, only the gross system capacity may be

estimated on the basis of some assumptions about both processing and set-up

time required. The use of simulation models highly improves this analysis.

2. Operating phase. The opposite occurs during the operating phase. In an FSM,

scheduling problems are solved during the design stage, whereas in a JSM, the

complexity of the problem requires the utilization of a production activity con-

trol (PAC) system. A PAC manages the transformation of a shop order from
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the planned state to the completed state by allocating the available resources

to the order. PAC governs the very short-term detailed planning, executing,

and monitoring activities needed to control the flow of an order. This flow

begins the moment an order is released by the planning system for execution,

and terminates when the order is filled and its disposition completed. Ad-

ditionally, a PAC is responsible for making a detailed and final allocation of

labor, machine capacity, tools, and materials for all competing orders. Also,

a PAC collects data on activities occurring on the shop floor involving order

progress and status of resources and makes this information available to an

upper level planning system. Finally, PAC is responsible for ensuring that the

shop orders released to the shop floor by an upper level planning system, i.e.,

manufacturing requirement planning (MRP), are completed in a timely and

cost effective manner. In fact, PAC determines and controls operation prior-

ities, not order priorities. PAC is responsible for how the available resources

are used, but it is not responsible for determining the available level of each

resource.

Scheduling in a job-shop is further complicated by the dynamic behavior of the

system [8, 12]. The required output product-mix may change over time. Part

types and proportion, deadlines, client requirements, raw material quality and ar-

rival time, system status, breakdowns, bottlenecks, maintenance stops, etc., are all

factors to be considered. A dynamic environment represents the typical environ-

ment in which a JSM operates. The complexity of the job-shop scheduling problem

frequently leads to over-dimensioning of the system capacity and/or high levels of

WIP. A machine utilization coefficient may range between 15-20% for nonrepetitive

production. Some side effects of WIP are longer waiting time in queue and a manu-

facturing cycle efficiency (MCE) ranging from 1/25-1/30 for the job-shop, compared

to approximately one for line manufacturing. MCE is defined as the ratio between

the total processing time necessary for the manufacturing of a part and the flow

time for that part, which is equal to the sum of total processing, waiting, setup,

transporting, inspection, and control times.
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1.3 Scheduling

1.3.1 Definition

Scheduling is defined as the process of optimising resource allocation decisions on

beforehand.

Resource allocation is deciding for all tasks when to happen and with which

resources [8, 65]. In literature, the difference between these two terms is not always

clear. For this thesis however, the difference is important.

Scheduling is an optimisation process, and thus refers to one or more goals (also

called objectives, or performance criteria). Typical performance criteria in a

manufacturing context are:

• the throughput (Q), defined as the number of orders the manufacturing

system finishes per time unit;

• the work-in-process inventory (WIP ), defined as the number of orders in

the system which are not finished yet;

• the mean order flow time (or lead time, F̄ ), defined as the difference between

the order finish time and the order start time);

• the mean order tardiness T̄ (The tardiness is the difference between the

order finish time and the due date, if this difference is positive. Otherwise, the

tardiness is 0.).

The resource allocation process usually is subject to constraints. In practical

situations, not all possible resource allocation decisions are feasible. Typical con-

straints express the limited capacity of a resource, or precedence relations between

operations.

1.3.2 Mathematical Model for Job Shop Scheduling

For a clear understanding of scheduling and manufacturing control, it is often help-

ful to define a mathematical model of the scheduling problem. Such a model is

strongly dependent on the specific manufacturing system focused at. Therefore,

this subsection defines a mathematical model for (extended) job shop scheduling

that is directly related to the problem under the study scope of this thesis.
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The model can be represented as follows.

To define the symbols, suppose the manufacturing system consists of M work-

stations mk, with k ranging from 0 till M −1. Let Ω denote the set of workstations.

There also are A auxiliary resources ra in the system, with a ranging from 0 till A−1.

If necessary, these auxiliary resources can be distributed among the workstations.

Consider the set of orders O, with N orders i, for i ranging from 0 till N − 1.

Each order i has:

• a release date Ri, denoting the time an order enters the system;

• a due date Di, denoting the time the order should be ready;

• a weight wi, denoting the importance of an order.

Each order i has a number of operations (i, j), for j ranging from 0 to Ni − 1.

Each operation (i, j) can be executed on a set of alternative workstations

Hij = {hijl ∈ Ω|hijl can execute operation (i, j)},

If operation (i, j) can be executed on workstation k (i.e. mk ∈ Hij), it has

a duration dijk, otherwise, dijk is undefined. If the duration is the same for all

alternative workstations, dijk can be simplified to dij.

Given these data, the resource allocation process selects which workstation hij

will execute operation (i, j) and at which time bij it will start. In other words, hij

and bij are the decision variables. cij is the resulting completion time of operation

(i, j):

cij = bij + dijh,

where dijh is short for dijhij
. Ci is the order completion time:

Ci = ci,Ni−1.

The resource allocation problem is subject to capacity constraints and prece-

dence constraints. Capacity constraints express that a machine can only execute

one operation at the same time. To introduce a mathematical formulation of the

capacity constraints, Hoitomt [41] and Luh [59] use a formulation with discretised

time t and Kronecker deltas:
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∑
ij

δijtk ≤Mtk, (t = 1, . . . , T ; k = 0, 1, . . . ,M − 1) ,

where Mtk is the capacity of workstation mk at time t, and δijtk = 1 if operation

(i, j) occupies workstation mk at time t, and otherwise δijtk = 0. T is the time

horizon.

Precedence relations can be modelled with sequences of operations [65], with

precedence graphs [42, 65], simple fork-join precedence constraints [59], assembly

trees [55], dynamic precedence graphs [74] or non-linear process plans [24].

The experienced reader may notice that this representation of the scheduling

problem does not yet cover all situations and does not model all possible sources of

flexibility in full detail. For instance, and-or graphs can better model choices among

processes that imply different sets of operations. For machines with multiple capac-

ity, the exact modelling of set-ups and loading becomes more complex. However,

complete modelling of the scheduling problem becomes too complex to address in a

generic way and too problem specific to describe in this thesis.

The model of the scheduling problem described in this thesis is specific for a

particular distributed and flexible environment, where there is a huge set of jobs

that must be processed by a set of resources. Each job can be processed on each

distributed resource, and there are no precedence constraints between jobs.

An active schedule is defined as a schedule where no operation can be started

earlier without delaying another operation or violating some constraints.

A non-delay schedule is a schedule where no workstation remains idle if an

executable operation is available. In other words, if in a non-delay schedule, a

workstation is not occupied on time t, then all operations that can be executed

on that workstation are scheduled before time t, or cannot be scheduled on time

t because of precedence constraints. Dispatching rules can only produce non-delay

schedules. For regular performance measures, the optimal schedule is always an

active schedule. Non-delay schedules are easier to calculate, but make no statement

on optimality.

1.3.3 Complexity of Scheduling problems

The best-known difficulty of the scheduling problem is its computationally hard na-

ture. If the size of the problem grows, the time required for the computation of the
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optimal solution grows rapidly beyond reasonable bounds. Formally speaking, most

scheduling problems are NP -hard or NP -complete. An NP problem – nondeter-

ministically polynomial – is one that, in the worst case, requires time polynomial in

the length of the input for solution by a non-deterministic algorithm [29].

Non-deterministic algorithms are theoretical, idealised programs that somehow

manage to guess the right answer and then show that it is correct. An NP -complete

problem is NP and at least as hard as every other NP problem. An NP -hard

problem is NP -complete or harder than NP . NP -completeness proofs are available

for a number of simple scheduling problems, and realistic problems tend to be even

more complex. The practical consequence of NP -hardness is that the required

calculation time for finding the optimal solution grows at least exponentially with

the problem size.

In other words, for realistic scheduling problems, where finding an optimal so-

lution could require thousands of centuries, it is even useless to consider optimal

algorithms. This implies that nearoptimal scheduling algorithms are the best pos-

sible ones. A near optimal scheduling algorithm spends time on improving the

schedule quality, but does not continue until the optimum is found.

1.4 On-Line Manufacturing Control

Dispatching is the implementation of a schedule taking into account the current

status of the production system [12].

This definition takes the existence of a scheduler for granted. The dispatcher has

to execute the schedule, reacting to disturbances as quickly as possible. Therefore,

the dispatcher has no time to optimise its decisions. The task of a dispatcher seems

to be straightforward, such that usually, only simple heuristics are used for decision

taking.

A more general term is on-line manufacturing control. As suggested by its

name, on-line manufacturing control refers to that part of manufacturing control that

takes immediate decisions. Traditionally, it is a synonym of dispatching. However,

some new manufacturing paradigms that do not use scheduling, require a more

general term that is not based on scheduling. Moreover, in the manufacturing world,

dispatching refers to simple decision making, while on-line manufacturing control

also refers to more advanced methods.
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However, due to the NP-complete nature of resource allocation, dispatching in

manufacturing quickly got the meaning of applying simple priority rules. Using

an analogy, on-line manufacturing control is the task of a foreman. Similar to

dispatching, on-line manufacturing control has to react quickly to disturbances,

such that it cannot optimise the performance with time-intensive computations.

On-line manufacturing control also covers some more practical functions. It

includes the management, downloading and starting of NC-programs on due time.

While Bauer [12] defines monitoring as a separate module, data acquisition and

monitoring is often performed by the on-line (manufacturing) control system.

So, more are the data needed more is the complexity with which the OCM must

manage.

Finally, note that On-line manufacturing control is not involved with process

control, like adjusting the parameters in the machining process or calculating the

trajectory of a robot.

1.5 Distributed Flexible Manufacturing Systems

(DFMS)

On today’s global and highly competitive market, enterprises must be aware of

momentary market opportunities, and quickly and properly react to customers’ de-

mands.

A Distributed Flexible Manufacturing System (DFMS) is a goal-driven and data-

directed dynamic system which is designed to provide an effective operation sequence

for the products to fulfil the production goals, to meet real-time requirements and

to optimally allocate resources [11].

In contrast to a centralized or hierarchical structure, the distributed control archi-

tecture reveals its advantages not only in providing efficient and parallel processing,

but also in flexible realizing of system integration and maintenance, thus providing

the right solutions to the competitiveness requirements.

In fact:

• the increase of product diversity over time expands associated risks and costs,

which are sometimes prohibitive, while distributing responsibilities by multiple

entities, risks and costs become acceptable and market opportunity can be

achieved;
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• the increase of technological complexity enforces enterprise to acquire knowl-

edge in non-fundamental domains, which implies increased time-to-market pe-

riods, while distributing competencies by different enterprises, each one main-

tains its core competency while achieving the market opportunity;

• market globalisation virtually increases both enterprise opportunities and

risks. Each enterprise has to operate in the global market with globally based

enterprises supplying global products. However, developing relations and part-

nerships with such enterprises, impairs challenges and risks while benefiting

from a wider market.

