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1. Introduction

Uniform delivered pricing (UDP henceforth) policies are widely
adopted in many industries. Firms are said to set a uniform
delivered price when they charge the same price to all the
customers irrespective to their location and bear the cost of
delivering the good. Greenhut (1981) points out that about a
quarter of firms in a sample of more than 200 in USA, West
Germany and Japan set uniform delivered prices. Similarly, Phlips
(1983) provides some evidence of UDP policies being used in the
cement and brick industries, and of its relevance in industries
where transport constitutes a substantial part of firms' costs. This
evidence carries over to the present time where simple casual
observation allows to see UDP policies adopted by many firms
like, for instance, mailing firms and furniture and domestic
appliances retailers.

In spite of this, the analysis of spatial oligopoly under uniform
delivered pricing has been a relatively neglected topic in the
economic literature. The main reason for this is that UDP models
suffer from problems of existence of the equilibrium in pure
strategies even more seriously than other spatial models (Schuler
and Hobbs, 1982, and Beckmann and Thisse, 1986). Several
strategies have been used in the literature to overcome this
problem. One of the most widely used is to assume that products
sold by different firms are heterogeneous, although different
approaches to product heterogeneity have been taken in the
literature. Some authors assume that consumers' demand is given
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by a logit function, with consumers buying some fraction of the
goods from either firms (see e.g. De Palma et al., 1987, and
Anderson et. al., 1992b). Other scholars assume that consumers
view the goods supplied by the different firms as imperfect
substitutes and demand varies continuously as prices vary (De
Fraja and Norman, 1993).

The main focus of this paper is on the issue of the existence of
equilibrium in a UDP duopoly model and on its characterisation
when products are homogeneous. The paper shows that an
equilibrium exists even with perfect product homogeneity. This
result is shown in a model which is very similar to the ones typical
in this literature, but that differs from them in one important
respect. It is assumed that, as firms cannot choose the dimension
of the market they supply, no rationing can occur. More precisely,
if a firms sells the good in one market at a given price, it has to
supply also all the other markets at the same price, unless these
are served by the rival at the same or lower price. The main
rationale for this assumption is that firms may face a cost to
turning down customers. This means that if a firm refuses to
supply consumers in one market at the same price applied in some
other market, it faces a positive cost. Turning down customers
may be costly in term of goodwill, reputation or offence caused.
The presence of this costs has already been assumed in the
literature (see Dixon, 1990) and it is standard in Operational
Research and inventory models (see, e.g. Taha, 1988 for textbook
treatment and references). While the existence of a cost to
turning customers away is not explicitly modelled here, it is clear
that a sufficiently high cost of turning customers away makes it
preferable for the firm to serve even markets where revenues are
smaller than the production and delivery costs.

Another possible motivation of the ‘no rationing’ assumption is the
existence of regulatory constraints. For instance, regulatory
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constraints of this sort are imposed in the domestic electricity
markets in the United Kingdom that has been opened to
competition since 1998. In each regional market, all electricity
suppliers are required by the regulator to publish their (uniform)
prices and are not allowed to refuse to supply any customer in the
region.

The ‘no rationing’ assumption is crucial in restoring the possibility
of equilibrium for the following reason. In a spatial duopoly under
UDP when firms can ration the supply of the good and the
transportation cost is high enough, a firm may find optimal not to
supply all the customers along the market line. Then, it may be
optimal for the rival not to compete in price in the markets already
served by the former firm but simply supply the good at the
monopoly price to all the remaining markets. Clearly, this cannot
be an equilibrium as the former firm would have an incentive to
raise its price. The ‘no rationing’ assumption, by taking away from
the firm the choice of the market area to serve, obliges the firm to
supply all the customers when charging a price lower than the
rival and prevents each firm from leaving some markets to the
rival, where the latter can charge its monopoly price.

In this paper, I study a single-stage game where firms
simultaneously choose prices. Firms are symmetrically located
along the market line and locations are exogenous. This is the set-
up that has traditionally been used by the existing literature on
homogeneous duopoly under UDP prices. The use of a model
similar to the ones previously used highlights the role played by the
‘no rationing’ assumption in restoring the possibility of equilibrium.

