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Abstract: We study infinite systems of globally coupled Anosov diffeomorphisms with
weak coupling strength. Using transfer operators acting on anisotropic Banach spaces,
we prove that the coupled system admits a unique physical invariant state, hε. Moreover,
we prove exponential convergence to equilibrium for a suitable class of distributions and
show that the map ε �→ hε is Lipschitz continuous.

1. Introduction

Coupled systems are mathematical models of spatially extended systems consisting of
identical interacting units. They provide a challenging subject of study from a mathe-
matical point of view, give a well-motivated example of infinite dimensional dynamical
systems, and often exhibit phase transition-like parameter-dependent behavior. Their
popularity stems from the fact that they describe considerably well real-world systems
(e.g. coupled oscillator networks [6,26], heterogeneous networks [29] and networkswith
higher order interactions [7]).

In the field of dynamical systems coupled maps were introduced by Kaneko [22]
and were first studied rigorously by Bunimovich and Sinai [10] in the case of nearest
neighbhor interacting smooth expanding maps. The results of [10] were later extended
to piecewise expanding maps [24,25] and to coupled map lattices where the dynamics
on each site is given by a smooth Anosov map [28].

An important type of coupled systems, which is different from the coupled map
lattice model, is the globally coupled or mean field model. For example, gas particles
interacting via their mean field give rise to the so-called Vlasov equation, [17,32] or see
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[30, Chapter 5] for a simple derivation. In the case of plasma, a similar procedure gives
the Vlasov-Poisson equation. Other examples of mean field models are the vorticity
formulation of the two-dimensional Euler equation for incompressible fluids [13], and
the time-dependent Hartree equation in quantum mechanics [21] (see [18] for more
details). The study of the corresponding limiting equation is far from obvious as it may
exhibit unexpected phenomena, e.g. Landau damping [27].

The above examples consider individual dynamics given by simple integrablemotion.
In the case in which the individual systems are strongly chaotic, statistical properties
of the long-term behavior may be available. This was first shown by Keller [23] in
the case of a toy model of globally coupled expanding maps. In this work, we study,
for the first time, statistical properties of infinite systems of globally coupled Anosov
diffeomorphisms that are motivated by considering an appropriate limit of finitely many
coupled Anosov maps.

As already mentioned, the topic of infinitely many globally coupled maps was pio-
neered by Keller [23]. In [23] the local dynamics was described by an expanding circle
map or a piecewise expanding map of the interval. For such coupled systems Keller
[23] proved, in the case of weak coupling strength, the existence of a unique invariant
state and exponential convergence to equilibrium (see also [8] for a similar result). In
[5] a globally coupled system with site dynamics given by expanding fractional linear
interval maps was studied. It was shown that the system undergoes a supercritical pitch-
fork bifurcation from a unique stable equilibrium to the coexistence of two stable and
one unstable equilibrium. Both [5,23] consider a coupling that only involves a param-
eter computed from the system state according to some fixed scheme. Later in [4] the
work of [23] was extended to a more general coupling that mimics elastic interaction
on the circle [14]. In addition to the analogous results of [23], Lipschitz continuity of
the equilibrium state, as a function of the coupling strength parameter, was proved. This
was taken one step further in [31] where linear response was shown in a rather general,
smooth setting. Recent advances on globally coupled maps can be found in [15]. The
work of [15] includes an abstract framework and applications to study statistical aspects
of globally coupled circle maps. However, up to date there are no ergodic theoretic
results on globally coupled higher dimensional hyperbolic systems in an infinite limit.
This is because the right functional analytic tools to study hyperbolic systems, namely
transfer operators acting on appropriate anisotropic Banach spaces, were not available
until recently.

Startingwith the paper [9], there has been a growing interest in developing anisotropic
Banach spaces and spectral properties of transfer operators associated with hyperbolic
dynamical systems. The books [2,11] provide an extensive account of the topic.

Recently, a new family of anisotropic Banach spaces was introduced in [1] which
are not only amenable to perturbations of the dynamics,1 but for which the weak norms
‘behave’ like L1 and the strong norms ‘behave’ likeBV, the space of functions of bounded
variations ([1, Remark 2.15] for more details). These properties significantly simplify
the study of the long-term behavior of the iterates of transfer operators associated with
the globally coupled Anosov systems both for finite systems and in the mean field limit.
Indeed, these spaces allow to define a simple invariant set of distributions under the
action of the associated transfer operator (see (2.10)), where an invariant state of the
system is proven to exist.

1 See the earlier work of [3,12,19,20] where Banach spaces that are amenable to perturbations of the
dynamics were also constructed. See also [16] for Banach spaces amenable to perturbations, although limited
to skew products. Similarly to the present case, the Banach spaces of [16] also resemble L1 and BV .
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Yet, to prove finer statistical properties of globally coupled Anosov maps, we must
introduce a higher order version of the spaces in [1] (see (2.6)). An important feature of
this new space is that the transfer operator associated with the globally coupled system
admits exponential memory loss with respect to its weak norm. Using this information
we prove the uniqueness of the invariant state, hε, exponential convergence to equilib-
rium and that the map ε �→ hε is Lipschitz continuous (see Theorem 2.9 below). This
information allows proving that such measure is the unique physical measure of the
system (see Theorem2.3).

The paper is organised as follows. In Sect. 2 we introduce our system, state our main
results (Theorems 2.3 and2.9) and provide a strategy of the proof. In Sect. 3 we prove
Theorem2.9 in a series of lemmas and propositions. Theorem2.3 is proved in the same
section. Appendix A includes results on adapted foliations and test functions needed for
the Banach spaces used in the paper. Appendix B includes statements and proofs about
perturbations of Anosov maps. Appendix C includes properties of projections along
the unstable direction, which are needed in the proof of the Lasota-Yorke inequality in
Lemma3.9.

2. The System and the Statement of the Main Result

2.1. The individual map. Let d ≥ 2 and consider a d-dimensional compact manifoldM .
Define the differentiable structure by the open cover {Vi }Si=1 and charts φi : Vi → R

d ,
φi ∈ Cr for some r ≥ 4. More precisely, consider a fixed smooth partition of unity {ϑi }
subordinated to {Vi }Si=1 and define a smooth volume form ω by

∫
M
h dω =

S∑
i=1

∫
φi (Vi )

h ◦ φ−1
i (z) ϑi ◦ φ−1

i (z)dz.

