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Abstract
I analyse a two-stage location-price duopoly game

under uniform delivered pricing when firms produce
homogenous goods and are unable to ration the
supply. Two tie-breaking rules (TBR) are studied:
consumers either buy from the nearest firm or buy
from either firms with equal probabilities. Under
the first TBR, I find multiple single-price equilib-
ria. Equilibrium locations are shown to be symmet-
ric and to be such that the distance between firms
increases (decreases) with the transportation cost
(c) when c is high (low). Under the second TBR,
firms cluster to the centre of the market line and
choose the price that gives them zero profits. Sur-
prisingly, when c is low, consumers are better off
when they randomly select from which firm to buy.
(JEL classification: L13, R30. Key words: Spatial
duopoly, uniform delivered price, rationing.)



1 Introduction

Widespread use of uniform delivered pricing (UDP hence-
forth) policies is acknowledged in the literature (see, for
instance, Greenhut [11] and Phlips [17]). The theoretical
analysis of markets where this pricing policy is adopted
has been however obstructed by the fact that UDP mod-
els suffer from problems of existence of the equilibrium
even more seriously than other spatial models. Schuler
and Hobbs [18] and Beckmann and Thisse [6] show that
when products are homogeneous and consumers buy from
the nearest firm in case of a price tie, no price equilibrium
exists under UDP. De Palma et al. [8] give a similar re-
sult when the tie-breaking rule is that the consumer has a
probability one half of purchasing from each firm.1

Recently, Iozzi [13] has shown that an equilibrium may
exist with product homogeneity under both these tie-breaking
rules when firms are assumed to be unable to ration the
supply. However, it is assumed there that firms are sym-

1Different strategies have been used in the literature to overcome
this problem. In some cases, it has been assumed that products sold
by different firms are heterogeneous, although different approaches
to product heterogeneity have been taken in the literature. (see, for
instance, Anderson and De Palma [1], Anderson et al. [4], and De
Fraja and Norman [7]). Using an alternative approach, Katz and
Thisse [14] show the existence of a mixed strategy equilibrium in
prices with perfectly homogeneous products.
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metrically located along the market line. This paper ex-
tends this analysis by charactering the price equilibrium
for any pair of firms’ locations. The choice of locations
by the two firms is also subject of analysis, using a stan-
dard two-period location then price game. By explicitly
characterising the equilibria under the different tie break-
ing rules, the paper not only illustrates how results are
deeply sensitive to market sharing rules but also provides
a welfare ranking of the equilibria under the different tie-
breaking rules.

Assuming ’no rationing’ in a spatial market under UDP
accounts to assuming that if firm i sells the good at price
p to consumers located at location x along the market
line, it has to supply at the same price also all consumers
located at all locations different from x if these consumers
are willing to buy from firm i.

It is rather common in the literature to assume that
firms meet demand even if it is unprofitable to do so (see,
for instance, Dixon [10] and Walbach [20]). One possi-
ble rationale for this behaviour is that firms face a cost
to turning down customers. This may be costly in term
of goodwill, reputation or offence caused. The existence
of these costs has already been assumed in the literature
(see Dixon [10]) and it is standard in Operational Research
and inventory models (see, e.g. Taha [19]). Despite these
costs are not explicitely modelled here, it is clear that a
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sufficiently high cost of turning customers away makes it
preferable for the firm to serve even markets where rev-
enues are smaller than the production and delivery costs.

Also, firms may be required not to ration supply by
some kind of regulatory constraints. Indeed, regulatory re-
quirements to satisfy all the demand at a uniform price are
rather common in utilities. This is the case, for instance,
of the domestic electricity markets in the United King-
dom. These regional markets, previously characterised by
the presence of a single supplier, have been open to com-
petition since 1998. In each region, all electricity suppliers
are required by the regulator under the terms of their li-
cences to publish their (uniform) prices and are not allowed
to refuse to supply any customer in the region. Another
example, less applicable to a spatial context, is given by
Walbach [20]. He mentions that German car insurers are
legally required to accept all customers for third party li-
ability insurance.

The ’no rationing’ assumption is crucial in restoring
the possibility of equilibrium for the following reason. In
a spatial duopoly under UDP when firms can ration the
supply of the good, a firm may find it optimal not to sup-
ply all the customers along the market line. Then, the
rival may prefer not to compete in price in the markets al-
ready served by the other firm but simply to supply at the
monopoly price all the remaining markets. Clearly, this
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cannot be an equilibrium as the other firm would have an
incentive to raise its price. When firms cannot ration the
supply, they are obliged to serve all the customers when
charging a price lower than the rival. This prevents each
firm from leaving some markets to the rival, where the
latter can charge its monopoly price.

The paper finds price-location equilibria which are deeply
different according to the tie-breaking rule adopted. When
consumers buy from the nearest firm, it is found that any
pair of identical prices within a given range is a Nash equi-
librium. The upper bound of this range is the price that
makes the firm indifferent between matching and under-
cutting the rival. The lower bound of the interval is the
price such that any firm make zero profits when match-
ing the rival. Any pair of equal prices within this interval
is a Nash equilibrium because no firms has an incentive
to undercut the rival as it would have to serve the whole
market line, facing too high a transportation cost. When
consumers buy from either firm with probability equal to
1
2 , every locations is served by the lowest cost firm, that
is by the firm which is located nearest to the centre of the
market line. This firm charges a price slightly lower than
the price that would give zero profits to the rival.

