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Abstract

Cloud computing is a recent advancement where service providers offer hardware infrastruc-
tures, platforms, and software applications as services to users on the basis of a usage-based
pricing model. As Cloud-based systems have been increasing in size and complexity and oper-
ate in a continuously and unpredictably changing environment, it has become increasingly more
important and challenging to develop effective provisioning and pricing schemes.

In this paper we consider several Software as a Service (SaaS) providers, that offer a set of
Web services using the Cloud facilities provided by an Infrastructure as a Service (IaaS) provider.
We assume that the TaaS provider offers a pay only what you use scheme similar to the Amazon
EC2 service, comprising flat, on demand, and spot virtual machine instances. We propose a
two stage provisioning scheme. In the first stage, the SaaS providers determine the number of
required flat and on demand instances by means of standard optimization techniques. In the
second stage the SaaS providers compete, by bidding for the spot instances which are instantiated
using the unused IaaS capacity. We assume that the SaaS providers want to maximize a suitable
utility function which accounts for both the QoS delivered to their users and the associated
cost. The lTaaS provider, on the other hand, wants to maximize his revenue by determining
the spot prices given the SaaS bids. We model the second stage as a Stackelberg game, and
we compute its equilibrium price and allocation strategy by solving a Mathematical Program
with Equilibrium Constraints (MPEC) problem. Through numerical evaluation we study the
equilibrium solutions as function of the system parameters.

*This Technical Report has been issued as a Research Report for early dissemination of its contents. No part of
its text nor any illustration can be reproduced without written permission of the Authors.



1 Introduction

Cloud computing has recently been experiencing a high rate of grow, mainly due to the ability
of realizing highly scalable and reliable infrastructures for running software applications in an
efficient and cost-effective way. Industrial companies and research communities have started using
commercially available infrastructures provided by Infrastructure as a Service (IaaS) providers to
run their applications, that can scale up or down as demand changes by allocating or deallocating
virtual computing and storage resources almost instantaneously. In their turn, customers of ITaaS
providers can rapidly offer their innovative applications, thus becoming Software as a Service (SaaS)
providers, but without needing to own and maintain development or production infrastructures.

Among the different methods to deliver Cloud services, an IaaS provider can sell resources in
the form of Virtual Machine (VM) instances to customers, that generally rent the resources by
using a pay-as-you-go model on a per-hour basis at a fixed price (also called on demand price).
When resource utilization can be planned in advance, IaaS customers can also reserve flat resources
in advance, paying a long-term reservation fee plus a per-hour price which depends on the effective
resource usage and is lower than the on demand price. In order to achieve high utilization in data
centers that are often under-utilized, IaaS providers can also sell their spare capacity in form of
spot instances by organizing an auction where customers bid, providing a maximum per-hour price
they are willing to pay. On the basis of the bids and his spare capacity, the laaS provider sets the
spot instances price. For IaaS customers spot instances represent an attractive and cost-effective
solution to deal with unexpected load spikes and run compute-intensive applications but at the risk
of a lower reliability than flat and on demand instances, since the IaaS provider can revoke spot
instances without notice due to price and demand fluctuations [18, 24]. For example, Amazon’s
Elastic Cloud Computing (EC2) service offers three types types of VM instances (i.e., flat, on
demand, and spot VMs) [3], with different pricing and reliability.

From an IaaS perspective, selling resources to multiple customers requires to determine efficient
service provisioning and pricing strategies, in order to maximize the TaaS resources usage and the
provider profit and to satisfy the customers. Developing such strategies in the Cloud environment is
a challenging task, mostly because the Cloud environment is inherently competitive and dynamic.
On the one hand, the IaaS provider wants to maximize his profit and the resources usage; on
the other hand, the customers compete among them to acquire the resources and are interested
in saving money. In this context, game theoretic methods can help to analytically model and
understand the service provisioning and pricing problem and to device adequate strategies. Game
theory has been already successfully applied to networking problems like Internet congestion control
and pricing, e.g., [2] and in the Cloud computing environment, e.g., [4, 5, 15, 23]. In most works,
the solution concept of Nash equilibrium has been extensively applied (a set of players’ strategies is
a Nash equilibrium if no player one can improve his revenue by changing its strategy unilaterally,
i.e., while the other players keep theirs unchanged).

In this paper, we consider a Cloud scenario where an IaaS provider sells his resources to several
SaaS providers, offering flat, on demand, and spot VM instances. In their turn, SaaS providers offer
to their end users Web services with Quality of Service (QoS) guarantees, using the IaaS facilities
to host and run the provided applications. Revenues and penalties of each SaaS provider depend on
the provisioning of an adequate performance level, which is specified in a Service Level Agreement
(SLA) contract that each SaaS stipulates with his end users. Therefore, each SaaS provider has to
face the problem of determining the optimal number of VMs to satisfy the SLA with his end users
while maximizing his revenue. However, a proper solution cannot be accomplished in isolation,
since the SaaS providers compete among them and bid to acquire the spot IaaS resources. On the
other hand, the IaaS provider aims to maximize his revenue and therefore wants to properly choose



the price of his resources. In other words, each player strategy influences what the other players
do.

To model this conflicting situation we recur to a Stackelberg game [13]. In this class of games,
one player (i.e., the leader, in our case the IaaS provider) moves first and commits his strategy to
the remaining players (i.e., the followers, in our case the SaaS providers), that consider the action
chosen by the leader before acting simultaneously to choose their own strategy in a selfish way
through a standard Nash game. Stackelberg games are commonly used to model attacker-defender
scenarios, e.g. [7, 17]. For the considered Cloud scenario, the adoption of a leader-follower strategy
sounds feasible, since it is reasonable to assume that the IaaS provider fixes the price before the
SaaS providers compete to acquire the VM resources. Furthermore, a Stackelberg game help us to
devise a revenue-maximizing pricing scheme for the IaaS provider. Using game theory results, we
develop an algorithm for the pricing and allocation of the TaaS resources that aims to maximize
the TaaS provider profit and, at the same time, to satisfy the SaaS providers needs.