All integrals will be understood with respect to such a form from now.
Consider an Anosov diffeomorphism T ∈ Diffr (M), r > 1; i.e., there exists λ0 >

1, ν0 ∈ (0, 1), c0 ∈ (0, 1) and a continuous cone field C = {C(ξ)}ξ∈M , C(ξ) = C(ξ) ⊂
Tξ M such that DξT−1C(ξ) ⊂ int(C(T−1(ξ))) ∪ {0} and

inf
ξ∈M inf

v∈C(ξ)
‖DξT

−nv‖ > c0ν
−n
0 ‖v‖

inf
ξ∈M inf

v 
∈C(ξ)
‖DξT

nv‖ > c0λ
n
0‖v‖. (2.1)

We will sometimes refer to it as the stable cone field (and the unstable cone field will be
the complement.) We also assume that T is transitive.

2.2. Motivation for infinite coupled map systems. Denote the N -fold products T ×· · ·×
T and M × · · · × M by TN and MN , respectively. We view (TN , MN ) as a system of
N units, (called either sites or particles in the coupled maps literature) each with a state
in M evolving in time according to T . Define a diffeomorphism 	ε

N of the product
manifold MN , ε close to I dMN . We interpret (TN ◦ 	ε

N , MN ) as a coupled system of
N interacting units, where 	ε

N accounts for the interaction between individuals, with
strength tuned by the parameter ε– in particular we assume that 	0

N = I dMN .
The system state can be described by the vector (x1, . . . , xN ), or equivalently, by the

empirical measure 1
N

∑N
i=1 δxi . More precisely calling M1(M) the set of probability
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measures over M , we can define the natural embedding �N : MN → M1(M) given by
�N (x) = 1

N

∑N
i=1 δxi . Let

Fε : M × M1(M) → M

be Cr , r > 3, in the first variable and continuous (with respect to the weak topology)
in the second variable uniformly in x . We assume that the coupling has the form (mean
field coupling)

(	ε
N (x))i = Fε (xi , �N (x)) .

For μ ∈ M1(M), define

	ε
μ = Fε(·, μ).

Note that, if μN = 1
N

∑N
i=1 δxi , then

(T ◦ 	ε
μN

)∗

(
1

N

N∑
i=1

δxi

)
= 1

N

N∑
i=1

δT ◦	ε
μN

(xi ) (2.2)

and, hence, in this case the dynamics on MN induces a dynamics on M1(M). Such
dynamics extends naturally on allM1(M). Thus, in the case in which μ is a probability
measure with a density, the map

(T ◦ 	ε
μ)∗ : M1(M) → M1(M)

can be interpreted as the evolution of a state with infinitely many interacting units
with state distribution given by μ. Indeed, given a sequence of empirical measures
μN = 1

N

∑N
i=1 δxi converging in the weak topology to some measure μ, as N → ∞,

we have by hypothesis

Fε

⎛
⎝·, 1

N

N∑
j=1

δx j

⎞
⎠ → Fε(·, μ), N → ∞, (2.3)

where the convergence is in the uniform topology. Then, recalling (2.2), for each ϕ ∈
C0(M) we have

lim
N→∞(T ◦ 	ε,μN )∗μN (ϕ) = lim

N→∞
1

N

N∑
i=1

ϕ(T ◦ 	ε,μN (xi )).

By (2.3), T ◦ 	ε,μN → T ◦ 	ε,μ uniformly, so for each δ > 0 there exists an Nδ > 0
large enough such that, for all N ≥ Nδ it holds true

sup
i

|ϕ(T ◦ 	ε,μN (xi )) − ϕ(T ◦ 	ε,μ(xi ))| ≤ δ.

Thus we can write

lim
N→∞(T ◦ 	ε

μN
)∗μN (ϕ) = lim

N→∞
1

N

N∑
i=1

ϕ(T ◦ 	ε
μ(xi )) = μ(ϕ ◦ T ◦ 	ε

μ)

= (T ◦ 	ε
μ)∗μ(ϕ).

This construction provides a motivation for the systems studied in the paper including
the examples of Sect. 2.8.
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2.3. Statement of the main results. Our aim is to study the long-time behavior of the
self-consistent evolutionμ �→ (T ◦	ε

μ)∗μ. In particular, we are interested in classifying
the invariant measures and their stability properties.

Yet, the above setting and question are too general to allow a precise answer. We will
thus introduce two further technical assumptions2 (A1), (A2) on the coupling that will
be detailed in Sect. 2.5. As for the imprecision of the task, it arises from the possibility
of having physically irrelevant invariant measures. For example, measures that represent
a finite number of particles or that describe statistical properties we are not interested
in. This problem appears already in the study of the invariant measures of an Anosov
map and a typical solution is to restrict to physical measures. We, therefore, introduce an
analogous definition for physical measures in the present situation of infinitely globally
coupled systems.

Definition 2.1. We call a measure hε ∈ M1(M) invariant if

(T ◦ 	ε
hε

)∗hε = hε.

Moreover, we call an invariant measure hε physical if there exists some h ∈ L1, such
that μ0 = hdω ∈ M1(M), and, defining for each n ∈ N ∪ {0},

μn+1 = (T ◦ 	ε
μn

)∗μn

the sequence {μn} converges weakly to hε.

Remark 2.2. In essence, physical measures are measures that the system can asymptot-
ically attain when starting with an initial condition that is absolutely continuous with
respect to Lebesgue.

Our first main result is as follows.

Theorem 2.3. Under assumptions (A1), (A2) there exists ε0 > 0 such that, for all ε < ε0
the system admits a unique physical measure hε.

Theorem2.3 is the consequence of a more quantitative result, Theorem2.9. To prove
Theorem2.9we need to introduce amore suitable topology. This is done, in analogywith
the strategy used for Anosov maps and flows, by introducing Banach spaces adapted to
the dynamics.