An issue of large relevance in spatial oligopoly models is the so-
called tie-breaking rule. This is the rule that solves the conflict
over markets where the firms set equal prices. Following
Gronberg and Meyer (1981), I study two different tie-breaking
rules and characterise the equilibrium under these rules. The first
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tie-breaking rule is such that, when both firms charge the same
price at the same location, the market is totally supplied by the
closest firm, that is by the firm that enjoys a comparative
advantage in terms of transportation costs over the rival. Under
this tie-breaking rule, consumers are usually said to do the socially
optimal thing and buy from the closest firm. As this rule
guarantees that, for given quantities, total transportation cost is
minimised, I call it efficient tie-breaking rule. The second tie-
breaking rule is that, in case of matching prices, total demand in
each local market is equally shared between the two firms. These
equal shares may come from customers randomly selecting the
firm they patronise. Then, at least in expected terms, each firm
faces half of the demand in each market. In the rest of the paper,
I refer to it as random tie-breaking rule.

The main results of this paper are as follows. I show that, when
the transportation cost is not too high to hamper the profitability of
the firms, there exists at least one equilibrium of the game. Not
surprisingly, it is found that the nature of the equilibria of the
model are deeply different according the tie-breaking rule
adopted.

Typically, there exists multiple equilibrium price pairs under the
efficient tie-breaking rule. Any symmetric price pair within a
given range is a Nash equilibrium, with each firm serving exactly
half of the market line. The upper bound of this range is the price
that makes the firm indifferent between matching and
undercutting the rival; any price higher than this is such that firms
are better off undercutting and serving the whole market. The
lower bound of the interval is the price such that any firm make
zero profits when serving half of the market line; any price lower
than this is such that firms make negative profits even if they
match the rival and serve only half of the market line. When both
firms set the same price within this interval, it is not profitable for
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a firm to undercut. This is because it would have to serve the
whole market line, facing too high a transportation cost.

In the game under the random tie-breaking rule, there is only one
equilibrium price, where both firms make zero profits. As firms
equally share each local market when setting the same price,
undercutting is profitable at all price but the one that brings about
zero profits. Then, the only equilibrium price is the one that gives
zero profits to each firm.

The paper also provides some indications on the welfare
properties of the equilibria of the game under the different tie-
breaking rules. It is interesting to note that for low values of the
transportation cost, aggregate consumers' welfare is higher under
the random tie-breaking rule despite its ex-post inefficiency. In
other words, consumers are better off selecting randomly which
firm they patronise than adopting the so-called socially optimal
behaviour. On the other hand, the welfare of the society is always
higher under the efficient tie-breaking rule. This is partly due to
the zero profits obtained by the firms under the other tie-breaking
rule.

The structure of the paper is as follows. The model is described in
section 2. Sections 3 and 4 characterise the equilibria of the game
under the different tie-breaking rules. Section 5 makes some
normative judgements on the different market arrangements.
Some concluding remarks are given in Section 6.

2. The model

I assume a spatial linear market in which competition in prices
between two profit-maximising firms takes place at each point on
the market line. Consumers are evenly distributed over the line. At
each location along the line, consumers have elastic demand given
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by q = 1 - p. Consumers' density and length of the market line are
both normalised to 1.

The two firms produce perfectly homogeneous goods; the firms
are referred to as firm 0 and firm 1. The pricing policy adopted by
both firms is uniform delivered pricing: the same price is charged
to all customers, irrespective of their location, and firms deliver the
good to customers’ locations at their cost. Each firm produces
with constant (and identical) marginal and average cost that,
without further loss of generality, is normalised to zero.
Transportation cost (denoted by c) is assumed to be linearly
increasing with quantity and distance. Transport is under firms'
control and no arbitrage can take place among consumers.

I assume that firms cannot ration the supply of the good in any of
the markets. This implies that, once a price has been set by one of
the two firms, all the customers have the right to buy at that price
from that firm, unless their demand is satisfied by the rival firm at
the same or lower price. From this assumption, it follows that if
one of the firms sets a price lower than the rival, it may end up
serving all the customers along the unit line.

