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FACOLTÀ DI INGEGNERIA

Dottorato di Ricerca in

Informatica e Ingegneria dell’Automazione

Ciclo XX

Trajectory tracking in switched systems:

an internal model principle approach.

The elliptical billiard system

as a benchmark for theory

Candidato: Relatore:

Alessandro Potini Prof. Antonio Tornambè
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Chapter 1

Introduction

Mechanical systems with impacts are nonsmooth dynamical systems with tra-

jectories possessing intervals of continuity (flow) and points of discontinuity

(jumps). Several frameworks for modeling this class of systems have been

proposed in the literature including Poincaré map modeling [18, 80, 88, 73],

dynamical systems with unilateral constraints [14, 73, 17], measure differential

inclusions [60, 59], and many others.

Control problems for systems subject to impacts [14] are of interest in a va-

riety of applications, especially in robotics, e.g., hopping [72] or walking robots

[61, 45, 84], juggling robots [18, 17], hammering tasks [46]. Among a number

of important stabilization tasks for these systems, the problem of stabilization

of rhythmic patterns has received great attention from the engineering and

neuroscience community because of its relevance in robotics and nature.

Mechanical systems subject to jumps form a subset of the more general

class of dynamical complementary systems (see [40] for an excellent overview

on modeling, analysis and control for such systems). The problem of trajectory

tracking for such a class of systems has been tackled recently in [16, 15, 9, 69,

70, 65, 56]. In [65] a discontinuous control algorithm is designed to regulate the

system onto the constraint surface in finite time using results from nonsmooth

Lyapunov theory (see, e.g., [74]). Control of “ complete robotic tasks ” [58]

9



10 Chapter 1. Introduction

including free motion, constrained motion and impacting phases is studied

for rigid manipulators in [16, 15, 9, 69, 70]. More precisely, in [16, 15, 9]

a control scheme based on “ classical ” nonlinear controllers (like passivity-

based, etc.) adapted to the nonsmoothness of the problem is presented, which

ensures stable tracking of some reference trajectories. On the other hand, [69,

70] propose an event-based control-switching strategy that includes a stable

discontinuous controller for the transition phases.

A widely used benchmark system for this type of task is the simple, but rich

in dynamics, model of a mechanical system with impacts which is referred to

as Birkhoff billiards. In [56] PD-like control inputs are used to asymptotically

stabilize particular periodic trajectories for a planar mechanical system inside

a Birkhoff circular billiard, whereas in [33] and [32] a more general tracking

problem has been considered for the elliptical billiard system. In [73] and

[35] stabilization results for periodic orbits of the controlled wedge billiard are

obtained.

Mechanical systems subject to impacts (e.g., billiard systems) are a par-

ticular example of switched systems. A switched system is a hybrid dynamical

system consisting of a family of continuous-time subsystems and a rule that

orchestrates the switching between them [53]. The theory of such systems is

related to the study of hybrid systems, which has recently attracted consid-

erable attention among control theorists, computer scientists, and practicing

engineers. Concerning the stability analysis and control synthesis for this class

of systems a lot of work has been done, nevertheless there are very few works

on the trajectory tracking problem that have been published to date in the

control literature.

In the present work, by using an internal model principle approach, a for-

mal solution to the problem of asymptotically tracking some reference signals

for a particular class of linear switched systems is obtained. The main topics

of the thesis are:

• Asymptotic trajectory tracking in the elliptical billiard system :
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a tracking control problem taking into account the hybrid nature of

the considered system is properly defined by using notions similar to the

quasi stability concept proposed in [50] for impulsive differential systems.

A switching strategy based on a discontinuous version of the internal

model principle is proposed and the control result is formally proved.

• Robust asymptotic trajectory tracking in the elliptical billiard

system : the possible presence of uncertainties on the system parameters

is considered for the control problem definition and solution. An algo-

rithm for estimating the correct jumps for the dynamical compensator

is also given.

• Robust asymptotic trajectory tracking in linear switched sys-

tems: in this part an attempt to generalize the results obtained for the

billiard system is discussed. At the end, a nonsmooth version of the

internal model principle is proposed for a class of switched systems with

linear dynamics between the switching events.
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Chapter 2

Background material

In this chapter, some background material is reported for the benefits of the

reader. Topics reviewed are the classical elliptical billiard system, an overview

about hybrid and switched systems and the constrained polynomial interpo-

lation with application to the trajectory planning.

2.1 The classical elliptical billiard system

The notion of billiard system was introduced by Birkhoff [7], and from then on

it became a challenging research field, which has attracted the attention of re-

searchers from mathematics, engineering and physics, where billiards are used

to investigate the transition from quantum mechanics to classical mechanics

[86]. A lot of work has been done to study the properties of trajectories fol-

lowed by a free particle inside classical billiards of different shape, that is

when no control is exerted on the moving mass (see, e.g., [48]). On the other

hand, for their particular dynamical features, controlled billiards, that is when

control forces acting on the moving body are considered, are a very interesting

benchmark (see, e.g., [73, 35, 56]) for studying many control problems as it

will be shown in Chapters 3, 4 and 5.

Remark 1. Unless otherwise stated, whenever in Chapter 2 the elliptical bil-

13



14 Chapter 2. Background material

liards is referred to, it is intended as “classical elliptical billiards” ; whereas in

Chapters 3, 4 and 5, it has to be intended as “controlled elliptical billiards” .

In the following, after some preliminaries, the notion of caustic curve is

introduced and the Hamilton-Jacobi theory is used to show a fundamental

dynamical property of the classical elliptical billiard system. In the last part

of this section, important results about the existence and the computation

of periodic paths inside the elliptical billiards are given together with some

numerical examples.

2.1.1 Preliminaries

Consider a dimensionless body having unitary mass (particle), which moves

on a horizontal plane, constrained to move inside a convex domain with an

ellipse as boundary curve. The particle bounces at the boundary according

to the reflection law (i.e., the angle of incidence is equal to the angle of re-

flection) and follows a straight-line path between two consecutive impacts [7].

This dynamical system is known as the classical elliptical billiard system (see

Fig. 2.1). Concerning the elliptic boundary, from a geometric point of view,

Figure 2.1: The classical elliptical billiard system.

an ellipse is defined as the locus of points whose sum of distances to two given

points F1 and F2 (called foci) is fixed. In the cartesian coordinates, the equa-

tion of an ellipse centered at the origin with a and b (b < a) the semi-major
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and semi-minor axis, respectively, is

x2

a2
+

y2

b2
= 1. (2.1)

Such an ellipse has foci with coordinates (±f, 0), where f :=
√

a2 − b2, and

eccentricity e := f
a =

√
a2−b2

a (see Fig. 2.2).

F1 F2

o a

b

y

x

Figure 2.2: Ellipse of equation: x2

a2 + y2

b2
= 1.

2.1.2 Elliptical billiard paths: the notion of caustic curve

The path described by a particle moving inside an elliptical billiards along

straight-lines and reflecting from the boundary according to the reflection law

is in general open, and it forms a dense subset of the region bounded by a

caustic curve and the boundary (see, e.g., [24]). The concept of caustic plays

a fundamental role in the study of paths in elliptical billiards.

Definition 1. A caustic is a smooth and convex curve inside the billiard table

such that if a segment (or its continuation) of a billiard path is tangent to it,

then so is every other reflected segment (or its continuation) of the same path.

The following theorem asserts the existence of caustics for each path inside

an elliptic billiards.
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Theorem 1. Every segment of a path in an elliptical billiards is always tangent

to a unique conic confocal with the given ellipse (the boundary of the billiards)

of foci F1 and F2. In particular the caustic curve will be:

• a confocal ellipse if the initial segment of the billiard path falls outside

the foci;

• a confocal hyperbole if the initial segment of the billiard path falls between

the foci.

Proof. By following the guidelines given in [52] and [22], the existence of the

caustic curve in the case in which it is a confocal and inner ellipse can be proved

by simple geometric considerations. In a wholly similar way, a geometric proof

can also be given in order to prove the existence of a confocal hyperbole caustic

(that is, when the first segment of the billiard path crosses the x-axis between

the foci).

Consider two consecutive segments of a billiard path: A0A1 and A1A2

(where α is the angle of incidence, which is equal to the angle of reflection

at point A1), and assume that the first segment intersects the x-axis outside

the segment F1F2 (see Fig. 2.3). By considering the optical property of the

F1 F2
o

y

x

α

β

γ

α

β
γ

A0

A1

A2

Figure 2.3: The first segment of the billiard path intersects the x-axis outside
the foci.

foci of the elliptic boundary (namely, each segment passing through a focus is
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always reflected to the other one), the following relation between angles can be

shown: ∠A0A1F1 = ∠F2A1A2 =: γ, which is depicted in Fig. 2.3, where β is

the angle between the segment F2A1 (or, analogously, F1A1) and the normal

vector with respect to the elliptic boundary at point A1.

Let F ′
1 and F ′

2 be the reflections of the foci F1 and F2 with respect to

the segments A0A1 and A1A2, respectively, and define the point X as the

intersection between the segments A0A1 and F ′
1F2 (i.e., X = A0A1 ∩ F ′

1F2),

and the point Y as the intersection of A1A2 with F1F ′
2 (i.e., Y = A1A2∩F1F ′

2),

see Fig. 2.4. By considering an ellipse E1 confocal with the elliptic boundary

F1 F2
o

y

x

βγ
β

γ F ′

2

F ′

1

γ

γ

A0

A1

A2X

Y

Figure 2.4: Graphical construction of points X and Y .

and tangent to the segment A0A1, since the angles ∠F2XA1 and ∠F1XA0 are

equal (see Fig. 2.5), it follows that such an ellipse touches the segment A0A1

exactly at the point X. In the same way, it can be proved that an ellipse E2

with foci F1 and F2 is tangent to the segment A1A2 at the point Y . In order

to complete the proof, it is necessary to show that these two ellipses E1 and

E2 are actually the same. By the definition of the ellipse, this is equivalent to

prove that the points X and Y are both on the same ellipse with foci F1 and

F2, or, in other words, that |F1X|+ |F2X| = |F1Y |+ |F2Y |. By construction,

this is analogous to show that |F ′
1F2| = |F1F ′

2|. At this point, one can observe

that the triangle F̂1A1F ′
2 is congruent to the triangle F̂ ′

1A1F2 (see Fig. 2.6),
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F2
o

y

x

F ′

1

A0

A1

X

β̄

β̄

ᾱ

ᾱ

Figure 2.5: An ellipse confocal with the elliptic boundary and tangent to the
segment A0A1 touches such a segment at the point X.

so that |F ′
1F2| = |F1F ′

2|. With analogous reasonings, one can prove that all

reflections of the path are tangent to the same inner ellipse, as shown in Fig.

2.7.

F1 F2
o

y

x

F ′

2

F ′

1

A0

A1

A2X

Y
2β + 2γ

Figure 2.6: Triangle F̂1A1F ′
2 is congruent to the triangle F̂ ′

1A1F2.

Once the existence of the inner caustic curve has been proved, a path inside

an elliptical billiards can be described as a collection of straight-line segments

joining on the outer ellipse (the billiard boundary), and tangent to the (inner

and confocal) caustic curve. Of particular interest is the case of closed orbits,
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F1 F2

y

x
A0

A1

A2

X

Y

Figure 2.7: The confocal (inner) elliptic caustic curve.

i.e., periodic paths, inside the elliptical billiards, which is the main topic of

Section 2.1.4, but first the most important dynamical property of the elliptical

billiards is discussed.

2.1.3 Integrability of the elliptical billiard system

In the following, the Hamilton-Jacobi theory is used to show that the system

constituted by a dimensionless body of unitary mass (particle) moving inside

an elliptical billiards (the classical elliptical billiard system) is a Hamiltonian

integrable system [79].

Definition 2. A Hamiltonian system with n degrees of freedom is Hamilton

integrable if it has n constants of motion.

The Hamiltonian approach is used in classical mechanics to describe the

motion of a physical system in term of first-order equations of motion in the

phase space [36]. The main purpose of the Hamilton-Jacobi method is to find

a canonical change of variables which reduces the Hamiltonian function to a

form for which the Hamiltonian equations are integrable (e.g., in the plane,

the system has two constant of the motion). The canonical transformation

of variables is given by a generation function satisfying the Hamilton-Jacobi

partial differential equation.
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Integrable systems are very rare but they play a fundamental role in physics

because only these systems can be solved in a complete analytical form and,

moreover, the motion of an integrable system is regular and predictable. An

important property of the elliptical billiard system is given by the following

result.

Theorem 2. The elliptical billiard system is an integrable system.

Proof. In the following, the guidelines given in [24], [22] and [75] are followed.

The dynamics of a particle, moving in an elliptical billiard table, between two

consecutive bounces (the potential energy is assumed to be zero on the table:

U(q) = 0) are completely characterized by its Lagrangian function:

L =
1
2
(ẋ2 + ẏ2). (2.2)

The momenta conjugate to x and y are defined as px := ∂L
∂ẋ = ẋ and py := ∂L

∂ẏ =

ẏ and the Hamiltonian can be computed as H(q,p, t) = qT ṗ − L(q, q̇, t),1

where q :=
[

x y
]T

is the vector of the generalized coordinates, p :=
[

px py

]T
is the vector of the conjugate momenta and L is the Lagrangian,

so that

H =
1
2
(ṗx

2 + ṗy
2). (2.3)

By using the elliptical coordinates [85]:

{
x = f cosh(ρ) cos(θ),

y = f sinh(ρ) sin(θ),
(2.4)

where f :=
√

a2 − b2 is the semi-focal distance of the elliptic boundary, the

curves with ρ = const are ellipses, whereas the curves with θ = const are

hyperboles. Both families of curves are confocal with the elliptical boundary.

1In this case, the Hamiltonian is equal to the total energy E, i.e., H = E = T , where T
is the kinetic energy.
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As a matter of fact, if ρ = const, then

{
x2 = f2 cosh2(ρ) cos2(θ)

y2 = f2 sinh2(ρ) sin2(θ)
⇒ x2

ā2
+

y2

b̄2
= cos2(θ) + sin2(θ) = 1, (2.5)

where ā := f cosh(ρ) and b̄ := f sinh(ρ). On the other hand, if θ = const, then

{
x2 = f2 cos2(θ) cosh2(ρ)

y2 = f2 sin2(θ) sinh2(ρ)
⇒ x2

a2
− y2

b2 = cosh2(θ)− sinh2(θ) = 1, (2.6)

where a := f cos(θ) and b := f sin(θ).

In order to obtain the Lagrangian and the Hamiltonian in terms of the

elliptical coordinates, the derivative with respect to time t of (2.4) is taken as

follows: {
ẋ = f sinh(ρ) cos(θ)ρ̇− f cosh(ρ) sin(θ)θ̇,

ẏ = f cosh(ρ) sin(θ)ρ̇ + f sinh(ρ) cos(θ)θ̇,
(2.7)

so that (2.2) becomes

L =
1
2
f2(sinh2(ρ) + sin2(θ))(ρ̇2 + θ̇2). (2.8)

As for the momenta conjugate to ρ and θ, one obtains

pρ =
∂L

∂ρ̇
= f2(sinh2(ρ) + sin2(θ))ρ̇ ⇒ ρ̇ =

pρ

f2(sinh2(ρ) + sin2(θ))
, (2.9)

pθ =
∂L

∂θ̇
= f2(sinh2(ρ) + sin2(θ))θ̇ ⇒ θ̇ =

pθ

f2(sinh2(ρ) + sin2(θ))
, (2.10)

and the Hamiltonian becomes

H = pT q̇− L(ρ, ρ̇, θ, θ̇) =
p2

ρ + p2
θ

2f2(sinh2(ρ) + sin2(θ))
, (2.11)

where, with a slight abuse of notation, q :=
[

ρ θ
]T

and p :=
[

pρ pθ

]T
.

At this point, by introducing the Jacobi variables λ1 and λ2 (see, e.g.,
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[36, 22]), the ellipse (2.5) characterized by ρ = const can be expressed as

x2

A− λ1
+

y2

B − λ1
= 1, (2.12)

where A := a2 and B := b2. By the definition of ā and b̄ in (2.5), it follows

that

A− λ1 = ā2 = f2 cosh2(ρ), (2.13)

B − λ1 = b̄2 = f2 sinh2(ρ). (2.14)

Note that if λ1 = 0, then (2.12) coincides with the elliptic boundary, whereas

if λ1 = A, then it coincides with the y-axis;2 analogously if λ1 = B, then it

coincides with the x-axis.

In the same way, the hyperbole characterized by θ = const can be described

by
x2

A− λ2
+

y2

B − λ2
= 1, (2.15)

where

A− λ2 = a2 = f2 cos2(θ), (2.16)

B − λ2 = −b2 = −f2 sin2(θ). (2.17)

Note that if λ2 = A, then (2.15) coincides with the y-axis, whereas if λ2 = B,

then it coincides with the x-axis.

By (2.13) and (2.16), it follows that A > λ1, B > λ1 and A > λ2, B < λ2,

respectively, so that

−∞ < λ1 < B < λ2 < A. (2.18)

Note that, the change of variables from (x, y) to (λ1, λ2) is not 1-to-1. In

2In fact,
x2

A− λ1
+

y2

B − λ1
= 1 ⇒ x2 +

A− λ1

B − λ1
y2 = A− λ1,

so that substituting λ1 = A implies that x = 0, i.e., the equation of the y-axis.
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fact, points (x, y), (x,−y), (−x, y) and (−x,−y) are mapped into the same

point (λ1, λ2) (see (2.12) and (2.15)). However, λ1 and λ2 are single-variable

function with respect to ρ and θ.

In order to obtain the Lagrangian and the Hamiltonian in terms of λ1 and

λ2, preliminary computations are necessary. In particular, by using (2.13),

one has

(A− λ1) + (B − λ1) = f2(cosh2(ρ) + sin2(θ)) = (A−B)(1 + 2 sinh2(ρ))

m
1
2
(
A + B − 2λ1

A−B
− 1) = sinh2(ρ)

m

sinh2(ρ) =
B − λ1

A−B
, (2.19)

where the equation f2 = a2 − b2 = A − B has been used, and by taking the

positive square root of (2.19),3 one obtains

ρ = arcsinh

(√
B − λ1

A−B

)
. (2.20)

With analogous reasonings, θ can be obtained in terms of λ2 as follows:

(A− λ2) + (B − λ2) = f2(cos2(θ)− sin2(θ)) = (A−B)(1− 2 sin2(θ))

m

−1
2
(
A + B − 2λ2

A−B
− 1) = sin2(θ)

m

sin2(θ) =
B − λ2

B −A
, (2.21)

3Since arcsin(−x) = − arcsin(x) and arcsinh(−x) = −arcsinh(x), such a particular choice
does not affect the computation of L and H.
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so that, by taking the positive square root of (2.21), one obtains

θ = arcsin

(√
B − λ2

B −A

)
. (2.22)

By using (2.20) and (2.22), also ρ̇ and θ̇ can be rewritten in terms of λ1 and

λ2. In particular, as for ρ̇, one has

ρ̇ = −1
2

1
A−B

1√
1 + B−λ1

A−B

1√
B−λ1
A−B

λ̇1 = −1
2

1
A−B

1√
A−λ1
A−B

1√
B−λ1
A−B

λ̇1 =

= −1
2

1√
A− λ1

1√
B − λ1

λ̇1,

so that

ρ̇2 =
1

4(A− λ1)(B − λ1)
λ̇2

1. (2.23)

On the other hand, concerning the computation of θ̇, one has

θ̇ = −1
2

1
B −A

1√
1− B−λ2

B−A

1√
B−λ2
B−A

λ̇2 = −1
2

1
B −A

1√
−A+λ2
B−A

1√
B−λ2
B−A

λ̇2 =

= −1
2

1√−A + λ2

1√
B − λ2

λ̇2,

that is

θ̇2 = − 1
4(A− λ2)(B − λ2)

λ̇2
2, (2.24)

where the following facts: d
dxarcsinh(x) = 1√

1+x2
and d

dx arcsin(x) = 1√
1−x2

have been used. Finally, since (B − λ1)− (B − λ2) = λ2 − λ1 = f2(sinh2(ρ) +

sin2(θ)), the Lagrangian (2.8) with respect to λ1 and λ2 is given by

L =
1
2
(λ2 − λ1)

(
1

4(A− λ1)(B − λ1)
λ̇2

1 −
1

4(A− λ2)(B − λ2)
λ̇2

2

)
=

=
1
2

(
λ2 − λ1

4(A− λ1)(B − λ1)
λ̇2

1 +
λ1 − λ2

4(A− λ2)(B − λ2)
λ̇2

2

)
. (2.25)
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At this point, the momenta conjugate to λ1 and λ2 are computed as:

pλ1 =
∂L

∂λ1
=

λ2 − λ1

4(A− λ1)(B − λ1)
λ̇1, (2.26)

pλ2 =
∂L

∂λ2
=

λ1 − λ2

4(A− λ2)(B − λ2)
λ̇2, (2.27)

and the Hamiltonian with respect to λ1 and λ2 is

H = pT q̇− L(λ1, λ̇1, λ2, λ̇2) =

=
1
2

(
4(A− λ1)(B − λ1)

λ2 − λ1
p2

λ1
+

4(A− λ2)(B − λ2)
λ1 − λ2

p2
λ2

)
, (2.28)

where q :=
[

λ1 λ2

]T
and p :=

[
pλ1 pλ2

]T
.

Now, by introducing the generating function S such that p = ∂S
∂q , the

Hamiltonian given by (2.28) becomes

H(q,
∂S

∂q
) =

=
1
2

(
4(A− λ1)(B − λ1)

λ2 − λ1

(
∂S

∂λ1

)2

+
4(A− λ2)(B − λ2)

λ1 − λ2

(
∂S

∂λ2

)2
)

=

= α,

so as to obtain the Hamilton-Jacobi equation in terms of λ1 and λ2, where α

denotes the total energy of the system, that is the “first constant of motion” .

In order to achieve the separation of variables, it is assumed that S(λ1, λ2) =

S1(λ1) + S2(λ2), so that

1
2

(
4(A− λ1)(B − λ1)

λ2 − λ1

(
∂S1

∂λ1

)2

+
4(A− λ2)(B − λ2)

λ1 − λ2

(
∂S2

∂λ2

)2
)

= α,

and multiplying both sides by λ2 − λ1 and separating all terms that depend
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by λ1 from the terms that depend by λ2 imply that

2(A−λ1)(B−λ1)
(

∂S1

∂λ1

)2

+αλ1 = 2(A−λ2)(B−λ2)
(

∂S2

∂λ2

)2

+αλ2. (2.29)

Since the left and right sides of (2.29) depend on different functions, it follows

that each side have to be a constant

2(A− λi)(B − λi)
(

∂Si

∂λi

)2

+ αλi = αα′, i ∈ {1, 2}, (2.30)

where α′ (the separation constant) represents the “ second constant of the

motion” . In [75] and [89], it is proved that such a constant of motion coincides

with the product of the focal angular momenta, more precisely: L1L2 = αα′

(see Fig. 2.8).

F1 F2
o

y

x

α

α

A1

90
◦

90
◦

L1

L2

Figure 2.8: The product of the focal angular momenta L1 and L2 of an elliptical
billiards is conserved.

Since the elliptical billiard system is a two-dimensional system, the exis-

tence of two constants of motion implies that it is Hamiltonian integrable.

2.1.4 Periodic paths: rotational and librational motion

The study of the existence of periodic paths inside an elliptical billiards is

strongly related to the Poncelet’s closure theorem [68].
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Theorem 3. If a path inscribed in a conic and circumscribed about a second

conic (caustic) is closed after N bounces, then all the paths sharing the same

caustic conic are also closed after N bounces with the same number of sides

and the same perimeter.

Hence, the problem of finding periodic paths inside an elliptical billiards

(closed Poncelet polygons) can be turned into the problem of finding particular

caustics so that such paths close.

By using (2.30), the momenta conjugate to λ1 and λ2 can be computed as:

p1 =
dS1

dλ1
=

√
α(α′ − λ1)

2(A− λ1)(B − λ1)
, (2.31)

p2 =
dS2

dλ2
=

√
α(α′ − λ2)

2(A− λ2)(B − λ2)
, (2.32)

and since p1 and p2 are reals, then by (2.18) one has

λ1 < α′ < λ2,

where α′ has been defined in Section 2.1.3 and represents the second constant

of motion. According to the value of α′, there exist two possible (physical)

cases, which correspond to two different kinds of motion:

rotational motion: 0 < λ1 < α′ < B < λ2 < A,

librational motion: 0 < λ1 < B < α′ < λ2 < A,

where A and B have been defined in (2.12).

In the first case, the variable λ1 oscillates between 0 and α′ for every

bounce with the billiard boundary. In fact, the path of the particle bounces

at the boundary at λ1 = 0, is tangent to the inner ellipse (caustic) at λ1 = α′

and returns to the outer ellipse (λ1 = 0) (in this case the path crosses the

x-axis outside the foci). The variable λ2 oscillates between B and A. The

path followed by the particle is always outside the foci and tangent to the
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inner confocal caustic curve (an ellipse). Such a kind of motion is said to be

rotational (see Fig. 2.9).

In the other case, the variable λ2 oscillates between α′ and A, which corre-

sponds to the region between two branches of the hyperbole (caustic) λ2 = α′

(in this case the path crosses the x-axis (λ1 = B) between the foci). The

variable λ1 oscillates now between 0 and B. The path (or its continuation)

followed by the particle is always between the foci and tangent to the confocal

caustic curve (a hyperbole). Such a kind of motion is said to be librational

(see Fig. 2.10).

The present result obtained by using the Hamilton-Jacobi theory is con-

sistent with the result discussed in Section 1, where by using a pure geometric

approach the existence of two different kinds of caustic curves (which de-

termines two different kinds of motion) was been proved. In both cases, it

is important to note that the parameter α′ uniquely determines the caustic.

Thus, in order to find periodic paths in an elliptical billiards, it is sufficient to

determine the particular values of α′ such that the orbits close.

Analytic conditions for the closure of Poncelet polygons are obtained by

Cayley in the mid-19th century (see [21], but also [51, 39, 5, 75, 22]). The

higher-dimensional generalization of these conditions have been recently ob-

tained in [28, 29]. See also [30] for generalizations in several different directions.

By following the approach described in [6], the periodic paths of the elliptical

billiards can be determined by introducing the action-angle variables of the

Hamilton-Jacobi theory (see, e.g., [36]). In particular, it is shown that, the

periodic orbits of an integrable system can be found by imposing the condi-

tion that the ratio of the angular frequencies (angle variables conjugate to

the actions) be a rational number.4 In the following, classical results giving

conditions that guarantee periodic orbits for elliptical billiards in the plane

are reported (for the proofs see, e.g., [75, 22]).

4If the separate frequencies are not rational fractions of each other, the particle will not
traverse a closed curve in space but will describe an open Lissajous figure [36].
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Theorem 4 (rotational motion). Let N ∈ N and R ∈ N be the number

of reflections and the rotation number (i.e., the number of circuits around the

inner caustic) per period, respectively. Then, for all N > 2 and 1 ≤ R < N
2

all the orbits characterized by the pair (N,R) share the same caustic curve,

which is an ellipse confocal with the elliptical boundary of semi-major axis

ac =
√

f2 + α and semi-minor axis bc =
√

α, where f =
√

a2 − b2 and α can

be determined by the following condition

F

(
arcsin

(√
b2 − α

b2

)
,

f√
f2 + α

)
=

2R

N
K

(
f√

f2 + α

)
, (2.33)

with F (·, ·) and K(·) being the incomplete and complete elliptic integrals of the

second kind, respectively (see, e.g., [85, 1]).5

Theorem 5 (librational motion). Let N ∈ N and R ∈ N be the number

of reflections and the libration number (i.e., half the number of touches at the

inner caustic) per period, respectively. Then, for all even N and 1 ≤ R < N
2

all the orbits characterized by the pair (N,R) share the same caustic curve,

which is a hyperbola confocal with the elliptical boundary of semi-transverse

axis ac =
√

f2 + α and semi-conjugate axis bc =
√−α, where f =

√
a2 − b2

and α can be determined by the following condition

F

(
arcsin

(√
b2

b2 − α

)
,

√
f2 + α

f

)
=

2R

N
K

(√
f2 + α

f

)
, (2.34)

with F (·, ·) and K(·) being the incomplete and complete elliptic integrals of the

second kind, respectively (see, e.g., [85, 1]).

In both cases, the pair (N, R) is usually referred to as winding number.

5The incomplete and the complete elliptic integrals of the second kind are defined as
follows:

F (φ, k) =

Z φ

0

1p
1− k2 sin2(θ)

dθ, K(k) = F (
π

2
, k) =

Z π
2

0

1p
1− k2 sin2(θ)

dθ.
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Remark 2. By conditions (2.33) and (2.34), it follows that the caustic param-

eter α is independent of the position of the starting vertex, hence moving that

point on the boundary has the effect to rotate the path around the caustic but

its periodicity properties are preserved.

In Fig. 2.9 and 2.10 examples of rotational and librational motion are

reported.
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Figure 2.9: Rotational motion: (N = 10, R = 3) and starting vertex on the
ellipse with x̄0 = 1.6.
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Figure 2.10: Librational motion: (N = 18, R = 4) and starting vertex on the
ellipse with x̄0 = 0.4.
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2.2 Overview of Hybrid and Switched Systems

Dynamical systems that are described by an interaction between continuous

and discrete dynamics are called hybrid systems [53]. Their evolution is gener-

ally given by equations of motion containing mixtures of logic, discrete-valued

or digital dynamics, and continuous-variable or analog dynamics. The continu-

ous dynamics of such systems may be continuous-time, discrete-time, or mixed

(sampled-data). The discrete-variable dynamics of hybrid systems are gener-

ally governed by a digital automaton, or input-output transition system with

a countable number of states. The continuous and discrete dynamics interact

at “ event ” or “ trigger ” times when the continuous state hits certain pre-

scribed sets in the continuous state space. Hybrid control systems are control

systems that involve both continuous and discrete dynamics and continuous

and discrete controls. The continuous dynamics of such a system are usually

modeled by a controlled vector field or difference equation. Its hybrid nature

is expressed by a dependence on some discrete phenomena, corresponding to

discrete states, dynamics, and controls [10]. In Fig. 2.11 a generic scheme

of hybrid control system is depicted, where U and Y are an input space and

an output space, respectively, associated to the continuous dynamics; while I
and O are an input space and an output space, respectively, associated to the

discrete dynamics of the hybrid system (see [2, 11, 63, 71] for further discus-

sion). Continuous dynamics may be represented by a continuous-time control

Hybrid

system

ControlsMeasurements

o ∈ O

y ∈ Y u ∈ U

i ∈ I

Figure 2.11: Hybrid control system.

system, such as a scalar linear system ẋ = ax + bu, with state x ∈ R and

control input u ∈ R. As an example of discrete dynamics, one can consider a
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finite-state automaton, with state q taking values in some finite set Q, where

transition between different discrete states are triggered by suitable values of

an input variable v. When the input u to the continuous dynamics is some

function of the discrete state q and, similarly, the value of the input v to the

discrete dynamics is determined by the value of the continuous state x, a hy-

brid system arises (see Fig. 2.12) [53]. Many (if not most) of the dynamical

Continuous

trajectory: x

Discrete

transitions: q

v

u

Figure 2.12: Continuous and discrete dynamics in a hybrid system.

systems encountered in practice are of hybrid nature. The following example

is borrowed from [13].

Example 1. A very simple model that describes the motion of an automobile

might take the form
ẋ1 = x2,

ẋ2 = f(a, q),

where x1 is the position, x2 is the velocity, a ≥ 0 is the acceleration input,

and q ∈ {1, 2, 3, 4, 5,−1, 0} is the gear shift position. The function f should

be negative and decreasing in a when q = −1, negative and independent of a

when q = 0, and increasing in a, positive for sufficiently large a, and decreasing

in q when q > 0. In this system, x1 and x2 are the continuous states and q

is the discrete state. Clearly, the discrete transitions affect the continuous

trajectory. In the case of an automatic transmission, the evolution of the

continuous state x2 is in turn used to determine the discrete transitions. In

the case of a manual transmission, the discrete transitions are controlled by

the driver. It is also natural to consider output variables that depend on both

the continuous and the discrete states, such as the engine rotation rate (rpm)
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which is a function of x2 and q.

Continuous-time systems with “ isolated ” discrete switching events are

usually referred to as switched systems. A switched system may be obtained

from a hybrid system by neglecting the details of the discrete behavior and

instead considering all possible switching patterns from a certain class [53].

In other words, a switched system is a hybrid dynamical system consisting

of a family of continuous-time subsystems and a rule that orchestrates the

switching between them [54]. Switched systems have numerous applications

in control of mechanical systems, automotive industry, aircraft and air traffic

control, switching power converters, and many other fields (see, e.g., [53]–[67]

and the references therein). Some other typical examples of switched system

are: thermostat, tank system, bouncing ball, Clegg integrator [87], biological

networks [31], chemical process control, engine control (a four-stroke gasoline

engine is naturally modeled by using four discrete modes corresponding to

the position of the pistons, while combustion and power train dynamics are

continuous) [47].

2.2.1 Classification of switching events

In this section, the discrete phenomena that generally arise in hybrid systems

are identified. More precisely, switching events in switched systems can be

classified into [53]

• State-dependent switching,

• Time-dependent switching,

• Autonomous (uncontrolled) switching,

• Controlled switching.
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State-dependent switching

Suppose that the continuous state space (e.g., Rn) is partitioned into a finite

or infinite number of operating regions by means of a family of switching

surfaces (or guards). In each of these regions, a continuous-time dynamical

system (described by differential equations, with or without controls) is given.

Whenever the system trajectory hits a switching surface, the continuous state

jumps instantaneously to a new value, specified by a reset map. In the simplest

case, this is a map whose domain is the union of the switching surfaces and

whose range is the entire state space, possibly excluding the switching surfaces.

The instantaneous jumps of the continuous state are sometimes referred to as

impulse effects. A special case is when such impulse effects are absent, i.e., the

reset map is the identity. This means that the state trajectory is continuous

everywhere, although it in general loses differentiability when it passes through

a switching surface.

In summary, the system is specified by

• The family of switching surfaces and the resulting operating regions;

• The family of continuous-time subsystems, one for each operating region;

• The reset maps.

Time-dependent switching

Let fp, p ∈ P be a family of functions from Rn to Rn, where P is some index

set (typically, P is a subset of a finite-dimensional linear vector space). This

gives rise to a family of systems

ẋ = fp(x), p ∈ P, (2.35)

evolving on Rn. The functions fp are assumed to be sufficiently regular (at

least locally Lipschitz). To define a switched system generated by the such a

family, the notion of a switching signal has to be introduced.
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Definition 3. A switching signal is a piecewise constant function σ : [0,∞) →
P with a finite number of discontinuities, which one call the switching times,

on every bounded time interval and takes a constant value on every interval

between two consecutive switching times.

The role of σ is to specify, at each time instant t, the index σ(t) ∈ P of

the active subsystem, i.e., the system from the family (2.35) that is currently

being followed. It is assumed that σ is continuous from the right everywhere:

σ(t) = limτ→t+ σ(τ) for each τ ≥ 0.

Thus a switched system with time-dependent switching can be described

by the equation

ẋ(t) = fσ(t)(x(t)). (2.36)

Remark 3. It is actually difficult to make a formal distinction between state-

dependent and time-dependent switching. If the elements of the index set P
from (2.35) are in 1-to-1 correspondence with the operating regions, and if

the systems in these regions are those appearing in (2.35), then every possible

trajectory of the system with state-dependent switching is also a solution of the

system with time-dependent switching given by (2.36) for a suitable defined

switching signal (but not viceversa).