2.4. Anisotropic BV. The following anisotropic Banach spaces, introduced in [1], will
play a crucial role in this paper. To define these spaces, we need to consider appropriate
foliations of M and test functions suited to such foliations. The spaces 
L ,q,l collect
pairs (W, ϕ) where W is a foliation, ϕ is a test function on M with controlled regularity
on W , while the labels of the L , q, l are numbers: L > 0 is a uniform bound on some
regularity class of the foliations, q ∈ N is the number of derivatives we consider along
the stable direction and l is the dimension of the target Euclidean space of ϕ. For a precise

2 These assumption are essentially saying that 	ε
h is close to the identity, both in ε and h, in an appropriate

topology.
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definition see (A.10) in the Appendix A.2 and consult [1] for a detailed discussion. Given
a function h ∈ C1(M,C) we define

‖h‖0,q := sup
(W,ϕ)∈
L ,q,1

∣∣∣∣
∫
M
h ϕ

∣∣∣∣
‖h‖∗

1,q := sup
(W,ϕ)∈
L ,q+1,d

∣∣∣∣
∫
M
h divϕ

∣∣∣∣
‖h‖−

1,q := a‖h‖0,q + ‖h‖∗
1,q ,

(2.4)

for any q ∈ N ∪ {0} and some fixed a > 0. Let B0,q be the Banach space obtained by
completing C1(M,R) in the ‖ · ‖0,q norm. For each h ∈ B0,q let

‖h‖1,q = lim
ε→0

inf{‖g‖−
1,q : g ∈ C1(M,R) and ‖g − h‖0,q ≤ ε}. (2.5)

We then define B1,q := {h ∈ B0,q | ‖h‖1,q < ∞}.
Remark 2.4. According to [1, Lemma 2.12], there exists a canonical continuous injective
map ι : B0,q → (Cq)′. In the following, we will use ι to identify a positive element
h ∈ B0,q with the measure hdω = ι(h) without any further comment. The next lemma
further clarifies this.

Lemma 2.5. A positive element of B0,q is a measure. In addition, when restricted to
M1(M) ∩ B0,q , where M1(M) denotes the set of probability measures over M, the
norm ‖ · ‖0,q is identical to ‖ · ‖T V , the total variation norm.

Proof. The first claim is standard as positive distributions are measures.3 To conclude,
note that, since ‖μ‖T V = supϕ∈C0

∫
ϕdμ, if dμ = hdω, we have ‖h‖0,q ≤ ‖μ‖T V . On

the other hand

‖μ‖T V =
∫
M
hdx ≤ ‖h‖0,q .

��
For further use, we need to define a stronger norm, extending the spaces in [1]. For each
h ∈ C2(M,C), define

‖h‖∗
2,q := sup

(W,ϕi )∈
L ,q+2,d
i=1,...,d

d∑
i=1

∫
M

∂xi h divϕ
i ;

‖h‖2,q := b‖h‖1,q + ‖h‖∗
2,q .

(2.6)

Let B2,q be the Banach space obtained by completing C2(M,R) in the ‖ · ‖2,q norm.

3 If h ∈ (Cs )′, s > 0, is positive, then for each ϕ ∈ C∞ we have h(‖ϕ‖∞±ϕ) ≥ 0, so |h(ϕ)| ≤ h(1)‖ϕ‖∞
and the claim follows by the Riesz theorem.
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2.5. Assumptions on the coupling. We are now able to specify precisely our assumption
on the coupling. Let us define B0,q

1 = M1(M) ∩ B0,q .
We assume the coupling satisfies the following two conditions:

dCr (	ε
h1,	

ε
h2) ≤ C |ε|‖h1 − h2‖0,r−1, for all h1, h2 ∈ B0,r−1

1 , ε ∈ R; (A1)

dCr (	ε
h,	

ε′
h ) ≤ C |ε − ε′|, for all h ∈ M1(M), ε, ε′ ∈ R. (A2)

As already explained, we define the coupled map as

T ε
h = T ◦ 	ε

h (2.7)

for h ∈ B0,q
1 and ε ∈ R. This map represents the dynamics of a globally coupled map in

the so-called thermodynamic limit with site dynamics T : M → M , system state given
by the distribution h and coupling strength ε.

Remark 2.6. Note that Eq. (A2) implies that, for each h ∈ M1(M), we have

dCr (T, T ε
h ) ≤ C |ε|.

Accordingly, there exists ε0 such that, for all ε ≤ ε0 the maps T ε
h satisfy (2.1) uniformly

with the same cones (see LemmaB.1 for details).

2.6. Transfer operators. We can now study the dynamics in the Banach spaces men-
tioned above. This is done by introducing a transfer operator acting on the anisotropic
BV spaces. Recalling that these spaces can be canonically embedded into (Cq+i )′ (ac-
cording to [1, Lemma 2.12], which can easily be extended to the case i = 2), the transfer
operator associated with T

LT : Bi,q → Bi,q

can be defined as

(LT h)ϕ = h(ϕ ◦ T ) ϕ ∈ Cq+i , i ∈ {0, 1, 2}. (2.8)

Remark 2.7. Note that the precise version of (2.8) would be

ι(LT h)ϕ = (ιh)(ϕ ◦ T ).

As already remarkedwe allow the above imprecise notation (2.8) to simplify the notation.
In particular, when h ∈ C1, we identify h with the measure dμh = hdω and the transfer
operator associated to T is then given by

LT h = h

| det(DT )| ◦ T−1.

Clearly,

d(T∗μh) = (LT h)dx .
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It follows that the evolution of the coupled system state is given by the self-consistent
transfer operator Lε : Bi,q ∩ M1(M) → M1(M) that is defined as

Lε(h) = LT ε
h
h (2.9)

where LT ε
h
is the transfer operator associated with the map T ε

h defined in (2.7). Indeed,

for h ∈ L1

LT ε
h
hdx = (T ε

h )∗h.

Notice that

LT ε
h

= LT ◦ L	ε
h
.

Observe that unlike LT ε
h
, the self-consistent transfer operator Lε is nonlinear. Setting

hn = Ln
ε (h0), if well defined, we can write

Ln
ε (h0) = LT ε

hn−1
. . .LT ε

h1
LT ε

h0
h0

= LT ε
hn−1

◦···◦T ε
h1

◦T ε
h0
h0.

Note that if Lε(hε) = hε, then the coupled system admits an invariant state.

2.7. A more quantitative result. Our goal is to prove that the self-consistent transfer
operator Lε admits a unique fixed point and exhibits exponential convergence to equi-
librium for a certain class of distributions. To do so we first define a compact convex
subset of the B0,q+1 space. For K ≥ 0, define

B(K , q) =
{
h ∈ C1 : h ≥ 0,

∫
h = 1, ‖h‖1,q ≤ K

}
(2.10)

and let B(K , q) be the closure of B(K , q) with respect to the ‖ · ‖0,q+1-norm. The proof
of the following proposition, which shows that Lε can be iterated and that B(K , q) is
eventually invariant, can be found in Sect. 3.2.

Proposition 2.8. There exists ε∗
1 > 0 such that, for all ε < ε∗

1 and q > 0,

Lε(B0,q ∩ M1(M)) ⊂ B0,q ∩ M1(M).

There exists N ∈ N, and Kmin ≥ 0 such that, for all all |ε| < ε∗
1 , n ≥ N and K ≥ Kmin,

Ln
ε (B(K , q)) ⊂ B(K , q).

