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PREFACE

And now, I said, let me show in a figure how far our nature is enlightened or unenlightened:
Behold! human beings living in an underground den, which has a mouth open toward the
light and reaching all along the den; here they have been from their childhood, and have
their legs and necks chained so that they cannot move, and can only see before them, being
prevented by the chains from turning round their heads. Above and behind them a fire is
blazing at a distance, and between the fire and the prisoners there is a raised way; and
you will see, if you look, a low wall built along the way, like the screen which marionette
players have in front of them, over which they show the puppets.

I see.

And do you see, I said, men passing along the wall carrying all sorts of vessels, and statues
and figures of animals made of wood and stone and various materials, which appear over
the wall? Some of them are talking, others silent.

You have shown me a strange image, and they are strange prisoners.

Like ourselves, I replied; and they see only their own shadows, or the shadows of one
another, which the fire throws on the opposite wall of the cave?

True, he said; how could they see anything but the shadows if they were never allowed to
move their heads?

And of the objects which are being carried in like manner they would only see the shadows?
Yes, he said.

And if they were able to converse with one another, would they not suppose that they were
naming what was actually before them?

Very true.

And suppose further that the prison had an echo which came from the other side, would
they not be sure to fancy when one of the passersby spoke that the voice which they heard
came from the passing shadow?

No question, he replied.

To them, I said, the truth would be literally nothing but the shadows of the images.

That s certain.

Plato, Republic, VII, 514-515 (translation by Benjamin Jowett)
Like in Plato’s myth of cave, the judge in the Court can be considered as a prisoner who

is trying to know objects by seeing their shadows. Actually, in legal proceedings only the
“shadows” of the crime can be visible, where the “shadows” are evidences, witnessing,



documents, etc.

And in his grave duty of decision making, the judge often involves other prisoners, and in
particular the “forensic scientist”, who has to supply the judge in evaluation of evidences.
In order to give the same meaning to the word “forensic scientist”, in the last years
particular attention has been focused on the educational background that people involved
in forensic science should have. In this direction, universities and other associations have
more and more concentrated their effort in creating a well-defined professional skill.

In this sense, the author acknowledges the Universita degli Studi “Tor Vergata” in Rome
- in particular Professor Giovanni Arcudi - and his colleagues of the Raggruppamento
Carabinieri Investigazioni Scientifiche for the daily discussions in forensic science - Captain
Davide Zavattaro, in particular.

Special thanks to Professor Camillo Cammarota of the Mathematical Department of Uni-
versita degli Studi “La Sapienza” in Rome for the important contribution to this work.
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INTRODUCTION

Fundamental principle of Criminal Law is that, when a crime is committed, the competent
Prosecutor Office and Court are arranged beforehand on the basis of the type of the crime,
the place where it has been committed and the condition of the author of the crime.
Referring in particular to Italian Criminal Law, when a notitia criminis is known, two
subjects of legal proceedings are necessary: the prosecutor, and the judge (or jury). Re-
spectively, they have to propose and make decision in order to reach a filing of the case, or
a formal accusation against one or more people: in this last case, besides the prosecutor
and the judge, also the accused and his defender become subjects of legal proceedings.
Moreover, other subjects can act legal proceedings (the plaintiff, civil party, etc.). In
particular the judicial police have the duty to support the prosecutor in order to acquire
the notitia criminis, to avoid that crimes have further consequences, to search the authors,
to do all necessary in assuring and collecting the sources of proofs. In this framework,
the judicial police operate in the scene of crime in order to collect exhibits and evidences,
where the term of “scene of crime” is to be considered in an extended sense: not only as
the physical place where the crime has been committed, but also as everything has had a
connection to the crime. In fact, collection of evidences on a person (e.g. gunshot residues
on the hands of a suspect), or on a virtual space (e.g. files on a web site) can be considered
as acts on a scene of crime.

When the formal process starts, the aim of the judge in Criminal Court is decision making
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about the subsistence of the crime, the responsibility of the accused, and the other param-
eters in order to determine the penalty, the application of precautionary measures and the
responsibility of the accused according to the Civil Law.

In decision making on these features, the prosecutor at first, together with the judicial po-
lice, and then the judge (who is the peritus peritorum, i.e “the expert among the experts”),
have to discriminate two opposite hypotheses. For convention, the opposite hypotheses are
called prosecutor’s and defender’s, respectively, even if they are not necessarily asserted
by this two subjects.

Note that the judge has the moral duty in always researching the truth, and, in doubt,
even if the prosecutor and the defender agree in the version of the affair, he must more
closely investigate the matter (e.g. the prosecutor and the defender could agree that the
accused killed a police officer in a shooting, but the doubt that another policeman fired
the colleague could arise).

The discrimination of the two opposite hypotheses must be evaluated on the basis of
proofs, which are proposed to the judge during the debate by the prosecutor and the
defender by means of different means of proof: witnessing, examination of the parties,
cross-examination, line-up, judicial test, expertise, and documents.

Obviously, the discrimination of the two opposite hypotheses by the evaluation of the
proofs could not be trivial, and methods to quantify it are useful.

In this setting, the aim of forensic science is to support the judge in decision making in
Court by means of a scientific approach in the evaluation of evidences.

Historically, different branches of forensic science have developed proper ways in analyz-
ing and evaluating evidences, trying to answer to questions like the following: Are two
fingerprints produced by the same finger? Are two bullets shot by the same firearm? Are
two fragments of glass from the same window? Is this substance heroine? Is the recorded
sound the suspect’s voice? etc.

In order to answer to these questions, a process of comparison between two objects (e.g.
two bullets, two fingerprint, two fragments of glass, etc.), or an object and a standard (e.g.
the substance and the standard of what is legally defined as heroine), is required.

In the last years, the forensic scientific community (American Academy of Forensic Science,
AAFS; European Academy of Forensic Science, EAFS; European Network of Forensic
Science Institutes, ENFSI; Interpol; etc.) has proposed the use of scientific methods for the
evaluation of evidences, based on probability. The Bayesian approach subsequently clarifies
and restrains the role of the forensic scientist in legal proceedings, and forces him to present
the results of his analyses in a such appropriate way that no doubt of interpretation should
arise. Hence, a “beyond a reasonable doubt” truth should be overcome by a quantification
of an error rate, a confidence level, a reliability level, a likelihood ratio, etc.

Questions about the admissibility of the scientific evidence in Court are much-discussed.
In particular, objections to the use of probability in legal proceedings are based on the
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presumed breach of the causality principle, according to which the proof of the personal
responsibility requires that the occurred behaviour be a necessary condition for the crime.
This thesis proposes a general panorama of the use of mathematics in forensic science, try-
ing to give a systematic approach to the general principles of identity, and to the processes
of identification and individualization. Moreover, the probability approach in evaluation of
evidences is introduced, and its applications in particular non-standard forensic branches
are proposed.

It is author’s belief that the language of science (and then of forensic science) is only
mathematics. Although its rigor, mathematics has practical use in daily forensic scientist
job, and this is the reason for which a formal mathematical approach is here suggested.
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BASIC MATHEMATICAL CONCEPTS

In order to proceed to a formalization of the fundamental principles of forensic science,
basic mathematical notations and results are here summarized, without any proposal of
completeness. Demonstrations of theorems are omitted if retained trivial or normally
reported in standard mathematical literature.

2.1. SET THEORY
Let X # () and Y # () denote in general two non-empty sets.

Definition 2.1.1. If A C X, the power set of A, pA, denotes the collection of all subsets
of A:

pA={BC X|BC A}

Note 2.1.1. Obviously, X represents the collection of all subsets of X

Definition 2.1.2. Let J # () denote an index set, and let {X;};es be a family of non-
empty sets. Then, VK C J, K # (), the (Cartesian) product set Xk, indicated by:

Xk =[] X;
jEK
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is the set whose elements zx € Xk are the ordered sequences xx = (z;), ek, with z; € X;
forall j € K

Theorem 2.1.1. Let J # () denote an index set, and let {X,},cs be a family of non-empty
sets. Then, VK C J, K # (), the set X; can be written as:

XJ:XKXXJ_K

The element z; € X; can be written as x5 = (g, zj_k), with xx € Xg and zj_g €
Xi_k

2.2. RELATIONS

Definition 2.2.1. A unitary relation () on a set X, also called property, is a subset () of
X, ie Q€ pX

Definition 2.2.2. A binary relation R on a set X and a set Y is a subset of the Cartesian
product of X and Y, i.e. R € p(X xY). Note that, Vo € X and Vy € Y, an alternative
notation of (z,y) € R is xRy

Definition 2.2.3. A partial order relation O on a set X is a binary relation on X2 such
that, V.’L’l, T9,T3 € X:

(a). reflexivity: x10x1

(b).  antisymmetry: if £10z9 and 9021, then 1 = o

(c). transitivity: if £10z9 and z90x3, then 1023

Definition 2.2.4. Let O a partial order relation on a set X. The pair (X, O) is called a
partial ordered set

Definition 2.2.5. On a partial ordered set (X, O) an irreflexive relation O’ on the set X
is defined, V1,29 € X, by:

210'zy , if 2:0x9 and 1 # 2

Definition 2.2.6. An equivalence relation D on a set X is a binary relation on X2 such
that, Vi, x4, 23 € X:

(a). reflexivity: x1Dz,

(b).  symmetry: if x1Dxy, then z9Dxy

(c). transitivity: if x1Dxo and x9Dxg, then 1 Dxs

Example 2.2.1. On a set X, many different equivalence relations can be defined. In
particular, the concrete or banal equivalence relation for which A = {(z,z) € X?|z € X},
and the discrete equivalence relation for which D = X?
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Theorem 2.2.1. Let J # () denote a finite index set, and let {D;};c; be a family of
equivalence relations on a set X. Then, the intersection [ jed D; is an equivalence relation
on X

Example 2.2.2. Let F be a binary relation on X2, i.e. F C pX2. The set of all
equivalence relations containing F' is not empty, and the intersection of all these equivalence
relations is the smallest equivalence relation containing F', called the equivalence relation
generated by F and denoted by D(F). Note that VF C pX?, A C D(F) C pX?, i.e.
the concrete and the discrete equivalence relations are the smallest and the largest ones,
respectively

Theorem 2.2.2. Let () be a property on a set X. On the set X, a equivalence relation
Dy is naturally defined, such that V(z1,z2) € X2

z1Dgxzy , ifz1 €Q and 23 € Q

Definition 2.2.7. Let D be an equivalence relation on a set X. Then, Vz € X, the
equivalence class [x]p of x is defined by:

[z]p = {y € X|zDy}

Definition 2.2.8. The set of all equivalence classes defined by the equivalence relation D
on a set X is called quotient set and denoted by X/D

Theorem 2.2.3. Let D be an equivalence relation on a set X. Then:

U lp=X

z€X/D

Theorem 2.2.4. Let D be an equivalent relation on a set X. On the set X, Vx € X, a
family of properties ), p is naturally defined, such that Vy € X:

Yy€Qep , ifyelzlp

The elements y is called to have the same D-property of x

2.3. FUNCTIONS

Definition 2.3.1. A function f on a set X into a set Y is binary relation on X X Y such
that, Vx1,z9 € X and Vy1,y2 € Y:
(a).  univocity: if (z1,y1) € f and (z9,y2) € f, then 1 = x5 implies y; = yo
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Note that an alternative notation of the function f € p(X,Y)is f: X - Y, and, Vz € X
and Vy € Y, an alternative notation of (z,y) € f is y = fx

Definition 2.3.2. If f : X — Y is a function, the power map of the function f, f : pX —
pY , is defined, VA € pX, by:

fA={yeY|Frc A:y= fz}

Definition 2.3.3. If f : X — Y is a function, the complete inverse image map f~1 of the
function f, f~': pY — pX, is defined, VB € pY, by:

f'B={z e X|fr e B}

In particular, let f~'z denote f~1{z}

Theorem 2.3.1. If f: X — Y is a function, VA;, Ay € pX and VB;, By € pY:
(al) Al C _f_l(fAl) ;