If the two firms charge the same price, two different rules on the
resolution of the conflict over markets are studied:

• efficient tie-breaking rule: the first tie-breaking rule is such
that, in case of both firms charging the same price at the same
location, the market is supplied by the closest firm, that is by
the firm which bears a lower transportation cost in serving
that location. In the rest of the paper, this tie-breaking rule is
usually referred to as the efficient tie-breaking rule and all the
variables related to it are denoted by the superscript E.

• random tie-breaking rule: the second tie-breaking rule is such
that, in case of both firms charging the same price at the same
location, total demand in each local market is equally shared
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between the two firms. This tie-breaking rule is referred to as
random in the rest of the paper and all the variables related to
it are denoted by the superscript R.

These rules are usually interpreted in the literature as originating
from different behaviour on the consumers’ side. As for the
efficient tie-breaking rule, it is assumed that consumers buy from
the nearest firm (see e.g. Lederer and Hurter, 1986, and
MacLeod et al., 1988). This behaviour is usually defined as
socially optimal because, given the quantities exchanged and the
locations of the two firms, it minimises the total transportation
cost. As for the random tie-breaking rule, this may be the result
of customers selecting randomly the firm from which to buy; then,
if assigning an equal probability to buying from each firm, each
local market is equally shared between the firms supplying that
market (at least in expected terms). Following Gronberg and
Meyer (1981), another possible interpretation of the tie-breaking
rules makes them dependent on firms’ behaviour. The efficient
tie-breaking rule can be interpreted as the result of a collusive
behaviour between the two firms. Under this interpretation, firms
collude over the locations they serve, provided that all demand at
each location is satisfied. Collusion implies that firms agree to
share markets at any location so that each firm serves exclusively
the locations where it has a comparative advantage in terms of
costs with respect to the rival. On the contrary, the random tie-
breaking rule can be interpreted as the result of the firms being
not able or not allowed to reach the collusive agreement on the
locations each firm has to serve exclusively. In this case, firms
split each local market.

I model the strategic interaction between the two firms as a
single-stage game where locations are fixed and each firm simply
chooses the level of price vi ∈ [0, 1] where i = 0, 1. As most of
the literature, I restrict my attention to the case where firms
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locations are symmetric 1. Then, without loss of generality, I
restrict the locations to be such that x0 ∈ [0, ½] and x1 ∈ [½, 1].
Given the nature of the game, the equilibrium concept is Nash
equilibrium.

Denoting with x0 and x1 the locations of firm 0 and 1 respectively,
in case of the efficient tie-breaking rule, firm 0's profits are given
by
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while, in case of the random tie-breaking rule, firm 0's profits are
given by
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Similar formulae apply for firm 1.

                                                
1 This assumption is not strictly necessary for my results. Iozzi (1999)
shows that an equilibrium exists even with asymmetric locations under
rather mild restrictions on the firms’ locations.
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3. The equilibrium under the efficient tie-breaking rule

This section characterises the equilibrium of the single-stage price
game under the efficient tie-breaking rule. I recall here that this
implies that when the two firms set the same price, firms end up
serving only those locations where they have a comparative
advantage over the rival in term of transportation cost. Let x0 = x
and x1 = 1 - x, where x gives the distance from firm 0’s location
(respectively, firm 1’s) to the left (right) end of the market line.

Before proceeding into the characterisation of the equilibrium, I
introduce the following definition.

Definition 1. Let [ ]{ }V v v v ve ≡ ∈ℜ ∈: , , where






 +−≡ 22

4
1 xxcv  and 





 −≡ xcv

4
3

.

Ve  is the set of all real numbers weakly greater than v  and

weakly smaller than v . It plays a crucial role in the
characterisation of the Nash equilibrium prices in the game under
analysis because it includes all those price levels that, if set by one
of the two firms, the rival firm finds optimal to match.

