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1 Introduction

This paper studies convergence in per-capita GDP across European regions over the period 1980—

2000. The evidence currently available on regional convergence in Europe is mostly based on either

cross-sectional “Barro regressions” or fixed-effects estimates. The results obtained vary considerably

depending on the regions included, the sample period and the estimation method.

Using cross-sectional “Barro regressions”, Barro and Sala-i-Martin (1991) found that regions

within the European Union (EU) experienced convergent growth in per-capita GDP over the period

1950—1985 at an annual rate of about 2%. Their analysis, however, is confined to the richest Eu-

ropean countries. Extending the analysis to 1990 and including the Spanish regions, Sala-i-Martin

(1996) still finds significant convergence (although at the lower rate of 1.5%) in a regression that

contains country dummies. Armstrong (1995) enlarges the sample to Greece, Ireland, Luxembourg

and Portugal, and finds that the rate of convergence between 1970 and 1990 has been only some

1% per year. He concludes that rates of convergence, in particular within country convergence, fell

from their peak in the 1960s. Neven and Gouyette (1995) also find big differences in the patterns

of convergence across subperiods and across subsets of regions.

The fixed-effects approach, originally used by Islam (1995) to measure convergence across coun-

tries, has been applied to study regional convergence, among others, by Canova and Marcet (1995)

for the European regions and by de la Fuente (1996) for the Spanish regions. All these studies ob-

tain much higher convergence rates than those found in cross-country regressions. The convergence

process has a different interpretation, however, for it is convergence to country- or region-specific

steady-states. Moreover, the high estimated convergence rates are difficult to reconcile with the

neoclassical growth theory, for they imply very low (and sometimes negative) capital shares. Canova

and Marcet (1995), using a Bayesian estimator which permits the estimation of different conver-

gence rates to different steady-states for each region, find evidence supporting lack of convergence

in income levels but some convergence in growth rates. De la Fuente (1998) finds that explicitly

allowing for short-term noise reduces the estimated rate of convergence to values which are roughly

consistent with an extended neoclassical model.

Both cross-sectional “Barro regressions” and fixed-effects estimates place strong a priori re-

strictions on the model parameters. The former impose complete regional homogeneity in the

parameters of the process that describes the evolution of per-capita GDP, while the latter allow for

unobserved heterogeneity but confine differences across regions to the intercept of the model.

An alternative time-series approach to convergence has been developed by Bernard and Durlauf

(1995, 1996). According to this approach a group of countries converge in output when the long-

term forecasts of output for all countries are equal at a fixed time t, while countries have common

trends in output if the long-term forecasts of output are proportional at a fixed time t. These
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definitions have natural testable counterparts in the cointegration literature. In fact, convergence

requires countries’ outputs to be cointegrated with cointegrating vector [1,−1], while the existence
of common trends only requires the output series to be cointegrated with cointegrating vector

[1,−α]. This approach does not impose the constraints imposed by cross-country and fixed effects
approaches. However, it requires long time-series and does not allow estimating the different

parameters of the process that drives the evolution of per-capita GDP, such as the convergence

rate and the trend growth rate.1

Unlike previous studies at the regional level, this paper estimates separate processes for each

region using the heterogeneous panel approach proposed by Lee, Pesaran and Smith (1997) for

studying convergence in a panel of countries over the period 1960—1989. By permitting the model

parameters to be completely different across regions, not only we avoid imposing strong a priori

assumptions but we are also able to analyze the spatial patterns in the estimated coefficients. We

also try to address some problems of this estimation method that have been recognized but not

addressed by Lee, Pesaran and Smith.

First of all, conventional estimators of the autoregressive coefficient, which capture the rate of

convergence to the steady-state growth path, are severely downward biased in short time series.

Further, this bias translates into invalid inference about the other model parameters. To deal with

these problems, we use median unbiased estimators of the autoregressive parameter, as proposed

by Andrews (1993), and construct confidence sets for the other parameters based on these median

unbiased estimates.

Second, most panel studies of convergence ignore cross-sectional correlation in the regression

errors. This is particularly implausible when studying convergence across regions, as contempo-

raneous shocks are likely to affect simultaneously different regions within the same country, and

possibly also across countries. In this paper, we take into account the possibility of cross-sectional

correlation by treating regional relationships as a system of seemingly unrelated regression equa-

tions.

The remainder of this paper is organized as follows. Section 2 presents the basic statistical

model and its economic interpretation. Section 3 discusses the issues that arise when trying to

allow for complete regional heterogeneity in the model parameters, and describes how they are

addressed. Section 4 presents the data used in the empirical analysis. Section 5 reports the results

obtained. Finally, Section 6 offers some concluding remarks.

1 For completeness, another approach to study convergence in per-capita GDP is to focus on the evolution of its
cross-sectional distribution. Using this methodology, Quah (1996) finds that while disparities have decreased between
European countries, they have increased across regions within countries.
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2 The statistical model

The basic statistical model in the empirical literature on convergence is the deterministic linear

trend model with AR(1) errors
Yit = ci + git+ Uit

Uit = λiUi,t−1 + it,
(1)

where Yit is the log of per-capita GDP of region i at time t, λ ∈ (−1, 1], and it is an innovation

with constant variance σ2i . Notice that innovations may be contemporaneously correlated across

regions. The parameters ci and gi respectively measure the mean initial level and the mean growth

rate of per-capita GDP in region i, whereas the autoregressive parameter λi measures the degree

of persistence of the shocks to log per-capita GDP in region i. The parameter νi = − lnλi, defined
for λi > 0, measures the speed of convergence of per-capita GDP in region i to its long-run growth

path ci + git, and will be referred to as the “rate of convergence”.