(02). f(fIB)C B

(b1).  f(A1N As) C (AN (fAs)

(12).  f(A1UAs) = (FAU (fAs)

(Cl) f_l(Bl N Bz) = (f_lBl) N (f_le) ;
(C2) f_l(Bl U Bz) = (f_lBl) U (f_le)

Definition 2.3.4. If A € pX, the characteristic function ®4, P4 : X — {0, 1}, is defined,

Vz € X, by:
1, ifzeA
‘I’A”C_{o , ifzgA

Definition 2.3.5. Let J # () denote a finite index set, and let {A4;},;cs be a family a
subset of X. If {a;};es is a family of real numbers, then the finite linear combination of
characteristic functions ¢ : X — R defined by:

b=) ;0
jeJ
is called simple function

Definition 2.3.6. A simple function ¢ is called positive if ¢ : X — R*

Definition 2.3.7. Let f be a real function, i.e. f: X — R. Then:
(a). fT =sup(0, f) is called the positive part of the function f
(b).  f~ =sup(0, —f) is called the negative part of the function f
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Definition 2.3.8. Let J # () denote an index set, and let {X;};cs be a family of non-
empty sets. Then, VK C J, K # (), the projection map pﬁ : X5 — Xk is the function
defined, Vx; € X with z; = (zx,z5-xk), by:

J
PgTjg =TK

For simplicity, Vj € J, let p; indicate the projection map p{ i
Note 2.3.1. Let D be an equivalence relation on a set X. Then the function f: X — X/D

defined, Vz € X, by:
fx=[z|p

is naturally defined

Note 2.3.2. Given a function f : X — Y, an equivalence relation D on a set X is
naturally defined, Vxq,z5 € X, by:

.’ElD.’EQ s if f.’l]'l = f.’ll‘g

2.4. TOPOLOGY

Definition 2.4.1. A topology T on a set X is a subset of pX, 7 C pX, such that:
(@) {0, X}CT ;

(b) if {Gl,GQ} CT,then GiNGy €T

(c). if {Gj}jej C T, then UjGJ G;eT

Definition 2.4.2. The pair (X, 7T) is called a topological space

Example 2.4.1. On a set X, many different topologies can be defined. In particular,
the concrete or banal topology for which T = {(), X} and the discrete topology for which
T =pX

Theorem 2.4.1. Let J # () denote a finite index set, and let {7;},;cs be a family of
topologies on a set X. Then, the intersection () e 7; is a topology on X

Example 2.4.2. Let F be a subset of pX, i.e. F C pX. The set of all topologies
containing F is not empty, and the intersection of all these topologies is the smallest
topology containing F, called the topology generated by F and denoted by T (F). Note
that VF C pX, {0, X} C T(F) C pX, i.e. the concrete and the discrete topologies are the
smallest and the largest ones, respectively. Finally, VG € pX, T({G}) = {0,G, X}

Definition 2.4.3. Let (X,7) be a topological space. The element G € T is called open
set



Definition 2.4.4. Let (X,7) be a topological space. The element H € pX is called
closed set if 3G € T such that H =X - G

Definition 2.4.5. Let (X, 7) be a topological space and A € pX. The interior of A, A°,
is the union of all open subsets of A:

A= {GepX|GC A GeT}

and it is the largest open subset of A

Theorem 2.4.2. Let (X, 7) be a topological space. Then, VA € pX, A° C A C A¢
Definition 2.4.6. Let (X,7) be a topological space and A € pX. The closure of A, A~
is the intersection of all closed sets containing A:

A" =(\{HepX|ACHX-HeT}

and it is the smallest closed set containing A

Definition 2.4.7. Let (X,7) be a topological space and A € pX. The boundary or
frontier or derived set of A, OA, is defined by:

0A=A" - A°

and it is the smallest closed set containing A

Definition 2.4.8. Let (X,7) be a topological space and x € X. A set A € pX is a
neighborhood of z if z € A°

Definition 2.4.9. Let (X,7) and (Y, S) be two topological spaces. A function f : X - Y
is called T-S-continuous if VG € S, f~'G €T

Theorem 2.4.3. Let (X,7T) be a topological space. The function f : X — Y naturally
defines a topology S on Y:

S={BCY|f'BeT}

Theorem 2.4.4. Let (Y, S) be a topological space. The function f : X — Y naturally
defines a topology 7 on X:

T={ACX|A=f"'B,BeS}
Definition 2.4.10. Let < be the irreflexive relation on a partial ordered set (X, <). The

order topology on X is the topology generate by the intervals of the type B, = {z € X|z <
a}and Bf ={r € Xja<z},Vae X
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Definition 2.4.11. The FEuclidean topology on R is the order topology generate by the
intervals of the type (—o0,a) and (a,+00), Va € R

Definition 2.4.12. Let J # () denote an index set, and let {(X;, 7;)};es be a family of
topological spaces. Then, VK C J, K # 0, the product topology Tx = ®jeK7} on the
product set Xg is the topology generated by the subsets Ax = HjeK A; with A; € T,
Vi e K

Definition 2.4.13. Let J # () denote an index set, and let {(X;, 7;)};es be a family of
topological spaces. Then, VK C J, K # (), the pair (Xg, Tk) is called the product of the
topological spaces {(X;,T;)}jes, and indicated by:

®(Xj773)

JEK

Theorem 2.4.5. Let J # () denote an index set, and let (X;,7;), j € J, be a family of
topological spaces. Then, VK C J, the projection map p{( is T7-Tx-continuous

2.5. c-ALGEBRA

Definition 2.5.1. A o-algebra A on a set X is a subset of pX, A C pX, such that:
(a), XeAd ;

(b). ifAcA then X—-—AcA ;

(c). if{Aj}jes C A, then J;c;4; € A

Definition 2.5.2. The pair (X, .A) is called a measurable space

Example 2.5.1. On a set X, many different o-algebras can be defined. In particular,
the concrete or banal o-algebra for which A = {(), X} and the discrete o-algebra for which
A=pX

Theorem 2.5.1. Let J # () denote a finite index set, and let {A;};cs be a family of

o-algebras on a set X. Then, the intersection (,c ; A; is a o-algebra on X

Example 2.5.2. Let F be a subset of pX, i.e. F C pX. The set of all g-algebras
containing F is not empty, and the intersection of all these o-algebras is the smallest o-
algebra containing F, called the o-algebra generated by F and denoted by S(F). Note
that VF C pX, {0, X} C S(F) C pX, i.e. the concrete and the discrete o-algebras are
the smallest and the largest ones, respectively. Finally, VA € pX, the o-algebra generated
by {A}is S{A}) ={0,A, X - A, X}

Definition 2.5.3. Let (X,.A) be a measurable space. The element A € A is called
measurable set
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Definition 2.5.4. Let (X, .A) and (Y, B) be two measurable spaces. A function f: X - Y
is called A-B-measurable if VB € B, f7'Bec A

Theorem 2.5.2. Let (X, A) and (Y, B) be two measurable sets. If f : X — Y is constant,
the the function f is A-B-measurable

Theorem 2.5.3. Let (X,.A) be a measurable space. The function f : X — Y naturally
defines a o-algebra B on Y:

B={BCY|f'Be A}

Theorem 2.5.4. Let (Y, B) be a measurable space. The function f : X — Y naturally
defines a o-algebra A on X:

A={ACX|A=f"'B,BecB}

Definition 2.5.5. Let (X,7) be a topological space. The o-algebra generated by the
open sets of X, B =8(T), is called Borel o-algebra, and its elements are called Borel sets.
The pair (X, B) is called Borel measurable space

Definition 2.5.6. Let (X,.4) be a measurable set and let (Y, B) be a Borel measurable
spaces. A A-B-measurable function f: X — Y is called Borel measurable

Definition 2.5.7. The Borel o-algebra B on R is the o-algebra generated by the open
space of the Euclidean topology on R. The measurable space (R, B) is called real Borel
measurable space

Theorem 2.5.5. Let (X, .A) be a measurable set and let (R, B) be a real Borel measurable
spaces. If f: X — R and g : X — R are two Borel measurable functions, then:

(a). Va € RT, |f|* is Borel measurable ;

(b). if f #0, % is Borel measurable

(¢). f -+ g is Borel measurable ;

(d). f-g is Borel measurable

Definition 2.5.8. Let J # () denote an index set, and let {(X;,A;)}jes be a family of
measurable spaces. Then, VK C J, K # (), the product o-algebra Ax = ®j€K A; on the
product set Xy is the o-algebra generated by the subsets Ax = [[;cx 4; with 4; € A;,
VieK

Definition 2.5.9. Let J # () denote an index set, and let {(X;,A;)};es be a family of

measurable spaces. Then, VK C J, K # (), the pair (X, Ak) is called the product of the
measurable spaces {(X;, A;)};es, and indicated by:

Q) (X, 4;)

JjeK
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Theorem 2.5.6. Let J # () denote an index set, and let {(X;, 4;)}jes be a family of
measurable spaces. Then, VK C .J, the projection map p‘}< is A j-Ag-measurable

2.6. THEORY OF MEASURE

Definition 2.6.1. Let (X,.A) be a measurable space. A (positive) measure p on the
measurable space (X, .A) is a function p : A — RT U {400} such that:

(a). w@®=0 ;
(b).  numerable additivity: if {A;};c; C A, with {A;};cs disjoint sets, then:

p(lJ 45) = u4;)

jeJ jeJ

Definition 2.6.2. The triade (X, A, u) is called measure space

Example 2.6.1. Let (X, pX) be a measurable space. If A € pX, the counting measure
of the set A, #A, is defined by the number of points in A, if A is finite; and by +oo if A is
infinite

Example 2.6.2. Lebesgue measure. Let (R, B) be the Borel real measurable space, and
A € B. Denoting by £(I) the length of an open interval I C R, the outer measure of A is
defined by:

m*A=inf » £(I))
=
for all {I;};es such that A C (), ;1. The inner measure of A is defined by:

myA = sup m*K
KCA

for all closed set K C A. The subset A is Lebesque measurable if myA = m*A, and the
measure is denoted by mA

Definition 2.6.3. Let (X,.A, u) be a measure space. A set B € pX is called p-negligible
if A € A such that B C A and pu(A) = 0. A property is said to hold p-almost everywhere
(usually abbreviated to p-a.e.) if it holds except on a p-negligible set

Theorem 2.6.1. Let (X,.A, ) be a measure space. If two sets A € A and B € A are
equal p-a.e., then u(A) = p(B); moreover, VC € A, u(ANC) = u(BNC)

Theorem 2.6.2. Let p; and ps be two measures on a measurable space (X, A). If a € R
and 3 € RT, then oy + s is a measure on the same measurable space
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Definition 2.6.4. Let (X, A, 1) be a measure space and (Y, B) be a measurable space.
The A-B-measurable function f : X — Y naturally defines a (positive) measure v on a
(Y, B), such that VB € B:

v(B) = u(f~'B)

Note 2.6.1. Let (X,.A) be a measurable space and (Y, B,v) be a measure space. Given
a A-B-measurable function f : X — Y, it is not possible to naturally define a (positive)
measure g on a (X, .A)

Definition 2.6.5. Let J # () denote an index set, and let {(X};, A, ;) }jes be a family
of measure spaces. Then, VK C J, K # (), the product measure pg = ®jeK p; on the
measurable space (Xg, Ax) is defined, VA € Ak by:

k(Ak) = H 1 (p IAK)
JjeK

Definition 2.6.6. Let J # () denote an index set, and let {(X;,A;, u;)}jes be a family
of measure spaces. Then, VK C J, K # (), the triade (Xk, Ax, ux) is called the product
of the measure spaces {(X;, Aj, uj)}jes, and indicated by:

(X5, Aj, 1)

JjeK

2.7. PROBABILITY MEASURE

Definition 2.7.1. A measure space (2, &, P) is called a probability space if P(Q2) = 1.
The set € is called space of events, the measure P is called probability measure or simply
probability, and a subset A C & is called event

Example 2.7.1. Let (X, pX) be a measurable space, and a € X. If A € pX, the Dirac
probability in a of the set A, §, A, is defined by:

_J1 , ifacA
5aA_{0 , ifa¢g A

Theorem 2.7.1. Let (2, &, P) be a probability space. Then, VA € &:
PQ—A)=1-P(A)

Definition 2.7.2. Let (€2, £, P) be a probability space. Anevent A C £ is called impossible
if P(A) = 0; certain if P(A) =1 .
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Theorem 2.7.2. The complementary of an impossible event is certain, and viceversa

Theorem 2.7.3. Let (Q,&, P) be a probability space. If A € £ and B € &, such that
Q — A C B, then:
P(ANnB) < P(A)-P(B)

Demonstration. Since 2 — A C B, then P(A) = P(ANB)+ P(2— B). Now, if P(B) =1,
i.e. P(Q2 — B) =0, the thesis is obvious; otherwise, if P(B) # 1, then:
P(ANB) < P(B)
P(ANB)-P(Q—-B)< P(Q—- B)-P(B)
P(ANB)-[1-P(B)]<P(Q-B)-P(B)
P(ANB) < P(ANB)- P(B) + P(Q - B) - P(B)

and, from the first observation:

P(ANB) < P(A) - P(B)

Theorem 2.7.4. Let P; and P, be two probability measures on a measurable space (2, E).
If  €[0,1] and B € [0, 1], with o+ 8 = 1, then P, + SP, is a probability measure on the
same measurable space

Definition 2.7.3. Let (2, &, P) be a probability space. The function O : £ -+ RTU{+o0}
defined VA € & by:

P(A .
O(A) = { a0 P(A) <1
+oo , fPA)=1

is called odds in favour of the event A

Definition 2.7.4. Let (2,&, P) be a probability space and B € £ an event such that
P(B) # 0. The B-conditional probability is the probability measure defined, VA € &, by:

P(ANB)
P(AB) = ———*
(IB) = 5
Definition 2.7.5. Let (2,£, P) be a probability space and B € £ an event such that
P(B) #0. An event A € € is called B-independent if P(A|B) = P(A)

Theorem 2.7.5. Bayes’ theorem. Let (Q, &, P) be a probability space and {4;};e;s C &
such that |J..;A; = Q and, Vj € J, P(A;) # 0. Then, VB € £ such that P(B) # 0,
VjeJ:

jeJ
P(B|A;)P(4A;)
>ics P(BlA;)P(A)
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Theorem 2.7.6. Let (2,&, P) be a probability space and B € £ an event such that
0 < P(B) < 1. Then, VA€ &, P(A|2— B) =0 if and only if P(A) = P(AN B)

Definition 2.7.6. Let (2,£, P) be a probability space and B € £ an event such that
0 < P(B) < 1. The likelihood ratio Lr of the B-conditional probability of the event A and
the Q — B-conditional probability of the event A is defined, VA € £ such that 0 < P(A) < 1,
by:

Le(4; B) { +oo , if P(A|Q—-B)=0
r(A4; = A .
POAlg; - if0<P(AQ-B)<1

Theorem 2.7.7. Let (Q2,&, P) be a probability space and B € £ an event such that
0 < P(B) < 1. Then, VA € £ such that 0 < P(4) < 1:

P(A) : B
P(A|B) :{ o ,  if P(AQ-B)=0
T 5 .
(A) - mr@imras-g » f0<PAQ-B)<1

Theorem 2.7.8. Let (Q2,&, P) be a probability space and A € £ an event such that
0 < P(A) < 1. Then, VB € £ such that 0 < P(B) < 1, denoting with O(B|A) the odds in
favour of the event B calculated with respect the A-conditional probability:

B +00 . if P(B|A)=1
O(B|A) = {LT(A;B) .O(B) , if0<P(BJA)<1

Demonstration. Since the condition P(B|A) = 1 implies P(A) = P(A N B), the realtion
derives from the definitions of odds and likelihood ratio

Definition 2.7.7. Let (Q2,&, P) be a probability space, (Y, B) a measurable space. The
function f: Q2 — Y is called random wvariable if it is £-B-measurable

Definition 2.7.8. Let < be the irreflexive relation on a partial ordered set (X, <), and let
(Y, B) be the Borel measurable space generated by the order topology. Let f: Q2 — Y be a
random variable on a probability space (€2, &, P) into the measurable space (Y, B). Then,
the (cumulative) distribution function Py of the random variable f is defined, Vy € Y, by:

Py =P({w € Qlf (w) <y})

ie. Pry = P[f_lBy_]

Note 2.7.1. The probability is defined on the o-algebra of the events; the distribution
function directly on the space of events.
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Definition 2.7.9. A random variable defined on the real Borel measurable space (R, B)
is called real random variable

Definition 2.7.10. Let J # () denote an index set, and let {(Q;,&;, P;)};jes be a family
of probability spaces. Then, VK C J, K # (), the product probability Px = ) jer Py on
the measurable space (Qx, k) is defined, VAg € £k by:

x(Ax) =[] Pi(p;

JEK

Definition 2.7.11. Let J # () denote an index set, and let {(;,&;, P;)};jes be a family
of probability spaces. Then, VK C J, K # (), the triade (g, £k, Pk) is called the product
of the probability spaces {(€2;,&;, Pj)}jes, and indicated by:

Q(X;. 5. Fy)

jEK

2.8. INTEGRALS

Definition 2.8.1. Let (X,.4, 1) be a measure space, and let J # () denote a finite index
set. If p =) jes @ P4, is a measurable positive simple function on X into RT, then the
integral of ¢ with respect to the measure y is defined by:

/¢du D aju(A

JeJ

Definition 2.8.2. Let (X, A, ) be a measure space and f : X — R*™ a measurable
function. The integral of f with respect to the measure p is defined by:

/ fdp= sup / Pdp

where the functions ¢ are positive simple functions

Theorem 2.8.1. Let (X, A, ) be a measure space and f : X — RT a measurable
function. Then, VA € R*:

u({x € X|f(z) > A}) S
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Definition 2.8.3. Let (X, A, ) be a measure space and f : X — R a measurable function,
such that also its positive (fT) and negative (f~) parts are measurable. The integral of f
with respect to the measure p is defined by:

[ faun= [ rau- [ rau

Definition 2.8.4. Let (X, A, 1) be a measure space and f : X — R a real measurable
function. The function is called summable if both the integrals

/ Frdy and / Fdu

are finite; integrable if only one of the two integrals is finite

Definition 2.8.5. Let (X, A, i) be a measure space and f : X — R a measurable function.
If A C X, the integral of f over A is defined by:

/Afdu=/f-¢>Adu

Definition 2.8.6. Let f be a real random variable on the probability space (2,&, P).
Then Vk € N, the momentum of k-th order of the random variable f is defined by:

Bl = / Frdp

In particular:

(a). for k =1, the quantity E[f] is called (mathematical) expectation or mean value
(b).  the quantity E[(f — E[f])¥] is called the centered momentum of k-th order of the
random variable f

(c). the quantity o = E[(f — E[f])?] is called variance, and its square root o standard
deviation

(d). the function Z; = E[ef 7] is called characteristic function

Theorem 2.8.2. Chebyshev inequality. Let f be a real random variable on the probability
space (€2, &, P). Then, VA € R*:

P({wesllf - B2 A} ) < 55 5|7 - B
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Definition 2.8.7. Let f: Q@ — Y be a random variable on a probability space (2, &, P)
onto a partial ordered set (Y, <). The distribution function Py is called regular if Jp; :
Y — R* such that:

Py = / pf(u)du
u<y

The function py is called probability density of the random variable f .

Example 2.8.1. Let n € N be a positive natural number, and X,, C {0} U N be the
set of all natural numbers from 0 to n, i.e. X, = {0,1,...,n}. On the measurable space
(X, Xn), Vp € (0,1), the binomial probability density is defined, Vz € X,,, by:

n _
Dnp = ($>p$(1 _p)n *

Example 2.8.2. Let X = {0} U N be the set of all non-negative natural numbers. On
the measurable space (X, pX), Vp € (0,1), the geometric probability density is defined,
Vz € X, by:

ppr = p(1—p)”

Example 2.8.3. Let X = {0} UN be the set of all non-negative natural numbers. On the
measurable space (X, pX), VA € RT, the Poisson probability density is defined, Vz € X,
by:

A A

PAT = € —
!

Example 2.8.4. Let X = {0} UN be the set of all non-negative natural numbers. On the
measurable space (X, pX), Va € RT, the negative binomial (Pascal) probability density is

defined, Vz € X, by:
+xr—1
pax=<a i )-p“(l—p)w

Example 2.8.5. On the real Borel measurable space (R, B), Vm € R and Yo € R*, the
normal (Gaussian) probability density centered in m is defined, Vz € R, by:

=]

202

1

oV 2r

exp [_

Pm,cT

Example 2.8.6. On the real Borel measurable space (R, B), Vs € R, the Lorentzian
probability density centered in m is defined, Vx € R, by:

1 1

r=—+ - ——
Ps o 1+§_§
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Example 2.8.7. On the real Borel measurable space (R, B), VA € RT, the ezponential
probability density is defined, Vo € RT, by:

P =\-e M

Example 2.8.8. On the real Borel measurable space (R*, B), VA € Rt and Va € RT,,
the Gamma probability density is defined, Vz € R™, by:

_ . a—1_-—Az
PsT = ) (A\x)* e

Example 2.8.9. Let a € R and b € R, a < b. On the real Borel measurable space
((a,b), B), the uniform probability density is defined, Vx € (a,b), by:

1
b—a

Do bl =

Example 2.8.10. On the real Borel measurable space ((0,1), B), Vp € Rt and Vq € R™,
the Beta probability density is defined, Vz € (0, 1), by:
I'(p+q)

ppﬂlrzlep)F(Q)'xp_ A=2)®

Example 2.8.11. Let n € N be a positive natural number. For all » < n and m < n
positive natural numbers, let X C {0} U N be the set of all natural numbers from 0
to min(r,m), i.e. X = {0,1,...,min(r,m)}. On the measurable space (X, pX), the
hypergeometric probability density is defined, Vo € X, by:

e )5
0

Definition 2.8.8. Let J # () denote an index set, and let {(Q;,&;, P;)};es be a family of
probability spaces. Let {f;};es be a family of random variables onto a family of partial
order set {(Yj, <;)}jes, for which 3ps, : Y; — R* (so called joint probability density of
the random variable fy) such that:

PnyJ :/ pr(uJ)duJ
ug<jgyJ
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Then, VK C J, the K-marginal of joint probability density p¢,, ps, is defined by:

Pfe (UK) = / s, (U, uj—K)dus_K
Y-k
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3

IDENTIFICATION AND INDIVIDUALIZATION PROCESSES

In this chapter, the fundamental principles of forensic science are considered, and in par-
ticular the concepts of identity, and the processes of identification and individualization.

At first, definitions of the two principal sets (of evidences and of reference population)
need; then a causality function which connects them is defined.

Moreover, also the scientific method normally used in forensic science (based on Analysis,
Comparison and Evaluation) is analyzed.

3.1. THE SET OF EVIDENCES
The first of the two important sets in forensic science is the set of evidences.
Definition 3.1.1. Let X # () denote the set of evidences

Normally, in forensic science the elements of the set of evidences are bullets, gunshot
residues, cartridge cases, ink, soils, drugs, audiotapes, videotapes, glasses, biological ma-
terial, fingerprints, and generally everything connected to the scene of crime.

Example 3.1.1. Let X C N be the set of the positive numbers from 1 to 12, i.e.
X = {1,2,...,12}. For example, X represents the set of all the possible sums of the
outcomes of two dice. A subset A C X, A ={4,11}, represents a possible result in the set
of evidences
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3.2. THE SET OF REFERENCE POPULATION

The second of the two important sets in forensic science is the set of reference population.
Definition 3.2.1. Let Q # () denote the set of reference population

Normally, the elements of the set of reference population are firearms, barrels, people, etc.