Equilibrium locations are also different under the dif-
ferent tie-breaking rules. When demand at each locations
is equally shared between firms, it is found that firms
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choose to locate at the centre of the market line in the
first stage of the game. The equilibrium in the pricing
stage of the game is then with each firm patronising ex-
actly half of the consumers at each locations and charging
the price that allows it to make zero profits. On the other
hand, when consumers buy from the nearest firm, firms
symmetrically locate away from the centre of the market
line. When the transportation cost is high, the higher is
the unit cost of transport the more distant are the equi-
librium locations. When the transportation cost is small,
any pair of symmetric locations within a given range is
an equilibrium. The intervals are smaller and closer to
the center of the market line the higher is the unit cost of
transport.

The paper also provides some indications on the wel-
fare properties of the equilibria of the game under the
different tie-breaking rules. A rather interesting welfare
result is that for low values of the transportation cost, ag-
gregate consumers’ welfare is higher when consumers ran-
domly select from which firm to buy, despite the ex-post
inefficiency of this rule. On the other hand, the welfare
of the society is always higher when consumers buy from
the nearest firm. This is partly due to the zero profits
obtained by the firms under the other tie-breaking rule.2

2The structure of the equilibria in the pricing game in the second
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In order to relate these result to the existing literature,
it is first necessary to note that the difficulty in the char-
acterisation of the pricing game under UDP has prevented
from a detailed study of the locational choice of firms under
this pricing rule. Notable exceptions are Anderson et al.
[3] and Katz and Thisse [14]. Anderson et al. [3] analyse a
two-stage location then price game. They use a logit model
to allow for heterogeneity of consumer preferences and as-
sume the consumers have a positive probability of buying
from either firm. They find that in equilibrium firms clus-
ter at the centre of the market line and firms’ profits are
positive but decreasing with the degree of heterogeneity.
Katz and Thisse [14] analyse the choice of locations and
prices of two firms over a circular market assuming that
consumers buy from the nearest firm in case of a price tie.
When the firms actually compete over consumers, they
show that only equilibria in mixed strategies may exist in
the pricing game and that firms selects opposite locations
over the circle.

The structure of the paper is as follows. The model
is described in section 2. Sections 3 and 4 characterise
the equilibrium of the game when consumers buy from the

stage of the game and the welfare rankings under the different tie
breaking rules are very consistent with those found in Iozzi [13], where
firms’ locations are exogenous and symmetric.
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nearest firm and when consumers buy from either firm with
equal probabilities respectively. Section 4 makes some wel-
fare comparisons between the different market regimes. All
the proofs are relegated to the Appendix. To save space,
no details of the numerical analysis used to derive some of
the results of the paper are provided here but are of course
available from the author upon request.

2 The model

I assume a spatial linear market in which competition in
prices between two profit-maximising firms takes place at
each point on the market line. Consumers are evenly dis-
tributed over the line. Consumers’ density and length of
the market line are both normalised to 1. At each location
along the line, consumers have elastic demand given by
q = 1− p.3

Each firm produces with constant (and identical) marginal
and average cost that, without further loss of generality,
is normalised to zero. Transportation cost (denoted by
c) is assumed to be linearly increasing with quantity and

3Linearity of demand is not necessary for the characterisation of
the equilibrium in the pricing stage of the games under both two
tie-breaking rules under analysis. The linearity assumption is only
needed in the study of the firms’ choice of locations.

7



distance. It is assumed that the transportation cost is suf-
ficiently low so that both firms are making nonnegative
profits in equilibrium. Transport is under firms’ control
and no arbitrage can take place among consumers.

The two firms produce perfectly homogeneous goods;
the firms are referred to as firm 0 and firm 1. The pricing
policy adopted by both firms is uniform delivered pricing:
the same price is charged to all customers, irrespective of
their location, and firms deliver the good to customers’
locations at their cost.

If the two firms charge the same price, two different
rules on the resolution of the conflict over markets are
studied:

• efficient tie-breaking rule: in case of both firms charg-
ing the same price at the same location, the market
is supplied by the nearest firm.

• random tie-breaking rule: in case of both firms charg-
ing the same price at the same location, total de-
mand in each local market is equally shared between
the two firms.

These rules are usually interpreted in the literature
as originating from different behaviour on the consumers’
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side.4 As for the efficient tie-breaking rule, consumers’
behaviour is usually defined as socially optimal because,
given the quantities exchanged and the locations of the
two firms, it minimises the total transportation cost.5 As
for the random tie-breaking rule, this may be the result of
customers selecting randomly the firm from which to buy;
then, if assigning an equal probability to buying from each
firm, each local market is equally shared between the firms
supplying that market (at least in expected terms).

I assume that firms cannot ration the supply of the
good in any of the markets. This implies that, once a
price has been set by one of the two firms, all the customers
have the right to buy at that price from that firm, unless
their demand is satisfied by the rival firm at the same or
lower price. From this assumption, it follows that if one of
the firms sets a price lower than the rival, it may end up
serving all the customers along the unit line.