The growth equations that are often estimated in cross-sectional studies (the so-called “Barro re-

gressions”) can be obtained from (1) by imposing equality across regions in all parameters (ci, gi, λi),

while the growth equations estimated in the context of fixed-effects models can be obtained by im-

posing homogeneity in the parameters gi and λi, leaving the ci unrestricted.

If λi = 1, the intercept ci is not identifiable and model (1) reduces to Yit − Yi,t−1 = gi + it,

namely a random walk with drift gi. In this case, given two regions i and j with λi = λj = 1,

it makes sense to talk about convergence only if the processes for log per-capita GDP in the two

regions are cointegrated. Irrespective of whether it makes sense to talk about convergence, one may

well have gi = gj , that is, the same average growth rate of per-capita GDP in two regions.

Equation (1) may arise as the reduced form of several growth models. Most empirical studies

focus on the neoclassical Solow’s growth model (Solow 1956) with no uncertainty, an aggregate

Cobb-Douglas production function, initial level of technology A0, capital share α, depreciation rate

of the capital stock δ, savings rate s, growth rate of labor input m and growth rate of technology

g. Except for A0, all the model parameters are assumed to be time invariant, although they may

differ across regions (henceforth, we drop the subscript i whenever this causes no ambiguity). In

this model, the dynamic equation for log per-capita GDP is given by

Yt = (1− λ)(c+ gt) + λg + λYt−1, (2)

where λ = e−ν , ν = (m+ g+ δ)(1−α) is the the rate of convergence, and the parameter c depends

on all the model parameters through the relationship

c =

·
lnA0 +

α

1− α
ln

µ
s

m+ g + δ

¶¸
.

4



Adding an innovation t to the deterministic relationship (2) and rearranging terms gives a repre-

sentation which is equivalent to (1).

More recently, Lee, Pesaran and Smith (1997) have developed a stochastic version of the neo-

classical growth model where both technology and employment follow AR(1) processes with a linear

trend and possibly a unit root. In this model, countries might experience different growth rates

even if they have access to the same technology. Equation (1) may be obtained as a reduced form of

this model under somewhat stringent assumptions on the correlation between the employment and

the technology shock, and the order of magnitude of their autocorrelation coefficients. In this case,

the coefficient on the lagged dependent variable also depends on the amount of serial correlation

in the technology shocks. In particular, a unit root in output may arise either because of constant

marginal productivity of capital (α = 1) or a unit root in technology.

3 Methodology

Unlike previous studies at the regional level, this paper estimates equation (1) separately for each

region, thus allowing for unrestricted parameter heterogeneity and arbitrary correlation in the

innovations across regions. This enables us to investigate the extent of convergence and the pat-

terns of spatial correlation across European regions without imposing a priori strong homogeneity

restrictions.

Estimation and inference about the parameters of model (1) is rather tricky. In carrying out

the strategy of estimating the model parameters separately for each region, we need to address

three issues: (i) the downward bias in the traditional estimates of the autoregressive parameter

λ, (ii) the quality of the inference about the intercept c and the slope g of the time trend, and

(iii) the likely correlation of the innovations across regions. As we argue below, the way in which

the autoregressive parameter is estimated turns out to be crucial, for it affects inference (point

estimation and hypothesis testing) about other parameters, even in the absence of any correlation

of the innovations across regions.

3.1 Estimation of λ

The most common estimators of λ are the coefficient on Yt−1 in an OLS regression of Yt on a
constant, a linear trend and Yt−1, and various estimators obtained from the residuals Ût in an

OLS regression of Yt on a constant and a linear trend, such as λ̂ =
PT

t=2 ÛtÛt−1/
PT

t=3 Û
2
t−1 (the

unconditional LS estimator), λ̄ =
PT

t=2 ÛtÛt−1/
PT

t=2 Û
2
t−1 (the conditional LS estimator) and the

coefficient of sample correlation between Ût and Ût−1. Notice that only the last estimator guarantees
that the estimates of λ will lie within the parameter space (−1, 1]. Although consistent, all these
estimators are known to be downward biased in finite samples, and the size of their bias increases
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with the absolute value of λ and decreases with the sample size T . Not allowing for this bias

represents one of the main flaws of existing studies on convergence.

Several ways of correcting conventional estimators of λ for their bias have been proposed in

the literature (see for example Quenouille 1956 and Orcutt & Winokur 1969). In this paper, we

follow the procedure suggested by Andrews (1993), which corrects for median bias. We then use

the resulting median unbiased estimates of λ to carry out inference about the parameters of the

time trend.

An estimator of λ is said to be median unbiased if, for any λ, its sampling median is equal to λ.

A median unbiased estimator has the “impartiality” property that the probability of overestimating

and underestimating the true parameter λ are the same.