Definition 3.2.2. Let  # () be a set of reference population. The prosecutor’s hypothesis
is a subset C C €2; its complementary subset 2 — C' is called defender’s hypothesis

The subset C' represents the set of all the individuals on prosecutor’s attention, i.e. the
set of the suspect individuals. However, since the choice of the prosecutor’s hypothesis is
arbitrary, C' is normally chosen in order to be the most selective as possible. Actually,
if the set C' denotes for example a group of firearms, a new more selective prosecutor’s
hypothesis C C C can be taken in consideration.

Example 3.2.1. Let Q be the set of all the 36 possible outcomes of two dice. The subset
CCQ,C=1{(22),(3,5)}, represents a prosecutor’s hypothesis. A more selective choice
is C = ((2,2)}

3.3. THE CAUSALITY FUNCTION

The main principle of forensic science is that there is a connection between evidences and
individuals of the reference population. This link is here represented by a function which
connects an element of the set of individual to all the evidences it can produced.

Definition 3.3.1. Let € be the set of reference population, and X the set of evidences.
The function f : Q — pX such that, Vw € Q, fw represents the subset of X of all the
evidences caused by w, is called causality function

Example 3.3.1. Let €2 be the set of all produced stamps, and let X be the set of all
prints on a paper. A causality function can be defined associating to each stamp the set
of all the prints on the paper produced by that stamp

Example 3.3.2. Let Q be the set of all produced firearms, and let X be the set of all
cartridge cases. A causality function can be defined associating to each firearm the set of
all the cartridge cases fired by that firearm

Example 3.3.3. Let €2 be the set of all human biological individuals, and let X be the
set of all DNA fragments. A causality function can be defined associating to each human
biological individual the set of all the DNA fragments which are from that human biological
individual

Note 3.3.1. As the following two examples show, on the same couple of set 2 and X
different causality functions can be defined
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Example 3.3.4. Let Q be the set of all produced barrels, and let X be the set of all
bullets. A causality function can be defined associating to each barrel the set of all the
bullets fired by that barrel

Example 3.3.5. Let  be the set of all produced barrels, and let X be the set of all
bullets. A causality function can be defined associating to each barrel the set of all the
bullets of the same material of that of that barrel

Note 3.3.2. Let C' C Q be the prosecutor’s hypothesis. The set fC represents the subsets
of X of all the evidences associated to all the suspect individuals in the prosecutor’s
hypothesis

Note 3.3.3. No previous properties of f (such as injective or surjective) are assumed

Further typical examples of reference populations, sets of evidences and causality functions
are reported in the following table.

Table 3.3.1. Ezxamples of typical reference populations, sets of evidences and causality
functions.

individuals evidences causality function
Q X f
persons photos picturing
DNA fragments origin
blood stains origin
voice origin
fragments of friction ridge prints origin
footwears sole pattern prints origin
firearms cartridge cases firing
firearm barrels fragments of bullets firing
inks prints production
stamps prints production
primer shootings metallic micro-particles production
windows glass fragments origin
drug standards chemical substances classification

Definition 3.3.2. Let f : Q — pX be a causality function on a set of reference population
Q, and let C' C 2 denote a prosecutor’s hypothesis. The subset:

Acr={r e X|FweC:z € fw}
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is called the set of all the evidences of C' with respect to the causality function f

Definition 3.3.3. Let C C () denote a prosecutor’s hypothesis in the set of reference
population 2, and let A¢ f be the set of all the evidences of C' with respect to the causality
function f. A non-empty subset B C Ac¢ ¢ is called a test set of C' with respect to the
causality function f

Definition 3.3.4. Let A C X be a subset in the set of evidences X, and let f: Q — pX
be a causality function on a set of reference population 2. The subset E4 ; C Q defined
by:

Esf= U {w € Qlz € fw}
T€EA

is called the evidence deduced by A with respect to the causality function f. For sake of
simplicity, let F, y indicate E, ;

Note 3.3.4. The subset E 4 ; of the set of reference population {2 is not defined by f 14,

but by EAJ = UwGAEﬂU’f

Note 3.3.5. The subset E4 ; of the set of reference population could be empty

Example 3.3.6. Let 2 be the set of all outcomes of two dice and X C N represent the
positive numbers from 1 to 12, i.e. X = {1,2,...,12}. Let f : @ — pX the causal-
ity function which associates to each outcome (wi,w2) €  the sum of the faces, i.e.
flwi,wz) = w1 + ws.

If the prosecutor’s hypothesis is C = {(2,2), (3,5)}, then fC = {{4},{8}}, while Ac s =
{4,8}; choosing a more selective hypothesis C' = {(2,2)}, then fC = {{4}}, while A5 ; =
{4}.

If A= {4,11} is a subset of X, then E4 = {(1,3),(2,2),(3,1), (5,6), (6,5)} represents
the evidence; note that f=1A =

3.4. IDENTITY

In set theory, the ontological concept of identity (from the Latin idem, i.e. “the same”) of
two elements is based on the possibility of their distinguishing.

Definition 3.4.1. Let 21 € X and x5 € X be two elements of a set X. The two elements
are called identical if x1 = x4

In this sense, each element is only self-identical, i.e. it is identical only to itself. This
concept is also known as principium identitatis.

Identity of two elements is also defined epistemologically, i.e. by means of their properties.
At first, the concept of “relative identity” is introduced.
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Definition 3.4.2. Let D be an equivalence relation on set X. Two elements z; € X and
To € X are called D-relative identical if x1Dxo

So, an epistemological definition of “absolute identity” can be deduced by hyperbolizing
the concept of relative identity.

Definition 3.4.3. Let D be the set of all equivalence relations on set X. Two elements
x1 € X and z4 € X are called absolutely identical if, VD € D, x1Dxo

Theorem 3.4.1. Two elements 1 € X and x5 € X of a set X are identical if only if they
are absolutely identical.

Demonstration. Since the banal equivalence relation A is the smallest equivalence relation
in D, the two elements z; and x5 are absolutely identical if 21 Ax,, i.e., from the definition
of the banal equivalence relation, if 7 = x3. On the contrary, if z; and x5 are identical,
then VD € D, since reflexivity is a necessary property of equivalence relations, 1 Dzs, and
so x1 and x9 are absolutely identical

In forensic science, this concept is known as the principle of uniqueness, according to
which “all objects in the universe are unique”. In other words, it is always possible to find
differences in two diverse objects.

This concept applies either to the set of evidences, and the set of individuals. In the first
case, two different bullets, two different biological materials, two different recorded voices
are obviously non-identical, and so it is always possible to find differences in them. In the
second case, two different firearms, two different finger patterns, two different persons are
obviously non-identical, and analogously it is always possible to find differences in them.

3.5. IDENTIFICATION PROCESS

In forensic science, identification process is the first part of the method normally used in
forensic laboratories, according to which the characteristics of two different elements of a
set can be analyzed and compared. These two steps represent the first part of the standard
method, and they are indicated by their acronym “AC”.

Definition 3.5.1. Let D denote the set of all equivalence relations on a set of evidences
X. Given z € X, the family of the sets [z]p C X, VD € D, represents the family of all the
characteristics of x

Definition 3.5.2. Analysis. Let D denote the set of all equivalence relations on a set of
evidences X. Given Dy C D, the process of establishing, V& € X and VD € Dy, the sets
[x]|p is called analysis

Example of typical characteristics in the sets of evidences are reported in the following
table.
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Table 3.5.1. Ezxample of characteristics in the sets of evidences.

X D
evidences characteristic
photo pictured biological features
height measurements
DNA fragments DNA profile
blood stains blood group
DNA profile
voice syllable pronunciation velocity
fragments of friction ridge prints minutie position
general pattern
cartridge cases caliber
ejection mark
fragments of bullets caliber
striation mark
prints colour
morphology
shape
metallic micro-particles morphology
chemical composition
glass fragments refractive index
chemical substances chemical composition

According to the principle discussed in the section about identity, two diverse objects can
always be different, and otherwise they can belong to the same equivalence class for a
subset of equivalence relations.

Definition 3.5.3. Let z1 € X and x5 € X be two elements of a set X, and let D denote
the set of all equivalence relations on X. The set D, ,, C D denotes the family of all
equivalence relations such that x1Dxy if D € Dy, 4,

Note 3.5.1. The set D,, ,, is not-empty (e.g. the equivalence relation D = X? belongs
tO Dz17w2)

Note 3.5.2. The set D, ,, denotes the set of all characteristics 1 and z have in common;
otherwise, its complementary set in D represents all the characteristics of difference

Definition 3.5.4. Comparison. Let 1 € X and x93 € X be two elements of a set X,
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and let D denote the set of all equivalence relations on X. Given Dy C D, the process of
establishing Dy N Dy, 4, is called comparison

Note 3.5.3. Comparison is equivalent to establish, VD € Dy, if D € Dy, 4,

Note 3.5.4. Comparison arises also when we have to classify an object or a substance,
and in this case the comparison object is the standard (e.g. heroine, gunshot residues,
etc.)

Example 3.5.1. Let X be the set of all prints on a paper. Two prints 21 and x5 can have
the same colour, but of different shape

Example 3.5.2. Let X be the set of all cartridge cases. Two cartridge cases x; and xo
can be of the same caliber, but of different make

Example 3.5.3. Let X be the set of all ejection marks on cartridge cases. Two ejection
marks xz; and x5 can have the same shape, but different peculiar marks

Example 3.5.4. Let X be the set of all fingerprint fragments. Two fingerprint fragments
x1 and x5 can be both classified as “Arch” for their general shape, but present differences
in the position of the minutie

According to the above definition, both analysis and comparison are objective steps, since
they are based on observation of characteristics: for example, it should be no matter of
discussion that two shoeprints present the same pattern, or different marks on the sole.

3.6. INDIVIDUALIZATION PROCESS

The individualization process is the most critical point in forensic science. After identifi-
cation, elements are classified but where they are from is unknown.

Individualization is the act of evaluating, by comparing two elements in the set of evidences,
if they have a common origin in 2. In other words, the goal is to make a connection between
evidences in X and individuals in €2.

Definition 3.6.1. Let C C Q be a prosecutor’s hypothesis in the set of reference popula-
tion , and let f: Q — pX be a causality function. An element x € X is called deducible
from the prosecutor’s hypothesis C' if x € Ac s

Theorem 3.6.1. Let C' C €2 be a prosecutor’s hypothesis in the set of reference population
Q, and let f : @ — pX be a causality function. An element x € Ac ¢ if and only if
E,;NC# 0.

Demonstration. If x € Ac s, then Jw € C such that z € fw, and so, for definition of F, ¢,
w € E, r; therefore, E; f N C # (. On the contrary, if E, N C # (), then 3w € E, N C
such that, for definition of F; ¢, x € fw, and so z € A¢g

Definition 3.6.2. Let f : {2 — X be a causality function on a set of reference population

28



Q. Two elements 1 € X and zo € X are called deducible from a same prosecutor’s
hypothesis if 3C C Q such that z; € Ac,r and 9 € A s

Theorem 3.6.2. Let f: 2 — pX be a causality function on a set of reference population
Q. Two elements ;1 € X and z5 € X are deducible from a same prosecutor’s hypothesis
if and only if both E,, ¢ # 0 and E,,  # 0.