Different management approaches have been adopted, related to different levels

of partnership, trust and dependency between enterprises:

• Supply Chain management, characterized by rudimentary relationship be-

tween supplied and supplier, tasks and technological competencies distribu-

tion, but centralizing strategies and risks;

• Extended Enterprise, where entities develop more durable, coupled and mutual

intervening relation, sharing technological and strategic efforts. Yet, supplied

entity maintains a dominant position over suppliers;

• Virtual Enterprise, is a very dynamic and restructuring organization, where

supplier and supplied are undifferentiated and no dominant position exists.

Although previous description relates to inter-enterprise context, the same char-

acteristics and behaviours (distribution, decentralization, autonomy and depen-

dency) are also suggested in an intra-enterprise context. Intra-enterprise workgroups

emphasize self-competencies while combining efforts for a global response to external

requirements.

Distributed Flexible Manufacturing System is an abstract concept (i.e. a class

of systems) characterized by a set of common features and behaviours, with several

specific characterizations (i.e. instantiations), named organizational paradigms.

1.5.1 DFMS Properties

DMS are characterised by several properties and behaviours. Such features re-

late both to the overall system and to each composing entity. We may classify
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those properties in basic properties (i.e., those properties that define a DFMS) and

characterizing properties (i.e., those properties that characterize DFMSs from each

other).

Basic properties

Autonomy - An entity is said to be autonomous if it has the ability to operate

independently of the rest of the system and if it possesses some kind of control

over its actions and internal state [17], i.e. autonomy is the ability of an entity

to create and control the execution of its own plans and/or strategies, instead

of being commanded by other entity (e.g. a master/slave relationship);

Distribution - A system is said to be distributed if different entities operate in

the system;

Decentralization - Decentralisation means that an operation/competency can be

carried out by multiple entities;

Dynamism - Refers to changes in the manufacturing system’s structure and be-

haviour during operation. This expresses different competencies, responsibili-

ties and relations between entities;

Reaction - An entity is said to be reactive if it adjusts its plans according to its

perceptions;

Characterizing properties

Flexibility - Flexibility is the ability the system exhibits during operation that

allows it to change processes easily and rapidly in a predefined set of possibil-

ities each one specified as a routine procedure, defined ahead of time so that

the needs to manage it are in place. In manufacturing, Flexibility is related

to physical flexible machinery. Flexible is in the sense that machines (or cells)

are able to execute several operations. In addition, they can quickly change

among different production plans according to the part’s type to manufac-

ture at a given point in time. The concept of Flexible Manufacturing System

(FMS) is very popular with companies which produce small lots of each prod-

uct, mixing different lots in the production flow. One of the main problems

in achieving flexibility is related to transportation. Since a product will need
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pass through several workstations in order to be manufactured and different

products will have different routes, the transport links between workstations

should be as free as possible.

Adaptability - Adaptability is the manufacturing system ability to be maintained

easily and rapidly, in order to respond to manufacturing requirements, based

on its shop floor constraints. Adaptability refers to production facilities re-

configuration and scalability; workforce that has the incentive and flexibil-

ity to respond creatively to customer needs and thus requires flexibility. Ill-

specification is a well-known synonym. A system is said to be adaptable if

it can continue to operate in the face of disturbances changing its structure,

properties and behaviours accordingly to new situations it encounters during

its life-time. A disturbance is any event not previously and formerly specified

(e.g. machine breakdown or a new type of product to manufacture). However,

it is very hard to predict every disturbance that may occur.

Agility - Agility is understood as a management paradigm, consisting of different

approaches in multiple organisational domains. However, Agility presumes

system empowerment, achieved by continuous observation searching for new

market opportunities. Agile manufacturing enterprise continually evolves to

adapt itself and to pursue strategic partnerships in order to prosper in an

extremely dynamic and exigent economy.

Flexibility is the simplest approach and relates directly to the shop floor. It

allows the shop floor to react accordingly in a predefined set of possibilities to meet

primary disturbances in production. Feedback from the shop floor comes mainly

with the identification of the current lot, which will serve as a basis of decision for

the download of the correct production plan.

On the contrary, Adaptability is based on sub-specification; i.e. the system is

not completely defined, which allows run-time specification and change according

to momentary requirements. Adaptability must be able to understand the distur-

bances in the shop floor, generating new production plans for the current situation

if necessary.

Agility is the uppermost concept and relates to strategic options. Perceiving its

business environment, the enterprise has to continuously evolve, adapting internally

and pursuing external strategic partnerships that complement its own competencies.
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Adaptability also plays an important role, by understanding the business strate-

gies generated by the agility. Using these strategies, new production plans or mod-

ified ones are added to the production plans database to be used at the shop floor.

These new plans may be alternative ways of making current products, or plans for

the production of new products.

1.5.2 DFMS Behaviours

A Flexible Distributed Manufacturing System may exhibit several behaviours, the

most important, for the scope of our study, are co-operation and co-ordination.

However, the goal of any system (not only in manufacturing) is to behave coherently.

Coherence refers to how well a set of entities behaves as a whole [72]. A coherent

system will minimise or avoid conflicting and redundant efforts among entities [63].

A coherent state is achieved by engaging in one or more of the following be-

haviours:

Co-operation - a process whereby a set of entities develops mutually acceptable

plans and executes these plans [75]. These entities explicitly agree to try to

achieve a goal (or several goals) with the partial contribution of each par-

ticipant. The goal needs not to be the same for each participant, but every

participant expects to benefit from the co-operation process.

Co-ordination - is the process involving an efficient management of the interde-

pendencies between activities [60].

Competition - is a process whereby several entities independently try to achieve

the same goal (with or without the knowledge of the other participants -

explicit or implicit competition).

During the system’s natural execution, the majority these behaviours are ob-

served. For instance, in order to compare a DFMS with other distributed systems,

consider a distributed problem-solver [38]: it will exhibit both co-operation and

co-ordination. In fact, the several solvers co-operate by sharing effort and also co-

ordinate their activities’ dependencies, e.g. on a finite element analysis [46], each

solver operates only on a small set of data, exchanging some data with its neigh-

bours. They co-ordinate their activities so that each one’s output is valid, and

co-operate by dividing the workload.



Chapter 1 18

Cooperation and Coordination in manufacturing are intuitively proven necessary

when adopting a distributed solution [70]: the resources must cooperate to manu-

facture a product and must coordinate their actions since the dependencies between

operations must be observed; looking at the multi-enterprise level, each company

involved establishes plans accepted by the other partners for the fulfilment of the

global objectives, thus they cooperate to manufacture a product (e.g. providing

different assembled parts) and/or to provide some kind of necessary service (e.g. ac-

counting, distribution, quality testing), and must coordinate their activities to avoid

inefficiency.

1.5.3 Organizational Paradigms

Distributed Manufacturing has been adopted for a long time but its organisational

structures were only formalised and proposed as an essential solution in recent years.

In order to achieve the above-mentioned characteristics and behaviours, several

organisational paradigms were proposed, namely the Fractal Factory [77, 69], Bionic

Manufacturing Systems [64] and Holonic Manufacturing Systems [22, 68], which were

comprised in a broader term designated Open Hierarchical Systems.

The paradigms can be distinguished by their source of origin, i.e. mathematics

for the fractal factory, nature for bionic and genetic production systems, philosoph-

ical theory on the creation and evolution of complex adaptive systems for holonic

manufacturing.

The Fractal Factory is an open system, which consists of independent self-similar

units, the fractals, and it’s a vital organism due to its dynamic organisational struc-

ture. The fractal manufacturing uses the ideas of mathematical chaos: the com-

panies could be composed by small components or fractal objects, which have the

capacity to react and adapt quickly to the new environment changes. A fractal

object has the following features:

• self-organised, which means that does not need external intervention to reor-

ganise itself.

• self-similar, which means that one object in a fractal company is similar to

other object. In other words, self-similar means that each object contains a

set of similar components and shares a set of objectives and visions.

• self-optimised, which means that continuously increase its performance.
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The explosion of fractal objects into other fractal objects, has the particularity

of generating objects which possess organisational structure and objectives similar

to the original ones. For Warneke [77] the factory of the future will present differ-

ent dynamic organisational structure, adopting the project orientation organisation

in contrast with the traditional function oriented organisation. This approach im-

plies the organisational structure will encapsulate the process and the technology,

therefore forming a cybernetic structure.

The Bionic Manufacturing Systems (BMS) have developed under the biology

ideas and concepts, and assume that the manufacturing companies can be built

upon open, autonomous, co-operative and adaptative entities, which can evolve.

The BMS translates to manufacturing systems the structure and organisation be-

haviour of the living beings, defining a parallelism between biologic systems and

manufacturing systems. The cell, organ or living being is modelled in BMS by the

modelon concept, which is composed by others modelons, forming a hierarchical

structure. Each modelon has a set of static properties and behaviours, which can

be combined with others, forming distinct entities also designated modelons. The

notion of DNA inheritance is translated to manufacturing context by the properties

and behaviours that are passed intrinsically to developed modelons [73]. The biolog-

ical concept enzymes and its role in the living beings is modelled in manufacturing

systems by entities called supervisors, which are responsible for the regulation and

control of the system. Furthermore, the supervisors also play an organisational and

structural role in the co-operation process within the BMS, influencing the relations

between modelons, imposing self-division or aggregation, in order to adapt and react

to the requirements imposed by the environment [71].

The Holonic Manufacturing System translates the concepts that Koestler [54]

developed for living organisms and social organisations into a set of appropriate

concepts for manufacturing industries. Koestler used the word holon to describe

a basic unit of organisation in living organisms and social organisations, based on

Herbert Simon theories and on is observations. Simon observed that complex sys-

tems are hierarchical systems formed by intermediate stable forms, which do not

exist as auto-sufficient and non-interactive elements but, on the contrary, they are

simultaneously a part and a whole. The word holon is the representation of this

hybrid nature, is a combination of the Greek word holos, which means whole, and

the suffix on, which means particle.
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A holon is an autonomous and co-operative entity of a manufacturing system,

which include operational features, skills and knowledge, and individual goals. It

can represent a physical or logical activity, such as a robot, a machine, an order,

a Flexible Manufacturing System, or even a human operator. The holon has infor-

mation about itself and the environment, containing an information processing part

and often a physical processing part. An important feature of HMS is that a holon

can be part of another holon, e.g., a holon can be broken into several others holons,

which in turn can be broken into further holons, which allows the reduction of the

problem complexity.

Note that Those paradigms suggest the idea that manufacturing systems will

continue to need a hierarchical structure beside the increased autonomy assigned to

individual entities. They also advise the hierarchy needed to guarantee the inter-

entities conflict resolution, and maintain the overall system coherence and objectivity

resulting from the individual and autonomous attitude of the entities.

1.6 A layered approach to DFMS modeling

In this work, in order to unifying the organisational paradigm concepts exposed in

Section 1.5.3, and to studying management issues related to a generalized DFMS,

we adapt the layered approach presented in [56].

According to that modeling approach, a DFMS can be seen as an aggregation

of four layer, such that each element which belong to a layer at level i represents a

layer at level i + 1, and is organized as follows.

In the first layer, called Multi-Enterprise layer, the interaction between dis-

tributed enterprises is modelled. The enterprises act together in order to achieve a

common objective, and each enterprise interacts with its suppliers and customers.