I model the strategic interaction between the two firms
as a two-stage game. In the first stage, each firm chooses
its location xi, where i = 0, 1. In characterising the

4Gronberg and Meyer [12] makes tie-breaking rules dependent on
firms’ behaviour, with the efficient tie-breaking rule being the result
of a cost-minimising collusive behaviour by the two firms over the
locations they serve.

5See, for instance, Lederer and Hurter [15], and MacLeod et al.
[16]
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equilibrium of the price game in the second stage, I as-
sume that firms can be located anywhere along the mar-
ket line. On the contrary, when analysing the subgame
perfect equilibrium of the game, locations are restricted so
that x0 ∈ [0, 1

2 ] and x1 ∈ [12 , 1]. This assumption causes
some loss of generality. It implies that competition be-
tween firms is such that each firm always maintains at
least some degree of local monopoly power. In spite of
this loss of generality, this assumption allows for a greater
simplification of an already rather complex technical anal-
ysis.

In the second stage, once locations are fixed and known
to both firms, each firm sets its price pi, where pi ∈ [0, 1].
Given the nature of the game, the equilibrium concept I
use is that of subgame perfection.

As to the players’ payoffs, under the efficient tie-breaking
rule firm 0’s profits are given by

Π0(p0, p1, x0, x1, c) =


ΠU

0 (p0, p1, x0, x1, c) if p0 < p1

ΠM
0 (p0, p1, x0, x1, c) if p0 = p1

ΠS
0 (p0, p1, x0, x1, c) if p0 > p1

(1)
where

ΠU
0 (p0, p1, x0, x1, c) ≡

∫ 1

0
(1− p)(p− c|x− x0|)dx;
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ΠM
0 (p0, p1, x0, x1, c) ≡

∫ x0+x1
2

0
(1− p)(p− c|x− x0|)dx.

and
ΠS

0 (p0, p1, x0, x1, c) = 0

Under the random tie-breaking rule, firm 0’s profits are
given by

Ψ0(p0, p1, x0, x1, c) =


Ψ̃ if p0 < p1
1
2Ψ̃ if p0 = p1

0 if p0 > p1

(2)

where Ψ̃ ≡
∫ 1
0 (1− p)(p− c|x− x0|)dx.

Similar formulae as those in (1) and (2) apply for firm
1.

3 Equilibrium under the efficient tie-
breaking rule

This section characterises the subgame perfect equilibrium
of the two-stage location then price game under the effi-
cient tie-breaking rule. Solving the game backwards, it is
first necessary to characterise the equilibrium of the sec-
ond stage of the game. This is the stage when firms choose
optimal prices, taking the locations as fixed.
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Proposition 1. Let p
i
be the smallest solution w. r. to pi

to ΠM
i (pi, pj) = 0 for i, j = 0, 1 and i 6= j. Let also pi be

the smallest solution w. r. to pi to ΠU
i (pi, pj) = ΠM

i (pi, pj)
for i, j = 0, 1 and i 6= j. Then, any pair of prices p0 and p1

such that p0 = p1 and p0, p1 ∈ [max{p
0
, p

1
},min{p0, p1}]

is a Nash equilibrium of the pricing game.

In order to understand the meaning of the Proposition,
I first discuss the nature of p

i
’s and pi’s. p

i
is the lowest

price consistent with firm i’s nonnegative profits when this
firm matches the price set by the rival and supplies only the
customers in its market area. On the other hand, pi is the
price which makes firm i indifferent between undercutting
the rival’s price (and serving all the customers along the
market line) and matching the price set by the other firm
(and serving only the customers in its market area). For
any price lower than pi, firm i prefers to match the rival to
avoid delivering the goods also at remote locations when
it undercuts the rival.

Note also that, whenever |12 − xi| < |12 − xj |, then: i)
p

i
> p

j
, and ii) pi > pj for i, j = 0, 1 and i 6= j. Condition

i) says that, in case of matching prices, the lowest price
consistent with firm i’s nonnegative profits is higher than
the price with similar properties for the rival when firm i is
closer than firm j to the center of the market line. This is
because firm i serves a larger market area and bears higher
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transportation costs.
Also, condition ii) states that the price which makes

firm i indifferent between matching and undercutting the
rival is smaller than the similar price for firm j when firm
i is closer than the rival to the centre of the market line.
The reason is that the gain in term of market area when
undercutting the rival is relatively small.

I am now in the position to illustrate the result given
in Proposition 1. An important feature of this result is
that it does not hinge on the assumption of linearity of
demand and total transportation cost. Indeed, the result
holds as long as demand is decreasing in price and total
transportation cost is increasing with the distance.

Proposition 1 is illustrated with the aid of Figure 1,
which is plot for firms’ locations equal to x0 = 0.3 and
x1 = 0.8. Given these locations and following the previous
discussion, it follows that p

0
> p

1
and p0 > p1. Hence,

Proposition 1 reduces to saying that any pair of prices p0

and p1 such that p0 = p1 and p0, p1 ∈ [p
0
, p0] is a Nash

equilibrium of the pricing game.
First note that no pair of identical prices above p0 can

be an equilibrium. This is because firm 0 would find prof-
itable to undercut the rival and serve the whole market.
This would also be the case for firm 1 if the price were
above p1. Also, no pair of prices below p

0
can be an equi-

librium. Firm 0 would make negative profits even if only
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serving its market area and would then prefer to set a
price high enough to leave the whole market to the rival
and make zero profits. If the price were also lower than
p
1
, this would also hold for firm 1.
On the other hand, if one of the two firm sets a price in

[p
0
, p0], it is easy to see that the best reply for the rival is

to match this price. Indeed, if the rival firm sets a higher
price, no consumer would buy from it and it would then
make zero profits. If it charges a lower price, it ends up
serving all the customers along the market line. Because of
the high transportation costs, it makes lower profits than
simply matching the rival.

