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Abstract
This work presents a comparative review and classification between some well-known thermodynamically consistent models 
of hydrogel behavior in a large deformation setting, specifically focusing on solvent absorption/desorption and its impact on 
mechanical deformation and network swelling. The proposed discussion addresses formulation aspects, general mathemati-
cal classification of the governing equations, and numerical implementation issues based on the finite element method. The 
theories are presented in a unified framework demonstrating that, despite not being evident in some cases, all of them follow 
equivalent thermodynamic arguments. A detailed  computational analysis is carried out where Taylor–Hood elements are 
employed in the spatial discretization to satisfy the inf-sup condition and to prevent spurious numerical oscillations. The 
resulting discrete problems are solved using the FEniCS platform through consistent variational formulations, employing 
both monolithic and staggered approaches. We conduct benchmark tests on various hydrogel structures, demonstrating that 
major differences arise from the chosen volumetric response of the hydrogel. The significance of this choice is frequently 
underestimated in the state-of-the-art literature but has been shown to have substantial implications on the resulting hydrogel 
behavior.

1  Introduction

Hydrogels, a class of versatile soft materials with the unique 
ability to absorb and retain fluid within their three-dimen-
sional network structures, have gained widespread attention 
in recent years across various industrial applications. Their 
diverse uses include serving as drug carriers in biomedical 
applications [27, 43], absorbents of pollutants in agriculture 
[27], and smart sensors or actuators in engineering [10, 32]. 
These properties can be fine-tuned by manipulating chemi-
cal composition, crosslinking density, and fluid content [9]. 
In this work, we aim to provide an in-depth examination 
of diffusion-deformation hydrogel theories and the implica-
tions of selecting underlying constitutive theory in the large 
deformation setting.

Several comprehensive reviews have emerged in the study 
of hydrogels, discussing topics ranging from hydrogel defor-
mation theories to the microstructural impact on mechani-
cal behaviors. Liu et al [36] provided an exhaustive review 
of hydrogel deformation theories, blending both theoretical 
analyses and practical applications, emphasizing mechanics’ 
role. Huang et al [26] delve into advances in constitutive 
models for hydrogels and shape memory polymers (SMPs), 
categorizing six primary hydrogel types and highlighting 

All authors have contributed equally to this work.

 *	 Jorge‑Humberto Urrea‑Quintero 
	 jorge.urrea-quintero@tu-braunschweig.de

 *	 Michele Marino 
	 m.marino@ing.uniroma2.it

 *	 Thomas Wick 
	 wick@ifam.uni-hannover.de

 *	 Udo Nackenhorst 
	 nackenhorst@ibnm.uni-hannover.de

1	 IBNM ‑ Institute of Mechanics and Computational 
Mechanics, Leibniz University Hannover, Appelstraße 9a, 
30167 Hannover, Lower Saxony, Germany

2	 iRMB ‑ Institute for Computational Modeling in Civil 
Engineering, Technische Universtität Braunschweig, 
Pockelsstr. 3, 38106 Brunswick, Lower Saxony, Germany

3	 Department of Civil Engineering and Computer Science 
Engineering, University of Rome Tor Vergata, Via del 
Politecnico 1, Rome 00133, Italy

4	 Institut für Angewandte Mathematik, Leibniz University 
Hannover, Welfengarten 1, 30167 Hannover, Lower Saxony, 
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-024-10101-x&domain=pdf
http://orcid.org/0000-0002-7690-4298


	 J.-H. Urrea‑Quintero et al.

potential hyperelastic model adaptations. Meanwhile, Lei 
et al [30] offered insights into hydrogel network models, 
discussing the microstructural impact on their mechani-
cal behaviors like swelling, elasticity, and fracture. This 
research underscores the potential synergy between network 
modeling and continuum mechanics in capturing hydrogel 
dynamics.

Modeling the diffusion-deformation in hydrogels neces-
sitates a comprehensive understanding of the material’s 
behavior during swelling and mechanical deformation. This 
understanding hinges on a mathematical formulation that 
simultaneously accounts for the diffusion of fluid molecules 
within the hydrogel’s polymer network and the correspond-
ing mechanical deformations induced by swelling. Two 
primary approaches can be employed to describe these phe-
nomena: mixture theories and macro-scale theories. Mixture 
theories, representing the porous medium as spatially super-
imposed interacting layers [18], often involve a complex 
array of model parameters and constitutive choices, making 
them challenging to be calibrated in practical applications. 
Consequently, this paper focuses on macro-scale poroelastic 
theories, which view the medium as a homogenous material 
characterized by a coupled deformation-diffusion response, 
as developed in the seminal works by Biot (e.g., [3]). Within 
this framework, the key equations, such as the mass bal-
ance and mechanical equilibrium equations, govern both the 
conservation of mass and the balance of forces within the 
hydrogel. An appropriate chemo-mechanical constitutive 
description for the macroscopic continuum completes the 
modeling framework. Constitutive laws couple the mechani-
cal response of the polymer network (accounting, for exam-
ple, for hyperelastic or viscoelastic effects) with changes 
in fluid distribution within the hydrogel mesh, describing 
mixing effects and the interaction between diffusion and 
deformation.

Over the years, various models have been developed 
to describe coupled diffusion-deformation effects in 
elastomeric gels. These models couple a common gen-
eral poroelastic framework with the effects of different 
physical fields, resulting in a wide range of stimuli-based 
responses encountered in various applications. Regarding 
the general poroelastic framework, for instance, Hong et al 
[25] and Zhang et al [49] provided a continuum mechan-
ics framework, as well as analytical and finite element 
solutions, of the coupled problem in the large deforma-
tion setting. Chester and Anand [12] provided a compre-
hensive thermodynamics-consistent formulation of the 
diffusion-deformation theory under isothermal conditions. 
In contrast, Lucantonio et al [38] benchmarked the diffu-
sion-deformation theory against some experiments involv-
ing localized exposure of the gel boundary to a solvent, 
where large bending deformations appear during solvent 
absorption. With respect to more complex stimuli-based 

responses, Chester and Anand [13] extended the theory 
and accounted for temperature effects as well. Chester et al 
[14] summarized the main developments of the thermo-
mechanically coupled theory for fluid permeation in elas-
tomeric materials and provided an open-access Abaqus 
implementation to simulate hydrogel’s response in 3D.

A shared mathematical characteristic of these models is 
the saddle point structure of the underlying variational for-
mulation. As a result, in the finite element implementations, 
the Ladyzhenskaya-Babuska-Brezzi (LBB), i.e., discrete 
inf-sup, condition might be violated, requiring equilibrated 
inf-sup stable finite element spaces. Otherwise, oscillatory 
distributions of the chemical potential as the primary vari-
able controlling species diffusion arise. These challenges 
can be addressed in several ways. To name a few of these 
approaches, in Bouklas et al [7], an in-depth analysis of Tay-
lor–Hood elements (see, e.g., Girault and Raviart [20]) for 
gel modeling is provided, while Krischok and Linder [29] 
proposed an enhanced assumed strain (EAS) method for the 
coupled problem. Böger et al [4] proposed a minimization 
formulation for the coupled diffusion-deformation problem 
of polymeric hydrogels at large strains and compared this 
variational framework to classical saddle point-based struc-
tures. Large volume changes with instability patterns in the 
presence of geometrical constraints were successfully mod-
eled. Wang et al [44] developed a numerical platform to sim-
ulate the dynamic behaviors of responsive gels. The authors 
of this study addressed some of the challenges that were not 
previously resolved, such as how to handle time-dependent 
and coupled mass diffusion and deformation fields in a very 
short time, as well as numerical instability issues.

Overall, there is no consensus on formulating a constitu-
tive model for hydrogels and its numerical implementation. 
This study emphasizes the essential building blocks found in 
common across various hydrogel theories, mainly focusing 
on the standard poroelastic description. It is unclear whether 
the underlying constitutive choices at the free energy level 
are equivalent. The significance of fundamental choices in 
coupling diffusion and deformation is frequently overlooked. 
For example, such choices may relate to whether volume 
changes in the hydrogel are solely attributed to fluid content 
or involve elastic mechanisms as well. In the latter scenario, 
the detailed description of the volumetric response plays a 
crucial role. We aim to analyze the impact of such assump-
tions on the constitutive model.

Not only do these fundamental constitutive choices lead 
to differences in the observed physical response, but they 
do also influence the feasibility and appropriateness of dif-
ferent numerical solutions. Some theories lead themselves to 
a monolithic implementation of the coupled problem, while 
others favor a staggered approach. Despite their importance, 
these considerations have been largely neglected in existing 
literature.
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1.1 � General Goals

This paper reviews some of the most notable models that 
describe the diffusion-deformation process of elastomeric 
gels. The models were selected based on their consistency 
with thermodynamic principles, their ability to represent dif-
ferent behaviors, and the easiness to reproduce the results 
using the open-source computing platform FEniCS [2], 
serving as a benchmark for future studies. We provide a 
common mathematical framework and classifications from 
which both staggered and monolithic numerical algorithms 
are derived for studying the diffusion-deformation behavior 
of hydrogels despite their various derivation methods. We 
carefully examine the distinctions and similarities between 
different constitutive equations and analyze their impact on 
the deformation of hydrogels and the evolution of associ-
ated fields through simulations. This lays the foundation for 
future theoretical extensions, including additional mecha-
nisms such as chemical reactions, degradation, or damage.

1.2 � Open Science Context

Traditionally, researchers have relied on custom numerical 
solvers or commercial software like Abaqus or COMSOL. 
While Chester et al [14] made their Abaqus code publicly 
available, a recent push has been towards open-source 
platforms for addressing coupled multiphysics models. 
Emerging software libraries such as deal.II,1 OpenFOAM,2 
MOOSE,3 and FEniCS4 exemplify this trend, signaling a 
shift in the way researchers approach the complex challenges 
of modeling hydrogels.

Unlike commercial software packages, open-source 
projects, like FEniCS, generally allow the user to have a 
direct hand in implementing the problem statement, the dis-
cretization, the numerical solution, and specific manipula-
tions since all instances can be accessed. To this end, more 
information about the mathematical-numerical classification 
and design of algorithms is required. While this provides 
an advantage, granting users more liberty to develop and 
test novel numerical algorithms and discretizations, it also 
constitutes a challenge. The need for more hands-on imple-
mentation and debugging is time-consuming.

To include readerships interested in open-source software 
and as part of the broader scope of our paper, we establish 
mathematical classifications to derive numerical algorithms 
for the coupled problem, enabling the precise study of well-
posedness and facilitating rigorous numerical analysis. This 

includes introducing inf-sup stable Taylor–Hood finite ele-
ments for spatial discretization and using a strongly A-stable, 
first-order, implicit Euler scheme for temporal discretization. 
These technical developments are summarized into compact 
mathematical formulations that serve as the starting point 
for our FEniCS implementation, allowing for meticulous 
examination of the numerical algorithms.

1.3 � Main Contributions and Paper Outline

The main contributions of this paper are summarized as 
follows: 

1.	 Unification in the formulation and notation of some rep-
resentative diffusion-deformation theories applied to the 
large deformation of hydrogels.

2.	 Mathematical classification and subsequent derivation 
and computational comparison of monolithic and stag-
gered numerical solutions accuracy in a variational set-
ting using the finite element method (FEM).

3.	 One- to three-dimensional numerical simulations of 
well-known prototype problems to study the theories’ 
capabilities and robustness of the FEM implementation.

4.	 Comparison of the different constitutive models in a sin-
gle benchmark problem highlighting their main charac-
teristics.

The paper is organized as follows. Section 2 provides a 
common background knowledge of gels and the basic for-
mulations of the chosen theories using a unified notation. 
Section 3 is devoted to the mathematical classification and 
numerical approximation using the FEM in variational set-
tings. Section 4 explains the general setting of the numeri-
cal simulations campaign. Section 5 presents the simula-
tion results for some well-known prototype problems of the 
diffusion-deformation of hydrogels. Section 6 presents a 
unified benchmark problem for the diffusion-deformation 
of hydrogels. Concluding remarks are given in Sect. 7.

2 � Nonlinear Theory 
for the Diffusion‑Deformation 
of Elastomeric Gels

In this section, we summarize some of the well-known 
theories describing the diffusion-deformation mechanisms 
in elastomeric gels that undergo large deformations under 
isothermal conditions.

As notation rules, we denote gradient in the reference and 
current configuration by Grad(∙) and grad(∙) , respectively, 
whereas the divergence in the reference and current con-
figuration is denoted by Div(∙) and div(∙) , respectively. The 
time derivative of any field is denoted by �t(∙) . The operator 

1  https://​www.​dealii.​org/
2  https://​www.​openf​oam.​com/
3  https://​moose​frame​work.​inl.​gov/
4  https://​fenic​sproj​ect.​org/

https://www.dealii.org/
https://www.openfoam.com/
https://mooseframework.inl.gov/
https://fenicsproject.org/
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tr(A) refers to the trace of the second-order tensor A . We 
denote the spatial dimension with d, and in this section, we 
exclusively work with d = 3 . Finally, let I ∶= (0, T) be the 
time interval with end time value T > 0 and Ī its closure.

2.1 � Kinematics of the Deformation

Consider a continuum homogeneous elastomeric body 
B living in the Euclidean space ℝ3 and its boundary 
𝜕B = 𝜕Bu ∪ 𝜕Bt̄ = 𝜕B𝜑 ∪ 𝜕BJ̄R

 . Here, �Bu denotes the dis-
placement boundary (Dirichlet), 𝜕Bt̄ the traction boundary 
(Neumann), �B� the fluid concentration-related boundary 
(Dirichlet), and 𝜕BJ̄R

 the fluid flux boundary (Neumann). The 
outward normal vector to the domain boundaries in the refer-
ence configuration is denoted by nR ∈ ℝ

d . The current con-
figuration of this homogeneous body at any instant of time 
can be described by a one-to-one transformation mapping 
�t ∶ BR → ℝ

d , where BR refers to the reference configura-
tion. In principle, selecting any state as the reference state 
BR (e.g., the stress-free dry gel) is possible. For convenience, 
authors have also chosen to define the initial state BR as an 
isotropically swollen configuration from the dry state, lead-
ing to better reproduction of experimental conditions [6, 24].