The above is not enough to obtain uniqueness and exponential convergence. This is
because, on the weak space B0,q , LT does not admit a spectral gap. To overcome this
hurdle we define a stronger Banach space thanB1,q and a set finer thanB(K , q) to obtain
our desired result.

Let K1 ≥ Kmin, K2 ≥ 0 and define

B(K1, K2, q) =
{
h ∈ C2 : h ∈ B(K1, q + 1), ‖h‖2,q ≤ K2

}
. (2.11)

Let B(K1, K2, q) be the closure of B(K1, K2, q) with respect to the ‖ · ‖1,q+1-norm.
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Theorem 2.9. There exists ε∗
2 > 0, K∗(ε∗

2) ≥ 1, such that for all q ∈ {1, . . . , r − 3},
|ε| < ε∗

2 and K2 ≥ K∗(ε), the following holds:

(i) Lε has a unique fixed point hε in B(K1, K2, q). In addition, there exists γ ∈ (0, 1)
and C > 0 such that, for all h ∈ B(K1, K2, q), we have

‖Ln
ε (h) − hε‖1,q+1 ≤ Cγ n .

Moreover, for all |ε|, |ε′| < ε∗
2 ,

(ii) if hε and hε′ are the unique fixed points of Lε and Lε′ respectively, then there exists
C > 0 (depending on ε∗

2 and K∗) such that

‖hε − hε′ ‖1,q+1 ≤ C |ε − ε′|.
The proof of the above Theorem is postponed to Sect. 3.4.

Remark 2.10. Item (ii) provides statistical stability of the coupled system. In particular,
it implies that the map ε �→ hε, |ε| ∈ [0, ε2] is Lipschitz continuous.

The strategy to prove Theorem2.9 is as follows: we first show that LN
ε |B(K ,q)

is

continuous in the weak norm ‖ · ‖0,q+1 to conclude that LN
ε has at least one fixed point

in B(K , q). We then prove thatLN
ε is a contraction when acting on B(K1, K2, q), which

gives the uniqueness and exponential convergence. We then prove that this fixed point
is actually a unique fixed point of Lε itself. Finally, we prove Lipschitz continuity of
ε �→ hε by using the exponential convergence result and that ε �→ Lε is Lipschitz in a
proper sense.

Note that the above strategy is natural when the transfer operator associated with the
site dynamics admits a spectral gap on a Banach space. See [15] for a general strategy
similar to the one we implement in this work.

Remark 2.11. If one wants to follow [15] in the Anosov setting, one has to choose the
regularity in our spaces carefully. It seems to us that such a choice may then require more
regularity on the map. Moreover, [15] assumes a ‘one step’ Lasota-Yorke inequality (see
assumption (Con1) in [15] required to obtain the exponential convergence to equilibrium)
which seems a strong assumption in a hyperbolic setting (the constant A that appears in
our Lasota-Yorke inequality, does not only depend on the map, but also on the class of
the foliations considered in our norms). Therefore, instead of verifying the assumptions
of [15] whichwill force us to adding restrictive assumptions on T , we are going to pursue
a different line of argument.

2.8. Examples. Before proving Theorem2.3, Proposition 2.8, and Theorem2.9, we pro-
vide a class of examples that satisfy assumptions (A1)–(A2). In both examples we con-
sider M = T

d and μ ∈ M1(T
d).

Example 2.12. Consider 	ε
μ given by the following formula:

	ε
μ(x) = x + ε

∫
Td

K1(x)K2(y)dμ(y)

for some K1,K2 ∈ C∞(Td ,Td).
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Write this as

	ε
μ(x) = x + εγ (x, μ(K2)),

where

μ(K2) =
∫
Td

K2(x)dμ(x),

γ (x, μ(K2))) = K1(x) · μ(K2). Assume that
∫
dμ(x) = ∫

h(x)dx for some h ∈
Cr (Td). This is analogous to the one dimensional setting of [23].

Since

∂α(	ε
h) j =

{
1 + ε · ∂α

K1 · h(K2) if ∂α = ∂x j
ε · ∂α

K1 · h(K2) otherwise,

we have

dCr (	ε
h,	

ε′
h ) ≤ ‖K1‖Cr |ε − ε′|

∣∣∣∣
∫
Td

K2(x)h(x)dx

∣∣∣∣ ≤ C(K1,K2)|ε − ε′|‖h‖0,r

and

dCr (	ε
h,	

ε
h′) ≤ ‖K1‖Cr |ε|

∣∣∣∣
∫
Td

K2(x)(h − h′)(x)dx
∣∣∣∣ ≤ C(K1,K2)|ε|‖h − h′‖0,r .

Example 2.13. Now consider

	ε
μ(x) = x + ε

∫
Td

K(x, y)h(y)dy

for some K ∈ C∞(T2d ,Td) (e.g. K(x, y) = κ(x − y) for diffusive coupling.) Then

∂α(	ε
h) j =

{
1 + ε

∫
Td ∂α

K(x, y)h(y)dy if ∂α = ∂x j
ε
∫
Td ∂α

K(x, y)h(y)dy otherwise.

Assumptions (A1)–(A2) are checked similarly:

dCr (	ε
h,	

ε′
h ) ≤ |ε − ε′|

∣∣∣∣
∫
Td

∂α
K(x, y)h(y)dy

∣∣∣∣ ≤ C(K)|ε − ε′|‖h‖T V .

and

dCr (	ε
h,	

ε
h′) ≤ |ε|

∣∣∣∣
∫
Td

∂α
K(x, y)(h − h′)(y)dy

∣∣∣∣ ≤ C(K)|ε|‖h − h′‖0,r .
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3. Proofs

3.1. Transfer operators for sequential Anosov maps. The following Lasota-Yorke in-
equalities hold for the transfer operator LT :

Proposition 3.1 [1, Proposition 3.2, Lemma 4.1].For each θ ∈ (max{ν0, λ−1
0 }, 1), there

exist constants A, B > 0 such that, for all h ∈ B0,q , q ∈ {0, . . . , r − 1}, holds true
‖Ln

T h‖0,q ≤ A‖h‖0,q .
In addition, for h ∈ B1,q and all q ∈ {1, . . . , r − 2}, holds true

‖Ln
T h‖0,q ≤ Aθn‖h‖0,q + B‖h‖0,q+1;

‖Ln
T h‖1,q ≤ Aθn‖h‖1,q + B‖h‖0,q+1.

Moreover, {h ∈ B1,q : ‖h‖1,q ≤ 1} is relatively compact in the topology associated to
the norm ‖h‖0,q+1.