The main contributions of the present work are as follows.

e We devise a two-stage resource provisioning and pricing strategy. In the first stage, each
SaaS provider independently determines the optimal number of flat and on demand VMs
(which have a fixed price) in such a way to guarantee the performance level offered in the
SLA to his end users while maximizing his profit. In the second stage, the SaaS providers
bid and compete for the unused IaaS provider capacity. The goal of each SaaS provider is
to determine the number of spot instances to allocate which maximizes his profit, given the
number of flat and on demand instances bought in the first stage. The goal of the IaaS
provider is to determine the price of the spot VMs in order to maximize his profit. While the
first stage involves the solution of standard optimization problems, the second stage requires
to compute the equilibria of the SaaS/IaaS Stackelberg game on spot instances.

e We address the solution of the challenging Stackelberg game by solving a suitable Mathemat-
ical Program with Equilibrium Constraint (MPEC) problem.

e We study through numerical investigation the behavior of the proposed provisioning and
pricing strategy under different workload and bidding configurations and compare it with the
service provisioning and pricing policy proposed in [4]. Using our proposed strategy, the IaaS
provider can set a price of the spot instances lower than the maximum price in the bids in
order to incentivize SaaS providers to buy more instances, thus increasing his revenue with a
higher volume of sold instances.

The rest of this paper is organized as follows. In Section 2 we define the system model and
provide the problem statement. In Section 3 we define the two-stage service provisioning and
pricing strategy, first analyzing the flat and on demand virtual machines provisioning that occurs
in the first stage and then focusing on the second stage during which the number and price of
spot instances is determined. We discuss the solution method of the Stackelberg game that arises
from our problem formulation in Section 4. In Section 5 we analyze through numerical experiments
the behavior of the proposed strategy and compare its results to those of the Generalized Nash
Equilibrium Problem (GNEP) formulation proposed in [4]. In Section 6 we discuss related works.
Finally, in Section 7 we conclude the paper and present directions for future work.

2 System Model

We consider a set U of SaaS providers that offer a set of Web services/applications A, u € U, using
the cloud facilities offered by a IaaS provider. We assume that each service k € A, is characterized



by a SLA which stipulates the service QoS levels, i.e., service response time, and the associated
cost /penalty for its use.

Web services are hosted on virtual machines instantiated by the IaaS provider. For the sake of
simplicity, we assume that the IaaS provider offers only one type of VMs, i.e., all the VMs have
the same RAM and CPU capacity. Each VM hosts only one Web service; on the other hand, each
Web service can be distributed on multiple VMs and in that case we assume the workload to be
evenly split among them.

The IaaS provider manages an infrastructure which can provide to his users up to S VMs which
are offered to users as flat, on demand and/or spot instances. Flat instances are characterized by
one-time payment plus a payment of ¢ unit per hour of actual use. On demand instances have
no one-time payment and are charged at a price §, which we assume to be strictly larger than .
On spot instances are charged at a price oy, which we assume it may vary from SaaS provider
to SaaS provider and from application to application, and which depends on the users bids and
competition for the unused resources and the TaaS provider optimal pricing strategy.

Given the number of flat f, 5, on demand d, j, and spot instances s, j and their prices oy j
allocated to service k € Ay, u € U, the associated per-hour TaaS revenue is:

Or= Z Z O fug + 0dyk + Oy kSuk (1)

ueU ke Ay,

Each SaaS provider determines for each service k the number of flat f, 1, on demand d, 1, and spot
Su,k VMs to be allocated which maximizes his revenue, given the predicted arrival rate A, ; and
the service SLA.

In this paper, we assume that SLA takes the form of an upper bound on the service response
time RJ;*. The SLA also specifies the user per-request cost C, = Cyx(1l — f;i,i’ikx), which we
assume to be a linear function of the service response time R, ;. Observe that the service cost is a
decreasing function of the response time and it becomes negative (hence, the SaaS provider incurs
a penalty) when R, > RZ"‘Z” We adopt such a simple model since linear costs allow to implement
a soft constraint on the response time, which enables the SaaS provider to trade-off revenues and
infrastructural costs [5].

We model each Web service hosted on a VM as an M/G/1/PS queue with an application
dependent service rate ji, . Under the assumption of perfect load sharing among multiple VMs

assigned to the same service, the service k average response time is given by:

fu,k + du,lc =+ Su,k
Nu,k(fu,k + du,k + Su,k) - Au,k
Au,k

ll/u,k(fu,k+du,k+5u,k
tural per hour cost for the allocated VMs we have the following general expression for the per-hour

SaaS profit:

ER, i) =

provided the stability condition y < 1 holds. Taking into account the infrastruc-

0, =

Ay kCr (1 - 2 7 :
Z U, < Z:»Z:a: Mu7k(fu,k‘ + du’k =+ Su,k) — Au,k

keA,
- Z fu,k -0 Z du,k - Z Ou,kSu,k (2)
keA, keA, keA,
where the first term is the sum of the average per service revenues A, ;Cp = Ay 1Cr(1 — E}ﬁﬁf})
u,k

and the remaining terms the VMs costs.



For the sake of clarity, we summarize in Table 1 the notation adopted in this paper. Furthermore,

throughout the rest of this paper we will use the variable m,, , = —R%’fz to indicate the slope of
u,k

the SaaS profit function.