I also state

Proposition 2. If x1 ≥ min{x0, x0(4x0 − 1)} and x0 ≤
min{x1, x1(7 − 4x1) − 2}, there always exists at least one
Nash equilibrium price pair.

This Proposition establishes the conditions on the firms’
locations under which an equilibrium exist. It says that,
for an equilibrium to exist, it is sufficient that the firms
are located sufficiently far apart. In particular, note that
Proposition 2 implies that a sufficient condition for the
existence of an equilibrium is that the two firms are lo-
cated in the two different halves of the market line. As
already mentioned in the previous section, in the rest of
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the analysis I will assume that x0 ∈ [0, 1
2 ] and x1 ∈ [12 , 1].6

I turn now to characterising the equilibrium in the first
stage of the game when firms choose locations. Firms an-
ticipate the equilibrium of the price game that takes place
in the next stage of the game and whose result in turn
depends on the locations chosen in the first stage.

The existence of multiple equilibria in the pricing stage
of the game and the particular structure of these price
equilibria raises some problems in the full characterisation
of the equilibrium of the whole game.

In the rest of the paper, I concentrate my analysis on
those subgame perfect equilibria in which firms select in
the second period the price pair that gives the highest joint
profits amongst the set of Nash equilibrium price pairs.
Note that this is also the price pair that grants highest
profits to each firm when firms are symmetrically located,
as it will be shown to occur in equilibrium. Hence, the
Pareto optimality of these price pairs tend to make them
a focal point on which it seems reasonable to concentrate
the analysis.

Formally, this assumption implies that both firms choose
6See the previous section for a discussion on the restrictiveness of

this assumption. Note also that, at a great cost of simplicity, most of
the results of the paper could easily be obtained for players’ strategy
spaces such that their choices is x0 ∈ [0, 1 − α] and x1 ∈ [α, 1], as
long as α is sufficiently greater than 0.
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in the second stage of the game the price which solves the
following problem

maxp

∫ x0+x1
2

0 (p− c|x̃− x0|)(1− p)dx̃+∫ 1
x0+x1

2
(p− c|x̃− x1|)(1− p)dx̃

s. t. p ∈ [max{p
0
, p

1
},min{p0, p1}]

(3)

In principle, using the solution to (3), it is possible to
solve analytically for the equilibrium locations. However,
because of the mathematical complexity of the problem, it
is not possible to obtain a complete analytical solution of
the model. Then, I need to resort to a numerical simula-
tion to solve the part of the problem that cannot be solved
analytically.

The following Proposition gives details of the equilib-
rium locations for the first stage of the game under anal-
ysis when the firms select in the second period the Nash
equilibrium price pair that brings about the highest joint
profits to the two firms.

Proposition 3. Let xE
0 and xE

1 be the equilibrium loca-
tions in the location stage of the game. Then,

• when c ≤ 1.347, any pair of locations x0 and x1

such that x0 ∈ [xE
0 , xE

0 ], x1 ∈ [xE
1 , xE

1 ] and x0 =
1− x1 are equilibrium locations, where actual values
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of xE
0 , xE

0 , xE
1 and xE

1 for a grid of values of c are
given in Table 1.

• when c ≥ 1.347,

xE
0 =

1
8
c(14c− 2k1) (4)

xE
1 =

k2

2k3
(5)

where

k1 ≡
√

(39c2 − 8c)
k2 ≡ −6633678c5 + 10670091c4k + 4833808c2 +

− 394480ck + 72797118c4 − 10565050c3k +
− 148992c− 33249040c3 + 1664k +
+ 4308248c2k + 3072

k3 ≡ −14756288c4 + 2124604c3k − 689600c2 +
+ 33120ck + 1024c− 768k + 6251320c3 +
− 788392c2k − 2308227c4k + 14415501c5

(6)

Proposition 3 is illustrated in Figure 2. In the Figure,
the horizontal axis gives the market line while on the ver-
tical axis I represent the transportation cost. When the
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transportation cost is low, there exist multiple equilibrium
location pairs. These are given by any symmetric pair of
locations that belongs to an interval that varies with c and
whose extremes are given in Table 1 for a grid of values of
the transportation cost. These intervals are also drawn in
Figure 2 by a horizontal line for different values of c. The
higher is the value of the transportation cost the closer to
the centre of the market line are the intervals within which
symmetric locations are equilibrium locations. Also, these
intervals are narrower the higher is c.

When the transportation cost is high, there exists only
one equilibrium location pair for any level of c. From Fig-
ure 2, it is easy to see that these equilibrium locations
involve more distance between the firms the higher is c.

The reasons for these features of the equilibrium loca-
tions are the following.