A similar environment is found within each manufacturing enterprise. In fact,

each enterprise (element) of the first layer is a layer itself at the second level,

called the Enterprise layer. In this layer the cooperation between geographically

distributed entities (normally, the sales offices and/or the production sites) takes

place.

Zooming into a production site element shows the Shop Floor layer, where the

distributed manufacturing control (MC) within a production site or shop floor can

be found. In this layer, the entities are distributed work areas working together and
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in cooperation, in order to fulfil all orders allocated to the shop floor, respecting the

due dates.

A single work area contains a Cell layer, where the cooperation between equip-

ments, machines and humans takes place.

Figure 1.1: Layered DFMS modeling

In Figure 1.1 a 3-layered DFMS is considered, starting from the Enterprise layer.

Collapsing the layers, i.e. exploding the nodes on the top layer in all the elements

of the Cell layer, it is easy to see that this approach models a DFMS as a graph

where the vertices represent the resources in the system, and links between vertices

represent the interaction among the resources. Such graph is called resource graph,

and its structure will discuss in the next chapter.

In this thesis the work is focused on a generic 3-layered DFMS as depicted in

Figure 1.1, in order to study two managerial problems that arise in the distributed

manufacturing control function. So, the resource graph we consider contains many

vertices as the number of interacting facilities in the system, multiplied to the work

areas in each facility, multiplied to the robotic cells in each work area.
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1.7 Scheduling issues in DFMS

Considering the high level of automation and cost involved in the development of a

DFMS, all development phases of this technology are important in order to achieve

the maximum utilization and benefits related to this type of system. However, be-

cause the main topic of this thesis is smart scheduling in an DFMS, a vast available

scientific literature in related areas, i.e., economical considerations, comparisons be-

tween DFMS and standard technologies, design of a DFMS, etc. are only referred

to. These main development phases can be identified as (a) strategic analysis and

economic justification, (b) facility design to accomplish long term managerial objec-

tives, (c) intermediate range planning, and (d) dynamic operations scheduling.

In multi-stage production systems, scheduling activity takes place after the de-

velopment of both the master production schedule (MPS) and the material require-

ments planning (MRP). The goal of these two steps is the translation of product

requests (defined as requests for producing a certain amount of products at a specific

time) into product orders. A product order is defined as the decision-set that must

be accomplished on the shop floor by the different available resources to transform

requests into products.

In the scheduling process the following phases can be distinguished as (a) al-

location of operations to the available resources, (b) allocation of operations for

each resource to the scheduling periods, and (c) job sequencing on each machine,

for each scheduling period, considering the job-characteristics, shop floor charac-

teristics, and scheduling goals (due dates, utilization rates, through-put, etc.) In

a DFMS, dynamic scheduling, as opposed to advance sequencing of operations, is

usually implemented. This approach implies making routing decisions for a part

incrementally, i.e., progressively, as the part completes its operations one after an-

other. In other words, the next machine for a part at any stage is chosen only when

its current operation is nearly completed. In the same way, a dispatching approach

provides a solution for selecting from a queue the job to be transferred to an empty

machine.

It has been reported that the sequencing approach is more efficient than the dis-

patching approach in a static environment; however, a rigorous sequencing approach

is not appropriate in a dynamic manufacturing environment, since unanticipated

events like small machine breakdowns can at once modify the system status.

The complexity of the scheduling problem arises from a number of factors:
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1. Large amount of data, jobs, processes, constraints, etc.

2. Tendency of data to change over time.

3. General uncertainty in such items as process, setup, and transportation times.

4. The system is affected by events difficult to forecast, e.g., breakdowns.

5. The goals of a good production schedule often change and conflict with each

other.

Recent trends toward lead time and WIP reduction have increased interest in

scheduling methodologies. Such an interest also springs from the need to fully utilize

the high productivity and flexibility of expensive DFMSs. Furthermore, the high

level of automation supports information intensive solutions for the scheduling prob-

lem based both on integrated information systems and on-line monitoring systems.

Knowledge of machine status and product advancement is necessary to dynamically

elaborate and manage scheduling process.
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Task mapping in distributed

manufacturing systems

2.1 Introduction and problem modeling

Process Planning function selects the proper resource types (machine and/or cell)

for each operation. If only one resource of this type exists, the routing decision is

complete. Otherwise, the problem of deciding which resource will process a given

task develops. This problem is known in literature as Task Mapping Problem [8].

Task Mapping problem deal with the issue of assigning the planned tasks to

the resources of the systems, and is a decision-making activity performed by the

Manufacturing Control (MC).

In a generic Distributed and Flexible Manufacturing System each resource can

perform each task, so the task mapping problem grows in complexity.

In fact, the resource allocation must take into account the coordination and

cooperation needed to guarantee the coherence of the system.

An optimal solution to the task mapping problem must balance the work-load

between the resources, in order to reach the cooperation, and must minimize the

complexity of communication between the resources, in order to reach the coordi-

nation.

2.1.1 Definitions and Graph Partitioning Problem

An undirected graph G = (V, E) is defined as a set of vertices V and a set of edges

E. Every edge eij ∈ E connects a pair of distinct vertices i and j. The degree di of

24
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a vertex i is equal to the number of edges incident to i, and the nodes i′ that belong

to those edges are the adjacents to i. The neighborhood N(V ′) of a subset V ′ ⊆ V

of nodes is a set containing all the adjacents to V ′, and so the set of the adjacents to

i is the neighborhood of i (i.e., |N(i)| = di). Weights and costs can be assigned to

the vertices and edges of the graph, respectively. Let wi and cij denote the weight

of vertex i ∈ V and the cost of edge eij ∈ E respectively.

Θ = {G1, . . . , GK} is a K-way partition of G if the following conditions hold:

• each part Gk, 1 ≤ k ≤ K, is a subgraph of G induced by a node set Vk, a

nonempty subset of VG;

• parts are pairwise disjoint, i.e. Vk ∩ Vh = ∅ for all 1 ≤ k < h ≤ K;

• the union of the vertices in K parts is equal to the node set of G, i.e.
⋃K

k=1 Vk =

VG.

A K-way partition is also called a multiway partition if K > 2 and a bipartition

if K = 2. A partition is said to be balanced if each part Gk satisfies the balance

criterion:

Wj ≤ Wavg(1 + ε), for j = 1, 2, . . . , K

where the weight Wj of a part Gj is defined as the sum of the weights of the

vertices in that part (i.e. Wj =
∑

i∈Vj
wi), Wavg = (

∑
i∈VG

wi)/K denotes the weight

of each part under the perfect load balance condition, and ε represents the prede-

termined maximum imbalance ratio allowed.

In a partition Θ of G an edge is said to be cut if its pair of vertices belong to

two different parts, and uncut otherwise. The cut and uncut edges are also referred

to here as external and internal edges, respectively. The set of external edges of a

partition Θ is denoted as EΘ. The cutsize definition for representing the cost c(Θ)

of a partition Θ is:

c(Θ) =
∑

eij∈EΘ

cij

where each cut edge eij contributes its cost cij to the cutsize. Hence, the graph

partitioning problem can be defined as the task of dividing a graph into two or more

parts such that the cutsize is minimized, while the balance criterion on part weights
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is maintained. The graph partitioning problem is known to be NP -hard even for

bipartitioning unweighted graphs [28].

A mapping is a function π : VG → VR that, given node sets VG and VR and a fixed

balance criterion, returns a partition of VG in |VR| parts and a bijective assignment

of each part Vk ⊆ VG to the correspondent node k ∈ VR. So the cost c(π) associated

to a mapping π is a function of the cost of the partition, i.e. c(π) = f(c(Θ)).

2.1.2 Standard task mapping models

The problem of mapping tasks on a given set of resources can be modeled in its

generalized form with two graphs, one modeling the tasks and their interactions,

and one modeling the resources (facilities) in the system. So the problem takes as

input a task graph and a resource graph and outputs the mapping from tasks to

resources.

A task graph G = (VG, EG) models the information needed to coordinate the

processing of tasks through the distributed manufacturing system. A task in the

system continuously needs information from adjacent tasks, and sends information

about its state to other tasks. A task graph is a weighted graph. A node i ∈
VG represents a task and an edge eii′ ∈ EG a continuous communication (stream)

between a pair of tasks. The weight of a node represents the task’s processing time

and that of an edge the communication requirement of the connected tasks (the

amount of data that must be communicated for these tasks).

In this thesis we consider quasi-homogeneous tasks. So, the weight of the tasks

may be scaled, and we assume that each node has a weight equal to one.

The continuous stream of data between tasks can be also be scaled and discretized

through an interval time. So, without loss of generality, we can suppose that a each

task sends one information in the unit time.

A resource graph R = (VR, ER) models the resources in the system and the

interactions among them. A node j ∈ VR of a resource graph represents a facility

and an edge ejj′ ∈ ER a link between a pair of facilities. It is also a weighted graph

(both nodes and edges are weighted). The weight of a node represents the facility’s

production capacity (the amount of work that can be performed) and that of an

edge the link’s communication capacity (the amount of data that can go through

the link in a unit time).

According to the DFMS layered modeling approach discussed in Chapter 1, we
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can construct the resource graph by exploding each node of the Enterprise layer.

In order to study a generic DFMS, through this work we assume that the resource

graph is complete, namely it is a clique, which means that all the resources are able

to communicate with each other.

Moreover, we assume that the capacity of the edges is equal to infinite.

Note that a task graph is not a traditional dependence graph, in which an edge

i→ i′ represents the fact that task i′ can start only after i has finished. Rather, our

task graph models a data processing system, in which all tasks continuously receive

and send pieces of data.

If too many tasks are assigned on a facility or too much communication goes

through a link, the facility or the link becomes a bottleneck and determines the

overall throughput of the entire system.

The key to achieving a good throughput is clustering of a task graph, a process

which recognizes highly-connected components in a task graph. A cluster in a task

graph represents a set of tasks that are intensively communicating with each other.

Unlike other formulations, our model does not have an explicit notion of paral-

lelized tasks. That is, a single node of a task graph can be mapped only on a single

node of a resource graph. A parallelized task can be to some extent modeled by

many nodes that together represent a single logical task.

Once we have a graph model, graph partitioning can be used to determine how

to divide up the work and data for an efficient parallel processing. Our objectives,

stated loosely, are to evenly distribute the work over K resources by partitioning

the vertices into K equally weighted sets while minimizing communication between

resources which is represented by edge crossing between partitions.

Until recently only the standard graph partitioning approach has been employed.

The standard approach is to model the problem using a graph as described above

and partition the vertices of the graph into equally weighted sets in such a way that

the weight of the edges crossing between sets is minimized.

Hence, by setting cii′ = 2 for each edge eii′ ∈ EG the mapping of G on R

reduces to the K-way partitioning of G according to the cutsize definition given in

Section 2.1.1. Thus, minimizing the cutsize is an effort towards minimizing the total

volume of communication between the resources. Maintaining the balance criterion

corresponds to maintaining the work load balance during local processing.

Unfortunately, the standard graph partitioning approach has significant short-
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comings which are discussed in detail in the next section. The edge cut metric that

it tries to minimize is, at best, an imperfect model of communication in a distributed

manufacturing system. The model also suffers from a lack of expressibility which

limits the applications it can address.