The position vector in the reference configuration X ∈ BR 
is related to the one in the current configuration x ∈ B by 
x = �t(X, t) . The displacement field reads u(X, t) = x − X . 
The transformation map �t(X, t) can be described in terms 
of the deformation gradient,

with J = J(X, t) = detF > 0 , the determinant, representing 
the volume change of a volume element dv = JdV  from the 
reference (dV) to the current (dv) configuration, and I being 
the identity tensor.

As it is standard,

denote the right and left Cauchy-Green tensors, respectively. 
Additionally, the first invariant of C is given by

2.1.1 � Chemical potential and swelling deformation

The solvent component of the hydrogel is described by 
introducing its chemical potential � , that is, the energy 
absorbed or released due to a change in its content. Fluid 

(1)F = Grad(x) = I + Grad(u),

(2)C = FTF,

(3)b = FFT ,

(4)I1(F) = tr(C) = tr(FTF) .

absorption/desorption is kinematically described through 
an inelastic part of the deformation Ff  . The volume change 
Jf = detFf  associated with fluid absorption/desorption is 
linked with the referential fluid concentration variable cR , 
i.e., the number of absorbed fluid molecules per unit vol-
ume of the reference configuration, by enforcing:

where Ω denotes the volume of a mole of fluid molecules. 
This relationship can also be equivalently described by intro-
ducing the polymer volume fraction variable � , defined as:

resulting in 0 ≤ � ≤ 1 . The dry state of the gel corresponds 
to � = 1 , and 𝜙 < 1 represents a swollen state.

A generally adopted choice is to assume an isotropic 
swelling deformation Ff  , hence reading as:

where �s represents the polymer network stretch due to 
swelling. It is noteworthy that, since cR > 0 by definition, it 
results in Jf ,𝜙, 𝜆s > 0.

2.1.2 � Elastic deformation

The total deformation of a hydrogel is obtained from the 
superimposition of the fluid-related deformation gradi-
ent Ff  and the elastic one Fe . The latter originates from 
the effects of mechanical actions to restore compatibility. 
Based on the previously introduced choices, we obtain:

At this standpoint, depending on the volume change associ-
ated with the elastic deformation Je = detFe = J−1

f
J , a gen-

eral classification between two classes of models is 
introduced: 

1.	 elastic compressible models (non-constrained formula-
tions). In this case, the elastic part of the deformation is 
assumed to be compressible. It is then allowed Je ≠ 1;

2.	 elastic incompressible models (constrained formula-
tions). In this case, the elastic part of the deformation 
is assumed to be perfectly incompressible, and the total 
volume change of the hydrogel is related only to fluid 
volume changes. In other words, it results in Je = 1 and 
the kinematic constraint, 

 has to be enforced within the theoretical formulation.

(5)Jf = 1 + ΩcR ,

(6)� = (1 + ΩcR)
−1 = J−1

f
,

(7)Ff = �sI with �s = J
1∕3

f
= �−1∕3 = (1 + ΩcR)

1∕3 ,

(8)F = (1 + ΩcR)
1∕3Fe.

(9)J
!
=Jf ,
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2.2 � Governing Partial Differential Equations

The two governing partial differential equations (PDEs) for the 
vector-valued displacements u ∶ B̄R → ℝ

d and scalar-valued, 
time-dependent, fluid content in terms of the concentration 
cR ∶ B̄R × Ī → ℝ , when expressed in the reference configura-
tion, consist of: 

1.	 The local form of the balance of linear momentum 
reads: 

 Here, P ∶ BR → ℝ
d×d denotes the first Piola-Kirchhoff 

stress tensor, and P0 ∶ BR → ℝ
d×d its initial value at 

t = 0 . An alternative stress measure also commonly 
employed is the Cauchy stress tensor � = J−1PFT . Exter-
nal actions consist of body forces per unit deformed 
volume in the reference configuration bR ∶ BR → ℝ

d . 
Moreover, boundary conditions prescribe displacement 
ū ∶ BR → ℝ

d and traction t̄ ∶ 𝜕Bt̄ → ℝ
d on separate por-

tions of the boundary. Notice that inertial effects have 
been neglected due to the considerably slow dynamics 
of the fluid diffusion evolution w.r.t. the time scale of 
the wave propagation.

2.	 The local form of the mass balance of fluid content 
inside the hydrogel reads: 

 Here, JR is the fluid flux vector in the reference configu-
ration, related to the one j in the current configuration 
via JR = JF−1j . Boundary conditions prescribe values 
of chemical potential 𝜇̄ ∶ 𝜕B𝜑 × I → ℝ and fluid flux 
J̄R ∶ 𝜕BJ̄R

× I → ℝ
d in the reference configuration on the 

boundaries. Moreover, �0 ∶ �B� → ℝ refers to the ini-
tial value of the chemical potential inside the hydrogel. 
Notice that the mass balance of fluid content is written 
in terms of cR and JR , but its corresponding boundary 
and initial conditions involve a different variable, the 
chemical potential � . The connection of Eq. (11) with � 
becomes clear by introducing a constitutive relation for 
JR , e.g., through Fick’s laws of diffusion.

(10)

⎧⎪⎨⎪⎩

Div(P) + bR = 0, in BR,

u = ū, on 𝜕Bu,

PnR = t̄, on 𝜕Bt̄,

P�t=0 = P0, in BR .

(11)

⎧⎪⎨⎪⎩

𝜕tcR + Div(JR) = 0, in BR × I,

𝜇 = 𝜇̄, on 𝜕B𝜑 × I,

−JR ⋅ nR = J̄R, on 𝜕BJ̄R
× I,

𝜇�t=0 = 𝜇0, in BR × {t = 0} .

2.3 � Constitutive Equations: Stress and Chemical 
Potential

This section introduces constitutive equations for the stress 
and chemical potential, addressing both compressible or 
perfectly incompressible formulations.

2.3.1 � Compressible formulations

Following standard thermodynamic arguments [12, 13, 21, 
48], the local form of the second law of thermodynamics 
reads:

where �R ∶ BR × I → ℝ is the free energy density function 
(per unit reference volume). Guided by Eq. (12), the free 
energy density function can be regarded as a function of the 
total deformation F and fluid concentration cR , that is:

Consequently, Eq. (12) can be reformulated as:

and the following thermodynamically-consistent constitutive 
relations can be established for the first Piola-Kirchhoff 
stress tensor (PK1):

and for the chemical potential:

Alternative formulations can be found in the state-of-the-
art for defining stresses and chemical potential, built upon 
elastic stress and active chemical potential concepts. These 
are reviewed and discussed in appendix, showing that both 
approaches lead to identical results.

2.3.2 � Incompressible formulations

Incompressible models require a special treatment of 
the kinematic constraint in Eq. (9) that has to be satis-
fied a priori within the formulation. A first possibility is 
to extend the free energy ΨR in Eq. (13) in the context 
of Lagrangian formulations by introducing a constrained 
free-energy Ψc

R
 that reads:

(12)P ∶ Ḟ + 𝜇ċR − JR ⋅ Grad(𝜇) − 𝜓̇R ≥ 0,

(13)�R = ΨR(F, cR) .

(14)
P ∶ Ḟ + 𝜇ċR − JR ⋅ Grad(𝜇)

−
𝜕ΨR

𝜕F
∶ Ḟ −

𝜕ΨR

𝜕cR
∶ ċR ≥ 0,

(15)P =
�ΨR

�F
,

(16)� =
�ΨR

�cR
.
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where p represents a pressure-like Lagrange multiplier to 
enforce the kinematic constraint in Eq. (9) through a vari-
ational framework. By replacing ΨR with Ψc

R
 , Eq. (14) reads:

since �J∕�F = JF−T and �Jf∕�cR = Ω . From Eq. (18), the 
following thermodynamically consistent choices can be 
introduced for the first Piola-Kirchhoff stress tensor:

and for the chemical potential:

Such an approach has been followed, for instance, by Bouk-
las and Huang [6] and Chester and Anand [12].

Alternatively, the kinematic constraint in Eq. (9) can 
be embedded directly within the free-energy function. For 
instance, this rationale is described and adopted by Liu 
et al [33] and Liu et al [34]. In this case, the fluid concen-
tration cR is regarded as a dependent variable since it is 
related to the deformation gradient F (or displacements 
u ) through Eq. (9). Hence, the free energy can be refor-
mulated in the form:

Then, Eq. (14) reads:

since ċR = J̇f∕Ω = J̇∕Ω from the incompressibility con-
straint. From Eq. (22) and noting that J̇ = JF−T ∶ Ḟ , the first 
Piola-Kirchhoff stress tensor can be expressed as:

As previously noted, the fluid concentration cR can no longer 
be considered as an independent variable. Therefore, the 
chemical potential � shall now be considered as the prob-
lem’s primary variable. Consequently, a special treatment is 
required for the �tcR term in the mass balance Eq. (28). As 
introduced by Liu et al [33] and Liu et al [34], the follow-
ing relationship holds true from Eq. (9) between the time 
derivative of the fluid concentration and the determinant of 
the deformation gradient:

(17)Ψc
R
(F, cR,P) = ΨR(F, cR) + p(J − Jf (cR)),

(18)
P ∶ Ḟ + 𝜇ċR − JR ⋅ Grad(𝜇)

−

(
𝜕ΨR

𝜕F
− pJF−T

)
∶ Ḟ −

(
𝜕ΨR

𝜕cR
+ Ωp

)
ċR ≥ 0,

(19)P =
�ΨR

�F
− pJF−T ,

(20)� =
�ΨR

�cR
+ Ωp.

(21)𝜓R = Ψ̃R(F) .

(22)P ∶ Ḟ +
𝜇

Ω
J̇ − JR ⋅ Grad(𝜇) −

(
𝜕Ψ̃R

𝜕F

)
∶ Ḟ ≥ 0,

(23)P =
𝜕Ψ̃R

𝜕F
−

𝜇J

Ω
F−T .

which yields

2.4 � Constitutive Equations: Fluid Flux

From Eq. (14), a thermodynamically motivated choice for 
the fluid flux j is to assume that it is proportional to the 
gradient of the chemical potential in the current configura-
tion, namely,

with c the solvent concentration in the current configuration, 
related to the nominal concentration by cR = Jc , and D is 
the solvent diffusivity assumed to be a constant. Notice that 
grad(�) can be pulled back to the reference configuration 
by grad(�) = F−TGrad(�) . Hence, the flux in the reference 
configuration reads:

Inserting Eq. (27) into (11) yields for the mass balance 
equation:

with � = �(F, cR) from Eq. (16).
To make the units of Eq. (28) consistent, cR must have 

units of [mol], kB units of [J K −1 ], T units of [K], � units of 
[J mol−1 ], D units of [m2 s −1 ], and b is dimensionless. Some 
authors have defined constitutive Eq. (26) in terms of RT, 
where R is the gas constant, (see, e.g., Chester and Anand 
[13] or Chester et al [14]). In this case, � has units of [J].

2.5 � Specialization of Constitutive Theories

Specific choices for the free energy function characterize 
different state-of-the-art models linking stress and chemical 
potential variations with diffusion-deformation mechanisms. 
We introduce constitutive models in accordance with the 
framework outlined in Eq. (13) for compressible formula-
tions and Eqs. (17) or (21) for incompressible formulations.

Unless explicitly specified otherwise, we choose to char-
acterize fluid content using the concentration variable cR . 
As a result, we express fluid-related volume changes and 
polymer volume fractions as functions of cR , denoting them 

(24)�tcR =
1

Ω
�tJf =

J

Ω
div(�tu) =

J

Ω
Grad(�tu) ∶ F−T ,

(25)
J

Ω
Grad(�tu) ∶ F−T + Div(JR) = 0, in BR × I .

(26)j = −
cD

kBT
grad(�),

(27)JR = −JF−1

(
cD

kBT
grad(�)

)
= −

cRD

kBT
b−1Grad(�) .

(28)�tcR − Div

(
cRD

kBT
b−1Grad(�)

)
= 0, in BR × I ,
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as Jf = Jf (cR) and � = �(cR) , respectively, based on Eqs. 
(5) and (6), respectively. By inverting these relationships, 
we can reformulate the proposed theories using different 
primary variables to describe fluid content whenever needed.

The free energy function is, in general, written in a sepa-
rable additive form:

Here, �mix
R

 describes the mixing of the solvent with the poly-
mer network. Overall, there is a rather consensus agreement 
that this is well described by the Flory-Huggins/Flory-Reh-
ner theory (see, e.g., Chester and Anand [12]; Bouklas and 
Huang [6]; Liu et al [34]), reading:

where �0 is the chemical potential of the unmixed pure sol-
vent, kB refers to Boltzmann’s constant, T is the absolute 
temperature, and � is a dimensionless parameter named 
Flory’s interaction parameter. The latter represents the dis-
affinity between the polymer and the fluid. In particular, if 
� is increased, the fluid molecules are expelled from the gel, 
and it shrinks, while if � is decreased, the gel swells.

Furthermore, �mech
R

 is the contribution to the change in 
the free energy due to the deformation of the polymer net-
work, for which elastic incompressible or compressible for-
mulations differ by considering:

where Ψs
R
 is an entropic component and Ψen

R
 an energetic 

contribution.
The entropic component is usually defined following the 

arguments of classical statistical mechanics models for rub-
ber elasticity [13]. For small to moderate values of stretch-
ing, Gaussian statistics provide an estimate of the entropy 
change due to mechanical stretching of the polymer network 
resulting in the form of a Neo-Hooke material that takes the 
form [26]:

where I1 is given in Eq. (4) and G0 ≈ NkBT  represents the 
shear modulus, with N being the number of polymer chains 
per unit reference volume, i.e., crosslink polymer network 
density.

In contrast, different choices have been made by authors 
when it comes to defining the energetic component Ψen

R
 

of the free energy due to the deformation of the polymer 
network. Some available solutions will be discussed in 

(29)�R = �mix
R

+ �mech
R

.

(30)
�mix
R

= Ψmix
R

(cR) = �0cR+

kBT

Ω

[
ΩcR ln

(
ΩcR

1 + ΩcR

)
+ �

(
ΩcR

1 + ΩcR

)]
,

(31)�mech
R

=

{
Ψs

R
(F, J) incompressible,

Ψs
R
(F, J) + Ψen

R
(J, cR) compressible,

(32)Ψs
R
(F, J) =

G0

2

[
I1(F) − 3 − 2 ln (J)

]
,

Sect. 2.5.2, and after that, some state-of-the-art perfectly 
incompressible models will be presented.

2.5.1 � Incompressible constitutive models

Two incompressible constitutive models are presented 
here.