The lower boundary of Ve  is obtained setting to zero the profit of
either firm when both firms charge the same price and solving
with respect to the price. As profits for each firm are decreasing
in price in case of matching prices, v  gives the lowest price
consistent with non-negative profits when each firm matches the
price set by the rival and supplies only the customers in its half of
the market line. Formally, v  is the smallest solution to

( ) 0, =Π
= ji vvji

E
i vv , for i = 0, 1 and i ≠ j.
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The upper boundary of Ve  is obtained equalising the profits
obtained by either firm when it undercuts with the profits obtained
when it matches the price set by the rival and solving for the

price. Note also that for any price below v  the profits for each
firm are higher when matching the rival than when undercutting,

while the opposite holds for any price above v . Then, v  gives the
highest price for which each firm prefers to match the rival rather

that undercutting. Formally, v  is the smallest solution to

( ) ( )
jiji vvji

E
ivvji

E
i vvvv

<=
Π=Π ,, , for i = 0, 1 and i ≠ j.

A useful property of Ve is stated in the following lemma.

Lemma 1. Ve is not empty.

Proof. Simply by noting that 0>− vv  when x ∈ [0, ½) and that

vv =  when x = ½.

r

This Lemma will be useful in the rest of this section to show that
an equilibrium always exists in the game under analysis.

The following Proposition characterises the equilibrium of the
price game in case of the efficient tie-breaking rule.

Proposition 1. Let c
x x

<
− +

4
1 4 8 2 . Any Nash

equilibrium of the game under the efficient tie-breaking rule
is a pair of prices v0 and v1 such that v0 = v1 and v0, v1 ∈ Ve.

Proof: Nash equilibrium prices are obtained in the following way:
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i. an equilibrium must be a single price equilibrium. Let 0
iv  be the

smallest solution to ( ) 0, =Π
< ji vvji

E
i vv , for i = 0, 1. By

symmetry of locations and costs conditions between the two

firms, note that 00
ji vv =  for i, j = 0, 1 and i ≠ j. By

contradiction, assume that an equilibrium price pair vi and vj

such that vi ≠ vj exists. Without loss of generality, let vi < vj. If
vi < vj < 0

iv  or vi < 0
iv  < vj, note that

( ) ( )ji
E
ijj

E
i vvvv ,,0 Π>ε+Π=  for ∀ vi, vj, which

contradicts the initial assumption on vi and vj. Also, if 0
iv  < vi

< vj, ( )>ε−Π ii
E
j vv ,  ( )ij

E
i vv ,Π , with ε  positive and

whatever small and for ∀ vi and vj.

ii. any pair of prices v0 and v1 such that v0 = v1 and v0, v1 ∉ Ve

cannot be an equilibrium. If vi = vj < v , then

( ) ( )ji
E
iji

E
i vvvv ,,0 Π>ε+Π= , with ε  positive and

whatever small; if vi = vj > v , then
( ) ( )ji

E
ijj

E
i vvvv ,, Π>ε−Π  with ε  positive and whatever

small. In both cases, firms prefers to charge a price different
from the rival, contradicting step i.

iii. any pair of prices v0 and v1 such that v0 = v1 and v0, v1 ∈ Ve is
a Nash equilibrium. Let firm i set vi ∈ Ve . Firm j 's optimal

response is to charge vj = vi as ( ) ( )ij
E
jij

E
j vvvv ,', Π>Π  for

any v’j ≠ vj. This is because, by the way Ve  is defined, if v’j <

vi, then ( ) ( )ij
E
jij

E
j vvvv ,,' Π<Π  as firm j would serve all the

customers along the line. On the other hand, if v’j > vi,
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( ) ( )ij
E
jij

E
j vvvv ,,'0 Π<Π= , as no consumer would buy

from firm j.

r

The restriction on the value of c guarantees that there exists at
least one price belonging to the strategy spaces of the firms that
also belong to Ve. In other words, the restriction ensures that the
transportation cost is small enough so that firms make nonnegative
profits when they serve only the half of the market line in which
they are located.