2.2 Our contributions

In this chapter we present standard graph partitioning models of the task mapping

techniques, show how the standard methodology for graph partitioning minimizes

the wrong metric and lacks expressibility. A key contribution of our work is the

development of some theoretical results that brings to a new model, for which we

provide some insights on the formulation and bounds on the optimal value of the

objective function that allow to provide high quality partitions quite consistently.

2.3 Graph Partitioning deficiencies

In this section we discuss several shortcomings of the standard graph partitioning

approach. We begin with flaws associated with using the edge cuts metric, and

continue with limitations of the standard graph model.

2.3.1 Flaws of the Edge Cut metric

Minimizing edge cuts has several major flaws. First of all, although it is not ac-

knowledged, edge cuts are not proportional to the total communication volume.

The scenario is illustrated in Figure 2.1

The ovals correspond to different resources among which the vertices of the graph

are partitioned. Assume that each edge has a weight of two corresponding to one

unit of data being communicated in each direction. So the weight of the cut edges

is ten. However, observe that the data from node v2 on resource R1 need only

be communicated once to resource R2; similarly with nodes v4 and v7. Thus, the

actual communication volume is only seven. In general, the edge cut metric does not

recognize that two or more edges may be representing the same information flow,

so it over counts the true volume of communication.

Secondly, the performance of the system is generally limited by the slowest re-

source. Even if the work is well balanced, the coordination (communication) effort
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Figure 2.1: Flaws of the edge cut metric

might not be. So, rather than minimizing the total communication volume, we may

instead wish to minimize the maximum volume handled by any single resource. The

standard edge cuts does not encapsulate this type of objective.

Lastly, many resources may be geographically distributed, and the effectiveness

in coordination can be reached only if communication is preferable restricted to

facilities which are near each other. So, for the problem illustrated in Figure 2.1, on

a one-dimensional row of resources, the layout R3 ↔ R1 ↔ R2 would be preferable

to R1 ↔ R2 ↔ R3.

2.3.2 Limitations of the Standard graph model

Besides minimizing the wrong objective function the standard graph partitioning

approach suffers from limitations due to the lack of expressibility in the model.

Major limitations of the undirected graph model is that it can only express

symmetric data dependencies. For example a node vi might need informations from

a node vi′ , while vi′ does not need vi. This situation can be easily represented in a

directed graph, but not in the standard model.

In a directed graph, edges are directed from the data producing vertex to the data

consuming vertex. There are two work-arounds to take the unsymmetric dependen-

cies with the standard model. The first is to convert the directed edges to undirected

edges. The second is a slight extension of the first; an edge that represents only a

one-way communication gets a weight of one, and an edge that represents two-way

communication gets a weight of two.
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2.4 Graph theoretical results

Given a K-partition of the task graph G in G1, . . . , GK subsets and a mapping of

the partitions on the resource graph R, we can define for each node i ∈ G, which

belong to a generic partition Gj mapped to a node j ∈ R, the external neighborhood

Next(i) of i as the vertices adjacent to i not mapped in the same resource where i is

mapped:

Next(i) = {v ∈ N(i) : i ∈ Gj, v /∈ Gj, j ∈ VR}

In the same way, we can define the internal neighborhood of i as the set of the

adjacents to i which belong to the same partition to which i is mapped:

Nint(i) = {v ∈ N(i) : i, v ∈ Gj, j ∈ VR} = N(i) \Next(i)

In graph theoretical view, the graph partitioning model of the task mapping

problem treat all cut edges of equal cost in an identical manner while computing

the cutsize.

However, m cut edges, each of cost 2, stemming from a vertex i in par Gj to m

vertices v1, . . . , vm in part Gj′ incur only m + 1 communications instead of 2m (see

Figure 2.2).

Figure 2.2: Communication stream between a node i in a partition Gj and its

external neighborhood in a partition Gj′

Denote as NR(i) the set of partitions which contain the external neighborhood

of i, i.e. the set of external resources which are adjacents to i:

NR(i) = {j ∈ VR : i /∈ Gj, Next(i) ∩Gj 6= ∅}
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Denote as NG(j) the set of external vertices to which a partition Gj is adjacent:

NG(j) = {i ∈ VG : i /∈ Gj, Next(i) ∩Gj 6= ∅}

Starting from the above considerations on the effective communication stream

the Lemma 1 follows:

Lemma 1 Given a task graph G = (VG, EG), a resource graph R = (VR, ER) with

K resources (i.e., |VR| = K) and a mapping function π of G on R partitioning

G in K subsets G1, . . . , GK, each associated with a node of R, then the effective

communication volume in which a given node i ∈ G incurs is:

c(i) = |Next(i)|+ |NR(i)|

Proof: It is easy to see that the resource to which i is mapped sends data about the

task i to each of the resources i is adjacent to (i.e., sends |NR(i)| data), and receive

exactly |Next(i)| data in order to achieve the coordination between task i and all the

tasks that are adjacent to i.

In Figure 2.3 the example illustrated in Figure 2.2 is drawn underlining the

effective communication edges that link a node i with its external adjacents in the

system.

Figure 2.3: Effective communication flow from and to a node i

So, the evaluation of an effective cut metric can be stated through the following

theorem.

Theorem 1 Given a task graph G = (VG, EG), a resource graph R = (VR, ER) with

K resources (i.e., |VR| = K) and a mapping function π of G on R partitioning G
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in K subsets G1, . . . , GK, each associated with a node of R, the following assertions

are equivalent:

1. communication cost associated with π is: c(π) =
∑

i∈VG
|NR(i)|

2. communication cost associated with π is: c(π) =
∑

j∈VR
|NG(j)|

Proof: In fact, given a K-partition of G, by Lemma 1 each task i ∈ VG sends one

information to each of the resources it is adjacent to (each resource j such that

Next(i) ∩ Gj 6= ∅), and needs exactly Next(i) informations. So the amount of data

exchanged is equal either to the sum of informations send from each partition, which

is equal to the sum of the partition adjacent to each node in a given partition for

all the partitions in the system (1.), or to the sum of informations received by each

partition, which is equal to the sum of the nodes adjacent to each partition for all

the partitions in the system (2.).

Theorem 1 shows which is the right cut metric to evaluate a mapping of a set

of tasks on a set of resources. To really understand the relation between a mapping

solution with the right metric and that with the edge cut metric, the following results

are given.

Remind from Section 2.1.1 that the cost associated to an optimal partition Θ

found solving the graph partitioning problem is c(Θ) =
∑

eij∈EΘ
cij, and that for our

problem cij = 2, so: c(Θ) = 2 |EΘ|.
First, we deal with the bipartition (K = 2) case in the following theorems.

Lemma 2 Given a graph G = (VG, EG), and a bipartition Θ of G in G1 = (V1, E1)

and G2 = (V2, E2), let BΘ = (B1 ⊆ V1, B2 ⊆ V2, EΘ) be the subgraph of G induced

the external edges EΘ.

Then:

|EΘ| ≥ max {|B1| , |B2|}

Proof: BΘ is a subgraph induced by a set of edges, so it does not contains isolated

vertices. Since BΘ is a bipartite graph without singletons, there are at least many

edges as the maximum cardinality of the node partitions B1 and B2.
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Theorem 2 Given a graph G = (VG, EG), let Θ′ be the bipartition of G in

G′
1 = (V ′

1 , E
′
1) and G′

2 = (V ′
2 , E

′
2) obtained by solving at the optimum the graph

bipartitioning problem on G, let Θ′′ be the bipartition of G in G′′
1 = (V ′′

1 , E ′′
1 ) and

G′′
2 = (V ′′

2 , E ′′
2 ) obtained by solving at the optimum the bipartitioning problem on G

with the right cut metric defined in Theorem 1, and let BΘ′ = (B′
1, B

′
2, EΘ′) and

BΘ′′ = (B′′
1 , B′′

2 , EΘ′′) the bipartite subgraphs induced by Θ′ and Θ′′ respectively.

Then:

c(Θ′′) ≤ c(Θ′)

Proof: Note that:

• |EΘ′| ≤ |EΘ′′|, because Θ′ is the optimal solution of a graph partitioning

problem (see Section 2.1.1);

• |B′′
1 |+ |B′′

2 | ≤ |B′
1|+ |B′

2| by Theorem 1;

• |EΘ′| ≥ max {|B′
1| , |B′

2|} by Lemma 2.

Thus, the following inequalities hold:

c(Θ′′) = |B′′
1 |+ |B′′

2 | ≤ |B′
1|+ |B′

2| ≤

≤ 2 max {|B′
1| , |B′

2|} ≤

≤ 2 |EΘ′| = c(Θ′)

The results may be generalized to the K-partition case, as follows.

Theorem 3 Given a graph G = (VG, EG), let Θ′ be the K-partition of G obtained

by solving at the optimum the graph partitioning problem on G, let Θ′′ be the K-

partition of G obtained by solving at the optimum partitioning problem on G with

the right cut metric defined in Theorem 1.

Then:

c(Θ′′) ≤ c(Θ′)

Proof: Coupling together Theorem 1 and Theorem 2 it is easy to verify that the

cost of the solution obtained with a graph partitioning technique corresponds to
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consider each node i that belongs to a cut edge (see Section 2.1.1 for the definition

of cut edge) as adjacent to exactly Next(i) partitions (i.e. |Next(i)| = |NR(i)|),
while a solution using the cut metric proposed in Theorem 1 tends to minimize this

adjacency.

Finally, to manage with the possibility of unsymmetric data exchanges, we can

generalize the result from Theorem 1 for a directed graph.

Given a directed task graph G = (VG, AG), where an arc aii′ ∈ AG repre-

sents an oriented edge from i to i′, and a mapping function of G on a resource

graph R, denote as N+
R (i) the set of resources to which a node i sends data (i.e.

N+
R (i) = {j ∈ VR : i /∈ Gj, Next(i) ∩Gj 6= ∅,∃i′ ∈ Next(i)such that aii′ ∈ AG}), and

as N−
G (j) the set of nodes from which a resource j receives data (i.e. N−

G (j) =

{i ∈ VG : i /∈ Gj, Next(i) ∩Gj 6= ∅,∃i′ ∈ Gjsuch that aii′ ∈ AG}).

Theorem 4 Given a directed task graph G = (VG, AG) and a mapping π of G on

K resources, the following assertions are equivalent:

1. communication cost associated with π is: c(π) =
∑

i∈VG

∣∣∣N+
R (i)

∣∣∣
2. communication cost associated with π is: c(π) =

∑
j∈VR

∣∣∣N−
G (j)

∣∣∣
Proof: Directly by the Theorem 1.

2.5 Hypergraph Partitioning approach

A hypergraph is a generalization of a graph in which edges can include more than

two vertices. A hypergraph, H = (VH , EH), consists of a set of vertices VH and a set

of hyperedges EH . Each hyperedge hicomprises a subset of vertices, i.e. hi ⊆ VH ,.

The size of a hyperedge is equal to the number of vertices it contains. The set of

hyperedges connected to a vertex i ∈ VH is denoted as nets(i), and the degree of a

vertex is equal to the number of hyperedges it is connected to, i.e. di = |nets(i)|.
Note that graphs are special cases of hypergraphs in which each hyperedge only

contains two vertices. Similar to graphs, let wi and cj denote the weight of vertex

i ∈ VH and the cost of hyperedge hi ∈ EH , respectively.