When c is greater or equal than 1.347, the firms set the
unconstrained joint profit maximising prices. This price is
increasing with the distance between the firms. Hence,
when c is sufficiently high, the firms prefers to locate fur-
ther away from each other to induce a high equilibrium
price in the following stage of the game. This reduces the
quantity demanded by consumers and has a positive effect
on profits. The opposite holds for low values of c, when
the firms prefer to locate toward the centre of the market
line to induce a low level of the equilibrium price in the
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Table 1: The intervals for N.E. locations when c ≤ 1.347

c xE
0 xE

0 xE
1 xE

1

0.1 0.1343 0.2523 0.7477 0.8657
0.2 0.1446 0.2551 0.7449 0.8554
0.3 0.1559 0.2581 0.7419 0.8441
0.4 0.1683 0.2613 0.7387 0.8317
0.5 0.1818 0.2648 0.7352 0.8182
0.6 0.1963 0.2687 0.7313 0.8037
0.7 0.2115 0.2730 0.7270 0.7885
0.8 0.2273 0.2778 0.7222 0.7727
0.9 0.2444 0.2830 0.7170 0.7556
1.0 0.2595 0.2887 0.7113 0.7405
1.1 0.2754 0.2949 0.7051 0.7246
1.2 0.2908 0.3016 0.9684 0.7092
1.3 0.3057 0.3089 0.6911 0.6943
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following stage of the game. In this case, because of the
low level of the unit transportation cost, the increase in
revenues outplays the increase in the total cost of trans-
portation.

A rather different rationale is behind the equilibrium
locations when the transportation cost is less or equal than
1.347. Under these conditions, firms set in the second pe-
riod an equilibrium price which is lower than the uncon-
strained joint profit maximising price. Also, this equilib-
rium price increases the more distant are the two firms.
Hence, the firms locates further away from each other so
to be able to charge in the following period a price as close
as possible to the price that gives them the highest profits.
Note also that there exists multiple equilibria in locations
in this first period. Given the discussion provided, it is
clear that the locations that maximise the firms’ profits
are those at the more distant extremes of the intervals of
equilibrium locations.

4 Equilibrium under the random tie-
breaking rule

This section characterises the equilibrium of the two-stage
game location-price game under the random tie-breaking
rule. Solving the game backwards, it is first necessary
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to characterise the equilibrium of the second stage of the
game. This is the stage when the two firms choose optimal
prices, given the locations that have been selected in the
previous stage. This is done in the following Proposition.

Proposition 4. Let p̂R
i be the minimum price consistent

with non negative profits for firm i (with i = 0, 1), where
p̂R

i ≡ c(1
2 − xi + x2

i ). Let also pm
i be the price firm i would

set it if were a monopolist, where pm
i ≡ 1

2(1 + 1
2c− xi(1−

xi)). Let pR
0 and pR

1 be the Nash equilibrium prices in the
price stage of the game under the random tie-breaking rule.
Then,

pR
i =

{
min{pm

i , p̂R
i − ε} if |12 − xi| < |12 − xj |

p̂R
i if |12 − xi| ≥ |12 − xj |

(7)

If firms’ locations are symmetric, the only equilibrium
is with both firms setting the same price pR

0 = pR
1 and serv-

ing exactly half of the market at each location. Because of
the nature of firms’ profits, profits obtained undercutting
the rival and serving the whole market line at each location
are always twice as much the profits obtained matching the
rival’s price. This implies that each firm always finds prof-
itable to undercut the rival’s price unless the rival charges
the price which brings about zero profits. If the rival sets
this price, a further undercutting would generate negative
profits. Hence, it is optimal to the firm to match the rival’s
price.
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On the other hand, if the firms are asymmetrically lo-
cated on the market line, the firm located closer to the
centre of the market line has a comparative advantage over
the rival in term of total transportation cost to be incurred
in serving all customers located along the unit line.

Two different cases may then occur. A first case is
when the price that the firm closer to the centre of the
market line would charge if it were a monopolists is lower
than the price that allows zero profits to the rival. In this
case, the former firm can charge the monopoly price with-
out any threat of price competition by the rival. Another
possible scenario is when the monopoly price for the firm
closer to the centre of the market line could be profitably
undercut by the rival. In this case, the only equilibrium is
with this firm charging a price infinitesimally lower than
the price that allows zero profits to the rival. Hence, with
asymmetric location, the resulting equilibrium is with only
one firm serving all the locations on the market line.

The next Proposition characterises the equilibrium of
the first stage of the game, when firms choose locations.
In this stage of the game, firms anticipate the equilibrium
of the price game that takes place in the next stage of the
game and whose result in turn depends on the locations
chosen in the first stage.

Proposition 5. Let xR
0 and xR

1 be the equilibrium loca-
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tions in the location stage of the game under the random
tie-breaking rule. Then,

xR
i = 1

2 for i = 0, 1 (8)

The Proposition simply says that the only equilibrium
in the first stage is with both firms choosing to locate
exactly in the centre of the market line.

The reason for this result is clear. Whenever a firm
is located further away from the centre of the market line
than the rival, it is profitably undercut by the rival and it
is driven out of the market. On the other hand, if a firm
locates closer than the rival to the centre of the market line,
it obtains positive profits as it gains a cost advantage over
the rival. This allows the firm to undercut the price which
guarantees zero profits to the rival. Moreover, profits are
higher the closer is the firm to the center of the market
line. The only equilibrium locations are with both firm
clustering at the centre of the market line. This is because
no firm can do any better than locating at 1

2 when the rival
chooses the same location.
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5 Comparisons of equilibria under the
different tie-breaking rules

This section discusses the normative properties of the equi-
libria obtained for the two-stage location then price game
under the different tie-breaking rules under analysis. The
different market regimes are compared in term of aggregate
consumers’ surplus, industry profits and aggregate social
welfare, as given by the unweighted sum of consumers’
surplus and firms profits.