The Proposition states that any pair of identical prices higher than

v  in Definition 1 cannot be an equilibrium, as each firm would
obtain higher profits by undercutting the rival and serving the
whole market. Similarly, it argues that an equilibrium with both
firms charging a price below v  cannot exists, as both firms would
make negative profits. Any firm would then be better off charging
a higher price so to be driven out of the market and make zero
profits. Take now the case of both firms setting a price falling

within v v and . Proposition 1 claims this is an equilibrium. To see
why, assume firm i sets a price vi that belong to Ve. According to
the Proposition, the best reply for firm j is to set a price vj = vi.
This is because, if firm j charges a higher price, it sells zero
quantity. On the contrary, if it undercuts the other firm's price, it
has to supply the good to all the customers. In such a case,
because of the transportation cost incurred in delivering the good
to customers located in more remote areas, the firm obtains lower
profits than simply matching the rival.

A clearer understanding of the result in Proposition 1 can be
obtained from Figure 1. In the Figure, let v0 be the price charged
by firm 0. If firm 1 charges v1 = v0 it sells to customers located
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between x′ and 1 and gets average revenues equal to
v x1 1× −( ' ) . Average cost is given by the sum of the areas of

the two triangles x′Ax1 and x1BC. On the contrary, if firm 1
charges v1 = v0 - ε  (with ε  whatever small and positive), average
revenues are given by (v0 - ε) × 1, with average costs given by
the sum of the areas of the two triangles x1E0 and x1BC. Overall,
when ε  is sufficiently small, the gain from undercutting the rival is
given by the area ADF, while losses are given by v0EF. As ADF
is smaller than v0EF, it is clear that, undercutting the rival, losses
for firm 1 are more than offset by gains: then, the firm 1 has no
incentive to undercut the rival.

Insert Fig. 1 about here

I can also state the following Proposition.

Proposition 2. Let c
x x

<
− +

4
1 4 8 2 . Under the efficient

tie-breaking rule, there always exists at least one Nash
equilibrium price pair.

Proof. Simply combining Lemma 1 and Proposition 1.

r

Proposition 1 and 2 together say that, under the efficient tie-
breaking rule, there exists at least one price pair that qualifies as a
Nash equilibrium price pair. Furthermore, the propositions argue
that typically there exists more than one equilibrium, with any pair
of identical prices within a given interval being a Nash equilibrium.
The only case in which there exists only one Nash equilibrium
price pair is when both firms are located right in the middle of the
market line.

For the purpose of comparing the welfare properties of the
markets under the efficient tie-breaking rule with those of the



14

market under the random tie-breaking rule, it is useful to single
out a price pair amongst the set of equilibrium price pairs. Using a
focal point argument or appealing to the possibility of coordination
between firms to ensure that the outcome most favourable to
them emerges in equilibrium, I concentrate on the equilibrium price
pair that gives to the firms the highest profits. The rest of this
section is then devoted to characterising the equilibrium that
emerges when both firms charge the price that gives them the
highest profits among the Nash equilibrium price pairs. For firm 0,
this price comes as the solution of the following problem

e

v

Vv

dxvxxcv

∈

−−−∫
0

2/1

0 000

   t.s.

)1(|)|(max
0  [3]

while a similar problem is faced by the rival. Note that because of
the symmetry of cost structures and locations, the price which
solves the problem for firm 0 in  [3] is the same as the price which
solves the similar problem faced by the rival. This implies that the
focus on the profit maximising equilibrium price pair is particularly
appropriate for two reasons. First, this price is a Nash equilibrium:
no firm has an incentive to deviate from it. Second, no other
equilibrium price gives more profits to any of the two firms. Note
also that, because of the symmetry between firms, the price that
gives each firm the highest level of profits is also the price that
maximises the joint profits of the two firms.

The characterisation of the single-firm and joint profit maximising
Nash equilibrium price pair is given in the following Proposition.

Proposition 3. Let 2
00 841

4
xx

c
+−

< . Let EE vv 10  and  be

the Nash equilibrium price pair that gives the highest profits
to the two firms under the efficient tie-breaking rule. Then,
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Proof: Use standard constrained maximisation techniques.

r

The Proposition illustrates the price pair that delivers the highest
profits to the firms among the set of equilibrium price pairs. When
the value of transportation cost is high enough, the Nash
equilibrium price pair that gives the highest profits is simply made
out of the two prices that maximise the profits of each firm given
that it serves the consumers located in its half of the market line.
However, for low values of the transportation cost, the
unconstrained single firm profit maximising price is not an
equilibrium as it falls outside the range of equilibrium price and, if
charged, will be profitably undercut by the rival which would
supply the entire market. Thus, for such values of c the price
which delivers the highest profits among the set of equilibrium
prices is the upper boundary of the range of equilibrium prices.