Definition of K-way partition of hypergraphs is identical to that of graphs. In a

partition Θ of H a hyperedge that has at least one vertex in a part is said to connect
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that part. Connectivity set Λi of a hyperedge hi is defined as the set of parts

connected by hi. Connectivity λi = |Λi| denotes the number of parts connected by

hi. A hyperedge hi is said to be cut if it connects more than one part (i.e. λi > 1),

and uncut otherwise (i.e. λi = 1). The cutsize definition for representing the cost

c(Θ) of a partition Θ is equal to the sum of the costs of the cut hyperedges:

c(Θ) =
∑

hi:λi>1

ci

Hence, the hypergraph partitioning problem [57] can be defined as the task of

dividing a hypergraph into two or more parts such that the cutsize is minimized,

while a given balance criterion among the part weights is maintained. Here, part

weight definition is identical to that of the graph model. The hypergraph partition-

ing problem is known to be NP -hard [57].

For our purposes, hyperedges allow an alternative representation of data depen-

dencies. The partitioning problem is now to divide the vertices into equally weighted

sets so that few hyperedges cross between partitions.

Starting from the task graph G = (VG, EG) we can construct the equivalent task

hypergraph H = (VH , EH) with |VH | = |VG| = hyperedges. Each vertex i ∈ G

corresponds to a hyperedge hi consisting of i and its neighborhood N(i).

By assigning unit costs to the hyperedges (i.e. ci = 1), the cost of a mapping

function of vertices VG on K resources is measured by the following result.

Theorem 5 Given a task graph G = (VG, EG), its equivalent task hypergraph H =

(VH , EH), a resource graph R = (VR, ER) with K resources (i.e., |VR| = K) and a

mapping function π of G (H) on R partitioning G (H) in K subsets G1, . . . , GK,

each associated with a node of R, then the system communication cost is:

c(π) =
∑
i∈VG

|NR(i)| =
∑

j∈VR

|NG(j)| =
∑

hi:λi>1

ci (λi − 1)

Proof: A hyperedge reflects all of the tasks that either send or receive an in-

formation. When the vertices are partitioned and mapped on the resources, that

information must be communicated from the resource which process the task to all

those that need such a information. Thus, the communication associated with a

hyperedge is one less than the number of resources its constituent vertices are parti-

tioned among, which corresponds to the cost of a mapping function as it is described

in Theorem 1.
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So by partitioning the hypergraph in such a way that hyperedges are split among

as few resources as possible, the model correctly minimizes communication volume.

Note that in addition to resolving the principle problem of the edge cut met-

ric, the hypergraph approach is more expressive than the standard model, since it

can encode problems with unsymmetric dependencies. In fact, the guiding princi-

ple in the construction of a hypergraph is that each hyperedge contains the set of

vertices which generate or need some data. This principle applies equally well to

the case when dependencies are uni-directional, and it continues to correctly model

the communication volume. However, motivated by Theorem 4, there is a subtle

requirement that the data is produced by one of the vertices that depends on it.

Since hypergraph partitioning is a NP -hard problem, task mapping problem is

also believed as difficult as hypergraph partitioning, although the computational

complexity of the latter still remains an open question.

The hypergraph partitioning version of the task mapping may be solved by

heuristics that approximate the optimal solution.

Kernighan-Lin (KL) based heuristics, for example, are widely used for

graph/hypergraph partitioning because of their short run-times and good quality

results. The KL algorithm is an iterative improvement heuristic originally proposed

for graph bipartitioning [50]. The KL algorithm, starting from an initial biparti-

tion, performs a number of passes until it finds a locally minimum partition. Each

pass consists of a sequence of vertex swaps. The same swap strategy was applied to

the hypergraph bipartitioning problem by Kernighan and Schweikert [51]. Fiduccia-

Mattheyses (FM) [26] introduced a faster implementation of the KL algorithm for

hypergraph partitioning. They proposed vertex move concept instead of vertex

swap. This modification, as well as proper data structures, e.g., bucket lists, re-

duced the time complexity of a single pass of the KL algorithm to linear in the size

of the graph and the hypergraph. Here, size refers to the number of edges in graph

and to the size of all the hyperedges in hypergraph.

The performance of the FM algorithm deteriorates for large and very sparse

graphs/hypergraphs. Here, sparsity of graphs and hypergraphs refer to their average

vertex degrees. Furthermore, the solution quality of FM is not stable (predictable),

i.e., average FM solution is significantly worse than the best FM solution, which is

a common weakness of the move-based iterative improvement approaches.

Random multi-start approach is used in VLSI layout design to alleviate this
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problem by running the FM algorithm many times starting from random initial

partitions to return the best solution found [9]. However this approach brings a lost

in efficiency.

These considerations have motivated the two-phase application of the move-

based algorithms in hypergraph partitioning [31]. In this approach, a clustering

is performed on the original hypergraph H0 to induce a coarser hypergraph H1.

Clustering corresponds to coalescing highly interacting vertices to supernodes as a

preprocessing to FM. Then, FM is run on H1 to find a bipartition Θ1, and this

bipartition is projected back to a bipartition Θ0 of H0. Finally, FM is re-run on H0

using Θ0 as an initial solution. Recently, the two-phase approach has been extended

to multilevel approaches [15, 37, 45] leading to successful graph partitioning tools

Chaco [39], MeTiS [47] and hMeTiS [48]. These multilevel heuristics consist of

3 phases: coarsening, initial partitioning and uncoarsening. In the first phase, a

multilevel clustering is applied starting from the original graph by adopting various

matching heuristics until the number of vertices in the coarsened graph reduces

below a predetermined threshold value. In the second phase, the coarsest graph is

partitioned using various heuristics including FM. In the third phase, the partition

found in the second phase is successively projected back towards the original graph

by refining the projected partitions on the intermediate level uncoarsened graphs

using various heuristics including FM.

In the rest of the chapter we give some insights on the solution of the prob-

lem, using theoretical results on the structure of the problem formulation. In fact,

although the multilevel partitioning scheme is the best known solution method for

the hypergraph partitioning problem, it has some drawbacks, especially in the graph

coarsening phase.

In fact, the coarsening phase is based on the solution of a matching problem,

which try to identify nodes that share common data, but there is not a guarantee that

such nodes should be placed in the same partition in a optimal mapping solution. So,

a refinement on the solution is needed, and it can be very computational-expensive.

Moreover, a matching-based clustering allows the clustering of only pairs of ver-

tices in a level. So, how to properly coarsen a hypergraph is still an open problem

[45].

Lastly, the computational effort depends on how the starting feasible solution is

close to the optimal solution.
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2.6 A Mixed Integer Linear Programming formu-

lation

In this section we present a new formal definition of the task communicating mapping

problem in a distributive manufacturing environment, different from the standard

one, and ralated to the hypergraph partitioning approach discussed in the previous

Section.

Let n be the number of tasks, and K denote the number of resources in the

system, as above defined.

Let ε represents the maximum imbalance ratio allowed between the cardinality

of the partitions, and consider the following decision variables:

xij =

 1 if Next(i) ∩Gj 6= ∅
0 otherwise

yij =

 1 if i ∈ Gj

0 otherwise

According to the problem definitions given in Section 2.1 and to the graph the-

oretical results presented in Section 2.4, the problem can be formulated as a 0-1

mixed integer linear programming (MILP) problem as follows:

min
n∑

i=1

K∑
j=1

xij

s.t. |
n∑

i=1

yij −
n∑

i=1

yij′| ≤ ε, ∀j, j′ = 1 . . . K, j′ 6= j (2.1)

K∑
j=1

yij = 1, ∀i = 1 . . . n (2.2)

xij ≤
∑

i′∈N(i)

yi′j, ∀i = 1 . . . n, ∀j = 1 . . . K (2.3)

xij ≤ 1− yij, ∀i = 1 . . . n, ∀j = 1 . . . K (2.4)

xij ≥ yi′j − yij, ∀i = 1 . . . n,∀i′ ∈ N(i),∀j = 1 . . . K (2.5)

xij ∈ {0, 1}, ∀i = 1 . . . n, ∀j = 1 . . . K (2.6)

yij ∈ {0, 1}, ∀i = 1 . . . n, ∀j = 1 . . . K (2.7)

According to Theorem 1 the objective function tends to minimize the sum over

each node of the partitions (i.e., resources) to which the nodes are adjacent, or the
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sum over each partition of the nodes (i.e., tasks) to which the partitions are adjacent.

In fact, it is easy to see that:
∑n

i=1(
∑K

j=1 xij) =
∑

i∈VG
|NR(i)| and

∑K
j=1(

∑n
i=1 xij) =∑

j∈VR
|NG(j)|.

The group constraints (2.1) ensure a balance criterion between the cardinality of

the partitions, measured by ε.

The group constraints (2.2) ensure the assignment of each task to exactly one

partition.

The group constraints (2.3), (2.4) and (2.5) relates the assignment of the nodes

to the partitions with the cost of such mapping. In particular: (2.3) ensures that,

given a node i ∈ VG and a partition j ∈ VR, if i has no adjacents in j, then the

communication cost between i and j is null, either i is assigned to j (in which case

yij = 1) or it is not (yij = 0); (2.4) ensures that if a node i is assigned to a partition

j, the communication cost between i and j is null; (2.5) ensures that, given a node

i not assigned to a partition j, if at least one of its adjacents, say i′, is assigned to

j, then there is a positive communication cost between i and j.

Constraints (2.6) are limitations on the communications cost for our problem.

Constraints (2.7) define binary variables yij.

2.7 An improved formulation

The problem presented in the previous section is no doubt general (i.e. it is inde-

pendent of the problem instance), however, it has the following shortcomings:

• it is large in dimension, i.e. it has the largest number of variables and con-

straints that are possible for the given problem dimension;

• A large number of alternative optima are possible. It is easy to observe that an

alternative optima can be obtained by switching the assignments of all tasks

of a particular resource with another resource. Since the problem is probably

NP -hard, these alternatives make it further difficult to prove the optimality of

a solution even when an optimum one is found. It is generally accepted that

when using a search method to solve an NP -hard problem, even if a small

amount of time is expended in the search part of the algorithm (to encounter

a good or to-be-proven optimal solution), exponential time is required in the

prove part of the algorithm.
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With an objective to overcome all these shortcomings, in this section we present

an improved formulation that follows the same basic structure as the general for-

mulation but capitalizes on problem data specific features.

First, note that for our problem ε = 1, since we want a strict balanced partition

of the tasks. So, without loss of generality, we can assign to each partition j a fixed

cardinality, which is equal to the production capacity of the resource it represents,

so equal to the weight Cj of the node j in the resource graph. The first group

constraints can be stated as:

n∑
i=1

yij = Cj, ∀j = 1 . . . K

Moreover, note that the group constraints (2.3) and (2.4) are redundant, since

the objective function tends to minimize the sum of xij, trying to take null the values

of these variables, unless there is a group constraints (2.5) that forces some xij to

be equal to 1.