System parameters

S Total amount of VMs managed by the IaaS provider

u Set of SaaS providers

N Number of SaaS providers

Ay Set of services for SaaS provider u

fu Number of reserved flat instances for SaaS provider u

Ak Predicted arrival rate for service k of SaaS provider u

[T Maximum service rate of a unitary capacity VM executing service k of SaaS provider u

Mok Utility function slope for service k of SaaS provider «

U | Maximum allowed utilization of a VM executing services of SaaS provider u

o) Time unit cost for one flat VM

) Time unit cost for one on demand VM

ol Minimum time unit cost for one spot VM, set by the IaaS provider

ag 5 Maximum time unit cost for one spot VM used for service k, set by the SaaS provider

Decision variables
fu,k | Number of flat VMs used for service k of SaaS provider u
dy,i | Number of on demand VMs used for service k of SaaS provider u
Su,k | Number of spot VMs used for service k of SaaS provider w
ou,k | Time unit cost for spot VMs used for service k of SaaS provider u

Table 1: Main notation adopted in the paper

3 Service Provisioning: a Stackelberg Game Approach

We assume that SaaS providers every hour allocate and deallocate VMs relying on a prediction of
the future workload. In this paper we consider a two-stage allocation procedure. In the first stage,
each SaaS provider independently determines, for each offered service, the number of flat and on
demand instances’ which guarantee the performance level defined in the SLA to its prospective
users and maximize his profit. In the second stage, the TaaS provider sells the unused capacity
as spot instances. We assume that the SaaS providers compete for these additional resources by
submitting, to the IaaS provider, a bid which defines the maximum per VM price their are willing
to pay. The laaS provider, given the resource availability and the submitted bids, determines the
spot instances price which maximizes his profit.

3.1 First Stage: Flat and on Demand VM allocation

In the first stage, each SaaS provider independently determines the optimal number of flat and
on demand VMs necessary to sustain the predicted load for the next hour which maximizes his
profit. Here we make the implicit assumption that the IaaS provider always has enough resources
to accomodate all flat and on demand instances the users may require (otherwise we would have
competition also at this stage). For each SaaS provider u € U we have the following optimization

!Observe that, in case of flat instances, this number represents the number of already allocated flat instances
which will be used to implement the offered services (a SaaS provider does not pay the per hour cost of unused flat
instances).



problem:

max O, (3)
subject to: Z furk < fu (4)
keAy,
Aok <Ur*, Vke A (5)
e (fug +dug) = " 7 “
Jug> dug >0, Yk € A, (6)

Constraint (4) ensures that the flat instances allocated to SaaS provider u are less than or equal
to the number of reserved ones f,. Constraint (5) guarantees that resources are not saturated. In
particular, it ensures that the resources utilization is less than a threshold U;***. This term forces
the system to work away from the saturation point. Note that, as in [4, 5], we do not impose to
the variables to be integers as in reality they are, because the problem would have been much more
difficult to solve (NP-hard). Therefore, throughtout the paper we deal with a relaxation of the real
problem. We believe that, nonetheless, our findings apply to the actual problem as well.

3.2 Second Stage: Spot Instances Allocation

In the second stage, the SaaS providers compete for the unused IaaS provider resources made
available via a bidding mechanism. The idea is that the SaaS providers can increase their revenues
by accessing additional resources, while the TaaS provider can make profit from the otherwise unsold
resources. We will assume that, nevertheless, the Iaas provider sets a minimum bid o% for spot
VMs he is willing to accept.

The goal of each SaaS provider is to determine the number of spot instances to allocate which
maximizes his profit given the number of flat and on demand instances bought in the first stage. In
the second stage, we assume that each SaaS provider u specifies Uf{k, the maximum time unit cost
for spot VMs for application k he is willing to pay (see the IaaS p1rc7>blem)7 and solves the following
optimization problem:

Problem SaaSppr

M N (fu + duge + Suk)
g Puk(fuk + dup + Suk) = Auk
subject to: Z Z Sup < 8V (7)

ueU ke A,
Su,k > 07 Vk € Au (8)

max 0, = max — SukOuk

where fuk and czwk represents the number of flat and on demand instances already bought and

s =8=> "> (fuk +dui)

uelU ke Ay

the amount of unused TaaS capacity, being S the total amount of VMs the IaaS provider manages
and Yy D ke, (fuk + dux) the amount of VMs instantiated after the first stage. In this opti-
mization problem constraint (7) ensures that the total number of spot VMs allocated to the SaaS
providers are less that or equal to the ones available at the IaaS provider. Note that differently
from the flat and on demand provisioning problem the SaaS providers solve in the first stage, we



now have a constraint which involves the decision variables of all the SaaS providers and which is
parametrized by the spot instances price o, which is a IaaS decision variable.

The goal of the IaaS provider is to determine the cost o, of the spot VMs for each service k of
every SaaS provider u in order to maximize his profit. The IaaS provider optimization problem is:

Problem IaaSopr

max ©; = max E E SukOuk

u€U ke Ay,

subject to: ¥ < Tuk < ng, Yuel, Vk € A, 9)
where 0'3 i 18 the maximum price for spot instances each SaaS provider is willing to pay, while ol
is imposéd by the IaaS provider and represents the minimum spot instances cost which takes into
account the operative cost to run a VM.

In this setting, the decisions of the SaaS providers and the IaaS provider depend mutually
from each other. Indeed, the objective function of the IaaS provider depends on s, , the decision
variables of the SaaS providers, while the objective function of each SaaS provider depends on oy, 1,
the price of the spot instances, which are the decision variables of the IaaS provider. Moreover, the
decision of each SaaS provider depends also on what the others providers do, since constraint (7)
couples the variables of all the SaaS providers.