4. The equilibrium under the random tie-breaking rule

This section characterises the equilibrium of the price game under
the random tie-breaking rule. Recall that this implies that when
the two firms set the same price, half of the demand at each
location along the market line is expected to be addressed to each
firm. This may occur because, as firms are identical, customers
randomise their choice and buy from either firm with the same
probability. Similarly as before, I set x0 = x and x1 = 1 - x, where
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again x gives the distance from firm 0’s location (respectively,
firm 1’s) to the left (right) end of the market line.

Now, I can state

Proposition 4: Assume c < 
2

1 2 2 2− +x x
. Let RR vv 10  and 

be the Nash equilibrium price pair under the random tie-
breaking rule. Then, there always exists one and only one
equilibrium price pair RR vv 10  and  such that






 +−= 2

2
1 xxcv R

i for i = 0, 1. [5]

Proof: First note that R
iv  comes as the solution to

( ) 0, =Π
= ji vvji

R
i vv . Then,

i. an equilibrium must be a single price equilibrium. (See step i. of
the proof of Proposition 1).

ii. the pair R
j

R
i vv  and  is a Nash equilibrium pair of prices. When

firm i charges R
iv , firm j 's optimal response is to charge

R
i

R
j vv =  as ( ) ( )R

ij
R
i

R
i

R
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R
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jj vv ≠ .

Indeed, if firm j sets R
jj vv < , it makes negative profits. On the

contrary, if firm j sets R
jj vv >  no customer buys from it.

iii. the pair R
j

R
i vv  and  is the unique possible equilibrium pair of

prices. For R
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R
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R
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when ε  > 0 and sufficiently small. For R
iji vvv >= , then
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( ) ( )ji
R
iji

R
i vvvv ,, 2

1 ε−Π=Π  (when ε  > 0 and sufficiently

small), as all customers patronise the lower-price firm.

r

Note that the restriction imposed in the Proposition to the values
of the transportation cost ensures that firms obtain nonnegative
profits in equilibrium for any pair of symmetric locations.

The main reason of the result reported in the Proposition is the
following. Because of the nature of the expression for profits in 

[2], profits obtained when
undercutting the rival and serving all the market line are always
twice as much the profits obtained by matching the rival's price.
This implies that each firm always finds profitable to shave any
market price except the price that gives zero profit. As a result,
the only possible equilibrium shows the typical feature of the
standard Bertrand duopoly, with both firms simply breaking even.
However, the market equilibrium does not show any efficiency
properties typical of the Bertrand setting. This is because the
firms simply average out the transportation cost across markets.
While prices are equal on average to marginal cost of provision
(marginal cost, here set to zero, plus transportation cost), in any
local market the equilibrium price differs from the actual total
marginal cost.

5. Welfare comparisons

This section discusses the normative properties of the equilibria
obtained under the different tie-breaking rules under analysis. It
has to be emphasised that the normative analysis of this section
heavily rests on the fact that, under the efficient tie-breaking rule,
I focus on the equilibrium where the firms select the profit
maximising price among the set of equilibrium prices.
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The level of welfare generated by the different market
arrangements is compared using the traditional measures given by
the aggregate consumers’ surplus, industry profits and social
welfare as given by the unweighted sum of the two previous
terms.

As for consumers’ surplus, this is an exact measure of
consumers’ utility because the demand originates from consumers
with quadratic quasi-linear preferences. As equilibria under both
tie-breaking rules have the property that they are always single-
price equilibria, aggregate consumers’ surplus is given by

( ) ( ) ( )
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where r = E, R.

Total profits Πr, with r = E, R, are simply evaluated using 
[1] and 

[2] at equilibrium prices and summing up across firms.

The results of the welfare analysis are given in the following
Proposition.