Since we assumed that T is transitive, the above proposition implies that LT admits
a spectral gap when acting on B1,q , see [1] for a detailed discussion.

Remark 3.2. Choose ε∗ > 0 sufficiently small, and let h0, . . . , hn−1 ∈ M1(M). Each
concatenation T ε

hn−1
◦ · · · ◦ T ε

h0
is a composition of Anosov diffeomorphisms with prop-

erties that can be uniformly controlled for any sequence hi , i = 0, . . . , n − 1, n ∈ N

and any |ε| < ε∗ (for an argument see LemmaB.1 in the Appendix). We will use this
information to obtain uniform Lasota–Yorke inequalities for all LT ε

hn−1
◦···◦T ε

h0
provided

|ε| is sufficiently small.

Proposition 3.3. There exists ε1 > 0 such that for each |ε| < ε1, θ ∈ (max{ν, λ−1}, 1)
and constants A, B > 0 such that for all h, g0, . . . , gn−1 ∈ B0,q

1 , n ∈ N, q ∈ {0, . . . , r−
1}, holds true

‖LT ε
gn−1

◦···◦T ε
g0
h‖0,q ≤ A‖h‖0,q . (3.1)

In addition, for all h, g0, . . . , gn−1 ∈ B1,q ∩B0,q
1 and all q ∈ {1, . . . , r −2}, holds true

‖LT ε
gn−1

◦···◦T ε
g0
h‖0,q ≤ Aθn‖h‖0,q + B‖h‖0,q+1;

‖LT ε
gn−1

◦···◦T ε
g0
h‖1,q ≤ Aθn‖h‖1,q + B‖h‖0,q+1. (3.2)

Proof. By RemarkB.2, with small changes in notation4 the proof follows verbatim as
that of [[1] Proposition 3.2]. ��

The following statement is an essential perturbation lemma relating the action of the
transfer operators to the distance of the associated coupled Anosov maps.

Lemma 3.4. Let h ∈ B1,q ∩B0,q
1 , q ∈ {1, . . . , r−2}, g, g1, g2 ∈ M1(M), |ε|, |ε′| < ε2

for some ε2 ≤ ε1. Then

‖(LT ε
g1

− LT ε
g2

)h‖0,q+1 ≤ C‖h‖1,qdCr (T ε
g1 , T

ε
g2); (3.3)

‖(LT ε
g

− LT ε′
g

)h‖0,q+1 ≤ C‖h‖1,qdCr (T ε
g , T ε′

g ). (3.4)

4 Basically by replacing T n in the proofs of [1] by T ε
gn−1

◦ · · · ◦ T ε
g0 .
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Proof. Assume |ε| is small enough, and the domains Vi of the charts are small enough
such that there is an open setUj for any i containing both T ε

g1Vi and T
ε
g2Vi , on which we

can define functions ψ j ∈ Cr , mapping Uj to Rd . Then we can define Tt = tT ε
g1 + (1−

t)T ε
g2 , t ∈ [0, 1], in the chart {Uj , ψ j }. The computation below should be understood in

these charts.
According to LemmaB.3, Tt is an Anosov diffeomorphism such that the stable and

unstable cones can be chosen uniformly not only in gi and ε but also in t . We are going
to write ϕt = ϕ ◦ Tt for a test function ϕ ∈ Cq(M,C�) and Ft = T−1

t F for a foliation F.
Notice that the framework of [1] applies to this foliation, so in particular for T−1

t W ∈ Ft

it holds that T−1
t W ∈ Fr

C . Let h ∈ C1(M,C) and ϕ ∈ Cq+1(M,C).∫
M

(LT ε
g1

− LT ε
g2

)hϕ dω =
∫
M
h(ϕ ◦ T ε

g1 − ϕ ◦ T ε
g2)dω

=
∫
M
h
∫ 1

0
〈∇ϕ ◦ Tt , (T

ε
g2 − T ε

g1)〉dtdω

=
∫ 1

0

(∫
M
h div(ϕ ◦ Tt (T

ε
g2 − T ε

g1))dω −
∫
M
hϕ ◦ Tt Tr D(T ε

g2 − T ε
g1))dω

)
dt

≤ ‖h‖1,q
∫ 1

0
‖ϕ ◦ Tt (T

ε
g2 − T ε

g1)‖
T−1
t W

q+1 dt

+ ‖h‖0,q+1
∫ 1

0
‖ϕ ◦ Tt Tr D(T ε

g2 − T ε
g1)‖

T−1
t W

q+1 dt

:= (I ) + (I I ).

First consider‖ϕ◦Tt (T ε
g2−T ε

g1)‖
T−1
t W

q+1 and for ξ ∈ M write (Ft )ξ (x, y) := ((Ft )ξ (x, y), y)

which describes the local foliation.5

‖ϕ ◦ Tt (T
ε
g2 − T ε

g1)‖
T−1
t W

q+1

= sup
ξ∈M
x∈U0

u

d∑
j=1

‖[{ϕ ◦ Tt (T
ε
g2 − T ε

g1)} ◦ (Ft )ξ (x, ·)] j‖Cq+1(U0
s ,C)

≤ sup
ξ∈M
x∈U0

u

‖ϕ ◦ Tt ◦ (Ft )ξ (x, ·)‖Cq+1(U0
s ,C)·

× sup
ξ∈M
x∈U0

u

d∑
j=1

‖[(T ε
g2 − T ε

g1) ◦ (Ft )ξ (x, ·)] j‖Cq+1(U0
s ,C)

= ‖ϕ ◦ Tt‖T
−1
t W

q+1 sup
ξ∈M
x∈U0

u

d∑
j=1

‖[(T ε
g2 − T ε

g1) ◦ (Ft )ξ (x, ·)] j‖Cq+1(U0
s ,C)

≤ A0‖ϕ‖Wq+1 sup
ξ∈M
x∈U0

u

d∑
j=1

‖[(T ε
g2 − T ε

g1) ◦ (Ft )ξ (x, ·)] j‖Cq+1(U0
s ,C)

5 See subsection A.2 in the appendix for more details about foliations.
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using [1, Lemma 2.15]. By LemmaA.1 we obtain

‖[(T ε
g2 − T ε

g1) ◦ (Ft )ξ (x, ·)] j‖Cq+1(U0
s ,C)

≤ ‖[T ε
g2 − T ε

g1 ] j‖Cq+1(U0
s ,C)

q+1∑
i=0

(
q + 1

i

)
� q+1−i‖Dy(Ft )

T
ξ (x, ·)‖iCq+1(U0

s ,C)

≤ const (r, q, L ,�) · dCq+1(T ε
g1 , T

ε
g2)

This gives

(I ) ≤ A0‖ϕ‖Wq+1 · const ′(r, q, L ,�, d) · dCq+1(T ε
g1, T

ε
g2)‖h‖1,q .