Constitutive model I Following the ideas by Hong et al 
[25]; Zhang et al [49]; and Liu et al [34], this model assumes 
a perfectly incompressible elastic material response, by 
introducing a constrained material response within the 
rationale presented in Eq. (21). Therefore, the constraint in 
Eq. (9) is directly embedded in the free-energy function, 
leading to:

where the mixing part of the energy Ψ̃mix
R

 respects 
Ψ̃mix

R
(J) = Ψmix

R
(cR(J)) with cR(J) = (J − 1)∕Ω from Eq. (5) 

under the condition of Eq. (9). Considering the entropic 
component in Eq. (32), the first Piola-Kirchhoff stress ten-
sor is derived from Eq. (23) as:

Here, p� is the equivalent volumetric stress:

Constitutive model II This model has been introduced by 
Chester and Anand [12]. Also, in this case, a perfectly 
incompressible elastic material response is assumed, 
introducing a constrained material response by follow-
ing a Lagrangian approach as described in Eq. (17). By 
exploiting the kinematic constraints in Eqs. (5) and (9), 
the entropic component in Eq. (32) is re-formulated as 
Ψ̂e

R
(F, cR) = Ψs

R
(F, Jf (cR)) and the total free-energy reads:

The first Piola-Kirchhoff stress tensor is derived from Eq. 
(19) yielding:

where P = pJ is the pressure term in the reference configura-
tion. To be consistent with the original model, the fluid con-
centration cR is replaced in the formulation with the polymer 

(33)Ψ̃R(F) =
(
Ψs

R
(F, J) + Ψ̃mix

R
(J)

)|||J=det(F) ,

(34)
P(F,𝜇) =

𝜕Ψs
R

𝜕F
+

(
𝜕Ψs

R

𝜕J
+

𝜕Ψ̃mix
R

𝜕J

)
JF−T

−
J𝜇

Ω
F−T =

[
G0(b − I) + Jp𝜇(J,𝜇)I

]
F−T .

(35)p�(J,�) = −
�

Ω
+

kBT

Ω

[
ln
(
1 −

1

J

)
+

1

J
+

�

J2

]
.

(36)ΨR = Ψmix
R

(cR) + Ψ̂e
R
(F, cR) .

(37)P(F,P) =
𝜕Ψ̂s

R

𝜕F
− pJF−T = G0(b − PI)F−T ,
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volume fraction � by means of Eq. (6). Accordingly, the 
chemical potential can be obtained from Eqs. (20), (30), (32) 
and (36) as:

where P = pJ = pJf = p�−1 follows directly from Eqs. (5), 
(6) and (9).

2.5.2 � Compressible models

Compressible models are characterized by the superpo-
sition of an entropic energetic component (given in Eq. 
(32)) and an energetic part of the free energy. The latter 
reflects changes in the internal energy associated with the 
volumetric mechanical deformation of the swollen elas-
tomer. Three well-established constitutive models for Ψen

R
 

are here discussed:

where K > 0 represents the bulk modulus of the gel.
Constitutive model III The following formulation is 

based on the ideas by Bouklas et al [7]. To be consistent 
with the original model, the swelling volume change Jf  
is considered in place of cR within the formulation, but 
we highlight that this is straight linked through Eq. (5). 
Recalling that J = det(F) , the first Piola-Kirchhoff stress 
tensor considers the entropic and energetic components in 
Eqs. (32) and (39)1 , reading from Eq. (15):

with:

The chemical potential is obtained from Eqs. (16), (29), (30) 
and (39)1 as:

(38)

𝜇(𝜙,P) =

(
𝜕Ψ̂mix

R

𝜕cR
+

𝜕Ψ̂s
R

𝜕cR
+ Ωp

)||||||cR(𝜙)
= 𝜇0 + kBT

[
ln (1 − 𝜙) + 𝜙 + 𝜒𝜙2

]
− ΩG0𝜙 + ΩP𝜙 ,

(39)Ψen
R
(J, cR) =

⎧
⎪⎪⎨⎪⎪⎩

Ψen
R,1

(J, cR) =
K

2

�
J − Jf (cR)

�2
(Bouklas et al, 2015)

Ψen
R,2

(J, cR) =
K

2
ln(J�(cR))

2 (Chester and Anand, 2011)

Ψen
R,3

(J, cR) = �(cR)
−1
�
K

2
ln(J�(cR))

2
�
(Chester et al, 2015)

(40)
P(F, Jf ) =

�Ψs
R

�F
+

(
�Ψs

R

�J
+

�Ψen
R,1

�J

)
JF−T

= G0

(
F + �(F, Jf )JF

−T
)
,

(41)�(F, Jf ) = −
1

J
+

K

G0

(
J − Jf

)
.

It is worth noting that the mass balance Eq. (28) reads in 
this context as:

where M = M(F, Jf ) denotes the species mobility tensor:

Constitutive models IV and V Starting from the original 
incompressible model introduced in Chester and Anand [12] 
(constitutive model II), the same group of authors presented 
alternative compressible formulations by adding energetic 
components as given in Eqs. (39)2 ( [13], constitutive model 

IV) and (39)3 ( [14], constitutive model V). To be consistent 
with the original models, the polymer volume fraction � 
is considered in place of cR within the formulation, but we 
highlight that this is straight linked through Eq. (6). Hence, 
recalling that J = det(F) , the first Piola-Kirchhoff stress ten-
sor follows, for constitutive model IV, from Eq. (15) with 
Eqs. (32) and (39)2 as: 

and, for constitutive model V with (39)3 , as:

Equation (16), together with Eqs. (30), (39)2 and (39)3 , 
yields the chemical potential:

(42)

�(F, Jf ) =
�Ψmix

R

�cR

|||||cR(Jf )

= �0 + kBT

[
ln

(
1 −

1

Jf

)
+

1

Jf
+

�

J2
f

]

− ΩK
(
J − Jf

)
.

(43)

1

Ω
�tJf − Div

(
M(F, Jf )Grad(�(F, Jf ))

)
= 0 in BR × I,

(44)M(F, Jf ) =
D

kBT

Jf − 1

Ω
b−1 .

(45a)
P(F,�) =

�Ψs
R

�F
+

(
�Ψs

R

�J
+

�Ψen
R,2

�J

)
JF−T

=
[
G0(b − I) + K(ln(J�))I

]
F−T ,

(45b)
P(F,�) =

�Ψs
R

�F
+

(
�Ψs

R

�J
+

�Ψen
R,3

�J

)
JF−T

=
[
G0(b − I) + �−1K(ln(J�))I

]
F−T .
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with:

It is noteworthy that, in the original papers, authors formu-
late the theories based on the elastic PK1 and the active 
chemical potential, leading, however, to identical results as 
proved in appendix. Moreover, in these contexts, the mass 
balance Eq. (28) is conveniently reformulated in terms of � , 
instead of cR , as:

where M is given in Eq. (44) and Jf = �−1 from Eq. (6).

2.5.3 � Preliminary comparisons between models and final 
considerations

In the context of compressible models, we can gain valuable 
insights by examining how different choices of the energy 
component Ψen

R
 impact the stress constitutive relationships. 

To illustrate this, let us focus on Eq. (40) within constitutive 
model III, which primarily penalizes substantial elastic defor-
mations, that is, when |J − Jf | = |Je − 1|Jf ≫ 0 . In contrast, 
constitutive models IV and V in Eq. (45) incorporate penalties 
for both significant elastic deformations and the fully swol-
len state, as evidenced by the behavior of | ln(J�)| = | ln(Je)| , 
which approaches +∞ when |Je − 1| ≫ 0 , and inversely, it 
approaches −∞ as the polymer volume fraction � approaches 
0. However, it is worth noting that constitutive models IV and 
V diverge from each other in treating large swelling deforma-
tions. Specifically, constitutive model V penalizes these defor-
mations, occurring when �−1 = Jf → +∞ , whereas constitu-
tive model IV does not.

Furthermore, as previously highlighted, constitutive models 
IV and V serve as the compressible counterparts to consti-
tutive model II. This connection becomes evident when we 
observe that the Lagrange multiplier P in Eq. (37) is effec-
tively replaced by a term related to bulk modulus in Eq. (45). 

(46)�(F,�) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
�Ψmix

R

�cR
+

�Ψen

R,2

�cR

�������cR(�)
= �0 + g(F,�), constitutive model IV

�
�Ψmix

R

�cR
+

�Ψen

R,3

�cR

�������cR(�)
= �0 + g(F,�) +

1

2
ΩK(ln(J�))2 constitutive model V,

(47)
g(F,�) = RT

[
ln (1 − �) + � + ��2

]

+

{
−ΩK(ln(J�))� constitutive model IV

−ΩK(ln(J�)) constitutive model V
.

(48)
−

1

Ω�2
�t� − Div

(
M(F,�−1)Grad(�(F,�))

)
= 0

in BR × I ,

However, from a numerical implementation standpoint, this 
substitution carries significant implications. In general, P rep-
resents an additional primary variable that must be determined 
through the stationary conditions of the constrained functional 
(17) with respect to the Lagrange multiplier. Only under spe-
cific circumstances, such as a traction-free condition in the 
presence of plane stresses, can P be directly defined from equi-
librium conditions. In these instances, constitutive model II 
simplifies to having only two primary variables, namely, u and 
� (as demonstrated in, for example, Eq. (78) in the subsequent 
Sect. 5.2). From this point forward, we will exclusively focus 
on these special cases.

2.6 � Weak Formulations

The solution of the coupled PDE system consists of a vector-
valued field of displacements ( u ) and, depending on the formu-
lation, a scalar-valued field ( � ) given either by the concentra-
tion ( cR ), polymer volume fraction ( � ), or chemical potential 
( � ). Hence, it results in � ∈ {cR,�,�}.

Here we adopt standard notation for the usual Lebesgue 
and Sobolev spaces, e.g., Wloka [47]. The functional space 
H1(BR)

d is a Sobolev space that consists of functions defined 
on a bounded domain X ⊂ ℝ

d , with square integrable partial 
derivatives up to the first order.

Here, X ∶= BR . Specifically, a function w ∈ H1(BR)
d , if it 

satisfies the following conditions, namely w is square integra-
ble: ∫

BR
|w(x)|2dx < ∞ and the first-order partial derivatives 

of w exist and are square-integrable such that 
∫
BR

|∇w(x)|2dx < ∞.
The norm associated with this space is given by

This norm induces a complete metric space with respect 
to which the functions in H1(BR)

d can be well-defined and 
approximated.

The coupled system of equations is formulated in terms 
of a variational coupled system. To this end, we define the 
trial and test spaces as follows:

(49)||w||H1(BR)
d ∶=

(
∫
BR

|w(x)|2dx + ∫
BR

|∇w(x)|2dx
)1∕2

.
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We notice that in Q𝜑̄ , the boundary conditions may be given 
explicitly or implicitly through the relation h(𝜑) = h̄ . This is 
seen in the set of Eq. (11). To elucidate this, let us consider 
two distinct scenarios: i. for constitute models II, IV, and 
V, we seek � , and the boundary condition is 𝜙 = 𝜙̄ , i.e., 
h(�) ∶= � and h̄ ∶= 𝜙̄ . On the other hand, ii. in constitutive 
model III, we have � ∶= Jf  and h̄ ∶= 𝜇̄ . Then, we solve the 
coupled problem for Jf  and � , where Jf  is implicitly obtained 
from Eq. (42). Once we know Jf  or � , then cR can be recov-
ered from (5).

To formulate both problem statements in an abstract 
fashion, we introduce for the displacement system the semi-
linear form a((�,�))(�) , which is nonlinear in the first argu-
ment (trial function) and linear in the second argument (test 
function). Furthermore, let b(v) be the given right-hand side 
data. Next, for the balance of fluid concentration, we use 
c((�,�))(q) and d(q). Then, the weak formulation can be 
written as:

Formulation 1  (Diffusion-deformation of gels in BR ). Find 
(u,𝜑) ∈ Vū × Q𝜑̄ , with �(0) = �0 , such that for t ∈ I it holds

where

with “ : ” denoting the double contraction of the second-
order tensors P and ∇v , where P(u,�) is defined by either 
Eqs. (34), (37), (40), or (45), depending of the constitutive 
model adopted. Whereas M(u,�) is given by Eq. (44).

Q ∶= H1
(
BR

)
, Q𝜑̄ ∶= {𝜑 ∈ Q| h(𝜑) = h̄ on 𝜕B𝜑}, Q0 ∶= {𝜑 ∈ Q| 𝜑 = 0 on 𝜕B𝜑},

V ∶= H1
(
BR

)d
, V

𝐮̄
∶= {𝐮 ∈ V| 𝐮 = 𝐮̄ on �B

𝐮
}, V0 ∶= {𝐮 ∈ V| 𝐮 = 0 on �B

𝐮
}.

(50)
a((u,�))(v) + b(v) = 0, ∀v ∈ V0,

c((u,�))(q) + d(q) = 0, ∀q ∈ Q0,

(51)a((u,�))(v) = ∫
BR

P(u,�) ∶ ∇vdV ,

(52)b(v) = −∫
BR

bR ⋅ vdV ,

(53)

c((u,�))(q) = ∫
BR

�tcR(�) ⋅ qdV

+ ∫
BR

M(u,�)∇�(u,�) ⋅ ∇qdV ,

(54)d(q) = 0,

The two balance equations are fully coupled through the 
constitutive equations of the stress P(u,�) and the species 
mobility tensor M(u,�).

3 � Classifications, Discretization, 
and Numerical Solution

In this section, based on Formulation 1, we explain numeri-
cal coupling strategies, provide mathematical classifications, 
and introduce spatial and temporal discretizations. These 
derivations serve as a starting point for the implementa-
tion in FEniCS. The reader is referred to the introduction 
to understand the importance of this section, particularly 
when testing novel algorithms, comparing them, and pursu-
ing our own numerical developments, including code debug-
ging. This section provides the link between the strong form 
problem statements in Sect. 2 and the numerical simulations 
carried out in Sect. 5 by following the road map outlined in 
Wick [46][Section 12.3].

3.1 � Coupling Strategies

There exist several ways for realizing numerically the cou-
pling of several PDEs. Here, we discuss two fundamental 
strategies to be implemented later, namely, monolithic 
and partitioned approaches. In the former, Formulation 1, 
it treated all-at-once, while in a partitioned approach, the 
two subproblems are decoupled and solved in an iterative 
fashion. Here, we closely follow the concepts and notation 
introduced by Wick [45][Chapter 3].