Demonstration. If x1 and x, are deducible from a same prosecutor’s hypothesis, then,
for the previous theorem and the definition, 3C' C Q such that both E,, f N C # () and
E., N C #0, and so both E,, ¢ # 0 and E,, s # 0. On the contrary, if both E,, s # 0
and E,, ¢ # 0, then, defining C = E;, fUE,, , for the definition z; and z are deducible
from the same prosecutor’s hypothesis C

Definition 3.6.3. Let C C () denote a prosecutor’s hypothesis in the set of reference
population 2, and let Ac r be the set of all the evidences of C' with respect to the causality
function f. Denoting by D the set of all equivalence relations on a set of evidences X, the
set:

Do,p ={D € D|Va1 € Ac,1,Vz3 € Ao,y : D € Do,y }

is the set of all equivalence relations for which A¢ ¢ is a subset of a unique class of equiv-
alence

Note 3.6.1. The set D¢, ¢ is not-empty (e.g. the equivalence relation D = X? belongs to
Do)

Note 3.6.2. Locard’s principle. In forensic science, the assumption that different char-
acteristics of the elements of the set of evidences X can be due to the fact that they are
deducible from diverse individuals in €2, is known as Locard’s principle

Theorem 3.6.3. Let J # () denote a finite index set, and let {D;};ecs be a family of
equivalence relations in D¢ ¢. Then, the intersection () jes Djis an equivalence relation in

Do,y
Definition 3.6.4. The smallest equivalence relation in D¢ ¢ is indicated by D¢ ¢
Theorem 3.6.4. Let C C €2 denote a prosecutor’s hypothesis in the set of reference

population €2, and let A¢ r be the set of all the evidences of C' with respect to the causality
function f. Denoting by D¢ ¢ the smallest equivalence relation in D¢ ¢, Vo € X:

T € Ac,f if AC,f - [x]Dc,f

Theorem 3.6.5. Let C C €2 denote a prosecutor’s hypothesis in the set of reference
population €2, and let A¢ f be the set of all the evidences of C' with respect to the causality
function f. With the previous notation of D¢ ¢, given y € Ac r and Dy C D, if x € A ¢
and D € DC,f; then D € Da;y
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Theorem 3.6.6. Let C C (2 denote a prosecutor’s hypothesis in the set of reference
population 2, and let Ac r be the set of all the evidences of C' with respect to the causality
function f. Denoting by D¢, r the set of all equivalence relations on a set of evidences X
such that AC,f - [.’E]D, VD € DC,f7 given r € Ao’f and D € DCJ, then, VB C AC,f;
B C [z]p and, Vy € B, D € D,

Definition 3.6.5. The given element y € Ac s is called known or experimental; the
element x € Ac ¢ is called unknown or question

As in the previous sections, after the ontological aspects the epistemological ones are
considered. At first, the method of abduction is introduced.

In logical reasoning, three methods of inference are known: deduction, induction and
abduction. Deduction uses a rule (r) and a precondiction (p) in order to make a logical
conclusion (c¢); induction uses the precondition (p) and the conclusion (c) in order to learn
a rule (r); finally, abduction uses a conclusion (c¢) and a rule (r) in order to assume the
precondition.

Table 3.6.1. Differences between three different kinds of logical reasoning.

Deduction Induction Abduction
Magjor hypothesis rule precondition rule
Minor hypothesis precondition conclusion conclusion
Thesis conclusion rule precondition

The typical example is taken from the works of the philosopher Charles Sanders Pierce.
(r). rule: All the beans in the bag are white ;

(p). precondiction:  This bean is from the bag ;

(c). conclusion:  This bean is white

Obviously, only the deductive method is the logically correct (e.g. “since all the beans in
the bag are white and this bean is from the bag, then this bean is white”), while induction
and abduction cannot be formally demonstrated. In particular, induction sounds as: “since
this bean is from the bag and this bean is white, then all the beans in the bag are white”;
and abduction as: “since all the beans in the bag are white and this bean is white, then
this bean is from the bag”!

In forensic science, abduction so is normally used to formulate a precondition, in order to
establish the truth of the prosecutor’s hypothesis. The method is applied to the previous
theorem, where the three sentences are the following:

(r). rule: y€Acgand DeDy ;

(p). precondiction: 1z € Ac sand D € Doy, and
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(c). conclusion: D €Dy,
So the receipt can be summarized in the following way.

Abduction 3.6.1. Let C' C € denote a prosecutor’s hypothesis in the set of reference
population 2, and let A¢ r be the set of all the evidences of C' with respect to the causality
function f. With the previous notation of D¢ ¢, given y € Ac r and Dy C D, if D € Dy,
then z € 14071c and D € Dc,f

Note 3.6.3. If B C Ac ¢, the theorem and the abduction can be applied Vy € B
If no explicit prosecutor’s hypothesis is known, then the following theorem holds.

Theorem 3.6.7. Let ;1 € X and z2 € X denote two elements in the set of evidences, and
let £y = E,, s and Ey = E,, ; denote the evidenced deduced by z; and z, with respect
to the causality function f, respectively. Given E7 # () and Dy C D, if x5 € Ap, f and
D € Dg, s, then D € D, ,,. Analogously, given Ey # 0 and Dy C D, if z; € Ag, s and
D € Dg, s, then D € Dy 4,

In this case, considering:

(r). rule: E;#@and DeDy ;

(p). precondiction: x5 € Ag, fand D € Dg, ¢ ;

(c). conclusion: D €Dy, 4 ;

and the analogue ones, the following abduction can be considered.

Abduction 3.6.2. Let x; € X and z5 € X denote two elements in the set of evidences,
and let £y = E;, s and Ey = E;, ; denote the evidenced deduced by z; and z, with
respect to the causality function f, respectively. Given E; # () and Dy C D, if D € Dy, 4,
then zo € Ag, y and D € Dg, . Analogously, given Ey # ) and Dy C D, if D € Dy, 4,,
then z; € AEQ,f and D e DEl,f

Definition 3.6.6. Fwvaluation. In the hypotheses of the previous abduction, the process
of establishing if Dy N Dy, ,, implies that if D € D,,, then x € Ac y and D € D¢ ¢, in the
first case, or x3 € Ap, y and D € Dg, f,0or 1 € Ag, 5y and D € Dg, ¢, in the second case,
is called ewvaluation

Between the equivalence relations, someone is trivial, not useful or useful. Two fingerprints
can both be green, and have an “Arch” shape. If the interest is to detect if they are from
the same finger, their colour is obviously not important while their characterization as
“Arch” is relevant. Otherwise, if the interest is in the kind of ink they are produced by,
obviously the colour is important while the “Arch” shape is irrelevant. So, evaluation is
the most critical step in the standard method: differences and analogies arisen from the
comparison must be evaluated in decision making.

Moreover, since the process of evaluation is not deductive but abducted, it is not objective.
In other words, each forensic scientist can subjectively evaluate if the same characteristics
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of £1 and 5 in the set Dy are enough to abduct that there exists a prosecutor’s hypothesis
from which z; and x5 are deducible.

The standard method based on the three steps “analysis”, “comparison” and “evaluation”
is indicated in literature by his acronym “ACE”.

Definition 3.6.7. False positive. A positive abduction even if in reality ¢ Ac¢ 7 in the
first case, or x5 ¢ Ap, 5, or x1 ¢ Ag, ¢, in the second case, is called false positive

Definition 3.6.8. False negative. A negative abduction even if in reality z € A¢ ¢ in the
first case, or 9 € Ap, ¢, or 1 € Ag, ¢, in the second case, is called false negative

Note 3.6.4. The process of artificially creating an elements x € X so that it is considered
a false positive, is called simulating; on the contrary, the process of artificially creating an
elements z € X so that it is considered a false negative, is called dissimulating

Even if subjective, evaluation is based on standards, and there are generally accepted
procedures and rules a good competent examiner will follow.

Note that the process of individualization can have different values in the proceedings.
Actually, normally connection between the crime scene and the evidences, and between
the evidences and the suspects are considered.

Sometimes, the connection between the crime and the evidences is very high: it is the
cases, for example, of the videotapes where a crime is recorded, or an audiotape where
menace is recorded. There, the image or the voice are the evidences, and they are nearly
linked to the crime. The connection between the evidences and the suspect becomes so
very important in decision making. In this case, the report of the forensic scientist is very
fundamental for the evaluation of the posterior odd.

In other cases, the evidence can be nearly connected to the suspect, for example in the
case of identification by wide fragments of fingerprint or of DNA. But it is not so obvious
that the evidence is linked to the crime: for fingerprint, the suspect could be on the scene
of crime before or after the crime, or during the crime without being connected to the
crime itself. In this sense, DNA is a weaker evidence since it do not prove the presence on
the crime scene of the suspect: DNA could reach the crime scene independently from the
suspect.

The forensic science is normally interested in the evaluation of the second step (connection
between the evidences and the suspect), while the investigator in the first one (connection
between the evidences and the crime). Finally, the judge have to collect the two information
together and express his decision.

Example 3.6.1. Personal individualization. If the set of individuals €2 is constituted by
people, the process of individualization is personal individualization

Different kinds of characteristics can be found in literature.
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Definition 3.6.9. Class characteristics. Characteristics for which, Vz € X, the evidence
El4),,,5 contains a great number of individuals, are called class characteristics

Definition 3.6.10. Individual characteristics. Characteristics for which, Vx € X, the
evidence F;), ¢ contains few (or one) individuals, are called individual characteristics

In other words, class characteristic refers to general and limited properties of the individ-
uals; while individual ones to peculiar properties of the individuals.

Example 3.6.2. In the set of evidences X of cartridge cases, the characteristic D indi-
cating the caliber is a class characteristic; a peculiar sign in the ejection mark can be a an
individual characteristic
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4

PROBABILITY IN FORENSIC SCIENCE

In the previous chapter, the individualization process has been discussed, according to
which it is possible to abductively associate evidences to individuals of a reference pop-
ulation. The opposite has not been discussed: once the evidences are compatible with a
prosecutor’s hypothesis C, it should be questioned if and how many other hypotheses are
compatible with the evidences. In order to answer to this question, different reasoning can
be done, but the answer often present in the Courtroom is often based on good sense and
experience of the forensic expert. Considering this approach not enough in order to have
a satisfactory answer, a statistical approach can be introduced.

In forensic science, the widespread accepted approach in the evaluation of evidences is
the probabilistic one, based on the Bayesian model. In this approach, the judge have to
discriminate two complementary hypotheses in probabilistic version, by estimation of the
odds, i.e. the ratio between the their probabilities: as in gambling, the winning probability
with respect to the loosing one is the measurement of decision making of what to do. And
the forensic science has to support the judge in decision making by evaluating of the
likelihood ratio between conditional probabilities.

For sake of simplicity, all subscripts indicating the prosecutor’s hypothesis C and the
causality function f will be omitted, when no ambiguity can arises (e.g. F will indicate
EC, fs etc.).
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4.1. PROBABILITY SPACE

By introducing a probability measure on the set of reference population €2, some definitions
of the previous chapter can be reviewed.

Definition 4.1.1. Let {2, £, P} be a probability space on the set of reference population
Q

Definition 4.1.2. Let the prosecutor’s hypothesis C' be a measurable set on the probability
space {Q,&, P}, ie. C €&

In this scenario, the probability of C, P(C'), and the probability of the defender’s hypothesis
Q—-C, PQ—C) =1— P(C) can be calculated. These probabilities are called prior
probabilities, and, if P(C) < 1, their ratio:

P(C .
0(0):{% , ifo<PC)<1
4o, i PC)=1

represents the prior odds in favour of the prosecutor’s hypothesis.

Normally, the judge is at first interested in evaluation of the prior odds O(C). If O(C) > 1,
the prior probability of the prosecutor’s hypothesis is greater that the prior probability of
the defender’s one. Normally, an appropriate choice of C' can assure O(C) < 1.

Note 4.1.1. A causality function f on the probability space {2, £, P} is a random variable,
and so on pX a probability space {pX, A, I1} is naturally defined

As described in the previous chapter, individualization allows the forensic expert to define
in the set of reference population €2 the evidence E.

Definition 4.1.3. Let the evidence E be a measurable set on the probability space
{Q,E,P},ie. E€€&

4.2. BAYESIAN APPROACH

When an evidence FE, with P(E) # 0, is considered, this new information in the scenario
requires an up-date of the calculation of the probabilities the judge has now to take in
account: the so called posterior probabilities are calculated by conditioning C' and Q2 — C,
respectively, by the evidence E. Consequently, their posterior odds can be estimated:

P(C|E .
O(C):{% ) lfOSP(C|E)<1
+o0 , ifP(CIE)=1

Definition 4.2.1. The quantity P(E|C) is called match probability
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Definition 4.2.2. The quantity P(E|Q2 — C) is called random match probability

According to Bayes’s theorem, the two posterior and the prior odds are proportional by a
multiplicative factor Lr(FE; C), called likelihood ratio or Bayes factor, which is defined as the
ratio between the match probability and the random match probability: if 0 < P(C) < 1
and 0 < P(E) < 1, then:

B +o0 . if P(C|E)=1
O(CIE) = {LT(E; C)-0(C) ., it0<P(C|E) <1
here:
e too ., if P(E|Q-C)=0

Lr(E;C) = .
(E;C) {ﬁ%%% , if0<PEQ-C)<1

The aim of the forensic scientist lies in the calculation of the likelihood ratio, in order
to support the judge in the evaluation of the posterior odds. Accordingly, the forensic
scientist has to present the results of his analysis in such appropriate way that no doubt
of interpretation could arise.