We can do a similar calculation for (II) and obtain

‖ϕ ◦ Tt Tr D(T ε
g2 − T ε

g1)‖
T−1
t W

q+1

≤ A0‖ϕ‖Wq+1 sup
ξ∈M
x∈U0

u

d∑
j=1

‖[Tr D(T ε
g2 − T ε

g1) ◦ (Ft )ξ (x, ·)] j‖Cq+1(U0
s ,C)

≤ A0‖ϕ‖Wq+1 · const ′(r, q, L ,�, d)‖[Tr D(T ε
g2 − T ε

g1)] j‖Cq+1(U0
s ,C)

so

(I I ) ≤ A0‖ϕ‖Wq+1 · const ′(r, q, L ,�, d) · dCq+2(T ε
g1 , T

ε
g2)‖h‖0,q+1.

We obtained∣∣∣∣
∫
M

(LT ε
g1

− LT ε
g2

)hϕ dω

∣∣∣∣ ≤ C‖ϕ‖Wq+1‖h‖1,qdCq+2(T ε
g1 , T

ε
g2),

and the fact that C1(M,C) is dense in B0,q+1 concludes the proof (3.3).
For (3.4), an analogous argument works. We can prove an analogue of LemmaB.3

for Tt = tT ε
g + (1 − t)T ε′

g (provided that |ε|, |ε′| < ε∗ of LemmaB.1) and repeat the

above argument for T ε
g , T ε′

g instead of T ε
g1 , T

ε
g2 . ��

Using the assumptions on the coupling, we obtain the following corollary:

Corollary 3.5. By Lemma3.4 and Assumption (A1) it follows

‖(LT ε
g1

− LT ε
g2

)h‖0,q+1 ≤ C |ε|‖g1 − g2‖0,q+1‖h‖1,q . (3.5)

and by assumption (A2),

‖(LT ε
g

− LT ε′
g

)h‖0,q+1 ≤ C |ε − ε′|‖g‖T V ‖h‖1,q . (3.6)

The above implies

‖(LT ε
gn

· · ·LT ε
g1

− LT ε
fn

· · ·LT ε
f1
)h‖0,q+1

≤
n∑

i=1

‖LT ε
gn

. . .LT ε
gi+1

(LT ε
gi

− LT ε
fi
)LT ε

fi−1
. . .LT ε

f1
h‖0,q+1
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≤ C(n)|ε|max
i

‖gi − fi‖0,q+1‖h‖1,q ,

and in particular for gi , fi ∈ B(K , q),

‖(LT ε
gn

· · ·LT ε
g1

− LT ε
fn

· · ·LT ε
f1
)h‖0,q+1 ≤ C(n, K )|ε|max

i
‖gi − fi‖0,q+1‖h‖1,q ,

(3.7)

and by a similar argument

‖(LT ε
gn

· · ·LT ε
g1

− LT ε′
gn

· · ·LT ε′
g1

)h‖0,q+1 ≤ C(n, K )|ε − ε′|max
i

‖gi‖T V ‖h‖1,q .
(3.8)

Next, we prove memory loss, which will also be needed for the proof of exponential
convergence to equilibrium in the next subsection.

Lemma 3.6. Let K ≥ Kmin. There exists ε3 > 0, C > 0 such that for all |ε| < ε3,
q ∈ {1, . . . , r − 2}

‖LT ε
gn

. . .LT ε
g1
h‖1,q ≤ Cθn‖h‖1,q n ∈ N

holds true for all h ∈ B1,q , h(1) = 0 and all g1, . . . , gn ∈ M1(M).

Proof. By Proposition3.3, Corollary3.5 (in particular (3.8)) and the fact thatLT admits
a spectral gap on B1,q , we have

‖LT ε
gn+m

. . .LT ε
g1
h‖1,q ≤ Aθn‖LT ε

gm
. . .LT ε

g1
h‖1,q + B‖LT ε

gn
. . .LT ε

g1
h‖0,q+1

≤ Aθn‖LT ε
gm

. . .LT ε
g1
h‖1,q + B‖(Lm

T − LT ε
gm

. . .LT ε
g1

)h‖0,q+1 + B‖Lm
T h‖0,q+1

+B‖Lm
T h‖0,q+1

≤ A1θ
n‖h‖1,q + B(m, K )|ε|‖h‖1,q + B‖Lm

T h‖0,q+1
≤ (

A1θ
n + B(m, K )|ε| + B1σ

m) ‖h‖1,q , (3.9)

for some constants B(m, K ), B1 > 0 and σ ∈ (0, 1), since h(1) = 0. Choose n so that
A1θ

n
0 ≤ θ

3 for some θ ∈ (0, 1). Then choose m so that B1σ
m ≤ θ

3 . Finally, choose |ε|
small enough so that B(m, K )|ε| ≤ θ

3 . Therefore,

‖LT ε
gn+m

. . .LT ε
g1
h‖1,q ≤ θ‖h‖1,q .

This implies

‖LT ε
gn

. . .LT ε
g1
h‖1,q ≤ Cθn‖h‖1,q for all n ∈ N.

��
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3.2. The invariance of B(K , q).

We show that Lε is well defined and that B(K , q), defined in (2.10), is invariant.

Proof of Proposition 2.8. Leth ∈ C1(M).Note that forh ≥ 0,Lε(h) ≥ 0 and
∫ Lε(h) =∫

h. Consequently, Lε(h) ∈ M1(M) ∩ C1(M). The first invariance results follow then
by closing with respect to the ‖ · ‖q+1 norm and recalling Eq. (3.1).

Next, let h ∈ B(K , q). By (3.1) we have

‖Ln
ε (h)‖0,q ≤ A‖h‖0,q (3.10)

and by (3.2)

‖Ln
ε (h)‖0,q ≤ Aθn‖h‖0,q + B‖h‖0,q+1;

‖Ln
ε (h)‖1,q ≤ Aθn‖h‖1,q + B‖h‖0,q+1. (3.11)

Thus, we have

‖Ln
ε (h)‖1,q ≤ AθnK + B‖h‖0,q+1. (3.12)

Choose N large enough, such that AθN = β ∈ (0, 1). By [1, Remark 2.15] we have
‖h‖0,q+1 ≤ ‖h‖1 (where ‖h‖1 = ∫

M |h|) and since we work with nonnegative distribu-
tions we have for each n ≥ N ,

‖Ln
ε (h)‖1,q ≤ θn AK + B

∫
h

= βK + B.

