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a b s t r a c t

The analysis of causality between systems is still an important research activity, which finds application
in several fields of science. The software presented is a new tool for causality detection and analysis
between time series. The proposed technique is based on time-delayed neural networks (TDNN). The
tool is developed in MATLAB and it comprises three main functions. The first one returns the total
causality between two or more systems of equations. The second tool is used to find the ‘‘time horizon’’,
id est the time delay at which the influence between the systems occurs. The last function is a causality
feature detection to determine the time intervals, in which the mutual coupling is sufficiently strong
to have a real influence on the target.
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1. Motivation and significance

The analysis of the influence between physical systems evolv-
ng in time (time series) is still challenging, despite the great
fforts exerted in the last decades and the variety of proposed
ethods [1]. The linear Granger, kernel Granger, mutual informa-

ion and cross-mapping are few of the most used techniques. On
he other hand, it has been demonstrated with various numerical
ests that they can fail, return contradictory results and in general
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they are all more performing in certain specific applications than
others [2–5]. Moreover, these methods are often much more
reliable when the task is limited to the analysis of two scalar
variables (evolving in time, of course). Unfortunately, in several
applications, more than two observables can be linked together,
and their mutual influence can be non-linear, rendering most of
the causality detection approaches inadequate [6].

The software tool presented in this work implements the
architecture of time-delayed neural networks (TDNN) for causal-
ity detection in physical time dependent systems. The topology
of the used TDNN is reported in Fig. 1 [7]. TDNN have clearly
demonstrated to be able to deal with challenging tasks in the field
of time series, such the ones reported in [8–11].

The use of the TDNN, in the way proposed in this paper, is
based on the causality concept defined by Wiener, which consid-
ers that if it is possible to predict Y more accurately using the
ttps://doi.org/10.1016/j.softx.2021.100773
352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).
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Fig. 1. General architecture of a Time Delay Neural Network implemented by the software package.

ast values of X , then X can be assumed to influence Y (see also
ig. 2). All the time series under consideration are provided as
nputs to the network, with their past values. Each of the time
eries is then predicted using, at first, all the signals available,
nd then by eliminating one input at a time. When an input
s removed and the predictive capability of the network results
n a significant reduction in the quality of its predictions, it is
onsidered as evidence that the input has a causal influence on
he one predicted [12].

The software package that implements this new approach
onsists of three different main functions, which address ‘‘the
otal causality detection’’, the measurement of ‘‘the time horizon’’
nd the detection of the time intervals in which causality is active.
he tool has no intrinsic limits regarding the number of systems,
hich can be analysed simultaneously. Moreover, each system
an be made up of any number of equations, rendering the tool
pplicable to any type of time series.
Up to now, the tool has been tested on synthetic data, among

hich some of the most challenging consist of time series gen-
rated by three interacting Lorenz systems and autoregressive
unctions. The new method has demonstrated the capability of
orrectly detecting the causality between the three systems, han-
ling well also non-linear influences between observables in the
eterministic chaotic regime (also feedback loops).

. Software description

The software provides three different tools with three specific
unctionalities. The first one is meant to calculate the global
nfluence and it is named ‘‘Causality Detection’’. It returns in-
ormation about the influence of the ‘‘ith’’ variable on the ‘‘jth’’
bservable. The second tool is called ‘‘Time Horizon Detection’’
nd aims to find the correct time delay at which the influence
f the driver is transmitted to the target. Thus, if the previous
ool indicates that the ‘‘ith’’ variable influences the ‘‘jth’’, using
he time horizon feature it is possible to determine the time
elay, with which the influence occurs. The last software tool is
he Causality Feature Detection and it aims at finding the time
ntervals, in which the driver exerts an actual influence on the
arget (for example, sometimes actual influences can occur only
bove a certain threshold).
The software is composed of six scripts: three main

unctions, one for each tool (MAIN_TDNN_CausalityDetection,
AIN_TDNN_HorizonTimeDetection and MAIN_TDNN_Feature
ausalityDetection) and three function scripts used by the mains
NN_config, NN_train, NN_test). NN_train and NN_test should not
odified, while NN_config is a configuration file where the user

the hidden layers (number and size), time delays, convergence
parameters (minimum gradient, convergence goal, training algo-
rithm). The codes are commented in details and their settings are
user-friendly.