Variational-monolithic coupling In the variational-
monolithic setting, the coupling conditions are realized in 
an exact fashion in the weak (i.e., variational) formulation. 
Formulation 1 is given in such a variational-monolithic fash-
ion and, more specifically, the coupling conditions are of 
volume-coupling type Wick [45][Section 3.3.3].

In the monolithic approach, the entire PDE system can 
be either solved all-at-once, which usually requires phys-
ics-based preconditioners. Either the system is decoupled 
on the solver level within an outer monolithic iteration, 
e.g., GMRES (generalized minimal residual) or multigrid, 
and the preconditioner is constructed based on decou-
pled subproblems. In general, monolithic solutions can be 



A Comparative Analysis of Transient Finite‑Strain Coupled Diffusion‑Deformation Theories…

computationally demanding depending on the complexity 
of the problem at hand.

The monolithic scheme can be naturally extended to 
account for time-dependent problems. In this case, we need 
to introduce a suitable time discretization scheme and solve 
the previous problem at each time step. As an alternative, 
a global space-time formulation can be formulated, discre-
tized, and solved accordingly; see e.g., Gander and Neumül-
ler [19] for a specific space-time multigrid realization and 
analysis on the linear level.

Partitioned (staggered) approach Conversely, in the 
partitioned approach, the system of PDEs is broken down 
into smaller subsystems, and each subsystem is solved inde-
pendently using its own numerical method. The solutions 
of these subsystems are then coupled to obtain the solu-
tion of the entire system. The partitioned approach typically 
involves the following steps: 

1.	 Initialization provide initial guesses û0 and 𝜑̂0 for the 
unknown fields u and �.

2.	 Iteration Let (ûj, 𝜑̂j) and (ûj−1, 𝜑̂j−1) be the trial values 
of u and � at the current and previous iterations, respec-
tively.

Algorithm 1  For j = 1, 2, 3,… , iterate:

•	 Given 𝜑̂j−1 , find ûj : 

•	 Given ûj , find 𝜑̂j : 

3.	 Check for convergence compare the updated and previ-
ous trial values. The iteration is considered converged 
if the difference is below a specified tolerance. That is, 
check whether 

 If the criterion is fulfilled, stop and assign u = û
j and 

𝜑 = 𝜑̂j . If not, increment j → j + 1 and return to step 2.
The previous procedure extends to discrete formulations of 
time-dependent problems, for which a sequence of unknown 
fields un and �n at time points tn with n = 1, 2, 3, ...,N  is 
sought for. Here, the previously introduced algorithm 
remains identical and performed at each time point tn . In 
this context, trial quantities at iteration step j and time tn can 
be denoted as ûn,j and 𝜑̂n,j.

(55)a((ûj, 𝜑̂j−1))(v) + b(v) = 0

(56)c((ûj, 𝜑̂j))(q) + d(q) = 0

(57)max
(||ûj − û

j−1||, ||𝜑̂j − 𝜑̂j−1||) < TOL.

3.2 � Mathematical Classification

We follow the ideas presented by Wick [45] and classify the 
diffusion-deformation prototype problem in Formulation 1. 
This is the starting point to design appropriate algorithms, 
which are of interest in this work and have been introduced 
before. Moreover, such classifications are required for math-
ematical and numerical analysis, which both exceed the 
focus of this work. To this end, we can formally analyze the 
problem statement as follows: 

1.	 Orders in time and space Equation (10) represents 
a quasi-static problem with no time derivatives and 
second order in space. In the thermodynamic context, 
this quasi-static problem is in a thermodynamic equi-
librium at each instance. Equation (11) is a nonlinear, 
time-dependent, and of advection–diffusion type when 
solved for cR or �s . Equation (11) is first order in time 
and second order in space, i.e., a nonlinear parabolic 
PDE. On the other hand, when it is solved for � , a minus 
sign appears in front of the time derivative term (see Eq. 
(48)), which is rather unusual.

2.	 Nonlinearities They appear due to two reasons in For-
mulation 1. First, the constitutive equations for P and � 
are nonlinear. The constitutive theories are formulated 
in a large deformation setting with compressibility con-
straints. Second, the coupling terms enter in a nonlinear 
fashion in the respective other problem.

3.	 Type of coupling The coupling is of domain-type and 
occurs via coefficients and solution variables. In a parti-
tioned approach (see Sect. 3.1), assuming that one vari-
able is given, the displacement PDE displays only the 
geometric nonlinearity coming from the Neo-Hookean 
type of constitutive equation for the deformation. On 
the other hand, the fluid balance concentration PDE can 
become quasi-linear if the problem is solved for cR or �s 
because a lower-order term of the solution variable is 
multiplied with the highest derivative. It can also remain 
fully nonlinear if the problem is solved for �.

3.3 � Temporal and Spatial Discretization

In this section, we discuss the discretization in time and 
space. A classical finite difference scheme is employed for 
the temporal discretization of the fluid balance concentra-
tion PDE, resulting in a quasi-stationary solution in space 
at each time point. The spatial discretization is based on a 
Galerkin FEM formulation [15]. Here, due to the structure of 
Formulation 1 of saddle-point type, the inf-sup stability, i.e., 
LBB (Ladyzhenskaya-Babuska-Brezzi), must be guaranteed, 
which requires on the discrete level using Taylor–Hood ele-
ments, also known as P2∕P1 elements. The Taylor–Hood 
elements consist of quadratic basis functions ( P2 ) for the 
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displacement field and linear basis functions ( P1 ) for the 
fluid concentration-related field. As just mentioned, the main 
reason for using Taylor–Hood elements lies in their ability 
to satisfy the LBB stability condition, which helps avoid 
numerical instabilities like spurious chemical potential oscil-
lations [7]. The notation in this section mainly matches the 
notation adopted by Logg et al [37] and Wick [45].

Assume the computational domain BR is partitioned into 
open elements K that depend on the spatial dimension d. 
A mesh consists of quadrilateral, triangular, or hexahedron 
cells K, all of them available in FEniCS. Here, we employ 
hexahedron cells. They perform a non-overlapping cover of 
the computational domain BR ⊂ ℝ

d . Let Th = {K} be a con-
forming mesh of the bounded domain BR ⊂ ℝ

d , with mesh 
size h.

We employ Taylor–Hood elements, i.e., a pair of finite 
element spaces (VTH

h
,QTH

h
) , where:

•	 QTH
h

⊆ Q is the space of continuous, piecewise linear 
functions on Th , i.e., 

•	 VTH
h

⊆ V  is the space of continuous, piecewise quadratic 
functions on Th , i.e., 

Here, P1(K) denotes the space of linear polynomials over the 
element K in ℝ and P2(K)

d denotes the space of quadratic 
polynomials over the element K in ℝd.

Thus, the discrete variational monolithic formulation for 
the diffusion-deformation model reads:

Formulation 2  (Semi-discrete in space variational  
monolithic diffusion-deformation of gels in Th ). Find 
(uh,𝜑h) ∈ {ūh|𝜕Bū

+ VTH
h

} × {𝜑̄h|𝜕B𝜑̄
+ QTH

h
}, with �h(0) = �

0

 , such 
that for t ∈ I it holds

Moreover, the discrete variational formulation using the 
staggered approach reads:

Formulation 3  (Semi-discrete in space variational diffusion-
deformation of gels in Th ). Find uh ∈ {ūh|𝜕Bū

+ VTH
h

} and 
𝜑h ∈ {𝜑̄h|𝜕B𝜑̄

+ QTH
h
} , with �h(0) = �0 , such that, for the 

nonlinear iterations j = 1, 2,… and t ∈ I it holds

(58)
QTH

h
(Th) ∶=

{
qh ∈

[
C
(
Bh

)]||| qh|K ∈
[
P1(K)

]

∀K ∈ Th, qh|�Bqh

= 0
}
.

(59)
VTH
h

(Th) ∶=
{
vh ∈

[
C
(
Bh

)]d||| vh|K ∈
[
P2(K)

]d

∀K ∈ Th, vh|�Bvh

= 0
}
.

(60)
a((uh,�h))(vh) + b(vh) = 0, ∀vh ∈ VTH

h
,

c((uh,�h))(qh) + d(qh) = 0, ∀qh ∈ QTH
h
.

until the iteration converges, i.e., Eq. (57) is fulfilled.

The time-dependent term in the balance of fluid concen-
tration is approximated using the first-order implicit Euler 
discretization for n = 1, 2,… ,Nf  , with Nf  the final simula-
tion time index at the final time T, as

where �n and �n−1 are the value of � at the current and previ-
ous time step, respectively, and Δt is the time step increment. 
Following [45][Chapter 5, Definition 52, p. 90], we split the 
semi-linear form c((u,�))(q) into time derivative and non-
derivative terms. To this end, we have

Then, the difference approximation of the time derivative 
with time step increment Δt yields:

Then, the fully discrete variational monolithic formulation 
for the diffusion-deformation model reads:

Formulation 4  (Fully-discrete in space variational mono-
lithic diffusion-deformation of gels in Th ). Let h be the spa-
tial discretization parameter and n the current time point 
index. Find (un

h
,𝜑n

h
) ∈ {ūh|𝜕Bū

+ VTH
h

} × {𝜑̄h|𝜕B𝜑̄
+ QTH

h
} , 

with �(0) = �0 , such that for n = 1,… ,Nf  it holds

The reader should notice that the abstract cycle from 
monolithic problem statements until the final linear solution 
is outlined in [45][Section 7.8.4]. Using the same abstract 
concept, but replacing the monolithic nonlinear solution 
with some iteration (Formulation 3), we obtain the fully dis-
crete variational formulation using the staggered approach:

Formulation 5  (Fully-discrete in space variational diffusion-
deformation of gels in Th ). Let h be the spatial discretization 
parameter and n the current time point index. Find 

(61)
a((û

j

h
, 𝜑̂

j−1

h
))(vh) + b(vh) = 0, ∀vh ∈ VTH

h
,

c((û
j

h
, 𝜑̂

j

h
))(qh) + d(qh) = 0, ∀qh ∈ QTH

h
,

(62)�tcR(�) ≈
cR(�

n) − cR(�
n−1)

Δt
,

(63)

c((u,�))(q) ∶= cT ((�))(q) + cE((u,�))(q)

∶= ∫
BR

�tcR(�) ⋅ q dV + ∫
BR

M(u,�)∇�(u,�) ⋅ ∇qdV .

(64)
cT ((�))(q) ≈ cΔt

T
((�n))(q)

∶= ∫
BR

cR(�
n) − cR(�

n−1)

Δt
⋅ qdV .

(65)

a((un
h
,�n

h
))(vh) + b(vh) = 0, ∀vh ∈ VTH

h
,

cΔt
T
((�n

h
))(qh) + cE((u

n
h
,�n

h
))(qh) + d(qh) = 0,

∀qh ∈ QTH
h
.
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un
h
∈ {ūh|𝜕Bū

+ VTH
h

} and 𝜑n
h
∈ {𝜑̄h|𝜕B𝜑̄

+ QTH
h
} ,  wi th 

�(0) = �0 , such that, for the nonlinear iterations j = 1, 2,… 
and n = 1,… ,Nf  it holds

until the iteration converges at time point tn , i.e., Eq. (57) 
is fulfilled, and then proceeds to tn+1 . Then, we set as initial 
guesses of the nonlinear iterative scheme at the next time 
step (ûn+1,0

h
, 𝜑̂n+1,0

h
) ∶= (un

h
,𝜑n

h
).

3.4 � Numerical Solution

The numerical consequences of our previous classifica-
tion (specifically the type of nonlinearities) are that we will 
always have to solve at least one nonlinear PDE, indepen-
dently of whether the problem is solved in a monolithic, 
Formulation 4, or staggered way, Formulation 5. Here, we 
utilize a Newton-type solver [17] and the consistent lineari-
zation of the system of PDEs at each nonlinear iteration 
step. Specifically, for Formulation 4, a convenient way (see 
[45][Section 3.3.3.2 and Section 3.3.3.3]) is to formulate a 
common semi-linear form 

and corresponding right-hand side:

 with the joint unknown, trial function, Un
h
∶= (un

h
,�n

h
) and 

the joint test function �h ∶= (vh, qh) . This corresponds to 
Step 4 [45][Section 7.8.4.1]. Then, we can proceed with 
Step 5 (Newton’s method) in [45][Section 7.8.4.1] for the 

(66)

a((û
n,j

h
, 𝜑̂

n,j−1

h
))(vh) + b(vh) = 0, ∀vh ∈ VTH

h
,

cΔt
T
((𝜑̂n

h
))(qh) + cE((u

n
h
,𝜑n

h
))(qh) + d(qh) = 0,

∀qh ∈ QTH
h
,

(67a)
A(Un

h
)(�h) ∶= a((un

h
,�n

h
))(vh) + cΔt

T
((�n

h
))(qh)

+ cE((u
n
h
,�n

h
))(qh) ,

(67b)F(�h) ∶= b(vh) + d(qh)

nonlinear solution. The resulting solving system is analo-
gous to Eq.  (67) for Formulation 5, but with Un

h
 replaced by 

Û
n,j

h
∶= (û

n,j

h
, 𝜑̂

n,j

h
) that collects trial values of unknown fields 

at step j within the iterative solution scheme.
In this work, automatic differentiation offered by FEniCS 

was employed rather than calculating the Jacobian by hand. 
Sparse LU decomposition (Gaussian elimination) is used 
inside each Newton step to solve the arising linear equa-
tion systems. As we have the specific derivations in For-
mulation 4 and Formulation 5 at hand, a future extension 
is to employ iterative methods, like GMRES - generalized 
minimal residuals [41], or multigrid solvers [23], for which 
however, preconditioners need to be developed.

Finally, it is well known that Dirichlet boundary condi-
tions on the chemical potential, see Eq. (11)4 , might be the 
source of spurious numerical oscillations due to large sud-
den pressures within the hydrogel at the start of the simula-
tion. Hence, whenever needed, such a boundary condition 
is incrementally applied during the simulation, a strategy 
known as time-ramping boundary condition. In each case, 
the boundary condition is increased as fast as possible to 
meet a good compromise between numerical stability and 
physical reality. This is achieved by introducing a time-
dependent exponential term that multiplies the Dirichlet 
boundary condition, i.e., h(𝜑, t) = h̄(𝜑)

(
1 − exp(−𝛼rt)

)
 , 

where �r is a positive constant that determines the rate of 
ramping.