(3.13)

Choose K such that K ≥ Kmin := B
1−β

holds. This completes the proof of the proposi-
tion. ��

We are now ready to make a statment about the fixed points of LN
ε .

Proposition 3.7. There exists N ∈ N, Kmin ≥ 0, and ε4 > 0 such that LN
ε has a fixed

point in B(K , q) for all K ≥ Kmin and all |ε| < ε4.

Proof. Let h1, h2 ∈ B(K , q). Note that, by equation (3.12) we have

‖Ln
εhi‖1,q ≤ AK + B. (3.14)

Then, by Proposition3.3 and Eq. (3.5) we have, for all h̃i ∈ B(AK + B, q),

‖Lε h̃1 − Lε h̃2‖0,q+1 ≤ ‖LT ε

h̃1
h̃1 − LT ε

h̃1
h̃2‖0,q+1 + ‖LT ε

h̃1
h̃2 − LT ε

h̃2
h̃2‖0,q+1

≤ (A + εC[AK + B])‖h̃1 − h̃2‖0,q+1.
Hence, LN

ε |B(K ,q)
is continuous in the weak norm ‖ · ‖0,q+1, being the composition

of continuous operators. Moreover, we have shown in Proposition2.8 that B(K , q) is
invariant under the action of LN

ε . Since B(K , q) is a convex, compact metric space, we
obtain that LN

ε has at least one fixed point in B(K , q). ��
Remark 3.8. Note that the Proposition3.7 does not say much on the dynamics of Lε,
just the existence of periodic orbits in B(K , q). To know if Lε has a unique fixed point,
some more work is needed.
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3.3. Sequential Anosov maps and a stronger norm. In the following lemma we prove a
Lasota-Yorke inequality for Anosov diffeomorphisms, for the Banach space B2,q (see
(2.6) to recall the definition of this space). In particular, Lemma3.9 below can be useful
outside the scope of this paper. We note however, that we do not prove that the unit ball
of B2,q is compactly embedded in B1,q+1 since the latter is not needed for the current
work.6

Lemma 3.9. There exists θ ∈ (max{ν, λ−1}, 1) and constants A1, A2 > 0 such that for
all h ∈ B2,q , n ∈ N, q ∈ {1, . . . , r − 2}, holds true

‖Ln
T h‖2,q ≤ A1θ

n‖h‖2,q + A2‖h‖1,q+1.
Proof. All the operations in this proof are understood in the charts introduced in Sect. 2.1.
We have

∂xiLn
T h = ∂xi

(
h

| det DTn| ◦ T−n
)

=
d∑
j=1

∂x j

(
h

| det DTn|
)

◦ T−n · {DT−n} j i

=
d∑
j=1

∂x j h

| det DTn| ◦ T−n · {DT−n} j i

−
d∑
j=1

h∂x j | det DTn|
| det DTn|2 ◦ T−n · {DT−n} j i

=
d∑
j=1

Ln
T (∂x j h) · {DT−n} j i −

d∑
j=1

Ln
T

(
h∂x j | det DTn|

| det DTn|
)

· {DT−n} j i ,

(3.15)

Accordingly, letting (W, ϕi ) ∈ 
L ,q+2,d and using (3.15), we can write

d∑
i=1

∫
∂xiLn

T h div ϕi

=
d∑

i=1

d∑
j=1

∫
(∂x j h) ·

(
{DT−n} j i div ϕi

)
◦ T n

−
d∑

i=1

d∑
j=1

∫ (
h∂x j | det DTn|

| det DTn|
)

·
(
{DT−n} j i div ϕi

)
◦ T n

=
d∑
j=1

∫
(∂x j h) div(ϕ̃ j ) ◦ T n −

d∑
j=1

∫
(∂x j h)

d∑
i=1

d∑
l=1

ϕi
l ◦ T n∂xl

[{DT−n} j i ◦ T n]

6 We warn the reader that to obtain information about the spectral properties of LT when acting on B2,q ,
a compact embedding result is needed.
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−
d∑
j=1

∫ (
h∂x j | det DTn|

| det DTn|
)

· (div ϕ̃ j ) ◦ T n

+
d∑
j=1

∫ (
h∂x j | det DTn|

| det DTn|
)

·
d∑

i=1

d∑
l=1

ϕi
l ◦ T n∂xl

[{DT−n} j i ◦ T n] ,

where we have used the notation
∑d

i=1{DT−n} j iϕi := ϕ̃ j . To continue, we need the
following fact: for h, f, ϕ ∈ Cr ,

∫
h f div ϕ =

∫
h div( f ϕ) −

∫
h

d∑
l=1

ϕl∂xl f

(div ϕ) ◦ T n = div((DTn)−1ϕ ◦ T n) −
d∑

i=1

∂xi (DTn)−1
i j ϕ j ◦ T .

(3.16)

Using (3.16) and integrating by part, we can write the above as

d∑
i=1

∫
∂xiLn

T h div ϕi =
d∑
j=1

∫
(∂x j h) · div

(
(DTn)−1ϕ̃ j ◦ T n

)

+
∫

h div�1 +
∫

h�0. (3.17)

where ‖�1‖T−nW
q+1 + ‖�0‖T−nW

q+1 ≤ Cn . This follows from the fact that T ∈ Cr and [1,
Lemma 2.15].

It remains to control the term with two derivatives. To this end we use the projectors
πu, π s similarly to what is done in [1]. See appendix C for a precise defintion and their
properties.

We can thus write

d∑
j=1

∫
(∂x j h) · div

(
(DTn)−1ϕ̃ j ◦ T n

)

= −
d∑

j,i,k,l,t,t ′=1

∫
h∂x j ∂xi

{
(DTn)−1

i t πu
tl ◦ T n(DTn)−1

j t ′ π
u
t ′k ◦ T nϕk

l ◦ T n
}

−
d∑

j,i,k,l,t,t ′=1

∫
h∂x j ∂xi

{
(DTn)−1

i t πu
tl ◦ T n(DTn)−1

j t ′ π
s
t ′k ◦ T nϕk

l ◦ T n
}

−
d∑

j,i,k,l,t,t ′=1

∫
h∂x j ∂xi

{
(DTn)−1

i t π s
tl ◦ T n(DTn)−1

j t ′ π
u
t ′k ◦ T nϕk

l ◦ T n
}

−
d∑

j,i,k,l,t,t ′=1

∫
h∂x j ∂xi

{
(DTn)−1

i t π s
tl ◦ T n(DTn)−1

j t ′ π
s
t ′k ◦ T nϕk

l ◦ T n
}

.