We model such a conflicting situation as a Stackelberg game [13]. Stackelberg games are a
particular type of non-cooperative game whereby one player (the leader) takes its decision before
the other players (the followers). Given the leader decision, the followers then simultaneously take
their own decision. Assuming a rational behavior, the leader can take advantage of the fact that
the followers basically react to its decisions, which leads to a follower subgame equilibrium (if any
exists), and drives the system to its own optimum (possibly a global one). In our model, the IaaS
provider acts as a leader by deciding the spot instances prices o, . The SaaS providers act as
followers which must decide the number s, ;. of spot instance to buy. Given the spot prices, the
Saa$S providers thus compete among themselves (the SaaS subgame) for the shared pool of available
instanced sV. Following the Nash equilibrium concept, given the spot prices, the SaaS providers
should adopt a strategy that none of them can improve their revenue by unilaterally changing their
strategy. In turn, the IaaS provider can determine the sets of prices which maximizes his revenue
and which represents the Stackelberg equilibrium of the game: this equilibrium is characterized by
the property that for the given set of prices, the SaaS providers have adopted a strategy such that
none of them could improve his revenue by changing it unilaterally, and the IaaS provider would
not benefit by modifying the chosen set of prices since no other SaaS providers equilibrium would
improve his revenue.

Observe the difference between Nash and Stackelberg equilibrium. In the former case, at the
equilibrium no player can improve his payoft by unilaterally changing his own strategy, i.e., while
the other players keep their strategy unchanged. In Stackelberg equilibrium, while each follower,
as in Nash equilibrium, cannot improve his payoff by unilaterally changing his own strategy, the
leader cannot improve his payoff by changing his own strategy which, due to the nature of the
game, always affects the strategy of the followers and cannot be accounted for independently.

4 Solution Method

Our provisioning scheme comprises two stages. The first stage involves the solution of a set of
independent convex optimization problems which can be solved by means of standard techniques.



The second stage requires the computation of the equilibria of the SaaS/IaaS spot instance Stack-
elberg game. This is a challenging problem for which no general solution exists. In this paper, we
take advantage of the structure and properties of the SaaS provider subgame, and we compute the
Stackelberg equilibria by solving a suitable Mathematical Programs with Equilibrium Constraint
(MPEC). In this section, we first study the SaaS providers subgame and establish some important
game properties. We will then present an algorithm to compute an equilibrium of the Stackelberg
game.

Throughout the rest of the section, we will denote by s, = (syk)kea, the strategy of a SaaS
provider u € U and with o = (0, )" the strategy of the IaaS provider, where N = |I{|. Further-
more, we indicate with s = (s,,)]_; the set of strategies of all the SaaS providers, with s~* the set
of the strategies of all the SaaS providers except the SaaS provider u. For the sake of simplicity,
we also rewrite the SaaS providers optimization problem SaaSopr in compact form as follows:

max 0,(s;0)
subject to: g,(s) <0

where g, (s) is a vector function that represents the problem constraints. We define with K, =
{s |gu(s) < 0} the SaaS provider u feasible strategies set and we further define

O=<s ZZSU7kSSU

u€U k€EAy
Hence, we can define the vector function g(s) = (gy(s))_, that represents the set
K= (Kl XKQ...KN)QQ

of the feasible strategies of all the players. Note that the set K is compact, since each variable s, j,
is bounded by sY.

4.1 SaaS Providers Subgame

We first consider the followers subgame, i.e., the SaaS providers competition that arises once the
IaaS provider fixes his strategy (the spot prices o). Since the SaaS providers act simultaneously,
this subgame can be modeled as a Generalized Nash game [11]. Generalized Nash Equilibrium
Problems (GNEP) differ from Nash Equilibrium Problems (NEP), in that, while in a NEP problem
only the players objective functions depend on the other players strategies, in a GNEP problem
both the objective functions and the strategy sets depend on the other players strategies. In our
problem, the dependence of each player strategy set on the other players strategies is represented
by the constraint (7) which include all SaaS providers decision variables o, ;. More specifically,
our problem is a Jointly Convex GNEP [11]. Convexity follows from concavity of the objective
function of each SaaS provider in his own decision variable and the convexity of the strategy set;
furthermore, it is jointly convex because the constraint involving all players variables is the same
for all players.

Jointly Convex GNEP problems are a particular class GNEP whose solution can be computed by
solving a proper variational inequality (VI)2. In particular, under the condition that the objective
function of each player is continuously differentiable, every solution of the VI(K, F(s;0)), where

2Given a subset K of R™ and a function F : K — R", the VI problem, denoted by VI(K, F), consists in finding a
point s* € K such that (s — s*)TF(2*) >0 Vs¢€ F.



F(s;0) = —[(Vs,0u(s;0)N_,), is also an equilibrium of the GNEP [11]. Such equilibrium is known
as variational equilibrium. In general, a GNEP has multiple or even infinite equilibria, and not
all of them are also a solution of the VI. However, the variational equilibrium is more “socially
stable” than the other equilibrium of a GNEP and therefore it represents a valuable target for an
algorithm [11].

We now establish two key properties of the VI(K, F(x;0)), namely that the function F is
strongly monotone® and the existence of the generalized Nash equilibrium of the followers subgame.

Theorem 1. The function F(s;o) = —[(Vs,0u(s;0))_,) is strongly monotone.

Proof. The function F takes the following form:

m1,1A%,1
(p11(fig+dig+s11)—Aa)

2 +O’171

F(s;0)

my kAR g
(N k(N +dNg + 5N k) — Ang)?

+oNk

and its Jacobian is:

0 - an

JI' is a diagonal matrix, whose generic entry a,  is:

Qmu,kAi7kNu,k
(Nu,k:(fu,k + du,k + Su,k) - Au,k)g.

ay ) is strictly positive, because in the first stage we impose that

Ay = —

Au,k‘

fu,k + C?u,k >
Mok

and m,, , < 0. The generic term a,, attains its minimum when s, = sY. If we choose a constant
0 < o < minge A, uets @k then the matrix JF(s;0) — ol is still diagonal with each term strictly
greater than 0, for all s € K. Hence the function F'(s;0) is strongly monotone. O

Theorem 2. There exists at least one generalized Nash equilibrium of the followers subgame.