4 � General Settings for the Numerical 
Simulation Campaign

The coupled diffusion-deformation problem is faced by solv-
ing Eq. (10) with null body forces bR = 0 and (11) and dis-
cretized either as in Eq. (65) (Formulation 4, monolithic) or 
Eq. (66) (Formulation 5, staggered) together with the specific 
choices of Constitutive models I to V introduced in Sect. 2. 

Table 1   Models’ main features summary

1 Constitutive model II originally has P as a primary variable but, as discussed in Sect. 2.5.3, a functional dependency P = P(�) can be analyti-
cally determined in some special cases, like those addressed in this work
Note The rationale behind the selected solution strategies is detailed in the text of Sect. 5 for each constitutive model

Constitutive
model

Reference Equations Primary variables Solution strategy Incompress-
ible

Monolithic Staggered Yes No

I [34] (10), (25), and (34) � and u x x
II [12]1 (10), (37), (38), and (48) � and u x x x
III [7] (10), (40), (42), and (43) Jf  , � and u x x
IV [13] (10), (45a), (46)

1

 , and (48) � and u x x x
V [14] (10), (45b), (46)

2

 , and (48) � and u x x x



	 J.-H. Urrea‑Quintero et al.

Table 1 summarizes the main features of the models consid-
ered in this work and refers to their respective equations.

Two campaigns of numerical simulations will be presented. 
Section 5 addresses different representative prototype prob-
lems by adopting parameter settings presented in the origi-
nal papers where each constitutive model has been originally 
presented. The aim is to explore the robustness of the devel-
oped numerical implementations. Section 6 presents a unified 
benchmark problem to have a unique reference simulation 
example that shows the differences in the response for each 
constitutive equation.

The solution strategy outlined in Sect. 3.1 is adopted in all 
simulation cases. The algorithms are implemented in FEniCS, 
and the code is provided so the reader can reproduce and verify 
the results (online repository link: https://​doi.​org/​10.​25835/​
5v49y​fk0). The following material parameters remain constant 
in all cases: kB = 1.38065 × 10−23 [Jmol−1] , T = 298 [K] , 
Ω = 1.7 × 10−28 [mol−1] and NΩ = 0.001 [m3mol−1] . The 
remaining material parameters vary depending on the specific 
constitutive model and the adopted simulation setup. They can 
be found in the caption of the figures associated with each 
numerical result. For the sake of notation, let E1,E2,E3 be 
introduced as a Cartesian coordinate system in the reference 
configuration (resp., e1, e2, e3 in the current one), parametrized 
in X, Y and Z (resp., x, y and z). Moreover, let the following 
stress components be introduced:

Numerical results will be reported in terms of displacements 
u , stretch � , and the evolution of � since they are the most 
relevant to analyze from a physical viewpoint.

5 � Representative Prototype Problems

Four representative prototype problems are introduced. First, 
we consider a one-dimensional transient swelling of a hydro-
gel bar along the Y-direction. The bar is fixed at Y = 0 and free 
at Y = 0.01 [m] where PY = 0 . At this latter end, the bar is 
exposed to a non-reactive solvent (see Fig. 1a). The deforma-
tion gradient takes the form

occurring along the Y direction. For perfectly incompress-
ible models (i.e., constitutive models I and II), it then results 
in det(F) = � = Jf = �−1 , that is the total stretch is equal to 
the swelling volume change and inversely proportional to 
polymer volume fraction. Furthermore, from the equilibrium 
condition (10), it follows that �P∕�Y = 0 , which, after con-
sidering traction free boundary conditions, leads to PY = 0 
and, in consequence, �y = 0 . This problem has been studied 

(68)
PX = P ∶ (e1 ⊗ E1) , PY = P ∶ (e2 ⊗ E2) ,

𝜎x = � ∶ (e1 ⊗ e1) .

(69)1D F = diag(1, �, 1) ,

previously by both linear and nonlinear theories, e.g., [6, 
7]. Due to the simplicity of its numerical settings, this case 
study will serve as a reference, providing an estimate of the 
correct order of magnitude of the quantities of interest, i.e., 
� , � , PX or �x , in more complex case studies.

As a second example, we investigate the transient 
swelling of a constrained hydrogel slab in a two-dimen-
sional setting in-plane strain (in the (X, Y) plane). In this 
example, the hydrogel block is placed in a rigid container 
with frictionless walls, and the deformation in the X direc-
tion is constrained. Only the upper part of the hydrogel 
is exposed to a non-reactive solvent (see Fig. 1b). This 
example has been previously considered in, e.g., [12] and 
[34], and represents the 2D counterpart of the previously 
introduced 1D example. However, it is noteworthy that the 
one-dimensional problem is numerically solved for a sin-
gle scalar field (representing either � or � depending on the 
constitutive model), and the other quantities of interest are 
computed in the post-processing stage. On the other hand, 
the numerical solution of the two-dimensional problem is 
obtained by considering the complete sets of unknowns, 
that is, a scalar field describing the fluid content and the 
vector displacement field u . Then, quantities of interest 
(e.g., the chemical potential � ) are computed in the post-
processing stage.

As a third example, we consider the transient free-swell-
ing in a two-dimensional setting (in the (X, Y) plane) of 
a polymer gel with an initially square cross-section. A free 
hydrogel block is immersed in a non-reactive solvent. Due to 
the symmetry of the deformation, only a quarter of the whole 
model needs to be considered (see Fig. 1c). A similar setup 
to this example can be found in, e,g., [13] and [34]. At the 
steady state, the deformation gradient is uniform within the 
domain, reading in the Cartesian representation as:

with �2D
∞

 referring to the (constant) 2D final stretch at the 
steady state.

The fourth and last example corresponds to the extension 
of the two-dimensional block example into three-dimen-
sions, namely, a cube is immersed in a non-reactive solvent 
to swell due to the solvent absorption freely (see Fig. 1d). In 
the steady state, the deformation gradient results:

with �3D
∞

 referring to the (constant) 3D final stretch at the 
steady state. This simulation resembles that presented, e.g., 
in [38] and will be only performed considering the constitu-
tive model I.

We estimate the convergence order with a well-known 
heuristic formula. Let us denote the errors by Eh , Eh∕2 , and 
Eh∕4 , where h is the mesh size parameter as before. Under the 

(70)Free swelling F2D
∞

= diag
(
�2D
∞
, �2D

∞
, 1
)
,

(71)Free swelling F3D
∞

= �3D
∞
I

https://doi.org/10.25835/5v49yfk0
https://doi.org/10.25835/5v49yfk0
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assumption that our discretized problem has a convergence 
order of p, then each error should be roughly (1∕2)p times 
the previous error. Therefore, we can estimate p by taking 
the logarithm base 2 of the error ratios as:

(72)p =
1

log(2)
log

(|||||
Eh − Eh∕2

Eh∕2 − Eh∕4

|||||

)
.

5.1 � Constitutive Model I

One-dimensional transient swelling. Here, we follow the 
ideas presented in [34]. Recalling Eqs. (34) and (35) with 
Eq. (69), the balance of linear momentum (10) reduces to:

Additionally, the fluid balance Eq. (11) in a one-dimensional 
setting yields

(73)
PY = −

�

Ω
+

kBT

Ω

[
ln
(
1 −

1

�

)
+

1

�
+

�

(�)2

]

+ G0

(
� −

1

�

)
= 0.

Fig. 1   Representative examples setup. a One-dimensional transient 
swelling of a hydrogel bar. The bar is fixed at Y = 0.0 [m] , while the 
opposite end, Y = 0.01 [m] , is exposed to a non-reactive solvent. b 
Two-dimensional transient swelling of a constrained hydrogel slab. 
In this example, the hydrogel block is placed in a rigid container 
with frictionless walls and the deformation in the X direction is con-
strained. The top surface at Y = 0.01 [m] keeps traction-free and is 
in contact with the solvent during deformation. At the bottom sur-
face Y = 0.0 [m] , the gel is fixed to the container wall and no fluid 
is allowed to diffuse through it. Due to the solvent absorption, the 
hydrogel can only swell along the Y direction. c. Two-dimensional 
hydrogel block is immersed in a non-reactive solvent with a refer-
ence chemical potential �0 = 0 . Only a quarter of the whole model 
is considered because of the symmetry of the block. For the mechani-
cal boundary conditions, the nodes along edge ab are prescribed to 
have displacement component uy = 0 , while the nodes along edge 

ad are prescribed to have ux = 0 . The edges bc and cd are taken to 
be traction-free. For the solvent concentration boundary conditions, 
the edges ab and ad (the symmetry edges) are prescribed a zero fluid 
flux, and on the edges bc and cd, the chemical potential is prescribed 
as � = 0 on �B� , t = {0,T} . d Three-dimensional cube immersed 
in a non-reactive solvent. Only a quarter of the whole model is con-
sidered because of the symmetry of the 3D cube. The mechanical 
boundary conditions are specified such that the uy = 0 in the front 
face, ux = 0 in the left face, and uz = 0 in the face in the bottom part. 
For the solvent concentration boundary conditions, the front, left, and 
bottom faces (the symmetry faces) are prescribed a zero fluid flux, 
and on the back, right, and top faces, the chemical potential is pre-
scribed as � = 0 on �B� , t = {0,T} . Note: the remaining boundary 
conditions, together with the initial conditions, are defined depend-
ing on the specific constitutive theory adopted to study the diffusion-
deformation process
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Differentiating Eq. (73) with respect to Y yields

(74)

⎧⎪⎪⎨⎪⎪⎩

𝜕t𝜆

Ω
=

𝜕

𝜕Y

�
D

ΩkBT
(𝜆)−1

𝜕𝜇

𝜕Y

�
, in BR,

𝜆 = 𝜆̄, at Y = 0.01,
𝜕𝜆

𝜕Y
= 0, at Y = 0.0,

𝜆(t = 0) = 𝜆0, in BR. Substituting Eq. (75) into Eq. (74) leads to a nonlinear par-
tial differential equation with respect to �(Y , t).

The weak discretized form of Eq. (74) reads

(75)

��

�Y
= kBT

[
1

�(� − 1)
−

1

(�)2
−

2�

(�)3

]
��

�Y

+ ΩG0

(
1 +

1

(�)2

)
��

�Y
.

(76)
∫
BR

(
�n
h
− �n−1

h

Δt
qh +

D

ΩkBT
(�n

h
)−1

��n
h

�Y

�qh
�Y

)
dY = 0 , ∀qh ∈ Qh ,

Fig. 2   Constitutive model I: 
one-dimensional bar (black 
dots) and two-dimensional 
hydrogel constrained slab 
(colored lines) numeri-
cal solution comparison for 
different mesh densities Nh 
and at different simulation 
times. a Deformed two-
dimensional constrained slab 
at t = 10.0 [s] . b Stretch due 
to swelling � . c Chemical 
potential � normalized by kBT  . 
d Cauchy compressive stress 
�X . Simulation parameters 
G

0

= 10 [MPa], � = 0.2 [−−],

D = 2.0 × 10

−5 [m2 s−1]

Fig. 3   Constitutive model I: 
newton iterations along the 
time steps. a For different mesh 
densities ( Nh ). b For different 
time step sizes ( Nk)
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where ��n
h
∕�Y  is given by Eq. (75) evaluated at �n

h
 . After 

solving Eq. (76), the chemical potential can be obtained from 
(73) and the stress component �x in the direction orthogonal 
to swelling as �x = p�(�,�) , with p� from Eq. (35).

The numerical results after solving Eq. (76) with the 
FEM are presented in Fig. 2 (black dots). A one-dimen-
sional mesh is created to discretize the hydrogel bar, with 
the number of elements and time steps defined from a con-
vergence study on �(Y , t) (results not shown). In the end, 
the reference solution is obtained with 200 elements and 
50 time steps. The boundary condition at Y = 0.01 [m] is 
obtained after solving Eq. (73) for � with � = 0 , which 
yields 𝜆(Y = 0.01, t) = 𝜆̄ = 1.498 . The initial condition 
is defined as �0 = 1.0 . It is worth mentioning that the 
obtained results accurately capture the ones presented in 
[34] in Fig. 3 therein for the same problem setup.

Two-dimensional constrained hydrogel slab. Constitu-
tive model I is now solved for the constrained hydrogel slab 
considered in Fig. 1b.

Figure 2 presents the comparison between the solution 
previously obtained for the one-dimensional bar (black 
dots) and the two-dimensional constrained slab examples 
(different colored lines). For the two-dimensional case, we 
show results from different simulations with increasing num-
ber of elements and time steps. The deformed hydrogel at 
t = 10.0 [s] is displayed in Fig. 2a, and a time step equal to 
0.2 (50 time steps) was used to get Fig. 2a. It is observed 
from Fig. 2b–d that differences in numerical solution are 

rather small for mesh densities higher than 50. A zoom-in is 
included in Fig. 2b to better distinguish between the differ-
ent mesh densities. The discrepancy between the one- and 
two-dimensional cases can be assessed from Fig. 2, which 
shows the effect of approximating the time derivative in the 
fluid concentration balance through the displacement and 
increasing the problem’s dimension.

From Fig. 2c, it is observed that the chemical potential’s 
rate increases fast in the beginning when the solvent starts 
entering the gel and becomes slower when it tends to the 
steady state. Stress �x follows a similar pattern as observed 
in Fig. 2d. This behavior can be understood as follows. The 
gradient of � is relatively large close to the top surface, at 
Y = 0.01 [m] , and the compressive stress in the interior part 
of the hydrogel is the smallest, which are both helpful for 
the diffusion of the solvent content. The hydrogel’s network 
is relaxed and allows easy solvent absorption. The gradient 
of � becomes smaller and �x larger as the solvent’s concen-
tration increases in the hydrogel. This prevents the solvent 
from penetrating the hydrogel further and slows the diffusion 
process. There is less space within the hydrogel network, and 
it starts to saturate. Therefore, each quantity approaches the 
corresponding steady solution at a decreasing rate.

Next, a computational convergence analysis is performed 
to investigate the robustness and computational cost of the 
monolithic approach. We focus on investigating the effect of 
mesh density and the time step size on the behavior of the 
implemented numerical algorithm. We aim to understand 

Fig. 4   Constitutive model I: 
convergence analysis of the 
Newton solver for different 
mesh densities ( Nh ). a Nh = 25 . 
b Nh = 50 . c Nh = 100 . d 
Nh = 200
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how these parameters influence the performance of the algo-
rithm in solving the nonlinear system of equations associated 
with the FEM discretization.

