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Abstract: This paper studies a spatial duopoly under uniform delivered pricing when firms do not ration the 

supply of the good, thus extending to a spatial context the analysis of oligopolistic markets with no rationing. 

The paper shows the existence of the equilibrium in prices under different tie-breaking rules (TBR) and compare 

the features of the equilibria found under these rules, thereby allowing to highlight the importance of the choice 

of the TBR in studying these models. When consumers buy from the nearest firm in case of equal prices 

(efficient TBR), any symmetric price pair within a given range is a Nash equilibrium, with each firm serving 

exactly half of the market line. If demand in each local market is equally split between the firms charging the 

same price (random TBR), the only equilibrium price is the one that gives zero profits to each firm. The degree 

of competitiveness of the market crucially depends on the TBR. Under the efficient TBR, all (but one) price 

equilibria deliver positive profits to both firms. Under the random TBR, the market outcome is very competitive 

in that firms make zero profits. None of the equilibria found under any tie-breaking rule are allocatively 

efficient. 

Keywords: Spatial duopoly, uniform delivered price, rationing. 

 

1. Introduction 

This paper studies the equilibrium of a spatial duopoly under uniform delivered pricing when 

firms do not ration the supply of the good. Under this pricing policy, the firm sets the same 

price to all the customers and delivers the good, bearing the transportation cost. The no 

                                            
* This paper is based on my DPhil thesis at the University of York. 
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rationing assumption implies that each firm does not refuse to supply the good to any 

customer willing to buy from it. 

The main contributions of this paper are the following. First, it proves the existence of the 

equilibrium under different tie-breaking rules, i.e. rules for the resolution of the conflict 

between firms when they charge equal prices in the same market. The paper allows to 

compare the features of the equilibria found under the different tie breaking rules, thereby 

allowing to highlight the importance of the choice of the tie-breaking rules in studying UDP 

models. Secondly, it extends to a spatial context the analysis of oligopolistic markets when 

rationing is not possible. 

The empirical relevance of UDP policies is witnessed by some early studies (Greenhut, 1981; 

Phlips, 1983) and from the widespread casual observation of firms adopting this pricing 

policy (like, for instance, utilities, mail ordering firms, furniture and appliance stores and, in a 

aspatial context, insurance companies, etc). Also, from a theoretical point of view, the 

importance of this pricing policy has been demonstrated by Kats and Thisse (1993), which 

show that UDP is the equilibrium pricing strategy when firms choose first location, then 

pricing policy and eventually price. 

In spite of this, UDP models have not been extensively studied in the spatial oligopoly 

literature, mainly because of problems of existence of equilibrium even more serious than in 

other spatial models. In the case of a homogenous duopoly, Beckmann and Thisse (1986) 

shows that no price equilibrium can exist when consumers buy from the nearest firm in case 

of a price tie. A similar result is obtained de Palma et al. (1986), under the hypothesis that 

every consumer has the probability one half of buying from each firm in case of a price tie. 

Several strategies have been used in the literature to overcome this problem. Some author 

have assumed that the products sold by the different firms are heterogeneous, although 

different approaches to product heterogeneity have been taken in the literature. (see e.g. de 

Palma et al., 1987, Anderson et al., 1992b and De Fraja and Norman, 1993)1. Others have 

                                            
1 Some authors assume that consumers' demand is given by a logit function, with consumers 

buying some fraction of the goods from either firms (see e.g. De Palma et al., 1987, and 

Anderson et al., 1992b). Other assume that consumers view the goods supplied by the 
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studied the price equilibrium in mixed strategies (Kats and Thisse, 1993). In a unpublished 

earlier version of this work (Kats and Thisse, 1989), Kats and Thisse have taken a different 

route and analysed a UDP duopoly model under the assumption that firms are either forced or 

decide on their own to supply all the customers who ask them. Assuming that customers buy 

from the nearest firm in case of a price tie, they show that there always exists an equilibrium 

in price strategies. 

This latter approach anticipated a more recent interest that the oligopoly literature has shown 

towards the effects of the absence of rationing on the properties of the oligopolistic markets. 

Several justification have been provided in the literature for the no rationing assumption. 

Indeed, firms may be prevented from rationing by regulatory requirements to satisfy all the 

demand. These are quite common for network utilities – i.e. firm operating in the (now 

competitive) domestic electricity markets in the UK are required to publish their (uniform) 

prices and are not allowed to refuse to supply any customer in the region – and insurance 

companies – i.e. German car insurers are legally required to accept all customers for third 

party liability insurance (Wambach, 1999) –. Also, firms may not want to ration since turning 

down customers may be costly to the firm in term of goodwill, reputation or offence caused 

(Dixon, 1990, and the Operational Research and inventory models cited therein). Finally, 

Baye and Morgan (2002) argues that many price setting oligopoly environments have the 

feature to award the whole production on a winner-take-all basis to the lowest price firm. 