Starting from the above considerations, integer and binary constraints (2.6) can

also be relaxed, since every xij tends to be null, or is at most equal to 1.

Lastly, note that the binary group constraints (2.7) holds even if yij is a positive

integer, since the group (2.2) forces the sum of those variables be equal to 1.

So an improved formulation of the problem is:

min
n∑

i=1

K∑
j=1

xij

s.t.
n∑

i=1

yij = Cj, ∀j = 1 . . . K (2.8)

K∑
j=1

yij = 1, ∀i = 1 . . . n (2.9)

xij ≥ yi′j − yij, ∀i = 1 . . . n,∀i′ ∈ N(i),∀j = 1 . . . K (2.10)

xij ≥ 0, ∀i = 1 . . . n, ∀j = 1 . . . K (2.11)

yij ∈ Z+, ∀i = 1 . . . n, ∀j = 1 . . . K (2.12)

It is emphasized that this formulation is not an approximation, instead it capi-

talizes on the problem data and on the redundancies to reduce the MILP dimension

and speed up solution times.
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2.8 Towards the solution in the bisection case

The problem formulation given in the previous section is believed to be NP -hard,

although its complexity is still not known.

This motivate the research of good bounds on the optimal solution even in the

case of bisection (i.e. bipartitioning). Note that the hypergraph K-partitioning

problem is NP -hard, and remains NP -hard even for K = 2 [57].

Writing the problem formulation for K = 2, we can use the binary concept asso-

ciated with the assignment variables yij for further reduce the size of the problem.

In fact, without loss of generality, we can specify an ordering on the partitions

of G, say G1 and G2, and associate to a node i ∈ G a binary variable yi as follows:

yi =

 1 if i ∈ G1

0 if i ∈ G2

So the problem formulation may be stated:

min
n∑

i=1

xi

s.t.
n∑

i=1

yi = C (2.13)

xi ≥ yi′ − yi, ∀i = 1 . . . n, ∀i′ ∈ N(i) (2.14)

xi ≥ yi − yi′ , ∀i = 1 . . . n, ∀i′ ∈ N(i) (2.15)

xi ≥ 0, ∀i = 1 . . . n (2.16)

yi ∈ {0, 1} , ∀i = 1 . . . n (2.17)

Note that it suffice to specify a single capacity limit C (constraints (2.13)) for

the partition G1, since automatically the capacity limit for G2 is equal to n− C.

Constraints (2.9) and (2.12) are grouped together in the group constraints (2.17).

Constraints (2.10) must be duplicated in (2.14) and (2.15) to take into account

the binary meaning of yi.

The given problem formulation is relevant for our purpose, since a constraint-

relaxation of it allows the determination of good bounds on the optimal solution.

In fact, removing the group constraints (2.15), the formulation refers to a problem

which solution is a size-constrained minimum-separator set of vertices, i.e. we want

to find a fixed-size (C) subgraph of G which can be disconnected from G by deleting

the minimum set of vertices.
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This problem is easier to solve than the hypergraph bipartitioning one, and it

is easy to see that, given an optimal partition Θ∗, called |n∗
1| and |n∗

2| the size of

the minimum separator set n∗
1 and the size of the adjacents to the latter in G1

respectively (i.e., n∗
1 contains the nodes i such that xi = 1 in the optimal solution,

n∗
2 contains the nodes i such that yi = 1 and some of the adjacents to i belongs to

n∗
1), then the cost of the optimal solution of the hypergraph bipartitioning problem,

say Θ, is bounded as follows:

2 |n∗
1| ≤ c(Θ) ≤ |n∗

1|+ |n∗
2|

Moreover, using the separator set n∗
1 we can construct, if some conditions hold,

an efficient coarsening/solution scheme, as follows:

1. Find all the connected components in the bipartite graph G∗ = (n∗
1, n

∗
2, EΘ∗)

and apply what follows to each one of them (for now we can suppose, without

loss of generality that G∗ is connected);

2. Find in n∗
1 a subset n∗

k of vertices such that:

|Next(n
∗
k)| − |Next(n

∗
1 \ n∗

k) ∩Next(n
∗
k)| ≥ |n∗

k| ;

3. If n∗
k ≡ n∗

1, then we can coarsen n∗
1 in a supernode and compute a new solution

to the problem, because there is not a proper subset of n∗
1 that can be moved

to another partition in order to improve the solution;

4. If n∗
k ⊂ n∗

1 then:

• coarsen n∗
k in a super node and n∗

1 \ n∗
k in another supernode

• try to improve the solution moving n∗
k with the FM algorithm, because if

n∗
k and n∗

1 \n∗
k are assigned to different partitions in the optimal solution,

then one of them is on the boundary of the solution (i.e. nodes i such

that xi = 1), since G∗ is connected

• if no improvement is allowed, then coarsen n∗
k with n∗

1 \ n∗
k

This scheme can be enclosed in an algorithm in order to reduce the size of the

initial graph.
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Note that the scheme is applied on the vertices of the task graph, not on the

hyperedges or nodes of the equivalent task hypergraph (as standard coarsening tech-

niques).

Moreover, the proposed method coarsen nodes that should share a partition in

the optimal solution, so does not need any refinements in the uncoarsening phase.



Chapter 3

Task scheduling in flexible

manufacturing cells

3.1 Introduction

A substantial amount of recent research has been directed towards the develop-

ment of industrial robots. The bulk of this work has dealt with electromechanical

capabilities, sensing devices and computers controls. Relatively little research has

investigated the operational problem associated with application of this technology

([5], [6], [14], [34], [49]).

We investigate one operational problem which is encountered in applications, in

which a robot is used to tend a number of machines. Such an application would arise,

for example, when machines have been organized into a machine cell to implement

the concept of group technology ([1], [2], [3], [4], [8], [76]). The cell would be used

to produce multiple set of parts at prespecified production rates. The feasibility of

assigning one robot to perform the tasks necessary for tending all the machines, so

that parts are produced at specified production rates, is an important operational

problem. In fact, the resolution of this problem determines the number of robots

that might be necessary to tend machines in a manufacturing system and hence the

investment required to robotize tending activities.

These kinds of problems were first introduced by Asfahl ([7]). A summary of

the related literature can be found in [13] and in [33]. In particular, in [13] the

authors find the optimal sequence of moves for a two machine robot-centered cell

producing a single part-type, and solve the part sequencing problem for a given

44
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one-unit robot move cycle in a two-machine cell producing multiple part-types. Hall

et al. [33] showed that the optimal solution to the multiple part-types problem in a

two machine cell is not generally given by a one-unit cycle. They develop an O(n4),

where n is the number of parts, time algorithm that jointly optimizes the robot

move cycle and part sequencing problems. The latter algorithm was improved later

by Aneja and Kamoun [6] with one of O(n log n) complexity.

Blazewicz et al. ([13]) provided a summary of the related literature and described

a line for machining castings for truck differential assemblies in the form of a three-

machine robotic cell where a robot has to transfer heavy mechanical parts between

large machines.

Descriptions of interesting applications were provided, e.g. by Hartley ([36]).

Complexity issues were discussed by Wilhelm ([78]), and by Crama and Van De

Klundert ([21]), that provided a proof that a basic version of the problem is strongly

NP -Complete, and described a polynomial time algorithm for minimizing cycle time

over all one-unit cycles in an m machine cell producing a single part-type in a robot-

centered cell.

Hall et al. in [34] considered a three-machine cell producing multiple part-types,

and prove that, in two out of the six potentially optimal robot move cycles for

producing one unit, the recognition version of the part sequencing problem is unary

NP-complete. Moreover, they shown that the general part sequencing problem not

restricted to any robot move cycle in a three machine cell is still intractable.

Levner et al. in [49] addressed a cyclic robot scheduling problem in an automated

manufacturing line in which a single robot is used to move parts from one work-

station to another, with the goal of optimizing the cycle length. For this problem

they proposed an algorithm of complexity O(m3 log m) where m is the number of

machines.

Many of the results and algorithms in the literature are devoted to robotic flow-

shop scheduling problems (e.g., see [7, 13, 20, 33]). However, the robotic cell config-

uration is very flexible: the robot can easily access the machines in any order, thus

producing a large variety of products in form of a job-shop (e.g., see [30, 35, 40, 44]).

In this work we concentrate on the latter class of problems, studying the general

problem of sequencing multiple jobs where each job consists of multiple ordered

tasks and tasks execution requires simultaneous usage of several resources ([10]).

The remainder of the chapter is organized as follows. In Section 3.2 we formally
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describe the problem. The complexity of the problem is analyzed in Section 3.3.

A heuristic algorithm is described in Section 3.4, and approximation results on the

solution found by that algorithm are addressed in Section 3.5. Finally in Section 3.6

we present computational results.

3.2 Problem definition

Let us consider a cell composed of M machines configured to produce a batch of

parts. Part p, p = 1, ..., P , requires Np tasks. Let pj denote the jth task for part p.

Task pj takes tpj
time units to complete. We allow the general condition that a task

requires concurrent usage of more than one cell resource during its execution. Let

Spj
be the set of resources required for task pj. The objective is to determine the

schedule for all tasks of all parts so as to minimize the makespan.

Note that the mainstream of research in robotic scheduling is devoted to two

classes of production performance measures. The first is the makespan which ad-

dresses the case of a finite part set where one is interested in minimizing the max-

imum completion time of these parts (e.g., see [23, 40, 52, 53]). The other class of

models (which is not addressed in this work) assumes that the part set is infinite

and attempts to minimize the long run cycle time of the schedule, which is the same

as maximizing the throughput rate (e.g., see [13]).

As an example of this model, we examine an assembly cell of M − 1 machines

plus a material handling robot. The robot will be modelled as machine M . Each

part has a processing time associated with each machine. In addition, the robot is

needed to load a part on a machine and then to unload the part after the production

task has been performed. In our model, each production task is divided into three

tasks, namely Load, Make, and Unload. The Load and Unload tasks require both

the machine and the robot. The Make operation would normally require only the

machine. The formulation also permits the case where the robot is needed to hold

the part while certain production tasks are performed. This problem can be easily

extended to the case of multiple material handlers, each assigned to a specific set

of machines. Note that the solution must take into account precedence restrictions.

For instance, we can not Unload until we have Loaded and performed the Make

task.

This is an example of operational problems associated with the application of
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industrial robots, used to tend a number of machines that have been organized

into a machine cell. The cell is used to produce a set of parts at production rates

specified by managers. The time required to tend a machine, may be different for

each machine according to its location and orientation in the cell, and to the part

to be processed. All machines in the cell are dependent on a single robot, so the

sequence in which tending tasks are performed may be critical and force certain

machines to be in idle.

Let us denote the Load, Make and Unload operations of part p requiring machine

i with Li
p, M i

p, U i
p (the machine index i will be omitted when no necessary). More-

over, we shall refer to the problem of scheduling Load, Make and Unload operations

for the set of parts in order to minimize makespan as the LMU Problem.