First, we conduct performance studies of the Newton 
solver for each time step to assess its efficiency in solving 
the nonlinear equations. We observe whether the mesh 

density and time step size influence the number of Newton 
iterations, determining if it remains consistent throughout 
the simulation. Figure 3 depicts time versus the number of 
Newton iterations, where Fig. 3a showcases variations in 
mesh density and Fig. 3b displays variations in time step 
size. From these findings, it is clear that at the beginning 

Fig. 5   Constitutive model I: 
convergence analysis of the 
Newton solver for different 
time steps size ( Nk ). a Nk = 25 . 
b Nk = 50 . c Nk = 100 . d 
Nk = 200

Table 2   Spatial discretization convergence analysis for the two-dimensional constrained hydrogel slab example considering constitutive model I 

Level Mesh density
Nh

Time steps
Nk

h Elements DoFs �(0.5.1.0) L2 error for � u(1.0.1.0) L2 error for u

1 25 50 0.04 1250 5878 −0.44017195 1.3896e−4 0.33459041 3.5884e−5
2 50 50 0.02 5000 23003 −0.43999694 3.4425e−5 0.33461516 9.0131e−6
3 100 50 0.01 20000 91003 −0.43994541 7.1092e−6 0.33462156 1.9465e−6
4 200 50 0.005 80000 362003 −0.43993062 – 0.33462318 –
conv. order 1.80 1.93 1.98 1.93

Table 3   Time discretization 
convergence analysis for the 
two-dimensional constrained 
hydrogel slab example 
considering constitutive model I 

Level Mesh density
Nh

Time steps
Nk

k �(0.5.1.0) L2 error for � u(1.0.1.0) L2 error for u

1 25 25 0.4 −0.44915384 1.2353e−2 0.33195688 3.1447e−3
2 25 50 0.2 −0.44017195 5.5713e−3 0.33459041 1.4267e−3
3 25 100 0.1 −0.43534375 1.9333e−3 0.33601343 4.9668e−4
4 25 200 0.05 −0.43277477 – 0.33677258 –
conv. order 0.91 0.90 0.91 0.88
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of the simulation, the number of Newton iterations is high-
est but subsequently decreases until it reaches a steady 
value of three iterations.

Additionally, we examine the Newton algorithm’s con-
vergence behavior at five different time points during the 
simulation. We aim to confirm whether the Newton itera-
tion has quadratic convergence in error. We also investigate 
whether changes in mesh density or time steps impact the 
Newton iteration’s convergence. Figures 4 and 5 demon-
strate the convergence behavior, considering both absolute 
and relative errors. Figure 4 presents the results for various 
mesh density values, while Fig. 5 displays the results for 
different time step sizes. Figures 4 and 5 reveal that the 
error decays very quickly for all the cases, except for the 
first iteration. But, the Newton method also converges in 
only 8 iterations in this case. These results support the 
efficiency and robustness of the Newton algorithm. These 
findings are relevant as they assure the reliability of the 
numerical solution for the coupled problem solved using 
a monolithic approach.

After establishing that the Newton solver is reliable, we 
test whether using Taylor–Hood elements and the Euler 

method leads to the expected convergence in space and time. 
Specifically, we measure the L2 error for various mesh densi-
ties and time step sizes with respect to the highest fidelity 
solution and the values of both displacement and chemical 
potential at the center of the top face of the two-dimensional 
hydrogel slab.

The convergence analysis is detailed in Tables 2 and 3, 
where the results demonstrate a second-order convergence 
for spatial discretization and a first-order convergence for 
temporal discretization. These findings are in accordance 
with the theoretically predicted orders from the FEM and 
Euler discretization scheme.

Finally, it is noteworthy that we tested both monolithic 
and partitioned approaches for the solution of the constitu-
tive model I in [34]. However, only the monolithic imple-
mentation produced physically consistent results. The reason 
seems to be due to the reformulation of the concentration-
time derivative. The time-dependent concentration term is 
expressed in terms of Grad(�tu) ∶ F−T in Eq. (25). Hence, 
such a term is highly nonlinear in terms of displacements, 
and its accuracy is highly affected by the adopted spatial 
discretization. Moreover, if the deformation process is very 

Fig. 6   Constitutive model I: two-dimensional hydrogel block 
of an initially square cross-section immersed in a non-reactive 
solvent at different simulation times. a Deformed two-dimen-
sional block at three different time steps t = 1.0 [s] , t = 5.0 [s] , 

and t = 10.0 [s] . b Stretch due to swelling � at different times 
across X = 0.005 . c Transient evolution of � measured at differ-
ent corners of the two-dimensional block. Simulation parameters 
G

0

= 10 [MPa], � = 0.2 [−−], D = 5.0 × 10

−5 [m2 s−1]
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slow, i.e., �tu ≈ 0 , which is the case here, the time-depend-
ent term in the balance of fluid concentration may become 
negligible, and this equation becomes quasi-static. These 
issues cause some numerical difficulties in the staggered 
approach to capture the transient behavior of the coupled 
problem.

Two-dimensional free swelling of a square block. A 
square block is immersed in a solvent with a reference chem-
ical potential �0 = 0 , as illustrated in Fig. 1c. Recalling Eqs. 
(34) and (35), and following the same procedure as in [34], 
the theoretical value of the steady state stretching results 
�2D
∞

= 1.35 (see Eq. (70)).
Figure 6 displays the simulation results of the transient 

diffusion-deformation process for the two-dimensional 

square block. The thick gray line in each subfigure in Fig. 6a 
indicates the reference body. From Fig. 6a, it is evidenced 
that the initially square block gets distorted at the beginning 
of the deformation process while swelling. The origin is 
the pronounced � gradient in the early stage of the transient 
behavior as evidenced in Fig. 6b. This distortion vanishes 
as time progresses and all corners reach a similar stretch-
ing value as Fig. 6c shows. The two-dimensional blocks 
exhibit a diffusion-deformation process that aligns with the 
one observed in the two-dimensional slab. The final stretch 
reaches the steady state at the previously computed theoreti-
cal value �2D

∞
= 1.35.

Three-dimensional free swelling cubic block. The 
last example corresponds to the extension of the previous 

Fig. 7   Constitutive model I: three-dimensional hydrogel cubic 
block immersed in a non-reactive solvent at different simula-
tion times. a Deformed three-dimensional cube projected to 
planes XY and YZ at two different time steps t = 0.1 and t = 1.0 . b 

Stretch due to swelling � along Y at different times across the plane 
XZ = 0.01 [m] . c Transient evolution of � measured at different cor-
ners of the three-dimensional cubic block. Simulation parameters 
G

0

= 10 [MPa], � = 0.2 [−−], D = 7.5 × 10

−5 [m2 s−1]
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example from two to three dimensions as illustrated in 
Fig.  1d. The steady-state stretching is estimated to be 
�3D
∞

= 1.45 , which can be used to verify the simulation 
results at the steady state.

Figure 7 presents the simulation results of the transient 
diffusion-deformation process for the three-dimensional 
block. Compared to the two-dimensional block, the cube is 
less distorted, as seen in the XY and YZ plane projections in 
Fig. 7a. This can be explained by the increment in the dif-
fusivity coefficient D from 2.5 × 10−5 to 5.0 × 10−5 [m2s−1] , 
where the latter is the minimum value that leads to the 
Newton algorithm iteration convergence. The diffusivity 
effect is observed in Fig. 7b when compared to Fig. 6b. The 
former displays a faster evolution of the stretch over time. 
Figure 7c shows the stretch evolution at different corners. 
It is observed that each observed corner presents a differ-
ent stretch at the beginning of the simulation, but it fades 
over time. Consequently, as illustrated in Fig. 7a, the three-
dimensional block recovers its cube shape.

It is noted that the two-dimensional and three-dimen-
sional problems are addressed without altering the diffusion-
deformation model or its constitutive equations. Nonethe-
less, adjusting the diffusivity coefficient value was necessary. 

This is because a pronounced stretch gradient results in 
high-stress values and excessive distortion of the elements 
used for domain discretization as more degrees of freedom 
are added to the problem. This stability issue is commonly 
encountered in diffusion-deformation studies of hydrogels 
with non-reactive solvent absorption (refer to [7] for an in-
depth discussion). Although beyond the scope of this study, 
stabilization methods can be employed to overcome this 
issue (see [4, 29] for more information). Our results provide 
a foundation for testing some of the approaches.

5.2 � Constitutive Model II

The second model under consideration is composed of the 
balance Eqs. (10) and (11) together with constitutive Eqs. 
(37) and (38).

One-dimensional transient swelling Here, we follow 
the ideas presented by Chester and Anand in [12]. By con-
sidering the 1D deformation gradient in Eq. (69) under 
the incompressibility condition, the stress Eq. (37) yields:

(77)PY = G0�
−1 − P� = 0 .

Fig. 8   Constitutive model II: 
one-dimensional bar (black 
dots) and two-dimensional 
hydrogel constrained slab 
(colored lines) numerical 
solution comparison for dif-
ferent mesh densities Nh and 
at different simulation times. 
a Deformed two-dimensional 
constrained slab at t = 1.0 . 
b Polymer volume frac-
tion � . c Chemical potential 
� normalized by kBT  . d 
Cauchy compressive stress 
�X . Simulation parameters 
G

0

= 1 [MPa], � = 0.2 [−−],

D = 2.5 × 10

−5 [m2 s−1]
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Hence, it results:

Notice that this expression for P is case specific and Eq. (78) 
holds true exactly only in the present 1D case. After some 
manipulations, the balance of fluid concentration given in 
Eq. (48) can be rewritten as

with

obtained after differentiating Eq. (38) with respect to Y.
The discretized weak form of Eq. (79) reads

where ��n
h
∕�Y  is given by Eq. (80) evaluated at �n

h
 . Again, 

Eq. (81) can be directly implemented in FEniCs with the 
corresponding boundary and initial conditions and solved 
using the FEM. Solution of Eq. (81) serves as a reference 
solution for the diffusion-deformation problem adopting 
constitutive model II. The stress can be computed replacing 
P into Eq. (37), yielding:

which for � ∈ [0, 1] results in a compressive stress state. 
Whereas the chemical potential in Eq. (38) becomes

after the definition of P.
The numerical solution of Eq. (81) is presented in 

Fig. 8 (black dots). A one-dimensional mesh is created to 
discretize the hydrogel bar. As a result of a convergence 
study, the final number of elements equals 200, and 50 
time steps are chosen ( Δt = 0.02 ). The boundary condition 

(78)P = G0�
−2 .

(79)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜕t𝜙 =
D

kBT

�
𝜕𝜙

𝜕Y

𝜕𝜇

𝜕Y
− 𝜙2

�
1 − 𝜙

𝜙

�
𝜕2𝜇

𝜕Y2

�
, in BR,

𝜙 = 𝜙̄, at Y = 0.01,
𝜕𝜙

𝜕Y
= 0, at Y = 0.0,

𝜙(t = 0) = 𝜙0, in BR,

(80)

��

�Y
= kBT
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1

1 − �
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(
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(81)
∫
BR
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dY = 0, ∀qh ∈ Qh,

(82)�x = J−1PX(�, u) = G0�
[
1 − �−2

]
,

(83)
�(�) = �0 + kBT

[
ln (1 − �) + � + ��2

]

+ ΩG0

[
�−1 − �

]
,

at Y = 0.01 [m] is determined from Eq. (38), which gives 
�(Y = 0.01, t) = 0.2 . The initial condition is defined as 
�0 = 0.75 , which corresponds to a pre-swollen state con-
veniently chosen to alleviate the numerics and allow for a 
comparison between the one and two-dimensional models. 
In the original work by Chester and Anand [12], this one-
dimensional problem is numerically approximated using 
a finite difference method in space. The simulation results 
here obtained with the FEM can be quantitatively com-
pared to those reported in [12] for a similar example (see 
Figures 3, 5, and 7 in [12]).

Two-dimensional constrained hydrogel slab. Consti-
tutive model II is solved for the constrained hydrogel slab 
considered in Fig. 1b. Initial and boundary conditions for 
� are kept analogous to the one-dimensional case. Hence, 
since we have a dominant diffusion along the Y-direc-
tion also in this case and an analogous stress state, we 
approximate the Lagrange multiplier P by employing the 
one obtained in the 1D case, i.e. with Eq. (78). Under the 
limitations of such approximation, the stress for the two-
dimensional case hence reads:

after replacing Eq. (78) into Eq. (37). Since the same 
approximation for P would be inaccurate in a free swelling 
condition, we will not face these case studies for constitu-
tive model II.

Figure 8 presents the comparison between the one-
dimensional bar (black dots) and two-dimensional con-
strained slab examples (different colored lines). The one-
dimensional simulation is taken as the reference solution to 
the problem. The two-dimensional slab problem is solved 
for different mesh densities and different number of time 
steps. It was concluded that a mesh density of Nh = 30 and 
25 time steps are enough to produce accurate results, so 
the following simulation results are produced using this 
simulation setup. The deformed hydrogel at t = 10.0[s] is 
displayed in Fig. 8a. Figures 8b–d show the time evolution 
of � , � and �x . It is observed that the numerical solutions 
for the one and two-dimensional problems coincide. This 
is not surprising since the large deformation displayed by 
the hydrogel slab makes it behave like a one-dimensional 
bar.

In Fig. 8c, it is observed that the chemical potential’s 
rate increases fast in the beginning when the solvent starts 
entering the gel and becomes slower when it tends to the 
steady state. The pronounced gradient of � along the spatial 
dimension in the beginning and a relaxed polymer network 
facilitates solvent absorption. As the gradient of � flattens 
out and the compressive stress increases, solvent diffusion 
slows down.

(84)�x = J−1PX(�, u) = J−1G0

[
b − �−2I

]
,
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Authors in [6] and [14] proposed to solve an additional 
nonlinear equation either for Jf  or � at the Gauss integration 
point to fully determine the time derivative term and then 
solve the balance of fluid concentration for the chemical 
potential. If Eqs. (43) and (48) are solved for � , either Eqs. 
(42), (38), or (46) must be solved as an implicit nonlinear 
equation at each Gauss integration point for either Jf  or � , 
depending of the adopted constitutive model, as suggested 
in [7] and [12, 14].