Following closely the approach undertaken by Kats and Thisse, this paper studies a single-

stage spatial duopoly pricing game where consumers have linear downward sloping demand 

and firms set UDP prices and cannot ration the supply. Assuming no rationing in a spatial 

linear market under UDP is equivalent to assuming that when one firms sells the good at a 

given price to a consumer located along the market line, it has to supply the good at the same 

price to any consumers willing to buy from it. Assuming that firms are symmetrically located 

along the market line and that locations are exogenous, this paper studies the price 

                                                                                                                                        

different firms as imperfect substitutes and demand varies continuously as prices vary (De 

Fraja and Norman, 1993). 
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equilibrium in pure strategies under two different tie-breaking rules.2 The first tie-breaking 

rule is such that, when both firms charge the same price at the same location, this location is 

totally supplied by the closest firm; in the rest of the paper I refer to it as the efficient tie-

breaking rule. The second tie-breaking rule is that, in case of matching prices, total demand in 

each local market is equally shared between the two firms; in the rest of the paper I refer to it 

as the random tie-breaking rule. The equilibria under the different tie-breaking rule are 

characterised under similar market assumptions so to allow to compare the different 

outcomes.3 

The paper finds that a price equilibrium always exists in a spatial duopoly under UDP when 

firms cannot ration the supply. While the existence of the price equilibrium has already been 

shown in a similar set up by Kats and Thisse (1989) under the efficient tie-breaking rule in 

contrast with the non existence result of Beckmann and Thisse (1986), this paper 

characterises the equilibrium also for the case of the random tie-breaking rule. In this respect, 

this paper might be seen as bearing the same relationship to de Palma et al. (1986) as does 

Kats and Thisse (1989) to Beckmann and Thisse (1986). 

The nature of the equilibria are deeply different according the tie-breaking rule adopted, 

pointing out the relevance of the choice of the tie-breaking rule in analysing these models. 

Under the efficient tie-breaking rule, any symmetric price pair within a given range is a Nash 

equilibrium, with each firm serving exactly half of the market line. This range is such that the 

equilibrium prices are neither to low to cause negative profits nor too high to give firms an 

incentive to undercut the rival and serve the whole market line. Under the random tie-

breaking rule, there is only one equilibrium price, where both firms make zero profits. As 

firms equally share each local market when setting the same price, undercutting is profitable 

at all price but the one that brings about zero profits. Then, the only equilibrium price is the 

                                            
2 These two tie-breaking rules were firstly employed in a UDP model by Gronberg and Meyer 

(1981). 
3 Differently from this paper, Kats and Thisse study a circular spatial model where firms’ 

locations are not necessarily symmetric and consumers have unit demand. Also, they only 

study the model under the efficient tie-breaking rule. 



 4 

one that gives zero profits to each firm. Since consumers are assumed to a have downward 

sloping demand, the paper is also able to provide a welfare comparisons of the equilibria 

obtained under the different tie-breaking rules. For low values of the transportation cost, 

consumers’ surplus is higher under the random tie-breaking rule, which implies that 

consumers are better off selecting randomly which firm they patronise than adopting the so-

called socially optimal behaviour. On the other hand, social welfare is always higher under 

the efficient tie-breaking rule. This is partly due to the zero profits obtained by the firms under 

the other tie-breaking rule. 

The paper can also be seen as the extension to a spatial context of the analysis of oligopolistic 

markets without rationing, that so far has been mostly undertaken in a aspatial context. In this 

respect, this paper is very closed related to Dastidar (1995) which studies a Bertrand 

oligopoly with increasing return to scale and shows that, when demand is equally shared 

between the lowest price firms, there exists a continuum of price equilibria, all (but one) with 

positive profits. 

Notice that one of the key questions addressed by this literature is indeed the degree of 

competitiveness of these markets. Harrington (1989) analyse a Bertrand oligopoly with 

constant returns and shows that a unique reasonable outcome of the game exists which is not 

the competitive solution but which is nevertheless approximately competitive. Dastidar 

(1995) shows that the market outcome is very different from the standard Bertrand paradox 

and shows (almost) always positive profits to the firms. Baye and Morgan (2002) study a 

homogenous oligopoly where, in case of a price tie, the supply is undertaken only by one firm 

randomly selected between the lowest price firms; they provide the necessary and sufficient 

conditions for a zero profits equilibrium to emerge and illustrate how deviations from these 

conditions lead to positive profits outcomes. With respect to this issue of the competitiveness 

of these markets, this paper illustrates that in a spatial context the degree of competitiveness 

(as measured by firms’ profits) crucially depends on the tie-breaking rule which is in force in 

the market. Under the efficient tie-breaking rule, all (but one) any price equilibria deliver 

positive profits to both firms. Under the random tie-breaking rule, the market outcome is very 

competitive in that firms make zero profits. None of the equilibria found under any tie-

breaking rule are allocatively efficient. 