Given the multiplicity of equilibria under the efficient
tie-breaking rule, I evaluate these welfare measures under
two assumptions. First, as previously already highlighted,
I concentrate on those subgame perfect equilibria in which
the firms select in the second period the price pair that
gives the highest joint profits amongst the set of Nash
equilibrium price pairs. Second, when there exist multiple
equilibria in locations, I concentrate on the equilibrium
location pair that gives to the firms the highest profits.
Also, when the equilibrium has been obtained by purely
numerical methods, I need to resort to a welfare analysis
of the same nature.

Proposition 6. Assume transportation cost is such that
equilibrium profits are nonnegative under both tie-breaking
rules. Let CSE, ΠE and WE be the aggregate consumers’
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surplus, industry profits and social welfare respectively un-
der the efficient tie-breaking rule. Let also CSR, ΠR and
WR be the aggregate consumers’ surplus, industry prof-
its and social welfare respectively under the random tie-
breaking rule. Then, ΠE > ΠR and WE > WR for any c,
and CSE < (>)CSR when c < (>)8

3 .

The Proposition illustrates three main findings of the
comparative analysis of the equilibria under different tie-
breaking rules.

First, consumers are better off under the random tie-
breaking rule when the value of the transportation cost
is low enough. This contrasts with the usual definition
of the efficient tie-breaking rule being ’socially optimal’.
The obvious reason for this definition is that consumers’
behaviour under the efficient rule is socially optimal as it
minimises total transportation cost for given prices and lo-
cation. However, I show here that, differently from what is
implied by the mentioned commonly used definition, con-
sumers may be better off if they buy from a randomly
selected firm instead of buying from the nearest firm.

In general, which one of the two equilibria obtained
under the different tie-breaking rules is preferred by the
consumers depends on the joint result of two different ef-
fects. A first effect is due to the different way in which
competition between firms takes place when the different
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tie-breaking rules are assumed. Under the efficient tie-
breaking rule, firms serve a given market area. Then, the
price they choose is the one that (among the equilibrium
prices) gives them the highest profits given the market
area they supply. On the other hand, under the random
tie-breaking rule, competition is much fiercer as firms are
caught under the traditional Bertrand paradox; they un-
dercut each other over the entire market line down to the
price where both firms make zero profits. The other ef-
fect regards the level of total transportation cost borne by
the firms and paid for by the consumers through prices.
In this respect, it is clear that when consumers buy from
the nearest firm, firms pay an overall total transportation
cost lower than when they serve also consumers at remote
locations. The total result of the two effects is that, when
the transportation cost is low enough, the competitive ef-
fect prevails and the equilibrium price is lower under the
random rule. The opposite holds for high enough values
of c.

Secondly, the comparison of firms’ profits under the
different tie-breaking rules is made trivial by the zero level
of profits obtained by both firms when the random tie-
breaking rule is assumed.

Finally, from the comparison of the levels of welfare for
the society under the different tie-breaking rules, it is clear
that the equilibrium when consumers buy from the nearest
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firm is preferred to the equilibrium under the alternative
tie-breaking rule.
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Appendix

Proof of Proposition 1. The proof proceeds along the fol-
lowing steps:

1. an equilibrium must be a single price equilibrium.
If firm j charges pj < pi, it would serve all con-
sumers. However, this cannot be an equilibrium
as at least one of the following would apply. Ei-
ther firm j would prefer to charge pj + ε < pi as
ΠU

j (pj + ε, pi) > ΠU
j (pj , pi) (with ε > 0 and suffi-

ciently small); or firm i would have an incentive to
undercut the price set by the rival charging pi = pj−ε
as ΠU

i (pi − ε, pj) > ΠS
i (pi, pj).

2. any pair of prices p0 and p1 such that p0 = p1 and
p0, p1 /∈ [max{p

0
, p

1
},

min{p0, p1}] cannot be an equilibrium. If p0, p1 <
max{p

0
, p

1
} at least one firm makes negative profits.

To see why, let p0 < p1. If p
0

< p0, p1 < p
1
, then

0 = ΠS
i (∞, pj) > ΠM

i (pi, pj). Similarly, if p0, p1 <
p
0

< p
1
, then both 0 = ΠS

i (∞, pj) > ΠM
i (pi, pj) and

0 = ΠS
j (∞, pi) > ΠM

j (pj , pi) would hold. If p0, p1 >
min{p0, p1} at least one firm prefers to undercut the
rival and serve the whole market. To see why, let
p0 > p1. If p0 > p0, p1 > p1, then ΠU

i (pi − ε, pj) >
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ΠM
i (pi, pj). If p0, p1 > p0 > p1, then both ΠU

i (pi −
ε, pj) > ΠM

i (pi, pj) and ΠU
j (pj − ε, pi) > ΠM

j (pj , pi)
would hold.