In view of this observation, system with time-dependent switching (2.36)

can be used, for example, when the locations of the switching surfaces are

unknown.

Autonomous versus Controlled switching

By autonomous switching, one means a situation where there is no direct

control over the switching mechanism that triggers the discrete events. This

category includes systems with state-dependent switching in which locations

of the switching surfaces are predetermined, as well as systems with time-

dependent switching in which the rule that defines the switching signal is un-

known. For example, abrupt changes in system dynamics may be caused by
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unpredictable environmental factors or component failures. In contrast with

the above, in many situation the switching is actually imposed by the designer

in order to achieve a desired behavior of the system. In this case, one has direct

control over the switching mechanism (which can be state-dependent or time-

dependent) and may adjust it as the system evolves. An Embedded system,

in which computer software interacts with physical devices, is an important

example of system with controlled switching (see Fig. 2.13). It is not easy

physical

device
computer

software

measurements

discrete actions

Figure 2.13: A computer-controlled system.

to draw a precise distinction between autonomous and controlled switching,

or between state-dependent or time-dependent switching. In a given system,

these different types of switching may coexist. In the context of the auto-

mobile model discussed in Example 1, automatic transmission corresponds to

autonomous state-dependent switching (shifting gears when reaching a cer-

tain value of the velocity or rpm), whereas manual transmission corresponds

to switching being controlled by the driver.

2.3 Constrained polynomial interpolation

From the theory of non-negative polynomials [64] a very important result

(which is a generalization of the Markov-Lukacs theorem) states that a poly-

nomial is non-negative if and only if it satisfies the so-called sum-of-squares

decomposition (see, e.g., [42]).

Lemma 1. A given scalar polynomial pi(s) of degree q is non-negative along

the interval s ∈ [si, sf ] if and only if there exist polynomials qij(s), rij(s) of
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degree m = q/2 (q even) or m = (q − 1)/2 (q odd) such that

pi(s) = (s− si)
∑

j

q2
ij(s) + (sf − s)

∑

j

r2
ij(s). (2.37)

The problem of satisfying the sum-of-squares decomposition (2.37) can be

reformulated as a linear matrix inequality (LMI) problem, which can be solved

using efficient solvers [76], as follows (see, e.g., [43, 42]).

Lemma 2. The polynomial non-negativity constraint

pi(s) =
q∑

j=0

ci
js

j ≥ 0, ∀s ∈ [si, sf ],

is equivalent to the existence of symmetric and positive semidefinite matrices

Qi and Ri of size m + 1 with m = q/2 (q even) or m = (q − 1)/2 (q odd),

satisfying for any j = 0, 1, . . . , q the convex LMIs constraints

ci
j = tr(Qi(Hj−1 − siHj)) + tr(Ri(sfHj −Hj−1)), (2.38)

where tr(X) denotes the trace of a generic square matrix X (i.e., the sum of

its diagonal elements), and Hj is the Hankel matrix of dimension m + 1 with

ones along the (j + 1)-th anti-diagonal and zeros elsewhere, that is

H0 =




1 0 0

0 0 0

0 0 0
. . .




, H1 =




0 1 0

1 0 0

0 0 0
. . .




,

H2 =




0 0 1

0 1 0

1 0 0
. . .




, · · · H2m =




. . .

0 0 0

0 0 0

0 0 1




,
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for j ∈ {0, 1, . . . , 2m}, whereas Hj = 0 for j < 0 or j > 2m.

Such results have been used recently in order to solve some interesting

control problems. In [43], by using results on positive polynomials it is shown

that, as soon as distinct negative real closed-loop poles are assigned, satisfying

time-domain constraints on closed-loop system signals (such as input ampli-

tude or rate limitations, output overshoot or undershoot) amounts to solving

a convex LMI optimization problem when the degree of the polynomial Youla-

Kučera parameter (hence the order of the controller) is fixed. In a similar

way, results on positive polynomials are also used in [42] where an open-loop

trajectory planning problem for linear systems with bound constraints orig-

inating from saturations or physical limitations is considered. By using an

algebraic approach it is shown that such a control problem can be cast into a

constrained polynomial interpolation problem admitting a convex linear ma-

trix inequality (LMI) formulation. In the following, more details about such

a result are given.

2.3.1 Application to the trajectory planning

Given a multivariable linear system described by a left coprime polynomial

matrix fraction

y(s) = A−1
l (s)Bl(s)u(s), (2.39)

in the Laplace domain, where u(s) and y(s) are the input and output signals,

respectively, and Al(s) is non-singular [49], consider the problem to seek a

control law u(t) in the time-domain [tq, tr] such that system input u(t) and

output y(t) together with their derivatives u(k)(t) and y(k)(t) satisfy

• linear constraints:

u(ki)(t)
∣∣
t=ti

= ui

y(ki)(t)
∣∣
t=ti

= yi

, i = 1, 2, . . . , (2.40)

where ki ≥ 0 are given integers, ti ∈ [tq, tr] are given real numbers, and
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ui, yi are given real vectors;

• bound constraints:

ulow
i ≤ u(ki)(t) ≤ uup

i

ylow
i ≤ y(ki)(t) ≤ yup

i

, i = 1, 2, . . . ,

where ki ≥ 0 are given integers and ulow
i ,uup

i ,ylow
i ,yup

i are given real

vectors.

By using a right coprime polynomial matrix fraction, linear system (2.39) can

be represented as follows:

A−1
l (s)Bl(s) = Br(s)A−1

r (s),

where Ar(s) is nonsingular. Under the coprimeness assumption on the pair

(Ar(s),Br(s)), there exists a polynomial matrix solution pair (Xl(s),Yl(s))

to the Bézout identity

Xl(s)Ar(s) + Yl(s)Br(s) = I,

with I being the identity matrix. Now, by defining vector

x(s) := Xl(s)u(s) + Yl(s)y(s),

as the internal state, or at output of system (2.39), it follows that all system

signals can be represented as linear combinations of signal x(t) = L−1(x(s))

and its derivatives. In fact, by virtue of the above Bézout identity, the input

and output signals can be obtained as follows:

u(s) = Ar(s)x(s) =

(∑

k

Aks
k

)
x(s),

y(s) = Br(s)x(s) =

(∑

k

Bks
k

)
x(s),
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where k is a given integer. As a consequence, algebraic constraints on vectors

y and u can be translated into algebraic constraints on vector x.

By assuming that x(t) is a vector polynomial

x(t) =
∑

k

xkt
k,

of given degree, interpolation constraints (2.40) can be written as:

∑
k Akx

(k+ki)
k (t)

∣∣∣
t=ti

= ui

∑
k Bky

(k+ki)
k (t)

∣∣∣
t=ti

= yi

, i = 1, 2, . . . ,

which are linear constraints on coefficients xk of polynomial x(t). For conve-

nience, they are expressed in matrix form as follows:

Fx = f , (2.41)

where F is a given matrix, f is a given vector, and x denotes the column vector

obtained by stacking column vector coefficients xk. Note that the symbol x

is used indifferently to denote time signal x(t), its Laplace transform x(s),

and the vector of coefficients xk. Similarly, bound constraints (2.3.1) can be

written as:

ulow
i ≤ ∑

k Akx
(k+ki)
k (t) ≤ uup

i

ylow
i ≤ ∑

k Bky
(k+ki)
k (t) ≤ yup

i

, i = 1, 2, . . . ,

which can be formulated entrywise as non-negativity constraints

gi(t) ≥ 0, t ∈ [tq, tr], i = 1, 2, . . . . (2.42)

on a set of scalar polynomials gi(t) whose coefficient vectors gi depend linearly

on coefficient vector x, i.e.

Gix = gi, i = 1, 2, . . . , (2.43)
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for given matrices Gi.

By using the notation so far introduced, the trajectory planning problem

with bound constraints can be cast into the following equivalent constrained

polynomial interpolation problem.

Problem 1. Given matrices F, Gi and vector f , and polynomial coefficient

vector x satisfying polynomial positivity constraints (2.42), as well as linear

constraints (2.41) and (2.43).

At this point, Lemma 2 can be used in order to rewrite relation (2.42) as

an LMI optimization problem and the following result is obtained.

Theorem 6. Coefficient vector x solves Problem 1 if and only if there exist

positive semidefinite symmetric matrices Qi, Ri solving the LMI problem

Fx = f ,

Gix = H(Qi, Ri),

where, in order to show the dependence on the decision variables Qi and

Ri, the set of linear equations (2.38) for k = 1, 2, . . . are denoted by gi =

H(Qi, Ri) with gi being the coefficient vector of polynomial gi(t).
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Chapter 3

Trajectory definition in the

elliptical billiard system

In general terms, a motion planning problem is formulated as two stage plan-

ning. First, path planning under kinematic constraints is transformed into a

pure geometric problem. Then, combined with dynamic characteristics of the

considered system, velocity profiles are generated under (possible) dynamic

constraints.

In order to define the class of reference trajectories considered here, in

the following, a trajectory planning problem will be properly defined and,

by using the theory of non-negativeness polynomials and LMIs techniques,

velocity profiles along the desired paths (closed Poncelet polygons) are found

so as to satisfy some imposed constraints.

3.1 Controlled elliptical billiard system: equations

of motion

Consider a dimensionless body having unitary mass (particle), which moves

on a horizontal plane, on which a Cartesian reference xOy is defined. Let

q(t) =
[

x(t) y(t)
]T
∈ R2 denotes the position of the body at time t > t0,

43
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with t0 ∈ R, and let q(t) be constrained to belong to the following admissible

region:

A :=
{
q ∈ R2 : f(q) ≤ 0, f(q) :=

x2

a2
+

y2

b2
− 1, a, b ∈ R+, a > b

}
, (3.1)

that is f(q) = 0 defines an ellipse centered at the origin with a and b being

the semi-major and semi-minor axis, respectively. Let the control inputs be

two forces ux(t), uy(t) ∈ R, acting directly on the considered body, having

directions parallel to the x and y axes, respectively; ux(t) and uy(t) are positive

when directed as the x and y axes, respectively. It is also assumed that q(t)

and q̇(t) are measured. The system is completely characterized by: (i) the

Lagrangian function

Lt(q(t), q̇(t)) = T (q(t), q̇(t))− (U(q(t))− qT (t)Eu(t)) =

=
1
2
q̇T (t)q̇(t) + qT (t)u(t) =

=
1
2
(ẋ2(t) + ẏ2(t)) + ux(t)x(t) + uy(t)y(t), (3.2)

where T (q(t)) denotes the kinetic energy, U(q(t)) is the potential energy due

to the conservative forces (which is assumed to be zero on the horizontal bil-

liard plane) and qT (t)Eu(t) is the (pseudo)potential energy due to the control

forces u(t). In the case of fully actuated systems, matrix E coincides with the

identity matrix; (ii) the admissible region defined by (3.1) and (iii) nonsmooth,

perfectly elastic and without friction impacts.

The method of the Valentine variables is used for modeling the considered

mechanical system as in [78, 77]. One real-valued Valentine variable γ(t) is

introduced so that the inequality constraint in (3.1) characterizing the admis-

sible region is transformed into the equality constraint: f(q(t)) + γ2(t) = 0.

Since γ(t) is taken real, such an equality constraint is completely equivalent

to the original inequality constraint. Now, by taking the derivative with re-

spect to time of both sides of the equality constraint, the differential constraint
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(2/a2)x(t)ẋ(t)+(2/b2)y(t)ẏ(t)+2γ(t)γ̇(t) = 0 is obtained and by starting from

the initial conditions q(t0) ∈ A and γ(t0) =
√
−f(q(t0)), such a differential

constraint is completely equivalent to the equality constraint.

The actual path of motion can be found by looking for the stationary

value of the unconstrained functional
∫ t2
t1

L̂ dt, where L̂ := L + λ((2/a2)xẋ +

(2/b2)yẏ + 2γγ̇), λ is a Lagrange multiplier and [t1, t2] is the time interval

over which the motion is studied. The stationary value of the unconstrained

functional corresponds to the path of motion that is solution (in each (free-

motion) interval, i.e., an open time interval without impacts) of the following

Euler-Lagrange equations:

d

dt

∂L

∂q̇
− ∂L

∂q
+ λ̇J(q) = u, (3.3a)

2γλ̇ = 0, (3.3b)

JT (q)q̇ + 2γγ̇ = 0, (3.3c)

where L(q(t), q̇(t)) := Lt(q(t), q̇(t)) − qT (t)u(t), γ(t) ∈ R+ is the Valentine

variable and λ(t) ∈ R is the Lagrange multiplier (λ̇(t) has to be understood

in the distribution sense) and J(q(t)) is the gradient vector of f(q) in (3.1),

that is

J(q(t)) =
∂f

∂q
=

∂

∂q

(
x2

a2
+

y2

b2
− 1

)
=




2
a2 x

2
b2

y


 . (3.4)

On the other hand, the impacts can occur only at times ti ∈ R, i ∈ N, where the

following Erdmann-Weierstrass corner conditions (see, e.g., [55, 8, 82]), which

are necessary at corner points where q(t) is not differentiable (constrained-

motion), are satisfied

1
2
q̇T (t−i )q̇(t−i ) =

1
2
q̇T (t+i )q̇(t+i ), (3.5a)

q̇(t−i ) + λ(t−i )J(q(ti)) = q̇(t+i ) + λ(t+i )J(q(ti)), (3.5b)

2γ(ti)λ̇(t−i ) = 2γ(ti)λ̇(t+i ). (3.5c)
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Hence, by substituting (3.2) and (3.4) into (3.3) and (3.5), it follows that

ẍ(t) +
2
a2

λ̇(t)x(t) = ux(t), (3.6a)

ÿ(t) +
2
b2

λ̇(t)y(t) = uy(t), (3.6b)

2γ(t)λ̇(t) = 0, (3.6c)
2
a2

x(t)ẋ(t) +
2
b2

y(t)ẏ(t) + 2γ(t)γ̇(t) = 0. (3.6d)

with the Erdmann-Weierstrass corner conditions given by

ẋ2(t−i ) + ẏ2(t−i ) = ẋ2(t+i ) + ẏ2(t+i ), (3.7a)

ẋ(t−i ) +
2
a2

λ(t−i )x(ti) = ẋ(t+i ) +
2
a2

λ(t+i )x(ti), (3.7b)

ẏ(t−i ) +
2
b2

λ(t−i )y(ti) = ẏ(t+i ) +
2
b2

λ(t+i )y(ti), (3.7c)

γ(ti)λ̇(t−i ) = γ(ti)λ̇(t+i ). (3.7d)

Remark 4. By the definition of the Valentine variable, one has γ2(t) = −f(q(t))

so that γ(t) is non-zero whenever the body is located in an interior point of

the admissible region A. Hence, in order to satisfy (3.6c), it is necessary that

λ̇(t) = 0 during the free-motion phases. In particular, in absence of impacts,

equations (3.6a) and (3.6b) coincide with the classical Euler-Lagrange equa-

tions of an unconstrained unitary mass moving on a horizontal plane under

the action of the control forces ux(t) and uy(t). On the other hand, in classical

mechanics, the Erdmann-Weierstrass corner conditions can be interpreted as

conservation of momentum and energy across a corner point. In particular,

(3.7a) states merely the conservation of the kinetic energy at the impact times.
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The initial conditions at the initial time t0 are

x(t0) = x0, y(t0) = y0,

ẋ(t+0 ) = vx,0, ẏ(t+0 ) = vy,0,

γ(t0) =
√
−f(q(t0)), λ(t+0 ) = 0.

Concerning the initial time t0, it is required that (q(t0), q̇(t+0 )) ∈ Â, where

Â :=
{
(q, q̇) ∈ A× R2 : J(q)q̇ ≤ 0 if f(q) = 0

}
, (3.8)

so that, if q(t0) is on the boundary, the velocity vector q̇(t+0 ) points toward

the interior of the admissible region.

Definition 4. An impact for the controlled body occurs if, at a given time

ti > t0, one has

f(q(ti)) = 0, (3.9)

J(q(ti))q̇(t−i ) > 0. (3.10)

In particular, (3.9) represents the condition of contact between the particle

and the elliptic boundary, whereas (3.10) guarantees that, at the intersection,

the path followed by the particle is not tangent to the constraint (transversality

condition).

In order to guarantees that the particle does not leave the admissible region

A right after an impact, the following condition is required

J(q(ti))q̇(t+i ) ≤ 0, (3.11)

so that the Erdmann-Weierstrass corner conditions (3.7) can be solved uniquely

in the unknowns ẋ(t+i ), ẏ(t+i ) and λ(t+i ) at an impact time ti. As a matter of



48 Chapter 3. Trajectory definition in the elliptical billiard system

fact, (3.7b) and (3.7c) can be rewritten, respectively, as

ẋ(t+i )− ẋ(t−i ) = − 2
a2

x(ti)
(
λ(t+i )− λ(t−i )

)
, (3.12)

ẏ(t+i )− ẏ(t−i ) = − 2
b2

y(ti)
(
λ(t+i )− λ(t−i )

)
, (3.13)

so that, by multiplying (3.12) by a2y(ti) and (3.13) by b2x(ti), the discontinuity

λ(t+i )− λ(t−i ) in the Lagrange multiplier can be computed so as to obtain the

following two equations in the two unknowns ẋ(t+i ) and ẏ(t+i )

a2y(ti)
(
ẋ(t+i )− ẋ(t−i )

)
= b2x(ti)

(
ẏ(t+i )− ẏ(t−i )

)
, (3.14a)

ẋ2(t−i ) + ẏ2(t−i ) = ẋ2(t+i ) + ẏ2(t+i ). (3.14b)

Solving such a system of equations yields, at each impact time ti ≥ t0, the

following results

ẋ(t+i ) =
(

a4y2(ti)− b4x2(ti)
a4y2(ti) + b4x2(ti)

)
ẋ(t−i )−

(
2a2b2x(ti)y(ti)

a4y2(ti) + b4x2(ti)

)
ẏ(t−i ) =

= C1(q(ti))ẋ(t−i ) + C2(q(ti))ẏ(t−i ), (3.15a)

and

ẏ(t+i ) =
(

b4x2(ti)− a4y2(ti)
a4y2(ti) + b4x2(ti)

)
ẏ(t−i )−

(
2a2b2x(ti)y(ti)

a4y2(ti) + b4x2(ti)

)
ẋ(t−i ) =

= C2(q(ti))ẋ(t−i )− C1(q(ti))ẏ(t−i ), (3.15b)

where C1(q(ti)) := (a4y2(ti)− b4x2(ti))/(a4y2(ti) + b4x2(ti)) and C2(q(ti)) :=

(−2a2b2x(ti)y(ti))/(a4y2(ti)+ b4x2(ti)). It is important to note that, by (3.4),
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(5.3a) and (5.3b), it follows that

J(q(ti))q̇(t+i ) =
[

2
a2 x(ti) 2

b2
y(ti)

] [
ẋ(t+i )

ẏ(t+i )

]
=

=
2
a2

x(ti)ẋ(t+i ) +
2
b2

y(ti)ẏ(t+i ) =

= − 2
a2b2

(
b2x(ti)ẋ(t−i ) + a2y(ti)ẏ(t−i )

)
= (3.16)

= −J(q(ti))q̇(t−i ),

so that, requiring condition (3.10) at each impact time guarantees that, right

after the impact, condition (3.11) (i.e., J(q(ti))q̇(t+i ) < 0) is automatically

satisfied.

Remark 5. Actually, the system of equations (3.14a) and (3.14b) has also

the solution: ẋ(t+i ) = ẋ(t−i ), ẏ(t+i ) = ẏ(t−i ). However, it does not satisfy

constraint (3.11), given that J(q(ti))q̇(t+i ) = J(q(ti))q̇(t−i ) implies that if

J(q(ti))q̇(t−i ) > 0, then J(q(ti))q̇(t+i ) > 0, which is not physically admissible.

As for the Lagrange multiplier, by substituting (5.3a) into (3.12), one has

λ(t+i ) = λ(t−i ) +
(

a2b2

a4y2(ti) + b4x2(ti)

) (
b2x(ti)ẋ(t−i ) + a2y(ti)ẏ(t−i )

)
=

= λ(t−i ) +
(

a2b4x(ti)
a4y2(ti) + b4x2(ti)

)
ẋ(t−i ) +

(
a4b2y(t)

a4y2(ti) + b4x2(ti)

)
ẏ(t−i ) =

= λ(t−i ) + C3(q(ti))ẋ(t−i ) + C4(q(ti))ẏ(t−i ), (3.17)

where C3(q(ti)) := (a2b4x(ti))/(a4y2(ti)+b4x2(ti)) and C4(q(ti)) := (a4b2y(ti))/

(a4y2(ti) + b4x2(ti)). Note that, at each impact time ti

J(q(ti))q̇(t−i ) =
2

a2b2

(
b2x(ti)ẋ(t−i ) + a2y(ti)ẏ(t−i )

)
> 0

⇓
b2x(ti)ẋ(t−i ) + a2y(ti)ẏ(t−i ) > 0, (3.18)
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so that, by (3.17) and (3.18)

λ(t+i )− λ(t−i ) > 0. (3.19)

Since λ̇(t) = 0 for all t 6= ti (see Remark 4), it follows that λ(t+)− λ(t−) = 0

(i.e., the absence of impacts implies the continuity of λ(t), in the case of non-

impulsive control inputs).

It is clear that, by using the polar representation of an ellipse, that is

{
x = a cos(θ),

y = b sin(θ),
(3.20)

the jump conditions (5.3a) and (5.3b) can be replaced, respectively, by1

ẋ(t+i ) =
(

a2 sin2(θi)− b2 cos2(θi)
a2 sin2(θi) + b2 cos2(θi)

)
ẋ(t−i )−

(
ab sin(2θi)

a2 sin2(θi) + b2 cos2(θi)

)
ẏ(t−i ) =

= C̄1(θi)ẋ(t−i ) + C̄2(θi)ẏ(t−i ), (3.21)

and

ẏ(t+i ) =
(

ab sin(2θi)
a2 sin2(θi) + b2 cos2(θi)

)
ẏ(t−i )−

(
a2 sin2(θi)− b2 cos2(θi)
a2 sin2(θi) + b2 cos2(θi)

)
ẋ(t−i ) =

= C̄2(θi)ẋ(t−i )− C̄1(θi)ẏ(t−i ), (3.22)

where C̄1(θi) := (a2 sin2(θi)−b2 cos2(θi))/(a2 sin2(θi)+b2 cos2(θi)) and C̄2(θi) :=

(ab sin(2θi))/(a2 sin2(θi)+b2 cos2(θi)). θi ∈ R is the polar angle that the vector

from the origin to point q(ti) makes with the positive direction of the x-axis

(see Fig. 3.1).

1Time dependence of the polar angle θ is omitted for the sake of readability.
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o

y

x

q(ti)

θi

x(ti)

y(ti)

Figure 3.1: Polar representation of an ellipse. The polar angle θ is taken
positive when measured counterclockwise.

3.2 The class of reference trajectories

The class of reference trajectories considered hereafter for the elliptical billiard

system is characterized by the trajectory planning problem defined below,

whose meaning will be clarified later (see Remark 20).

Problem 2. Find, if any, velocity profiles for a particle moving inside an

elliptical billiards along closed Poncelet polygons (see Section 2.1.4) such that

1. impacts (in correspondence of polygon vertices) occur at each integer

time;

2. the Erdmann-Weierstrass corner conditions (3.15) are satisfied at the

corner points.

In the following, first the closed Poncelet polygons for both the cases of

rotational and librational motion (see Section 2.1.4) are considered as nominal

geometric paths of the reference trajectories. Then, velocity profiles along such

nominal paths are computed so as to solve Problem 2.

3.2.1 Nominal paths

Some results on existence and computation of periodic paths inside an ellip-

tical billiards have been reported in Section 2.1.4. Depending on the value
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of the second constant of the motion α′ in (2.30) two kinds of motion arise:

rotational and librational. Geometrically, such a distinction is determined by

the intersection of the first billiard path with the x-axis. In particular, if such

a segment crosses the x-axis between the foci, then the motion is said to be

rotational with an inner confocal ellipse as caustic curve (see Fig. 2.9), other-

wise it is said to be librational with a confocal hyperbola as caustic (see Fig.

2.10).

From a geometrical point of view, the path followed by a particle between

two consecutive bounces with the boundary can be represented as a straight-

line joining two consecutive polygon vertices. The generic segment of a billiard

path can be expressed in a parameterized form as

q̄(t) = q̄i + li(s)q̄i+1, (3.23)

where q̄(t) :=
[

x̄(t) ȳ(t)
]T

is the position at time t of a particle moving on

the desired path, q̄i :=
[

x̄i ȳi

]T
represents the position of the i-th polygon

vertex and li(·) : [0, 1] → [0, 1] determines the velocity profile on the nominal

path segment from the vertex i to the vertex i + 1 (see Fig. 3.2). Theorems 4

F1 F2
o

y

x

q̄i

θ̄i

x̄i

ȳi

θ̄i+1

q̄i+1 ȳi+1

x̄i+1

Figure 3.2: A billiard path segment in an elliptical billiards .

and 5 provide operative conditions for the cases of rotational and librational
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motion, respectively, for finding closed orbits inside the elliptical billiards .

In particular, conditions (2.33) and (2.34) permit to compute the parameters

characterizing caustic curves, an ellipse and a hyperbola, respectively. Once a

starting vertex is chosen on the elliptical boundary (see Remark 2), the whole

path can be obtained by drawing the first segment tangent to the caustic and

just by applying the reflection law at the vertices. By Definition 1 of the

caustic curve, it is guaranteed that all the path segments are tangent to such

a conic. More precisely, the nominal path can be obtained by following the

steps reported below.

1) Fix the elliptical boundary: the semi-major axis a and the semi-minor

axis b, with a > b, are chosen so as to define the boundary of the elliptical

billiards, which is assumed to be centered at the origin (see Section 2.1.1).

2) Fix the winding number and the kind of motion: if the rotational

motion is considered, then the winding number (N,R) is chosen ac-

cording to the definition given in Theorem 4. On the other hand, if

the librational motion is considered, then the winding number (N,R) is

chosen according to the definition given in Theorem 5.

3) Find the caustic curve: consider separately the case of rotational and

librational motion.

rotational motion: in this case the caustic curve is an inner ellipse

confocal with the elliptical boundary (see Section 2.1.2). Solving

condition (2.33) of Theorem 4, with the parameters instantiated in

the previous steps, yields the caustic parameter α such that the

caustic curve is given by

x2

a2
c

+
y2

b2
c

= 1, (3.24)

where ac :=
√

f2 + α and bc :=
√

α with f :=
√

a2 − b2 (see Fig.

3.3).
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F1 F2

y

xac

bc

Figure 3.3: Rotational motion caustic curve: a confocal ellipse.

librational motion: in this case the caustic curve is a hyperbola con-

focal with the elliptical boundary (see Section 2.1.2). Solving con-

dition (2.34) of Theorem 5, with the parameters instantiated in the

previous steps, yields the caustic parameter α such that the caustic

curve is given by
x2

a2
c

− y2

b2
c

= 1, (3.25)

where ac :=
√

f2 + α and bc :=
√−α with f :=

√
a2 − b2. The

hyperbola asymptotes have equations: y = ± bc
ac

x (see Fig. 3.4).

F1 F2

y

x
ac

Figure 3.4: Librational motion caustic curve: a confocal hyperbola.

4) Fix the starting vertex: choose the starting point q̄0 of the nominal

path (closed Poncelet polygon with winding number (N, R)). It is as-
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sumed that such a point is a vertex of the reference polygon, i.e., q̄0 is

on the elliptical boundary.

5) Compute the first billiard path segment: by Definition 1 of the caus-

tic curve, each segment of the billiard path has to be tangent to the

caustic found at Step 4). In view of this fact, the first segment of the

reference path can be obtained by drawing a straight line from point q̄0

to another point q̄1 on the elliptical boundary in such a way that the

segment is tangent to the caustic. More precisely, once that the starting

vertex q̄0 is fixed, the first billiard path segment is completely deter-

mined by its slope, whose computation depends on the kind of motion

(rotational or librational).

rotational motion: by solving the following system in the unknowns

x and y 



x2

a2
c

+
y2

b2
c

− 1 = 0,

y = ȳ1 + m⊥(x− x̄1),
(3.26)

and by imposing the condition of tangency between the straight

line and the caustic curve (i.e., system (3.26) has a unique and real

solution), the angular coefficient m⊥ is given by2

m⊥ =
x̄1ȳ1 ±

√
(x̄2

1 − a2
c)b2

c + b2
c ȳ

2
1

x̄2
1 − a2

c

. (3.27)

librational motion: by solving the following system in the unknowns

x and y 



x2

a2
c

− y2

b2
c

− 1 = 0,

y = ȳ1 + m⊥(x− x̄1),
(3.28)

and by imposing the condition of tangency between the straight

2In general, (3.27) (or, analogously, (3.29)) yields two values for m⊥. One can choose
arbitrarily between them.
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line and the caustic curve (i.e., system (3.28) has a unique and real

solution), the angular coefficient m⊥ is given by

m⊥ =
x̄1ȳ1 ±

√
(a2

c − x̄2
1)b2

c + a2
c ȳ

2
1

x̄2
1 − a2

c

. (3.29)

Finally, in order to find point q̄1 on the elliptical boundary, it is sufficient

to solve the following system in the unknowns x and y





x2

a2
+

y2

b2
− 1 = 0,

y = ȳ1 + m⊥(x− x̄1),
(3.30)

where m⊥ is computed by either (3.27) or (3.29) for the cases of rota-

tional and librational motion, respectively.

6) Obtain the whole path: by starting from point q̄1, which has been ob-

tained at Step 5), the whole reference path can be obtained by the re-

flection law. Although reflection is usually introduced as “ the angle

of incidence is equal to the angle of reflection ” this is often difficult

to work with. However, the reflection property of the ellipse (i.e., each

segment passing through a focus is always reflected to the other one)

renders this problem easier to deal with. As a matter of fact, consider

a point q̄ =
[

x̄ ȳ
]T

on the elliptical boundary (2.1), which has foci

F1 =
[
−f 0

]T
and F2 =

[
f 0

]T
, where f :=

√
a2 − b2 (see Sec-

tion 2.1.1). The unit vectors from q̄ to each of the foci are

n̂1 :=
F1 − q̄
‖F1 − q̄‖ , n̂2 :=

F2 − q̄
‖F2 − q̄‖ , (3.31)

and by the reflection property, it follows that each of these vectors makes

the same angle with the tangent to the ellipse at q̄. Hence, the normal

line to the ellipse coincides with the bisector of the angle they make with

the ellipse (see Fig. 3.5). Since they are both of unit length this line is
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F1 F2
o

y

x

q̄

n̂2

n̂1 n̂

d

dr

Figure 3.5: Normal line to the ellipse at point q̄.

simply their normalized average, that is

n̂ =

n̂1 + n̂2

2

‖ n̂1 + n̂2

2
‖
. (3.32)

At this point, if a line with direction d going through q̄ is considered,

then the direction dr of its reflection through the tangent line is found

by reversing the component of d in the direction of n̂, whereas the com-

ponent perpendicular to n̂ remains unchanged (see Fig. 3.5), namely

d = dn̂⊥ + dn̂

dr = dn̂⊥ − dn̂

⇒ dr = d− 2dn̂ = d− 2 < d, n̂ > n̂,

where dn̂⊥ and dn̂ denote the components of d perpendicular and paral-

lel to n̂, respectively, whereas < d, n̂ >:= dT n̂ denotes the dot product.

Hence, in order to find the vertex q̄i+1 starting from vertex q̄i and the

direction di−1 of the line joining vertices q̄i−1 and q̄i, the following al-

gorithm is used
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1. Compute direction di of the reflected line at q̄i:

di = di−1 − 2 < di−1, n̂i > n̂i,

where n̂i can be computed by using (3.31) and (3.32) with q̄ = q̄i.

2. Define the reflected line in a parameterized form as: q̄i + sdi and

solve (
x2

a2
+

y2

b2
− 1 = 0

)∣∣∣∣x=(q̄i+sdi)[1]
y=(q̄i+sdi)[2]

,

with the nonzero solution denoted by s∗.

3. Find the next vertex q̄i+1 as

q̄i+1 = (q̄i + sdi)|s=s∗ .

By iterating the procedure so far described, all the vertices of the ref-

erence path (a polygon inscribed inside the elliptical boundary) can be

obtained.

Next section aims at finding velocity profiles along such nominal paths satis-

fying the constraints defined in Problem 2.

3.2.2 Nominal velocity profiles

In Section 3.2.1, a procedure for obtaining the vertices of a polygon charac-

terized by the winding number (N, R) and the kind of motion, rotational or

librational, inscribed inside an elliptical billiards is proposed. In order to com-

pletely define the class of reference trajectories, for each integer i, the function

li(·) in (3.23) has to be chosen so as to solve Problem 2.

Constraint 1: impacts (in correspondence of polygon vertices) occur at

each integer time.

By considering btc as the largest integer smaller than or equal to t, (3.23) can
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be rewritten as

[
x̄(t)

ȳ(t)

]
=

[
x̄btc
ȳbtc

]
+ lbtc(t− btc)

[
x̄btc+1 − x̄btc
ȳbtc+1 − ȳbtc

]
, (3.33)

where
[

x̄i ȳi

]T
denotes the position of the i-th polygon vertex, which has

been computed in Section 3.2.1. In order to guarantee that a particle moving

along the desired path (closed Poncelet polygons) hits the boundary (in cor-

respondence with the polygon vertices) at consecutive integer times, functions

li(t− i) have to meet the following properties

li(t− i)|t=i = li(0) = 0, (3.34a)

li(t− i)|t=i+1 = li(1) = 1. (3.34b)

Moreover, it is also required that for all t ∈ [i, i + 1]

li(t− i) ≥ 0, (3.35a)

li(t− i) ≤ 1. (3.35b)

Remark 6. By the periodicity of the nominal paths, the following facts hold

for each integer i

q̄i = q̄(i mod N), (3.36)

li(·) = l(i mod N)(·), (3.37)

where (i mod N) = i−nN with n = bi/Nc. In view of this properties, without

loss of generality it can be assumed that i ∈ I, with I := {0, . . . , N − 1}, i.e.,

a single period is taken into account.

Now, by using (3.34), it follows that Constraint 1 is satisfied and the con-

tinuity of the trajectory at the corner points (polygon vertices) is guaranteed
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for each integer i, that is

x̄(t)|t=i = x̄(i) = x̄(i−) = x̄(i+) = x̄i,

ȳ(t)|t=i = ȳ(i) = ȳ(i−) = ȳ(i+) = ȳi.

If the polar coordinates (3.20) are considered, then (3.33) becomes

[
x̄(t)

ȳ(t)

]
=

[
a cos(θ̄btc)

b sin(θ̄btc)

]
+ lbtc(t− btc)

[
a (cos(θ̄btc+1)− cos(θ̄btc))

b (sin(θ̄btc+1)− sin(θ̄btc))

]
,

which can be rewritten by using the prosthaphaeresis formulas as

[
x̄(t)

ȳ(t)

]
=

[
a cos(θ̄btc)

b sin(θ̄btc)

]
+

+ lbtc(t− btc)

 2 a sin( θ̄btc+1−θ̄btc

2 ) cos(π
2 + θ̄btc+1+θ̄btc

2 )

2 b sin( θ̄btc+1−θ̄btc
2 ) sin(π

2 + θ̄btc+1+θ̄btc
2 )


 , (3.38)

where θ̄i is the polar angle relevant to point q̄i (see Fig. 3.2).