The structure of the paper is as follows. The model is described in section 2: sections 3 and 4 

characterise the equilibria of the game under the different tie-breaking rules. Section 5 makes 
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some normative judgements on the different market arrangements. Some concluding remarks 

are given in Section 6. All the proofs are relegated to the Appendix. 

2. The model 

I assume a spatial linear market of unit length in which competition in prices between two 

profit-maximising firms takes place at each point on the market line. The two firms, which are 

referred to as firm 0 and firm 1, produce perfectly homogeneous goods. Consumers are evenly 

distributed over the line. At each location along the line, consumers have linear demand given 

by q = 1 - p. Consumers' density is normalised to 1. 

The pricing policy adopted by both firms is uniform delivered pricing: the same price is 

charged to all customers, irrespective of their location, and firms deliver at their cost the good 

to customers’ locations. Each firm produces with constant (and identical) marginal and 

average cost that, without further loss of generality, is normalised to zero. Transportation cost 

(denoted by c) is assumed to be linearly increasing with quantity and distance. Transport is 

under firms' control and no arbitrage can take place among consumers. 

I assume that firms cannot ration the supply of the good to any customers willing to buy from 

it. This implies that, once a price has been set by one of the two firms, all the customers can 

buy at that price from that firm. From this assumption, it follows that if a firm sets a price 

lower than the rival, it may end up serving all the customers along the unit line. 

If the two firms charge the same price, two different rules on the resolution of the conflict 

over markets are studied: 

efficient tie-breaking rule: the first tie-breaking rule is such that, in case of both firms 

charging the same price at the same location, the market is supplied by the closest firm, that is 

by the firm which bears a lower transportation cost in serving that location. In the rest of the 

paper, this tie-breaking rule is referred to as the efficient tie-breaking rule. 

random tie-breaking rule: the second tie-breaking rule is such that, in case of both firms 

charging the same price at the same location, total demand in each local market is equally 

shared between the two firms. This tie-breaking rule is referred to as random in the rest of the 

paper. 

These rules are usually interpreted in the literature as originating from different behaviour on 

the consumers’ side. The random tie-breaking rule may be the result of customers selecting 

randomly the firm from which to buy; then, if assigning an equal probability to buying from 
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each firm, each local market is equally shared between the firms supplying that market (at 

least in expected terms). As for the efficient tie-breaking rule, it is assumed that consumers 

buy from the nearest firm (see e.g. Lederer and Hurter, 1986, and MacLeod et al., 1988). This 

behaviour is usually defined as socially optimal because, given the quantities exchanged and 

the locations of the two firms, it minimises the total transportation cost. Since the choice of 

patronising only the nearest firm originates directly from the consumers, this also explains the 

apparent contradiction of the firms being unable to ration but, at the same time, serving only 

some of the consumers.4 

I model the strategic interaction between the two firms as a single-stage game where locations 

are fixed and each firm simply chooses the price pi ∈ [0, 1] where i = 0, 1. For the sake of 

simplicity, I restrict my attention to the case where firms locations are symmetric. Then, 

denoting with x0 and x1 the locations of firm 0 and 1 respectively without loss of generality, I 

can restrict the locations to be such that x0 ∈ [0, ½] and x1 ∈ [½, 1] without any further loss of 

generality. Given the nature of the game, the equilibrium concept is Nash equilibrium. 

In case of the efficient tie-breaking rule, firm 0's profits are given by 

                                            
4 Following Gronberg and Meyer (1981), another possible interpretation of the tie-breaking 

rules makes them dependent on firms’ behaviour. The efficient tie-breaking rule can be 

interpreted as the result of a collusive behaviour between the two firms over the locations 

they serve, provided that all demand at each location is satisfied. Collusion implies that firms 

agree to share markets at any location so that each firm serves exclusively the locations where 

it has a comparative advantage in terms of costs with respect to the rival. On the contrary, the 

random tie-breaking rule can be interpreted as the result of the firms being not able or not 

allowed to reach the collusive agreement on the locations each firm has to serve exclusively. 

In this case, firms split each local market. Notice that, also in this case, the apparent 

contradiction of the model under the efficient tie-breaking rule between firms unable to ration 

and consumers buying only from the nearest firm is easily reconciled. Indeed, when firms 

collude over the locations they serve, they never refuse to supply at any locations since – 

differently from the UDP model with rationing – there is neither unsatisfied demand nor 

demand that could be positively satisfied by the rival firm. 
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where the superscripts –, = and + are respectively used to intuitively distinguish between the 

possible cases of firm 0 charging a price lower, equal or higher than the price set by the rival. 