Consider N physical systems, where the ith system is com-
pounded by Mi signals (or equations). The influence of the ith
system on the jth one is computed by calculating the prediction
error using all systems as input (Eall) and the prediction error
excluding the ith system from the inputs (Ei).

The Causality detection tool perform a statistical test to eval-
uate if the variance of Ei is statistically different (and larger) from
Eall. If the output has a p-value lower than the selected one, the
ith is considered to influence the jth, otherwise not. The statistical
test is the F-test of equality of variances for two samples (Eall and
Ei).

The Time Horizon Detection works exactly as the Causality de-
tection tool, but the analysis is performed varying the time delays.
The software is open, and it allows choosing freely the combi-
nation of lags to investigate and it also highlights the first time
delay (the shortest), at which a statistically relevant difference of
the error is detected (using again the F-test).

The Causality Feature Detection compares the evolution of
the errors in time. The absolute value of the error difference is
directly correlated to the intensity of the influence, which the ith
observable has on the jth one. The median value and the standard
deviation of Eall are calculated and then the parameter feature is
calculated as follows:

Feature (t) =
1 if |Ei(t)−median(Eall(t))|

std(Eall(t))
> threshold

0 if |Ei(t)−median(Eall(t))|
std(Eall(t))

≤ threshold
(1)

All the tools are provided with the parallel computing op-
tion, which allows to run most of the algorithm in parallel,
reducing the time required to perform the analysis. The computa-
tional demand is strongly dependent on the boundary conditions,
such as the number of inputs, the length of the time series, the
complexity of the neural network, the convergence parameter,
etc.

The software is also equipped with other three files, which are
used to generate the input to run the illustrative examples in the
following section and are described in the user manual provided
in the software folder:

• MAIN_generate_system;
• MAIN_generate_system_forTimeHorizon;
• MAIN_generate_system_forFeatureDetection.
an change the most important parameter of the net, such as

2
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Fig. 2. Schematics of the main building blocks of the software package.

. Illustrative examples

Some illustrative examples for each main functionality are
hown in this section. Moreover, the same examples are reported
n the user guide furnished to the journal together with the code.
ll the examples are ran using synthetic data generated by the
orenz system. It has to be highlighted that by running again the
xamples, slightly different results can be obtained. At first, the
eneration functions have random initialization parameters and
hey also add random noise to the signals. Moreover, the data
re strongly influenced by the convergence quality of the neural
etwork. Sometimes, it may happen that the neural network
oes not reach the best convergence and false positives and false
egatives may arise. For the moment, it is strongly suggested to
un the algorithm more than one time and perform a statistic of
he results.

The Causality Detection feature is assessed using three inter-
cting Lorenz systems:

Sytem X :

dx1
dt = σ (x2 − x1)

dx2
dt = rx1 − x2 − x1x3 + µ21y22 + µ31z23

dx3
dt = x1x2 − bx3

(2)

Sytem Y :

dy1
dt = σ (y2 − y1)

dy2
dt = ry1 − y2 − y1y3 + µ12x22 + µ32z23

dy3
dt = y1y2 − by3

(3)

Sytem Z:

dz1
dt = σ (z2 − z1)

dz2
dt = rz1 − z2 − z1z3 + µ13x22 + µ23y22

dz3
dt = z1z2 − bz3

(4)