Constraint 2: the Erdmann-Weierstrass corner conditions (3.15) are sat-

isfied at the corner points.

In Section 3.1, the equations of motion during the unconstrained and con-

strained phases have been obtained for the controlled elliptical billiard system.

In particular, at the impact times, (3.15) provide the post-impact velocities,

given the pre-impact velocities and the position, under the assumption of per-

fectly elastic collisions. Note that, if the particle moves along the desired

trajectory, then rules (3.15) have to be satisfied at each desired (integer) im-

pact time t̄i in the nominal coordinates, i.e., x(t) = x̄(t) and y(t) = ȳ(t). More

precisely, the Erdmann-Weierstrass corner conditions (3.14) expressed in the
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nominal coordinates are given by

a2ȳ(i)
(
˙̄x(i+)− ˙̄x(i−)

)
= b2x̄(i)

(
˙̄y(i+)− ˙̄y(i−)

)
, (3.39a)

˙̄x2(i−) + ˙̄y2(i−) = ˙̄x2(i+) + ˙̄y2(i+). (3.39b)

Substituting (3.23) into (3.39a) and (3.39a) yields

a2ȳ(i)

(
∂x̄

∂lbtc

∣∣∣∣
t=i+

l̇i(0+)− ∂x̄

∂lbtc

∣∣∣∣
t=i−

l̇i−1(1−)

)
=

= b2x̄(i)

(
∂ȳ

∂lbtc

∣∣∣∣
t=i+

l̇i(0+)− ∂ȳ

∂lbtc

∣∣∣∣
t=i−

l̇i−1(1−)

)
, (3.40a)

and

((
∂x̄

∂lbtc

)2

+
(

∂ȳ

∂lbtc

)2
)∣∣∣∣∣

t=i−
l̇2i−1(1

−) =

=

((
∂x̄

∂lbtc

)2

+
(

∂ȳ

∂lbtc

)2
)∣∣∣∣∣

t=i+

l̇2i (0
+), (3.40b)

respectively, where the following facts and definitions have been used

˙̄x(lbtc(t)) =
∂x̄

∂η

∣∣∣∣
η=lbtc(t)

l̇btc(t− btc) =:
∂x̄

∂lbtc
l̇btc(t− btc),

˙̄y(lbtc(t)) =
∂ȳ

∂η

∣∣∣∣
η=lbtc(t)

l̇btc(t− btc) =:
∂ȳ

∂lbtc
l̇btc(t− btc),

and

(t− btc)∣∣
t=i− = i− − (i− 1) = 0− + 1 = 1−,

(t− btc)∣∣
t=i+

= i+ − i = 0+.

At this point, by substituting (3.33) into (3.40), the following conditions on
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the time derivative of functions li(·) and li−1(·) are obtained

a2ȳi

(
(x̄i+1 − x̄i) l̇i(0+)− (x̄i − x̄i−1) l̇i−1(1−)

)
=

= b2x̄i

(
(ȳi+1 − ȳi) l̇i(0+)− (ȳi − ȳi−1) l̇i−1(1−)

)
, (3.41)

and

(
(x̄i − x̄i−1)

2 + (ȳi − ȳi−1)
2
)

l̇2i−1(1
−) =

=
(
(x̄i+1 − x̄i)

2 + (ȳi+1 − ȳi)
2
)

l̇2i (0
+). (3.42)

As seen in Section 3.1, conditions (3.41) and (3.42) can be merged so as to

obtain

l̇i(0+)

[
x̄i+1 − x̄i

ȳi+1 − ȳi

]
=

= l̇i−1(1−)

[
C1(q̄(i)) C2(q̄(i))

C2(q̄(i)) −C1(q̄(i))

][
x̄i − x̄i−1

ȳi − ȳi−1

]
, (3.43)

where C1(·) and C2(·) have been defined in (3.15). Conditions (3.41) and (3.42)

(as well as (3.43)) can also be expressed by using the polar representation

just considering (3.38) in place of (3.33). For example, the kinetic energy

conservation (3.39a) becomes

sin2

(
θ̄i − θ̄i−1

2

) (
a2 sin2

(
θ̄i + θ̄i−1

2

)
+ b2 cos2

(
θ̄i + θ̄i−1

2

))
l̇2i−1(1

−) =

= sin2

(
θ̄i+1 − θ̄i

2

)(
a2 sin2

(
θ̄i+1 + θ̄i

2

)
+ b2 cos2

(
θ̄i+1 + θ̄i

2

))
l̇2i (0

+).

(3.44)

In summary, each function li(·), describing the velocity profile along the

segment joining the vertices i and i + 1 of the reference path, solves Problem

2 if it satisfy conditions (3.34),(3.35) and (3.43). Nevertheless, no assumption
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has been made on the “kind” (polynomial, exponential, sinusoidal and so on)

of li(·). In the next section, by assuming that such functions are polynomials,

a procedure based on LMIs techniques is described in order to solve the motion

planning problem defined in Problem 2.

3.3 Trajectory planning via constrained polynomial

interpolation

In the following, it is shown how the problem of finding velocity profiles that

solve Problem 2 can be turned into the problem of satisfying some polynomial

non-negative constraints, hence by Lemma 2 (see Section 2.3) into an LMI

problem. As a matter of fact, consider the case when the functions li(s) in

(3.33) are generic polynomials of degree q ≥ 1 in s := t− i

li(s) = ai
qs

q + ai
q−1s

q−1 + . . . + ai
1s + ai

0, (3.45)

where ai
j ∈ R for each j ∈ {0, 1, . . . , q}.

Remark 7. Classical studies of trajectories within a billiards assume that the

particle moves with constant (says, unitary) velocity until it hits the boundary.

Such an assumption implies that each function li(·) is chosen such that

li(t− i) = t− i, (3.46)

so that l̇i(t − i) = 1, which corresponds to take q = 1 and ai
0 = 0, ai

1 = 1

in (3.45). In this case, conditions (3.34) and (3.35) are trivially satisfied,

however one need to verify also condition (3.42) (or, analogously, (3.44)). In

[56], the desired trajectories are constituted by regular polygons (having N ≥ 2

vertices) inscribed in the circle of unitary radius centered at the origin and

having one vertex coincident with the point
[

1 0
]T

; it is proved that such a

reference trajectory is the path followed by a not actuated (free) particle (with

constant velocity between impacts) inside the circular billiards and involving
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an impact at each integer time (if its initial position and velocity are properly

chosen). In fact, a unitary circle centered at the origin can be represented by

taking a = 1 and b = 1 in (2.1), whereas by the regularity of the considered

polygons it follows that θ̄i − θ̄i−1 = θ̄i+1 − θ̄i = π
n , Therefore, condition (3.44)

becomes l̇2i−1(1
−) = l̇2i (0

+), which is satisfied by the hypothesis of constant

velocity, i.e. l̇i(·) = 1 for each integer i. On the other hand, in the elliptical

billiards a and b are different and the inscribed polygons can be not regular,

i.e., θ̄i − θ̄i−1 6= θ̄i+1 − θ̄i. Therefore, in general, the choice (3.46) of constant

velocity along the path does not satisfy condition (3.44) for the conservation of

the energy and more general interpolating polynomials, for example the ones

defined by (3.45), need to be considered.

As seen in the previous section, in order to solve Problem 2, for each integer

i ∈ I, function li(·) have to satisfy

• equality conditions: (3.34) and (3.43);

• inequality conditions: (3.35).

Such a system of equations and inequalities is in general hard to solve. In the

following sections, first conditions (3.34), (3.43) and (3.35) will be rewritten

in terms of the polynomial coefficients ai
j and then Lemma 2 (see Section 2.3)

will be applied in order to obtain an LMI problem easier to solve.

3.3.1 Inequality constraints

In this section, inequality constraints in the form

elow
i,k ≤ l

(k)
i (s) ≤ eup

i,k,

are considered, where k ≥ 0 denotes the derivative order, s ∈ [si, se] and

elow
i,k , eup

i,k ∈ R.

Concerning inequalities (3.35a) and (3.35b), for each integer i guaranteeing

0 ≤ li(s) ≤ 1 is completely equivalent to guarantee the non-negativeness of
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the following polynomials

p1,i(s) := li(s)

p2,i(s) := 1− li(s)
⇒ li(s) ≥ 0 ⇔ p1,i(s) ≥ 0

li(s) ≤ 1 ⇔ p2,i(s) ≥ 0
. (3.47)

At this point, Lemma 2 permits to reformulate the non-negativeness of poly-

nomials p1,i(s) and p2,i(s) as an LMI problem. In fact, by considering the

periodicity of the desired path, the inequalities in (3.47) are satisfied if and

only if there exist symmetric and positive semidefinite matrices Q1
i ,R

1
i ,Q

2
i

and R2
i for i = 0, . . . , N − 1 such that





ai
0 = tr(R1

i H0),

ai
1 = tr(Q1

i H0) + tr(R1
i (H1 −H0)),

...

ai
q = tr(Q1

i Hq−1) + tr(R1
i (Hq −Hq−1)),

(3.48)

and





ai
0 = 1− tr(R2

i H0),

ai
1 = −tr(Q2

i H0)− tr(R2
i (H1 −H0)),

...

ai
q = −tr(Q2

i Hq−1)− tr(R2
i (Hq −Hq−1)),

(3.49)

where the Hankel matrices Hk are defined in (2.38). Since the coefficients

ai
0, a

i
1, . . . , a

i
q in (3.48) and (3.49) are relevant to the same polynomial li(·),
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one has to guarantee that





tr(R1
i H0) = 1 + tr(R2

i H0),

tr(Q1
i H0) + tr(R1

i (H1 −H0)) =

= −(tr(Q2
i H0) + tr(R2

i (H1 −H0))),
...

tr(Q1
i Hq−1) + tr(R1

i (Hq −Hq−1)) =

= −(tr(Q2
i Hq−1) + tr(R2

i (Hq −Hq−1))).

(3.50)

3.3.2 Equality constraints

In this section, equality constraints in the form

l
(k)
i (s)|s=s∗ = e∗i,k,

are considered, where k ≥ 0 denotes the derivative order, s∗ ∈ [si, se] and

e∗i,k ∈ R.

By using (3.45), conditions (3.34a) and (3.34b) can be given in terms of

the polynomial coefficients as

lk(0) = ai
0 = 0, (3.51a)

and

lk(1) = ai
q + ai

q−1 + · · ·+ ai
1 + ai

0 = 1, (3.51b)
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respectively. By using (3.48)3, such conditions become

li(0) = 0 ⇔ tr(R1
i H0)︸ ︷︷ ︸

ai
0

= 0,

li(1) = 1 ⇔ tr(R1
i H0)︸ ︷︷ ︸

ai
0

+ tr(Q1
i H0) + tr(R1

i (H1 −H0))︸ ︷︷ ︸
ai
1

+ · · ·

· · ·+ tr(Q1
i Hq−1) + tr(R1

i (Hq −Hq−1))︸ ︷︷ ︸
ai

q

= 1.

As for the corner conditions (3.43), taking the time derivative of function li(·)
as

l̇i(0+) = ai
1,

l̇i−1(1−) = qai−1
q + (q − 1)ai−1

q−1 + · · ·+ ai−1
1 ,

yields

(
qai−1

q + (q − 1)ai−1
q−1 + · · ·+ ai−1

1

)
(C1(q(i))(x̄i − x̄i−1) + C2(q(i))(ȳi − ȳi−1)) =

= ai
1 (x̄i+1 − x̄i) ,

(
qai−1

q + (q − 1)ai−1
q−1 + · · ·+ ai−1

1

)
(C2(q(i))(x̄i − x̄i−1)− C1(q(i))(ȳi − ȳi−1)) =

= ai
1 (ȳi+1 − ȳi) ,

which can be rewritten in a more compact form as

ai
1h1(i) =




q∑

j=1

jai−1
j


h2(i), (3.52a)

3Once (3.50) is satisfied, the coefficients of li(·) can be computed by using (3.48) or (3.49)
indifferently.
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and

ai
1w1(i) =




q∑

j=1

jai−1
j


w2(i), (3.52b)

respectively, where

h1(i) := x̄i+1 − x̄i, (3.53a)

w1(i) := ȳi+1 − ȳi, (3.53b)

h2(i) := C1(qd(i))h1(i− 1) + C2(qd(i))w1(i− 1), (3.53c)

w2(i) := C2(qd(i))h1(i− 1)− C1(qd(i))w1(i− 1). (3.53d)

Substituting (3.48) into (3.52) yields

(tr(Q1
i H0) + tr(R1

i (H1 −H0))︸ ︷︷ ︸
ai
1

)h1(i) =

=
(
q(tr(Q1

i−1Hq−1) + tr(R1
i−1(Hq −Hq−1))︸ ︷︷ ︸

ai−1
q

)+

+(q − 1)(tr(Q1
i−1Hq−2) + tr(R1

i−1(Hq−1 −Hq−2))︸ ︷︷ ︸
ai−1

q−1

) + · · ·

· · ·+ tr(Q1
i−1H0) + tr(R1

i−1(H1 −H0))︸ ︷︷ ︸
ai−1
1

)
h2(i),
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and

(tr(Q1
i H0) + tr(R1

i (H1 −H0))︸ ︷︷ ︸
ai
1

)w1(i) =

=
(
q(tr(Q1

i−1Hq−1) + tr(R1
i−1(Hq −Hq−1))︸ ︷︷ ︸

ai−1
q

)+

+(q − 1)(tr(Q1
i−1Hq−2) + tr(R1

i−1(Hq−1 −Hq−2))︸ ︷︷ ︸
ai−1

q−1

) + · · ·

· · ·+ tr(Q1
i−1H0) + tr(R1

i−1(H1 −H0))︸ ︷︷ ︸
ai−1
1

)
w2(i).

3.3.3 A Motion planning result

In view of the results obtained in Section 3.3.1 and 3.3.2, a solution of Problem

2 is given by the following result, which permits to find velocity profiles for

the reference paths under the imposed constraints.

Theorem 7. A family of polynomials li(t − i), i ∈ {0, 1, . . . , N − 1} of de-

gree q ≥ 1 is a solution of Problem 2 with resulting trajectory in the form

(3.33), if and only if there exist symmetric and positive semidefinite matrices

Q1
i ,R

1
i ,Q

2
i and R2

i such that the LMI problem (3.54) is feasible. In this case,

the coefficients of li(t− i) can be computed using (3.48) or (3.49).

The LMI problem in the 4N symmetric and positive semidefinite matrices

Q1
i ,R

1
i ,Q

2
i and R2

i for i = 0, 1, . . . , N − 1 referred in Theorem 7, which can

be obtained by collecting the results previously obtained, is reported in the



70 Chapter 3. Trajectory definition in the elliptical billiard system

following.





N equalities:





a0
0 = 0,

...

aN−1
0 = 0,

N equalities:





a0
q + a0

q−1 + · · ·+ a0
1 + a0

0 = 1,
...

aN−1
q + aN−1

q−1 + · · ·+ aN−1
1 + aN−1

0 = 1,

2N equalities:





a0
1h1(0) = (qaN−1

q + (q − 1)aN−1
q−1 + · · ·+ aN−1

1 )h2(0),

a0
1w1(0) = (qaN−1

q + (q − 1)aN−1
q−1 + · · ·+ aN−1

1 )w2(0),
...

aN−1
1 h1(N − 1) = (qaN−2

q + (q − 1)aN−2
q−1 + · · ·+ aN−2

1 )h2(N − 1),

aN−1
1 w1(N − 1) = (qaN−2

q + (q − 1)aN−2
q−1 + · · ·+ aN−2

1 )w2(N − 1),

(q + 1)N equalities:





a0
0 = â0

0,
...

a0
q = â0

q ,
...

aN−1
0 = âN−1

0 ,
...

aN−1
q = âN−1

q ,

4N inequalities:





Q1
1 º 0,R1

1 º 0,Q2
1 º 0,R2

1 º 0,
...

Q1
N º 0,R1

N º 0,Q2
N º 0,R2

N º 0,

(3.54)

where in (3.49) coefficients ai
j have been renamed as âi

j .

A pseudo-algorithm implementing such a result is reported below.

1. Let q = 1;
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2. Let li(t− i) =
q∑

j=0

ai
j(t− i)j , i = 0, 1, . . . , N − 1;

3. If the LMIs problem (3.54) is feasible, then

Compute ai
j , j ∈ {0, 1, . . . , q} by using (3.48),

Go to Step 5);

4. Else

q = q + 1,

Go to Step 2);

5. End.

3.4 Examples

In this section, examples of desired trajectories (rotational and librational)

are depicted. The procedure described in Section 3.2.1 is followed for finding

periodic paths inside the elliptical billiards, whereas velocity profiles satisfying

Problem 2 are computed by means of the pseudo-algorithm given in Section

3.2.2, which implements Theorem 7.4

For the sake of simplicity, the same elliptical billiard table is considered for

the examples reported below. In the cartesian coordinates, this is an ellipse

centered at the origin with a = 4 and b = 2 the semi-major and semi-minor

axis, respectively.

Rotational motion: (N = 4, R = 1)

Consider the case of rotational motion with the following parameters

winding number: (N = 4, R = 1),

starting vertex: q̄0 =
[

4 0
]T

,
(3.55)

4The LMI problem is solved by SeDuMi 1.1 (an open source LMIs solver for Matlabr)
with Yalmip 3 as interface.
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where N and R are defined in Theorem 4. In order to find the nominal path

relevant to these parameters, procedure described in Section 3.2.1 is followed.

At Step 3), the caustic curve is computed. Since the motion is rotational, it

is an inner, confocal ellipse, whose semi-major axis ac and semi-minor axis bc

are computed by solving condition (2.33) so as to obtain

caustic curve: ac = 3.57771, bc = 0.89443.

At this point, applying Step 5) and Step 6) for the case of rotational motion,

the whole reference path can be obtained. In particular, the vertices of the

closed Poncelet polygon of parameters (3.55) are

q̄0 =

[
4

0

]
, q̄1 =

[
0

2

]
, q̄2 =

[
−4

0

]
, q̄3 =

[
0

−2

]
.

In order to find velocity profiles solving Problem 2, the pseudo-algorithm in

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x̄

ȳ

Figure 3.6: Rotational motion (N = 4, R = 1): nominal path with winding
number: (N = 4, R = 1) and starting vertex: (x̄0 = 4, ȳ0 = 0) (solid line) and
the confocal caustic curve (dotted line).

Section 3.2.2 is carried out. Solving the LMI problem given by (3.54) yields
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q = 1 and the following interpolating polynomials

l0(t) = t,

l1(t− 1) = t− 1,

l2(t− 2) = t− 2,

l3(t− 3) = t− 3,

which are depicted in Fig. 3.7 with their derivatives in Fig. 3.8. The

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1
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1

t

l i

Figure 3.7: Rotational motion (N = 4, R = 1): interpolating polynomials li(·).

corresponding velocities ˙̄x(t) and ˙̄y(t) are shown in Fig. 3.9 and 3.10.

Remark 8. For this simple example the nominal path is a regular polygon (a

rhombus) inscribed inside the elliptical billiards (see Fig. 3.6). As seen in

[56] (see also Remark 7), in this case a velocity profile with constant velocities

along the path segments is solution of Problem 2.
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Figure 3.8: Rotational motion (N = 4, R = 1): l̇i(·).
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Figure 3.9: Rotational motion (N = 4, R = 1): ˙̄x(t).
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Figure 3.10: Rotational motion (N = 4, R = 1): ˙̄y(t).

Rotational motion: (N = 7, R = 2)

Consider the case of rotational motion with the following parameters

winding number: (N = 7, R = 2),

starting vertex: q̄0 =
[

0.3 1.99437
]T

,
(3.56)

where N and R are defined in Theorem 4. In order to find the nominal path

relevant to these parameters, procedure described in Section 3.2.1 is followed.

At Step 3), the caustic curve is computed. Since the motion is rotational, it

is an inner, confocal ellipse, whose semi-major axis ac and semi-minor axis bc

are computed by solving condition (2.33) so as to obtain

caustic curve: ac = 3.51678, bc = 0.60644.

At this point, applying Step 5) and Step 6) for the case of rotational motion,

the whole reference path can be obtained. In particular, the vertices of the
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closed Poncelet polygon of parameters (3.56) are

q̄0 =

[
0.3

1.99437

]
, q̄1 =

[
3.98199

−0.18957

]
,

q̄2 =

[
−3.01861

−1.31225

]
, q̄3 =

[
−3.77791

0.65715

]
,

q̄4 =

[
3.84097

0.55833

]
, q̄5 =

[
2.72405

−1.46455

]
, q̄6 =

[
−3.99119

−0.13268

]
.

In order to find velocity profiles solving Problem 2, the pseudo-algorithm in

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5
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Figure 3.11: Rotational motion (N = 7, R = 2): nominal path with winding
number: (N = 7, R = 2) and starting vertex: (x̄0 = 0.3, ȳ0 = 1.99437) (solid
line) and the confocal caustic curve (dotted line).

Section 3.2.2 is carried out. Solving the LMI problem given by (3.54) yields
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q = 3 and the following interpolating polynomials

l0(t) = 0.47295t3 − 1.2063t2 + 1.7333t,

l1(t− 1) = 0.6883(t− 1)3 − 0.51579(t− 1)2 + 0.82749(t− 1),

l2(t− 2) = −0.48932(t− 2)3 + 0.36576(t− 2)2 + 1.1236(t− 2),

l3(t− 3) = 1.1215(t− 3)3 − 1.4219(t− 3)2 + 1.3004(t− 3),

l4(t− 4) = −1.0448(t− 4)3 + 1.5403(t− 4)2 + 0.50448(t− 4),

l5(t− 5) = 1.0357(t− 5)3 − 1.5219(t− 5)2 + 1.4862(t− 5),

l6(t− 6) = −0.26438(t− 6)3 + 0.74136(t− 6)2 + 0.52302(t− 6),

which are depicted in Fig. 3.12 with their derivatives in Fig. 3.13. The
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Figure 3.12: Rotational motion (N = 7, R = 2): interpolating polynomials
li(·).

corresponding velocities ˙̄x(t) and ˙̄y(t) are shown in Fig. 3.14 and 3.15.
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Figure 3.13: Rotational motion (N = 7, R = 2): l̇i(·).
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Figure 3.14: Rotational motion (N = 7, R = 2): ˙̄x(t).
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Figure 3.15: Rotational motion (N = 7, R = 2): ˙̄y(t).

Librational motion: (N = 4, R = 1)

Consider the case of librational motion with the following parameters

winding number: (N = 4, R = 1),

starting vertex: q̄0 =
[

1.3 1.89143
]T

,
(3.57)

where N and R are defined in Theorem 5. In order to find the nominal path

relevant to these parameters, procedure described in Section 3.2.1 is followed.

At Step 3), the caustic curve is computed. Since the motion is librational, it is

a confocal hyperbola, whose semi-transversal axis ac and semi-conjugate axis

bc are computed by solving condition (2.34) so as to obtain

caustic curve: ac = 3.26599, bc = 1.15470.

At this point, applying Step 5) and Step 6) for the case of librational motion,

the whole reference path can be obtained. In particular, the vertices of the
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closed Poncelet polygon of parameters (3.57) are

q̄0 =

[
1.3

1.89143

]
, q̄1 =

[
−3.74330

−0.70493

]
, q̄2 =

[
−1.3

1.89143

]
, q̄3 =

[
3.74330

−0.70493

]
.

In order to find velocity profiles solving Problem 2, the pseudo-algorithm in
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Figure 3.16: Librational motion (N = 4, R = 1): nominal path with winding
number: (N = 4, R = 1) and starting vertex: (x̄0 = 1.3, ȳ0 = 1.89143) (solid
line) and the confocal caustic curve (dotted line).

Section 3.2.2 is carried out. Solving the LMI problem given by (3.54) yields

q = 3 and the following interpolating polynomials

l0(t) = 1.0331t3 − 1.4569t2 + 1.4237t,

l1(t− 1) = −0.093702(t− 1)3 + 0.082157(t− 1)2 + 1.0115(t− 1),

l2(t− 2) = 1.0337(t− 2)3 − 1.4572(t− 2)2 + 1.4236(t− 2),

l3(t− 3) = −0.093182(t− 3)3 + 0.081211(t− 3)2 + 1.012(t− 3),

which are depicted in Fig. 3.17 with their derivatives in Fig. 3.18. The

corresponding velocities ˙̄x(t) and ˙̄y(t) are shown in Fig. 3.19 and 3.20.
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Figure 3.17: Librational motion (N = 4, R = 1): interpolating polynomials
li(·).
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Figure 3.18: Librational motion (N = 4, R = 1): l̇i(·).
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Figure 3.19: Librational motion (N = 4, R = 1): ˙̄x(t).
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Figure 3.20: Librational motion (N = 4, R = 1): ˙̄y(t).



Chapter 4

Trajectory tracking in the

elliptical billiard system

In this chapter, a tracking control problem is defined so as to asymptotically

track periodic trajectories belong to the class of desired trajectories defined

in Chapter 3. Since the vector state of the considered dynamical system is

intrinsically subject to jumps, the classical stability and attractivity proper-

ties cannot be obtained (as shown in [56]) so that suitable modifications are

required. Hence, the tracking control problem dealt with in this work is quite

similar to the one in [56], where notions similar to the quasi stability concept

proposed in [50] for impulsive differential systems are used. In order to solve

the proposed control problem a controller based on the internal model prin-

ciple has been designed. It is to be stressed that, similarly to the system to

be controlled, the state of the precompensator used to guarantee the pres-

ence of the internal model of the reference trajectory presents discontinuities

(nonsmooth internal model principle).

83
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4.1 The problem of trajectory tracking in presence

of nonsmooth impacts

In this section, a tracking control problem taking into account the presence

of impulsive effects (due to nonsmooth impacts between the particle and the

elliptical boundary) is defined for the elliptical billiard system.

The class of desired trajectories (i.e., paths together with velocity profiles)

considered hereafter have been defined in Chapter 3. Let q(t) =
[

x(t) y(t)
]T
∈

R2 and q̄(t) =
[

x̄(t) ȳ(t)
]T

∈ R2 be the position at time t of a particle

moving on the actual trajectory and on the desired trajectory, respectively.

The (position) tracking error at time t can be defined as

eq(t) := q(t)− q̄(t).

By means of a suitable piecewise continuous control law (impulsive control

inputs are not considered in this work), stability properties that one would

like to guarantee for the closed-loop system are:

(i) for each ε > 0 and for each t0 ∈ R, there exists δε > 0 such that if

‖eq(t0)‖ ≤ δε and ‖ėq(t−0 )‖ ≤ δε, then

‖eq(t)‖ ≤ ε, ∀t ≥ t0, (4.1a)

and

‖ėq(t−)‖ ≤ ε, ∀t ≥ t0, (4.1b)

‖ėq(t+)‖ ≤ ε, ∀t ≥ t0; (4.1c)

(ii) for each t0 ∈ R, there exists a neighborhood Θt0 of
[

q̄T (t0) ˙̄qT (t−0 )
]T

such that the following relationships hold for each
[

qT (t0) q̇T (t−0 )
]T
∈
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Θt0 ∩
(A× R2

)
:

lim
t→+∞ ‖eq(t)‖ = 0, (4.2a)

and

lim
t→+∞ ‖ėq(t−)‖ = 0, (4.2b)

lim
t→+∞ ‖ėq(t+)‖ = 0, (4.2c)

where the limits in (4.2) are taken with t being real and A denotes the

admissible region defined in (3.1).

However, the presence of the Erdmann-Weierstrass corner conditions (3.7)

and of the constraints (3.6c) and (3.6d) complicates the trajectory tracking

problem for the considered system as compared with the case of unconstrained

mechanical systems and, in general, it is too difficult (if not impossible) to

guarantee both properties (i) and (ii), as shown in the following remark [56].

Remark 9. Consider statement (i). Let 0 < ε < 1. Let the initial time

t0 be negative and very close to 0 (so that there is no impact in the interval

(t0, 0)), with the initial conditions q̄(t0), ˙̄q(t+0 ), q̇(t+0 ) and q(t0) chosen so that

q̄(0) =
[

1 0
]T

, ˙̄q(0−) =
[

2 0
]T

, q̇(0−) = ˙̄q(0−) and q(0) = (1− ε) q̄(0)

(due to these choices, as q(0) is an interior point of A, t = 0 is not an impact

time for the controlled body). On the other hand, t = 0 is an impact time

for the fictitious body moving on the reference trajectory, whence ˙̄q(0+) =[
−2 0

]T
. As t0 is negative and very close to 0, ‖ėq(t+0 )‖ ' ‖ėq(0−)‖ = 0

and ‖eq(t+0 )‖ ' ‖eq(0)‖ = ε. Taking into account the expression of ˙̄q(0+), one

has ėq(0+) =
[

4 0
]T

, and ‖ėq(0+)‖ = 4; this implies that ‖ėq(t−)‖ and

‖ėq(t+)‖ are greater than ε for all t 6= 0 belonging to a short interval starting

from 0, and property (i) is violated. Notice that as the control inputs are

not impulsive, they do not influence the previous reasoning, which therefore

shows that property (i) cannot be satisfied for any piecewise continuous and
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bounded control law.

As far as property (ii) is concerned, for each arbitrarily high real T , if

‖eq(T )‖+‖ėq(T−)‖ 6= 0 (this is not the case when either ‖eq(t0)‖+‖ėq(t−0 )‖ =

0 or when the considered control law has a dead-beat property; this second

case can happen only in the nominal case, and, therefore, can be neglected

in real applications), then it is generically true that there exists an integer

k > T that is not an impact time for the controlled body; for such a k, even

if ‖ėq(k−)‖ is almost zero, one has ėq(k+) = ėq(k−) +
[

4 0
]T

if k is even,

and ėq(k+) = ėq(k−)−
[

4 0
]

if k is odd, whence ‖ėq(k+)‖ is almost equal

to 4, which (by the arbitrariness of T ) means that property (ii) does not hold.

Therefore, it seems that, by requiring property (ii), one actually requires that

for sufficiently high times, the impact times of the controlled body coincide

exactly with the impact times k ∈ Z of the desired trajectory, which seems to

be difficult (if not impossible) to be guaranteed in practice for a significant set

of initial conditions.

In order to overcome the difficulties previously discussed about properties

(i) and (ii) (i.e., the classical asymptotic stability properties), the tracking

control problem solved here is stated as follows.

Problem 3. Find, if any, a piecewise continuous control law such that the

following properties hold for the closed-loop system:

(a) for each t0 ∈ R, (q(t), q̇(t)) = (q̄(t), ˙̄q(t)) is a piecewise differentiable

solution of the closed-loop system for t ≥ t0;

(b) for each initial conditions
[

qT (t0) q̇T (t+0 )
]T
∈ Â and for each initial

time t0 ∈ R, there exists a unique piecewise differentiable solution q(t)

along the interval (t0, +∞);

(c) for each ε > 0, for each t0 ∈ R and for each γ ∈ (0, 1
2), there exists

δε, γ > 0 such that if
[

qT (t0) q̇T (t+0 )
]T

∈ Â, ‖eq(t0)‖ < δε, γ and
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‖ėq(t+0 )‖ < δε, γ, then

‖eq(t)‖ < ε, ∀t ∈ R, t ≥ t0, (4.3a)

‖ėq(t−)‖ < ε, ∀t ∈ R, t > t0, |t− 〈t〉| > γ, (4.3b)

‖ėq(t+)‖ < ε, ∀t ∈ R, t > t0, |t− 〈t〉| > γ, (4.3c)

where 〈t〉 denotes the integer nearest to t. In the case in which t is a

half-integer, 〈t〉 denotes the smallest integer larger than t;

(d) for each t0 ∈ R, there exists a neighborhood Θt0 of
[

q̄T (t0) ¯̇qT (t+0 )
]T

such that the following relationships hold for each
[

qT (t0) q̇T (t+0 )
]T
∈

Θt0 ∩ Â:

lim
t→+∞ ‖eq(t)‖ = 0, (4.4a)

lim
k→+∞

‖ėq((k + τ)−)‖ = 0, ∀τ ∈ (0, 1), (4.4b)

lim
k→+∞

‖ėq((k + τ)+)‖ = 0, ∀τ ∈ (0, 1), (4.4c)

where the limits in equations (4.4b) and (4.4c) are taken with k being

integer, whereas the limit in equation (4.4a) is taken with t being real.

Remark 10. In the following, some comments on the definition of Problem 3

are reported.

Comments on property (a): in [56], it has been shown that if the initial

position and velocity of the plant are properly chosen, then each reference

trajectory is an “ admissible ” trajectory of the circular billiard system when

no control is exerted on the moving mass (i.e., ux(t) = uy(t) = 0) and it

involves an impact at each integer time. In the present case, since the velocity

along the nominal path is in general non-constant, the plant cannot contain

the whole internal model of the reference trajectory to track. The presence of

such an internal model is guaranteed here through a dynamic precompensator

so that property (a) can be obtained. Moreover, by property (a), condition
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(4.4b) implies condition (4.4c), which has been reported in the statement of

property (d) for the sake of clarity.

Comments on requirement (b): this requirement is very important

in the case of impacting systems. As a matter of fact, it is possible to con-

struct examples of impacting systems having unique solution in each interval

of time that does not contain any impact time, but with a finite accumula-

tion point of impact times tI , I ≥ 1, (i.e., limI→+∞ tI = t∗, with t∗ being a

finite real), whose solution cannot be continued after t∗ as limI→+∞ q̇(t−I ) 6=
limI→+∞ q̇(t+I ) (in such a case the solution of the system does not exist over

all (t0, +∞), but only on (t0, t∗)). There are two simple ways to ensure that

requirement (b) holds (both of them give rise to sufficient conditions for the

existence of the solution). The first one consists in guaranteeing that, for any

considered initial condition, there is only a finite number of impact times in

(t0, +∞); the second one, which will be pursued here, is that of guaranteeing

the following two properties:

(e) for each initial time t̂0 ∈ R and for each
[

qT (t̂0) q̇T (t̂+0 )
]T
∈ Â, there

exists a unique differentiable solution q(t) along the interval (t̂0, t̂1),

where t̂1 is the first impact time after t̂0;

(f) for each initial time t0 ∈ R and for each
[

qT (t̂0) q̇T (t̂+0 )
]T
∈ Â, there

exists a sequence of impact times {tI}I∈Z+ , such that tI+1 > tI and

lim
I→+∞

tI = +∞.

Properties (e) and (f) imply that, for each admissible initial condition, the

solution of the closed-loop system exists and is unique not only up to the first

impact time but up to infinity, as the solution can be uniquely continued over

each impact time (remember that the Erdmann-Weierstrass corner conditions

can be uniquely solved at the impact times), and the impact times have +∞
as accumulation point.

Comments on property (c): considering t ≥ t0 such that |t − k| > γ,

k ∈ Z, for what concerns the error in the velocities, allows one to avoid in
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the stability analysis the times in the intervals [k − γ, k + γ], k ∈ Z, in which

one has jumps in the desired velocities. In order to reduce the size of these

intervals, it is sufficient to properly choose the initial conditions according to

the statement of property (c). Notice that γ is an arbitrarily small positive

number and cannot be taken equal to zero, as discussed in Remark 9.

Comments on property (d): for each τ ∈ (0, 1), k+τ is not integer for

all k ∈ Z; for τ ∈ (0, 1) sufficiently close to 0, k + τ is close to k+, whereas for

τ ∈ (0, 1) sufficiently close to 1, k + τ is close to (k +1)−. Finally, notice that

the limits in equations (4.4b) and (4.4c) are weaker than the following limits

(they have sense, as +∞ is adherent to R−Z) limt→+∞, t∈R−Z ‖ėq(t−)‖ = 0,

limt→+∞, t∈R−Z ‖ėq(t+)‖ = 0, which are too difficult to be satisfied, as one

can see with a reasoning similar to the one adopted in Remark 9 for a real t.