In each of these cases, we have that  
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In case of the random tie-breaking rule, firm 0's profits are given by 
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where the superscript have identical meaning as above and where 
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Similar formulae apply for firm 1. 
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3. The equilibrium under the efficient tie-breaking rule 

This section characterises the equilibrium of the single-stage price game under the efficient 

tie-breaking rule. I recall here that this implies that when the two firms set the same price, 

firms end up serving only those locations where they have a comparative advantage over the 

rival in term of transportation cost. Let x0 = x and x1 = 1 - x, where x gives the distance from 

firm 0’s location (respectively, firm 1’s) to the left (right) end of the market line. 

It is useful to start the analysis of this case by introducing the following definitions: 

Definition 1. For  i, j = 0, 1 and i ≠ j, 

i) ( ){ }⋅≡ −
i

mp Πargmax . Formally, 
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where 422222 3272416243232 xcccxccxxc +−+−+−−≡κ . 

Notice that, in the definitions given above, subscripts are omitted since the symmetry of 

firms’ locations makes the different critical prices identical across firms. 

I turn now to illustrate the different definitions given above. First, pm give the price each firm 

would charge if it were a monopolist; this is also the best price any firm could charge when it 
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undercuts the rival, provided that the rival sets a sufficiently high price. Also, the price p  

gives the minimum price which allows each firm non negative profits when it matches the 

price set by the rival. Moreover, v1 gives the price for which firm i is indifferent between 

matching the price set by the rival or undercutting it. Finally, v2 is the highest price which 

gives the firm that matches the rival the same profits it would gain if it operates as a 

monopolist. Notice indeed that, for some values of the transportation cost, a firm would not 

necessarily prefer to be a monopolist since this would imply to serve the whole market line 

and may instead make higher profits sharing the market with the rival. Under these cost 

conditions, if firm j set a price (slightly) above v2, firm i would prefer to undercut the rival by 

charging the monopoly price; on the other hand, if firm j set a price (slightly) below v2, firm i 

best reply would be to match the rival. 

As to the last definition, two pathological cases may occur when the transportation cost is 

either very small or very large. When c is small, a price like v2 does not exist since the 

monopoly price, whenever possible, gives each firm higher profits than those obtained by 

matching the rival. On the other hand, when c is large, the monopoly price gives always 

negative profits and each firm can obtain non negative profits only if it matches the rival and 

shares the market with it. In both these particular cases, I assume the price v2 to be equal to 1. 

It is now possible to state the following result. 

 

Proposition 1. Assume 2841
4

xx
c

+−
≤ . Let { }21min v,vp ≡ . Then, any price pair p0 and p1 

such that p0 = p1 and p0, p1 ∈ [ ]p,p  is a Nash equilibrium of the game under the efficient tie-

breaking rule. 

 

Figure 1 
The result given in the Proposition may be intuitively illustrated with the aid of Figure 1 

where, for different values of the transportation cost, firm i’s profits are plotted against its 

own price under the two cases of this firm matching the price chosen by the rival or 
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undercutting it.5 Identical pictures could be drawn for firm j. In any panels of the Figure the 

critical price levels identified in Definition 1 are also drawn, since they play a crucial role in 

the equilibrium of the game. 

The intuitive illustration of the nature of the equilibria described in the Proposition goes as 

follows. Consider first the case of c being positive but lower than 21
1

xx −−
, as it illustrated 

in Panel a). Notice that, in this case, p  < v1 < v2. Proposition 1 argues that any pair of prices 

between p  and v1 is a Nash equilibrium. Indeed, if firm j charges a price within this interval, 

the picture clearly illustrates that the best reply for firm i is to match this price, since 

undercutting would give rise to lower profits and charging a even lower price or a price 

higher than v1 would grant zero profits instead. Consider now the case depicted in Panel b), 

which occurs when 





−−−
∈

x
,

xx
c

43
4

1
1

2 . The ranking between the critical p’s is now such 

that p  < v2 < v1. Hence, any pair of prices between p  and v2 is a Nash equilibrium. Now, if 

firm j charges a price between v2 and v1, although firm i prefers to match this price rather than 

undercutting it by a small amount, the best response for firm i is to undercut the price set by 

firm j by a large amount and charge the monopoly price. The case depicted in Panel c) is very 

similar to the previous case, the only difference being that firm i prefers to match than 

undercutting for all prices set by the rival greater than p  but smaller than 1. Finally, Panel d) 

illustrates the case of c being between 2221
2

xx +−
 and 2841

4
xx +−

. The peculiarity of this 

case is that firm i would never make positive profits if it were a monopolist. Hence, whenever 

firm j charges a price that allows firm i to gain non-negative profits by matching it, this is also 

the best reply. 