If Lr(E;C) > 1, the evidence E favours the prosecutor’s hypothesis, and the greater the
value of the likelihood ratio is, the more determinant the evidence is. On the contrary,
if Lr(E;C) < 1, the evidence E increases the defender’s hypothesis probability rather
than the prosecutor one, and Lr(E;C) < 1 means that the evidence makes the defender’s
hypothesis very strong. Finally, Lr(E;C) = 1 implies the absolutely unconcern of the
evidence about the two hypotheses.

The result can also be indicated by means of the base-10 logarithm of the likelihood ratio,
whose sign indicates if which of the two hypotheses is strong (plus, for the prosecutor’s
hypothesis, minus for the defender’s one), and whose value gives specifies the relative
magnitude order of the strength of the hypothesis.

Example 4.2.1. Let F an impossible event, i.e. P(E) = 0. Then, the evidence F is
absurd

Example 4.2.2. Let E a certain event, i.e. P(F) = 1. Then, since P(E|C) = 1 and
P(E|Q—C) =1, Lr(E;C) =1, i.e. the evidence is non-essential

Example 4.2.3. Let E an event such that £ C C. Then, since P(E|C) # 0 and
P(EIQ—-C) =0, Lr(F;C) = 400, i.e. the evidence is essential, in favour of C
Example 4.2.4. Let E an event such that £ C Q — C. Then, since P(E|C) = 0 and
P(EIQ—-C)#0, Lr(FE;C) =0, i.e. the evidence is essential, in favour of 2 — C

If finite, the likelihood ratio can also be written:

P(EIC) -[1 = P(C)]

Lr#:0) = 5wy~ PlEIC) - P(O)
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o P(ENC)  1-P(C)

P(E)-P(ENnC) P(C)

These expressions lighten the three dimensional character of the likelihood ratio: the exact
calculation needs the evaluation of three independent parameters: P(E), which represents
the probability of the evidences, and which is normally estimated by means of databases;
the match probability P(E|C) (or alternatively P(ENC)); and the prior probability P(C),

which is often unknown to the forensic expert.
Moreover, given P(E) and P(E|C), it is not possible in general to deduce P(FE|Q — C).

Lr(E;C) =

Example 4.2.5. In the case of individualization by means of DNA profiling, normally the
loci of the evidence E can or cannot match with the suspect DNA code. In the first case,
P(E|C) =1, while in the second P(E|C) = 0. The statistical frequencies of the loci in the
human population are scheduled (P(FE)). But, it is not possible to know the exact value
of P(E|Q2—C)

Example 4.2.6. Let 2 be the set of all outcomes of two dice and X C N represent the
positive numbers from 1to 12,i.e. X = {1,2,...,12}. Let f : Q@ — pX the random variable
which associates to each outcome (w1, ws) € Q the sum of the faces, i.e. f(w1,ws) = witws.
Let all the events be considered with equal probability on the measurable space (€2, p€2), i.e.
the probability measure such that P({w}) = 1/36, Vw € Q. If the prosecutor’s hypothesis
is C ={(2,2),(3,5)}, then P(C) =1/18 and P(Q — C) = 17/18, and the prior odds are
o(C) =1/17.

If the set A C X is A = {4,11}, then £ = E4; = {(1,3),(2,2),(3,1),(5,6),(6,5)}
represents the evidence, and P(FE) = 5/36.

Moreover, P(E|C) =1/2, P(E|Q—C) = 2/17 and Lr(E; C) = 17/4. Again, P(C|E) =1/5
and P(Q2|E) = 4/5, and the posterior odds are O(C|E) = 1/4. But, it is not possible to
deduce the last result from the two known values

In the hypotheses C' C FE or 2 — C C E, the inequalities of the following examples hold.
Note that often C' can be choose so that one of the previous two hypotheses is verified.

Example 4.2.7. Let E an event such that C' C E. Then, since P(E|C) = 1:

1 1
Lr(E:C) = pgia=c) = p) =

Example 4.2.8. In the case of individualization by means of DNA profiling, if P(E|C) =
1, then C C E, and hence ﬁ is an underestimation of Lr(E;C)

Example 4.2.9. Let E an event such that @ — C C E. Then, since P(E|Q2Q—-C) = 1:
Lr(E;C) = P(E|C) < P(E) < 1

37



4.3. ERRORS IN INTERPRETATION
Examples of fallacies in interpreting probabilistic results abound.

Fallacy 4.3.1. Prosecutor’s fallacy. The prosecutor’s fallacy, or transposed conditional
fallacy, consists in considering the value calculated P(E|Q2 — C) instead of the value of
P(Q—-C|E)

Example 4.3.1. In the example of the two dice, the probability of the evidence E in the
defender hypothesis is P(E|Q2 — C) = 2/17 = 11.8%. The prosecutor’s fallacy considers
that the posterior probability P(2 — C|FE) holds 11.8%, and so the posterior probability
of C, P(C|E), is 89.2%

Fallacy 4.3.2. Defender’s fallacy. The defender’s fallacy consists in considering the value
of the evidence F irrelevant since the O(C|E) < 1, even if Lr(E;C) > 1

Example 4.3.2. In the example of the two dice, since O(C|E) = 1/4 = 25% is considered
by the defender not enough in order to proof C, he consider irrelevant the evidence FE,
even if Lr(E;C) = 17/4 = 4.25%. The fact that O(C|E) < 1 depends by the low value of
the prior odds: O(C) = 1/17 =5.9%

In literature, famous cases in which fallacies was erroneously considered in decision are
reported (e.g. the cases of Dreyfus, People v. Collins).
4.4. VIRTUAL SCALE OF INTERPRETATION

In some branches of forensic science, since no accepted mathematical models are in used in
evaluation of the probabilities in €2, approximated virtual scales of interpretation are used.
Different degrees of interpretation can be used, even if the virtual scales are normally based
on four different levels, as reported in the following table.

Table 4.4.1. Ezxample of a four value virtual scale.

result likelihood ratio comments
high positivity Lr(E;C)>1 class and individuals
characteristics match
low positivity Lr(E;C) > 1 class characteristics match,
no relevant individual characteristics
inconclusive Lr(E;C)=1 no relevant class characteristics,
no relevant individual characteristics
negative Lr(E;C)<1 class or individual
characteristics do not match
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The trying of introduction in automatic method in comparison is developing algorithms
which allow a quantification of the match probability.

4.5. APPLICATIONS

Many applications of Bayesian approach in forensic science are known in literature.

The first example is in the so called sampling theory, generally used when it is not possible
or it is not economically moderate to analyze all the evidences. It is the case of an analysis
of a great number of tablets of suspect drug, of ammunition, or of glass fragments. Again,
sampling theory is used when diverse exclusive-destroying analyses are need on the exhibit,
and so the prosecutor intends to make different examinations on group of evidences.
Secondly, applications on personal individualization are very important in forensic science.
Actually, personal individualization allows a direct connection between the evidences and
people who are involved in legal proceedings; on the contrary, in applications on object
individualization, although non trivial in legal proceedings, a direct link between objects
and involved people has to be demonstrated.

Applications in personal individualization are based on DNA analysis, on voice recognition,
on friction ridge prints (fingerprints, palmprints and footprints), and on somatic features.
Different levels of individualization can normally be reached: DNA and friction ridge prints,
in the case of evidences with significant information, can imply very high values of the
likelihood ratio; on the contrary, with voice recognition and somatic features comparison,
lower values of Lr(E;C) are reached. But, as previously noted, sometimes in these cases
the evidence is strictly connected to the crime, while friction ridge prints and DNA do not.
Actually, friction ridge print demonstrates the presence of the person on the scene of crime,
but not his direct connection to the crime; DNA do not demonstrate the presence of the
person since, for example, a cigarette boot can be present on the scene of crime by different
causes. In this sense, the results of the use of police database in which fingerprints and
DNA profiles are filed (AFIS, CODIS, etc.) should always be considered by the judge in
accordance to intelligence results. Note that, since DNA follows well-known heredity rules
of transmission from parents, it is useful for recognition of missing persons by comparison
with DNA profiles of relatives.

Finally, applications on object individualization (glasses, fibers, etc.), and in calculating
their transfer probabilities, are known in literature.

REFERENCES

Aitken Colin G.G., Statistics and the evaluation of evidence for forensic scientists, John
Wiley & Sons (1997)
Karlin Samuel, A first course in stochastic processes, Academic Press (1975)

39



[10].
[11].
[12].
[13].

14].
[15].

[16].
[17].

[18].

. Zavattaro Davide, L’identificazione e il problema dell’interpretazione del dato scientifico.

Riflessi dibattimentali, Rassegna dell’Arma dei Carabinieri 4, 53-65 (2001)

. Pastena Pietro, La scienza delle tracce. L’identificazione scientifica dell’autore di un cri-

mine, Bonanno Editore (2003)

. Gastwirth Joseph L., Statistical science in the Courtroom, Springer-Verlag Telos (2000)
. Good Phillip 1., Applying statistics in the Courtroom, Chapman & Hall/CRC (2001)
. Azoury Myriam, Grader-Sageev David, Avraham Shlomit, Evaluation of a sampling pro-

cedure for heroin street doses, J Forensic Sci, 43, 6, 1203-1207 (1998)

. Aitken Colin G.G., Sampling - How big a sample?, J Forensic Sci, 44, 4, 750-760 (1999)
. Amraoui Yacine, Allio Ingrid, Garcia Carine, Perrin Martine, Fchantillonage et interpréta-

tion: application aux produits de saise analysés par un laboratoire de toxicologie, Annales
de Toxicologie Analytique, XIII, 4, 265-274 (2001)

Curran James M., Triggs C.M., Buckleton Jhon S., Sampling in forensic comparison prob-
lems, Science & Justice, 38, 2, 101-107 (1998)

Tzidony Dov, Ravreby Mark, A statistical approach to drug sampling: a case study, J
Forensic Sci, 37, 6, 1541-1549 (1992)

Frank Richard S., Hinkley Sidney W., Hoffman Carolyn G., Representative sampling of
drug seizures in multiple containers, J Forensic Sci, 36, 2, 350-357 (1991)

Guidelines on representative drug sampling, European Network of Forensic Science Insti-
tutes, Drug Working Group (2004)

Evett ITan W., Weir Bruce S., Interpreting DNA evidence, Sinauer Associates (1998)
Vanezis Peter, Lu David, Cockburn Jeff, Gonzalez America, McCombe Graeme, Trujillo
Orlando, Vanezis Maria, Morphological classification of facial features in adult Caucasian
males based on an assessment of photographs of 50 subjects, J Forensic Sciences, 41 (5),
786-791 (1996)

Stoney David A., Thorton John 1., A critical analysis of quantitative fingerprint individu-
ality models, Journal of Forensic Sciences, JFSCA, 31 (4) 1187-1216 (1986)

Curran James M., Hicks Tacha N., Buckleton Jhon S., Forensic interpretation of glass
evidence, CRC Press (2000)

Causin Valerio, Schiavone Sergio, Marigo Antonio, Carresi Pietro, Bayesian framework for
evaluation of fiber evidence in a double murder - A case report, For Sci Int 141, 159-170
(2004)

40



5

THE EXTENDED LIKELIHOOD RATIO

The use of Bayesian approach in likelihood evaluation failed when the evidence E and
the prosecutor’s hypothesis C' are disjoint events. This means that the evidence is not
compatible with the suspect, and then the casework has a negative conclusion. The reason
is trivially in the fact that the value of the standard definition of conditional probability
P(A|B) is zero when the two events A and B are disjoint. This non-compatibility of
E and C can be very common, especially using continuous variables (e.g. height, voice
frequencies, etc.), where the evaluation of the odds fails. Moreover, the difference should
be evaluated with respect to a database, in order to have different evaluation in the center
of the probability density of the population rather than in the tail.