Andrews (1993) presents a method for constructing median unbiased estimators of λ in Gaussian

AR(1) models. His method may be used to bias-correct any estimator of λ with a continuous and

strictly increasing distribution function and a sampling median that is continuous and strictly

increasing in λ for −1 < λ ≤ 1. Notice that the parameter space includes the case of a unit root
process and therefore allows for a smooth transition between the trend stationary case (|λ| < 1) and
the unit root case (λ = 1).2 Given an estimator λ̂ with median function ζ(·), a median unbiased
estimator of λ is

λ̃ =

 1, if λ̂ > ζ(1),
ζ−1(λ̂), if ζ(−1) < λ̂ ≤ ζ(1),
−1, otherwise,

where ζ−1(·) is the inverse of ζ(·) and ζ(−1) = limλ→−1 ζ(λ). Notice that, by construction, λ̃
belongs to the interval (−1, 1]. To see why λ̃ is median unbiased notice that, by definition, its

median is equal to the median of ζ−1(λ̂). If ζ−1 is continuous and strictly increasing on (−1, 1], it
then follows that the median of λ̃ is equal to ζ−1(med λ̂) = ζ−1(ζ(λ)) = λ. Implementation of this

method typically relies on numerical evaluation of the median ζ(λ) of λ̂ on a fine grid of λ values,

and interpolation to obtain the median function ζ(·) and its inverse ζ−1(·).
Lee, Pesaran and Smith (1997) point out that the main drawback of median unbiased estimators

of λ is their large sampling variance relative to conventional estimators. In the remainder of this

section we investigate whether this larger sampling variance is more than offset by the smaller bias.

We report summary statistics based on a set of Monte Carlo experiments for a sample of

21 observations from model (1) with Gaussian innovations. Each experiment consists of 10,000

replications and corresponds to a different value of λ in the range [−0.98, 1.00], at intervals of
width .02. The same set of pseudo-random numbers is used in each experiment. The conventional

2 The method has two limitations. First, it only applies to AR(1) processes. An approximately median unbiased
estimator for the AR(p) model has been proposed by Andrews and Chen (1994). Second, it requires knowledge of the
shape of the distribution of the innovations. Numerical results presented by Andrews (1993) show that procedures
based on the normality assumption are robust to a variety of nonnormal distributions.
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estimator of λ is again the coefficient on Yt−1 in an OLS regression of Yt on a constant, a linear
trend and Yt−1.

We exploit two important properties of the model, namely the fact that when |λ| < 1 and the
initial value Y0 is random, the sampling distribution of the conventional estimator depends only on

λ and the sample size T , while when λ = 1 it does not depend on the initial value Y0 (see Andrews

1993 for a proof). Thus, we set c = g = 0. For |λ| < 1, we randomly draw the innovations from

the N (0, 1) distribution and the starting value Y0 from the N (0, (1− λ2)−1) distribution, whereas
for λ = 1 we set Y0 = 0.

Figure 1 compares the median bias, the mean bias, the standard error (SE), and the root mean

square error (RMSE) of the sampling distribution of the two estimators of λ. The figure shows

that the downward bias of the conventional estimator is very large. For example, its mean bias

is equal to -.214 for λ = .60, -.277 for λ = .80, -.325 for λ = .90 and -.363 for λ = .96.3 Using

the conventional estimator therefore leads to severely underestimate the autoregressive coefficient

and to severely overestimate the rate of convergence. Notice that the sampling median of the

conventional estimator is strictly increasing in λ, which is what is required for constructing median

unbiased estimators.4

The small-sample bias of the conventional estimator represents a problem for any empirical

study of convergence based on short time series. For example, the sample of OECD countries used

by Lee, Pesaran and Smith (1997) consists of 29 annual observations. In this case, when λ = 1, the

sampling median of the conventional estimator of λ can be shown to be equal to .678.5 Considering

that the cross-country median of their estimates of λ is .789 (see their Table 1, p. 370), for more

than half of the countries the median unbiased estimator of λ would be equal to 1, implying no

convergence. This may explain why their estimates show fast convergence but are nevertheless

unable to reject the null hypothesis of a unit root in output.

Although the median unbiased estimator always has larger standard error and smaller mean

bias than the conventional estimator, the difference in the variability of the two estimators does not

increase with λ, while the difference in the bias does. In fact, while the bias and the standard error

of the conventional estimator are strictly increasing in λ, the standard error of the median unbiased

estimator actually decreases for λ > .58. It turns out that, for values of the autoregressive parameter

above .32, the larger variance of the median unbiased estimator relative to the conventional one is

more than offset by its smaller bias. Thus, for values of λ corresponding to those typically found in

convergence studies, the median unbiased estimator has smaller root mean square error than the

3 Detailed tables are available from the authors upon request.
4 We have no formal proof that the quantiles of the conventional estimator are strictly increasing in λ, although

numerical calculations for various sample sizes show this to be the case (Andrews 1993).
5 Tables are available from the authors upon request.
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conventional one.6 The efficiency of the median unbiased estimator relative to the conventional one

depends of course on the sample size, and is typically reversed in large samples.

