
Introduction

The Gilbert equation summarizes the standard model for the evolution of the
magnetization m in rigid ferromagnetic bodies. Under common constitutive
assumptions, it has the form of a parabolic PDE:

γ−1ṁ + μm × ṁ = m × (αΔm + β(m · e)e + hs + he) .

Here ṁ and Δm denote, respectively, the time derivative and the Laplacian
of m, and the symbol × denotes the cross product; γ is the gyromagnetic
ratio, a negative constant; α, β, μ are positive constants; e is a unimodular
vector (the easy axis); he is the external magnetic field and hs is the stray
field, the magnetic field generated by the body.1

In ferromagnetic bodies, it is possible to observe magnetic domains, i.e.,
regions where the orientation is nearly constant, separated by narrow transi-
tions layers, the domain walls. The application of an external magnetic field
induces re-orientation and growth of some domains at the expense of oth-
ers. Our intention is to picture the resulting domain-boundary displacement,
accompanied by re-orientation changes in the magnetization, as a process
in which domain walls are regarded as surfaces endowed with a mechanical
structure, whose motion is ruled by dynamical laws deduced from the Gilbert
equation.

The first chapter of this thesis is a brief introduction to micromagnetics
and domain theory, two variational theories intended to describe the equilib-
rium configurations of the magnetization in a ferromagnetic body.

The second chapter deals with dynamical micromagnetics, i.e., the gen-
eralization of micromagnetics to a theory describing the evolution of the
magnetization vector. First, we illustrate the standard form of the Gilbert
equation; next we show that the Gilbert equation can be obtained from a
general balance law through specific constitutive assumptions, and explore
the generalizations associated with some non-standard constitutive choices.

1The notation we here use is only reminiscent of the notation commonly used in the
literature on the physics of magnetized matter; in the Appendix we discuss it in the light
of the latter, and pay due attention to the relevant dimensional issues.
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Domain-wall dynamics is dealt with in Chapter 3, whose first part is
drawn, with small changes, from [39]. We consider the Walker-type solu-
tions, i.e., one-dimensional exact solutions having the form of a traveling
wave. Named after L.R. Walker [49, 43], who first found one, these solutions
picture the steady motion of a flat domain wall. We illustrate a method
to derive the original Walker’s solution for the standard Gilbert equation,
and we consider the possibility of extending it to more general constitutive
assumptions, showing that this is feasible when dry-friction dissipation is
accounted for.

In the second part of the chapter we consider a curved wall, modelled by
an oriented regular surface S evolving smoothly in time in the body Ω under
examination. For a subregion Π of Ω crossed by S (Fig. 1), and for ε ≡ β−1

a small parameter, we assume that the solution of the Gilbert equation in Π
can be constructed by matching two regular expansions in powers of ε, the
one presumed to hold in a tubular neighborhood of S, the other away from
S.

Figure 1: The evolving surface S.

Our main result is that, for ε → 0, the following condition must hold on S
pointwise:

ρ v − σ k = pe + ps, (1)

where the scalar fields v and k are, respectively, the normal velocity and
twice the mean curvature of the surface S; ρ and σ are scalar quantities
which depend on the magnetizations in the two domains; pe and ps depend,
respectively, on the external magnetic field he and the stray field hs.