4.2 A first control scheme based on the internal

model principle

By assuming that the whole plant state is measured, a control scheme based

on a nonsmooth version of the internal model principle is depicted in Fig. 4.1,

whose component blocks will be described in the following.

xa

IMx
xp

Px
ux

xe x̄e

Rx

Kx

uxa

Ex

Figure 4.1: A control scheme based on the internal model principle. The whole
plant state is assumed to be measured.

Remark 11. In Fig. 4.1, only the scheme relevant to x-coordinate is shown, the
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other one being completely analogous. In fact, in absence of impacts equations

(3.6a) and (3.6b) are decoupled (the coupling between the two degrees of

freedom of the mass is due to the impact of the mass with the elliptical surface

delimiting the admissible region, see (3.15)).

The exosystem: Rx, Ry

As for the reference signals given in (3.33), they are polynomials in t− btc of

degree q. Hence, for some Ωx,Ωy,vx,vy, they can be written in the following

form

x̄(t) = ΩxeM(t−btc)vx, (4.5a)

ȳ(t) = Ωye
M(t−btc)vy, (4.5b)

where

M :=




0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

... 0 1

0 · · · · · · 0 0




∈ R(q+1)×(q+1).

In particular, by defining

Ωx =
[

1 0 · · · 0
]
,

Ωy =
[

1 0 · · · 0
]
,

one has

ΩxeM(t−btc) = Ωye
M(t−btc) =

=
[

1, t− btc, 1
2!(t− btc)2, 1

3!(t− btc)3, · · · , 1
q!(t− btc)q

]
,
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so that x̄(t) and ȳ(t) can be obtained in the form (3.33) by taking

vx(t) =




x̄btc
a
btc
1 (x̄btc+1 − x̄btc)

2a
btc
2 (x̄btc+1 − x̄btc)

...

q!abtcq (x̄btc+1 − x̄btc)




∈ Rq+1, (4.6a)

vy(t) =




ȳbtc
a
btc
1 (ȳbtc+1 − ȳbtc)

2a
btc
2 (ȳbtc+1 − ȳbtc)

...

q!abtcq (ȳbtc+1 − ȳbtc)




∈ Rq+1, (4.6b)

with ai
j being the polynomial coefficients in (3.45) (see Section 3.2.2).

A state-space representation of the exosystem during the unconstrained

motion is thus given by

Free-motion:

Rx :

{
˙̄xe(t) = Mx̄e(t)

x̄(t) = Ωxx̄e(t)
, ∀t ∈ (t̄i, t̄i+1), i ∈ Z+, (4.7a)

Ry :

{
˙̄ye(t) = Mȳe(t)

ȳ(t) = Ωyȳe(t)
, ∀t ∈ (t̄i, t̄i+1), i ∈ Z+, (4.7b)

whereas, at the desired impact times, the following reset rules hold

Reset-values:

x̄e(t̄+i ) = vx(t̄i), i ∈ N, (4.8a)

ȳe(t̄+i ) = vy(t̄i), i ∈ N. (4.8b)
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The plant model: Px, Py

The equations of motion of a particle moving in an elliptical billiards under

the action of control forces have been obtained in Section 3.1. By letting

xp(t) :=

[
x(t)

ẋ(t)

]
, yp(t) :=

[
y(t)

ẏ(t)

]
,

in absence of impacts (free-motion phases) the equations (3.6a) and (3.6b) can

be rewritten as:

Free-motion:

Px :

{
ẋp(t) = Apxp(t) + Bpux(t)

yxp(t) = Cpxp(t)
, ∀t ∈ (ti, ti+1), i ∈ Z+, (4.9a)

Py :

{
ẏp(t) = Apyp(t) + Bpuy(t)

yyp(t) = Cpyp(t)
, ∀t ∈ (ti, ti+1), i ∈ Z+, (4.9b)

where

Ap :=

[
0 1

0 0

]
, Bp :=

[
0

1

]
, Cp :=

[
1 0

]
.

On the other hand, at the impact times the corner conditions (3.7) become

Constrained-motion:

xp(t+i ) = Cp
1(q(ti))xp(t−i ) + Cp

2(q(ti))yp(t−i ), i ∈ N, (4.10a)

yp(t+i ) = Cp
2(q(ti))xp(t−i ) + Cp

3(q(ti))yp(t−i ), i ∈ N, (4.10b)

where Cp
1(·) ∈ R2×2,Cp

2(·) ∈ R2×2 and Cp
3(·) ∈ R2×2 are given by

Cp
1(q(ti)) :=

[
1 0

0 C1(q(ti))

]
, Cp

2(q(ti)) :=

[
0 0

0 C2(q(ti))

]
,

Cp
3(q(ti)) :=

[
1 0

0 −C1(q(ti))

]
,
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with C1(q(ti)) and C2(q(ti)) being defined in (3.15).1

The precompensator: IMx, IMy

In order to solve the tracking problem, the internal model principle is consid-

ered, which possibly involves the design of a precompensator in the form:

Free-motion:

IMx :

{
ẋa(t) = Aaxa(t) + Bauxa(t)

ux(t) = Caxa(t)
, ∀t ∈ (ti, ti+1), i ∈ Z+, (4.11a)

IMy :

{
ẏa(t) = Aaya(t) + Bauya(t)

uy(t) = Caya(t)
, ∀t ∈ (ti, ti+1), i ∈ Z+, (4.11b)

where xa(t) ∈ Rq−1 and ya(t) ∈ Rq−1 are the state vectors of the precom-

pensator, uxa(t) ∈ R and uya(t) ∈ R are the control inputs for the cascade

precompensator–plant and the matrix Aa is chosen such that the dynamic ma-

trix A in (4.14) for the cascade precompensator–plant has the same Jordan

structure as M. So, since the minimum polynomial of M is p(λ) = λq+1, a

realization (Aa,Ba,Ca) of the precompensator, with Aa ∈ R(q−1)×(q−1),Ba ∈
Rq−1 and CT

a ∈ Rq−1 is

Aa =




0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

... 0 1

0 · · · · · · 0 0




, Ba =




0
...

0

1




, Ca =
[

1 0 . . . 0
]
.

Moreover, at each impact time ti, let the right-side values of the state vector

of the precompensator be given by

1Alternatively, the polar representation can be used in order to consider Cp
1(·),Cp

2(·) and
Cp

3(·) as functions of the polar angle θi.
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Reset-values:

xa(t+i ) = Λax(〈ti〉), (4.12a)

ya(t+i ) = Λay(〈ti〉), (4.12b)

where, in view of (4.6), one has

Λax(i) :=
[

0q−1,2 Iq−1

]
vx(i) =

[
2ai

2h1(i) · · · q!ai
qh1(i)

]T
∈ Rq−1,

Λay(i) :=
[

0q−1,2 Iq−1

]
vy(i) =

[
2ai

2w1(i) · · · q!ai
qw1(i)

]T
∈ Rq−1,

with h1(i) := x̄i+1 − x̄i, w1(i) := ȳi+1 − ȳi, and ai
j , j = 2, . . . , q being the

coefficients of polynomials li(·) in (3.33).

Notice that in (4.12) a discontinuity is imposed at each time ti to the

vector state of the precompensator, which is part of the proposed controller.

In other words, at each impact time ti system (4.11) is “ stopped ” and its

state is reinitialized according to (4.12).

The augmented system (precompensator–plant): Ex, Ey

By (4.9) and (4.11) and by defining the augmented state vectors xe, ye ∈ Rq+1

as

xe(t) :=

[
xp(t)

xa(t)

]
, ye(t) :=

[
yp(t)

ya(t)

]
,

one has

Free-motion:

Ex :

{
ẋe(t) = Axe(t) + Buxa(t)

yxe(t) = Cxe(t)
, ∀t ∈ (ti, ti+1), i ∈ Z+, (4.13a)

Ey :

{
ẏe(t) = Aye(t) + Buya(t)

yye(t) = Cye(t)
, ∀t ∈ (ti, ti+1), i ∈ Z+, (4.13b)
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where the matrices A ∈ R(q+1)×(q+1),B ∈ Rq+1 and CT ∈ Rq+1 are given by

A :=

[
Ap BpCa

0 Aa

]
, B :=

[
0

Ba

]
, C :=

[
Cp 0

]
. (4.14)

Remark 12. By (4.9) and (4.11), it follows that A = M. Moreover, controlla-

bility and observability of the plant implies that the pairs (A, B) and (A, C)

are controllable and observable, respectively.

At each impact time it holds that

Constrained-motion

xe(t+i ) = Ce
1(q(ti))xe(t−i ) + Ce

2(q(ti))ye(t−i ) + Λe
ax(t̄i), i ∈ N, (4.15a)

ye(t+i ) = Ce
2(q(ti))xe(t−i ) + Ce

3(q(ti))ye(t−i ) + Λe
ay(t̄i), i ∈ N, (4.15b)

where Ce
1(·), Ce

2(·), Ce
3(·) ∈ R(q+1)×(q+1) are given by

Ce
k(q(ti)) :=

[
Cp

k(q(ti)) 0

0 0

]
, k ∈ {1, 2, 3},

with Cp
1(·), Cp

2(·) and Cp
3(·) being defined in (4.10), and Λe

x(·), Λe
y(·) ∈ Rq+1

are defined as

Λe
ax(i) :=

[
0

Λax(i)

]
, Λe

ay(i) :=

[
0

Λay(i)

]
.

By using the notation so far introduced, the dynamics relevant to the x

and y coordinates can be merged by defining (see also Remark 11)

z(t) :=

[
xe(t)

ye(t)

]
∈ R2(q+1), z̄(t) :=

[
x̄e(t)

ȳe(t)

]
∈ R2(q+1), (4.16)

so that the overall dynamics are
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Free-motion:

Actual: ż(t) = Āz(t) + B̄ua(t), (4.17)

Desired: ˙̄z(t) = Āz̄(t), (4.18)

where Ā :=

[
A 0

0 A

]
, B̄ :=

[
B 0

0 B

]
and ua(t) :=

[
uxa(t)

uya(t)

]
.

Constrained-motion:

Actual: z(t+i ) = C(q(ti))z(t−i ) + Λa(〈ti〉), i ∈ N, (4.19a)

Desired: z̄(t̄+i ) = C(q̄(ti))z̄(t̄−i ) + Λa(t̄i), i ∈ N, (4.19b)

where Λa(i) :=

[
Λe

ax(i)

Λe
ay(i)

]
and C(q) :=

[
Ce

1(q) Ce
2(q)

Ce
2(q) Ce

3(q)

]
∈ R2(q+1)×2(q+1),

with Ce
1(·), Ce

2(·), Ce
3(·) and Λe

ax(·), Λe
ay(·) being defined in (4.15).

4.3 A switched control algorithm

In the ideal case that the actual trajectory coincides with the desired one,

both trajectories impact at the same times. It is thus reasonable to expect

that actual trajectories which are close enough to the desired ones will have

impact times very close to the desired impact times. Hence, in the overall

control algorithm three possible events, which can occur at time t > t0, are

taken into account:

1) the desired trajectory hits the boundary;

2) the actual trajectory hits the boundary;

3) too much time is elapsed since the last impact of one of the two trajec-

tories without further impacts.
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The algorithm implementing the proposed control strategy is described

by means of both a Finite State Automata (FSA) [44] (Fig. 4.2) and by

pseudo-code (Fig. 4.3) more suitable for simulation purposes. The output of

the (Moore) FSA represents the control status: ON means that the control

action is applied; OFF means that the control is turned off. The states of the

FSA are characterized by the flags DES and ACT, which are set to 1 when

the desired trajectory impacts whereas the actual one is still in unconstrained

motion and viceversa, respectively. The labels on the arcs denote the events

that cause the transition from a state to another. Essentially, those are the

events listed above with the threshold σ defined as the maximum allowed

time interval with the control switched off. This small positive number σ

guarantees to avoid to keep down the control for too much time, that is bad

for the tracking purpose. By assuming that the plant state z(t) in (4.17) is

available, during the interval of time with the control active, the control law

is

uxa = Kx(xe − x̄e), (4.20a)

uya = Ky(ye − ȳe), (4.20b)

where uxa ∈ R and uya ∈ R are the control inputs to the cascade precompen-

sator plus plant (see (4.11)) and KT
x ∈ R2(q+1) and KT

y ∈ R2(q+1) are chosen

such that all eigenvalues of A + BKx and A + BKy have real part less than

or equal to −η, with η being a positive real constant and A,B are defined in

(4.14). During the intervals of time with the control off, one has uxa = 0 and

uya = 0.

Remark 13. The aim to switch off of the control is to improve the behavior of

the considered system. Some reasons and possible scenarios can be considered

in order to justify such a choice. As a matter of fact, assume that the control

is always active and that the nominal trajectory impacts before the corre-

sponding impact of the controlled trajectory, the latter starts to “change” in

order to track the new reference, that is bouncing away from the boundary;
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Initialize the system;

des_impacted=0;

act_impacted=0;

switch-on the control;

while ("system is running")

% Events 1) AND 2)

if ("desired AND actual trajectories impact")

des_impacted=0; act_impacted=0;

switch-on or keep-on the control;

% Event 1)

else if ("desired trajectory impacts")

if (act_impacted==0)

des_impacted=1;

switch-off the control;

else

act_impacted=0;

switch-on the control;

end

% Event 2)

else if ("actual trajectory impacts")

if (des_impacted==0)

act_impacted=1;

switch-off the control;

else

des_impacted=0;

switch-on the control;

end

% Event 3)

else if ("the maximum time is elapsed")

des_impacted=0; act_impacted=0;

switch-on the control;

% No Event has occurred

else

keep the present status of the control;

end

end

Figure 4.2: Pseudo-code of the algorithm implementing the control strategy.
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Figure 4.3: Finite State Automata describing the proposed control strategy.
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hence, even if the actual trajectory hits the boundary, such an impact can be

very far from its nominal value (see Fig. 4.4); in such conditions it is quite

easy that the actual trajectory does not impact at all (see Fig. 4.6(a)). Still

t = t̄i
t = ti > t̄i

t = t̄i

Figure 4.4: The nominal trajectory (solid) impacts before the actual one
(dashed: when the control is always active; dotted: if the switching strat-
egy is used).

with the control always active, if the controlled trajectory impacts before the

nominal one, one can easily have an accumulation point of the impact times

of the actual trajectory close to the impact of the desired trajectory (see Fig.

4.5); although this fact is not necessarily bad for the tracking objective, it

seems better to avoid as much as possible such a possibility. Through many

t = t̄i

t = t̄i

t = ti < t̄i

Figure 4.5: The nominal trajectory (solid) impacts after the actual one
(dashed: when the control is always active; dotted: if the switching strat-
egy is used).
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simulations, it has been shown that the proposed algorithm permits to obtain

the tracking purpose also when the initial conditions are quite far from the

desired ones (see Fig. 4.6).

Note that, sometimes in the present chapter and in Chapter 5, the desired

variables are also denoted by means of the subscript “ d ” (e.g., x̄(t) ≡ xd(t)).

4.4 Main result

Assumption 1. If the initial time t0 is an impact time for the desired trajec-

tory (i.e., t0 ∈ Z), then z̄(t0) = z̄(t+0 ), i.e., z̄(t0) =
[

vT
x (t0) vT

y (t0)
]T

with

vx(·) and vy(·) being defined in (4.6).

By choosing the initial conditions sufficiently close to the desired ones (as

allowed by the stability-like requirements in Problem 3) and under the As-

sumption 12, for all integer i > bt0c the impact time ti ∈ R of the actual

trajectory can be forced to be close to the impact time i of the desired tra-

jectory (see proof of the subsequent Theorem 8), so that the proposed control

algorithm coincides with

uxa(t) =

{
Kx(xe(t)− x̄e(t)), ∀t ∈ (tMi , tmi+1), i ∈ Z, i ≥ bt0c,
0, otherwise,

(4.21a)

uya(t) =

{
Ky(ye(t)− ȳe(t)), ∀t ∈ (tMi , tmi+1), i ∈ Z, i ≥ bt0c,
0, otherwise,

(4.21b)

where tMbt0c := t0 and, for each t̄i := i ∈ Z, i ≥ bt0c+ 1, one defines

tmi := min{ti, t̄i}, tMi := max{ti, t̄i}.

Theorem 8. Under the Assumption 1, there exists η∗ ∈ R+ such that the

controller characterized by (4.11),(4.12) and (4.21) solves Problem 3, for all

2Assumption 1 with the hypothesis of the Problem 3 permits to avoid that the actual
trajectory hits the boundary just after t0.
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(a) The control is never switched off.
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(b) The switching control with a threshold σ = 0.15 is
used.

Figure 4.6: The desired (dashed) and actual (solid) trajectories obtained using
a control strategy with or without switching. The case of rotational motion
with winding number (N = 3, R = 1) is considered with all the closed loop
eigenvalues placed at −3 (in (b) the desired trajectory is not visible being
overlapped with the actual one).
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η ≥ η∗.

Proof. In the following, in view of Remark 10 and by considering the extended

tracking error vector defined as

e(t) := z(t)− z̄(t), (4.22)

it is shown how the properties (c) and (d) of Problem 3, which are close to the

classical stability and attractivity properties, respectively, can be guaranteed

also when eq(t) is replaced by e(t), thus satisfying a stronger requirement.

The proof can be carried out by means of the steps described below, based on

the following facts whose proofs, for the sake of readability, are given at the

end of this chapter in Section 6.5.

∃δ0, M1 ∈ R+ : ‖e(tm−i )‖ < δ0 ⇒
∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ ≤ M1‖e(tm−i )‖, (4.23)

∃δ1,M2,M3 ∈ R+ : ‖e(tm−i )‖ < δ1,

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ < δ1 ⇒

⇒ ‖e(tM+
i )‖ ≤ M2‖e(tm−i )‖+ M3

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ , (4.24)

∀η ∈ R+, ‖e(t)‖ ≤ L(η)e−η(t−tMi )‖e(tM+
i )‖, ∀t ∈ (tMi , tmi+1), (4.25)

∀ε∗ > 0, ∀T > 0, ∃η∗ > 0 : η > η∗ ⇒ L(η)e−ηT < ε∗, (4.26)

where ∆ti := ti− t̄i, ∆θi := θi− θ̄i and, in view of the periodicity of the desired

trajectory, (6.17) and (6.18) hold for all i ∈ Z, i ≥ bt0c+ 1 whereas (6.19) and

(6.20) hold for all i ∈ Z, i ≥ bt0c.

Remark 14. Roughly speaking, (6.17) and (6.18) show that the minimal amount

of continuity needed to obtain the stability properties is still present despite

the jumps affecting the system. The fact that such properties can be proved

is essential as this represents one technical difficulty that is intrinsic to nons-

mooth systems.
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Step (i): in view of (6.17) and (6.18) and in order to guarantee that

for any i ∈ Z, i ≥ bt0c + 1 the actual impact time ti belongs to the interval

(t̄i − γ, t̄i + γ) for a fixed γ ∈ (0, 1/2), one can take ‖e(tm−i )‖ < δ̄0 where

δ̄0 := min{δ0, δ1, δ1/M1, γ/M1}.
Step (ii): by putting together (6.17) and (6.18), the following inequality

is obtained

‖e(tM+
i )‖ ≤ (M2 + M3M1)‖e(tm−i )‖ =: β‖e(tm−i )‖, (4.27)

where β := M2 + M3M1.

Step (iii): by using (6.19) and (6.22), for each i ∈ Z, i ≥ bt0c+1 one has3

‖e(tm−i+1)‖ ≤ L(η)e−η(tmi+1−tMi )‖e(tM+
i )‖ ≤ L(η)e−η(1−2γ)β‖e(tm−i )‖.

At this point, by taking in (6.20) ε∗ ≤ ξ/β with 0 < ξ < 1, there exists η∗

such that, for all η > η∗, it follows that Le−η(1−2γ)β ≤ ξ, which implies4

‖e(tm−i+1)‖ ≤ ξ‖e(tm−i )‖, ξ ∈ (0, 1), (4.28)

for i ∈ Z, i ≥ bt0c+ 1.

Step (iv): for a generic time interval (tMi , tmi+1), i ∈ Z, i ≥ bt0c + 1, from

(6.19) one has

‖e(t)‖ ≤ Le−η(t−tMi )‖e(tM+
i )‖ ≤ Lβ‖e(tm−i )‖,

and taking ‖e(tm−i )‖ < ¯̄δ0 with ¯̄δ0 := min{δ̄0, ε/(Lβ)} for a generic ε > 0

follows that ‖e(t)‖ < ε for all t ∈ (tMi , tmi+1), i ∈ Z, i ≥ bt0c + 1. By (6.23), if

‖e(tm−i )‖ < ¯̄δ0, then ‖e(tm−i+1)‖ < ¯̄δ0, in fact

‖e(tm−i+1)‖ ≤ ξ‖e(tm−i )‖ < ξ ¯̄δ0 < ¯̄δ0.

3By Step (i), the minimum flight-time in free motion is 1− 2γ.
4From now on, η is fixed so that L is a real positive constant (dependence on η is omitted).
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Now, in order to guarantee that ‖e(tm−i )‖ < ¯̄δ0 for any i ∈ Z, i ≥ bt0c+ 1 and

‖e(t)‖ < ε for all t ∈ (t0, tmbt0c+1), it is sufficient to take δε,γ := min{¯̄δ0/L, ε/L}.
In summary, for all i ∈ Z, i ≥ bt0c the following result has been obtained

‖e(t+0 )‖ < δε,γ ⇒ ‖e(t)‖ < ε, ∀t ∈ (tMi , tmi+1), (4.29)

and since |∆ti| < γ, i ∈ Z, i ≥ bt0c + 1 (see Step (i)), then (4.29) implies

property (c) in Problem 3.

To complete the proof it remains to prove property (d) in Problem 3.

Step (v): since ξ ∈ (0, 1), if ‖e(t+0 )‖ < δε,γ , then applying iteratively

(6.23) yields

‖e(tm−i )‖ < ξ‖e(tm−i−1)‖ < ξi+(bt0c−1)L‖e(t+0 )‖ < ξi+(bt0c−1)Lδε,γ
i→+∞→ 0.

(4.30)

By (4.30) and (6.17), it follows that

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ ≤ M1‖e(tm−i )‖→0 ⇒
{

ti → t̄i

θi → θ̄i

as i → +∞, (4.31)

and by using similar reasonings, it is shown that in each interval (tMi , tmi+1)

‖e(t)‖ → 0 as i →∞,

and by this result and (6.30) it follows that

∀τ ∈(0, 1), ∃i∗ : i > i∗ ⇒ t̄i + τ ∈ (tMi , tmi+1)︸ ︷︷ ︸
→(t̄i,t̄i+1)

and

‖e(t̄i + τ)‖ → 0 as i → +∞.

Since ti → t̄i as i → +∞, time t̄i + τ,∀τ ∈ (0, 1) is an impact time neither for

the actual trajectory nor for the desired one. Therefore, lim
i→+∞

‖e((t̄i+τ)−)‖ =
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lim
i→+∞

‖e((t̄i + τ)+)‖ = lim
i→+∞

‖e(t̄i + τ))‖ = 0. This last fact, together with

the definition of e(t) given in (4.22), proves property (d) of Problem 3.

4.5 Examples

Concerning the problem of generating reference signals in an elliptical billiard

system, examples of rotational and librational motion have been presented in

Section 3.4. In particular, the following cases:

Rotational motion: (N = 7, R = 2),

Librational motion: (N = 4, R = 1),

are reconsidered here in order to show the effectiveness of the proposed control

law.

In both cases, the static gains Kx and Ky in (4.20) are chosen such that

all the eigenvalues of the closed-loop dynamic matrix are moved at −η = −7

and the value of the threshold σ is set to 0.15. The behavior of the controlled

trajectories during the first 9.5 seconds of motion, starting from zero initial

conditions at the initial time t0 = 0.5, can be observed in Fig. 4.7 and Fig.

4.8 for the rotational case and in Fig. 4.9 and Fig. 4.10 for the librational

case. Though the switching algorithm with the threshold σ has been used,

due to the fact that the desired trajectory is periodic and the system to be

controlled is time-invariant, in order to obtain simulation examples of the

situation considered in Theorem 8 (when it is assumed that the initial error

is sufficiently small so that the threshold σ is never active) one can consider

the same examples proposed here starting from a time t∗0 ≥ t0, such that the

controlled trajectory at time t∗0 is close to the nominal one (e.g., for both

examples depicted here one can take (roughly) t∗0 = 3). The simulation was

performed in Matlabr using the event option of the ODE solvers for impact

detection and handling.

Remark 15. In the present work all the results are obtained under the assump-

tion that the coefficient of restitution e is equal to 1. If e < 1, different desired
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Figure 4.7: Rotational motion (N = 7, R = 2): the inner caustic curve (dotted)
with the desired (dashed) trajectory, which is completely overlapped with the
actual (solid) one, in the xy-plane (a) and time behavior of the desired (dashed)
and actual (solid) positions (b) and velocities (c).
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Figure 4.8: Rotational motion (N = 7, R = 2): time behavior of the desired
(dashed) and actual (solid) first (a) and second (b) precompensator state vari-
ables.
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Figure 4.9: Librational motion (N = 4, R = 1): the inner caustic curve (dot-
ted) with the desired (dashed) trajectory, which is completely overlapped with
the actual (solid) one, in the xy-plane (a) and time behavior of the desired
(dashed) and actual (solid) positions (b) and velocities (c).
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Figure 4.10: Librational motion (N = 4, R = 1): time behavior of the desired
(dashed) and actual (solid) first (a) and second (b) precompensator state vari-
ables.
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paths should be computed in order to take into account that, at each impact,

the angle of incidence is different from the angle of reflection. In such a case

one first possibility, for sufficiently large e, still requiring that the path be-

tween two consecutive impacts is a straight line, would be to compute a closed

desired path numerically by guessing an initial segment and adjusting it in or-

der to obtain a closed orbit. Otherwise, and such a second possibility would be

feasible for all values of e, one should accept that the path between two consec-

utive impacts is not a straight line. On the other hand, by keeping the desired

trajectories proposed here, if e < 1, then only impulsive control can be a so-

lution of Problem 3: as a matter of fact, in order for (q(t), q̇(t)) = (q̄(t), ˙̄q(t))

to be a piecewise solution of the closed-loop system for t ≥ t0 (as required by

property (a) of Problem 3), it is necessary that the kinetic energy lost at each

impact time due to the coefficient of restitution less than one is restored so

that the kinetic energy immediately after the impact takes its value immedi-

ately before the impact, through the action of the control: this is impossible

as the control forces are not impulsive.

Moreover, although here it has been assumed that the impacts can be

detected in real time, a slightly modified control problem involving a relaxed

tracking requirement can be solved even without such an assumption.

4.6 Details of the proof of main result

This appendix contains details about the proofs of the facts (6.17),(6.18),

(6.19) and (6.20).

Details of the proof of fact (6.17)

Regarding the presence of impacts, for all i ∈ Z, i ≥ bt0c + 1, there are two

possible cases (see Fig. 4.11):

Case a) : ti < t̄i ⇒ tmi = ti, tMi = t̄i;

Case b) : ti > t̄i ⇒ tmi = t̄i, tMi = ti.
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o

y

x

θ̄

θ̄ + ∆θ

∆θ

[

x(t̄ + ∆t)
y(t̄ + ∆t)

]

[

x̄(t̄)
ȳ(t̄)

]

[

x̄(t̄ + ∆t)
ȳ(t̄ + ∆t)

]

Figure 4.11: Case a): the actual trajectory impacts before the desired tra-
jectory (ti < t̄i, ∆ti < 0).

Remark 16. Since the desired trajectory is periodic, all the results obtained

in the following considering i ∈ {bt0c+ 1, . . . , N + bt0c} =: IN , remain proved

for i ∈ Z, i ≥ bt0c+ 1.

Define, for each i ∈ IN ,

gi(x1, y1,∆θ) :=

[
g1(x1, y1)

g2,i(x1, y1, ∆θ)

]
: R3 → R2,

where g1 : R2 → R and g2,i : R3 → R are given by5

g1(x1, y1) :=
x2

1

a2
+

y2
1

b2
− 1, (4.32a)

g2,i(x1, y1,∆θ) := sin(θ̄i + ∆θ)x1 − cos(θ̄i + ∆θ)y1. (4.32b)

5The dependence of g2,i on i is due to the fact that the straight-line defined by such an
implicit function changes with θ̄i, whereas for all the vertices of the actual trajectory the
implicit function g1 remains unchanged.
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Therefore, by (4.32a) and (4.32b) it follows that gi(x1, y1, ∆θ) = 0, for i ∈ IN ,

at the intersection between the elliptical boundary and a straight-line starting

from the origin with direction normal to the vector
[

sin(θ̄i + ∆θ) − cos(θ̄i + ∆θ)
]T

.

If x1 and y1 are defined as the position coordinates for the actual trajectory

at the impact time ti, i ∈ IN , i.e., x1 := x(ti) and y1 := y(ti), then they can

be written as [
x1

y1

]
=

[
h1,i(∆ti, e(tm−i ))

h2,i(∆ti, e(tm−i ))

]
, (4.33)

where h1,i, h2,i : R2(q+1)+1 → R and ∆ti := ti − t̄i. In particular, in order

to show that x1 and y1 can be expressed as functions of ∆ti and e(tm−i ) for

i ∈ IN , the two possible cases are considered separately.

Case a) tmi = ti, tMi = t̄i, so that ∆ti < 0 and z(t−i ) = z(tm−i ), where

z(t) is defined in (4.16). In this case, one has

z(t−i ) = z(tm−i ) = e(tm−i ) + z̄(tm−i ) = e(tm−i ) + e−Ā(tMi −tmi )z̄(tM−
i ) =

= e(tm−i ) + eĀ∆ti z̄(td−i ); (4.34)

Case b) tmi = t̄i, tMi = ti, so that ∆ti > 0 and z(t−i ) = z(tM−
i ), where

z(t) is defined in (4.16). In this case, one has

z(t−i ) = z(tM−
i ) = eĀ(tMi −tmi )z(tm+

i ) = eĀ(tMi −tmi )z(tm−i ) =

= eĀ∆tie(tm−i ) + eĀ∆ti z̄(td−i ). (4.35)

By (4.34) and (4.35), for i ∈ IN , it is shown that z(t−i ) is a function of ∆ti

and e(tm−i ) and given that x(t−i ) = x(ti) and y(t−i ) = y(ti) are the first and

the ((q +1)+1)-th component of z(t−i ), respectively, there exist two functions

h1,i and h2,i of ∆ti and e(tm−i ) such that (4.33) holds.

Moreover, z(t−i ) is an analytic function of ∆ti and e(tm−i ) for ∆ti < 0 and

∆ti > 0, for i ∈ IN . In the hyperplane characterized by ∆ti = 0, z(t−i ) is a

continuous function with respect to its variables. As a matter of fact, one can
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observe that in a whole period (i.e., for i ∈ IN )

Case a)

z(t−i )|∆ti=0 = e(tm−i ) + Iz̄(td−i ) = e(td−i ) + z̄(td−i );

Case b)

z(t−i )|∆ti=0 = Ie(tm−i ) + Iz̄(td−i ) = e(td−i ) + z̄(td−i ),

and the continuity of z(t−i ) in ∆ti = 0 implies the continuity also for x(ti), y(ti), ẋ(t−i )

and ẏ(t−i ) with respect to ∆ti, since they are just four components of z(t−i ).

In other words, by defining VT
1 ∈ R2(q+1),VT

2 ∈ R2(q+1),VT
3 ∈ R2(q+1) and

VT
4 ∈ R2(q+1) as

V1 :=
[

1 0 0 · · · 0
]
, V2 :=

[
01×(q+1) 1 0 · · · 0

]
,

V3 :=
[

0 1 0 · · · 0
]
, V4 :=

[
01×(q+2) 1 0 · · · 0

]
,

where 0i×j denotes the zero matrix of size i× j, and since

e(td−i ) + z̄(td−i ) = z(td−i ),

in both cases a) and b) one has6

x(ti)|∆ti=0 = V1z(td−i ),

y(ti)|∆ti=0 = V2z(td−i ),

ẋ(t−i )|∆ti=0 = V3z(td−i ),

ẏ(t−i )|∆ti=0 = V4z(td−i ).

6Take the derivative with respect to ∆t or t is equivalent, that is ∂x(·)
∂∆t

= ẋ(·), since
∆t := t− i, i ∈ Z.
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Moreover, as for the partial derivatives, after some computations, in both cases

a) and b) the following results hold

∂z(t−i )
∂e(tm−i )

∣∣∣∣
∆ti=0

= I ⇒





∂V1z(t−i )

∂e(tm−i )

∣∣∣
∆ti=0

= ∂x(ti)

∂e(tm−i )

∣∣∣
∆ti=0

= V1

∂V2z(t−i )

∂e(tm−i )

∣∣∣
∆ti=0

= ∂y(ti)

∂e(tm−i )

∣∣∣
∆ti=0

= V2

,

and

∂z(t−i )
∂∆θi

∣∣∣∣
∆ti=0

= 0 ⇒





∂V1z(t−i )
∂∆θi

∣∣∣
∆ti=0

= ∂x(ti)
∂∆θi

∣∣∣
∆ti=0

= 0

∂V2z(t−i )
∂∆θi

∣∣∣
∆ti=0

= ∂y(ti)
∂∆θi

∣∣∣
∆ti=0

= 0
.

Therefore, for all i ∈ IN , the functions gi are continuously differentiable also

on the hyperplane ∆ti = 0, in fact by the results so far obtained it follows that

the partial derivatives of g1 and g2,i with respect to ∆ti, ∆θi and e(tm−i ) are

in both cases exactly the same when ∆ti = 0. At this point, by using (4.33),

the functions g̃i : R2(q+1)+2 → R2 can be defined, for i ∈ IN , as

g̃i(∆ti,∆θi︸ ︷︷ ︸
=:χ

, e(tm−i )︸ ︷︷ ︸
=:ψ

) := gi(h1,i(∆ti, e(tm−i )), h2,i(∆ti, e(tm−i )), ∆θi), (4.36)

where

h1,i(∆ti, e(tm−i )) :=





V1(e(tm−i ) + eĀ∆ti z̄(td−i )), ∆ti ≤ 0

V1e
Ā∆ti(e(tm−i ) + z̄(td−i )), ∆ti ≥ 0

,

and

h2,i(∆ti, e(tm−i )) :=





V2(e(tm−i ) + eĀ∆ti z̄(td−i )), ∆ti ≤ 0

V2e
Ā∆ti(e(tm−i ) + z̄(td−i )), ∆ti ≥ 0

.

Remark 17. In view of the results above, there exists a neighborhood Ω of
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∆ti = 0,∆θi = 0 and e(tm−i ) = 0 such that (4.36) are continuously differen-

tiable on that neighborhood for all i ∈ IN .

Lemma 3 ((implicit function theorem, see, e.g., [3])). Let g̃i(χ,ψ) : R2+2(q+1)

⊇ Ω → R2 be continuously differentiable on the open set Ω. Let (χ0, ψ0) be

a point in Ω for which g̃i(χ0, ψ0) = 0 and for which det (∇χg̃i(χ0,ψ0)) 6= 0.