For example, if the suspect’s height measure in centimeters is C' = {180}, P(C|E) = 0 if
the evidence is both £ = {179} and E = {210}; but the first case could be not exclusive
as the second one since the difference with C' is just 1 centimeter. Moreover, if C' = {209}
and E = {210} the rarity of the measurements of C in the population should bring to a
more conclusive case rather than the case in which C = {180} and E = {179}.

In this chapter, a new approach to calculate the probability of the intersection of two
events is proposed. It is depending on the database and a positive parameter €, such that
the evaluation of the likelihood ratio is not zero when FE and C' are disjoint, and it reduces
to the standard case in the limit € — 0.

This result is achieved by construction of a copula and a function A(e) is also evaluated in
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order to control the concentration properties of the copula.

5.1. THE EXTENDED PROBABILITY

Let X denote the random variable which models a characteristic of the population in the
probability space ({2, &, P} (e.g. the height measure), and let Px indicate the relative
probability measure.

Since the standard formula for the likelihood ratio:

. Px(EnC) Px(Q-0C)
Lr(B;C) = Px(ENQ—-C) Px(0)

involves the evaluation of the probability of the intersection of two sets, the purpose is to
introduce a new approach to the computation of the probability so that the intersection
of two disjoint events A and B is not trivially nought.

Let P)(f ))( define a suitable family of bivariate probability measures on 22, depending on a
positive parameter ¢, such that, VA € £ and VB € &, the following properties hold:
PEL(A,B) >0, if A B#0
Pk (A, B) =Pk (B, A)
PE) (4,0) =Px(4)
lim P§) (A, B) = Px(AN B)
E—>
This means that the bivariate probability is positive, symmetric, its marginals coincide to
the univariate probability, and in the limit € — 0 it reduces to the the standard definition
of the probability of the intersection of the two events.

The proposed method in generalizing the formula of the likelihood ratio is based on the
following rule:

to replace in the likelihood ratio the univariate probability of the intersection Px(A N B)
with the extended bivariate probability P)({-6 ))( (4, B).

More precisely, the replacement is:
Px(AnB) — PY(A,B)
According to this scheme, the likelihood ratio can be replaced by:

PEY(E,C)  Px(2-0)

Lr&(E;C) =
P (E,Q-C) Px(©O)
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which tends to the standard one in the limit € — 0.

The construction of the extended probability measure P)((6 ))( can be based on the theory
of copulas. A suitable copula is constructed by a bivariate Gaussian distribution with
e-depending covariance, and using this copula, the bivariate distribution has as marginals
the chosen database, assumed to have a positive density.

5.2. GENERALITIES

Some basic facts on bivariate random vectors are here recalled.
Given a real random variable X and denoted its probability density by px, supposed to
be sufficiently regular and positive, the probability of the event A C R is:

Px(A) = / ds px (s)
A
and the distribution function is:
Fx(z) = / ds px(s)
s<x

If (X,Y) is a pair of random variables,let px and py denote the two probability densities,
respectively, and let pxy be their joint probability density. With these notations, the
probability calculated in the rectangle (A, B) of R? with bases A and B is:

PXy(A,B):/ ds/ dt pxy(s,t)
A B

The relationships between the joint density and its marginals are the following:
px(s) =/ dt pxy (s,t)
Q

py (t) :/st pxy(s,t)

5.3. CONSTRUCTION OF A COPULA

In order to define the family P)((6 ))(, standard arguments related to the theory of copulas
are used.

Essentially, a copula is a bivariate probability distribution K (u,v) on [0, 1]? such that its
marginals are uniform on [0, 1].

The cited problem is equivalent to construct a family of copulas K () (u,v), depending on
the positive parameter €, which are concentrated along the diagonal u = v.
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The main tool is the inversion method based on the well-known property: if Z is a random
variable and Fz is its distribution function (supposed to be invertible), then:

Fp(Z)=U

where U is the uniform random variable on the interval [0,1]. So, the pair of random
variables (Uy, Us) defined as:

Uy =Fz,(Z1)

Uz =Fz,(Z2)

has a joint probability distribution which is a copula.
A possible choice is to use a bivariate Gaussian vector (77, Z3) with zero mean and covari-
ance matrix C.:
1 1-¢
Ce = [1 —e 1 ]
[note that det C. = ¢(2 — ¢)].
If z = (21, 22), the joint probability density is:

1 1
ve(z) = o deti2C. P (‘5205 z)

where C! denotes the inverse of the covariance matrix. Let ®(°) denote the associated
distribution function.
With this choice of ¢., the function ¢g(z1, z2) can be defined as:

. 1 1
po(21,22) = lim e (21, 22) = Jor P <—§Z1zz> “0(21 — 22)

™

N

z°
2

- ) has been used. Moreover:

where the limit 6(x) = lim, ﬁ - exp (_%

1 1
¢1(z) = on  OXP <—§Z2>

i.e. the case of Z; and 75 independent.
Since the two marginal densities have the same e-independent form, this can be written

by 1 1
02) = =+ exp (—5z2)

and, in the same way, ®(z) is the distribution function.

The function ¢ (21, 22) represents a bivariate density with the mass concentrated on the
diagonal line {z; = 23} in R?, and centered in (0,0), as shown in the following figure. The
rectangle (A, B) has vanishing contribute to the probability as e — 0, as expected.
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Figure 5.2.1. Simulation of a bivariate density with 500 points, using the free statistical
software R. (a) and (b): rectangle not intersecting the diagonal for e = 0.3 and ¢ = 0.1,

respectively; (c¢) and (d): rectangle intersecting the diagonal for ¢ = 0.3 and ¢ = 0.1,
respectively.
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A copula can be defined by:
K©(u,0) = 8 (@7 (u), 27" (v))

It is well-known that if X and Y are two real random variables with distribution F' and G
respectively, and K is a copula, then the function H defined by:

H(z,y) = K(F(z),G(y))

is a bivariate distribution function with marginals F' and G.
Applying this property to the pair (X, X), where X is the database, the family of ole)
defines a family Hgg(

HE (z,y) = KO (Fx (2), Fx(y))

such that each of them is a bivariate distribution function with both marginals Fx. The
densities hg?X can be computed according to the formula:

82H ) (z,y)

Finally, the probability measure P)((s ))( (A, B) can be defined by:
PO B = [ as [ anfiis
A B
Making a suitable change of variables:

u=Fx(s) and v = Fx(t)

the probability P)((6 ))( (A, B) can be written as:

P)((E))((A,B) :/ du/ dv k) (u,v)
Fx(A) Fx(B)

O?K () (u,v)
Oudv

where:

E©) (u,v) =
With another change of variables
21 =071 (u) and 2z5=®"!(v)
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the extended probability can also be written by:

P)(f))((A, B) :/ le/ dze e(21, 22)
a1 (Fx () Je-1(Fx(B))

Application of the use of extended likelihood ratio in the case of height measurements of
people from recorded videotape is reported in chapter 7.

In order to summarize the obtained results, the principal used quantities are reported in
the following table.

Table 5.3.1. Summary of the used quantities.

1-D spaces R [0,1] Q
variables z U s
distributions o — +— Fx
densities b — — px
dz = Ao (u) = d®~1(Fx(s))
differentials d®(z) = du = dFx (s)
dFx " (®(2)) = dFx " (u) = ds
2-D spaces R? [0,1]% 02
distributions B (21, 29) K©)(u,v) Hg?;( (s,t)
densities e (21, 22) k) (u,v) hg?X (s,t)
marginals d(2) 1 px(s)
lime_0 d(21)0(z1 — 22) d(u —v) px(s)0(s —1)

5.4. CONCENTRATION PROPERTIES OF THE COPULA

In order to analyze the properties of the copula, a parameter X is introduced in evaluating
how much the density is concentrated along the diagonal w = w. The choice of this
parameter, which is a function of ¢, is the following:

Ae) = /01 du/ﬂ1 dv [u —v]? k@) (u, )

According to the change of variables of the previous section, the parameter can also be
written:

Ae) = /Rdzl/Rdzz [®(21) — ®(22)]? e (21, 22)
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The choice of the bivariate Gaussian distribution allows the explicit computation of this
function (section 5.5), with € € (0, 1):

1 (I1+e)3—¢) 1
A(e) = — arct - -
() —arctan [—¢ 3
Obviously,
lim A() = 0
e—0

and more precisely:

V3 1
A N S T2 2
() pl C + o(e?)
In the case of independent variables, i.e. for ¢ = 1, trivially the density of the copula
is k(9)(u,v) = 1. Hence, A(1) can be easily computed according to its definition and
the result is A(1) = L. The same result can be also obtained from its explicit formula:
1
E-

6
lime_1 A(e) =

5.5. CALCULATION OF A(e)

In the following, some integrals known in literature are used, and in particular formulas
[3.322.2] and [6.285.1] of reference [7]. For sake of linearity, the two integrals are here
reported.

+o0 2
/0 dx exp [_Z_ﬂ - 'y:v] = \/7?,6 exp(Bvy?) [1 — @0(7\/3)] , Rep>0

+oco
_,2,2 arctanp
dr [1—®¢(x)] e*#* =—F=— , Repu>0
/0 [ (=) py/m

where:

Note that it is easy to show that:

2

+oo 5
/ dr [1 —®o(—x)] e * [ — arctan p]
0

1
e

using the fact that ®g(z) = —Po(—2) and the Gaussian integral f0+°° dz e~ 1’7" = ‘2/—5
Now, let A be a real symmetric 2 x 2-matrix:

A= [011 a12}

a12 Aa22



with a1 > 0 and det A > 0. Then:

1 det'/2 4
+o0 +00 1 Tori/7 7 arctan ["GT} , a12>0
/ d21/ dzy exp |:—§ZA2:| = s
0 0 1 _ det 7~ A
el A (71' arctan[ lana] ]) , a12<0

Actually, applying the known integrals, the left hand side integrated with respect to z; is:

+o0 2

s a12%29 Z9
— d 1-& e — det A
V 2a11 /0 “ [ of 2a11 )] P [ 2a11 ]

and in the two cases a12 > 0 and a2 < 0 the the results directly follow.
Now, in order to calculate explicitly A(e), a remark is preliminary made:

Ae) = /R iz /R dzs [B(21) — B(22)]2 e (21, 22)
==~ 2a(e)

where the fact that:

/Rdz1<I>2(z1)/Rd22cp€(z1,z2) :/Rdz1<I>2(z1)¢(zl) =3 0: 3

and its symmetric relation are used; moreover, by definition:

ale) = /R iz /R dzs B(21)(22) (21, 2)

Using the integral representation of ®, the parameter a(e) can be written:

o) = [ dz | s prls)eels)

and, making a variable substitution with unitary Jacobian:

—i—t and s t
Z=WwW-+ - an =W - —
2 2

the subspace of R*, {z,s|s < z}, becomes {w,t|t > 0}, and so:
t t
a@) = [ aw [ dtow De.weg)
R2 (R+)2
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Performing the Gaussian integral with respect to the variables w:

1
or-det” Y21 + C.] Jr+y

ofe) dt exp [—%t[l + 06]—%}

where the relation:
1+C7-[t-Cc7h-+C - 1-Co=4-1+C]

has been used.
Finally, explicit calculation of «a(e) follows from the fact that the last formula can be
estimated by the previous results, in the case of a12 < 0. So:

1 1 3 —
ale) = o T — arctan ( —;6_)(6 )
The conclusion is:
1 (I+¢)(3-¢) 1
Ale) = — arct - =
(e) —arctan = ¢ 3
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SECTION II

NON-STANDARD APPLICATIONS
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6

GUNSHOT RESIDUES CONTAMINATION

The detection of gunshot residue (GSR) particles on suspect’s body or objects have always
represented an important information in investigation and a determinant evidence in Court
in order to determine if the suspect has shot firearms. However, the typical defender’s
objection in the Court in the case of positive results in finding GSRs is the possibility
of an accidental contamination, in particular since the operators who collect particles are
often police officers. Although the collection kits normally contain a series of precautions

in order to avoid the risk of accidental contamination of a suspect, such possibility cannot
be excluded.