As an example of LMU Problem, in Figure 3.1 is shown a schedule, for three

parts and two making machines. In particular, the robot is indicated with R, and

the machines with m1 and m2 respectively. Moreover, the Make operation for Part

2, namely M2
2 , requires resource R.

mi

R L1
1 L2

2 U2
2 L2

3 U1
1 U2

3

m1 M1
1

m2 M2
2 M2

3

←− t −→

Figure 3.1: An example of LMU Problem.

3.3 NP-completeness result

We show that LMU Problem with general processing times on four machines is

NP-hard by a transformation from 3-Partition, which is known to be strongly

NP-complete (see Garey and Johnson [29]), to our problem. The 3-Partition

problem is defined as follows.

3-Partition problem: Given a set A = {a1, a2, . . . , a3z} of 3z integers such that∑3z
t=1 at = zB and B/4 < at < B/2 for t = 1, . . . , 3z, can A be partitioned into z

subsets, A1, A2, . . . , Az, such that
∑

at∈Ak
at = B for k = 1, 2, . . . , z ?
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Theorem 6 The LMU problem with m=4 is strongly NP-complete

Proof: For a given instance of the 3-Partition problem let us define a corresponding

instance of our problem with 5z parts. Let there be 2z parts requiring machine 1,

z parts requiring machine 2, z parts requiring machine 3, and z parts requiring

machine 4. The processing times are:

- L1
p = 1, M1

p = B, U1
p = 1, p = 1, . . . , 2z

- L2
p = ap−2z, M2

p = B − ap−2z + 2, U2
p = ap−2z, p = 2z + 1, . . . , 3z

- L3
p = ap−3z, M3

p = B − ap−3z + 2, U3
p = ap−3z, p = 3z + 1, . . . , 4z

- L4
p = ap−4z, M4

p = B − ap−4z + 2, U4
p = ap−4z, p = 4z + 1, . . . , 5z

If the 3-Partition problem has a positive answer, then we can construct a schedule

of length Y = 2z(B + 2) as shown in Figure 3.2.

1
B︷ ︸︸ ︷

←− · · · · · · · · · · · · −→ 2z(B+2)−→
R L1

1 L2
2z+1 L3

3z+1 L4
4z+1 U1

1 L1
2 U2

2z+1 U3
3z+1 U4

4z+1 U1
2 · · · U1

2z

m1 M1
1 M1

2 · · · · · · · · ·

m2 M2
2z+1 · · · · · · · · · · · ·

m3 M3
3z+1 · · · · · · · · · · · ·

m4 M4
4z+1 · · · · · · · · · · · ·

Figure 3.2: An optimal schedule with Y = 2z(B + 2).

Now, we are going to show that there is a positive answer to 3-Partition if there

exists a feasible schedule with length less than or equal to Y . We observe that the

value of the makespan to schedule in any order the 2z parts requiring machine 1

is Y = 2z(B + 2). This partial schedule has no idle times on machine 1 and has

2z idle times on the robot all of length B. The total time required to perform the

Load and Unload operations of the remaining 3z parts is 2zB. Note that a feasible

schedule for the remaining parts can be obtained scheduling in any order the Load

operations of parts on machines 2, 3, 4, on an idle time of the robot. The Make

operation can start as soon as the Load is completed. Unload operations can be

performed in the successive robot idle time in the same order than the corresponding
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Load operations. In a schedule of length Y the robot must have no idle times. This

is possible if the sum of the Load (Unload) operations of parts requiring machines

2, 3, 4 in each robot idle time is equal to B, that is if it exists a 3-Partition of the

set A. Thus the problem is strongly NP-complete.

3.4 The LMUA heuristic

In the following we describe a heuristic algorithm (namely LMUA) which finds a

feasible solution to our scheduling problem.

First we observe an active schedule can have idle times either on one of the

machines or on the robot which cannot be eliminated trivially. The robot can be

idle when all machines are simultaneously processing a Make task. A machine mi

may be idle, waiting for either a Load or an Unload task to be performed, because

the robot is busy tending an other machine. Second, for any feasible schedule the

maximum completion time is the completion time of the last Unload operation.

The LMUA algorithm proposed is a single pass heuristic in which the loading-

unloading sequence and the corresponding schedule are determined once. A list

containing the sequence of Load-Make-Unload tasks is built considering any order

of the part types. At the beginning the robot R loads all machines. Make operations

can start immediately after the preceding Load is performed. Successively the robot

unload the machine which ended first the Make task.

In the generic stage of the algorithm the first unselected task in the list is

examined. If it is a Make operation it can be scheduled immediately after the

loading. Otherwise, the first Load-Unload operation in the list of remaining tasks

which tends the machine which has been idle for the longest time is selected. The

following is a pseudo-code description of algorithm LMUA.

Algorithm LMUA

- Step 1:

Consider an instance with M − 1 machines, one robot (modelled as

machine M) and Z parts.
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1.1 Take any ordering of all the parts (assume the order

1, . . . , Z);

1.2 Build the list of tasks:

LT = {Lk
1, M

k
1 , Uk

1 , Lk
2, M

k
2 , . . . , Lk

Z , Mk
Z , Uk

Z};

1.3 Build the list of Tasks Make that require the resource

robot:

LTR = {Mk
i | part i requires the robot during the Make on mk};

1.4 Build the list of processing times:

PT = {pLk
1
, pMk

1
, pUk

1
, . . . , pUk

Z
};

1.5 Build the list of the instants of time at which the machines

are available: AT = {At1, At2, . . . , AtM};

1.6 Initialize the current scheduling time at t = 0;

1.7 Initialize the list of the tasks that can be processed at

the current t with all the Load tasks:

LTA = {Lk
1, L

k
2, . . . , L

k
Z};

1.8 Build the list reporting the instants of time at which the

tasks in list LT could start their execution:

FTA = {FtMk
1
, F tUk

1
, . . . , F tUk

Z
};

1.9 Set the values of the variables in FTA equal to infinite.

- Step 2:

While LT 6= ∅ or LTA 6= ∅ do:

2.1 Scan tasks in list LTA and

2.1.1 if there exists a task Make that at time t requires a

machine mk that is available according to list AT then

go to Step 3; otherwise
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2.1.2 if the robot is available at time t and there exists

either a task Load whose corresponding Make operation

requires a machine which is available, or a task Unload,

then go to Step 4 (tie breaks choosing the Load or

Unload task waiting for more time in the list).

2.2 If there does not exist a task obeying Step 2.1.2 or Step

2.1.3, then:

2.2.1 Increase t = t + 1;

2.2.2 Update lists LTA and LT, by moving tasks from LT to

LTA according to FTA.

- Step 3:

3.1 Schedule the Make task selected starting from t on the

required machine;

3.2 Set equal to infinite the variable in AT associated with

the machine handling the Make task.

3.3 Update in FTA the earlier starting time of the Unload task

associated with the processed Make task, setting it to the

finishing time of the latter;

3.4 Delete from LTA the processed Make task.

3.5 Set t = t + 1;

3.6 Go to Step 2.

- Step 4:

If the selected task is a Load (whose Make task does not require

the robot) or an Unload, then:

4.1 Process the task;

4.2 Update the instant of time AtM at which the robot will be

available again according to the processing time of the task

executed; set t to this latter value.

4.3 If a Load task has been selected, then update in FTA the

earlier starting time of the Make task associated;
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4.4 If an Unload task has been selected, set to t + 1 the time

at which the machine which have processed its predecessor

Make task will be available; update the instant of time AtM

at which the robot will be available again according to the

processing time of the task executed; update t accordingly.

4.5 Delete from LTA the processed task;

4.6 Go to Step 2.

If the selected task is a Load task such that the following Make

task requires the presence of the robot (as shown in list LTR),

then:

4.7 Process the task Load and immediately after the following

task Make;

4.8 Update the variable in list AT indicating when the robot

will be available again (i.e., after an interval of time

equal to the sum of the processing times of the Load and the

Make operations), while set the availability of the machine

which has processed the Make task equal to infinity after

this Make operation has been performed;

4.9 Update the variable in list FAT of the earlier starting

time of the corresponding Unload task, i.e., t plus the

processing times of the Load and the Make operations

performed, say pLk
i
and pMk

i
respectively;

4.10 Update t = t + pLk
i
+ pMk

i
;

4.11 Delete from LTA the Load task;

4.12 Delete from LT the Make operation.

4.13 Go to Step 2.

- Step 5: Return the makespan: Cmax := t

In Figure 3.3 we show an application of LMUA algorithm with 4 parts: Make

operations for parts 1 and 3 require machine m2; Make operations for part 2 and 4

require machine m1; moreover, Make operation for part 2, namely M1
2 , also requires

resource R.
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mi

R L2
1 L1

2 U2
1 L2

3 U1
2 L1

4 U2
3 U1

4

m1 M1
2 M1

4

m2 M2
1 M2

3

←− t −→

Figure 3.3: An application of LMUA Algorithm.

In order to determine the computational complexity of the LMUA algorithm,

note that, for a given instance of Z parts, there are 3Z tasks and:

Step 1: the lists can be constructed in O(Z);

Step 2: the cycle while is repeated at most 3Z times, and the selection

of the task requires at most 3Z comparisons;

Step 3: runs in O(c), where c is a constant;

Step 4: can be processed in O(c);

Step 5: runs in O(1);

Hence, for a given instance of the LMU problem, denoting with Z the size of

the input, LMUA algorithm has a worst case complexity O(Z2).

3.5 Graph model and approximation result

In this section we prove an approximation result on the LMUA solution, moving

from a graph model of the problem.

Let us consider a graph G = (V, E ∪A) where the set of vertices corresponds to

the set of tasks, and the set of disjunctive edges E represent couples of tasks which

cannot be executed simultaneously because they share some resource. The set of

oriented arcs (i, j) ∈ A is determined by the transitive closure of the precedence

relations defined among tasks defining a job . A weighting function D associates to

each vertex (task) i its execution time di. An example of the graph G is shown in

Figure 3.4.

Let us introduce some definition in order to examine the structure of the graph.

In the sequel we will denote by independent set a set of vertices which are pairwise
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Figure 3.4: The general structure of the graph G.

independent (i.e. non connected), and by clique a set of vertices which induces a

complete subgraph (i.e. a set of pairwise connected vertices). The weight of a clique

is the sum of the weights of its vertices. The maximum weighted clique of G is a

clique of maximum weight.

With respect to the disjunctive graph models already introduced for shop

scheduling problems (e.g., see [65]), the graph G has a special structure. In fact

it can be seen as constituted by a set of cliques whose vertices represent operations

requiring a certain machine to be executed, which intersect in a “central” clique

whose vertices represent tasks requiring both a machine and the robot.

Our first observation is that cliques correspond to set of tasks which have to be

scheduled sequentially, while independent sets correspond to set of vertices which

might be processed in parallel. The graph structure will be used to derive bounds

on the heuristic algorithm performance.

Now, we give bounds on the performance of the presented algorithm. A straight-

forward lower bound on the value of the makespan is given by the maximum weighted

clique of the graph G, that is by the set of pairwise connected vertices, of largest

weight. The upper bound on the value of the makespan produced by LMUA al-

gorithm is given by the size of the maximum weighted star in G, where a star is

the union of a vertex x and its neighborhood N(x). The result can be proved by

induction on the number of tasks, by the following theorems.