Then, there exists a neighborhood Ψ of ψ0 and a unique function φi(·) : χ =

φi(ψ) with φi : Ψ → R2 being continuously differentiable on Ψ, such that

χ0 = φi(ψ0) and g̃i(φi(ψ), ψ) = 0, ∀ψ ∈ Ψ. In addition, the following result

holds

∇ψφi = −(∇χg̃i)−1∇ψg̃i.

By using Lemma 3 for the implicit functions defined in (4.36), it is possible

to prove that for all i ∈ IN

∃δ0 ∈ R+,M1 ∈ R+ : ‖e(tm−i )‖ < δ0 ⇒
∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ ≤ M1‖e(tm−i )‖. (6.17)

First of all, in order to apply the implicit function theorem, all its hypothesis

have to be verified. Taking χ0 = 0 and ψ0 = 0, i.e., ∆ti = 0,∆θi = 0 and

e(tm−i ) = 0, one has g̃i(χ0, ψ0) = 0, for i ∈ IN . In fact, such a choice yields

in both cases the following results.

Case a) by setting ∆ti = 0, ∆θi = 0 and e(tm−i ) = 0 in (4.34) one

obtains

z(tm−i )|(χ0,ψ0) = 0 + Iz̄(td−i ) ⇒
{

x0
1 = x̄(t̄i)

y0
1 = ȳ(t̄i)

;

Case b) by setting ∆ti = 0,∆θi = 0 and e(tm−i ) = 0 in (4.35) one

obtains

z(tM−
i )|(χ0,ψ0) = I0 + Iz̄(td−i ) = z̄(td−i ) ⇒

{
x0

1 = x̄(t̄i)

y0
1 = ȳ(t̄i)

.
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Hence, by (4.36) and (4.32), it follows that

{
g̃1(0, 0,0) = g1(x0

1, y
0
1, 0) = x̄(t̄i)/a2 + ȳ(t̄i)/b2 − 1,

g̃2,i(0, 0,0) = g2,i(x0
1, y

0
1, 0) = sin(θ̄i)x̄(t̄i)− cos(θ̄i)ȳ(t̄i),

and since t̄i = i, i ∈ Z are impact times for the desired trajectory, then

g̃1(0, 0,0) = 0 and g̃2,i(0, 0,0) = 0 for i ∈ IN , i.e., g̃i(0, 0,0) = 0. The

Jacobian of g̃i with respect to χ :=
[

∆ti ∆θi

]T
at the point (χ0, ψ0) can

be computed as:

∇χg̃i(χ0, ψ0) =




∂g̃1

∂∆ti

∂g̃1

∂∆θi

∂g̃2,i

∂∆ti

∂g̃2,i

∂∆θi




∣∣∣∣∣∣∣∣
(χ,ψ)=(χ0,ψ0)

,

where by considering that t̄i = i, i ∈ IN are impact times for the desired

trajectory, the following results hold

∂g̃1

∂∆ti

∣∣∣∣
(χ0,ψ0)

=
2
a2

x̄(t̄i) ˙̄x(t̄i) +
2
b2

ȳ(t̄i) ˙̄y(t̄i) 6= 0,

∂g̃1

∂∆θi

∣∣∣∣
(χ0,ψ0)

= 0,

∂g̃2,i

∂∆θi

∣∣∣∣
(χ0,ψ0)

= cos(θ̄i)x̄(t̄i) + sin(θ̄i)ȳ(t̄i) 6= 0,

and this implies that det(∇χg̃i(χ0, ψ0)) 6= 0.

By Lemma 3, it follows that, for each i ∈ IN , the functions g̃i(∆ti, ∆θi, e(tm−i ))

implicitly define χ = φi(ψ) in a neighborhood of ψ = 0. In other words, there

exists a neighborhood Ψ of e(tm−i ) = 0 such that on that neighborhood one

can write

[
∆ti

∆θi

]
= φi(e(tm−i )), for any e(tm−i ) ∈ Ψ,

and the functions φi(·) are continuously differentiable. Hence, by the well
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known Weierstrass theorem (see, e.g., [3]) there exist N constants M1,i ∈ R+

such that ‖∇ψφi(ψ0)‖ ≤ M1,i on the closure of Ψ, and hence also on Ψ, for

i ∈ IN . By using this fact, a first order approximation for the functions φi(·)
can be considered on a neighborhood of ψ0 = 0 as

[
∆ti

∆θi

]
= φi(ψ0) +∇ψφi(ψ0)(ψ −ψ0) + o(‖ψ‖) = ∇ψφi(ψ0)ψ + o(‖ψ‖),

where ψ := e(tm−i ). At this point, (6.17) is proved for each i ∈ IN , just by

defining M1 := max
i∈IN

{M1,i} and by considering a sufficiently small neighbor-

hood of e(tm−i ) = 0 of radius δ0 ∈ R+.

Details of the proof of fact (6.18)

For all i ∈ IN , one has to prove that

∃δ1 ∈ R+,M2 ∈ R+,M3 ∈ R+ : ‖e(tm−i )‖ < δ1,

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ < δ1 ⇒

⇒ ‖e(tM+
i )‖ ≤ M2‖e(tm−i )‖+ M3

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ . (6.18)

The two possible cases are considered separately.

Case a) tmi = ti, tMi = t̄i, so that ∆ti < 0, and the error at time

tM+
i , that is after the i-th couple of impacts, is given by e(tM+

i ) :=

z(tM+
i )− z̄(tM+

i ), where

z(tM+
i ) = eĀ(tMi −tmi )z(tm+

i ) = eĀ(tMi −tmi )(C(θi)z(tm−i ) + Λa(tMi )) =

= eĀ(tMi −tmi )C(θi)(e(tm−i ) + z̄(tm−i )) + eĀ(tMi −tmi )Λa(tMi ),

z̄(tM+
i ) = C(θ̄i)z̄(tM−

i ) + Λa(tMi ).
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Hence, it follows that

e(tM+
i ) = eĀ(tMi −tmi )C(θi)(e(tm−i )+

+ z̄(tm−i )) + eĀ(tMi −tmi )Λa(tMi )−C(θ̄i)z̄(tM−
i )−Λa(tMi ) =

= (eĀ(tMi −tmi ) − I)Λa(tMi )+

+ (eĀ(tMi −tmi )C(θi)−C(θ̄i)eĀ(tMi −tmi ))z̄(tm−i )+

+ eĀ(tMi −tmi )C(θi)e(tm−i ) =

= (e−Ā∆ti − I)Λa(t̄i)+

+ (e−Ā∆tiC(θ̄i + ∆θi)−C(θ̄i)e−Ā∆ti)eĀ∆ti z̄(td−i )+

+ e−Ā∆tiC(θ̄i + ∆θi)e(tm−i ),

where ∆θi := θi − θ̄i;

Case b) tmi = t̄i, tMi = ti, so that ∆ti > 0, and the error at time

tM+
i , that is after the i-th couple of impacts, is given by e(tM+

i ) :=

z(tM+
i )− z̄(tM+

i ), where

z(tM+
i ) = C(θi)z(tM−

i ) + Λa(tmi ),

z̄(tM+
i ) = eĀ(tMi −tmi )z̄(tm+

i ) = eĀ(tMi −tmi )(C(θ̄i)z̄(tm−i ) + Λa(tmi )) =

= eĀ(tMi −tmi )C(θ̄i)z̄(tm−i ) + eĀ(tMi −tmi )Λa(tmi ).
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Hence, it follows that

e(tM+
i ) = C(θi)z(tM−

i )+

+ Λa(tmi )− eĀ(tMi −tmi )C(θ̄i)z̄(tm−i )− eĀ(tMi −tmi )Λa(tmi ) =

= (I− eĀ(tMi −tmi ))Λa(tmi )+

+ (C(θi)eĀ(tMi −tmi ) − eĀ(tMi −tmi )C(θ̄i))z̄(tm−i )+

+ C(θi)eĀ(tMi −tmi )e(tm−i ) =

= (I− eĀ∆ti)Λa(tdi ) + (C(θ̄i + ∆θi)eĀ∆ti − eĀ∆tiC(θ̄i))z̄(td−i )+

+ C(θ̄i + ∆θi)eĀ∆tie(tm−i ),

where ∆θi := θi − θ̄i.

For each i ∈ IN , in both cases a) and b), i.e., for ∆ti < 0 and ∆ti > 0,

respectively, the functions e(tM+
i ) are equal to 0 when ∆ti = 0, ∆θi = 0 and

e(tm−i ) = 0 and they are analytic functions with respect to their variables. In

view of this fact, the following results hold

Case a)

∃δ1 ∈ R+,M2,a,i ∈ R+, M3,a,i ∈ R+ :

‖e(tm−i )‖ < δ1,−δ1 < ∆ti < 0, |∆θi| < δ1 ⇒

⇒ ‖e(tM+
i )‖ ≤ M2,a,i‖e(tm−i )‖+ M3,a,i

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ ;

Case b)

∃δ1 ∈ R+,M2,b,i ∈ R+, M3,b,i ∈ R+ :

‖e(tm−i )‖ < δ1, 0 < ∆ti < δ1, |∆θi| < δ1 ⇒

⇒ ‖e(tM+
i )‖ ≤ M2,b,i‖e(tm−i )‖+ M3,b,i

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ .
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Moreover, for all i ∈ IN , the functions e(tM+
i ) are continuous on the hyper-

plane characterized by ∆ti = 0.7 In particular, in both cases a) and b), one

has

e(tM+
i )|∆ti=0 = (C(θ̄i + ∆θi)−C(θ̄i))z̄(td−i ) + C(θ̄i + ∆θi)e(tm−i ).

Therefore, (6.18) are proved, for all i ∈ IN , by choosing M2 := max
i∈IN

j∈{a,b}
{M2,j,i}

and M3 := max
i∈IN

j∈{a,b}
{M3,j,i}.

Details of the proof of facts (6.19) and (6.20)

The closed-loop dynamics during the unconstrained motion are given by (5.24a).

By using the control law given in (4.21) and by defining K̄ := blockdiag{Kx,Ky} ∈
R2×2(q+1) the error dynamics of the closed-loop system are

ė(t) = (Ā + B̄K̄)e(t) =: Ãe(t), ∀t ∈ (tMi , tmi+1), i ∈ Z, i ≥ bt0c, (4.37)

where all eigenvalues of Ã have real part less than or equal to −η. Hence, in

each interval of time without impacts one has

∃L ∈ R+ : ‖e(t)‖ ≤ Le−η(t−tMi )‖e(tM+
i )‖, ∀t ∈ (tMi , tmi+1), i ∈ Z, i ≥ bt0c.

In order to prove

∀η ∈R+ : ‖e(t)‖ ≤ L(η)e−η(t−tMi )‖e(tM+
i )‖, ∀t ∈ (tMi , tmi+1), i ∈ Z, i ≥ bt0c,

with lim
η→+∞L(η)e−ηT = 0, ∀T > 0, (6.19–6.20)

7Functions e(tM+
i ) are differentiable at (∆ti = 0, ∆θi = 0, e(tM+

i ) = 0).
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the error dynamics given in (4.37) can be rewritten in terms of exe := xe− x̄e

and eye := ye − ȳe as

{
ėxe = (A + BKx)exe =: Ãxexe ,

ėye = (A + BKy)eye =: Ãyeye ,

where the matrix Ãx is in companion form8

Ãx =




0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

... 0 1

Kx
1 · · · · · · Kx

q Kx
q+1




,

and Kx :=
[

Kx
1 · · · Kx

q Kx
q+1

]
, Kx

i ∈ R, i ∈ {1, . . . , q + 1}.
If the eigenvalues of Ãx denoted as (λ1, λ2, . . . , λq+1), are all real and

distinct9, then the eigenvectors relative to such eigenvalues are given by [23]




1

λ1

λ2
1
...

λq
1




· · ·




1

λq+1

λ2
q+1
...

λq
q+1




.

Without loss of generality, the i-th eigenvalue can be written as

λi = −µiη, (4.38)

where η, µi ∈ R and η > 0, µi ≥ 1 with µi 6= µj for any i 6= j, so that λi ≤ −η

8For the sake of brevity, the case eye is not considered being analogous to exe .
9The case of complex eigenvalues is not considered here for the sake of brevity. It can be

carried out with similar reasonings, by considering λi = −µiη + ωi in place of (4.38), where
µi, η, ωi ∈ R and µi ≥ 1, η > 0.
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for any i ∈ {1, . . . , q + 1}. The matrix of eigenvectors is thus given by

Qx :=




1 1 1

(−µ1η) (−µ2η) (−µq+1η)

(−µ1η)2 (−µ2η)2 · · · (−µq+1η)2
...

...
...

(−µ1η)q (−µ2η)q (−µq+1η)q




,

and since the eigenvalues are all distinct, then det(Qx) 6= 0. By considering the

infinity norm defined as ‖Qx‖∞ := max
i∈{1,...,q+1}




q+1∑

j=1

|Qx(i, j)|

, where Qx(i, j)

denotes the ij-th element of Qx, and by the equivalence norms (see, e.g., [38]),

it follows that

∃C1 ∈ R+ : ‖Qx‖ ≤ C1p1(η),

where p1(η) :=
∑
∀(i,j) |Qx(i, j)| is a polynomial in η of degree q. The inverse

matrix of Qx can be computed as

Q−1
x =

1
det(Qx)

Adj(Qx).

In view of the particular structure of the matrix Qx, it holds that det(Qx) =

L1η
q(q+1)

2 , L1 ∈ R and the generic element of Adj(Qx) is given by Adj(Qx)(i, j) =

L
(i,j)
2 η

q(q+1)
2

−(j−1), L
(i,j)
2 ∈ R where i, j ∈ {1, . . . , q + 1}. Therefore, the ij-

th element of Q−1
x can be written as Q−1

x (i, j) = L
(i,j)
3 η1−j , L

(i,j)
3 ∈ R with

i, j ∈ {1, . . . , q + 1}, so that

‖Q−1
x ‖ ≤ C1p2(η−1),

where p2(η−1) :=
∑
∀(i,j)

∣∣Q−1
x (i, j)

∣∣ is a polynomial in η−1 of degree q. Finally,

the following upper bound for the condition number of Qx holds

‖Qx‖‖Q−1
x ‖ ≤ C2

1p1(η)p2(η−1) =: L(η),
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where L(η) is a polynomial in η of degree q. This result implies that

‖e(A+BKx)T ‖ ≤ ‖Qx‖‖diag(e−µ1ηT , e−µ2ηT , . . . , e−µq+1ηT )‖‖Q−1
x ‖ ≤

≤ e−ηT L(η) → 0 as η → +∞, for any fixed T > 0, (4.39)

and this complete the proof of (6.19–6.20) when all the eigenvalues of Ãx are

real and distinct. In a similar way, the bound (4.39) can be proved in the case of

repeated real eigenvalues, taking into account that if λi is an eigenvalue of the

matrix Ãx with multiplicity mi, then there exist mi generalized eigenvectors

of Ãx associated with λi: eλi
1 , . . . , eλi

mi
, such that the k-th element of the j-th

of such eigenvectors is given by

eλi
j (k) =

(
k − 1

j − 1

)
λk−j

i ,

where k = 1, . . . , q + 1, j = 1, . . . , mi and

(
k

j

)
:=





0, if k < j;

1, if k = j;
k(k−1)···(k+1−j)

1 2 3 ··· j , otherwise.



Chapter 5

Robust trajectory tracking in

the elliptical billiard system

In the previous chapters, it is assumed for the the elliptical billiard system

that there is no friction, no uncertainty on the plant (i.e., the mass of the

actuated particle is known and equal to one) and the full state vector of the

plant is measured. The goal of the present chapter is to guarantee a wholly

similar tracking control result as detailed in Problem 3, both when the full

plant state is accessible, and when only the position error is available for the

feedback, also in the case in which the body is subject to friction and the

system parameters (i.e., mass and damping factor) are not known exactly.

Such an extension is complicated by the need to estimate suitable jumps for

the state of the internal model, which depend on the unknown parameters.

5.1 Problem preliminaries and equations of motion

In the following, a dimensionless body having mass M ∈ R+ is taken into

account and a linear internal damping term is considered, with D ∈ R+ being

the damping factor. In this case, the system is completely characterized by the

total Lagrangian function Lt = (1/2)M(ẋ2(t)+ẏ2(t))+ux(t)x(t)+uy(t)y(t), by

125
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the Rayleigh dissipation function R = (1/2)D(ẋ2(t)+ ẏ2(t)), by the inequality

x2(t)/a2+y2(t)/b2 ≤ 1 and by the assumption that the impacts are nonsmooth,

perfectly elastic and without friction. As seen in Section 3.1, the method of

the Valentine variables can be used for modeling the considered mechanical

system as in [77].

The motion satisfies (in each open interval of time without impacts) the

following Euler-Lagrange equations, where the dissipative term has been con-

sidered:

Mẍ(t) + Dẋ(t) +
2
a2

λ̇(t)x(t) = ux(t), (5.1a)

Mÿ(t) + Dẏ(t) +
2
b2

λ̇(t)y(t) = uy(t), (5.1b)

2γ(t)λ̇(t) = 0, (5.1c)
2
a2

x(t)ẋ(t) +
2
b2

y(t)ẏ(t) + 2γ(t)γ̇(t) = 0, (5.1d)

where γ(t) is the Valentine variable and λ̇(t) is the derivative (in the distri-

butional sense) of the Lagrange multiplier used to account for the constraint.

The impacts can occur only at the times ti ∈ R with ti+1 > ti, i ∈ N, where

the following Erdmann-Weierstrass corner conditions, which are necessarily

at corner points where q(t) is not differentiable, are satisfied

ẋ2(t−i ) + ẏ2(t−i ) = ẋ2(t+i ) + ẏ2(t+i ), (5.2a)

Mẋ(t−i ) +
2
a2

λ(t−i )x(ti) = Mẋ(t+i ) +
2
a2

λ(t+i )x(ti), (5.2b)

Mẏ(t−i ) +
2
b2

λ(t−i )y(ti) = Mẏ(t+i ) +
2
b2

λ(t+i )y(ti). (5.2c)

Remark 18. In the following, if i ∈ Z+, then ti is either the initial time t0 or

the i-th impact time, else if i ∈ N, then ti is the i-th impact time.
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As seen in Section 3.1, the initial conditions at the initial time t0 are

x(t0) = x0, y(t0) = y0, ẋ(t+0 ) = vx,0, ẏ(t+0 ) = vy,0,

γ(t0) =
√
−f(q(t0)), λ(t+0 ) = 0,

and

Â := {(q, q̇) ∈ A× R2 : J(q)q̇ ≤ 0 if f(q) = 0},

where J(q) =
[

(2/a2)x (2/b2)y
]
. For the initial time t0, it is required that

(q(t0), q̇(t+0 )) ∈ Â so that, if q(t0) is on the boundary, the velocity vector

q̇(t+0 ) points toward the interior of the admissible region.

An impact for the controlled body occurs if, at a given time ti > t0, one

has

f(q(ti)) = 0 and J(q(ti))q̇(t−i ) > 0.

By requiring that J(q(ti))q̇(t+i ) ≤ 0, the Erdmann-Weierstrass corner condi-

tions (5.2) can be solved uniquely in the unknowns ẋ(t+i ) and ẏ(t+i ) at the

impact time ti as

ẋ(t+i ) = C1(q(ti))ẋ(t−i ) + C2(q(ti))ẏ(t−i ), (5.3a)

ẏ(t+i ) = C2(q(ti))ẋ(t−i )− C1(q(ti))ẏ(t−i ), (5.3b)

where C1(q(ti)) := (a4y2(ti)− b4x2(ti))/(a4y2(ti) + b4x2(ti)) and C2(q(ti)) :=

(−2a2b2x(ti)y(ti))/(a4y2(ti) + b4x2(ti)).

Remark 19. Although the corner conditions (5.2) are different with respect

to (3.7), once they are solved in the unknowns ẋ(t+i ) and ẏ(t+i ) the same

post-impact rules are obtained.

In Section 3.2, closed polygons inscribed in an ellipse (centered at the ori-

gin with a and b being the semi-major and the semi-minor axis, respectively)

and having winding number (N, R) in both the cases of rotational and libra-

tional motion are considered as reference paths. Moreover, in order to find

velocity profiles that yield the resulting periodic trajectories admissible for the
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billiard system with the impact times being equally spaced, a motion planning

problem is properly stated and solved. In particular, it is shown that when the

velocity profiles are generic polynomials of degree q, such a problem can be

addressed through LMIs by using some results from the theory of non-negative

polynomials (see, e.g., [64],[42]). An easy algorithm is also given for finding

such a class of polynomials when the problem parameters are fixed. Here, the

same class of desired trajectories will be considered for the tracking control

problem, which will be defined in the following.

Remark 20. The choice to impose impact times at arbitrarily fixed times per-

mits to consider target periodic trajectories which are not admissible for the

billiard system when no control is exerted on the moving mass. In this way,

a more general problem is taken into account and the controller has to be de-

signed such that an internal model of such a class of trajectories is contained

in the closed-loop system, so that the control forces steer the tracking error

to zero in the sense specified in the subsequent Problem 4. For simplicity of

exposition, in this chapter, as in Chapters 3 and 4, equally spaced impact

times occurring at integer times have been considered; however the proposed

control laws can be easily adapted to deal with any choice of impact times for

periodic trajectories as it will be shown in Chapter 6.

5.2 The robust trajectory tracking problem: state-

ment and solution

The goal of this section is the design of a control law such that the actual

trajectory asymptotically tracks the desired one also in presence of uncertain-

ties on the system parameters. More specifically the classical servomechanism

problem (see, e.g., [25],[23]) is taken into account and, in the following, it will

be properly amended in order to deal with the considered class of mechanical

systems subject to nonsmooth impacts. In Section 4.1, it is shown for a similar

case that the error on the velocity immediately after the impact times has in
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general absolute value greater than a given positive quantity. For this reason

the classical stability and attractivity properties are difficult (if not impossi-

ble) to be obtained and Problem 3 has been defined in order to neglect in the

analysis the times belonging to infinitesimal intervals about the impact times,

thus ensuring a sort of asymptotic stability for the error dynamics, similarly

to what is proposed in [50] for impulsive differential systems. For the sake of

clarity, some definitions already seen in Chapter 4 are recalled in the following.

Letting

q(t) :=

[
x(t)

y(t)

]
∈ R2 and q̄(t) :=

[
x̄(t)

ȳ(t)

]
∈ R2,

so that q(t) and q̄(t) denote the controlled and the desired trajectories, re-

spectively (see Section 3.2), the tracking error at time t is defined as

eq(t) := q(t)− q̄(t) =

[
x(t)− x̄(t)

y(t)− ȳ(t)

]
∈ R2.

By following the approach introduced in Chapter 4, a controller based on a

nonsmooth-version of the classical internal model principle will be considered.

In particular, in order to obtain asymptotic tracking (in the sense specified

in the subsequent Problem 4), in absence of impacts a continuous-time in-

ternal model of the desired trajectory is needed in the forward path of the

feedback control system. The presence of such an internal model is guaran-

teed through a dynamic precompensator, whose state vector will be subject to

jumps. Let ea(t) be the error between the actual state vector of the precom-

pensator and its nominal value and Λ̃a(i) be the error at time i ∈ Z between

the correct jump in the precompensator and the estimated one.1 Moreover,

by defining β :=
[

M D
]T

∈ Ω ⊆ R2 as the vector of parameters which

are subject to variations and/or uncertainties and assuming the nominal value

β0 :=
[

M0 D0

]T
of β be an interior point of the bounded set Ω, the control

problem solved here can be stated as follows.

1The meaning of ea and Λ̃a will be clarified in the following.
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Problem 4. Find, if any, a piecewise continuous control law such that for each

ε > 0, t0 ∈ R and γ ∈ (0, 1/2), there exists δε,γ > 0 and a neighborhood Ψ ⊆ Ω

of β0 such that if [qT (t0), q̇T (t+0 )]T ∈ Â, ‖[eT
q (t0), ėT

q (t+0 ), eT
a (t+0 )]T ‖ < δε,γ and

‖Λ̃a(t̄1)‖ < δε,γ , · · · , ‖Λ̃a(t̄N−1)‖ < δε,γ, then the following properties hold for

the closed-loop system and for all β ∈ Ψ:

1)




‖eq(t)‖ < ε, ∀t ∈ R, t > t0,

‖ėq(t)‖ < ε, ∀t ∈ R, t > t0, |t− 〈t〉| > γ,

where 〈t〉 denotes the integer nearest to t. In the case in which t is a half-

integer, 〈t〉 denotes the smallest integer larger than t;

2)





lim
t→+∞ ‖eq(t)‖ = 0,

lim
i→+∞

‖ėq((i + τ)+)‖ = 0, ∀τ ∈ (0, 1),

where the limits for ‖eq(·)‖ and ‖ėq(·)‖ are taken with t and i being real and

integer, respectively.

In the following, first the assumption of measuring the whole state vector

of the plant will be made (Full-Information problem), and then such an as-

sumption will be removed in order to deal with the more realistic case in which

only the position-error is available for the feedback (Error-Feedback problem).

5.2.1 Full-Information problem

In order to solve Problem 4 when both q(t) and q̇(t) are measured, the control

scheme depicted in Fig. 5.1 is considered, where the dashed-arrows denote the

jump times for the blocks they point to (for the sake of brevity, only the

scheme relative to x-coordinate is shown (see Remark 11)). In the following,

the blocks in Fig. 5.1 will be characterized during the unconstrained and

constrained motion so as to solve the tracking control Problem 4.
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K
p
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K
a
x

IMx
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xuxa
ux

t̄i ti

x̄
Px

xp

Figure 5.1: Full-Information: structure of the control scheme based on the
internal model principle (only x-coordinate).

The plant model: Px, Py

The equations of motion of a body having mass M ∈ R+ and moving in an

elliptical billiards under the action of control forces and subject to friction

with damping factor D ∈ R+ have been obtained in Section 5.1. By defining

xp(t) :=
[

x(t) ẋ(t)
]T
∈ R2, equations (5.1) can be rewritten as:

Px :

{
ẋp(t) = Ap(β)xp(t) + Bp(β)ux(t)

yxp(t) = Cpxp(t)
, ∀t ∈ Fi, i ∈ Z+, (5.4a)

Py :

{
ẏp(t) = Ap(β)yp(t) + Bp(β)uy(t)

yyp(t) = Cpyp(t)
, ∀t ∈ Fi, i ∈ Z+, (5.4b)

where Fi := (ti, ti+1) (i.e., Fi denotes a time interval without impacts for the

controlled body) and Ap(β) ∈ R2×2,Bp(β) ∈ R2,CT
p ∈ R2 are given by

Ap(β) :=

[
0 1

0 −D/M

]
, Bp(β) :=

[
0

1/M

]
, Cp :=

[
1 0

]
.

Remark 21. All the entries of (Ap(β),Bp(β),Cp) are continuous functions of

β, whenever M > 0.

The coupling between the two degrees of freedom of the mass is due to the

impact of the mass with the barrier. The jumps in the state vectors xp(t) and

yp(t) at the generic impact time ti ∈ R are then given in terms of xp(t−i ) and
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yp(t−i ) as

xp(t+i ) = Cp
1(q(ti))xp(t−i ) + Cp

2(q(ti))yp(t−i ), i ∈ N, (5.5a)

yp(t+i ) = Cp
2(q(ti))xp(t−i ) + Cp

3(q(ti))yp(t−i ), i ∈ N, (5.5b)

where Cp
1(·) ∈ R2×2,Cp

2(·) ∈ R2×2 and Cp
3(·) ∈ R2×2 are

Cp
1(q(ti)) :=

[
1 0

0 C1(q(ti))

]
, Cp

2(q(ti)) :=

[
0 0

0 C2(q(ti))

]
,

Cp
3(q(ti)) :=

[
1 0

0 −C1(q(ti))

]
,

with C1(q(ti)) and C2(q(ti)) being defined in (5.3).

The precompensator: IMx, IMy

In Section 4.2, it has been shown that, for some Ωx,Ωy and vx,vy, the refer-

ence signals can be written as

x̄(t) = ΩxeM(t−btc)vx,

ȳ(t) = Ωye
M(t−btc)vy,

where

M =




0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

... 0 1

0 · · · · · · 0 0




∈ R(q+1)×(q+1), (5.6)

and each impact time for the desired trajectory occurs at an integer time. By

following the guidelines of the internal model principle (see, e.g., [23]), the

block IMx in Fig. 5.1 has to be designed so that a complete internal model

of the class of trajectories to be tracked is contained in it. Its dynamics are
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given by

IMx :

{
ẋa(t) = Aaxa(t) + Bauxa(t)

yxa(t) = xa(t)
, ∀t ∈ F̄i, i ∈ Z+, (5.7a)

IMy :

{
ẏa(t) = Aaya(t) + Bauya(t)

yya(t) = ya(t)
, ∀t ∈ F̄i, i ∈ Z+, (5.7b)

with F̄i := (t̄i, t̄i+1) and pair (Aa ∈ R(q+1)×(q+1), Ba ∈ Rq+1) being in the

Brunowsky canonical form, that is

Aa(= M) =




0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

... 0 1

0 · · · · · · 0 0




, Ba =




0
...

0

1




.

In the following, in order to find the correct reset values for the precompensator

state vectors xa(t) ∈ Rq+1 and ya(t) ∈ Rq+1 at the generic impact time t̄i ∈ Z,

first such values will be computed in the nominal parameters (i.e., M = M0

and D = D0), and then an algorithm to estimate them will be given in order

to deal with possible uncertainties (i.e., M = M0 + δM and D = D0 + δD,

with δM, δD ∈ R).

Controller reset values in the nominal parameters

Remark 22. In the following, only the computations relative to x-coordinate

will be detailed, the results relative to y-coordinate being obtainable in a

wholly similar way.

By assuming perfect tracking, i.e., the particle moves along the desired
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trajectory and impacts at the desired impact times, it follows that

{
ti = t̄i, i ∈ N,

x(t) = x̄(t) =: x̄(t), ∀t ∈ (t̄i, t̄i+1), i ∈ Z+,
(5.8)

where the bar -notation denotes the desired values. By substituting (5.8) into

(5.7a), one obtains

˙̄xa(t) = Aax̄a(t) ⇒ x̄a(t) = eAa(t−t̄i)x̄a(t̄+i ), ∀t ∈ (t̄i, t̄i+1), i ∈ Z+. (5.9)

By (5.9) and (5.8), it follows that

x̄a(t̄−i+1) = eAa(t̄i+1−t̄i)x̄a(t̄+i ) = eAa x̄a(t̄+i ),

which implies that

x̄a(t̄+i ) = e−Aa x̄a(t̄−i+1).

Moreover, by considering the control input (see Fig. 5.1):

ux(t) = Ka
xx̄a(t) + Kp

xx̄p(t),

the state equation (5.4a) becomes

˙̄xp(t) = (Ap + BpKp
x)x̄p(t) + BpKa

xx̄a(t). (5.10)

By using (5.8), the closed loop plant dynamics (5.10) can be rewritten as:

[
˙̄x(t)
¨̄x(t)

]
= (Ap + BpKp

x)

[
x̄(t)
˙̄x(t)

]
+ BpKa

xx̄a(t).

This vector equation provides two scalar equalities, which have to be satisfied

for each free-motion interval (i.e., ∀t ∈ (t̄i, t̄i+1), i ∈ Z+). In particular, the

first of them is just the identity ˙̄x(t) = ˙̄x(t), which is trivially satisfied, whereas
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the second one is given by

M ¨̄x(t) + D ˙̄x(t)− (Kp
x,1x̄(t) + Kp

x,2
˙̄x(t)) =

= Ka
x,1xa,1(t) + · · ·+ Ka

x,q+1xa,q+1(t), (5.11)

where Kp
x,Ka

x are partitioned as

Kp
x =

[
Kp

x,1 Kp
x,2

]
,

Ka
x =

[
Ka

x,1 · · · Ka
x,q+1

]
,

and x̄a(t) =
[

x̄a,1(t) · · · x̄a,q+1(t)
]T

. Since the desired trajectory x̄(t) is

a polynomial of degree q in t−btc, it is clear that its (q +1)-th derivative with

respect to t will be equal to zero, that is

dq+1x̄(t)
dtq+1

= 0. (5.12)

Moreover, given that the precompensator IMx is realized in the Brunowsky

canonical form, the following relations hold between the components of its

state vector xa(t) 



˙̄xa,1(t) = x̄a,2(t),
˙̄xa,2(t) = x̄a,3(t),
...
˙̄xa,q+1(t) = 0.

(5.13)

Hence, by considering (5.12) and (5.13), the successive time derivatives (from

the 0-th to the q-th) of (5.11) can be computed in order to obtain q + 1

equations to solve in the q + 1 unknowns: x̄a,1, · · · , x̄a,q+1, ∀t ∈ (t̄i, t̄i+1), i ∈
{0, 1, · · · , N − 1}), where the periodicity of the desired trajectory has been
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considered, so as to obtain





M ¨̄x(t) + D ˙̄x(t)− (Kp
x,1x̄(t) + Kp

x,2
˙̄x(t)) =

= Ka
x,1x̄a,1(t) + · · ·+ Ka

x,q+1x̄a,q+1(t),

Mx̄(3)(t) + D ¨̄x(t)− (Kp
x,1

˙̄x(t) + Kp
x,2

¨̄x(t)) =

= Ka
x,1x̄a,2(t) + · · ·+ Ka

x,qx̄a,q+1(t),
...

Dx̄(q)(t)− (Kp
x,1x̄

(q−1)(t) + Kp
x,2x̄

(q)(t)) =

= Ka
x,1x̄a,q(t) + Ka

x,2x̄a,q+1(t),

−Kp
x,1x̄

(q)(t) = Ka
x,1x̄a,q+1(t),

(5.14)

where x̄(j)(t) denotes the j-th time derivative of x̄(t), i.e., x̄(j)(t) := dj x̄(t)/dtj .

By assuming Ka
x,1 6= 0, the system (5.14) can be solved by backward substi-

tution starting from the last equation, which provides the (q + 1)-th element

of x̄a. Hence, the jump of the precompensator state vector at the instant t̄i is

given by

x̄a(t̄+i ) =




x̄a,1(t̄+i )
...

x̄a,q(t̄+i )

x̄a,q+1(t̄+i )




=: Λ̄xa(t̄i) ∈ Rq+1, (5.15)
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where

x̄a,q+1(t̄+i ) = −Kp
x,1

Ka
x,1

x̄(q)(t̄+i ),

x̄a,q(t̄+i ) =
1

Ka
x,1

(
Dx̄(q)(t̄+i )− (

Kp
x,1x̄

(q−1)(t̄+i )+

+ Kp
x,2x̄

(q)(t̄+i )
)−Ka

x,2x̄a,q+1(t+i )
)
,

x̄a,q−1(t̄+i ) =
1

Ka
x,1

(
Mx̄(q)(t̄+i ) + Dx̄(q−1)(t̄+i )+

− (
Kp

x,1x̄
(q−2)(t̄+i ) + Kp

x,2x̄
(q−1)(t̄+i )

)
+

− (
Ka

x,2x̄a,q(t+i )−Ka
x,3x̄a,q+1(t+i )

))
,

...

Finally, the reset values in the actual state vectors xa and ya when the system

parameters are exactly known can be computed as:

xa(t̄+i ) = Λ̄xa(t̄i), i ∈ N, (5.16a)

ya(t̄+i ) = Λ̄ya(t̄i), i ∈ N, (5.16b)

where Λ̄ya(i) is obtainable from Λ̄xa(i) defined in (5.15) substituting wherever

x with y. By the results above, it is clear that xa(t̄+i ) and ya(t̄+i ) depend upon

the plant parameters M and D. In order to deal with possible uncertainties on

these parameters, the following algorithm is considered to estimate the correct

jumps.