In [14], the coupled problem was solved using the com-
mercial software Abaqus, via an UMAT routine. The cou-
pled problem was solved for � , � , and u . In particular, � 
was defined as a local variable, and the nonlinear Eq. (38) 
was solved at each Gauss integration point. This approach 
allowed to fully determine the time derivative in Eq. (48)2 
at each time instance. Thus, a static problem for � and u is 
solved also at each time step. A similar idea was adopted 
in [7].

We decided to test an alternative approach. That is, to 
find a suitable expression for Grad(�) in Eq. (48) from the 
constitutive Eq. (38). Then, solve the couple problem only 
for � and u . Such an approach allows us to avoid the com-
putation of � at each integration point. By following this 
approach, we noticed that the solution becomes less prompt 

to numerical instabilities, and monolithic and staggered 
formulations can be adopted to solve the resulting coupled 
problem. It is worth remarking that without the automatic 
differentiation capabilities of FEniCs, the computation of 
Grad(�) can be a very tedious task, and that was the motiva-
tion behind the approach presented in [14].

We conduct an investigation to assess the staggered 
approach’s behavior. We verify the number of staggered 
iterations between the displacement and polymer volume 
fraction sub-systems and, as for the monolithic case, we 
examine the effects of mesh density and time step size on 
the algorithm’s performance, focusing particularly on the 
Newton solver’s efficiency and convergence.

For the staggered solution, we modify the strategy 
slightly. Instead of computing the total number of Newton 
iterations required for convergence, we compute the aver-
age number of Newton iterations over the inner iteration 
loop for each time increment for the displacement and poly-
mer volume fraction sub-systems. This approach provides 
us with insights into the staggered solution’s convergence 
behavior and whether the number of staggered and Newton 
iterations remains stable throughout the simulation time. It 
allows us to gauge the efficiency and stability of the stag-
gered approach, and compare it to the monolithic approach.

Figure 9 illustrates the time versus the staggered and 
Newton iterations for different mesh densities and time step 

Fig. 9   Constitutive model II: staggered algorithm and Newton itera-
tions along the time steps. For different mesh densities ( Nh ): a for 
the staggered scheme, b. for displacement, and c for the polymer vol-

ume fraction. For different time step sizes ( Nk ): d for the staggered 
scheme, e for displacement, and f for the polymer volume fraction
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Fig. 10   Constitutive model 
II: convergence analysis of 
the Newton solver for differ-
ent mesh densities ( Nh ). For 
the displacement: a Nh = 30 . 
b Nh = 60 . c Nh = 120 . d 
Nh = 240 . For the polymer 
volume fraction: e. Nk = 25 . 
f Nh = 50 . g Nh = 100 . h 
Nh = 200
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sizes. Figure 9a and d show how many staggered iterations 
are necessary at each time step to reach an L2 error lower 
than 10−10 both for u and � , respectively. It is observed that 
the number of iterations is never higher than three, inde-
pendent of the mesh density and time step size. This high-
lights the effectiveness of the staggered approach.

The convergence patterns for the Newton iterations and 
the impact of variations in mesh density and time step size 
were consistent with those observed in the monolithic 
approach. Figure 9b, e focuses on the Newton iteration for 
the displacement sub-system, whereas Fig. 9c, f reports the 
Newton iterations along time for the polymer volume frac-
tion sub-system, for different mesh densities and time step 
sizes, respectively. Results in Fig. 9 reveal a similar trend to 
the monolithic case regarding the Newton iterations at each 
time increment.

Additionally, we explored Newton algorithm’s conver-
gence behavior at five distinct simulation moments, examin-
ing the quadratic convergence in error and the influence of 
mesh density and time step size. Figure 10 shows the error 
decay with respect to the Newton iterations. Figure 10a, b, 
c, d correspond to the displacement, while Figure 10e, f, g, 
h refer to the polymer volume fraction, both for different 
mesh densities. The results are analogous to the monolithic 
approach, where the absolute and relative errors decay fast 
as the Newton iteration increases, demonstrating the stag-
gered approach’s robustness.

The observed similarities in the convergence behaviors 
between the monolithic and staggered approaches further 

underline the robustness and reliability of the numerical 
solutions, confirming the applicability of both methods to 
the coupled problem at hand.

Concerning convergence analyses for the discretization 
itself, for the Taylor–Hood elements and Euler method, our 
findings for spatial and temporal discretization yielded a sec-
ond-order and first-order convergence, respectively. These 
outcomes are summarized in Tables 4 and 5, reinforcing the 
staggered approach’s validity in solving the coupled diffu-
sion-deformation problem.

5.3 � Constitutive Model III

The third model under consideration comprises the balance 
Eqs. (10) and (11) together with constitutive Eqs. (40) and 
(42).

One-dimensional transient swelling. The basic ingre-
dients to describe the hydrogel deformation considering an 
energetic constraint were presented in [6, 7]. By considering 
the 1D deformation gradient in Eq. (69), the balance of fluid 
concentration reads

with

(85)

⎧⎪⎪⎨⎪⎪⎩

𝛾(𝜆)𝜕t𝜆 = D
𝜕

𝜕Y

�
𝜉(𝜆)

𝜕𝜆

𝜕Y

�
, in BR,

𝜆 = 𝜆̄, at Y = 0.01,
𝜕𝜆

𝜕Y
= 0, at Y = 0.0,

𝜆(t = 0) = 𝜆0, in BR,

Table 4   Spatial discretization convergence analysis for the two-dimensional constrained hydrogel slab example considering constitutive model II 

Level Mesh density
Nh

Time steps
Nk

h Elements DoFs �(0.5.1.0) L2 error for � u(1.0.1.0) L2 error for u

1 30 40 0.033 1800 8403 0.31318141 2.2590e−5 2.83246074 1.4800e−4
2 60 40 0.016 7200 33003 0.31309735 5.4560e−6 2.83288465 3.4709e−5
3 120 40 0.008 28800 130803 0.31307316 1.2288e−6 2.83299197 9.0328e−6
4 240 40 0.004 115200 520803 0.31306639 – 2.83301882 –
conv. order 1.83 2.02 2.00 2.14

Table 5   Time discretization convergence analysis for the two-dimensional constrained hydrogel slab example considering constitutive model II 

Level Mesh density
Nh

Time steps
Nk

k �(0.5.1.0) L2 error for � u(1.0.1.0) L2 error for u

1 30 20 0.5 0.31996593 8.2017e−3 2.72595105 9.6975e−02
2 30 40 0.25 0.31309911 3.7086e−3 2.80367321 4.3200e−02
3 30 80 0.125 0.30939811 1.2936e−3 2.84445820 1.4871e−02
4 30 160 0.0625 0.30741375 – 2.86582984 –
conv. order 0.90 0.90 0.93 0.92
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and

where �0 refers to the initial swelling ratio of the gel.
The discretized weak form of Eq. (85) reads

where �(�n
h
) and �(�n

h
) are given by Eqs. (86) and (87) evalu-

ated at �n
h
 , respectively. Equation (88) can be solved using 

the FEM with FEniCS. The postprocessing quantities � and 
�x results in:

and
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respectively. The reader should notice that Jf  in Eq. (42) was 
replaced in by �2

0
�h to get Eq. (89). More details about the 

derivation of Eqs. (89) and (90) can be found in Appendix 
A of [7].

Two-dimensional constrained hydrogel slab. Example’s 
geometry corresponds to that illustrated in Fig. 1b. Initial 
and boundary conditions correspond to those defined for the 
one-dimensional case.

Figure 11 presents the comparison between the one-
dimensional bar (black dots) and two-dimensional con-
strained slab examples (different colored lines). The two-
dimensional slab problem is solved for a mesh density 
Nh = 25 and 10 time steps ( Δt = 1.0 [s] ). This setup yields 
an acceptable numerical accuracy for the two-dimensional 
configuration. The deformed hydrogel at t = 10.0 [s] is dis-
played in Fig. 11a. Figure 11b–d show the time evolution 
of � = Jf  , � and �x . It is observed that the numerical solu-
tions for the one and two-dimensional problems are of the 
same order of magnitude and get closer as the two-dimen-
sional slab becomes larger and progressively resembles a 
one-dimensional domain. The same pattern was observed 
for the constitutive model I. However, the hydrogel expe-
riences a lower level of stretch when considering the 

(90)�x(�h) = NkBT

[(
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1

�0

)
−K

(
�h
�0

)(
�h −

1
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)]
,

Fig. 11   Constitutive model III: 
one-dimensional bar (black 
dots) and two-dimensional 
hydrogel constrained slab 
(colored lines) numerical solu-
tion comparison at different 
simulation times. a Deformed 
two-dimensional constrained 
slab at t = 10.0 [m] . b Stretch 
due to swelling � . c Chemical 
potential � normalized by kBT  . 
d Cauchy compressive stress 
�X . Simulation parameters 
G

0

= NkBT ≈ 41 [Pa],K = 100 NkBT [Pa],

� = 0.4 [−−], D = 2.5 × 10

−6 [m2 s−1]
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two-dimensional setup. This is the effect of determining 
first � through the nonlinear equation and then � from the 
static PDE. The boundary condition can only be imposed 
on � , not � as in the one-dimensional case.

The transient behavior of the hydrogel follows the 
already observed evolution for constitutive models I and 
II. At the beginning of the deformation, the solvent enters 
the gel faster because of the high � gradient and low 
compressible stress. From Fig. 11, it is noticed that the 
hydrogel slab undergoes a rather large deformation, i.e., 
the final size is about 3 times the original one, despite 
the presence of the energetic constrain in the free energy 
function. The small shear modulus G0 value can justify 
this large deformation.

Constitutive model III as considered in this work was for-
mally presented in [6] and solved using the FEM in [7]. The 
coupled problem was solved for cR , � , and u . In particular, 
cR was defined as a local variable, and the nonlinear Eq. (42) 
was solved at each Gauss integration point to determine the 
time derivative in Eq. (43) at each time instant. Next, � and 

u are computed by the solution of a static problem defined 
by Eqs. (10) and (11) at each time step.

 Following the same rationale presented in Sect. 5.2, we 
tried to find a suitable expression for Grad(�) in Eq. (48) 
from the constitutive Eq. (42) using FEniCS automatic 
differentiation tools to avoid the solution of the nonlinear 
equation at the Gauss points for the two-dimensional exam-
ple. Although we got some numerical results, these appear 
highly inaccurate compared to the reference 1D outcomes. 
Consequently, we only report the results obtained follow-
ing the original formulation in [7].

It should be highlighted that among the constitutive 
models accounted for in this work, constitutive model III 
numerical solution is the most fragile. There is not much 
room to explore different values for the model parameters. 
Small changes in their values would lead to the divergence 
of the Newton algorithm. It is also not possible to arbitrar-
ily increase the mesh density or make the time step smaller. 
This is not surprising since [7] presented a detailed analysis 
of the induced instabilities in hydrogels in the presence of 
geometrical constraints. These instabilities arise because the 

Fig. 12   Constitutive model III: two-dimensional hydrogel block 
of an initially square cross-section immersed in a non-reactive sol-
vent at different simulation times. a Deformed two-dimensional 
block at three different time steps t = 1.0 [s] , t = 5.0 [s] , and 
t = 10.0 [s] . b Polymer volume fraction � at different times across 

X = 0.005 [m] . c Transient evolution of � measured at differ-
ent corners of the two-dimensional block. Simulation parameters 
G

0

= NkBT ≈ 0.41 [MPa],K = 100 NkBT [MPa], � = 0.4 [−−],

D = 2.5 × 10

−6 [m2 s−1]
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exposure of a gel to a fluid not only leads to a large increase 
in volume but also to a wave-like buckling pattern. Free sur-
faces expand due to the species influx and are bonded to 
unswollen inner parts of the gel simultaneously. For high 
osmotic pressure, this mechanism leads to buckling patterns, 
that have extensively been analyzed within experimental set-
ups (see, e.g., [16, 22, 31] for more details on hydrogels 
instabilities).

Due to this numerical fragility, it was not possible to per-
form a convergence analysis in the same manner as for the 
two previous constitutive models. However, for the chosen 
simulation setup presented in this sub-section, both the abso-
lute and relative errors decay faster as the Newton iterations 
increase, in a manner similar to that observed for constitutive 
model II (see Figs. 4 and 5).

Two-dimensional free swelling of a square block. 
Fig. 1c illustrates the considered example. For the solvent 
concentration boundary conditions, the edges ab and ad (the 
symmetry edges) are prescribed a zero fluid flux, and on the 
edges bc and cd, the chemical potential is set equal to zero. 

The initial condition for Jf  is defined as Jf0 = 1.4 . In this 
case, it was not necessary to apply a time-ramping strategy.

The simulation results for the two-dimensional square 
block are presented in Fig. 12. The box plotted with a thick 
gray line in Fig. 12a corresponds to the reference body 
before undergoing deformation. In contrast to the constitu-
tive model I, the block tends to keep its square shape along 
the simulation time. This can be attributed to the value of 
the diffusivity that prevents high � gradients as observed in 
Fig. 12b. However, we chose this simulation setup because 
it leads to numerical convergence. For simulation setups 
producing more pronounced � gradients, bigger distortion, 
or larger deformations, suitable stabilization techniques 
are required (see, e.g., [4, 29] for some approaches), which 
are out of the scope of the current research. An important 
difference between constitutive model III and the previous 
constitutive models is that � does not tend to a steady state 
value as time simulation progresses. This can be appreciated 
from Fig. 12c.

Fig. 13   Constitutive model IV: Two-dimensional hydrogel block 
of an initially square cross-section immersed in a non-reactive sol-
vent at different simulation times. a Deformed two-dimensional 
block at three different time steps t = 1.0 [s] , t = 5.0 [s] , and 
t = 10.0 [s] . b Polymer volume fraction � at different times across 

X = 0.005 [m] . c Transient evolution of � measured at differ-
ent corners of the two-dimensional block. Simulation parameters 
G

0

= 1 [MPa], K = 100 [MPa], � = 0.2 [−−], D = 7.5 × 10

−9

[m2 s−1], �r = 10.0 [−−]
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5.4 � Constitutive Models IV and V

The fourth and fifth models under consideration are com-
posed of the balance Eqs. (10) and (11) together with con-
stitutive Eqs. (45) and (46) for the stress and chemical poten-
tial, respectively.

To avoid redundancies, we only present results for the 
two-dimensional free swelling of a square block with con-
stitutive models IV and V. It is worth recalling that the main 
difference between constitutive model II and IV - V is the 
addition of an energetic component in the free energy func-
tion, thus eliminating the need to introduce a Lagrange mul-
tiplier as in constitutive model II.