Lemma 3 Let F (I) denotes the value of the makespan produced by LMUA algo-
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rithm on problem instance I. Then:

F (I) ≤ max
x∈V
{dx +

∑
y∈N(x)

dy}

Proof: Assume it holds at step i− 1 of the algorithm, we prove it is true at step i.

Observe that, when scheduling the ith task, say x, with starting time sx, all time

instant preceding sx are occupied by vertices (tasks) y ∈ N(x) (neighbors in G of

vertex x).

More precisely, for all instant preceding sx, if a machine is idle, then the robot is

busy. For the lack of simultaneous idle times on both machines and robot the vertex

x can be postponed no longer than the time to process N(x). Then the greatest time

to complete processing of x is less or equal to dx +
∑

y∈N(x) dy. Hence, the maximum

completion time of the schedule is less or equal to maxx∈V {dx +
∑

y∈N(x) dy}.

Theorem 7
F (I)

OPT (I)
≤ 2

Proof: Any star in G contains at most vertices of the clique induced by operations

which require a robot and any vertex of one of the cliques induced by making

operations. Clearly, the maximum weight of a star is bounded by twice the size

of the maximum weighted clique. Using the maximum weighted clique as a lower

bound on the optimal value of the makespan OPT (I), the inequality follows.

3.6 Computational results

In this section we present some computational experiments with LMUA algorithm

on randomly generated problems. We considered several cell configurations with m ∈
[4, 10] machines and one robot tending all the machines. For each configuration we

considered an increasing number of jobs n ∈ [10, 80]. Note that, for instance, 80 jobs

corresponds to 240 tasks. Processing times for each loading and unloading operations

are generated randomly, using a uniform distribution in the range [20 − 70] time

units. Processing times of Make operations are generated randomly using a uniform

distribution in the range [120− 360] time units. We considered different scenarios,

associated with the probability pr = 0%, 10%, 20%, 30%, and 40% that a generic

part requires the robot during the Make operation. The algorithm implementation



Chapter 3 56

was done in WINDOWS/C environment on a AMD Athlon PC running at 900

MHz. CPU times to find the optimum solution for each run were computed, and

were very low. In fact, the maximum CPU time (in seconds) was 2.67s, found for

the combination (pr = 40%, m = 6, n = 80), whereas the average time was 0.38s.

Results are summarized in the following tables, in which are reported, for each

cell configuration, the values of the makespan depending on the number n of jobs.

Each table is associated with a scenario corresponding to a probability pr.

pr = 0 ←−Jobs (n) −→
Mac. (m) 10 20 30 40 50 60 70 80

4 1977.9 3265.5 4655.9 6774.6 8110.6 9300.4 10711.1 12077.3

6 1681.8 2733.4 4157.2 5460.4 6673.2 8117.8 9633.8 11220.8

8 1460 2712.1 3784.2 5400.4 6660 8014 9054.3 10482

10 1438.1 2678.2 3723.2 5314.5 6638.7 7754.5 8698.9 10458.3

Table 3.1: Scenario with pr = 0

First let us consider a scenario in which jobs do not require the resource robot

during the Make operation (Table 3.1).

Observe that, for a given m, the makespan increases as n increases, while it

decreases, for a given n, as the number of machines m increases.

To evaluate the behaviour of the makespan we report the chart in Figure 3.5.

Figure 3.5: Trends of the makespan as the number n of jobs increases.

The makespan value, given a fixed number m of machines, seems to be linearly
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dependent on the number of jobs. For a certain range of the number of jobs (n ∈
[10, 30]), the trends are very similar, and it seems that the number m of machines

does not influence Cmax. As n increases, instead, the trends are well distinguished,

and the difference between the makespan values is much more observable when m

passes from 4 to 6, than when it passes from 6 to 8 or 10.

Figure 3.6: Trends of the makespan as the number m of machines increases.

Now we analyze the behaviour of the makespan referring to the increase of the

number m of the machines, for a given n. Figure 3.6 shows how Cmax decreases

proportionally as the number m increases. Moreover, from Table 3.1 it is easy to

see that when the number of jobs passes from n = 30 to n = 40 the variation of the

associated makespan values is higher than in the other cases.

Finally we study what happens when the probability pr of the existence of a job

requiring the robot during the Make operation is greater than zero.

pr = 1 ←−Jobs (n) −→
Mac. (m) 10 20 30 40 50 60 70 80

4 2069.9 3486.6 5118.2 7300 8923.4 9999.7 11690.6 13615.2

6 1747.8 3096.8 4536 6292.1 7830.5 9298.7 11094.8 13057.5

8 1534.3 3077.5 4487 6193.8 7510.2 8952.5 10382.5 12008.9

10 1506.4 2969.3 4322 6125.6 7503.8 8771.4 10138.7 11849.9

Table 3.2: Scenario with pr = 1

Tables 3.2, 3.3, 3.4 and 3.5 summarize the results for each different scenario.
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pr = 2 ←−Jobs (n) −→
Mac. (m) 10 20 30 40 50 60 70 80

4 2152.5 3674.4 5320.9 7808.6 9428.6 10962.4 12574.6 14435.3

6 1818.3 3458.4 5143.6 7109.3 8806.4 10647.6 12018.1 14319

8 1775.3 3373.7 4954 6761.6 8430.1 10336.6 11880 13752

10 1591.9 3367.3 4919.1 6651.7 8283.1 9914.6 11270.6 13356.7

Table 3.3: Scenario with pr = 2

pr = 3 ←−Jobs (n) −→
Mac. (m) 10 20 30 40 50 60 70 80

4 2301.7 3743.1 5611.7 8289 10223 11656.9 13882.7 15894.9

6 1929.2 3644.8 5462.2 7798.4 9358.6 11496.9 13212 15787.6

8 1821 3465.1 5440.8 7341.7 9207.9 10969.7 12786.3 15046.8

10 1760.1 3412.8 5092 7252.4 9048.8 10923.3 12089.6 14451

Table 3.4: Scenario with pr = 3

pr = 4 ←−Jobs (n) −→
Mac. (m) 10 20 30 40 50 60 70 80

4 2383 4134 6073.6 9009.7 10859.4 12837.6 14857.8 17176.5

6 2024.3 3960.9 5876.7 8243.3 10232.2 12491.2 14268.5 16624.1

8 1837.3 3671.6 5734.9 7969.9 9644.2 11775 13719.8 15950.3

10 1815.5 3603.2 5406.4 7700.9 9577.2 11424.9 13693.4 15296

Table 3.5: Scenario pr = 4
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Note that as pr increases Cmax decreases proportionally. The chart in Figure 3.7

shows that the makespan values increase proportionally with the probability pr and

the number of jobs n.

Figure 3.7: Makespan values, for a given m, as n and pr increase.

The chart in Figure 3.8, instead, shows that the variation of the makespan, when

the probability pr increases, is not proportional to the number m of machines, for

a given n. In fact, it can be seen how the influence of pr on the makespan tends to

decrease as m increases.

Figure 3.8: Makespan values, for a given n, as m and pr increase.

A final analysis is devoted to study the possible efficiency improvement of the
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robotic cell. In particular, we examine what is more profitable, whether to reduce

the processing times of Make operations, improving the machines’ efficiency, or to

reduce the processing times for loading and unloading operations, modifying the

Robot configuration.

First we analyze, in the case pr = 0%, what happens if the range of the uniform

distribution for the processing times of Make operations is decreased of 30%, from

[120− 360] to [120− 268] time units.

pr = 0 ←−Jobs (n) −→
Mac. (m) 10 20 30 40 50 60 70 80

4 1600.1 2781.3 3831.6 5735.3 6806.3 7877.1 8862.9 10284.7

6 1412.1 2481 3707.8 5022.4 6300.3 7630 8586.4 10150

8 1263.9 2409.8 3585.1 4948.5 6274.4 7480 8405.4 9343.2

10 1210.7 2392.1 3459.2 4918.7 6256.2 7290.3 8082.4 9900.3

Table 3.6: Reducing processing times of Make operations

Table 3.6 summarizes the results obtained in this new scenario, and Table 3.7

reports the percentage of reduction of Cmax.

pr = 0 ←−Jobs (n) −→
Mac. (m) 10 20 30 40 50 60 70 80

4 19.10% 14.83% 17.70% 15.34% 16.08% 15.30% 17.25% 14.84%

6 16.04% 9.23% 10.81% 8.02% 5.59% 6.01% 10.87% 9.54%

8 13.43% 11.15% 5.26% 8.37% 5.79% 6.66% 7.17% 10.86%

10 15.81% 10.68% 7.09% 7.45% 5.76% 5.99% 7.09% 5.34%

Table 3.7: Percentage reduction of Cmax

Now we analyze what happens when the range of the uniform distribution for

the processing times of Load and Unload operations is decreased of 30%, i.e., from

[20− 70] to [20− 55] time units.

Table 3.8 summarizes the results obtained in this case, and Table 3.9 reports the

percentage of reduction of Cmax.

It is easy to observe that a decrease of the processing times in both cases brings

a reduction of Cmax even if the latter is not proportional to the former. In fact,

the maximum reduction obtained is 19.89% when processing times of loading and
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pr = 0 ←−Jobs (n) −→
Mac. (m) 10 20 30 40 50 60 70 80

4 1833.9 3071.5 4312.1 6273.3 7639.3 8816.5 10015.8 11228.9

6 1567.7 2400.4 3607.3 4847.7 5467.2 6682 7717.9 9035.2

8 1334.5 2398.5 3264.2 4475.5 5458.9 6653.9 7527.2 8697.5

10 1301.5 2378.7 3138.8 4298.5 5429.5 6354 7097.6 8415.5

Table 3.8: Reducing processing times of Load and Unload operations

pr = 0 ←−Jobs (n) −→
Mac. (m) 10 20 30 40 50 60 70 80

4 7.28% 5.94% 7.38% 7.40% 5.81% 5.20% 6.49% 7.02%

6 6.78% 12.18% 13.23% 11.22% 18.07% 17.69% 19.89% 19.48%

8 8.60% 11.56% 13.74% 17.13% 18.03% 16.97% 16.87% 17.02%

10 9.50% 11.18% 15.70% 19.12% 18.21% 18.06% 18.41% 19.53%

Table 3.9: Percentage reduction of Cmax

unloading operations are decreased, and 19.10% when processing times of Make

operations are decreased instead.

3.7 Conclusions

In this chapter we presented the general problem of sequencing multiple jobs where

each job consists of multiple ordered tasks and tasks execution requires simultaneous

usage of several resources. The case of an automatic assembly cell is examined. The

NP-completeness in the strong sense of the problem is proved for an automatic as-

sembly cell with four machines. A heuristic algorithm is proposed, with a guarantee

approximation on the optimal solution. For this we give computational results for

an assembly cell with different number of machines and one robot. The procedure

at each iteration selects a task, based on the partial schedule obtained for the parts

that had already been loaded for the assembly process. That characteristic of the

proposed algorithm indicates that the presented approach can also be applied in

on-line scenarios as well as in dynamic scheduling environment.

Further research will be devoted to the extension of this approach to different

cell configuration, such us the case in which a task requires k additional resources

out of a set of m available ones.
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