3.2 Inference about the time trend

Several estimators are available for the parameters (c, g) in model (1). The OLS estimator in

a regression of Yt on a constant and the linear trend is unbiased but inefficient. Its inefficiency

vanishes in large samples, however, because the columns (1, 1, . . . , 1) and (0, 1, . . . , T − 1) of the
design matrix are close to being linear combinations of two characteristic vectors of the covariance

matrix of an AR(1) process.7

When |λ| < 1 is known, the best linear unbiased estimator of (c, g) is the GLS estimator,

obtained by applying OLS to the data transformed using the feasible GLS (Prais—Winsten) trans-

formation. When λ = 1, the parameter c is not identifiable and the GLS estimator of g is just

the sample average of the differences Yt − Yt−1. When λ is unknown, a feasible GLS estimator,

asymptotically equivalent to GLS, is easily obtained by “plugging-in” a consistent estimate of λ.

The approximate GLS estimator proposed by Cochrane and Orcutt (1949) is instead quite

inefficient in finite samples, even when λ is known, especially for λ close to unity. The source of

the inefficiency is the omission of the first observation. The problems with the Cochrane—Orcutt

estimator worsen considerably when λ is unknown.

The finite-sample properties of all these estimators have been investigated by Park and Mitchell

(1980) and Canjels and Watson (1997). The two studies show that, when λ is estimated in a

conventional way, the Cochrane—Orcutt estimator is always less efficient than OLS, while feasible

GLS estimators based on the Prais—Winsten transformation (either two-step or fully iterated) offer

efficiency gains over OLS that range from modest to substantial depending on the value of λ and

the sample size. For large values of λ, feasible GLS estimators appear to have a slight edge in

small samples over the exact maximum likelihood procedure based on the normality assumption.

Because of these results, we henceforth focus on feasible GLS estimators of (1).

When a feasible GLS procedure is used, the way in which λ is estimated is crucial. First, the

feasible GLS transformation breaks down when the estimates of λ are greater than one in absolute

value. Second, biased estimation of λ may reduce the efficiency gain from using a feasible GLS

estimator. Third, and most importantly, they may imply higher probabilities of Type I error than

nominal.

In fact, the Monte Carlo evidence in Park and Mitchell (1980) reveals large discrepancies between

6 The same experiment carried out for other conventional estimators of λ confirms these results. Moreover, all
conventional procedures provide very similar results in terms of mean bias, median bias, standard errors and RMSE.

7 Chipman (1979) showed that the greatest lower bound for the efficiency of the OLS estimator of g over the
interval 0 ≤ λ < 1 is equal to .7534, approached as T →∞ and λ→ 1.
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the actual and the nominal level of Wald tests on the trend coefficient when λ is positive and

conventional estimates of λ are used. To see the source of the problem, notice that, under model

(1), the sampling variance of the exact GLS estimator ĝ is equal to Var(ĝ) = q1σ
2/(q1q3 − q22),

where q1, q2 and q3 are the following functions of λ and the sample size T

q1 = 1− λ2 +
T−1X
t=1

(1− λ)2 = (1− λ)[T (1− λ) + 2λ],

q2 = (1− λ)
T−1X
t=1

[t− λ(t− 1)] = (T − 1)(1− λ)

·
T

2
(1− λ) + λ

¸
,

q3 =
T−1X
t=1

[t− λ(t− 1)]2 = T (T − 1)(1− λ)

·
2T − 1
6

(1− λ) + λ

¸
+ (T − 1)λ2.

This sampling variance increases monotonically with λ for T fixed. Estimating Var(ĝ) by “plugging-

in” a downward biased estimator of λ leads to underestimate the sampling variance of ĝ and

therefore to incorrectly reject a null hypothesis about g with a probability that is larger than the

nominal size of the test.

Figure 2 reports the results of a set of Monte Carlo experiment that analyzes the actual level of

a t test of significance of the linear trend in model (1) estimated by feasible GLS with alternative

estimates of λ. The setup of the experiments is exactly the same as in Section 3.1. The figure

compares the actual frequencies of Type I error for nominal 5%-level two-sided tests based on

conventional and median unbiased estimators of λ. Except for values of λ close to -1, the actual

level of the test is always higher than the nominal and the discrepancy between the actual and the

nominal level increases with λ. The frequency of Type I error is much larger, however, when the

conventional estimator of λ is used. For example, when λ = .60 the test based on the conventional

estimator rejects in 17.3% of the cases, when λ = .80 it rejects in 27.1% of the cases, when λ = .90

it rejects in 37.0% of the cases, and when λ = .96 it rejects in 45.3% of the cases. On the other

hand, when λ = .60 the test based on the median unbiased estimator rejects in 9.8% of the cases,

when λ = .80 it rejects in 13.1% of the cases, when λ = .90 it rejects in 17.1% of the cases, and

when λ = .96 it rejects in 20.9% of the cases.

The use of median unbiased estimators of λ therefore goes a long way towards reducing the

discrepancy between the actual and the nominal level of a test, thus providing a simple and viable

alternative to the use of generalized bounds tests, as proposed by Dufour (1990), or asymptotically

conservative tests, as proposed by Canjels and Watson (1997).

Our final concern is the possible correlation of the innovations across regions. It is hard to justify

the assumption that innovations in two different regions are uncorrelated. In fact, correlation is

likely to be present either between regions in the same country (because of common country-specific
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shocks) or between adjacent regions in different countries (because of trade and spillover effects).

Thus, when testing for equality across regions of the parameters of the time trend one should deal

with the fact that the cross-sectional correlation in the innovations may lead to invalid inference if

not properly taken into account.