In order to evaluate the likelihood ratio of accidental contamination, two Poisson distri-
butions have been taken into account: the parameter A\ of the first one coincides with the
mean number of GSRs that can be found on a firearm shooter, while the parameter pu
of the second one is the mean number of GSRs that can be found on a non-shooter. In
this scenario, the likelihood ratio of finding n gunshot residues can be easily calculated.
The evaluation of the two parameters is performed by using two sets of data: “exclusive”
lead-antimony-barium gunshot residues have been detected on a population of 31 police
officers after firearm practice, and on a population of 81 police officers who had declared
not to have handled firearms since almost one month. The data show that the detection
of two or more GSRs normally favours the hypothesis that the suspect has shot firearms.
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6.1. STATISTICAL FRAMEWORK

In order to evaluate the likelihood ratio about the possibility of GSR accidental contami-
nation of a suspect, the following statistical framework is delineated.

Let C' and 2 — C denote the prosecutor’s and the defender’s hypotheses, respectively: the
hypothesis C' considers that the suspect has shot a firearm, while the hypothesis 2 — C
supposes that the suspect has not:

(a). C: the suspect has shot a firearm;
(b). Q- C: the suspect has not shot a firearm.

Now, for n > 0, let FE,, be the evidence that n GSRs have been detected on the suspect:
(¢).  FEn: n GSRs have been detected on the suspect;

and let P(E,|C) and P(E,|Q2 — C) denote the conditional probabilities of the event E,, in
the prosecutor’s and in the defender’s hypotheses, respectively. In other words, P(FE,|C)
represents the probability of detecting n GSRs in the case the suspect has shot a firearm,
while P(E,|Q2 — C) represents the probability of finding n GSRs in the case of accidental
contamination. According to the Bayesian approach, the aim of the forensic scientist lies
in the calculation of the likelihood ratio Lr(n), which is defined by the ratio of the two
conditional probabilities:

Lr(n) = —P(E"|C)

P (En |Q - C)
If Lr(n) > 1, the detection of n GSRs favours the prosecutor’s hypothesis C, and the
greater the value of the likelihood ratio is, the more determinant the evidence E,, is. On
the contrary, if Lr(n) < 1, the defender’s hypothesis Q—C'is stronger than the prosecutor’s
one, and Lr(n) < 1 means a very high probability of accidental contamination. Finally,
Lr(n) = 1 implies the absolutely unconcern of the evidence about the two hypotheses.
In order to evaluate the two probabilities, the GSR presence on the samples has been
considered as a random event, and so the proposed distribution in estimating the count of
their number is the Poisson one.
In this scenario, let A be the mean number of detected GSRs on a shooting person; so, the
probability distribution of finding n GSRs in the prosecutor’s hypothesis is:
n
P(E,|C)=¢"*- %
Analogously, if p is the mean number of detected GSRs on a non-shooting person, the
probability distribution of finding n GSRs by accidental contamination is:
n

_u M
P(Ea|0-C) = e -

Obviously, normally A is expected to be greater than p.
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2 probability distribution
[continuous and dotted lines]

Figure 6.1.1. Graphics of two Poisson distributions with parameters A [continuous line]
and p [dotted line], with A > p.




According to these statements, the likelihood ratio Lr(n) about the event E,, in the con-
ditional hypotheses C' and €2 — C, can be calculated, and it reduces to:

Lr(n) = eb—>. (2)n

Since A is supposed to be greater than u, the likelihood ratio Lr(n) is an increasing
exponential function of n. This means that the greatest is the number of the detected
GSRs, the smallest is the chance of accidental contamination. Moreover:

A—p

L 1 A T S —
r(n) > or n > A~ In

6.2. DATA

In order to evaluate the two parameters introduced in the statistical framework, two differ-
ent series of particle collection have been performed by means of the standard kits normally
used in forensic laboratories. First, particles have been collected on the hands of 31 police
officers who had shot 10 shots by pistol Beretta mod. 85F, cal. 9 x 17 mm. Collections
have been taken at different time since the shot (after ¢t = 2, 3, 4, 5, 6, 8, and 10 hours).
Secondly, particles have been collected on the hands of 81 police officers declaring not to
have handled firearms since almost one month, but normally living and working in the
same spaces (rooms, cars, canteen, etc.) as the shooting police officers. All the samples
have been carbon coated to increase the electrical conductivity, and analyzed by scan-
ning electron microscopy/energy-dispersive spectrometry (SEM/EDS) by automated and
manual methods. The operating conditions for SEM/EDS are reported in the following
table.

Table 6.2.1. Operating conditions for SEM/EDS.

Condition Setting
accelerating voltage 25 kV
working distance 25 mm
specimen tilt 0
magnification 375 %
specimen current 1.8 nA
EDX acquisition energy 1-20 keV
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For sake of simplicity, only “exclusive” lead-antimony-barium particles have been taken in
consideration as GSRs in this paper, and the results of the two sets of data are listed in
the following tables. The mean numbers A(¢) and p of detected GSRs per collection are
also calculated and reported in the same tables.

Table 6.2.2. Results concerning the collection of GSRs on 31 police officers after shooting
10 shots with Beretta mod. 85F, cal. 9 X 17 mm.

collection condition nr. of nr. of A(t)
samples GSRs

after 2 hours 6 97 16.17
after 3 hours 5 49 9.80
after 4 hours 5 43 8.60
after 5 hours 6 39 6.50
after 6 hours 4 21 5.25
after 8 hours 3 11 3.67
after 10 hours 2 5 2.50
TOTAL 31 265

Table 6.2.3. Results concerning the collection on 81 police officers declaring not to have
handled firearms since almost one month.

collection condition nr. of nr. of
samples GSRs
police officers usually working in cars 20 1
police officers after having handcuffed 12 0
police officers usually working in police station 37 0
police officers usually working in civilian 12 0
TOTAL 81 1
MEAN p=0.0123

The calculated parameter A(t) varies from the value of 16.2 GSRs after 2 hours to the
value of 2.5 GSRs after 10 hours. Moreover, since only one GSR has been detected on 81
samples, the mean number of GSRs on non-shooting people can be evaluated p = 0.012.
This data can be compared with those present in literature.
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6.3. RESULTS

The parameters calculated from the experimental data allow the authors to evaluate the
likelihood ratio, and the values for n = 0...10 are listed in the following table, where the
base-10 logarithm of values of the likelihood ratio Lr(n) is reported.

Table 6.3.1. The base-10 logarithm of the likelihood ratio Lr(n) calculated from the
experimental data, for n = 0...10. The negative values are reported in italic characters.

n 2 hr 3 hr 4 hr 5 hr 6 hr 8 hr 10 hr
0 -7.0 -4.8 -3.7 -2.8 -2.3 -1.6 -1.1
1 -3.9 -1.4 -0.9 -0.1 04 0.9 1.2
2 -0.8 1.5 2.0 2.6 3.0 3.4 3.5
3 2.3 4.4 4.8 5.3 5.6 5.8 5.8
4 5.5 7.3 7.6 8.1 8.2 8.3 8.1
5 8.6 10.2 10.5 10.8 10.9 10.8 10.5
6 11.7 13.1 13.3 13.5 13.5 13.2 12.8
7 14.8 16.0 16.2 16.2 16.1 15.7 15.1
8 17.9 18.9 19.0 19.0 18.8 18.2 17.4
9 21.0 21.8 21.9 21.7 214 20.7 19.7
10 24.2 24.7 24.7 24.4 24.0 23.1 22.0

According to these data, the likelihood ratio is greater than 1 (which implies positive
values for log;, Lr(n)) - i.e. in the hypothesis that the suspect has shot a firearm the
evidence is stronger than in the hypothesis that he has not - in the case of finding two
or more GSRs after more than 2 hours. Also the detection of one GSR after 6 or more
hours favours the prosecutor’s hypothesis. On the contrary, in the other cases, accidental
contamination is more probable. Moreover, the results show that the detection of more
than three GSRs implies a very high value of the likelihood ratio, and so the probability
of accidental contamination in these cases can be considered negligible.

Obviously, in real cases the forensic expert has to take into account a lot of other features:
the possibility the suspect has washed hands after the shot, atmospheric conditions (wind,
rain, etc.), number of shots, collection efficiency of the samples, and so on.

Finally, also “characteristic” particles, together with “exclusive” lead-antimony-barium
ones, could be considered in evaluating the parameters A and u, even by introducing
a weighted mean. However, the validity of the proposed statistical framework persists,
the calculation of the values of likelihood ratio and their interpretation being liable to
modification.
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7

HEIGHT MEASUREMENTS

In order to explain the approach based on extended likelihood ratio, application of this
method in the case of height of persons measured from a recorded videotape. The compu-
tation of the extended probability is performed according to Italian Carabinieri database.
Disjoint but very close intervals are taken as prosecutor’s hypothesis C' and evidence F.

7.1. DATA

Let X denote the random variable which models the height of people in the population in
the probability space ({2, €, P}, and let Px indicate the relative probability measure.
The probability is computed by taking in account the real value of the database of about
200,000 people filed in the police archive of Italian Carabinieri.

The histogram of height measurements in centimeters is reported in the following figure:
the measured mean value is p = 170.73, while the standard deviation is 0 = 8.86.
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Figure 7.1.1. Histogram of the heights extracted from the database of about 200,000 people
filed in police archive of Italian Carabinieri. Mean value: p = 170.73; standard deviation:

o = 8.86.
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7.2 EVALUATION OF THE EXTENDED LIKELTHOOD RATIO

The proposed approach of the extended likelihood ratio is here applied to a case-work
in which the measurements of the height of the prosecutor’s hypothesis is the interval
C = [z1, 23] and the evidence is the interval E = [y, y2].

These two sets define a rectangle (C, E) C R2. It is well known that the probability of this

rectangle with respect to P)(f ))( can be computed using the associated distribution function

Hggg according to the formula:
P(s) C.E) = H(e) H(e) o H(E) . H(E)
xx(C, E) xx (T2,92) + Hxx (z1,91) xx (T1,92) xx (T2,91)

The following version of formula for evaluation of P)((-s ))( (C, E) can be used:

PE)L(C, E) = / dza pe(z1, 22)

le /
&~ ([Fx (z1),Fx (z2)]) &~ ([Fx (y1),Fx (y2)])

For example, from the vision of recorded videotape, the error in measurements of height is
4 centimeters, and the the intervals of the evidence F and of the prosecutor’s hypothesis C
is 1 centimeter, e.g. E =[x —5,z] and C = [z + 1,z + 6]. Note that E and C are disjoint
but very close intervals.

Choosing the correlation parameter € = 0.05, the extended likelihood ratio Lr()(E;C) is
calculated numerically, using the free statistical software R.

This choice defines a function of z with the following properties: it is always positive, its
value is about 1 if = is near the average of the heights, and it is very large if = is in the
tails of the distribution, as expected. The plot of this function is shown in the following
figure.
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Figure 7.2.1. Ertended likelihood ratio as function of the height x for € = 0.05, for the
disjoint but very close intervals E = [z — 5,2] and C = [z + 1,z + 6].
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This way of evaluation of the likelihood ratio allows to quantify the negative conclusion
cases. Moreover, the quantification takes into account the statistical distribution of the
values in the population. If the value is about 1 (unconcern) if x is near the average of the
heights; on the contrary, in the tails of the distribution the value of the extended likelihood
ratio grows up, as expected, and an important contribution in evaluation of odds has to
be considered.

The method can be applied in all the branches of forensic science, and in particular to
continuous characteristics.
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