It is also easy to see that the price pairs with the illustrated properties in Proposition 1 are the 

only Nash equilibria of the game under analysis. While the reader is referred to the proof for 

                                            
5 Clearly, Πi

= is drawn only as function of pi under the hypothesis that the same price is also 

charged by the rival; similarly, Πi
- is drawn under the hypothesis that firm j charges a price 

higher than the one charged by firm i. 
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the (rather intuitive though) motivation of the impossibility of asymmetric equilibria, I only 

deal here with the impossibility of symmetric Nash equilibrium price pairs outside the interval 

between pp  and . Indeed, if the candidate Nash equilibrium prices were smaller than  p , 

both firms would make negative profits: any firm would then be better off charging a higher 

price so to be driven out of the market and make zero profits. On the other hand, an 

equilibrium with both prices above p  cannot exists. When p  is equal to v1, either firms 

would be better off by undercutting the rival either by a small amount or by a large amount 

and charge the monopoly price, depending on the relationship between these candidate 

equilibrium prices and the monopoly price. When instead p  is equal to v2, either firm would 

be better off by charging the monopoly price. 

Lastly, it is easy to verify that, provided that the transportation cost is small enough, there 

always exists a continuum of price pairs that are Nash equilibria. This is equivalent to saying 

that p  is typically greater than p . The only case in which there exists only one Nash 

equilibrium price pair is when both firms are located right in the middle of the market line, 

since in this case pp =  (where pp =  is in this case necessarily equal to v1). 

Notice that this result does not critically depend on the linearity of cost and demand functions, 

which are only used to simplify the exposition and make possible the welfare comparisons 

provided in section 5, but simply requires that demand at each locations is downward sloping 

and that transportation cost increases with distance. 

4. The equilibrium under the random tie-breaking rule 

This section characterises the equilibrium of the price game under the random tie-breaking 

rule. Recall that this implies that when the two firms set the same price, half of the demand at 

each location along the market line is expected to be addressed to each firm. This may occur 

because, as firms are identical, customers randomise their choice and buy from either firm 

with the same probability. Similarly as before, I set x0 = x and x1 = 1 - x, where again x gives 

the distance from firm 0’s location (respectively, firm 1’s) to the left (right) end of the market 

line. 

Now, I can state 
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Proposition 2. Assume c < 2
1 2 2 2− +x x

. Let 10  and p~p~  be the Nash equilibrium price pair 

under the random tie-breaking rule. Then, there always exists one and only one equilibrium 

price pair 10  and p~p~  such that 







 +−= 2

2
1 xxcp~i    for i = 0, 1. (13) 

 

Note that the restriction imposed in the Proposition to the values of the transportation cost 

ensures that firms obtain nonnegative profits in equilibrium for any pair of symmetric 

locations. 

The main reason of the result reported in the Proposition is the following. Because of the 

nature of the expression for profits in (5), profits obtained when undercutting the rival and 

serving all the market line are always twice as much the profits obtained by matching the 

rival's price. This implies that each firm always finds profitable to shave any market price 

except the price that gives zero profit. As a result, the only possible equilibrium shows the 

typical feature of the standard Bertrand duopoly, with both firms simply breaking even. 

However, the market equilibrium does not show any efficiency properties typical of the 

Bertrand setting. This is because the firms simply average out the transportation cost across 

markets. While prices are equal on average to marginal cost of provision (marginal cost, here 

set to zero, plus transportation cost), in any local market the equilibrium price differs from the 

actual total marginal cost. 

5. Welfare comparisons 

This section discusses the normative properties of the equilibria obtained under the different 

tie-breaking rules under analysis. To this purpose, it is necessary to single out a price pair 

amongst the set of equilibrium price pairs which are found under the efficient tie-breaking 

rule. The Pareto optimality of the equilibrium price pair that gives the firms the highest level 

of joint profits makes it a focal point on which it seems reasonable to concentrate the analysis. 

This price comes as the solution of the following problem 
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Note that because of the symmetry of cost structures and locations, the price which solves 

(14) is also the price which gives to each firm the highest profits among the equilibrium 

prices. The formal characterisation of the joint profit maximising Nash equilibrium price pair 

is given in the following Proposition. 

 

Proposition 3. Let 2841
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< . Let 10 ˆ and ˆ pp  be the Nash equilibrium price pair that 

gives the highest joint profits to the two firms under the efficient tie-breaking rule. Then, 
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When the value of transportation cost is high enough, the Nash equilibrium price pair that 

gives the highest profits is simply made out of the two prices that maximise the profits of each 

firm given that it serves the consumers located in its half of the market line. However, for low 

values of the transportation cost, the unconstrained single firm profit maximising price is not 

an equilibrium. Thus, for such values of c, the price which delivers the highest profits among 

the set of equilibrium prices is the upper boundary of the range of equilibrium prices. 

I can now proceed to compare the equilibria under the different tie-breaking rule in terms of 

their welfare properties. Clearly, it has to be emphasised that the results of this comparison 

heavily rests on equilibrium selection under the efficient tie-breaking rule. The level of 

welfare generated by the different market arrangements is compared using the traditional 

measures given by the aggregate consumers’ surplus, industry profits and social welfare as 

given by the unweighted sum of the two previous terms. Notice that, since demand originates 

from consumers with quasi-linear preferences, aggregate consumers’ surplus is an exact 

measure of their utility. 