Lee, Pesaran and Smith (1997) try to remove the contemporaneous correlation by transforming

the data in deviations from the country-specific mean. In fact, their procedure is only justified when

countries (regions) have the same value of the autoregressive parameter and when the common

shocks have the same impact across all countries (regions).

In this paper, we follow an alternative route. First we remove the autocorrelation by using the

median unbiased estimates of the region-specific autocorrelation coefficient to transform the obser-

vations via the exact GLS transformation. We then test for equality of the time trend coefficients

between pairs of regions by estimating a seemingly unrelated regression equations (SURE) model

on the transformed data in order to take into account the possible correlation in the innovations.8

4 The data

Our data come from the REGIO database of Eurostat and are categorized according to the Nomen-

clature of Statistical Territorial Units (NUTS). Although this categorization consists of three levels

(NUTS1, NUTS2 and NUTS3, with NUTS1 corresponding to the coarsest level and NUTS3 to the

finest), none of them can be considered as fully satisfactory (Boldrin & Canova 2000). For this rea-

son, we rely instead on the alternative categorization proposed by Paci (1997) and Rodŕıguez-Pose

(1998).

The selected categorization follows two criteria: (i) comparable levels of self-government in

countries with a sufficient degree of administrative decentralization (Germany, Belgium, Spain,

Italy, France, and partially Portugal and the United Kingdom) and, (ii) comparable size in terms

of territory or population for the remaining countries (Denmark, Greece, Ireland, Luxembourg,

and the Netherlands). It selects regional units corresponding to the following administrative levels:

Régions for Belgium, Régions for France, Länder for Germany, Groups of Development regions

for Greece, Regioni for Italy, Landsleden for the Netherlands, Regioes autonomas for Portugal,

Communidades autónomas for Spain, and Standard regions for the UK. The resulting categorization

coincides with NUTS 1 for Belgium, Germany, Greece, Netherlands and the UK, and with NUTS

2 for France, Italy, Portugal and Spain. Denmark, Ireland and Luxembourg are each treated as a

single region.

8 Phillips and Sul (2002) show that, in the case of short time series with high degrees of cross sectional dependence,
the SURE median unbiased estimator has MSE performance that is 5 times better than that of the OLS estimator
and twice as good as that of the SURE estimator.
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A further complication is the fact that, in late 1998, the NUTS has been revised to incorporate

changes in the administrative structure of the various countries. There were minor revisions for

Finland, Germany and Sweden, but major revisions for the UK. To ensure comparability over time,

whenever possible we reclassify the data for 1995-2000 according to the old NUTS. For Germany,

we exclude the Eastern Ländern and some other regions for which there is no correspondence

between the old and the new NUTS. Moreover we exclude Brussels and three UK regions (North,

North-West and South-East) for which data were not comparable across the two classifications.

The resulting sample consists of 95 regions followed for each year from 1980 to 2000 (see Table 1)9.

GDP data have been converted to a common scale using purchasing power parities (PPPs) rather

than exchange rates, since the latter do not take into account differences in purchasing power across

countries. Growth rates are computed using per-capita GDP in 1995 PPPs and prices. Due to lack

of regional price indices, data have been deflated using the national consumer price index .

5 Empirical results

We estimate model (1) separately for each of the 95 European regions using both conventional and

median unbiased estimators of λ. After presenting the results obtained under different estimation

procedures (Section 5.1), we discuss the evidence on spatial correlation (Section 5.2) and parameter

heterogeneity (Section 5.3).

5.1 Parameter estimates

Table 2 reports summaries of the distribution of the estimates of the model parameters c, g and

λ across regions. Within the neoclassical growth model, c is the steady-state level of per-capita

GDP in the absence of technical change, whereas g is the rate of technical change. We also report

summaries of the rate of convergence parameter ν = − lnλ.
The table shows the results obtained when the model is estimated under different assumptions

on parameter heterogeneity. The cross-sectional estimates assume a common rate of convergence

and a common steady-state level of per-capita GDP. Notice that only the parameter λ can be

estimated in this case. Fixed-effects estimates allow for region-specific values of c but assume a

common value of g and λ. Finally, heterogeneous panel models allow all three parameters to be

region-specific. In this case, we report both the conventional and the median unbiased estimates

of the autoregressive parameter. For the other parameters (c and g) we report the GLS estimates

based on these alternative estimates of λ.

The rate of convergence ranges from a value of .016 for the cross-sectional case, to .13 for the

fixed-effect estimates, to a mean value of .53 for the heterogeneous panel estimates based on the

9 The location of the regions in a geographical map is reported in Meliciani and Peracchi (2004).
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conventional estimates of λ. Our fixed-effects and heterogeneous panel estimates of the rate of

convergence are much larger than those obtained by Lee, Pesaran and Smith (1997) at the country

level for a sample of 22 OECD countries. In fact, they obtain a value of .95 for λ (implying a value

of .05 for the rate of convergence) when only allowing for heterogeneity in c, and a value of .76 for λ

(implying a value of .27 for the rate of convergence) when allowing for complete heterogeneity (see

their tables 1 and 4). Our higher estimates could depend, in part, on the fact that our data refer

to regions rather than countries. They may also be a consequence of the fact that the downward

bias in the autoregressive coefficients (and therefore the upward bias in the rate of convergence) is

larger for shorter time series (see Andrews, 1993). Since our time series consists of 21 observations

while the Lee, Pesaran and Smith time series consists of 29 observations, the upward bias in the

rate of convergence should be larger for our estimates. In fact, the table shows that the mean

rate of convergence falls from .53 to about .18 if we use median unbiased rather than conventional

estimators of λ. Further, for more than half of the regions the median unbiased estimator of λ is

equal to one, implying no convergence. Also note that the trend growth rate is higher for fixed

effects estimates (0.027) than for heterogeneous panel estimates (0.022 and 0.021 for the results

based respectively on the conventional and on the median unbiased estimates of λ).