3. any pair of prices p0 and p1 such that p0 = p1 and
p0, p1 ∈ [max{p

0
, p

1
},

min{p0, p1}] is a Nash equilibrium. Let firm i set
pi ∈ [max{p

0
, p

1
},min

{p0, p1}]. Firm j’s optimal response is to charge
pj = pi as ΠU

j (p′
j , pi) < ΠM

j (pj , pi) for any p′
j < pj

and ΠS
j (p′′

j , pi) < ΠM
j (pj , pi) for any p′′

j > pj . This is
because, charging p′

j < pi would cause firm i to serve
all the customers, obtaining less profits than match-
ing the rival and serving only half of the market; on
the other hand, for p′′

j > pi no consumer would buy
from firm i.

Proof of Proposition 2. From (1)

p
0

=
c(5x2

0 − 2x0x1 + x2
1)

4(x0 + x1)
(9)

p
1

=
c(−8x1 + 4− 2x0x1 + x2

0 + 5x2
1)

4(−2 + x0 + x1)
(10)

p0 = −3
4
cx0 +

1
4
cx1 +

1
2
c (11)
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p1 = −1
4
cx0 +

3
4
cx1 (12)

For an equilibrium to exist, it is necessary (and suf-
ficient, for a low enough value of c) that max{p

0
, p

1
} ≤

min{p0, p1}. This requires that: i) p
i
≤ pi for any i = 0, 1;

and ii) p
i
≤ pj for any i, j = 0, 1 and i 6= j.

As for condition i) for i = 0, from (9) and (11) it is
easy to see that p

0
≤ p0 when x1 ≥ x0(4x0 − 1). When

i = 1, from (10) and (12), it is easy to see that p
1
≤ p1

when x0 ≥ x1(7− 4x1)− 2.
As for condition ii), using (10) and (11), it is easy to

check that p
1
≤ p0 when −4x0 +x0x1 +4x1 +x2

0−3x2
1 ≥ 0.

The RHS of this inequality is a convex function of x0 whose
roots are 4 − 3x1 and x1. As 4 − 3x1 ≥ x1 when x1 ≤ 1,
p
1
≤ p0 when x0 ≤ x1. Using a similar argument, it is

easy to show that also p
0
≤ p1 when x0 ≤ x1.

Combining these two findings gives the result in the
Proposition. Note that an equilibrium always exists when
x0 ∈ [0, 1

2 ] and x1 ∈ [12 , 1]. Indeed, note that the RHS of
the inequality that grants that condition i) is satisfied is a
convex function that has a global maximum at x0 = 1

8 , it
is equal to 0 when x0 = 0 and is equal to 1

2 when x0 = 1
8 .

Hence, when x1 ∈ [12 , 1], the inequality weakly holds for
any value of x0. A similar argument establishes the result
for i = 1. Lastly, when x0 ∈ [0, 1

2 ] and x1 ∈ [12 , 1], then
x0 ≤ x0(4x0 − 1) and x1 ≥ x1(7− 4x1)− 2.
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Proof of Proposition 3. Consider the following problem. Let

p̆ ≡ argmaxp

(∫ x0+x1
2

0
(p− c|x̃− x0|)(1− p)dx̃+

+
∫ 1

x0+x1
2

(p− c|x̃− x1|)(1− p)dx̃

) (13)

Then, consider the first derivatives of ΠM
i (·) w. r. to xi (i

= 0, 1) evaluated at p0 = p1 = p̆,

∂ΠM
0 (·)
x0

∣∣∣∣
p0=p1=p̆

= − 45
128

c2x4
0 +

(
15
16

c2 +
3
32

c2x1

)
x3

0 +

+
(
− 9

32
c2 − 3

16
c2x1 −

15
64

c2x2
1

)
x2

0 +

+
(

13
16

c2x2
1 +

5
16

c2 − 11
16

c2x1

)
x0 +

+
(
− 5

32
x3

1c
2 − 5

8
c

)
x0

+
1
8

+
1
16

c2x1 −
1
16

x3
1c

2 +
1
8
cx1

+
3

128
x4

1c
2 − 1

32
c2x2

1 −
1
32

c2 (14)
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and

∂ΠM
1 (·)
x1

∣∣∣∣
p0=p1=p̆

=
45
128

x4
1c

2 +

+
(
−3

8
c2 − 3

32
c2x0

)
x3

1 +

+
(

15
64

c2x2
0 −

9
32

c2 − 3
8
c2x0

)
x2

1 +

+
(

5
32

c2x3
0 +

9
16

c2 − 1
8
c2x2

0

)
x1 +

+
(
−5

8
c +

9
16

c2x0

)
x1 +

−1
8

+
1
2
c− 1

32
c2x2

0 −
3
16

c2x0 −
7
32

c2

−1
8
c2x3

0 +
1
8
cx0 −

3
128

c2x4
0 (15)

Let x̃0 and x̃1 be the solutions in x0 and x1 to the
system of equations given by (14) and (15) both equated
to zero. Clearly, x̃0 and x̃1 need not to be an equilibrium
solution to the firms’ problem for two reasons: i) the pair
of price {p̆, p̆} need not to be a Nash equilibrium price in
the pricing stage of the game as p∗∗ may be outside the
interval p0, p1 ∈ [max{p

0
, p

1
},min{p0, p1}]; and ii) x̃0 and

x̃1 may be outside the strategy space of the firms.
I ignore for the moment these two problems and find
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the solutions to the system of equations (14) and (15), both
equated to zero, using the mathematical software Maple.
Due to the highly non-linear nature of (14) and (15), I
find multiple solution pairs. The mathematical complex-
ity of the problem prevents me from checking analytically
the second-order conditions. Using numerical methods7,
I select the pair of solutions that i) guarantees the high-
est profits to the two firms, and ii) belongs to the firms’
strategy space. These are the locations given in (4) and
(5).