The results of the welfare analysis are given in the following Proposition. 
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Proposition 4. Assume c < 2
1 2 2 2− +x x

. Let S, Π and W ( )~ and ~,~ WS Π be the equilibrium 

aggregate consumers’ surplus, total firms’ profit and social welfare under the efficient 

(random) tie-breaking rule. Then, when the firms under the efficient tie-breaking rule set the 

joint profit maximising price amongst the set of equilibrium price pair, SS ~
<  when 

x
c

43
4
−

< , SS <
~  otherwise, and Π<Π~  and WW <~  always. 

 

First note that the maximum allowed level for c is the minimum within the two maximum 

levels of the transportation cost for which an equilibrium exists under the two tie-breaking 

rules. In other words, the limitation on c ensures that are taken into consideration only those 

values of the cost parameter for which an equilibrium exists under both tie-breaking rules. 

The Proposition illustrates that consumers are better off under the random tie-breaking rule 

when the value of the transportation cost is low enough. This contrasts with the usual 

definition of the efficient tie-breaking rule being the ‘socially optimal one’. The obvious 

reason for this definition is that consumers’ behaviour under the efficient rule is socially 

optimal as it minimises total transportation cost for given prices and location. However, 

differently from what implied by the mentioned commonly used definition, it is found here 

that consumers may be better off if they buy from a randomly selected firm instead of buying 

from the nearest firm. 

In general, which one of the two equilibria obtained under the different tie-breaking rules is 

preferred by the consumers depends on the joint result of two different effects. A first effect is 

due to the different way in which competition between firms takes place when the different 

tie-breaking rules are assumed. Under the efficient tie-breaking rule, firms serve a given 

market area. Then, the price they choose is the one that (among the equilibrium prices) gives 

them the highest profits given the market area they supply. On the other hand, under the 

random tie-breaking rule, competition is much fiercer as firms are caught under the traditional 

Bertrand paradox; they undercut each other over the entire market line down to the price 

where both firms make zero profits. The other effect regards the level of total transportation 

cost borne by the firms and paid for by the consumers through prices. In this respect, it is 

clear that when consumers buy from the closest firm, firms pay an overall total transportation 

cost lower than when they serve also consumers at remote locations. The total result of the 
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two effects is that, when the transportation cost is low enough, the competitive effect prevails 

and the equilibrium price is lower under the random rule. The opposite holds for high enough 

values of c. 

From the other comparisons provided in Proposition 4, it is clear that the equilibrium under 

the efficient tie-breaking rule is always preferred both in terms of aggregate of firms’ profits  

and overall aggregate social welfare. This latter result indicates that the higher profits under 

the efficient tie-breaking rule are able to outplay the lower consumers’ surplus that can result 

under this random tie-breaking rule when c is high. 

6. Conclusions 

This paper has studied the equilibrium of a spatial duopoly under uniform delivered pricing 

when firms do not ration the supply of the good. Differently from most other papers which 

only analyse UDP oligopolies only under one tie-breaking rule, this paper has studied and 

compared the market equilibria which emerge under the two most commonly used tie-

breaking rules, the random and the efficient tie-breaking rules. 

The paper has highlighted that the nature of the equilibria and its welfare properties differ 

profoundly according to adopted tie-breaking rule. Firstly, under the efficient tie-breaking rule 

there exists a continuum of price equilibria while under the random tie-breaking rule there 

exists only one price equilibrium. Secondly, under the efficient tie-breaking rule both firms 

always make positive profits while profits are always equal to zero for both firms under the 

random tie-breaking rule. Finally, consumers’ preferences over the different market 

arrangements crucially depends on the level of the transportation cost and on the equilibrium 

price selected by the firms amongst the many equilibrium prices. 

These results are of interest to the literature in spatial oligopoly in that they make a 

contribution to the understanding of markets where firms charge uniform delivered price. 

Also, the paper has extended to a spatial context the analysis of oligopolistic markets when 

rationing is not possible that so far has been mostly undertaken in a aspatial context. The main 

question usually raised by this literature is on the degree of competitiveness of these markets. 

This paper has shown that, in a spatial context with firms charging uniform delivered prices, 

the answer crucially depends on the tie-breaking rule which is used in the market. When a 

price tie is solved using the random tie-breaking rule, the market outcome is very competitive 

in that firms make zero profits. On the other hand, under the efficient tie-breaking rule, all 
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(bot one) price equilibria deliver positive profits to both firms; provided that the 

transportation cost is high enough, one of the possible equilibria is with both firms charging 

the price they would charge if they were monopolist in their half of the  market line. None of 

the equilibria found under any tie-breaking rule is allocatively efficient. 