Figure 3 is a map of Europe with the value of the estimates of the trend growth rate. Higher

values of the estimates correspond to darker colors in the map. Looking at the map, there is evidence

of both spatial and national effects in the distribution of the trend growth rate. The highest growth

rates are found in all the Portuguese regions, several Spanish regions, Ireland, Luxembourg, the

Greek Islands and two Italian regions (Trentino-Alto Adige, Veneto).

The Spanish regions with the highest trend growth rate are Ceuta-y-Melilla, Canarias, Co-

munidad de Madrid, Extremadura, Cataluña, Aragón, Comunidad de Navarra, Balears, Murcia,

Comunidad Valenciana, Castilla-la Mancha, Pais Vasco and Castilla-y-León. This group includes

regions with per-capita incomes both above and below the national average. The UK regions ap-

pear to have intermediate trend growth rates, while the French regions tend to have below average

growth rates. In general laggard countries, with the exception of Greece, appear to experience

above-average mean growth rates. However, the same tendency does not appear to emerge across

regions within the same country.10

10 The results for the trend growth rate estimated using conventional estimates of λ do not differ much from the
ones reported in the map (based on median unbiased estimates of λ).
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5.2 Spatial correlation

The visual impression of spatial correlation in the trend growth rate may be investigated more

formally. A popular indicator of spatial correlation is the Moran coefficient, defined as

I =
S−1

Pn
i=1,i6=j

Pn
j=1wij(xi − x̄)(xj − x̄)

n−1
Pn

i=1(xi − x̄)2
,

where xi is the value of the variable under consideration in region i, x̄ denotes the average value

of the variable across all regions, n is the total number of regions, wij denotes the generic element

of an n × n matrix of weights, called the contiguity matrix, and S =
Pn

i=1,i 6=j
Pn

j=1wij . The

Moran coefficient takes the classic form of any autocorrelation coefficient: the numerator measures

the covariance among the xi and the denominator measures the variance.
11 Because the Moran

coefficient is asymptotically normally distributed under some regularity conditions (see Cliff &

Ord 1973, Chapter 1), inference on the significance of spatial correlation may be based on the

standardized values of I.12

The specification of the contiguity matrix is crucial for the Moran coefficient. We consider

three different specifications. The first assigns a weight of one when two regions share the same

border and a weight of zero otherwise. This matrix we be referred to as the “neighbor matrix”.

To investigate to what extent spatial correlation might be due to country effects, we construct a

“foreign neighbor matrix”, by considering only border regions and by assigning a weight of one

when two regions belonging to two different countries share the same border and a weight of zero

otherwise. We also consider a “country matrix” that assigns a weight of one when two regions

belong to the same country and a weight of zero otherwise. These matrices are used to compute

the amount of neighbor, foreign neighbor and country correlation in the trend growth rate.

The value of the Moran coefficient changes little across estimation methods13. The trend growth

rate is highly correlated for regions belonging to the same country (the correlation coefficient is 0.60

for both conventional and median unbiased estimators). It is also highly correlated for neighboring

regions, but correlation is lower across neighbors than across regions in the same country (for

neighboring regions the correlation coefficient is 0.46 using conventional estimators and 0.44 using

median unbiased estimators). Moreover, when we compute the Moran coefficient excluding regions

belonging to the same country, the correlation is still positive but statically insignificant. This

indicates the presence of important country effects in regional trend growth rates. In the neoclassical

11 Rather than imposing any a priori constraint on spatial correlation in the coefficients or the error term of
the model, we prefer to allow for complete heterogeneity in the coefficients and arbitrary patterns of correlation in
the residuals and to use the Moran coefficient as a descriptive tool that summarizes the spatial distribution of the
estimated coefficients.
12 For the form of the asymptotic mean and standard deviation of I, see Cliff and Ord 1973.
13 We concentrate on the trend growth rate because for more than half of the regions the estimates of the autore-

gressive parameter λ are equal to one and the intercepts are not defined.
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growth model, the trend growth rate g represents the rate of growth of technology. Following this

interpretation, it appears that, in spite of the further integration of European regions, the diffusion

of technology remains faster within one country than across the borders.

Overall the results show that, while there is little evidence of convergence to each region’s

steady-state per-capita GDP,14 there is some evidence of catching-up since the estimates of the

trend growth rate of most regions in some laggard countries (Spain and Portugal) are higher than

the average. On the other hand, the fact that trend growth rates are similar for regions within the

same country independently of their initial levels of per-capita GDP, is consistent with the lack of

within-country convergence in levels found by many studies on regional growth in Europe (see e.g.

Boldrin & Canova 2000).