Proof. The existence of at least one generalized Nash equilibrium for the followers subgame is a
direct consequence of the strong monotonicity of the function F(s;o) [12]. O

3F is monotone on K if for all pairs z,y € K holds
(s —y) " (F(s) = F(y) >0

F is strictly monotone on K if for all pairs s # y € K holds

(s =9)" (F(s) = F(y)) > 0
F is strongly monotone on K if there exists a constant ¢ > 0 such that for all pairs s,y € K holds

(s =) (F(s) = F(y)) > ¢l s —ylI”



4.2 Stackelberg Game as MPEC

In the previous subsection we have established that the problem of finding an equilibrium of the
SaaS providers subgame given the IaaS strategy ¢ can be reformulated as the problem of finding
the solution of a proper VI. We now turn our attention to the IaaS (leader) problem of determining
the optimal pricing strategy. We solve the Stackelberg game using a Mathematical Programs with
Equilibrium Constraint (MPEC) [10]. An MPEC is an optimization problem whose constraints in-
clude variational inequalities. In its general form, an MPEC is defined by the following optimization
problem:

max f(o,s)
subject to: o € Sjeaq (10)
s € SOL(0) (11)

where SOL(0) is the solution of a VI parametrized by the leader strategy o. Because of con-
straint (11), an MPEC is, in general, a nonconvex and nonsmooth problem, even under very
favourable assumptions, and, as a consequence, it is very difficult to solve. The MPEC arising from
our laaS optimization takes the following form:

Problem IaaS,;prc
max Z Z fu,k(p + Czu,k(s + Su,kOu,k
ueU ke A,
subject to: ol < ouk < O'gk, Yu, Vk (12)
s € SOL(0) (13)

where SOL(0) is the solution of the VI(K, F(s;0)). Observe that this is just the IaaS problem
TaaSppr with the additional constraints that the SaaS providers strategy s is a solution of the
SaaS subgame.

Because of (13) we cannot solve the MPEC directly. We follow the approach proposed in
[10] that, under the assumption that function F(s;o) is strongly monotone, allows us to compute
stationary points of the MPEC.

As a first step we replace (13) with its Karush Kuhn Tucker (KKT) conditions [19]. We obtain
the following non linear programming problem:

max Z Z fu,k%p + Ju,k(S + SukOuk
uel ke Ay

subject to: oX < g, < Jgk, Vu Vk (14)
F(o) = Vsg(s)A =0 (15)

g9(s) <0 (16)

A>0 (17)

Ag(s)=0 (18)

where A € R! is the vector of Lagrangian multiplier, with [ the number of constraints that define K.
This problem cannot be directly solved because in general the constraints do not satisfy any stan-

dard constraints qualification and the complementary-type constraints (18) are very complicated
and difficult to handle. Following [10], we consider a sequence of smooth and regular problems,

10



obtained by perturbing the original problem, the solutions of which converge to a solution of the
original problem. Specifically, we consider the pertubated problem P(u) with parameter p:

Problem P(u)
max Z Z fu,kso + Ju,kfs + Su,kOuk

uel ke Ay
subject to: o < g, < aﬁk, Vu Vk (19)
F(o) = Vsg(s)A =0 (20)
g(s)+2=0 (21)
(z=A)2+4p2— (24X =0 (22)

where z € R is an auxiliary variable. In P(u), the constraint (21) replace constraint (16), while
constraint (22) replaces constraints (17) and (18). It is easy to realize that P(u) corresponds to
the original problem when p = 0*. We refer the reader to [10] for further details.

Problem P(u), pn # 0, is a smooth regular problem which can be solved using standard optimiza-
tion tools. Let o*(u) denote a stationary point of P(u). From [10], we have that o*(u) converges to
a stationary point of the TaaSppr as u — 0. To compute a solution we use Algorithm S presented
in [10], (see Algorithm 1), which solves a sequence of problems P(u). The algorithm stops when
the FEuclidean distance between two successive iterations is lower than a suitable threshold e. We
verified that in practice the algorithm converges very quickly. In the experiments described in the
next section, the algorithm converged in no more than 3 iterations using e = 1074,

Algorithm 1 Algorithm S [10]
Let {¢*} be any sequence of nonzero numbers with limg_, . #* = 0. Choose w® = (¢, 2°, 20, \9) €
RINHH and set k=1
while ||e|]| > € do
Find a stationary point w* of P(u*)

e = wk — wh1
k=k+1
end while

5 Experimental Results

In this section we investigate through numerical experiments the behavior of the proposed provi-
sioning and pricing strategy. First, in Section 5.1, we compute the system equilibria in different
scenarios, and study how flat, on demand and spot VMs are allocated among the competing SaaS
providers and the associated spot prices under different workload and bidding configurations. Then
in Section 5.2 we compare the proposed policy with the service provisioning and pricing policy stud-
ied in [4].

For the analysis, we implemented the algorithms presented in Section 4 as well as the algorithms
presented in [4] in MATLAB. For the solution of the MPEC problem via Algorithm S, the parameter
1 is initially set to 0.0001 and reduced by a factor of 100 at each iteration and the stopping parameter
€ is set to 1074,

“Observe that for pu = 0, if s € SOL(0) is a solution of the original problem then either g(s) < 0 and A = 0, in
which case the constraint (22) reduces to 1/(z)?2 —z = 0 or g(s) = 0, which implies that z = 0, and (22) reduces to

V(EE-a=0.
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5.1 Provisioning and Pricing Strategies Analysis

We consider one IaaS provider which sells his resources to ten SaaS providers. For the sake of
simplicity we assume that each SaaS provider offers only one Web service. If not differently stated,
we set S = 160, ¢ = 0.248, § = 1.248, f, = 4, p1 = 10 req/s, my1 = —1, UM = 0.9, oF = 0.15$
and Jg 1 = 0.58, for all uw € {1,...,10}. These parameters correspond to those adopted in [4] for
the sake of comparison.