Controller reset values in presence of uncertainties

In (5.16) the jumps in x̄a and ȳa at the instant t̄i depend upon the system

parameters M and D. It is clear that if such parameters are not exactly known

the results above will yield wrong reset values. In this case the correct jumps

for the state vectors of the precompensator at the instant t̄i can be estimated
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in real time (see proof of Theorem 9) by applying the following rules

xa(t̄+i+N ) = e−Aaxa(t̄−i+1), i ∈ Z+, (5.17a)

ya(t̄+i+N ) = e−Aaya(t̄−i+1), i ∈ Z+. (5.17b)

A code-like algorithm implementing such rules is described below.

• Initialize Uxa ,Uya ∈ RN×(q+1) as

Uxa = U0
xa

:=




Λ̄T
xa

(0)

Λ̄T
xa

(1)
...

Λ̄T
xa

(N − 1)




, Uya = U0
ya

:=




Λ̄T
ya

(0)

Λ̄T
ya

(1)
...

Λ̄T
ya

(N − 1)




.

• At any instant of impact t̄i ∈ Z, the jumps of xa and ya are

xa(t̄+i ) = UT
xa

((t̄i mod N) + 1, :) ,

ya(t̄+i ) = UT
ya

((t̄i mod N) + 1, :) ,

• and the update rules of Uxa and Uya are

UT
xa

(((t̄i − 1) mod N) + 1, :) = e−Aaxa(t̄−i ),

UT
ya

(((t̄i − 1) mod N) + 1, :) = e−Aaya(t̄−i ),

where Uxa (i, :) and Uya (i, :) denote the i-th row of the matrices

Uxa and Uya, respectively.

Remark 23. The proposed algorithm permits to estimate the correct jumps for

the precompensator even when the plant parameters are not exactly known.

Moreover, if the uncertainties on the parameters are expressed as M = M0 +

δM and D = D0 + δD, with δM, δD ∈ R and M0, D0 being the actual mass
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and the actual damping factor, respectively, then in the computation of x̄a(t̄+i )

in (5.15) the errors due to the unknowns δM and δD are always divided by

the scalar factor Ka
x,1. Hence, in order to reduce the effect of such errors on

the jump estimate it is enough to choose Ka
x,1 >> 1, which can be carried

out by a shrewd choice of the eigenvalues for the closed-loop dynamic matrix

(5.23).

The augmented system (plant–precompensator)

In order to compute the static gains Kp
x, Ka

x and Kp
y, Ka

y, the state-space rep-

resentation of the augmented system (plant–precompensator) is here reported.

Since the control input to the plant is given by (see Fig. 5.1)

ux(t) = Ka
xxa(t) + Kp

xxp(t),

in any time interval without impacts the free-motion dynamics for the aug-

mented state vector xe(t) :=
[

xT
p (t) xT

a (t)
]T
∈ Rq+3 can be written as

{
ẋe(t) = Ax

exe(t) + Bx
e x̄(t)

yxe(t) = Cx
exe(t)

, (5.18)

where Ax
e ∈ R(q+3)×(q+3),Bx

e ∈ Rq+3 and CxT
e ∈ Rq+3 are

Ax
e :=

[
Ap + BpK

p
x BpKa

x

−BaCp Aa

]
, Bx

e :=

[
0

Ba

]
, Cx

e :=
[

Cp 0
]
.

At this point, the augmented state vector xe can be rewritten as

xe(t) = x̄e(t) + x̃e(t), (5.19)
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where x̄e is the nominal part of xe, i.e., x̄e =
[

x̄ ˙̄x x̄T
a

]T
with x̄a(t) being

defined in (5.9) and it has jumps at the instants t̄i (see (5.15) and (5.45a)).2

From (5.10),(5.7a) and (5.8) the dynamics of x̄e during the free-motion can

be easily obtained as

˙̄xe(t) =

[
Ap + BpK

p
x BpKa

x

0 Aa

]
x̄e(t) =: Āx

e x̄e(t), (5.20)

and by using the definition of Āx
e , the state equation given by (5.18) for the

actual system becomes

ẋe(t) = Āx
exe(t) + B̄x

euxa(t), (5.21)

where B̄x
e := Bx

e . On the other hand, x̃e(t) is nothing else the difference

between the actual value of xe and the nominal one, so that, since uxa(t) =[
−Cp 0

]
x̃e(t), its dynamics are obtained as

˙̃xe(t) = Ax
e x̃e(t), (5.22)

where Ax
e is the closed-loop dynamic matrix and it can be rewritten as:

Ax
e =

[
Ap 0

−BaCp Aa

]

︸ ︷︷ ︸
=:Ax

e

+

[
Bp

0

]

︸ ︷︷ ︸
=:Bx

e

[
Kp

x Ka
x

]

︸ ︷︷ ︸
=:Kx

, (5.23)

with the row-vector KT
x :=

[
Kp

x Ka
x

]T
∈ Rq+3 being the only unknown.

Since (Ax
e ,Bx

e ) is controllable, Kx can be chosen such that all eigenvalues of

Ax
e have real part less than or equal to −ηx, with ηx ∈ R+. After that, Ka

x

2Since x̄e incorporates x̄a, which depends upon the actual system parameters at the
instants of impact, it is in general unknown.
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and Kp
x will be given by

Kp
x = Kx

[
I2

0(q+1)×2

]
, Ka

x = Kx

[
02×(q+1)

Iq+1

]
.

Obviously, wholly similar results can be obtained for the y-coordinate. In

particular, by defining z(t) :=
[

xT
e yT

e

]T
∈ R2(q+3) and by using (5.21),

(5.20) and (5.22), respectively, in absence of impacts one obtains

Actual: ż(t) = Āz(t) + B̄ua(t), (5.24a)

Desired: ˙̄z(t) = Āz̄(t), (5.24b)

Error: ˙̃z(t) = Ãz̃(t), (5.24c)

where Ā := blockdiag{Āx
e , Āy

e} ∈ R2(q+3)×2(q+3), B̄ := blockdiag{B̄x
e , B̄y

e} ∈
R2(q+3)×2 and ua(t) :=

[
uxa uya

]T
∈ R2. Moreover, it is clear that all

the eigenvalues of Ã have real part less than or equal to −η, with η :=

min{ηx, ηy} ∈ R+.

Main result (Full-Information)

By choosing the initial conditions sufficiently close to the desired ones, for

all i ∈ N, the impact times ti > t0, ti ∈ R of the actual trajectory can be

forced to be close to the impact times t̄i of the desired trajectory (see proof of

Theorem 9) so that, following the control strategy detailed in Chapter 4, the

precompensator input uxa can be expressed by

uxa(t) =

{
ex(t), ∀t ∈ Fb

i , i ∈ Z+,

0, otherwise,
(5.25a)

uya(t) =

{
ey(t), ∀t ∈ Fb

i , i ∈ Z+,

0, otherwise,
(5.25b)
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where tM0 := t0 and, for any t̄i ∈ Z, i ∈ N, one defines tmi := min{ti, t̄i}, tMi :=

max{ti, t̄i} and Fb
i := (tMi , tmi+1).

Remark 24. As in Chapter 4, the precompensator input is switched off between

the impact times tmi and tMi (see Fig. 5.2) in order to improve the behavior

of the considered system when it is initialized with initial conditions quite far

from the desired trajectory. Moreover, also when the actual and the nominal

trajectories are very close, it is observed that switching off the control between

the impacts improves the tracking (see Remark 13).

K
p
x

K
a
x

IMx
xa

xux

t̄i ti

x̄ex

t = tMi or t = t0

t = tmi

Px
xp

Figure 5.2: Full-Information: structure of the switching control scheme
based on the internal model principle (only x-coordinate).

At this point the following result can be stated and proved.

Theorem 9. There exists η∗ ∈ R+ such that the control scheme in Fig. 5.1

solves Problem 4, for all η ≥ η∗.

Proof. The proof can be carried out by means of the steps described below,

based on the following facts whose proofs, for the sake of readability, are given

at the end of this chapter in Section 5.4.

There exist constants M1,M2, M3,M4,M5 ∈ R+ and δ0, δ1 ∈ R+ such that

‖z̃(tm−i )‖ < δ0 ⇒
∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ ≤ M1‖z̃(tm−i )‖, (5.26)
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‖z̃(tm−i )‖ < δ1,

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ < δ1, ‖Λ̃a(t̄i)‖ < δ1

⇓ (5.27)

‖z̃(tM+
i )‖ ≤ M2‖z̃(tm−i )‖+ M3

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ + M4‖Λ̃a(t̄i)‖,

∀η ∈ R+ : ‖z̃(t)‖ ≤ L(η)e−η(t−tMi )‖z̃(tM+
i )‖, ∀t ∈ Fb

i , (5.28a)

∀ε∗ > 0,∀T > 0,∃η∗ > 0 : η > η∗ ⇒ L(η)e−ηT < ε∗, (5.28b)

‖Λ̃a(t̄i+N )‖ ≤ M5‖z̃(tm−i+1)‖, (5.29)

where ∆ti := ti− t̄i, ∆θi := θi− θ̄i and, in view of the periodicity of the desired

trajectory, (6.17) and (6.18) hold for all i ∈ N whereas (5.28) and (6.21) hold

for all i ∈ Z+.

Step 1 : In view of (6.17) and (6.18) and in order to guarantee that for

each i ∈ N the actual impact time ti belongs to the interval (t̄i − γ, t̄i + γ)

for a fixed γ ∈ (0, 1/2), one can take ‖Λ̃a(t̄i)‖ < δ̄0 and ‖z̃(tm−i )‖ < δ̄0 where

δ̄0 := min{δ0, δ1, δ1/M1, γ/M1}.
Step 2 : By putting together (6.17) and (6.18), the following inequality is

obtained

‖z̃(tM+
i )‖ ≤ µ‖z̃(tm−i )‖+ M4‖Λ̃a(t̄i)‖, (5.30)

where µ := M2 + M3M1.

Step 3 : By using (6.19) and (6.22), for all i ∈ N one has3

‖z̃(tm−i+1)‖ ≤ L(η)e−η(tmi+1−tMi )‖z̃(tM+
i )‖ ≤

≤ L(η)e−η(1−2γ)µ‖z̃(tm−i )‖+ L(η)e−η(1−2γ)M4‖Λ̃a(t̄i)‖.

At this point, by taking in (6.20) ε∗ ≤ min{ξ/µ, ξ/M4}, there exists η∗ such

3By Step 1, the minimum flight-time in free motion is 1− 2γ.
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that, for all η > η∗, it follows that4

‖z̃(tm−i+1)‖ ≤ ξ‖z̃(tm−i )‖+ ξ‖Λ̃a(t̄i)‖, (5.31)

for all i ∈ N with ξ ∈ R+ being a free parameter.

Step 4 : By using iteratively (6.23), one obtains

‖z̃(tm−i+N )‖ ≤ ξN‖z̃(tm−i )‖+ ξN‖Λ̃a(t̄i)‖+ ξN−1‖Λ̃a(t̄i+1)‖+
+ · · ·+ ξ2‖Λ̃a(t̄i+N−2)‖+ ξ‖Λ̃a(t̄i+N−1)‖,

whereas by (6.21) and (6.23) it follows that

‖Λ̃a(t̄i+N+j)‖ ≤ ξj+1M5‖z̃(tm−i )‖+ ξj+1M5‖Λ̃a(t̄i)‖+
+ ξjM5‖Λ̃a(t̄i+1)‖+ · · ·+ ξM5‖Λ̃a(t̄i+j)‖,

for each j = {0, . . . , N − 1}. Now, choosing ξ := min{ξ̄, ξ̄/M5} with 0 < ξ̄ < 1

and defining

Γ(i) :=
[

z̃T (tm−i ) Λ̃T
a (t̄i) · · · Λ̃T

a (t̄i+N−1)
]T
∈ R2(N+1)(q+3),

yield the following inequalities

‖z̃(tm−i+N )‖ ≤ ξ̄‖Γ(i)‖, ‖Λ̃a(t̄i+j)‖ ≤ ξ̄‖Γ(i)‖,

for each j = {N, . . . , 2N − 1}, which imply that

‖Γ(i + N)‖ ≤ ξ̄‖Γ(i)‖, 0 < ξ̄ < 1. (5.32)

By applying iteratively (6.24), with k ∈ N and ξ̄ ∈ (0, 1), one obtains

‖Γ(i)‖ ≤ ξ̄‖Γ(i−N)‖ ≤ · · · ≤ ξ̄k‖Γ(i− kN)‖. (5.33)

4From now on, η is fixed so that L is a real positive constant (dependence on η is omitted).



5.2. The robust trajectory tracking problem: statement and solution 145

If the initial errors are sufficiently small, that is

‖z̃(t+0 )‖ < δε,γ , ‖Λ̃a(t̄1)‖ < δε,γ , · · · , ‖Λ̃a(t̄N−1)‖ < δε,γ , (5.34)

with δε,γ ∈ R+, by using (6.19),(6.22) and (6.21) it is possible to show that

‖Γ(j)‖ ≤ MΓ,jδε,γ with MΓ,j ∈ R+, j = {1, . . . , N} and, by defining MΓ :=

max
j∈{1,...,N}

{MΓ,j}, inequality (5.33) yields

‖Γ(i)‖ ≤ ξ̄b i−N
N cMΓδε,γ

i→+∞→ 0 since ξ̄ ∈ (0, 1), (5.35)

which implies that each component of ‖Γ(i)‖ goes to zero as i goes to infinity,

that is

‖z̃(tm−i )‖ → 0, ‖Λ̃a(t̄i)‖ → 0, · · · , ‖Λ̃a(t̄i+N−1)‖ → 0. (5.36)

By (6.29) and (6.17), it follows that

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ ≤ M1‖z̃(tm−i )‖ → 0 i→+∞⇒
{

ti → t̄i

θi → θ̄i

. (5.37)

Moreover, in any free-motion interval, i.e., t ∈ Fb
i , the following result holds

‖z̃(t)‖ ≤ L(µ ‖z̃(tm−i )‖︸ ︷︷ ︸
→0

+M4 ‖Λ̃a(t̄i)‖︸ ︷︷ ︸
→0

) → 0 as i → +∞,

where (6.29) is used. By this result and (6.30), it follows that ∀τ ∈ (0, 1),∃i∗ :

i > i∗ ⇒ t̄i + τ ∈ Fb
i → (t̄i, t̄i+1) and

‖z̃(t̄i + τ)‖ → 0 as i → +∞.

Since ti → t̄i as i → +∞, then t̄i + τ,∀τ ∈ (0, 1) is an impact time neither for

the actual trajectory nor for the desired one. Therefore, lim
i→+∞

‖z̃((t̄i+τ)−)‖ =

lim
i→+∞

‖z̃((t̄i + τ)+)‖ = lim
i→+∞

‖z̃(t̄i + τ))‖ = 0. This last fact and the definition
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of z̃(t) prove property 2) of Problem 4.

Step 5 : In order to complete the proof, it remains to prove property 1) of

Problem 4. By (6.19) and (6.22), for all t in a generic time interval Fb
i , i ∈ Z+,

one has

‖z̃(t)‖ ≤ L‖z̃(tM+
i )‖ ≤ Lµ‖z̃(tm−i )‖+ LM4‖Λ̃a(t̄i)‖.

Now, by using the inequality in (6.28) and by considering the definition of Γ(i),

one obtains ‖z̃(t)‖ ≤ (Lµ+LM4)MΓδε,γ . In addition, if δε,γ < δ̄0/MΓ, ‖z̃(tm−i )‖ <

δ̄0 and ‖Λ̃a(t̄i)‖ < δ̄0 then

‖z̃(tm−i+1)‖ ≤ ξ̄b i+1−N
N cMΓδε,γ < MΓδε,γ < MΓ

δ̄0

MΓ
= δ̄0,

‖Λ̃a(t̄i+1)‖ ≤ ξ̄b i+1−N
N cMΓδε,γ < MΓδε,γ < MΓ

δ̄0

MΓ
= δ̄0,

so that by choosing δε,γ := min{ δ̄0
MΓ

, ε
(Lµ+LM4)MΓ

} the following result is ob-

tained

(6.26) ⇒ ‖z̃(t)‖ ≤ ε, ∀t ∈ Fb
i , i ∈ Z+,

and since |∆ti| < γ (see Step 1 ), property 1) in Problem 4 is proved.

5.2.2 Error-Feedback problem

In this section, the assumption of full state knowledge is removed. More

precisely, by considering the control scheme in Fig. 5.3, with the tracking

error being the only available measurement for feedback, it will be shown how

the tracking control problem stated in Problem 4 can still be solved. The

block Px in Fig. 5.3 denotes the plant model whose dynamics have just been

described in the paragraph Plant model for the Full-Information case.

The precompensator

For the sake of brevity, only the results needed for the design of the controller

will be given, since they are obtained with computations wholly similar to the
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Kx

IMx
xa

xux

t̄i ti

x̄

t = tMi or t = t0

t = tmi

Ox
xo

ti, t̄i

Px
xp

Figure 5.3: Error-Feedback: structure of the switching control scheme based
on the internal model principle when only the position-error is measured (only
x-coordinate).

ones detailed in Section 5.2.1.

Remark 25. As for the Full-Information case, the block IMx in Fig. 5.2 has

been designed so that a complete internal model of the class of trajectories

to be tracked is contained in it. Actually, if the plant contains part of such

an internal model, then the precompensator can also be designed with just a

partial internal model of the desired trajectories in such a way to ensure that

the cascade connection of IM and P contains a complete internal model. As

a matter of fact, the plant matrix Ap(β) considered here has an eigenvalue at

zero, so that a smaller matrix Aa would be chosen provided that the minimal

polynomial of M in (5.6) is a divisor of the minimal polynomial of the cascade

of the precompensator and the plant.

By Remark 25, during each free-motion interval, the precompensator can
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be designed as follows:

IMx :

{
ẋa(t) = Aaxa(t) + Bauxa(t)

yxa(t) = Caxa(t)
, ∀t ∈ F̄i, i ∈ Z+, (5.38)

IMy :

{
ẏa(t) = Aaya(t) + Bauya(t)

yya(t) = Caya(t)
, ∀t ∈ F̄i, i ∈ Z+, (5.39)

with triple (Aa ∈ Rq×q,Ba ∈ Rq,CT
a ∈ Rq) being in the Brunowsky canonical

form, i.e.,

Aa =




0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

... 0 1

0 · · · · · · 0 0




, Ba =




0
...

0

1




, Ca =
[

1 0 . . . 0
]
.

Concerning the constrained motion, in the nominal parameters (i.e., M = M0

and D = D0), the jump of the precompensator state vector at time t̄i is given

by

x̄a(t̄+i ) =
[

x̄a,1(t̄+i ) · · · x̄a,q(t̄+i ) x̄a,q+1(t̄+i )
]T

,

where, for each j ∈ {1, . . . , q}, one has

x̄a,j(t̄+i ) = Mx̄(j+1)(t) + Dx̄(j)(t).

In order to deal with possible uncertainties, exactly the same algorithm pro-

posed for the Full-Information case will be used. More specifically, the correct

jumps for the state vectors of the precompensator at time t̄i can be estimated

in real time by applying the rules defined in (5.17).
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The (error) observer

During each free-motion interval (i.e., in absence of impacts for both the con-

trolled trajectory and the nominal one), the blocks Ox and Oy are described

by

Ox :

{
ẋo(t) = A(β)xo(t) + Buxa(t) + Lxuxo(t)

yxo(t) = xo(t)
, (5.40)

Oy :

{
ẏo(t) = A(β)yo(t) + Buya(t) + Lyuyo(t)

yyo(t) = yo(t)
, (5.41)

where A(β) ∈ R(q+2)×(q+2),B ∈ Rq+2,CT ∈ Rq+2 are

A(β) :=

[
Ap(β) Bp(β)Cp

0 Aa

]
, B :=

[
0

Ba

]
, C :=

[
Cp 0

]
.

the precompensator inputs are

uxa(t) =

{
Kxxo(t), ∀t ∈ Fb

i , i ∈ Z+,

0, otherwise,
(5.42)

uya(t) =

{
Kyyo(t), ∀t ∈ Fb

i , i ∈ Z+,

0, otherwise,
(5.43)

whereas the observer inputs are

uxo(t) =

{
ex(t)−Cxo(t), ∀t ∈ Fb

i , i ∈ Z+,

0, otherwise.

uyo(t) =

{
ey(t)−Cyo(t), ∀t ∈ Fb

i , i ∈ Z+,

0, otherwise.
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Moreover, regarding the constrained motion, at each impact time ti and t̄i,

the jump in the state vector xo is just a reset to zero, that is

xo(t+) = 0, t = {ti, t̄i}, i ∈ Z+.

At this point, by recalling the meaning of the error vector x̃e (see (5.19)) and

by defining ˜̃xe := [x̃T
e , (x̃e − xo)T ]T , it follows that

˙̃̃xe =

[
A(β) + BKx −BKx

0 A(β)− LxC

]
˜̃xe.

Since triple (A(β),B,C) is controllable and observable, Kx and Lx can be

chosen such that all eigenvalues of A(β0) + BKx and A(β0)−LxC have real

part less than or equal to −ηx and −ρx, respectively, with ηx, ρx ∈ R+. In

view of Remark 21, there exists a neighborhood Ψ of β0 such that, for all

β ∈ Ψ, also the eigenvalues of A(β) + BKx and A(β) − LxC have real part

less than or equal to −ηx and −ρx.

Finally, the following result holds, whose proof is wholly similar to the

previous one and thus omitted for the sake of brevity.

Theorem 10. There exists η∗ ∈ R+ and ρ∗ ∈ R+ such that the control scheme

in Fig. 5.3 solves Problem 4, for all η ≥ η∗ and ρ ≥ ρ∗.

5.3 Examples

In this last section an example is considered in order to show the effectiveness

of the proposed control strategy. The parameters describing the elliptical

billiard table, which is assumed to be centered at the origin, are a = 4 and

b = 2. The case of rotational motion with winding number (N = 3, R = 1)

and starting vertex at q̄0 =
[

4 0
]T

is taken into account.

Solving the LMI problem defined in Chapter 3 yields q = 2 as minimum

degree of the interpolating polynomials defining the velocity profiles on the
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target path (a triangle inscribed into the elliptical billiards with one revolution

around the origin), which are given by

l0(t) = −0.737t2 + 1.737t,

l1(t− 1) = t− 1,

l2(t− 2) = 0.737(t− 2)2 + 0.263(t− 2).

Moreover, the vertices of the desired path are

q̄0 =

[
4

0

]
, q̄1 =

[
−3.4741

0.9913

]
, q̄2 =

[
−3.4741

−0.9913

]
.

Full-information

Concerning the controller design, the precompensator free-dynamics are char-

acterized by

Aa =




0 1 0

0 0 1

0 0 0


 , Ba =




0

0

1


 ,

and by (5.23) one has

Ax
e = Ay

e =: Ae =




0 1 0 0 0

0 −12
30 0 0 0

0 0 0 1 0

0 0 0 0 1

−1 0 0 0 0




, Bx
e = By

e =: Be =




0
1
30

0

0

0




,

where, for simplicity, it is assumed that Kx = Ky =: K. Now, by defining

p̄K =
[
−19 −18 −17 −16 −15

]
as the vector of the desired eigenvalues

of the matrix Ax
e = Ay

e , the acker function provided by Matlabr returns the
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following result

K = −acker(Ae,Be, p̄
K) =

=
[
−86550 −2538 41860800 12398220 1466250

]
,

so that

Kp
x = Kp

y =
[
−86550 −2538

]
,

Ka
x = Ka

y =
[

41860800 12398220 1466250
]
.

On the other hand, by solving the system (5.14) and by using the notation

introduced in the previous section, one obtains

U0
xa

=




0.0164388758 −0.0329174399 0.0227780182

−0.0071829338 0 0

−0.0072575135 −0.0020110380 0.0227780182


 , (5.44a)

U0
ya

=



−0.0010834136 0.0043658846 −0.0030210794

0.0031428842 −0.0040991579 0

−0.0020594706 −0.0002667267 0.0030210794


 . (5.44b)

At this point, by starting from zero initial conditions at the initial time t0 = 0.5

and by setting the threshold σ = 0.15 in the extended-algorithm proposed

in Chapter 4, the behavior of the controlled trajectory during the first 12.5

seconds of motion can be observed in the subsequent figures, where first the

case in which all the plant parameters are exactly known is considered, i.e.,

M = M0 and D = D0 (see Fig. 5.4,5.9), and then the possible presence of

uncertainties is considered in order to show the robustness of the proposed

control strategy (see Fig. 5.6,5.7). In the latter case, the algorithm previously

proposed is used in order to estimate the correct jumps for the precompensator,
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in particular the Remark 23 is validated by the following simulation results

‖Uxa −U0
xa
‖∞ = 8.7 · 10−6,

‖Uya −U0
ya
‖∞ = 1.2 · 10−6,

where U0
xa

and U0
ya

are computed in the nominal parameter (see (5.44)),

whereas Uxa and Uya are the estimated one, with ‖ · ‖∞ denotes the infinity

norm (i.e., the largest row sum) of the matrix at argument. It is interesting

to note that in both cases when the position tracking errors, i.e., ex := x̄− x

and ey := ȳ − y, tend to zero the augmented system evolve as an unforced

system, i.e., uxa = uya = 0, which is according to the spirit of the internal

model principle (sometimes in the figures below the desired variables are also

denoted by means of the subscript “ d ” (e.g., x̄(t) ≡ xd(t))).

Error-feedback

By choosing Kx = Ky =: K and Lx = Ly =: L such that all the eigenvalues

of A(β) + BK and A(β) − LC have real part less than or equal to −η and

−ρ, respectively, with η = 6 and ρ = 11, by following the guidelines given

in Section 5.2.2, the control scheme in Fig. 5.3 can be implemented. At this

point, by starting from initial conditions sufficiently close to the desired one

(as it is required in Problem 4) at the initial time t0 = 0.1 and by considering

an actual body of mass M = 23 and damping factor D = 14, the behavior of

the controlled trajectory can be observed in Fig. 5.10. The simulation was

performed in Matlab where the event option for impact detection and handling

has been used. It is interesting to note that in both cases when the position

tracking errors tend to zero the augmented system (i.e., the cascade connection

precompensator-plant) evolves as an unforced system (see Fig. 5.10(d)), which

is according to the spirit of the internal model principle. As for the observer

variables, their time behaviour is depicted in Fig. 5.11.
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(c) ẋ(t), ˙̄x(t) and ẏ(t), ˙̄y(t)

Figure 5.4: The inner caustic curve (dotted) with the desired (dashed) tra-
jectory, which is completely overlapped with the actual (solid) one, in the
xy-plane (a); time behavior of the desired (dashed) and actual (solid) posi-
tions and velocities, (b) and (c), respectively.
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ẋ
,
ẋ
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ẋ, ẋd

2 4 6 8 10 12 14 16

−4

−2

0

2

4

6

t
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5.4 Details of the proof of main result (Full-Information)

Remark 26. Since the desired trajectory is periodic, all the results obtained

in the following for i ∈ {1, . . . , N} =: IN , remain proved for i ∈ N.

For all i ∈ IN , the following fact can be proved

∃δ0 ∈ R+,M1 ∈ R+ : ‖z̃(tm−i )‖ < δ0 ⇒
∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ ≤ M1‖z̃(tm−i )‖, (6.17)

where ∆ti := ti − t̄i and ∆θi := θi − θ̄i.

The proof of (6.17) follows immediately from the proof of fact (26) in

Section 6.5 just by considering in it the present error vector z̃(·) in place of

e(·).

Details of the proof of the fact (6.18)

The dynamics during the free-motion intervals (i.e., in absence of impacts for

both the actual and the nominal trajectories) are completely characterized by

the equations (5.24). On the other hand, the state vector z̄(·) is subject to

jump at the integer instants t̄i, whereas the vectors z(·) and z̃(·) have jumps

at the impact times both of the controlled body and of the desired trajectory.

In particular, such jumps can be given in terms of z̄ and z as

z̄(t̄+i ) = Λp(θ̄i)z̄(t̄−i ) + Λ̄a(t̄i), i ∈ N, (5.45a)

and

z(t+) =

{
Λp,1(θi)z(t−), t = ti, i ∈ N,

Λp,2z(t−) + Λa(t), t = t̄i, i ∈ N,
(5.45b)
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where Λp(θ),Λp,1(θ),Λp,2(θ) ∈ R2(q+3)×2(q+3) and Λ̄a(i) ∈ R2(q+3) are given

by

Λp(θ) :=




Cp
1(θ) 0 Cp

2(θ) 0

0 0 0 0

Cp
2(θ) 0 Cp

3(θ) 0

0 0 0 0




, Λ̄a(i) :=




0

Λ̄xa(i)

0

Λ̄ya(i)




,

and

Λp,1(θ) :=




Cp
1(θ) 0 Cp

2(θ) 0

0 Iq+1 0 0

Cp
2(θ) 0 Cp

3(θ) 0

0 0 0 Iq+1




, Λp,2 :=




I2 0 0 0

0 0 0 0

0 0 I2 0

0 0 0 0




,

with Cp
1(θ),C

p
2(θ) and Cp

3(θ) being defined in (5.5) and Λ̄xa(i) being defined

in (5.15)5. Regarding the vector Λa(i), it can be expressed as

Λa(i) = Λ̄a(i) + Λ̃a(i),

where Λ̃a(i) denotes the error between the actual value of the jump in the

precompensator state vector at the instant i ∈ Z and the estimated one. As

seen before, such an error is due to the possible presence of uncertainties upon

the system parameters.

5The vector Λ̄ya(i) is defined in an analogous way as Λ̄xa(i) substituting wherever x with
y.
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By using the notation so far introduced, for all i ∈ IN , one can prove that

∃δ1 ∈ R+,M2 ∈ R+,M3 ∈ R+,M4 ∈ R+ :

‖z̃(tm−i )‖ < δ1,

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ < δ1, ‖Λ̃a(t̄i)‖ < δ1 ⇒

⇒ ‖z̃(tM+
i )‖ ≤ M2‖z̃(tm−i )‖+ M3

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ + M4‖Λ̃a(t̄i)‖. (5.46)

The two possible cases are considered separately.

Case a) tmi = ti, tMi = t̄i, so that ∆ti := ti − t̄i < 0, and the error at

time tM+
i , that is after the i-th couple of impacts, is given by z̃(tM+

i ) :=

z(tM+
i )− z̄(tM+

i ), where

z(tM+
i ) = z(t̄+i ) = Λp,2z(t̄−i ) + Λa(t̄i) =

= Λp,2e
Ā(t̄i−ti)z(t+i ) + Λ̄a(t̄i) + Λ̃a(t̄i) =

= Λp,2e
−Ā∆tiΛp,1(θi)z(t−i ) + Λ̄a(t̄i) + Λ̃a(t̄i) =

= Λp,2e
−Ā∆tiΛp,1(θ̄i + ∆θi)(z̃(t−i ) + z̄(t−i )) + Λ̄a(t̄i) + Λ̃a(t̄i) =

= Λp,2e
−Ā∆tiΛp,1(θ̄i + ∆θi)z̃(t−i )+

+ Λp,2e
−Ā∆tiΛp,1(θ̄i + ∆θi)eĀ∆ti z̄(t̄−i ) + Λ̄a(t̄i) + Λ̃a(t̄i),

z̄(tM+
i ) = z̄(t̄+i ) = Λp(θ̄i)z̄(t̄−i ) + Λ̄a(t̄i).

Hence, it follows that

z̃(tM+
i ) = Λp,2e

−Ā∆tiΛp,1(θ̄i + ∆θi)z̃(tm−i )+

+ (Λp,2e
−Ā∆tiΛp,1(θ̄i + ∆θi)eĀ∆ti −Λp(θ̄i))z̄(t̄−i )+

+ Λ̃a(t̄i),

where ∆θi := θi − θ̄i;

Case b) tmi = t̄i, tMi = ti, so that ∆ti := ti − t̄i > 0, and the error at

time tM+
i , that is after the i-th couple of impacts, is given by z̃(tM+

i ) :=
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z(tM+
i )− z̄(tM+

i ), where

z(tM+
i ) = z(t+i ) = Λp,1(θi)z(t−i ) = Λp,1(θ̄i + ∆θi)eĀ(ti−t̄i)z(t̄+i ) =

= Λp,1(θ̄i + ∆θi)eĀ∆ti(Λp,2z(t̄−i ) + Λa(t̄i)) =

= Λp,1(θ̄i + ∆θi)eĀ∆tiΛp,2z̃(tm−i ) + Λp,1(θ̄i + ∆θi)eĀ∆tiΛp,2z̄(t̄−i )+

+ Λp,1(θ̄i + ∆θi)eĀ∆tiΛ̄a(t̄i) + Λp,1(θ̄i + ∆θi)eĀ∆tiΛ̃a(t̄i),

z̄(tM+
i ) = z̄(t+i ) = eĀ(ti−t̄i)z̄(t̄+i ) = eĀ∆ti(Λp(θ̄i)z̄(t̄−i ) + Λ̄a(t̄i)) =

= eĀ∆tiΛp(θ̄i)z̄(t̄−i ) + eĀ∆tiΛ̄a(t̄i).

Hence, it follows that

z̃(tM+
i ) = Λp,1(θ̄i + ∆θi)eĀ∆tiΛp,2z̃(tm−i )+

+ (Λp,1(θ̄i + ∆θi)eĀ∆tiΛp,2 − eĀ∆tiΛp(θ̄i))z̄(t̄−i )+

+ (Λp,1(θ̄i + ∆θi)eĀ∆ti − eĀ∆ti)Λ̄a(t̄i)+

+ Λp,1(θ̄i + ∆θi)eĀ∆tiΛ̃a(t̄i),

where ∆θi := θi − θ̄i.

By using the following facts

Λp,2Λp,1(θ̄i) = Λp,1(θ̄i)Λp,2 = Λp(θ̄i),

Λp,1(θ̄i)Λ̄a(t̄i) = Λ̄a(t̄i),

it is easy to see that, for any i ∈ IN , in both cases a) and b), that is for

∆ti < 0 and ∆ti > 0, respectively, the functions z̃(tM+
i ) are equal to 0 when

∆ti = 0, ∆θi = 0, Λ̃a(t̄i) = 0 and z̃(tm−i ) = 0 and they are analytic functions

with respect to their variables. In view of this fact, for each case separately

the following results hold
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Case a)

∃δ1, M2,a,i,M3,a,i,M4,a,i ∈ R+ :

‖z̃(tm−i )‖ < δ1,−δ1 < ∆ti < 0, |∆θi| < δi, ‖Λ̃a(t̄i)‖ < δi ⇒

⇒ ‖z̃(tM+
i )‖ ≤ M2,a,i‖z̃(tm−i )‖+ M3,a,i

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ + M4,a,i‖Λ̃a(t̄i)‖;

Case b)

∃δ1,M2,b,i,M3,b,i,M4,b,i ∈ R+ :

‖z̃(tm−i )‖ < δ1, 0 < ∆ti < δi, |∆θi| < δi, ‖Λ̃a(t̄i)‖ < δi ⇒

⇒ ‖z̃(tM+
i )‖ ≤ M2,b,i‖z̃(tm−i )‖+ M3,b,i

∥∥∥∥∥

[
∆ti

∆θi

]∥∥∥∥∥ + M4,b,i‖Λ̃a(t̄i)‖.

Moreover, it is easy to see that, for all i ∈ IN , the functions z̃(tM+
i ) are

continuous on the hyperplane characterized by ∆ti = 0. In particular, in both

cases a) and b), one has

z̃(tM+
i )|∆ti=0 = (Λp(θ̄i + ∆θi)−Λp(θ̄i))z̄(t̄−i ) + Λp(θ̄i + ∆θi)z̃(tm−i ) + Λ̃a(t̄i).