 

I would like to thank Gianni De Fraja, Keith Hartley, Peter Simmons, Catherine Waddams, 

Xavier Wauthy and participants to the 1998 EARIE and ERSA conferences for helpful 

comments and discussion. The paper has also been improved by the very useful comments of 

two referees of this journal. The usual disclaimer applies. 
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APPENDIX 

This Appendix gives the proofs of Propositions 1 and 2, together with a sketch of the proof of 

Proposition 5. The proof of Proposition 3 and 4 are omitted here since they makes a simple 

(but tedious) use of standard constrained maximisation techniques: further details are 

available from the author upon request. 

Proof of Proposition 1 

First of all, notice that, when x ∈ [0, ½], it is easy to prove the following inequalities that will 

be used extensively in the rest of the proof: 
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 (A.1) 

I turn now to illustrate the ranking between p , v1 and v2 under the different values of the 

transportation cost c. When 






−−
∈ 21

10
xx

,c , it is possible to show that p  < v1 < v2. While 

it is immediate to show that p  < v1, recall that, from Definition 1, v2 = 1. It turns out that v1 < 

1 when c < 
043

4
x−

, which holds true because of (A.1). When 
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is possible to show that p  < v2 ≤ v1. I first concentrate on the ranking between p  and v2: let 

z1 ≡ p  - v2 and recall that 422222
1 3272416243232 xcccxccxxc +−+−+−−≡κ . 

Consider first the case of 
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c , which implies that v2 < 1. Then, 
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1 −++−=′ cxccxz , which is equal to 0 

when 2841
4

xx
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= . Since 01 >

′
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, 1z′ < 0 when 2841
4

xx
c

+−
<  which always holds true; 

hence, a fortiori, z1 < 0. When 
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c , by definition v2 = 1. Now, it 

is easy to establish that p  < 1 whenever 2841
4

xx
c

+−
< . 

Now I illustrate some properties of functions ( )⋅Π−
i  and ( )⋅Π=

i  which will be useful in the rest 

of the proof: 

[F.1] ( )⋅Π−
i  is a concave second degree functions of p with one of the roots always equal to 1; 

the other root is smaller than 1 provided that 2221
2

xx
c

+−
< ; 

[F.2] ( )⋅Π=
i  is a concave second degree functions of p with one of the roots always equal to 1; 

the other root is smaller than 1 provided that 2841
4

xx
c

+−
< ; 

[F.3] ( ) ( )⋅Π>⋅Π −=
ii  for any pi ∈ [0, v1]. 

The proof then proceeds along the following steps: 
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i) an equilibrium must be a single price equilibrium. By contradiction, assume that an 

equilibrium price pair pi and pj such that pi ≠ pj exists, for i, j = 0, 1 and i ≠ j. Without loss of 

generality, let pi < pj. Denote now by pi
0 the smallest solution w. r. to pi to ( ) 0=Π−

jii p,p . 

Notice that, because of symmetry amongst the firms, pi
0 = pj

0 so that it is possible to drop the 

subscripts i or j and simply write p0. Now, if pi < pj < p0 or pi < p0 < pj, because of [F.1], 

( ) ( )jjijii p,pp,p ε+Π=<Π +− 0 , which makes impossible for pi and pj to be a Nash 

equilibrium. Also because of [F.1], if p0 < pi < pj, ( ) ( )jiijii p,pp,p −− Π>ε+Π  and/or 

( ) ( ) 0=Π>ε−Π +−
ijjiij p,pp,p  with a positive and whatever small ε, which again contradicts 

the initial hypothesis on pi and pj being a Nash equilibrium pair. 

ii) any pair of prices pi and pj such that pi = pj and pi, pj ∈ [ ]pp,  is a Nash equilibrium, for i, j 

= 0, 1 and i ≠ j. Letting pi = pj = p, this is equivalent to state that, when firm j charges p ∈ 

[ ]pp, , the following conditions must hold: a.1) ( ) ( )p,'pp,p ii
−= Π≥Π  for any p′ < p; a.2) 

( ) ( )p,'pp,p ii
+= Π≥Π  for any p′ > p, and b) ( ) 0≥Π= p,pi , for i, j = 0, 1 and i ≠ j. First of all, 

notice that, because of (4), condition a.2) is identical to b) and can then be neglected. 

Condition b) always holds true, since, by the way itself p  is defined and by [F.2], ( ) 0≥⋅Π−
i  

for any [ ]1,pp∈ . As to condition a.1), assume first that 
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,c , so that p  < v1 < 

v2. For any [ ]1v,pp∈ , by [F.3] we have that ( ) ( )p,pp,p ii ε−Π≥Π −=  for ε positive and 

whatever small and for i = 0, 1. Assume now that 
21

1
xx

c
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> , so that p  < v2 ≤ v1. When 
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∈ 22 221

2
1

1
xx

,
xx

c , for any [ ]2v,pp∈  by [F.3] we have that 

( ) ( )p,pp,p ii ε−Π≥Π −=  for any positive ε; when 





+−+−
∈ 22 841

4,
221

2
xxxx

c , for any 

[ ]1,pp∈  by [F.3] we have again that ( ) ( ) 0=ε−Π≥Π −= p,pp,p ii  for any positive and 

whatever small ε. 

iii) any pair of prices pi and pj such that pi = pj and pi, pj ∉ [ ]pp,  cannot be an equilibrium, 

for i, j = 0, 1 and i ≠ j. Let pi = pj = p. When p < p , this cannot be an equilibrium since, by 
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[F.2] and for any admissible value of c, ( ) 0<Π= p,pi  which contradicts condition b) in ii). 