The coefficient µij is the interaction or coupling coefficients. If
t is equal to zero, it means that the ith system does not affect
he jth ones, while if it is different from zero, the ith system
nfluences the jth. In the following example, the interaction co-
fficients are µ21 = µ31 = µ32 = µ13 = 0, µ12 = 2
nd µ23 = 0.5, thus X influences Y and Y influences Z . The
utput of the Causality Detection tool in this example is shown
n Fig. 3. The software tool returns three matrices, which have a
ize NxN , where N is the number of analysed systems (three in
his case). The first matrix returns the p-value of the F-test, while
he second matrix reports a Boolean value calculated from the

p-value matrix and the p-value threshold: if the p-value is larger
than the threshold, the ith system does not influence the jth one.
For the present example, as shown also in Fig. 3, it is found that
X is not influenced by Y and Z (while it is influenced by its past
values), Y is influenced by X and Y , and Z is influenced by Y and
Z , as expected from the value of the coupling coefficients. The last
matrix returns the variance ratio (var(Ei)/var(Eall)). This parameter
is interesting to quantify the correlation strength. As you can see,
in the main diagonal, the variance ratio is very large since the
prediction of the ith system, where without the knowledge of its
past values, this is essentially impossible.

The second example uses the X system and a randomly gen-
erated y signal. The X system is influenced by the y signals with
a time delay τ as follows:

x1 (t) = x1 (t − 1) + σ (x2 (t − 1) − x1 (t − 1)) ∆t
x2 (t) = x2 (t − 1) + (rx1x1 (t − 1) − x2x1 (t − 1)

−x1x1 (t − 1) x3x1 (t − 1) + µy2 (t − τ)
)
∆t

x3 (t) = x3 (t − 1) + (x1 (t − 1) x2 (t − 1) − bx3 (t − 1)) ∆t

(5)

The interaction coefficient has been set equal to 10. Fig. 4
shows the results obtained by running the Time Horizon Detec-
tion function, choosing τ = 3 and scanning a time delay from 1 to
5. The error variance ratio is almost equal to 1 for the time delays
1:1 and 1:2; this is correct, since the values of y(t−1) and y(t−2)
do not influence the value of the X system at the time t . Once the
scanned time delay is 1:3, an increase of the error variance ratio is
observed (since y(t−3) influences the X system) and the decision
from the F-test turns into one. Increasing the time delays, there
is an increase of the error variance ratio. The tool highlights (red
circle in Fig. 4) the first time-delay at which influence is observed
(time horizon).

Another example shows the functionalities of the Causality
Feature Detection. All the three systems are simulated, and the
interaction coefficients are set to µ21 = µ31 = µ32 = µ13 = 0
and µ23 = 1, while µ12 is equal to 1 if x2 is higher than 10,
otherwise it is equal to 0. This feature implies that X influences
Y only in specific time intervals, which are reported in Fig. 5(a).
Running the software, both the graphs in Fig. 5(b) and (c) are
obtained. Graph (b) shows the absolute error |E2

i -E
2
all|, which is

characterized by a peaked structure. Then, using Eq. (1), the
3
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Fig. 3. Output of the Causality Detection example.

Fig. 4. Output of the Time Horizon Detection example.

ntervals where the causality is high because above the threshold
x2 > 10) are detected and plotted, such as in Fig. 5(c).

In the end, we would like to compare the performances of
his new tool with the standard methods in the literature for a
uite simple example. In the review by Krakovská et al. [6], the
uthors tested six causality detection methods (Granger’s vector
utoregressive test, Extended Granger test, Kernel Granger test,
onditional Mutual Information, Convergent Cross Mappings, Pre-
ictability Improvement) with several bivariate time series and
howed that there is not an algorithm that is suitable for every
ase. The one that showed the best performance is the pre-
ictability improvement, which however returns 71% of false
egatives in the simple AR case. We have replicated the same AR
odel and tested our algorithm (see equation 1 of reference [6]),
nd the results are significantly better (neither false positives nor
alse negatives). It has to be noted that also the Granger-based
lgorithm and the Conditional Mutual Information produced the
ame results. However, it is easy to understand and also to verify
hat, if the coupling between the two-time series is not linear, the
lassical Granger will fail, while the Kernel Granger presupposes
hat the type of kernel to use is known. The Conditional Mu-
ual Information is much more flexible to investigate non-linear
nfluences, but its use is strongly limited to small-time series
izes (unless an enormous amount of data is available to calculate
he N-size pdf). Our new tool, on the contrary, is potentially
ble to detect any functionality (we tested linear, polynomial,
xponential, sine, power-law) and is computationally efficient.