Therefore, (6.18) are proved, for all i ∈ IN , by choosing M2 := max
i∈IN

j∈{a,b}
{M2,j,i}, M3 :=

max
i∈IN

j∈{a,b}
{M3,j,i} and M4 := max

i∈IN
j∈{a,b}

{M4,j,i}.

Details of the proof of the fact (5.28)

Since all the eigenvalues of Ã have real part less than or equal to −η, with

η := min{ηx, ηy} ∈ R+ and by the linearity of (5.24c), it follows that in each

interval of time without impacts one has

∃L(η) ∈ R+ : ‖z̃(t)‖ ≤ L(η)e−η(t−tMi )‖z̃(tM+
i )‖, ∀t ∈ (tMi , tmi+1), i ∈ Z+.
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Remark 27. In the following, the vector z̃(t) plays the role of the error vector

e(t), which has been used in Section 4.2.

Moreover, the following result can be proved

∀η ∈ R+, ∃L(η) ∈ R+ :

‖z̃(t)‖ ≤ L(η)e−η(t−tMi )‖z̃(tM+
i )‖, ∀t ∈ (tMi , tmi+1), i ∈ Z+,

with lim
η→+∞L(η)e−ηT = 0, for any T > 0.

(5.28)

In order to prove (5.28), the following change of coordinates can be carried

out

x̃e,H(t) :=

[
0 −Iq+1

I2 0

]

︸ ︷︷ ︸
=:H

x̃e(t) ⇒ x̃e(t) =

[
0 I2

−Iq+1 0

]

︸ ︷︷ ︸
=H−1

x̃e,H(t),

so that
˙̃xe,H(t) = HAx

eH
−1x̃e,H(t) =: Ax

e,H x̃e,H(t),

where ‖H‖ = ‖H−1‖ = 1 and the matrix Ax
e,H is in companion form with the

same eigenvalues of Ax
e . From now on, (5.28) can be proved as it is shown in

Section 6.5.

Remark 28. If uncertainties are present on the system parameters, then the

eigenvalues of the actual matrix Ã are in general different from the desired one

assigned by the choice of Kx and Ky (see (5.23)). In this case, it is sufficient

to require that the eigenvalues of the closed-loop dynamic matrix Ã still have

real part less than or equal to −η even if M 6= M0 and D 6= D0.
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Details of the proof of the fact (6.21)

By the definition of Λa, the periodicity of Λ̄a (see (5.15)) and by using the

update rule given in (5.17a), the following result can be obtained

Λ̃a(t̄i+N ) = Λa(t̄i+N )− Λ̄a(t̄i+N ) =

= e−Aaxa(t̄−i+1)− e−Aa x̄a(t̄−i+1) = e−Aa x̃a(t̄−i+1),

which implies

‖Λ̃a(t̄i+N )‖ ≤ Ma‖x̃a(t̄−i+1)‖, (5.47)

where Ma := ‖e−Aa‖ ∈ R+. For all i ∈ IN , one has to prove that

∃M5 ∈ R+ : ‖Λ̃a(t̄i+N )‖ ≤ M5‖z̃(tm−i+1)‖. (6.21)

The two possible cases are considered separately.

Case a) tmi+1 = ti+1 and tMi+1 = t̄i+1. From (6.46), one has

‖Λ̃a(t̄i+N )‖ = Ma‖xa(t̄−i+1)− x̄a(t̄−i+1)‖ = Ma‖eAa(tMi+1−tmi+1)x̃a(t+i+1)‖ ≤
≤ MaMa,1‖x̃a(t−i+1)‖ ≤ MaMa,1‖z̃(t−i+1)‖ =: M5,1‖z̃(tm−i+1)‖,

where Ma,1 := max
T∈(0,γ)

‖eAaT ‖.

Case b) tmi+1 = t̄i+1 and tMi+1 = ti+1. From (6.46), one has

‖Λ̃a(t̄i+N )‖ ≤ Ma‖x̃a(t̄−i+1)‖ ≤ Ma‖z̃(tm−i+1)‖.

Therefore, (6.21) follows just by choosing M5 := max{M5,1,Ma}.
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Chapter 6

Trajectory tracking in

switched systems

In the previous chapters, the elliptical billiard system has been used as a bench-

mark for studying and developing a nonsmooth version of the internal model

principle to asymptotically track some reference trajectories. This chapter

attempts to generalize such results for a class of switched systems with linear

dynamics during the unconstrained motion, linear reset maps at the switching

times and with possible nonuniform state space among the different modes of

the system.

6.1 The class of considered systems

In most cases, the uniformity of continuous state space (i.e., continuous state

space is unique and limited to n-dimensional real-valued space) is assumed.

Branicky proposed the model of general hybrid dynamical systems [12] as a

unified framework which captures various aspects within hybrid dynamics. It

was mentioned in his work that failure situations can be modeled as hybrid

dynamics by relaxing the common assumption about the dimension of con-

tinuous state space. Provided that the re-initialization of continuous states is

169
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properly defined, the relaxation is quite natural because each continuous dy-

namics can be defined separately from others [81]. In [81], well-posedness for

a class of bimodal modular hybrid dynamical systems is studied. The notion

of modularity (i.e., the system dynamics change according to each alteration

of structure (state space) in the form of component/module attachment or

detachment) enables to model several interesting phenomena, e.g., component

breakdown and hot-swap of modules, which are forbidden in the conventional

framework of system theory. In [12], it is remarked that the state space may

change in modeling component failures or changes in dynamical description

based on autonomous or controlled events which change it. Examples include

the collision of two inelastic particles, an aircraft mode transition that changes

variables to be controlled [57], the problem to take into account overlapping

local coordinate systems on a manifold [4] and so on. In [83], switched dynami-

cal systems with state-space dilation and contraction formed by concatenating

the states of a set of local dynamical systems or semi-flows on state spaces with

different dimensions at specified time-instants are considered. Such systems

arise naturally in many aerospace applications such as multi-body dynamic

systems involving changes in the degrees of freedom, and systems composed

of multiple spacecraft with docking and undocking capabilities flying in for-

mation. Other examples of hybrid systems with possibly non-uniform state

space representations are considered in [26]–[34], where Bond-Graphs are used

in order to model physical hybrid systems.

In this work, switched systems characterized by

• (possible) non-uniform continuous state space among system modes;

• state-dependent switching;

• autonomous switching,

are considered. In the following, in order to characterize such dynamical sys-

tems, the switching surfaces, the continuous-time subsystems and the reset

maps are formally defined (see Section 2.2.1).
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Index set: the (finite) index set is defined as follows:

P := {1, . . . ,M}. (6.1)

Switching surfaces: the switching surface Cij characterizes the boundary

between the operating region relevant to the mode j and the one associated to

the mode i when the system is switching from mode j to mode i. It is defined

as follows:

Cij := {x ∈ Rnj : Jijx = bij , }, i, j ∈ P, (6.2)

where JT
ij ∈ Rnj , bij ∈ R and nj ∈ N, so that the j-th operating region can be

expressed as

Xj :=

{
x ∈ Rnj :

⋂

i∈P

(
Jijx− bij ≤ 0

)
}
⊆ Rnj . (6.3)

Remark 29. In (6.2) and (6.3), it is assumed that Jij = 0 and bij = 1 for all

i ∈ P such that the transition from mode j to mode i is not defined.

Remark 30. Notation so far introduced permits to model a wide class of

switched systems. In the following, two particular cases are taken into ac-

count.

Transition from a mode to itself : in order to model the transition from one

mode to itself it is sufficient to consider equal indices, i.e., i = j, in (6.2), (6.3)

and (6.6). This situation is shown in Fig. 6.1.

1

J11x1 − b11 = 0

Figure 6.1: Example in which the arrival mode coincides with the departure
mode.

More than one switching surfaces between two modes: in Fig. 6.2(a), it is
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shown an example of a system with two different modes. The transition from

mode 1 to mode 2 is characterized by the switching surface with (J21, b21),

whereas the transition from 2 to 1 can occur across two different switching

surfaces with (Ja
12, b

a
12) and (Jb

12, b
b
12), respectively. In order to model this case

by using the notation introduced before, the following trick can be considered

(see Fig. 6.2(b)). In fact, if the mode 1 is replicated so as to obtain the mode

1′, then parameters (Ja
12, b

a
12) and (Jb

12, b
b
12) can be replaced by (J12, b12) and

(J1′2, b1′2), respectively, where J12 = Ja
12, J1′2 = Jb

12 and b12 = ba
12, b1′2 = bb

12.

Finally, a further switching surface (J21′ , b21′) with J21′ = J21 and b21′ = b21

has to be added.

1 2

J21x1 − b21 = 0

J
a

12
x2 − b

a

12
= 0

OR

J
b

12
x2 − b

b

12
= 0

(a) Original system with 2
modes.

1 2

J21x1 − b21 = 0

1
′

J12x2 − b12 = 0

J1′2x2 − b1′2 = 0

J21′x1′ − b21′ = 0

(b) Transformed system with 3 modes.

Figure 6.2: Example of a system with more than one switching surface between
two modes.

System modes: for each operating region (or mode), continuous-time, linear,

time-invariant dynamical subsystems are considered. In particular, in the

generic i-th mode, the system evolves according to the following dynamics

Pi :

{
ẋi(t) = Ai(β)xi(t) + Bi(β)u(t)

y(t) = Ci(β)xi(t) + Di(β)u(t)
, i ∈ P, (6.4)

where Ai(β) ∈ Rni×ni ,Bi(β) ∈ Rni×q,Ci(β) ∈ Rq×ni and Di(β) ∈ Rq×q

are matrices with real entries depending on a vector β ∈ Θ of parameters

which are subject to variations and/or uncertainties and play the role of the
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physical parameters of the plant. The nominal value β̄ of β is assumed to be

an interior point of the bounded set Θ. Note that, for the sake of simplicity

each subsystem Pi is assumed to be square, i.e., having the same number of

inputs and outputs. However, all the results obtained in this work can be

easily extended to the case in which such an assumption is removed.

In this chapter, the following technical assumptions are considered.

Assumption 2. There exists a closed neighborhood Φa ⊆ Θ of β̄ ∈ Θ such

that all the entries of Ai(β),Bi(β),Ci(β) and Di(β) are continuous functions

of β in Φa, for all i ∈ P.

Proposition 1 ([37]). If there exists a neighborhood Φ̄a ⊆ Θ of some ¯̄β ∈ Θ

such that all the entries of Ai(β),Bi(β),Ci(β) and Di(β) are continuous

functions of β in Φ̄a, then there exists an interior point β̄ of Φ̄a, such that

Assumption 2 holds, for all i ∈ P.

Hence, Assumption 2 also can be satisfied by a proper choice of some β̄ near

the initial choice ¯̄β of it, provided that the matrices involved are continuous

in some neighborhood Φ̄a of ¯̄β.

Assumption 3. There exists a neighborhood Φb ⊆ Θ of β̄, such that for all

β ∈ Φb the triples (Ai(β),Bi(β),Ci(β)) are reachable and observable, for all

i ∈ P.

Remark 31. In view of Assumption 2, there exists a neighborhood Φab ⊆
(Φa ∩Φb) ⊆ Θ of β̄ such that if Assumptions 3 is satisfied for β = β̄, then it

is automatically satisfied for all β ∈ Φab.

Switching events and reset maps: concerning the transition between

modes, a time tk is a switching time, if

Jσ(t+k )σ(t−k )xσ(t−k )(t
−
k )− bσ(t+k )σ(t−k ) = 0, (6.5a)

Jσ(t+k )σ(t−k )ẋσ(t−k )(t
−
k ) > 0, (6.5b)
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where the piecewise constant function σ : R→ P is the switching signal, which

is defined by Definition 3 in Chapter 2.

Remark 32. The manifold of Xj identified by (6.5a) represents the condition of

contact among the dynamical system with the constraint surface Cij . On the

other hand, (6.5b) represents the transversality condition which guarantees

that, at the intersection, the flow of (6.4) is not tangent to the constraint (6.2)

[84].

At switching time tk, the transition from the departure mode dk to the

arrival mode ak is given by σ(t−k ) = dk and σ(t+k ) = σ(tk) = ak, where

dk, ak ∈ P. As for the jump in the plant state vector, the following (linear)

reset map is considered

xσ(t+k )(t
+
k ) = Γσ(t+k )σ(t−k )xσ(t−k )(t

−
k ), (6.6)

where, letting j and i be the indexes relevant to the departure and the arrival

modes, respectively, then Γij ∈ Rni×nj .

6.2 The class of admissible reference trajectories

The reference trajectories considered in this chapter for the class of hybrid

systems defined above are assumed to be periodic with period T ∈ R+ and

N ∈ Z+ switching events per period. In summary, in a whole period the

nominal trajectory can be represented as follows (the bar -notation denotes

the nominal values):

ȳ(t) =





ȳ1(t), t ∈ [t̄1, t̄2),
...

ȳN (t), t ∈ [t̄N , t̄N+1),

(6.7)

where t̄k, k ∈ Z+ denotes the k-th desired switching time and, in view of the

periodicity one has that: ȳ(k mod N)(t+T ) = ȳk(t) and t̄k+N = t̄k+T . For each
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i ∈ {1, . . . , N} =: IN , the reference signal ȳi(t) is assumed to be generated by

an autonomous linear system (exosystem)

{
ẋr

i (t) = Ar
ix

r
i (t)

ȳi(t) = Cr
ix

r
i (t)

, ∀t ∈ [t̄k, t̄k+1),

with some initial state xr
i (t̄

+
k ) and k ∈ IN . Now, let φ̄i(s) be the minimal

polynomial of Ar
i , and let

φ̄(s) = sm + α1s
m−1 + · · ·+ αm, (6.8)

be the least common multiple of the closed right-half s plane roots of φ̄i(s) for

all i ∈ IN (thus all roots of φ̄(s) have nonnegative real parts), the following

assumption is made.

Assumption 4. There exists a neighborhood Φc ⊆ Θ of β ∈ Θ such that for

every root λ of φ̄(s)

rank

([
λI−Ai(β) Bi(β)

−Ci(β) Di(β)

])
= ni + q, (6.9)

for all i ∈ P.

Remark 33. As seen in Remark 31, there exists a neighborhood Φac ⊆ (Φa ∩
Φc) ⊆ Θ of β̄ ∈ Θ such that if Assumption 4 is verified for β = β̄, then As-

sumption 2 implies that it is verified for all β ∈ Φac. Therefore, Assumptions

3 and 4 will be satisfied for all β ∈ Φabc, where Φabc ⊆ (Φa ∩Φb ∩Φc) ⊆ Θ.

Finally, by defining the minimum distance between two consecutive desired

switching times as (see Fig. 6.5)

ρ := min
k∈IN

{|t̄k − t̄k+1|}, (6.10)

the following definition of admissible desired trajectory can be given.
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Definition 5. A reference trajectory ȳ(t) in the form (6.7) is said to be

admissible for a hybrid system characterized by (6.4) and (6.6) if the following

properties hold

1. compatibility of the reset values: for all k ∈ IN

x̄σ̄(t̄+k )(t̄
+
k ) = Γσ̄(t̄+k )σ̄(t̄−k )x̄σ̄(t̄−k )(t̄

−
k );

2. no degenerate switching times: for all k ∈ IN

Jσ̄(t̄+k )σ̄(t̄−k )x̄σ̄(t̄−k )(t̄
−
k )− bσ̄(t̄+k )σ̄(t̄−k ) = 0,

Jσ̄(t̄+k )σ̄(t̄−k )
˙̄xσ̄(t̄−k )(t̄

−
k ) > 0;

3. no multiple switching events at the same time: for all k ∈ IN there does

not exist a pair (i1, i2) with i1, i2 ∈ P and i1 6= i2 such that

Ji1σ̄(t̄−k )x̄σ̄(t̄−k )(t̄
−
k )− bi1σ̄(t̄−k ) = 0,

Ji2σ̄(t̄−k )x̄σ̄(t̄−k )(t̄
−
k )− bi2σ̄(t̄−k ) = 0;

4. nonzero dwell-time: there exists a real positive lower bound ρm > 0 on

ρ, i.e.,

ρ > ρm > 0,

where in 1), 2) and 3), σ̄(t) and x̄σ̄(t)(t) denote the nominal switching signal

and the nominal value of the plant state vector, respectively, when y(t) = ȳ(t).

The existence and uniqueness of x̄σ̄(t)(t) is guaranteed by Assumptions 3, 4,

under the hypothesis that the subsystems Pi are square.

Remark 34. In the case of non-square systems, the uniqueness of x̄σ̄(t)(t) is

not guaranteed in general. However, by using, for example, squaring-down

techniques the approach proposed hereafter can still be used.
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Throughout the present chapter, whenever the reference (or nominal, or

desired) trajectory is considered, it is implicitly assumed to be admissible

according to Definition 5.

In Fig. 6.3 an example of periodic trajectory (with N = 4 switching

events per period) for a switched system operating in two different modes with

subsystems P1 and P2 having dimensions n1 = 2 and n2 = 3, respectively, is

shown. The switching signal associated to such a trajectory is depicted in Fig.

6.4.

v1

v2

v3

v4

v
′

4v5

v6

v7

v
′

8

v8

C1

C2

Ca
2

Cd
2

t1

t2

t3

t4

Figure 6.3: Example of (periodic) trajectory for a bi-modal switched system
with non-uniform state space.

t0 t1 t2 t3 t4

σ(t)

t

2

1

Figure 6.4: The switching signal associated to the trajectory in Fig. 6.3.
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6.3 Asymptotic tracking problem: definition and

solution

The goal of this section is the design of a control law such that the actual tra-

jectory asymptotically tracks the desired one. More specifically the classical

tracking problem (see, e.g., [25]) is taken into account and, in the following, it

is properly amended in order to deal with the considered class of hybrid sys-

tems. The presence of discontinuities due to the switching events complicates

the trajectory tracking problem as compared with the case of unconstrained

systems. The problem of trajectory tracking for mechanical systems subject

to impacts has been discussed in Chapters 4 and 5. In order to overcome the

difficulties relevant to the classical stability and attractivity properties (see

Remark 9), the times belonging to infinitesimal intervals about the switch-

ing times are neglected in the analysis (see Fig. 6.5), thus ensuring a sort of

asymptotic stability for the error dynamics, similarly to what is proposed in

[50] for impulsive differential systems. By following the approach introduced

T

ρ

2ω 2ω 2ω 2ω

ρ − 2ω≥ ρ − 2ω≥ ρ − 2ω

ω ω

t̄k t̄k+1 t̄k+2 t̄k+3
t

Figure 6.5: Example of possible switching times for a trajectory with period
T and N = 3 switching events per period. Time intervals identified by the
grey blocks are neglected in the stability analysis.

in [33] and [32], a controller based on a discontinuous (nonsmooth) version of

the classical internal model principle (see, e.g., [25] and [23]) is considered. It

is well known that in absence of discontinuities (i.e., during the free-motion

phases) a continuous-time internal model of the desired trajectory is needed
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in the forward path of the feedback control system. The presence of such

an internal model is guaranteed through a dynamic precompensator, whose

state vector is subject to discontinuities at the desired switching times. By

defining the error vectors relevant to the plant and the precompensator as

follows: x̃σ(t)(t) := xσ(t)(t)− x̄σ(t)(t), x̃a(t) := xa(t)− x̄a(t), the output error

as e(t) := y(t) − ȳ(t), and the error at time t̄k between the correct jump in

the precompensator and the estimated one as Λ̃t̄k := Λt̄k − Λ̄t̄k , the control

problem studied here can be stated as follows.

Problem 5. Find, if any, a piecewise continuous control law such that for

all ε > 0, t0 ∈ R and ω ∈ (0, ρ/2), there exists δε,ω > 0 and a neighborhood

Φ ⊆ Θ of β̄ such that if ‖x̃e
σ(t+0 )

(t+0 )‖ < δε,ω, ‖x̃a(t+0 )‖ < δε,ω and ‖Λ̃t̄1‖ <

δε,ω, · · · , ‖Λ̃t̄N−1
‖ < δε,ω, then the following properties hold for the closed-loop

system and for all β ∈ Φ:

1) ‖e(t)‖ < ε, ∀t ∈ R \ Ω, t > t0,

where Ω :=
⋃

k∈Z
Ωk and Ωk := { t : |t− t̄k| ≤ ω };

2) lim
k→+∞

‖e((t̄k + τ)+)‖ = 0, ∀τ ∈ (0, ρ),

where the limit is taken with k being integer.

In the following, all the steps for the design of the control scheme depicted

in Fig. 6.6 are detailed.

Step 1 (Precompensator design (IM)): the internal model φ̄−1(s)Iq of the

class of trajectories to be tracked, with φ̄(s) defined in (6.8), can be realized
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Ki

Ka
iIM

xa

yu

t̄k tk

ȳ
Pi

xi

Figure 6.6: Structure of the control scheme based on the internal model prin-
ciple.

as {
ẋa(t) = Aaxa(t) + Bae(t)

ya(t) = xa(t)
, ∀t ∈ [t̄k, t̄k+1),

where Aa = blockdiag{Υ, · · · ,Υ︸ ︷︷ ︸
q−tuple

} ∈ Rqm×qm and Ba = blockdiag{υ, · · · , υ︸ ︷︷ ︸
q−tuple

} ∈

Rqm×q with

Υ :=




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

−αm −αm−1 −αm−2 · · · −α1




, υ :=




0

0
...

0

1




.

Step 2 (Static gains design (Ki,Ka
i )): consider the tandem connection of

the plant followed by the precompensator. During the free-motion phases its

composite dynamical equation is

[
ẋi

ẋa

]

︸ ︷︷ ︸
ẋe

i

=

[
Ai(β) 0

BaCi(β) Aa

]

︸ ︷︷ ︸
Ae

i (β)

[
xi

xa

]

︸ ︷︷ ︸
xe

i

+

[
Bi(β)

BaDi(β)

]

︸ ︷︷ ︸
Be

i (β)

u =

= Ae
i (β)xe

i + Be
i (β)u. (6.11)

This connection is controllable and observable (see, e.g., [23]) if and only if no
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root of the polynomial φ̄(s) is a transmission zero of the plant, or, in other

words, (6.11) is controllable if Assumption 4 is satisfied. In particular, if (6.9)

is verified for every plant Pi, then the eigenvalues of the closed-loop system

can be arbitrarily assigned by the state feedback

u(t) =
[

Ki Ka
i

]

︸ ︷︷ ︸
Ke

i

[
xi(t)

xa(t)

]
, ∀t ∈ [tMk , tmk+1),

where tmk := min{tk, t̄k}, tMk := max{tk, t̄k} and for all i ∈ P the gain

Ke
i ∈ Rq×(ni+mq) is chosen such that, for all β ∈ Φd with Φd ⊆ Θ being

a neighborhood of β̄, all eigenvalues of (Ae
i (β)+Be

i (β)Ke
i ) have real part less

than −η, with η ∈ R+, i.e.,

Re(λ) < −η for all λ ∈ Λ[Ae
i (β) + Be

i (β)Ke
i ], (6.12)

with Re(λ) and Λ[·] being the real part of λ and the set of the eigenvalues

of the matrix at argument, respectively. Note that in view of Assumption

2, if (6.12) is satisfied in the nominal parameters, i.e., for β = β̄, then it is

automatically satisfied for all β ∈ Φ, with Φ ⊆ (Φd ∩ Φabc) ⊆ Θ and Φabc

defined in Remark 31.

Step 3 (Precompensator reset values (Λt̄k)): at the desired switching time t̄k

the state vector xa is reset as follows: xa(t̄+k ) = Λt̄k , where Λt̄k denotes the

reset value for the precompensator state vector at time t̄k.

No uncertainties on the plant parameters: if there are no uncertain-

ties on the plant modeling, i.e., β = β̄, then Λt̄k = Λ̄t̄k , with Λ̄t̄k being the

nominal reset value for the precompensator state vector at time t̄k. In order

to compute such a vector one can proceed as follows. By assuming perfect

tracking, one has

{
tk = t̄k, ∀k,

y(t) = ȳ(t) ⇒ e(t) = 0, ∀t ≥ t0,
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so that, by considering the nominal state vector x̄e
i =

[
x̄T

i x̄T
a

]T
, the nom-

inal dynamics can be written as

{
˙̄xe
i (t) = Āe

i (β)x̄e
i (t)

ȳi(t) = C̄e
i (β)x̄e

i (t)
, ∀t ∈ [t̄k, t̄k+1), (6.13)

where

Āe
i (β) =

[
Ai(β) + Bi(β)Ki Bi(β)Ka

i

0 Aa

]
,

C̄e
i (β) =

[
Ci(β) + Di(β)Ki Di(β)Ka

i

]
,

whereas at the switching time t̄k the jump in the augmented state vector is

x̄e
i (t̄

+
k ) =

[
Γij 0

0 0

]

︸ ︷︷ ︸
Γ̄e

ij

x̄e
j(t̄

−
k ) +

[
0

Λ̄t̄k

]

︸ ︷︷ ︸
Λ̄e

t̄k

=

= Γ̄e
ijx̄

e
j(t̄

−
k ) + Λ̄e

t̄k
,

where i = σ(t̄+k ) = σ(t̄k) ∈ P and j = σ(t̄−k ) ∈ P.

The problem to compute Λ̄t̄k can be turned into an observability problem.

In fact, since it is possible to find stabilizing gains Ke
i for the closed loop

system and all the eigenvalues of IM are in the closed right half plane, then

it is clear that the state vector x̄a has to be observable from the output.

Since observability is in general not preserved under constant state feedback,

if necessary, one has to carry out a canonical decomposition in order to separate

the observable modes from the others (see, e.g., [23]). More precisely, Λ̄t̄k can

be obtained as follows:

1. Define Āe
i (β) and C̄e

i (β) as in (6.13) where i = σ(t̄+k );

2. Let β = β̄ (for the sake of readability in the following steps dependence

on β is omitted);
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3. If rank







C̄e
i

C̄e
i Ā

e
i

...

C̄e
i (Ā

e
i )

ni+mq−1







= ni + mq, then no = ni + mq ,

Ti = Ino , Āo
i = Āe

i , C̄o
i = C̄e

i and go to step 5), else go to step 4);

4. Find a nonsingular matrix Ti such that z̄e
i = Tix̄e

i and





˙̄ze
i (t) =

[
Āo

i 0

? Āno
i

]
z̄e

i (t),

ȳi(t) =
[

C̄o
i 0

]
z̄e

i (t),

with the pair (Āo
i ∈ Rno×no , C̄o

i ∈ Rq×no) being observable;

5. Define1 Y(t̄+k ) =




ȳ(t̄+k )
˙̄y(t̄+k )

...

ȳ(no−1)(t̄+k )




and Oi =




C̄o
i

C̄o
i Ā

o
i

...

C̄o
i (Ā

o
i )

no−1




so that

rank(Oi) = no;

6. Finally, since Y(t̄+k ) = Oiz̄e
i (t̄

+
k ), it follows that

z̄e
i (t̄

+
k ) = (OT

i Oi)−1OT
i Y(t̄+k ),

which yields

x̄a(t̄+k ) =
[

0qm×ni Iqm

]
T−1

i z̄e
i (t̄

+
k ) = Λ̄t̄k . (6.14)

Uncertainties on the plant parameters: by (6.14), it is clear that Λ̄t̄k

depends on the plant matrices, so that it can be computed only when such

1In the following, ȳ(l)(t̄+k ) :=
“

dl

dtl (ȳj(t))
”˛̨
˛
t=t̄+

k

, where ȳ(t) = ȳj(t) for all t ∈ [t̄k, t̄k+1)

(see (6.7)).
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matrices are exactly known. In order to deal with possible uncertainties on

the plant description, i.e., β 6= β̄, the following rule is used

xa(t̄+k ) = e−Aa(t̄k−N+1−t̄k−N )xa(t̄−k−N+1) = Λt̄k .

A code-like algorithm implementing such a rule is described below.

• Initialize ΛN ∈ RN×qm as

ΛN =
[

Λ̄t̄0 Λ̄t̄1 · · · Λ̄t̄N−1

]T
.

• At the switching time t̄k, the reset value of xa is

xa(t̄+k ) = ΛT
N

(
(k mod N) + 1, :

)
,

• and the update rule of ΛN is

ΛT
N

(
((k − 1) mod N) + 1, :

)
= e−Aa(t̄k−t̄k−1)xa(t̄−k ),

where ΛN

(
i, :

)
denotes the i-th row of the matrix ΛN .

Main result

Under the assumption of sufficiently small initial errors, for all k ∈ Z+, the

switching time tk of the actual trajectory can be forced to be close to the

switching time t̄k of the desired trajectory so that, by following the guidelines

of the control strategy proposed in [33] and [32], the precompensator input

ua and the control input u can be expressed by the switching laws reported
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below (see Fig. 6.7)

ua(t) =

{
e(t), ∀t ∈ (tMk , tmk+1), k ∈ Z+

0, otherwise
, (6.15)

u(t) =

{
Ke

ix
e
i (t), ∀t ∈ (tMk , tmk+1), k ∈ Z+

0, otherwise
, (6.16)

where tM0 := t0, i = σ(tMk ) and, for all k ∈ Z+, one defines tmk := min{tk, t̄k}
and tMk := max{tk, t̄k}.

Ki

Ka
iIM

xa

y

t̄k tk

ȳ

e

t = tM
k

or t = t0

t = tm
k

Pi
xi

ua u

t = tM
k

or t = t0

t = tm
k

Figure 6.7: Structure of the control scheme based on the internal model prin-
ciple with switching control laws (6.15) and (6.16).

Remark 35. Through many simulations, it has been observed that the switch-

ing control laws given by (6.15) and (6.16) improve the behavior of the con-

trolled system as compared with the case in which the control is never switched

off, especially when the initial conditions are not particularly close to the de-

sired ones (see also Remark 13).

At this point, the following result can be stated and proved.

Theorem 11. Under assumptions (2)–(4), for all i ∈ P there exist Ki and

Ka
i such that the control law depicted in Fig. 6.7 is a solution of Problem 5.

Proof. The proof can be carried out by means of the steps described below,

based on the following facts whose proofs are omitted due to lack of space.

There exist constants M1, M2, M3 ∈ R+ and δ1, δ2 ∈ R+ and a function
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L(·, ·) : R+ × R+ → R+ such that

‖x̃e
j(t

m−
k )‖ < δ1 ⇒ |∆tk| < M1‖x̃e

j(t
m−
k )‖, (6.17)

‖x̃e
j(t

m−
k )‖ < δ2, |∆tk| < δ2, ‖Λ̃t̄k‖ < δ2 ⇒ (6.18)

⇒ ‖x̃e
i (t

M+
k )‖ < M2‖x̃e

j(t
m−
k )‖+ M2|∆tk|+ M2‖Λ̃t̄k‖,

‖x̃e
i (t)‖ < L(η, t− tMk )e−η(t−tMk )‖x̃e

i (t
M+
k )‖, (6.19)

∀ε∗ > 0, ζ > 0, ∃η∗ > 0 : η > η∗ ⇒ (6.20)

⇒ L(η, ζ)e−ηζ < ε∗,

‖Λ̃t̄k+N
‖ < M3‖x̃e

i (t
m−
k+1)‖, (6.21)

where k ∈ IN , ∆tk := tk − t̄k, j = σ(tm−k ), i = σ(tM+
k ) = σ(tm−k+1) and (6.19)

holds for all t ∈ (tMk , tmk+1).

Remark 36. If no uncertainties are present on the plant description, then the

present result still holds just considering Λ̃t̄k = 0, i.e., Λt̄k = Λ̄t̄k with Λ̄t̄k

given by (6.14), for all k ∈ IN .

Step (i): In view of (6.17) and (6.18) and in order to guarantee that the

actual switching time tk belongs to the interval (t̄k − ω, t̄k + ω) where ω ∈
(0, ρ/2) and ρ is defined in (6.10), one can take ‖x̃e

j(t
m−
k )‖ < δ̄1 where δ̄1 :=

min{δ1, δ2, δ1/M1, ω/M1}.
Step (ii): By putting together (6.17) and (6.18), the following inequality

is obtained

‖x̃e
i (t

M+
k )‖ < µ‖x̃e

j(t
m−
k )‖+ M2‖Λ̃t̄k‖, (6.22)

where µ := M2(1 + M1).

Step (iii): By using (6.19) and (6.22), one has

‖x̃e
i (t

m−
k+1)‖ < L(η, ζ)e−ηζ(µ‖x̃e

j(t
m−
k )‖+ M2‖Λ̃t̄k‖),
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with ζ := tmk+1−tMk ∈ R+. At this point, by taking in (6.20) ε∗ < min{ξ/µ, ξ/M2},
there exists η∗ ∈ R+ such that, for all η > η∗, it follows that (from now on

dependence on η and ζ is omitted)

‖x̃e
i (t

m−
k+1)‖ < ξ‖x̃e

j(t
m−
k )‖+ ξ‖Λ̃t̄k‖, (6.23)

with ξ ∈ R+ being a free parameter.

Step (vi): By using iteratively (6.23) and by the periodicity of the reference

trajectory, one obtains

‖x̃e
j(t

m−
k+N )‖ < ξN‖x̃e

j(t
m−
k )‖+ ξN‖Λ̃t̄k‖+ · · ·

· · ·+ ξN−1‖Λ̃t̄k+1
‖+ ξ2‖Λ̃t̄k+N−2

‖+ ξ‖Λ̃t̄k+N−1
‖,

Moreover, by (6.21) and (6.23) it follows that

‖Λ̃t̄k+N
‖ < ξM3‖x̃e

j(t
m−
k )‖+ ξM3‖Λ̃t̄k‖,

‖Λ̃t̄k+N+1
‖ < ξ2M3‖x̃j(tm−k )‖+ ξ2M3‖Λ̃t̄k‖+

+ ξM3‖Λ̃t̄k+1
‖,

...

‖Λ̃t̄k+2N−1
)‖ < ξNM3‖x̃e

j(t
m−
k )‖+ ξNM3‖Λ̃t̄k‖+ · · ·

· · ·+ ξM3‖Λ̃t̄k+N−1
‖.

Now, by defining

Ψk :=
[

x̃eT
j (tm−k ) Λ̃T

t̄k
· · · Λ̃T

t̄k+N−1

]T
∈ Rnj+(N+1)mq,

and by choosing

ξ := min{ ξ̄

N + 1
,

ξ̄

M3(N + 1)
},

with

0 < ξ̄ <
¯̄ξ√

N + 1
and 0 < ¯̄ξ < 1,



188 Chapter 6. Trajectory tracking in switched systems

the following inequalities can be easily proved

‖x̃e
j(t

m−
k+N )‖ < ξ̄‖Ψk‖,

‖Λ̃t̄k+N
‖ < ξ̄‖Ψk‖,

...

‖Λ̃t̄k+2N−1
‖ < ξ̄‖Ψk‖,

which imply

‖Ψk+N‖ < ¯̄ξ‖Ψk‖, 0 < ¯̄ξ < 1. (6.24)

For all k > N , applying iteratively (6.24), one obtains

‖Ψk‖ < ¯̄ξ‖Ψk−N‖ < · · · < ¯̄ξν‖Ψk−νN‖,

where (k − νN) ∈ {1, . . . , N}, ν ∈ N, so that

k − νN = 1 ⇒ ‖Ψk‖ < ¯̄ξ
k−1
N ‖Ψ1‖,

k − νN = 2 ⇒ ‖Ψk‖ < ¯̄ξ
k−2
N ‖Ψ2‖,

...

k − νN = N ⇒ ‖Ψk‖ < ¯̄ξ
k−N

N ‖ΨN‖.