Proposition 5. Assume c < 
2

1 2 2 2− +x x
. Let CSE, ΠE and

WE be the aggregate consumers’ surplus, total firms’ profit
and social welfare respectively under the efficient tie-
breaking rule when prices are as given in Proposition 3. Let
also CSR, ΠR and WR be the aggregate consumers’ surplus,
total firms’ profit and social welfare respectively under the
random tie-breaking rule when prices are as given in
Proposition 4. Then, these expressions are given in Table 3.1.
Also
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Proof: Simply by comparing the welfare measures over the
appropriate intervals.

r

First note that the maximum allowed level for c is the minimum
within the two maximum levels of the transportation cost for
which an equilibrium exists under the two tie-breaking rules. In
other words, the limitation on c ensures that are taken into
consideration only those values of the cost parameter for which an
equilibrium exists under both tie-breaking rules.

The Proposition illustrates three main features of the equilibria
obtained when different tie-breaking rules are assumed.

First, consumers are better off under the random tie-breaking rule
when the value of the transportation cost is low enough. This
contrasts with the usual definition of the efficient tie-breaking rule
being the ‘socially optimal one’. The obvious reason for this
definition is that consumers’ behaviour under the efficient rule is
socially optimal as it minimises total transportation cost for given
prices and location. However, the result reported in Proposition 5
means that, differently from what implied by the mentioned
commonly used definition, consumers may be better off if they
buy from a randomly selected firm instead of buying from the
nearest firm.
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Table 3.1 - Equilibrium welfare measures.
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Random tie-breaking rule
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In general, which one of the two equilibria obtained under the
different tie-breaking rules is preferred by the consumers depends
on the joint result of two different effects. A first effect is due to
the different way in which competition between firms takes place
when the different tie-breaking rules are assumed. Under the
efficient tie-breaking rule, firms serve a given market area. Then,
the price they choose is the one that (among the equilibrium
prices) gives them the highest profits given the market area they
supply. On the other hand, under the random tie-breaking rule,
competition is much fiercer as firms are caught under the
traditional Bertrand paradox; they undercut each other over the
entire market line down to the price where both firms make zero
profits. The other effect regards the level of total transportation
cost borne by the firms and paid for by the consumers through
prices. In this respect, it is clear that when consumers buy from
the closest firm, firms pay an overall total transportation cost
lower than when they serve also consumers at remote locations.
The total result of the two effects is that, when the transportation
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cost is low enough, the competitive effect prevails and the
equilibrium price is lower under the random rule. The opposite
holds for high enough values of c.

Secondly, the comparison of firms’ profits under the different tie-
breaking rules is made trivial by the zero level of profits obtained
by both firms when the random tie-breaking rule is assumed.

Finally, from the comparison of the levels of welfare for the
society under the different tie-breaking rules, it is clear that the
equilibrium when consumers buy from the nearest firm is
preferred to the equilibrium under the alternative tie-breaking rule.

6. Conclusions

The analysis of this paper shows that an equilibrium exists in a
spatial duopoly when firms adopt a uniform delivered pricing
policy and products are perfectly homogeneous. With respect to
the traditional no-existence conclusion, I show that it is sufficient
to assume that no rationing can occur to restore the possibility of
an equilibrium.

Using this assumption, I characterise the equilibria of the market
under two different tie-breaking rules. As it is found that the
nature of the equilibria are deeply different according the tie-
breaking rule, this also highlights the relevance of the choice of the
tie-breaking rule in the definition of the model.

Under the efficient tie-breaking rule, multiple equilibria are found.
Indeed, any pair of identical prices within a given range is a Nash
equilibrium of the game. It is also shown that these are the only
possible equilibria of the game. Under the random tie-breaking
rule, there exists only one possible Nash equilibrium with both
firms charging the price that gives them zero profits when serving
half of the customers at each location.



23

As to the welfare properties of the equilibria under the different
tie-breaking rules, for low enough values of the transportation
costs, aggregate consumers' welfare is higher under the random
tie-breaking rule despite its ex-post inefficiency. In other words,
consumers are better off selecting randomly which firm they
patronise than adopting the so-called socially optimal behaviour.
On the other hand, the industry aggregate profits and the welfare
of the society are always higher under the efficient tie-breaking
rule.
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