We first consider a homogeneous scenario with the SaaS providers parameters set as described
above. In this scenario, by simmetry, all the SaaS providers obtain the same number of VMs and
the same price for spot instances. The results are summarized in Table 2 for different values of the
SaaS predicted load A, 1 ranging from 20 req/s to 80 req/s.

[ Aui(req/s) [ 20 [ 40 | 60 [ 80 |

flat 4 4 4 4
on demand 0 3.59 | 7.38 | 11.18
spot 2 3.59 | 4.61 | 0.81

spot price ($) | 0.25 | 0.31 | 0.36 | 0.5
available spot | 120 80 46.1 8.1
unsold spot 100 | 44.1 0 0

Table 2: VMs allocation and spot price for increasing SaaS providers predicted load

In the first stage, the SaaS providers determine the amount of flat and on demand instances: in
this example, flat instances are always used up to the maximum value f, = 4, independently from
the load Ay, 1; on the other hand, the number of bought on demand instances grows from 0 to 11.18,
because more instances are needed to satisfy the QoS constraints when the predicted load increases.
This is reflected in the amount of unsold resources after the first stage, which decreases from 120
VMs when A, 1 = 20 down to 8.1 VMs when A, ; = 80. In the second stage, the SaaS providers
compete for the unsold IaaS capacity. When demand is high (A,; = 80), the IaaS provider is
able to sell the small fraction of unused resources at the maximum price ag . = 5$. As demand
decreases, the IaaS provider decreases the spot price, to sell more VMs and to increase his revenue.
Observe that, when demand is low (A, ; < 40) some capacity remains unsold even after the second
stage since the SaaS providers reach equilibrium between the cost charged on the users (which is
function of the response time) and the cost of additional VMs. At the same time, the TaaS provider
has no incentive to further reduce the price. It is worth observing that, only when resources are
scarce, the TaaS provider maximizes his revenue by charging the maximal price; otherwise, it is
more profitable for the IaaS provider to lower the spot prices with respect to the maximal bid O'gk
and to sell additional VMs to users. 7

A1 (req/s) ou,1 (8) M1
20 | 80 [ 05 ] 03] -2 [ -1
flat 4 4 4 4 4 4
on demand 0 11.18 | 7.38 | 7.38 | 9.62 | 7.38
spot 2 7.18 | 3.65 | 5.57 | 4.09 | 2.89
spot price ($) | 0.25 | 0.31 | 0.43 | 03 | 0.5 | 0.5
spot available 64 46.1 34.9
spot unsold 18.1 0 0

Table 3: VMs allocation and spot prices for SaaS providers in heterogeneous scenarios
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We now turn our attention to the provisioning and pricing solutions in heterogeneous scenarios.
For the sake of simplicity, in the following examples, we will consider in each scenario only two
different classes of users. We first consider the case where the SaaS providers have different predicted
load. In the second column of Table 3 we show the results when half of the SaaS providers have
a have a predicted load A, ; = 20 req/s and the other half a predicted load A,; = 80 req/s.
Observe that the number of purchased flat and on demand instances is the same as in the previous
homogeneous example. This can be explained by observing in the first stage the SaaS providers
independently determine the amount of flat and on demand instances to buy (under the implicit
assumption that the IaaS provider has enough resources to allocate all the requested flat and on
demand instances) the final allocation only depends on the provider parameters. Looking at the
spot allocation and price, instead, we observe that while SaaS providers with the lower load are
charged a relatively low price and buy only a small number of spot VMs, SaaS providers with the
higher load are charged a higher price and buy more spot VMs. We observe that also in this case,
at equilibrium, the IaaS provider maximizes his profit by charging less then the maximum price so
that overall, the lower per VM profit is compensated by the higher volume of sold instances.

The third column of Table 3 shows the results when we consider two classes of SaaS providers
with different maximum prices: five providers have 05{ 1 = 0.58, while the rest of providers have
05{ 1 = 0.33. We assume that the SaaS providers receive the same predicted load A, ;1 = 60 req/s.
Because all the providers have the same parameters, except for the bid which impacts only the
second stage, they buy the same number of flat and on demand instances. However, as expected,
given the different maximum price, the price and the number of purchased spot instances differ for
the two classes of SaaS providers. It is interesting to compare these results to the first scenario
we have considered, where all the SaaS providers had the same maximum price al[i 1 = 0.5%; in
that case, when the load was A, 1 = 60 req/s the optimal strategy for the IaaS provider was to
set 0,,1=0.36$ for all the users. In the current scenario, however, the maximum price for half of
the SaaS providers is only 0.3$. So, it is no surprise that the optimal pricing strategy for the IaaS
provider is to set o,,1=0.3% for these providers, and a higher price, o, 1=0.433, for the others.
In other words, the revenue that is lost by the TaaS provider by selling spot instances at 0.3$ is
recovered by increasing the spot price for those who bid 0.58$.

In the last scenario, we assume that all the SaaS providers have the same predicted load A, =
60 req/s but different slopes of the utility function: specifically, half of the SaaS providers have a
slope mg 1 = -2, while the others have a slope mg 1 = -1. This corresponds, for instance, to a scenario
where half of the providers charge their users twice as much, all the rest being equal. The results
are shown in the fourth column of Table 3. As in all the previous scenarios, all the SaaS providers
buy 4 flat VMs. However, due to the different slopes, the providers which are characterized by a
steeper utility, i.e., m,,1 = —2, buy more on demand instances and spot instances. In this scenario,
the TaaS provider can charge the maximum price 0.5$ to both as he is able to free all the unused
resources at the maximum price.