The simulation results obtained for constitutive models IV 
and V are displayed in Figs. 13 and 14, respectively. From 
these results, it becomes evident that both constitutive mod-
els lead to an almost identical level of deformation and time 
evolution of �.

6 � A Reference Benchmark Problem

In this section, the two-dimensional square block problem is 
studied again as a unified benchmark problem for the diffu-
sion-deformation of hydrogels. As a matter of fact, the previ-
ous results cannot be directly compared due to the disparate 
value of the material parameters selected by authors in the 
original papers (and adopted for the prototype problems 
presented in the previous section). Our goal here is to have 
a unique reference simulation example and show the differ-
ences in the response for each constitutive equation. We are 
interested in testing how much the diffusion-deformation 
behavior is affected by the different constitutive choices 
under the same simulation setup.

Hydrogels are a type of material that can vary signifi-
cantly in their physical properties due to factors such as the 
particular polymer used, the degree of crosslinking, and the 
presence of any additives [9]. As such, the shear modulus 
( G0 ) and bulk modulus (K) can have a wide range of values. 
Typically, the shear modulus of hydrogels can range from 1  

Fig. 14   Constitutive model V: Two-dimensional hydrogel block 
of an initially square cross-section immersed in a non-reactive sol-
vent at different simulation times. a Deformed two-dimensional 
block at three different time steps t = 1.0 [s] , t = 5.0 [s] , and 
t = 10.0 [s] . b Polymer volume fraction � at different times across 

X = 0.005 [m] . c Transient evolution of � measured at differ-
ent corners of the two-dimensional block. Simulation parameters 
G

0

= 1 [MPa], K = 100 [MPa], � = 0.2 [−−], D = 7.5 × 10

−9

[m2 s−1], �r = 10.0 [−−]
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[Pa] to 1  [MPa], with softer, more water-rich gels being at 
the lower end of the scale and more crosslinked or polymer-
rich gels being at the higher end. Among the studies con-
sidered in this research, we found very different values for 
the shear modulus ranging from 0.1  [MPa] in Chester and 
Anand [12, 13] to 10  [MPa] as reported by Liu et al [35].

Similarly, the bulk modulus, which is a measure of a 
material’s resistance to uniform compression, can also 
vary widely for hydrogels. The bulk modulus is typically 
larger than the shear modulus. For many hydrogels, the 
bulk modulus can range from around 10  [kPa] to sev-
eral [MPa]. However, these values should only be used 
as a rough guide, as the specific values for any particular 
hydrogel can vary significantly depending on its formula-
tion and preparation details. One needs to refer to specific 

experimental data for the particular hydrogel of interest for 
a precise value. The most common value for K reported in 
the reviewed papers was K = 100 G0.

In the present study, motivated by state-of-the-art val-
ues, we choose G0 = 1 [MPa] and K = 100 [MPa] . The dif-
fusion coefficient is used as the free parameter to tune the 
simulation such that the results become comparable and 
the numerical stability is guaranteed. All other parameters 
remain the same as for the previously reported simulation 
results. The reader should notice that this simulation setup 
is similar to the one used to solve constitutive models II, 
and IV - V and it was inspired by Chester et al [14].

Figure 15 shows the simulation results for the two-
dimensional square block problem. Results are reported 
for constitutive models I, III, and IV. The reason for this 
selection is twofold: i. constitutive model II introduces an 

Fig. 15   Reference benchmark: two-dimensional hydrogel block of an 
initially square cross-section immersed in a non-reactive solvent at 
different simulation times. a constitutive model I, b constitutive model 

III, and c constitutive model IV. Common simulation parameters 
G

0

= 1 [MPa], K = 100 [MPa], � = 0.2 [−−]
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additional field represented by the Lagrange multiplier, 
thus requiring ad hoc numerical treatments outside of the 
scopes of present work; ii. the same example was solved 
for constitutive model V with the same parameters and 
results in Fig. 15 can be directly compared with those plot-
ted in Fig. 14.

From Fig. 15, first column, it is possible to observe that 
the level of deformation achieved in each case by the end 
of the simulation is different despite the similarity of the 
parameters. However, it is not on the deformation or stretch 
where the main difference between the different models 
becomes evident. It is on the transient evolution of the sol-
vent as appreciated in the second and third columns of the 
figure. Constitutive models I and IV reach their steady state 
in about 4.0 [s] (Fig. 15a, third column) and 6.0 [s] (Fig. 15c, 
third column), respectively, whereas constitutive model III is 
far from reaching the steady state (Fig. 15b, third column).

It is important to note that the diffusivity values used in 
the benchmark problem for constitutive models I and III are 
the lowest possible before encountering numerical issues. 
For constitutive models III - IV, it is feasible to set the dif-
fusivity to 8.5 × 10−3[m2s−1] , matching constitutive model I. 
However, given our simulation setup, this is an exceptionally 
high value. Consequently, the system will reach steady in 
both scenarios almost immediately, eliminating any transient 
behavior. In summary, the mentioned diffusivity values dif-
fer significantly from each other. They belong to different 
time scales. This difference can be attributed to the distinct 
solution strategies adopted for solving the diffusion equa-
tion in each case. We delved into the specifics of this when 
introducing each constitutive model.

One takeaway drawn from this comparison study is that 
further refinement may be required for the constitutive mod-
els such that closer predictions are achieved. In particular, 
each model predicts a different level of deformation and 
requires a fine-tuning of some parameters to ensure numeri-
cal convergence. This can complicate the model’s experi-
mental validation because it could lead to different values of 
the material parameters and, for instance, ambiguity regard-
ing which values are correct and their interpretability. None-
theless, there is still room for improvement in selecting the 
energetic component of the constitutive model, which can 
fix the issue. In the end, all constitutive models capture the 
diffusion-deformation process in a reasonable way and offer 
valuable insights into the coupled problem.

7 � Conclusion

This study presented a detailed classification and analysis 
of various nonlinear models that depict the diffusion-defor-
mation in hydrogels caused by non-reactive solvent absorp-
tion. We have consolidated these theories into a unified 

framework, demonstrating that, despite not being evident, 
all theories follow equivalent thermodynamic arguments. 
For instance, while having a common set of governing equa-
tions, each model showcases differences in the enforcement 
of incompressibility and formulation of the constitutive 
model - particularly in terms of the free energy function’s 
components, mainly at the energetic level. At present, fur-
ther research appears necessary to conveniently account for 
the energetic component, ultimately aiming for a cohesive 
and unified constitutive model.

Different numerical approaches adopted by various 
researchers to solve these models were analyzed. Our imple-
mented numerical methods presented reasonable predictions 
for the diffusion-deformation process. However, our find-
ings suggest that the superiority of one strategy over another 
remains inconclusive. The selection of an appropriate model 
should be grounded in a comprehensive understanding of 
the hydrogel’s composition and must be validated experi-
mentally. Some of the theories here introduced have been 
extended to account for temperature variations, chemical 
reactions, and damage (refer to, e.g., Sain et al [42]; Mao 
and Anand [39]; Konica and Sain [28]; Hajikhani et al [24] 
for more details). They represent a solid foundation for the 
study of elastomeric materials.

 We focused on identifying the differences among the 
leading models in the literature and verifying whether the 
results presented by different authors remain valid in light of 
the open-source general-purpose software available nowa-
days, such as FEniCS. To this end, an important part of this 
work is Sect. 3 with the mathematical classification and 
resulting numerical discretization and algorithms. These 
allowed us to carefully design mathematical formulations, 
which were then implemented and used to study the previ-
ously mentioned models.

Advances in automated solution techniques for the finite 
element method (FEM), such as FEniCS, provide the user 
with a streamlined approach for solving systems of par-
tial differential equations compared to traditional model 
development. Unlike models implemented on commercial 
software (e.g., Abaqus), the implementation of our models 
grants users considerable control over several components.

The simulation results indicate that there is not a one-
size-fits-all model compatible with the parameters across 
all scenarios. Depending on the specific problem configura-
tion being simulated, adjustments to one or multiple param-
eters are necessary to guarantee the numerical stability of 
the solution. Our observations in Sect. 5 revealed a strong 
dependency of the numerical solution’s convergence on the 
diffusion coefficient and bulk modulus value. In fact, very 
different diffusion coefficients for each example featured 
in this study were required. Nonetheless, once a suitable 
value for the material parameters is identified, the numerical 
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solution achieves reliable accuracy and robustness, as evi-
denced by the convergence analysis. Here, a consistent num-
ber of Newton iterations was displayed along the simulation 
time to reach absolute and relative errors smaller than 10−10 . 
Moreover, concerning the spatial and temporal discretiza-
tion, quadratic and linear convergence orders, respectively, 
for the FEM and Euler schemes for both the monolithic and 
staggered approaches were observed.

Furthermore, constitutive model III stands to be the more 
fragile in terms of numerical stability. Because constitutive 
model III directly penalizes the material compressibility, it 
calls for a numerical solution using a mixed formulation 
where the stress becomes a primary variable as it is standard 
in the literature dealing with incompressible materials (see, 
e.g., Brink and Stein [8] or Pantuso and Bathe [40]).

Another observation was regarding the application of 
boundary conditions. Depending on the specific simulation 
scenario, it might be necessary to adopt a time-ramping strat-
egy to prevent numerical instabilities, which is well known 
in continuum mechanics and due to the mathematical func-
tional framework in order to have compatible conditions. 
However, these mathematical assumptions might not be met 
in many engineering applications. Therefore, one must be 
careful with any assumption made while numerically solving 
the problem at hand to avoid unphysical numerical results.

As an overall outcome, in Sect. 5, we found that each 
model presents diverse deformation states and solute con-
centrations within the hydrogel, highlighting the complexity 
of the investigated problem. It is evident that pinpointing 
a single appropriate model to describe the diffusion-defor-
mation of hydrogels remains a challenge, given the differ-
ent calibration mechanisms each offers. These differences 
underscore the need for more comprehensive experimental 
data to reconcile these theoretical distinctions with actual 
observations. With the models’ validation, we can transition 
from merely describing the process to predicting hydrogel 
behavior, thereby using the model for designing new materi-
als or optimizing the mechanical properties of existing ones.

Some efforts have been made to validate the diffusion-
deformation process of hydrogels as predicted by the cou-
pled model. For example, Chen et al [11] performed a val-
idation of a very similar theory as presented by Bouklas 
and Huang [6] with a major focus on the linear theory. Sev-
eral measurements of the strain experienced by a gelatin-
glycerol-water hydrogel under free-swelling conditions are 
reported, and the best-fitting parameters are identified. Nei-
ther the time evolution of the diffusion process nor the inter-
nal stress were investigated. Bosnjak et al [5]; Alkhoury et al 
[1] performed an experimental work to validate an exten-
sion of the original models presented by Chester et al [14]. 
The extended models account for the viscoelastic response 
of elastomeric gels under isothermal and non-isothermal 
conditions. Again, the transient behavior of the diffusion 

process is neglected, and only the stresses are computed for 
the steady state under external loading conditions. Conse-
quently, no study has been carried out to validate the models 
as presented in this study.

Appendix: Alternative Forms: The Notion 
of Active Chemical Potential

The total deformation gradient F depends on fluid concentra-
tion cR from Eq. (8). To better distinguish between elasti- and 
fluid-related effects, the stress power can be reformulated as:

where Pe represents the PK1 stress tensor from the inter-
mediate to the current configuration (also referred to as the 
elastic PK1) and Me is the Mandel stress tensor in the inter-
mediate configuration5:

At this standpoint, a mean normal pressure p̄ can be 
introduced,

representing the pull-back of the hydrostatic pressure from 
the current to the intermediate configuration. Finally, upon 
enforcing the kinematic constraint defined in Eq. (5), the 
stress-power Eq. (A1) may be written as:

Hence, the local form of the second law of thermodynamics, 
Eq. (12), reads also as:

from which it appears convenient defining the free energy 
density function as function of the elastic deformation Fe and 
fluid concentration cR , that is

By defining the active chemical potential �act as:

(A1)P ∶ Ḟ = JfPe ∶ Ḟe +
1

3
tr(Me)J̇f ,

(A2)
Pe = J

−2∕3

f
P = Je�F

−T
e

and

Me = JeF
T
e
�F−T

e
= FT

e
Pe.

(A3)p̄ = −
1

3
tr(Me) = −

1

3
Jetr(�) = −

1

3
Pe ∶ Fe ,

(A4)P ∶ Ḟ = Pe ∶ Ḟe − p̄J̇f = Pe ∶ Ḟe − Ωp̄ċR .

(A5)Pe ∶ Ḟe + (𝜇 − Ωp̄)ċR − JR ⋅ Grad(𝜇) − 𝜓̇R ≥ 0,

(A6)�R = Ψe
R
(Fe, cR) .

(A7)𝜇act = 𝜇 − Ωp̄ ,

5  In the state-of-the-art, two different stress measures can be found in 
the present context, namely PR

e
= JfPe and MR

e
= JfMe , ([12]). These 

definitions are analogous but the corresponding stress measures refer 
to the reference configuration.
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Eq. (A5) yields:

from which the following constitutive choices follow for the 
elastic PK1 stress tensor:

and the active chemical potential:

It is straightforward to show that constitutive choices in Eqs. 
(15) and (16) are equivalent to the ones in Eqs. (A9) and 
(A10) given that:

In fact, by employing the chain rule and considering Eq. 
(A11), it results from Eq. (A9):

where it follows that P = �ΨR∕�F by definition (cf. Eq. 
(A2)), recovering the constitutive relationship for the PK1 
stress tensor in Eq. (15).

Moreover, it results from equation(A3), (A7) and (A10) 
that:

where, considering Eq. (A11), the first term reads also as 
(accounting for the dependency F = F(cR) from Eq. (8)):

while the second term as (with Eq. (A12)):

Hence, since:

(A8)
JfPe ∶ Ḟe + 𝜇actċR − JR ⋅ Grad(𝜇)

−
𝜕Ψe

R

𝜕Fe

∶ Ḟe −
𝜕Ψe

R

𝜕cR
∶ ċR ≥ 0 ,

(A9)Pe = J−1
f

�Ψe
R

�Fe

,

(A10)�act =
�Ψe

R

�cR
.

(A11)
Ψe

R
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J
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f
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1

3
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∶
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1

3
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�cR
.

the chemical potential computed from Eq. (A10) is equiva-
lent to the one from Eq. (16), given that Eq. (A11) holds 
true.
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