When p > p , different cases may occur according to the value of c. When 
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10
xx

,c , 

firm i has an incentive to undercut the rival since ( ) ( )p,pp,p ii
=− Π>ε−Π , with ε positive and 

whatever small, which contradicts condition a.1 in ii). When  
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1
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,
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c , 

firm i prefers to charge the monopoly price, which is smaller than the price set by the rival, 

since ( ) ( )p,pp,p i
m

i
=− Π>Π , which again contradicts condition a.1 in ii). Finally, when 







+−+−
∈ 22 841

4,
221

2
xxxx

c , both firms make negative profits in equilibrium, since 

( ) 0=Π= p,pi , which contradicts condition b) in ii). 

Finally, from [F.2] it is evident that it is necessary to assume that 2841
4

xx
c

+−
≤  to grant 

that the firms obtain nonnegative profits in equilibrium. 

❒  

Proof of Proposition 2 

This proof is very similar in its nature to the standard proof of the Nash equilibrium in a 

symmetric Bertrand duopoly. 

First notice that the function ( )⋅Π−
i

~  is a concave second degree equation, whose roots are 1 







 +− 2

2
1 xxc ; let 






 +−≡ 20

2
1 xxcp . Notice that, because of the symmetry between the two 

firms, it is possible to drop the subscripts i and j. When c < 2
1 2 2 2− +x x

, ( )⋅Π−
i

~  ≥ 0 and, since 

( ) ( )⋅Π=⋅Π −=
ii

~~
2

1 , ( ) ( )⋅Π≤⋅Π −=
ii

~~  for any p ∈ [p0, 1]. 

Then, 

i) an equilibrium must be a single price equilibrium. By contradiction, assume that an 

equilibrium price pair pi and pj such that pi ≠ pj exists, for i, j = 0, 1 and i ≠ j. Without loss of 

generality, let pi < pj. Now, if pi < pj < p0 or pi < p0 < pj, because of the relationship between 

( ) ( )⋅Π⋅Π −=
ii

~ and ~  and because of (8), ( ) ( ) 0,~,~ =ε+Π<Π +−
jjijii pppp , which makes impossible 

for pi and pj to be a Nash equilibrium. Also, if p0 < pi < pj, ( ) ( )jiijii pppp ,~,~ −− Π>ε+Π  and/or 
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( ) ( ) 0,~,~ =Π>ε−Π +−
ijjiij pppp  with a positive and whatever small ε, which again contradicts 

the initial hypothesis on pi and pj being a Nash equilibrium pair. 

ii) the pair ji pp ~ and ~  is a Nash equilibrium. When firm j charges jp~ , firm i's optimal 

response is to charge ji pp ~ ~ =  since a) if firm i sets ii pp ~<  it makes lower (and negative) 

profits since ( ) ( )jiijii pppp ~,~~,~~0 −= Π≥Π= ; b) if firm i sets ii pp ~>  it makes equal profits than if 

it matches the rival since ( ) ( ) 0~,~~,~~0 =Π=Π= +=
jiijii pppp . An identical argument applies to 

firm j. 

iii) the pair ji pp ~ and ~  is the unique possible Nash equilibrium. By contradiction, assume that 

an equilibrium exists with prices ji pp  and , where ji pp = . If ii pp ~> , 

( ) ( ) 0,~,~ =ε+Π<Π +=
jiijii pppp , with ε is positive and sufficiently small. If ii pp ~< , then 

( ) ( )jiijii pppp ,~,~ ε−Π<Π −=  (with ε > 0 and sufficiently small) or ( ) ( )j
M
iijii pppp ,~,~ −= Π<Π  

(with M
ip  being the optimal monopoly price), depending on whether pi is smaller or larger 

than M
ip . 

❒  

Proof of Proposition 5 

The proof of the result involves the simple but tedious study of the welfare functions 

evaluated at equilibrium prices, which are given in Table 1. Further details are available from 

the author upon request. 

❒  

Table 1 
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Table 1 - Equilibrium welfare measures. 
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Panel a ):  c ∈ (1, 1/(1-x-x2)]      Panel b) c ∈ (1/(1-x-x2), 4/(3-4x)] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Panel c ):  c ∈ (4/(3-4x), 2/(1-2x+2x2)]   Panel d) c ∈ (2/(1-2x+2x2), 4/(1-4x+8x2)] 
 

Figure 1 - Π-(.) and Π=(.) under different parametric conditions 
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