5.3 Testing for parameter heterogeneity

As already discussed, using conventional estimates of the autoregressive coefficient could lead to

reject the null hypothesis more frequently than the nominal size of the test. Here we compare

the results obtained using GLS estimators based on alternative estimates of the autoregressive

parameter λ. In either case, we compare the results obtained not taking and taking into account

the contemporaneous cross-sectional correlation in the innovations.

The number of pairwise tests of equality of the trend slope g is equal to n(n−1)/2 = 95(94)/2 =
4, 465. For the intercept c, the number of pairwise tests of equality depends instead on the number

of regions for which the estimated value of λ is less than one in absolute value, as the parameter is

only identified in this case. Since this number is rather small, we focus on tests of homogeneity in

trend growth rates.

The amount of heterogeneity in the estimated trend growth rates is significantly reduced when

the GLS transformation is carried out using the median unbiased estimates rather than the con-

ventional one. This is true independently of whether or not we also allow for contemporaneous

correlation in the innovations. Ignoring the contemporaneous correlation (GLS) and using conven-

tional estimates of λ, equality in g is rejected at the 5% level in 54.5% of the cases, and at the 10%

level in 62.0% of the cases. Using median unbiased estimates of λ, equality in g is instead rejected

at the 5% level in only 18.5% of the cases and at the 10% level in only 25.4% of the cases. When

taking into account the contemporaneous cross-section correlation in the innovations (SURE), re-

jection rates at the 5% (10%) level go up to 64.4% (70.7%) if conventional estimates of λ are used,

and to 25.9% (34.5%) if median unbiased estimates are used.

Figure 4 reports in more detail the results of our pairwise tests of equality of the trend growth

rate based on SURE estimates that allow for contemporaneous correlation in the innovations across

14 This result can be interpreted as evidence against decreasing marginal productivity of capital within the Solow
growth model, but is also consistent with a unit root in technology in the stochastic version of the model.
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regions.15 The top and bottom panels correspond, respectively, to the conventional and median

unbiased estimates of λ. Each point of a panel represents a pair of regions. The symbol “x”

indicates rejection of equality at the 5% level, “*” indicates rejection at the 10% level, while “.”

indicates no rejection. The critical values of the tests are based on the t distribution with 19 degrees

of freedom. Data are ordered so that regions belonging to the same country are close to each other.

Vertical and horizontal lines mark the shift from one country to the next. It is therefore possible

to discern from the figure the presence of country effects in homogeneity (heterogeneity) of trend

growth rates. Due to the symmetry of each matrix, we have drawn the results of the tests only for

the part below the diagonal.

Again we can observe that there are important country effects. In particular, on the basis

of conventional t-tests most of growth homogeneity is found across regions belonging to the same

country. On the other hand the trend growth rate of most French regions appears to be significantly

different from the trend growth rate of most Spanish and Portuguese regions and from Luxembourg

and Ireland. On the basis of corrected t-tests growth heterogeneity occurs in few cases (mostly

involving Ireland, Luxembourg and some Portuguese, Italian, Spanish and French regions).

Finally, we investigate the relevance of taking into account the cross-sectional autocorrelation

in the disturbances using the Breusch and Pagan (1980) test statistic. Since we are carrying out

pairwise comparisons, the test statistic is simply equal to TR̂2ij , where R̂
2
ij is the sample correlation

between the GLS residuals from the ith and the jth region. Cross-sectional correlation in the

innovations is statistically significant at the 5% level in 36.7% of the cases when using conventional

estimates of λ, and in 33.5% of the cases when using median unbiased estimates of λ. The cases

of no autocorrelation prevail in the UK, Portugal and Greece, suggesting that these countries

have experienced shocks which are different from the rest of the EU.16 The large number of cases

of significant autocorrelation across regions (also belonging to different countries) suggests the

importance of taking into account the covariance in the innovations when testing for equality in

the parameters.

6 Conclusions

This paper analyzes convergence in per-capita GDP across European regions using a very standard

model (a deterministic linear trend model with AR(1) errors) but trying to overcome some of the

problems arising with previous empirical studies that have ignored the regional heterogeneity in

the model parameters and the short time series dimension of the available data.

15 A similar figure obtained ignoring cross-sectional correlation in the innovations is reported in Meliciani and
Peracchi (2004).
16 For a visual inspection of the patterns of correlation in the innovations across regions see Meliciani and Peracchi

(2004), Figure 9.
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Heterogeneity in the model parameters has been addressed using heterogeneous panel estima-

tors instead of more restrictive “Barro regressions” or fixed-effects estimators, whereas the issues

arising from the short time series dimension of the data have been addressed by using median unbi-

ased estimators of the autoregressive parameter in the model. Our Monte Carlo simulations show

that, for values of the autoregressive parameter commonly found in convergence studies, the larger

sampling variability of median unbiased estimators relative to conventional estimators is more than

compensated by the smaller bias, resulting in a sampling distribution that is more concentrated

about the target parameter.

We find that, for more than half of the European regions considered, the value of the median

unbiased estimator is equal to one, implying no convergence to a steady-state level of per-capita

GDP. The mean rate of convergence across regions using median unbiased estimators is about .18,

less than half the value found using conventional estimators. These results suggest that there are

serious problems in estimating the rate of convergence from short time series without properly taking

into account the downward bias in the conventional estimates of the autoregressive parameter.