(6.25)

If the initial errors are sufficiently small, that is

‖x̃e
σ(t+0 )

(t+0 )‖ < δε,ω, (6.26a)

‖Λ̃t̄1‖ < δε,ω, · · · , ‖Λ̃t̄N−1
‖ < δε,ω, (6.26b)

using (6.19) and (6.22) and defining

L̄ = max{L(η, tm1 − t0), L(η, tm2 − tM1 ), . . . , L(η, tmN − tMN−1)},
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yields after some computations

‖x̃e
σ(tm−1 )

(tm−1 )‖ < L̄δε,ω =: Mx̃,1δε,ω,

‖x̃e
σ(tm−2 )

(tm−2 )‖ < (L̄2µ + L̄M2)δε,ω =: Mx̃,2δε,ω,

...

‖x̃e
σ(tm−N )

(tm−N )‖ < (L̄NµN−1 + L̄N−1µN−2M2 + · · ·

· · ·+ L̄2µM2 + L̄M2)δε,ω =: Mx̃,Nδε,ω,

with Mx̃,j ∈ R+, j = {1, . . . , N} and by these results together with (6.21), it

follows that

‖Λ̃t̄N ‖ < M3‖x̃e
σ(tm−1 )

(tm−1 )‖ < MΛ̃,1δε,ω,

‖Λ̃t̄N+1
‖ < M3‖x̃e

σ(tm−2 )
(tm−2 )‖ < MΛ̃,2δε,ω,

...

‖Λ̃t̄2N−1
‖ < M3‖x̃e

σ(tm−N )
(tm−N )‖ < MΛ̃,Nδε,ω,

with MΛ̃,j ∈ R+, j = {1, . . . , N}, so that the following bounds can be proved

‖Ψ1‖ < MΨ,1δε,ω, (6.27a)
... (6.27b)

‖ΨN‖ < MΨ,Nδε,ω, (6.27c)

with MΨ,j ∈ R+, j = {1, . . . , N}. Therefore, by defining MΨ := max
j∈{1,...,N}

{MΨ,j}
the inequalities in (6.25) give

‖Ψk‖ < ¯̄ξb k−N
N cMΨδε,ω

k→+∞→ 0 since ¯̄ξ ∈ (0, 1), (6.28)

which implies that any element of ‖Ψk‖ goes to zero as k goes to infinity, that
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is

‖x̃e
σ(tm−k )

(tm−k )‖ → 0, (6.29a)

‖Λ̃t̄k‖ → 0, · · · , ‖Λ̃t̄k+N−1
‖ → 0. (6.29b)

By (6.29a) and (6.17), it follows that

|∆tk| < M1‖x̃e
σ(tm−k )

(tm−k )‖ → 0 as k → +∞. (6.30)

Moreover, in any free-motion interval, for all t ∈ (tMk , tmk+1), the following

result holds

‖x̃e
σ(t)(t)‖ < L(η, t− tMk )e−η(t−tMk )‖x̃e

σ(tM+
k )

(tM+
k )‖ <

< L̄(µ ‖x̃e
σ(tm−k )

(tm−k )‖
︸ ︷︷ ︸

→0

+M2 ‖Λ̃t̄k‖︸ ︷︷ ︸
→0

) → 0 as k → +∞,

where (6.29a) and (6.29b) have been used. By this result and (6.30), it follows

that

∀τ ∈(0, ρ), ∃k∗ : k > k∗ ⇒ t̄k + τ ∈ (tMk , tmk+1)︸ ︷︷ ︸
→(t̄k,t̄k+1)

and

‖x̃e
σ(t̄k+τ)(t̄k + τ)‖ → 0 as k → +∞.

Since tk → t̄k as k → +∞, time t̄k+τ, ∀τ ∈ (0, ρ) is a switching time neither for

the actual trajectory nor for the desired one. Therefore, lim
k→+∞

‖x̃e
σ((t̄k+τ)−)((t̄k+

τ)−)‖ = lim
k→+∞

‖x̃e
σ((t̄k+τ)+)((t̄k + τ)+)‖ = lim

k→+∞
‖x̃e

σ(t̄k+τ)(t̄k + τ))‖ = 0. This

fact and e(t) = Ce
σ(t)x̃

e
σ(t)(t) prove property 2) of Problem 5.

Step (v): To complete the proof remains to prove property 1) in Problem

5. As seen before, for all t in a generic time interval (tMk , tmk+1), k ∈ Z+, one
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has

‖x̃e
σ(t)(t)‖ < L(η, t− tMk )e−η(t−tMk )‖x̃e

σ(tM+
k )

(tM+
k )‖ <

< L̄µ‖x̃e
σ(tm−k )

(tm−k )‖+ L̄M2‖Λ̃t̄k‖.

Now, by considering the inequality in (6.28) and the definition of Ψk, one

obtains

‖x̃e
σ(t)(t)‖ < (L̄µ + L̄M2)MΨδε,ω,

in addition, if δε,ω < δ̄1/MΨ, ‖x̃e
σ(tm−k )

(tm−k )‖ < δ̄1 and ‖Λ̃t̄k‖ < δ̄1, then

‖x̃e
σ(tm−k+1)

(tm−k+1)‖ < ¯̄ξb k+1−N
N cMΨδε,ω < δ̄1 and ‖Λ̃t̄k+1

‖ < ¯̄ξb k+1−N
N cMΨδε,ω <

δ̄1, so that choosing δε,ω := min{ δ̄1
MΨ

, ε
(L̄µ+L̄M2)MΨMe

} with Me := max
i∈P

{‖C̄e
i‖}

yields

(6.26) ⇒ ‖x̃e
σ(t)(t)‖ <

ε

Me
, ∀t ∈ (tMk , tmk+1), k ∈ Z+,

and given that |∆tk| < ω and ‖e(t)‖ < ‖C̄e
σ(t)‖‖x̃e

σ(t)(t)‖ < Me‖x̃e
σ(t)(t)‖ hold,

then property 1) in Problem 5 is proved.

6.4 A numerical example

In this section, a numerical example is given in order to illustrate the effective-

ness of the proposed method; for lake of space only the case with uncertainties

and estimate of the precompensator jumps is taken into account.

By using the notation introduced in Section ?? and by defining the number

of modes M = 2, the switching surfaces parameters

1 → 2: J21 =
[
−1 0

]
, b21 = 2,

2 → 1: J12 = −1, b12 = 1,

1 → 1: J11 =
[

1 0
]
, b11 = 4,
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and the reset maps

Γ21 =
[

1/2 0
]
, Γ12 =

[
−1

2

]
, Γ11 =

[
0 0

0 −1/2

]
,

the hybrid system considered in this example can be represented as shown in

Fig. 6.8.

1 2

J11x1 − b11 ≥ 0

J12x2 − b12 ≥ 0

J21x1 − b21 ≥ 0

Figure 6.8: Linear hybrid system with 2 modes considered for the example.

On the other hand, the continuous dynamics during the free-motion phases

are characterized by

A1 =

[
0 1

−1 + ε1 −2 + ε2

]
, B1 =

[
0

1 + ε3

]
,

C1 =
[

1 0
]
, D1 =

[
0

0

]
,

and

A2 = 3 + ε4, B2 = 2 + ε5, C2 = 1, D2 = 0,

where εi ∈ R, i ∈ {1, 2, 3, 4, 5} denote possible uncertainties on the parameters

of the plant. In the present example, ε1 = ε2 = ε3 = ε4 = ε5 = 0 in the nominal

parameters, whereas ε1 = −0.5, ε2 = 1, ε3 = 0.7, ε4 = −0.8 and ε5 = 0.5 in

the actual parameters.

As for the reference trajectory, it can be given in the form of (6.7) as
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follows:

ȳ(t) =





0.5t2 + t, t ∈ [0, 2),

−t2 + 2t + 2, t ∈ [2, 3),

−2t + 7, t ∈ [3, 4.5),

with period T = 4.5 and N = 3 switching events per period.

At this point, by using the control strategy described in Section 6.3 (it

is easy to see that all the required assumptions are satisfiable) with static

gains K1, Ka
1 and K2, Ka

2 chosen such that η in (6.12) is at least equal to

3. Starting from the initial time t0 = 0.2 with initial conditions x1(t0) =[
3 −2

]T
, x2(t0) = 0 and xa(t0) =

[
0.05 −0.05 0.05

]T
, the behavior

of the controlled trajectory during the first 19.8 seconds of motion can be

observed in Fig. 6.9.

6.5 Details of the proof of main result

This appendix contains details about the proofs of the facts (6.17),(6.18),(5.28)

and (6.21). Since the desired trajectory is periodic, all the results obtained in

the following considering k ∈ {1, . . . , N} =: IN , remain proved for k ∈ N. In

the following, for the sake of readability the dependence of dynamics matrices

on β will be omitted.

Details of the proof of the fact (6.17)

For each k ∈ IN , the following fact can be proved

∃δ1 ∈ R+,M1 ∈ R+ : ‖x̃e
j(t

m−
k )‖ < δ1 ⇒ |∆tk| ≤ M1‖x̃e

j(t
m−
k )‖, (6.17)

where j = σ(tm−k ), x̃e
j(t) := xe

j(t)− x̄e
j(t) and ∆tk := tk − t̄k.

Remark 37. Lemma D.1 in [66] states that there exists a neighborhood U of

x∗ such that the function time to impact TI : U → R+ ∪ {0} (see, e.g., [84]),

which returns the time to impact starting from an initial condition x ∈ U , is

differentiable.
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(a) y(t) and ȳ(t)

2 4 6 8 10 12 14 16 18 20

−0.15

−0.1

−0.05

0

0.05

0.1

t

x
a

 

 
xa,1

xa,2

xa,3

(b) Precompensator state vector: xa(t)

2 4 6 8 10 12 14 16 18 20

1

2

t

σ

(c) Switching signal: σ(t)

Figure 6.9: The desired (dashed) trajectory and the actual (solid) one (a);
time behavior of the precompensator state variables xa(t) (b); switching signal
relevant to the controlled trajectory (c).
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In the following the assumption ‖x̃e
j(t

m−
k )‖ < δ1 ensures that at time tm−k

the actual trajectory is sufficiently close to the desired one, so that in both

the cases a) and b) described below the neighborhood U of Lemma D.1 in [66]

can be found.

Case a) tmk = tk, tMk = t̄k, so that ∆tk := tk − t̄k < 0. Since |∆tk| =

|T̄I(x̄e
j(t

−
k ))| where T̄I(·) denotes the time to impact function relative to

the nominal trajectory, and

|T̄I(x̄e
j(t

−
k ))| = |T̄I(x̄e

j(t
−
k ))− T̄I(ΠCij (x̄

e
j(t

−
k )))| ≤

≤ M1,a‖x̄e
j(t

−
k )−ΠCij (x̄

e
j(t

−
k ))‖ ≤

≤ M1,a‖x̄e
j(t

−
k )− xe

j(t
−
k )‖ = M1,a‖x̃e

j(t
−
k )‖,

with ΠC(x∗) ∈ C being the projection of x∗ on the switching surface C,
then

∃M1,a ∈ R+ : |∆tk| ≤ M1,a‖x̃e
j(t

m−
k )‖.

Case b) tmk = t̄k, tMk = tk, so that ∆tk := tk − t̄k > 0. Since |∆tk| =

|TI(xe
j(t̄

−
k ))| where TI(·) denotes the time to impact function relative to

the actual trajectory, and

|TI(xe
j(t̄

−
k ))| = |TI(xe

j(t̄
−
k ))− TI(ΠCij (x

e
j(t̄

−
k )))| ≤

≤ M1,b‖xe
j(t̄

−
k )−ΠCij (x

e
j(t̄

−
k ))‖ ≤

≤ M1,b‖xe
j(t̄

−
k )− x̄e

j(t̄
−
k )‖ = M1,b‖x̃e

j(t̄
−
k )‖,

with ΠC(x∗) ∈ C being the projection of x∗ on the switching surface C,
then

∃M1,b ∈ R+ : |∆tk| ≤ M1,b‖x̃e
j(t

m−
k )‖.

Therefore (6.17) is proved by choosing M1 = max{M1,a,M1,b}.2

2For ∆tk = 0 inequality (6.17) is trivially satisfied for each M1 ∈ R+.
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Details of the proof of the fact (6.18)

The dynamics during the free-motion intervals (i.e., in absence of switches for

both the actual and the nominal trajectories) are completely characterized

by equations (6.4),(6.3) and (6.13). On the other hand, concerning the con-

strained motion, the state vector x̄e
i (·) is subject to discontinuities at times

t̄k, whereas the vectors xe
i (·) and x̃e

i (·) have discontinuities at switching times

both of the controlled body and of the desired trajectory. For the sake of

clarity a summary of such equations is reported below.

Actual :





FM :

{
ẋe

i (t) = Āe
ix

e
i (t) + B̄e

iua(t),

y(t) = C̄e
ix

e
i (t),

CM :

{
xe

i (t
+
k ) = Γe

ijx
e
j(t

−
k ),

xe
i (t̄

+
k ) = Ie

ix
e
i (t̄

−
k ) + Λe

t̄k
,

(6.31a)

Nominal :





FM :

{
˙̄xe
i (t) = Āe

i x̄
e
i (t),

ȳ(t) = C̄e
i x̄

e
i (t),

CM :

{
x̄e

i (t
+
k ) = x̄e

i (t
−
k ),

x̄e
i (t̄

+
k ) = Γ̄e

ijx̄
e
j(t̄

−
k ) + Λ̄e

t̄k
,

(6.31b)

where Āe
i =

[
Ai + BiKi BiKa

i

0 Aa

]
, B̄e

i =

[
0

Ba

]
, C̄e

i =
[

Ci + DiKi DiKa
i

]

and Γe
ij =

[
Γij 0

0 Ina

]
, Ie

i =

[
Ini 0

0 0

]
,Λe

t̄k
=

[
0

Λt̄k

]
, Γ̄e

ij =

[
Γij 0

0 0

]
, Λ̄e

t̄k
=

[
0

Λ̄t̄k

]
.

For later use, the following facts are introduced

Ie
iΓ

e
ij = Γe

ijI
e
j = Γ̄e

ij , (6.32a)

(Γe
ij − I)Λ̄e

t̄k
= 0, (6.32b)

Γe
ij(Λ

e
t̄k
− Λ̄e

t̄k
) = (Λe

t̄k
− Λ̄e

t̄k
). (6.32c)
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Using the notation so far introduced, for each k ∈ IN , one can prove that

∃δ2 ∈ R+,M2 ∈ R+ : ‖x̃e
j(t

m−
k )‖ < δ2, |∆tk| < δ2, ‖Λ̃t̄k‖ < δ2 ⇒

⇒ ‖x̃e
i (t

M+
k )‖ ≤ M2‖x̃e

j(t
m−
k )‖+ M2|∆tk|+ M2‖Λ̃t̄k‖. (6.18)

where j = σ(tm−k ) and i = σ(tM+
k ). The two possible cases are considered

separately.

Case a) tmk = tk, tMk = t̄k, so that ∆tk := tk − t̄k < 0, and the error at

time tM+
k , that is after the k-th couple of switches, is given by x̃e

i (t
M+
k ) :=

xe
i (t

M+
k )− x̄e

i (t
M+
k ), where

xe
i (t

M+
k ) = xe

i (t̄
+
k ) = Ie

ix
e
i (t̄

−
k ) + Λe

t̄k
= Ie

i e
−Āe

i ∆tkxe
i (t

+
k ) + Λe

t̄k
=

= Ie
i e
−Āe

i ∆tkΓe
ijx

e
j(t

−
k ) + Λe

t̄k
=

= Ie
i e
−Āe

i ∆tkΓe
ijx̃

e
j(t

−
k ) + Ie

i e
−Āe

i ∆tkΓe
ije

Āe
j∆tk x̄e

j(t̄
−
k ) + Λe

t̄k
;

x̄e
i (t

M+
k ) = x̄e

i (t̄
+
k ) = Γ̄e

ijx̄
e
j(t̄

−
k ) + Λ̄e

t̄k
.

Hence, it follows that

x̃e
i (t

M+
k ) = Ie

i e
−Āe

i ∆tkΓe
ijx̃

e
j(t

m−
k ) +

(
Ie
i e
−Āe

i ∆tkΓe
ije

Āe
j∆tk+

− Γ̄e
ij

)
x̄e

j(t̄
−
k ) + Λ̃e

t̄k
=:

=: fa(x̃e
j(t

m−
k ), ∆tk, Λ̃e

t̄k
),

where j = σ(tm−k ), i = σ(tM+
k ) and Λ̃e

t̄k
:= Λe

t̄k
− Λ̄e

t̄k
;

Case b) tmk = t̄k, tMk = tk, so that ∆tk := tk − t̄k > 0, and the error at

time tM+
k , that is after the k-th couple of switches, is given by x̃e

i (t
M+
k ) :=
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xe
i (t

M+
k )− x̄e

i (t
M+
k ), where

xe
i (t

M+
k ) = xe

i (t
+
k ) = Γe

ijx
e
j(t

−
k ) = Γe

ije
Āe

j∆tkxe
j(t̄

+
k ) =

= Γe
ije

Āe
j∆tkIe

jx
e
j(t̄

−
k ) + Γe

ije
Āe

j∆tkΛe
t̄k

=

= Γe
ije

Āe
j∆tkIe

j x̃
e
j(t̄

−
k ) + Γe

ije
Āe

j∆tkIe
j x̄

e
j(t̄

−
k ) + Γe

ije
Āe

j∆tkΛe
t̄k

;

x̄e
i (t

M+
k ) = x̄e

i (t
+
k ) = x̄e

i (t
−
k ) = eĀe

i ∆tkΓ̄e
ijx̄

e
j(t̄

−
k ) + eĀe

i ∆tkΛ̄e
t̄k

.

Hence, it follows that

x̃e
i (t

M+
k ) = Γe

ije
Āe

j∆tkIe
j x̃

e
j(t

m−
k ) + (Γe

ije
Āe

j∆tkIe
j − eĀe

i ∆tkΓ̄e
ij)x̄

e
j(t̄

−
k )+

+ (Γe
ije

Āe
j∆tk − eĀe

i ∆tk)Λ̄e
t̄k

+ Γe
ije

Āe
j∆tkΛ̃e

t̄k
=:

=: fb(x̃e
j(t

m−
k ), ∆tk, Λ̃e

t̄k
),

where j = σ(tm−k ), i = σ(tM+
k ) and Λ̃e

t̄k
:= Λe

t̄k
− Λ̄e

t̄k
.

It is easy to see that x̃e
i (t

M+
k ) is a continuous function in the hyperplane

characterized by ∆tk = 03 and if x̃e
j(t

m−
k ) = 0,∆tk = 0 and Λ̃e

t̄k
= 0, then

x̃e
i (t

M+
k ) = 0. Moreover, it is also possible to show that the function x̃e

i (t
M+
k )

is Lipschitz in its variables x̃e
j(t

m−
k ), ∆tk and Λ̃e

t̄k
in a neighborhood Υ0 of

(x̃e
j(t

m−
k ) = 0, ∆tk = 0, Λ̃e

t̄k
= 0). In order to prove this, since for ∆tk < 0

and ∆tk > 0 the function x̃e
i (t

M+
k ) is clearly analytic, one has to show that

∃M2 ∈ R+ : ‖fa(υ1)− fb(υ2)‖ ≤ M2‖υ1 − υ2‖,

where υl := [(x̃eT
j (tm−k ))l, (∆tk)l, (Λ̃eT

t̄k
)l]T and υ1,υ2 ∈ Υ0 with (∆tk)1 ≤ 0

3By using (6.32), it is easy to show that x̃e
i (t

M+
k )|∆tk=0 = Γ̄e

ij x̃
e
j(t

m−
k ) + Λ̃e

t̄k
.
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and (∆tk)2 ≥ 0.

‖fa(υ1)− fb(υ2)‖ = ‖fa(υ1)− fa(υ∗2) + fa(υ∗2)− fb(υ∗1) + fb(υ∗1)− fb(υ2)‖ ≤
≤ ‖fa(υ1)− fa(υ∗2)‖+ ‖fb(υ2)− fb(υ∗1)‖+ ‖fa(υ∗2)− fb(υ∗1)‖,

(6.33)

where υ∗1 = υ1|(∆tk)1=0 and υ∗2 = υ2|(∆tk)2=0. Since functions fa(·) and fb(·)
are Lipschitz the inequality (6.33) can be rewritten as:

(6.33) ≤ M2a‖υ1 − υ∗2‖+ M2b‖υ2 − υ∗1‖+ ‖fa(υ∗2)− fb(υ∗1)‖. (6.34)

By the definitions of υ∗1 and υ∗2, it follows that ‖υ1 − υ∗2‖ ≤ ‖υ1 − υ2‖ and

‖υ2 − υ∗1‖ ≤ ‖υ1 − υ2‖. In fact, by using the following well known fact about

the norm of a vector x = [x1,x2, · · · ,xn]

‖x‖ =
∥∥∥
[
‖x1‖ ‖x2‖ · · · ‖xn‖

]∥∥∥ ,

one has

‖υ1 − υ∗2‖ =

∥∥∥∥∥∥∥∥




(x̃e
j(t

m−
k ))1 − (x̃e

j(t
m−
k ))2

(∆tk)1
(Λ̃e

t̄k
)1 − (Λ̃e

t̄k
)2




∥∥∥∥∥∥∥∥
=

=
√
‖(x̃e

j(t
m−
k ))1 − (x̃e

j(t
m−
k ))2‖2 + ‖(Λ̃e

t̄k
)1 − (Λ̃e

t̄k
)2‖2 + |(∆tk)1|2,(6.35)

and

‖υ1 − υ2‖ =

∥∥∥∥∥∥∥∥




(x̃e
j(t

m−
k ))1 − (x̃e

j(t
m−
k ))2

(∆tk)1 − (∆tk)2
(Λ̃e

t̄k
)1 − (Λ̃e

t̄k
)2




∥∥∥∥∥∥∥∥
=

=
√
‖(x̃e

j(t
m−
k ))1 − (x̃e

j(t
m−
k ))2‖2 + ‖(Λ̃e

t̄k
)1 − (Λ̃e

t̄k
)2‖2 + |(∆tk)1 − (∆tk)2|2.(6.36)
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Hence,

(6.35) ≤ (6.36) ⇔ |(∆tk)1| ≤ |(∆tk)1 − (∆tk)2|,

where |(∆tk)1| ≤ |(∆tk)1 − (∆tk)2| is satisfied since (∆tk)1 and (∆tk)2 have

opposite sign. For the sake of brevity, the detailed proof of ‖υ2 − υ∗1‖ ≤
‖υ1−υ2‖ is omitted given that it can be obtained with analogous reasonings.

In (6.34), the last term can be written as follows:

‖fa(υ∗2)− fb(υ∗1)‖ = ‖Γ̄e
ij(x̃

e
j(t

m−
k ))2 + (Λ̃e

t̄k
)2 − Γ̄e

ij(x̃
e
j(t

m−
k ))1 − (Λ̃e

t̄k
)1‖ ≤

≤ ‖Γ̄e
ij‖‖(x̃e

j(t
m−
k ))1 − (x̃e

j(t
m−
k ))2‖+ ‖(Λ̃e

t̄k
)1 − (Λ̃e

t̄k
)2‖ ≤

≤ (1 + ‖Γ̄e
ij‖)‖υ1 − υ2‖ =: M2ab‖υ1 − υ2‖. (6.37)

By putting together (6.33),(6.34),(6.35),(6.36) and (6.37), one has for each

υ1, υ2

‖x̃e
i (t

M+
k )|υ1 − x̃e

i (t
M+
k )|υ2‖ ≤ M2‖υ1 − υ2‖,

where M2 := max{M2a, M2b, M2ab} ∈ R+. Now, since (x̃e
j(t

m−
k ) = 0,∆tk =

0, Λ̃e
t̄k

= 0) ⇒ x̃e
i (t

M+
k ) = 0 and by using the Lipschitz property for each

(x̃e
j(t

m−
k ),∆tk, Λ̃e

t̄k
) ∈ Υ0, with Υ0 being a neighborhood of (x̃e

j(t
m−
k ) =

0, ∆tk = 0, Λ̃e
t̄k

= 0), one obtains

‖x̃e
i (t

M+
k )− 0‖ ≤ M2

∥∥∥∥∥∥∥∥




x̃e
j(t

m−
k )

∆tk

Λ̃e
t̄k




∥∥∥∥∥∥∥∥
≤ M2‖x̃e

j(t
m−
k )‖+ M2|∆tk|+ M2‖Λ̃e

t̄k
‖.

(6.38)

Considering that ‖Λ̃e
t̄k
‖ = ‖Λ̃t̄k‖, (6.38) proves (6.18) for each k ∈ IN .
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Details of the proof of the facts (6.19) and (6.20)

During the free-motion phases the error dynamics x̃e
i (t) are given by

˙̃xe
i (t) = ẋe

i (t)− ˙̄xe
i (t) = Āe

ix
e
i (t) + B̄e

i (y(t)− ȳ(t))− Āe
i x̄

e
i (t) =

= Āe
i x̃

e
i (t) + B̄e

i C̄
e
i x̃

e
i (t) = (Āe

i + B̄e
i C̄

e
i )x̃

e
i (t) =

= (Ae
i + Be

iK
e
i )x̃

e
i (t), (6.39)

where (6.31) have been used and the dynamic matrix (Ae
i +Be

iK
e
i ) is Hurwitz

(see 6.3). For later use, the following result is proved.

Lemma 4. Let η be a positive constant such that all eigenvalues of the Hurwitz

matrix A ∈ Rn×n have real part less than or equal to −η, then

‖eAt‖ ≤ L(η, t)e−ηt, (6.40a)

and for each fixed t = T > 0, it hold that lim
η→+∞L(η, T )e−ηT = 0, i.e.,

∀ε∗ > 0, ∃η∗ > 0 : η > η∗ ⇒ L(η, T )e−ηT < ε∗. (6.40b)

Proof. In the following for the sake of simplicity the assumption of real and

distinct eigenvalues will be considered. However, the present result can also

be proved when A has complex and/or repeated eigenvalues by using wholly

similar reasonings just needing a more cumbersome notation. The norm of

the exponential matrix eAt can be computed as:

‖eAt‖ = ‖L−1((sI−A)−1)‖, (6.41)

where L−1(·) denotes the inverse Laplace transform of the expression at argu-



202 Chapter 6. Trajectory tracking in switched systems

ment. Let λ1, λ2, · · · , λn be the eigenvalues of A, so that

det(sI−A) = (s− λ1)(s− λ2) · · · (s− λn),

and

(sI−A)−1 =
M1

s− λ1
+

M2

s− λ2
+ · · ·+ Mn

s− λn
, (6.42)

where

Mi =
[
(s− λi)(sI−A)−1

]∣∣
s=λi

=
[
(s− λi)

Adj(sI−A)
det(sI−A)

]∣∣∣∣
s=λi

=

=
[

Adj(sI−A)
(s− λ1) · · · (s− λi−1)(s− λi+1) · · · (s− λn)

]∣∣∣∣
s=λi

=

=
Adj(λiI−A)

n∏

j=1
j 6=i

(λi − λj)

. (6.43)

The i-th eigenvalue λi can be rewritten in terms of η as λi = −µiη with µi being

a positive real such that µi > 1. It is clear that also the difference between two

different eigenvalues can be rewritten in a similar way as λi−λj = −(µi−µj)η.

From (6.43) it follows that

Mi =
Adj(−µiηI−A)
n∏

j=1
j 6=i

(−(µi − µj)η)

= γi
Adj(−µiηI−A)

ηn−1
, (6.44)

where γi ∈ R. Now, since each element of the adjoint matrix is an algebraic

complement of (−µiηI−A), so that it is a polynomial in η of degree less than

or equal to n − 1, from (6.44) it follows that each element of Mi is bounded
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from above as η → +∞. By putting together (6.41),(6.42) one has

‖eAt‖ =
∥∥∥∥L−1

(
M1

s− λ1
+

M2

s− λ2
+ · · ·+ Mn

s− λn

)∥∥∥∥ =

=
∥∥M1e

−µ1ηt + M2e
−µ2ηt + · · ·+ Mne−µnηt

∥∥ ≤
≤ ‖M1‖e−µ1ηt + ‖M2‖e−µ2ηt + · · ·+ ‖Mn‖e−µnηt ≤
≤ (‖M1‖+ ‖M2‖+ · · ·+ ‖Mn‖)︸ ︷︷ ︸

L(η)

e−ηt. (6.45)

The boundness of L(η) together with (6.45) prove (6.40).

At this point, from Lemma 4 and (6.39) it follows that

‖x̃e
i (t)‖ ≤ L(η, t− tMk )e−η(t−tMk )‖x̃e

i (t
M+
k )‖, ∀t ∈ (tMk , tmk+1), (6.19)

where tmk := min{tk, t̄k}, tMk := max{tk, t̄k} and all the eigenvalues of (Ae
i +

Be
iK

e
i ) have real part less than or equal to −η with η ∈ R+. Moreover, for

each fixed T > 0 the following fact holds

∀ε∗ > 0, ∃η∗ > 0 : η > η∗ ⇒ L(η, T )e−ηT < ε∗. (6.20)

Remark 38. If uncertainties are present on the plant description, then the

eigenvalues of the actual matrix (Ae
i + Be

iK
e
i ) are in general different from

the desired ones assigned by the choice of Ke
i in (6.3). In this case, a robust

eigenvalues assignment has to be considered in order to guarantee that the

eigenvalues of the closed-loop dynamic matrix still have real part less than or

equal to −η and so that the facts (6.19) and (6.20) still hold.

Details of the proof of the fact (6.21)

In presence of uncertainties the relation (6.14) cannot be used, so that in order

to estimate the right reset value of the precompensator state vector at time

t̄+k , i.e., Λ̄t̄k , the rule (6.3) is taken into account. From the definition of (6.3)
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and by considering the periodicity of the target trajectory it follows that

Λ̃t̄k+N
= Λt̄k+N

− Λ̄t̄k+N
= e−Aa(t̄k+1−t̄k)xa(t̄−k+1)− e−Aa(t̄k+1−t̄k)x̄a(t̄−k+1) =

= e−Aa(t̄k+1−t̄k)x̃a(t̄−k+1),

which implies

‖Λ̃t̄k+N
‖ ≤ Ma‖x̃a(t̄−k+1)‖, (6.46)

where Ma := max
k∈IN

‖e−Aa(t̄k+1−t̄k)‖ ∈ R+. For each k ∈ IN , one has

∃M3 ∈ R+ : ‖Λ̃t̄k+N
‖ ≤ M3‖x̃e

i (t
m−
k+1)‖. (6.21)

where i = σ(tm−k+1). The two possible cases are considered separately.

Case a) tmk+1 = tk+1 and tMk+1 = t̄k+1. From (6.46), one has

‖Λ̃t̄k+N
‖ ≤Ma‖xa(t̄−k+1)− x̄a(t̄−k+1)‖ = Ma‖eAa(tMk+1−tmk+1)x̃a(t+k+1)‖ ≤

≤ MaMa,1‖x̃a(t−k+1)‖ ≤ MaMa,1‖x̃e
i (t

−
k+1)‖ =: M3a‖x̃e

i (t
m−
k+1)‖,

where Ma,1 := max
k∈IN

‖e−Aa∆tk+1‖ with |∆tk+1| < ωk+1 ∈ R (see step (i)

of the proof of Theorem 11).

Case b) tmk+1 = t̄k+1 and tMk+1 = tk+1. From (6.46), one has

‖Λ̃t̄k+N
‖ ≤ Ma‖x̃a(t̄−k+1)‖ ≤ Ma‖x̃e

i (t
m−
k+1)‖.

Therefore, (6.21) follows by choosing M3 := max{M3a,Ma}.



Chapter 7

Conclusions and future works

This thesis focused on the problem of asymptotic trajectory tracking for dy-

namical systems with discontinuities in the state vector, e.g. mechanical sys-

tems subject to impacts.

The Birkhoff elliptical billiard system has been considered as benchmark

for theory. In particular, after giving a procedure based on LMIs techniques

for determining admissible periodic trajectories inside an elliptical billiards,

a tracking control problem taking into account the nonsmooth nature of the

considered system has been defined and solved by using a dynamic compen-

sator, whose state is subject to discontinuities and whose structure is based

on the internal model principle. First, it was assumed that the plant descrip-

tion is exactly known and the moving mass is not subject to friction. Such

assumptions are removed later and the tracking control problem is defined

and solved in both cases of Full-Information (i.e., the whole plant state vector

is accessible) and Error-Feedback (i.e., only the position error is available for

feedback). In both of them, a solution based on a nonsmooth version of the

internal model principle is used and due to the possible presence of uncertain-

ties on the system parameters, an algorithm to estimate the correct jumps for

the controller is implemented.

In the second part of this thesis, the results obtained for the elliptical

205
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billiard system have been generalized for a class of switched systems having

linear dynamics between switching events and linear reset maps. A numerical

examples is also presented in order to show the effectiveness of the proposed

control strategy.

In the following, the list of publications that contain the present work is

reported:

• A. Potini, A. Tornambè, L. Menini, P. Dorato, C. T. Abdallah Finite-

Time control of linear mechanical systems subject to nonsmooth impacts.

Proc. of 14th Mediter. Conf. on Control and Automation, Ancona. 2006

• S. Galeani, L. Menini, A. Potini, A. Tornambè Asymptotic tracking of

periodic trajectories for a particle in an elliptical billiards. Proc. of 26th

American Control Conf., New York. 2007

• S. Galeani, L. Menini, A. Potini, A. Tornambè Trajectory tracking for a

particle in elliptical billiards. International Journal of Control. 2007

• S. Galeani, L. Menini, A. Potini, A. Tornambè Robust asymptotic track-

ing of periodic trajectories in elliptical billiards. Proc. of 46th Conf. on

Decision and Control, New Orleans. 2007

• S. Galeani, L. Menini, A. Potini Trajectory tracking in linear hybrid sys-

tems: an internal model principle approach. Submitted to 27th American

Control Conf., Seattle. 2008

Further work may be devoted to weaken the requirements, in order to ren-

der the approach more amenable to applications. First of all, a global tracking

problem (i.e., when no assumption of small initial errors is made) could be con-

sidered. Moreover, the class of considered systems should be enlarged by con-

sidering more generic hybrid systems (with real discrete dynamics) together

with nonlinear switching surfaces and reset maps.
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mance for multivariable systems under physical parameter uncertainties.

Automatica, 29(1):169–179, 1993.

[38] D. H. Griffel. Applied Functional Analysis. Courier Dover Publications,

2002.



Bibliography 211

[39] P. Griffiths and J. Harris. On cayley’s explicit solution to Poncelet’s

porism. Enseign. Math., 24(1-2):31–40, 1978.

[40] W. P. M. H. Heemels and B. Brogliato. The Complementarity Class of

Hybrid Dynamical Systems. Eur. J. of Control, 9(2-3):322–360, 2003.

[41] M. F. Heertjes, M. J. G. van den Molengraft, J. J. Kok, and D. H. van

Campen. Vibration reduction of a harmonically excited beam with one-

sided springs using sliding computed torque control. Dynamics and con-

trol, 7:361–375, 1997.

[42] D. Henrion and J. B. Lasserre. LMIs for constrained polynomial inter-

polation with application in trajectory planning. Systems and Control

Letters, 55(6):473–477, 2006.

[43] D. Henrion, S. Tarbouriech, and V. Kučera. Control of Linear Systems
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