5.2 Comparison with the Provisioning Scheme in [4]

We now compare the proposed provisioning and pricing scheme with the one presented in [4].
The authors of [4] study a provisioning problem very similar to the one presented in this paper.
Differently from our two-stage allocation strategy, they consider a one stage provisioning problem,
where, at the same time: the SaaS providers determine the number of flat, on demand and spot
instances to buy as to maximize their revenue given the service SLA; and, the IaaS provider
determines the spot instances price o, as to maximize his profit, taking into account that each
SaaS provider is characterized by a maximum cost 057 . he is willing to pay for spot instance per
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hour. The conflicting situation is modeled as a GNEP and the service provisioning and pricing
policy are derived from the game equilibrium. In particular, given the specific problem structure,
they show that the dominant IaaS provider strategy consists in setting oy, = afi > €., in charging
each SaaS user always the maximum price. They present a general solution method and evaluate
the proposed scheme under different scenarios.

Despite the similarities, our provisioning scheme is substantially different: in our two stage
approach, SaaS providers first buy only flat and on demand instances while spot instanced are
only allocated in the second stage, with the IaaS provider determining the price as to maximize
his profit. The resulting conflicting situation is modeled as a Stackelberg game where the TaaS
provider takes the role of the leader. Comparing the two approaches, we expect that in our scheme
the SaaS providers are more likely to buy a higher number of flat and especially of on demand
instances, which are more expensive (but also more reliable as the IaaS provider cannot terminate
them) since these type of instances are allocated first. This should result in higher cost for the SaaS
provider and higher profit for the IaaS provider. Moreover, in the second stage, since competition
for the spot instances is modeled as a Stackelberg game, we expect the IaaS provider to experience
higher profits from the spot instances auction characterized, as observed in the previous examples,
by lower than the maximum allowed on spot prices, larger volumes and higher overall profit.

’ Saas ‘ M, ‘ f?E] ‘ O-UI,J,I H SaaS ‘ M, 1 ‘ fflj ‘ Ug,l ‘

1 11 5 0.38 6 12 3 0.23
2 5 5 0.49 7 12 3 0.44
3 13 3 0.16 8 8 4 0.3
4 14 5 0.83 9 11 5 0.54
5 11 4 10.28 10 6 5 0.42

Table 4: SaaS providers parameters

For the sake of comparison, we simulated a dynamic scenario using the two different policies.
We considered 10 SaaS providers, each offering a single service. Every hour, each SaaS provider,
given the forecasted load for the next hour determined the number and type of VMs to allocate
while the IaaS provider determined the price of the spot instances. The predicted load A, 1 of each
SaaS provider is each time randomly generated uniformly in the interval [20, 80] req/s. We set for
all the providers, R;'{* = 2s, Cy,1 = 28 (corresponding to m,,1 = —1) and U;*** = 0.9. The other
parameters are shown in Table 4 and were kept constant during the simulation. Because in [4] the
variable sV is fixed a priori and it is independent from the amount of flat and on demand instances
sold, we fixed sV = 30 for the whole simulation for both policies.

We run a simulation corresponding to a period of one week (168 hours).

Figure 1 shows the IaaS provider per hour revenue over time. As expected, the revenue obtained
using our service provisioning and pricing policy is greater than the revenue obtained using the
strategy presented in [4] (red curve, label GNEP).

| [ flat [ on demand [ spot [ total ‘
Stackelberg 6961.75 8706.31 5040 20708.06
GNEP 6961.75 3910.19 5040 15911.94

Stackelberg | 1670.82% | 10795.82$% | 1734.65$ | 14201.29$
GNEP 1670.82% 4848.63% 1575.48% 8094.93

Table 5: Total number of sold VMs and relative revenue
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Figure 1: TaaS provider revenue using the two different strategies

Table 5 shows the breakdown of the number of allocated VMs and laaS revenue per type of
instance. As anticipated, our scheme results in a higher number of on demand instances (more than
twice as much). The number of spot instances is the same but this is actually a consequence of
having a fixed ¢V®. Nevertheless, our scheme yields higher spot VMs revenues to the IaaS provider.
As shown above, this is a consequence of the fact that in our policy the IaaS provider, by setting
a price that is lower than the the SaaS provider maximum bid, incentivates the SaaS providers to
buy more spot instances, which results in overall higher TaaS profit.

| SaaS [ Stackelberg [ GNEP H SaaS [ Stackelberg [ GNEP ‘

1 73.96 75.55 6 75.44 78.5
2 56.1 55.76 7 79.96 80.31
3 78.04 80.79 8 73.4 78.75
4 81.79 81.54 9 74.86 74.49
5 71.36 73.84 10 62.2 64.86

Table 6: Average SaaS providers profit ($).

Tables 6-7 show, respectively, the profit, the cost and the average number of bought VMs for the
different SaaS providers. We can observe that, indeed, our approach results in a higher number of
VMs bought by the SaaS providers and a corresponding higher cost, which justifies the significant
larger TaaS provider profits (+64%). Interestingly, the SaaS profits decrease only by a small fraction
and in some cases (SaaS providers 2, 4 and 9) they even increase. This is not completely unexpected
since as the number of VMs per service increases, the service response time decreases which in turn,
given the SaaS revenue function, yields higher revenues.