Now, I check for the resulting price in the first stage of
the game to be a Nash equilibrium price. Plugging (4) and
(5) into (9) – (12) and comparing these expressions with p̆,
I find that the 4-tuple {p̆|x0=x̃0,x1=x̃1 , p̆|x0=x̃0,x1=x̃1 , x̃0, x̃1}
is a subgame perfect equilibrium of the game if

c ∈
(

128
95

, 4 +
6
5

√
10
)

(16)

that is if c is approximately between 1.347 and 7.795.
Note now that no equilibrium can exist when c >

4 + 6
5

√
10. In this case, from Proposition 1 the Nash equi-

librium prices in the second stage of the game should be
higher than p∗ and equal to max

{
p
0
, p

1

}
. However, note

7Details are available from the author upon request. Numerical
methods are also used to rule out the possibility of corner solutions.
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that p∗ (evaluated at equilibrium locations) tends to 1 as
c approaches to 1.

When c < 128
95 , the problem becomes very difficult to

solve as the payoff function varies with the relative posi-
tion of the firms. Hence, the problem is solved by using
a computer program which evaluates numerically equilib-
rium solutions for a grid of values of c, the only parameter
of the model.8

Proof of Proposition 4. First note that p̂R
i comes as the

solution to ΨM
0 = 0. Also, pm

i ≡ argmax(ΨU
0 ).

Take now the case |12 − xi| < |12 − xj |. It follows that
pR

i < pR
j . Then,

1. no equilibrium price pair such as pR
i > pR

j > p̂R
j or

pR
j > pR

i > p̂R
j can exist. Assume the first inequality

holds. In this case, firm i sells zero output; it would
be better off charging pR

j − ε (with ε positive and
small). This grants positive profits as long as ε is
sufficiently small so that pR

j − ε > pR
i . Similarly if

the second inequality holds.

2. because of the assumption of firms never playing a
dominated strategy, firm j never sets pj < p̂R

j as this
is clearly a dominated strategy.

8Details are available from the author upon request.
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3. when firm j sets pj , the best reply for firm i is to
set pj − ε when pj < pm

j and pm
j when pj > pm

j . To
see why, assume first that pj > pm

j . Then, firm i
can optimally charge pm

i and get monopoly profits.
Assume now that pj < pm

j . Now, profits for firm i
are monotonically increasing in pi as long as pi < pj .

4. the pair of prices pR
i and pR

j is a Nash equilibrium.
Assume first that p̂R

j > pm
i . When firm j sets p̂R

j , the
best reply for firm i is to set pm

i (see step 3.). When
firm i sets pm

i , firm j gets zero profits if it charges p̂R
i

while it gets zero or negative profits if it charges any
price pj 6= p̂R

i . Now, assume p̂R
j < pm

i . When firm j

sets p̂R
j , the best reply for firm i is to set p̂R

j − ε (see
step 3.). When firm i sets p̂R

j − ε, firm j gets zero
profits if it charges p̂R

i while it gets zero or negative
profits if it charges any price pj 6= p̂R

i . .

5. the pair of prices pR
i and pR

j is the only Nash equi-
librium. The reason is clear when p̂R

j > pm
i (see step

4.). When p̂R
j < pm

i , if firm j sets any pj > p̂R
j , the

best reply for firm i is to set pj − ε (see step 2.).
However, pj is not the best reply for firm j to firm i
choosing pj − ε.
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Proof of Proposition 5. The proof proceeds along the fol-
lowing steps:

1. the pair of locations xR
0 and xR

1 is an equilibrium. If
firm 1 chooses x1 = xR

1 , then firm i gets weakly larger
profits locating at x0 = xR

0 . Indeed, it obtains zero
profits selling zero output if locates away from the
centre of the market line and gets zero profits serving
half of each market at each location if it locates at
x0 = xR

0 . Similarly for firm 1.

2. the pair of locations xR
0 and xR

1 is the only equi-
librium. Suppose firm 1 chooses location x1 6= xR

1 .
Firm 0 gets positive profits as long as it locates any-
where at x0 ∈ (1− xR

1 , 1
2).

Proof of Proposition 6. For values of c for which analytical
expressions for equilibrium locations and prices are found,
welfare comparisons is simply made plugging these equi-
librium expressions into the expressions for aggregate con-
sumers’ surplus, firms’ profits and social welfare, and com-
paring these welfare measures across the different regimes.
However, because of the complexity of the expression for
social welfare under the efficient tie breaking rule, the
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comparison is made by numerical methods, as detailed be-
low. When the equilibrium variables are found by numer-
ical methods, equilibrium welfare measures are obtained
plugging, for a grid of values of c, the equilibrium values
of the prices and locations into the expressions for con-
sumers’ surplus, firms’ profits and social welfare, and then
comparing the resulting figures.
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