Conventional t tests on the parameters of the linear trend in the model would also lead to

reject the null hypothesis of equality with a probability that is much larger than the nominal size

of the test. Moreover, the discrepancy between the actual and the nominal size increases with the

value of the autoregressive parameter. To address this problem we have carried out t tests on the

parameters of the linear trend replacing the conventional estimates of λ with median unbiased ones.

To test hypotheses on the equality of the parameters across regions we have also taken into account

the cross-sectional dependence in the error term.

While tests based on conventional estimates of λ reject growth homogeneity in a majority of

cases, tests based on median unbiased estimates of λ lead to the conclusion that regional trend

growth rates differ in a minority of cases. Further, by allowing all parameters to differ across

regions, this study also reveals strong spatial patterns of correlation in the trend growth rates. We

find that, despite the increasing integration among European regions, trend growth rates are still

highly correlated between regions belonging to the same country. If the trend growth rate captures

the rate of growth of technology, as suggested by the neoclassical growth model, it appears that

the diffusion of technology is still easier within one country than across the borders.
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Table 1: List of the European regions considered.

be2 Vlaams Gewest es62 Murcia it4 Emilia-Romagna
be3 Région Wallonne es63 Ceuta y Melilla it51 Toscana
dk Denmark es7 Canarias it52 Umbria
de1 Baden-Württemberg fr1 Ile de France it53 Marche
de2 Bayern fr21 Champagne-Ardenne it6 Lazio
de5 Bremen fr22 Picardie it71 Abruzzo
de6 Hamburg fr23 Haute-Normandie it72 Molise
de7 Hessen fr24 Centre it8 Campania
de9 Niedersachsen fr25 Basse-Normandie it91 Puglia
dea Nordrhein-Westfalen fr26 Bourgogne it92 Basilicata
deb Rheinland-Pfalz fr3 Nord-Pas-de-Calais it93 Calabria
dec Saarland fr41 Lorraine ita Sicilia
def Schleswig-Holstein fr42 Alsace itb Sardegna
gr1 Voreia Ellada fr43 Franche-Comté lu Luxembourg
gr2 Kentriki Ellada fr51 Pays de la Loire nl1 Noord-Nederland
gr3 Attiki fr52 Bretagne nl2 Oost-Nederland
gr4 Nisia Aigaiou, Kriti fr53 Poitou-Charentes nl3 West-Nederland
es11 Galicia fr61 Aquitaine nl4 Zuid-Nederland
es12 Principado de Asturias fr62 Midi-Pyrenees pt11 Norte
es13 Cantabria fr63 Limousin pt12 Centro
es21 Pais Vasco fr71 Rhóne-Alpes pt13 Lisboa e Vale do Tejo
es22 Comunidad de Navarra fr72 Auvergne pt14 Alentejo
es23 La Rioja fr81 Languedoc-Roussillon pt15 Algarve
es24 Aragón fr82 Prov-Alpes-Cóte Azur uk2 Yorkshire and Humberside
es3 Comunidad de Madrid ie Ireland uk3 East Midlands
es41 Castilla y León it11 Piemonte uk4 East Anglia
es42 Castilla-la Mancha it12 Valle d’Aosta uk6 South West
es43 Extremadura it13 Liguria uk7 West Midlands
es51 Cataluña it2 Lombardia uk9 Wales
es52 Comunidad Valenciana it31 Trentino-Alto Adige uka Scotland
es53 Baleares it32 Veneto ukb Northern Ireland
es61 Andalucia it33 Friuli-Venezia Giulia
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Table 2: Summary of parameter estimates (ν = − lnλ).

c g λ ν
Cross-section regression

.984 .016
Fixed-effects estimates
Mean 9.226 .027 .880 .127
Standard deviation .259
Minimum 8.687
Lower quartile 9.075
Median 9.216
Upper quartile 9.365
Maximum 9.966

Heterogeneous panel using λ̂ (conventional)
Mean 9.353 .022 .623 .527
Standard deviation .314 .009 .191 .450
Minimum 8.543 -.002 -.076 .021
Lower quartile 9.150 .015 .533 .294
Median 9.374 .020 .663 .409
Upper quartile 9.575 .025 .745 .625
Maximum 10.170 .054 .980 3.578

Heterogeneous panel using λ̃ (median unbiased)
Mean 9.261 .021 .879 .185
Standard deviation .284 .009 .201 .442
Minimum 8.556 .000 .034 .000
Lower quartile 9.088 .015 .826 .000
Median 9.358 .020 1.000 .000
Upper quartile 9.462 .024 1.000 .191
Maximum 9.618 .054 1.000 3.368
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Figure 1: Median bias, mean bias, standard error (SE) and root mean square error (RMSE) of
conventional and median unbiased estimators of λ.
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Figure 2: Monte Carlo frequency of Type I error for a nominal 5%-level two-sided t test of sig-
nificance of the linear trend in model (1) estimated by exact GLS using conventional and median
unbiased estimators of λ.
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Figure 3: Estimates of the trend growth rate.
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Figure 4: Tests of equality of the trend growth rates between pairs of regions based on SURE
estimates that allow for contemporaneous correlation in the innovations across regions. The top
and bottom panels correspond, respectively, to the conventional and median unbiased estimates of
λ. The symbol “x” indicates rejection at the 5% level, “*” indicates rejection at the 10% level,
“.” indicates no rejection. The critical values are based on the t distribution with 19 degrees of
freedom.
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