®For a more detailed comparison we should have modified the model in [4] to reflect our scheme where the number
of available spot instances depends on the number of allocated flat and on demand instances.
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Cost to buy VMs ($) || Number of bought VMs
SaaS | Stackelberg [ GNEP || Stackelberg [ GNEP
1 5.60 2.53 9.99 7.87
2 18.15 15.15 21.20 17.09
3 5.82 1.35 10.76 6.96
4 4.02 3.47 7.58 6.63
5 6.08 1.98 10.37 7.66
6 6.47 1.71 10.47 7.31
7 7.16 5.28 9.5 7.52
8 11.28 3.30 15.76 11.54
9 5.71 4.83 9.43 7.90
10 14.20 8.53 18.15 14.18

Table 7: Average SaaS providers cost to buy VMs and number of bought VMs

6 Related Work

Game theory is a useful tool to deal with those situations where the interaction across players
has to be taken into account. These situations cannot be handled with the classical optimization
theory, because the action of each player affects not only the player itself, but the others players
too. As a consequence, game theory can be successfully applied to typical ICT problems, like
resource allocation, Quality of Service (QoS), pricing and load balancing. For example, it has been
largely applied by the networking research community, as summarized in the survey [2], where the
authors review different modeling and solution concepts of networking games as well as a number
of different applications in telecommunications and wireless networks that can take advantage from
game theory. Many studies, e.g., [6, 8], have proposed Game-theoretic methods to optimally solve
the resource allocation problem in network systems from the viewpoint of resource owners. Load
balancing in distributed systems has been also tackled through game theory, mostly exploiting
solutions based on the Nash equilibrium concept, e.g. [14, 21].

Game theory has bee already applied to Cloud computing to deal mainly with resource alloca-
tion and pricing issues [4, 5, 15, 20, 23, 25]. A Bayesian Nash equilibrium allocation algorithm to
solve the resource management problem has been proposed in [23]. A QoS-constrained resource al-
location, where Cloud users submit intensive computation tasks has been proposed in [25]; however,
only a single type of VM instances is considered.

The perspective of a SaaS provider is taken in [20], where the authors have provided a theoretical
framework for resource management for Saas providers so they can efficiently control the service
levels offered to their customers. They have formulated the problem as a non-cooperative game
and proposed a resource bidding and allocation framework that can be viewed as a generalization
of the Kelly mechanism [16].

The perspective of a IaaS provider is pursued in [15] by Hadji et al. to determine the optimal
suggested prices by the Cloud provider and the optimal user demands. Their model consists in
the cloud provider suggesting differentiated prices according to demand and users updating their
requests in view of the proposed price. To this end, their game theoretical model is based on a
Stackelberg game and the policy consists in finding the Stackelberg equilibrium. However, their
model does not distinguish among flat, on demand, and spot instances and QoS constraints of SaaS
providers are not taken into account as well.

As pointed out in Section 5.2 the works in [4, 5] by Ardagna et al. are most closely related to
our proposal; we have already discussed how our proposal differs from their GNEP formulation and
compared the two approaches, showing that our strategy results in a higher number of on demand
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instances and yields higher revenues for the IaaS provider.

Pricing and performance issues related to spot instances have been recently the subject of
an increasing research interest, resulting in a consistent number of works that apply a variety of
methodologies different from the game theoretical approach we deal with. For example, in [26] Yi
et al. have studied how checkpointing and work migration strategies can be used to minimize the
monetary cost and volatility of resource provisioning due to market dynamics. In [24] Voorsluys
and Buyya have proposed a resource provisioning strategy that addresses the problem of running
compute-intensive applications on intermittent spot instances tolerating their sudden unavailability,
while also aiming to run applications in a fast and economical way. Those studies focus on helping
end users to better use spot instances, which is different from our objective of maximizing the TaaS
provider revenue while satisfying the QoS constraints of the SaaS providers.

Focusing on the IaaS provider perspective, in [28] Zhang et al. have faced the problem of deter-
mining an optimal resource allocation in such a way to optimize the IaaS revenue while minimizing
energy cost through a constrained discrete-time finite-horizon optimal control formulation.

The problem of designing efficient bidding strategies has been considered in some works, e.g., [22,
27]. Zaman and Grosu have considered combinatorial auctions in the Cloud environment and their
proposal guarantees the maximum utility for a user when he bids truthfully [27]. Tang et al.
have proposed an optimal bidding strategy for spot instances in order to minimize the cost and
volatility of resource provisioning and formulate their problem as a Constrained Markov Decision
Process [22].

A reverse engineering analysis on how Amazon prices its spare capacity has been conducted
in [1]; from the analysis it seems that Amazon sets the prices of EC2 spot instances at random
from within a tight price interval via a dynamic hidden reserve price.

Although still only one laaS provider offers spot VMs, many argue that market economies
will be increasingly prevalent in order to achieve high utilization in data centers that are often
under-utilized and the first public marketplaces for unused capacity are already on the scene. For
example, SpotCloud [9] provides a spot market, where buyers can acquire from sellers excess or
unused computing capacity with immediate delivery for their short term needs. Such a Cloud
computing spot market, which is still in its infancy, opens up new research directions that can be
worth of future investigation.

7 Conclusions

In this paper we presented a service provisioning and pricing strategy for a Cloud system based
on a game theoretical approach. We considered several SaaS providers that offer a set of Web
services with QoS constraints using the Cloud facilities provided by an IaaS provider. We proposed
a two stage service provisioning policy: in the first stage, the SaaS providers buy VMs at a fixed
price, while in the second stage they bid and compete to buy VMs instantiated on the unused IaaS
provider capacity. The price of the spot instances is dynamically determined by the IaaS provider
given the SaaS bids and with the aim of maximizing his revenue. While we solved the first stage
by means of standard optimization techniques, we modeled the second stage conflicting situation
as a Stackelberg game computed its equilibrium price and allocation strategy by solving an MPEC
problem.

Our experimental results analyzed the proposed policy behavior under different scenarios. They
revealed the ability of the IaaS provider to set a price lower than the bid to incentivize the SaaS
providers to buy more instances. Furthermore, we compared our policy with the one presented
in [4]. The numerical results showed that using our strategy the IaaS provider revenue increases,
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at the expense of a lower profit for the SaaS providers. However, the latter can offer more reliable
services and better performance to their users.

In future research work we will address the development of a distributed version of the proposed

service provisioning and pricing strategy, so that it can be profitably used in a real environment.
Furthermore, we will investigate a different scenario in which the price fixed by the IaaS provider
is the same for all the SaaS providers and will perform a comparison of these different strategies.
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