. Impact and limitations

The tests performed have shown that the proposed tools can
lways detect the right causal relations and the relative times
or all the cases of mutual influence between three observables,
ummarized graphically in Fig. 6 [12,13]. It is well documented in
he literature that all the other methods typically fail in at least
ne of the cases.

TDNNs are quite intuitive and do not require an excessive
amount of data to provide robust conclusions. However, for small
datasets (<1000 samples) it is suggested to perform various runs
to improve the reliability and general performances. In terms
of computational resources, they are also not excessively de-
manding. The computational load and time are generally higher
than standard methods (mainly due to the training of the neural
networks) and they depend on the amount of data to be analysed.
However, since too complex neural network can be avoided, the
computational time is acceptable (for example, in the case of the
AR model (N sample = 1e4), the computational time is around
135 s). They are potentially able to catch any type of influence
(linear, polynomial, exponential, sine, power-law, etc.). Their ca-
pability to work with a high number of time series simultaneously
constitutes a huge advantage with respect to most algorithms,
such as Conditional Mutual Information and Transfer Entropy,
which are usually used only in bivariate cases, due to requirement
to calculate the conditional probability density functions.

The proposed approach is also general and can therefore be
used in any field of science, in which casual relations have to be
investigated. The main requirement is the quality of the avail-
able measurements. The remarkable reliability and flexibility of
the provided tools are motivating their application in various
fields, ranging from magnetically confinement thermonuclear fu-
sion to atmospheric physics and epidemiology. The investigation
of the mutual influences between various signals due to nonlinear
instabilities in thermonuclear plasmas would certainly benefit
significantly from the deployment of the developed tools [13–
15]. The optimization of measurement methods for the surveys
of the environment could also be expedited by the techniques
proposed [16].

Even if the work presented in this paper demonstrates that the
TDNNs may lead to great improvements to the field of causality
detection, it is worth mentioning that, being the method based
on the F-test, the performances are strongly influenced by the
threshold (p-value). In fact, the p-value should be chosen by a
trade-off between sensitivity and specificity of the algorithm. In
order to obtain reliable outcomes, particularly in the case of lim-
ited samples, the authors strongly suggest calculating the results
as the average values of several runs and also complementing
the developed tools with surrogate data analysis. Moreover, this
tool may be used in combination with other approaches with
possibilities to increase its performances and the reliability. For
example, it may possible to implement the use of the State Space
and VAR models in to avoid the double regression problem [17].

5. Conclusions

The technology of Time Delay Neural Networks has been
adapted to the detection of the causal relations between time
series. The developed tools can be deployed not only to identify
the links between observables but also to determine the time
delay of the influence and the intervals, in which the driver
4
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Fig. 5. Output of the feature detection example.

Fig. 6. Graphical representation of the seven tri-variate cases of causal influence
etween three systems. The circles represent the systems and the arrows the
irections of the causal influences.

xerts an appreciable effect on the target. The technique has
roved to work satisfactorily for all the cases of mutual influence
etween three systems, which are very challenging for all the
ain methods available on the market. The software package has
een tested with synthetic data, including time series generated
y systems in the chaotic regime. The generality and flexibility of
he tools are expected to favour their use in many fields and par-
icularly in the investigation of complex systems dynamics. The
ossibility to use neural networks to perform causality detection
hrough embedded time-series has been also explored recently
y the other researchers and the results are notable [18]. In the
uture, an extensive work will be undertaken to test these new
pproaches in several challenging cases of causality detection, in
rder to deeply understand their limits and advantages.
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