(3.18)
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Let us analyze the above terms one by one. If we set

η
j
l =

d∑
t ′,k=1

(DTn)−1
j t ′ ◦ T−nπu

t ′kϕ
k
l ,

since πuη j belongs to the unstable cone, using (C.2) twice we have, for the estimate of
the first term

‖(DT−n)−1 ◦ T−nπuη j‖Wq+2 ≤ Cλ−n‖η j‖Wq+2 +
Cn

�
‖η j‖Wq+1

≤ Cλ−2n‖ϕ̄‖Wq+2 +
Cn

�̄
‖ϕ̄‖Wq+1,

where ‖ϕ̄‖Wq ′ = supi, j ‖ϕ j
i ‖Wq ′ for each q ′ ≤ r . Consequently, by [1, Lemma 2.11], we

obtain

‖(DT−n)−1(πuη j ) ◦ T n‖T−nW
q+2 ≤ Cλ−2n‖ϕ̄‖Wq+2 +

Cn

�
‖ϕ̄‖Wq+1. (3.19)

Note that the second and third terms in (3.18) are essentially the same. Indeed, exchang-
ing i and j in the second yields the third apart from the fact that ϕk

l is substituted by
ϕl
k , which is irrelevant. We can thus analyze only the third term. By (C.3) and (C.2), we

have

‖
d∑

i=1

∂xi [(DT−n)−1π s ◦ T nη j ◦ T n]i‖T−nW
q+1 ≤ Cn‖η j‖Wq+2

≤ Cnλ
−n‖ϕ̄‖Wq+2 +

Cn

�
‖ϕ̄‖Wq+1. (3.20)

To treat the last term in (3.18), let

θ
j
l =

d∑
t ′,k=1

(DTn)−1
j t ′ ◦ T−nπ s

t ′kϕ
k
l ,

we can then write it as

d∑
j=1

∫
h∂x j

⎧⎨
⎩

d∑
i,t,l=1

∂xi (DTn)−1
i t π s

tl ◦ T nθ
j
l ◦ T n

⎫⎬
⎭

Then, by (C.3) and (C.4) we have

‖
d∑

i,t,l=1

∂xi (DTn)−1
is π s

tl ◦ T nθ
j
l ‖T

−nW
q+1 ≤ Cn sup

l, j
‖θ j

l ‖Wq+2 ≤ Cn,� ‖ϕ̄‖Wq+2.

The above implies that the last term is bounded by

d∑
j=1

∫
h∂x j

⎧⎨
⎩

d∑
i,t,l=1

∂xi (DTn)−1
i t π s

tl ◦ T nθ
j
l ◦ T n

⎫⎬
⎭ ≤ Cn,� ‖h‖∗

1,q+1.
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By choosing � large enough in (3.19), using (3.20) and (3.17), we get

‖Ln
T h‖∗

2,q ≤ Cλ−2n‖h‖∗
2,q + Cn‖h‖1,q+1.

The above equation can be iterated with steps n0 such that Cλ−2n0 ≤ θ < 1. Now
choosing b in the definition of (2.6) large enough (depending on the fixed n0) and using
the Lasota-Yorke inequality in the ‖ · ‖1,q from [1], we get for all n ∈ N

‖Ln
T h‖2,q ≤ A1θ

n‖h‖2,q + A2‖h‖1,q+1.
��

Using Remark3.2 and Lemma3.9, we obtain the following corollary:

Corollary 3.10. Let ε1 > 0 be the same as in Proposition3.3. For each |ε| < ε1 and θ ∈
(max{ν, λ−1}, 1) there exist constants A1, A2 > 0 such that for all h, g0, . . . , gn−1 ∈
B2,q ∩ B0,q

1 , n ∈ N, q ∈ {1, . . . , r − 2}, holds true
‖LT ε

gn−1
◦···◦T ε

g0
h‖2,q ≤ Aθn‖h‖2,q + B‖h‖1,q+1; (3.21)

that implies

‖Ln
ε (h)‖2,q ≤ A1θ

n‖h‖2,q + A2‖h‖1,q+1.
Lemma 3.11. For h ∈ B2,q ∩ B0,q

1 , q ∈ {1, . . . , r − 2} we have
‖(LT ε

g1
− LT ε

g2
)h‖1,q+1 ≤ CdCr (T ε

g1 , T
ε
g2)‖h‖2,q ;

‖(LT ε
g

− LT ε′
g

)h‖1,q+1 ≤ CdCr (T ε
g , T ε′

g )‖h‖2,q .
Proof. Recall the definition of Tt in the proof of Lemma3.4. The calculation below is
understood in the charts as explained at the beginning of the Proof of Lemma3.4. Since

‖(LT ε
g1

− LT ε
g2

)h‖1,q+1 = a‖(LT ε
g1

− LT ε
g2

)h‖0,q+1 + ‖(LT ε
g1

− LT ε
g2

)h‖∗
1,q+1,

it is enough to estimate the latter since the former is covered by Lemma3.4. We have
∫
M

(
LT ε

g1
− LT ε

g2

)
h div ϕ

=
∫
M
h div

(
D(T ε

g1)
−1 · ϕ ◦ T ε

g1

)
−

∫
M
h div

(
D(T ε

g2)
−1 · ϕ ◦ T ε

g2

)

+
∫
M
h

d∑
l,k=1

∂l

[
D(T ε

g2)
−1

]
lk

· ϕk ◦ T ε
g2 −

∫
M
h

d∑
l,k=1

∂l

[
D(T ε

g1)
−1

]
lk

· ϕk ◦ T ε
g1

:= (I ) + (I I ). (3.22)

We first give a bound on (I ).
∫
M
h div

(
D(T ε

g1)
−1 · ϕ ◦ T ε

g1

)
−

∫
M
h div

(
D(T ε

g2)
−1 · ϕ ◦ T ε

g2

)

=
∫
M
h div

(
[D(T ε

g1)
−1 ◦ (T ε

g1)
−1 · ϕ] ◦ T ε

g1 − [D(T ε
g2)

−1 ◦ (T ε
g2)

−1 · ϕ] ◦ T ε
g2

)
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=
∫
M
h div

(
[D(T ε

g1)
−1 ◦ (T ε

g1)
−1 · ϕ] ◦ T ε

g1 − [D(T ε
g1)

−1 ◦ (T ε
g1)

−1 · ϕ] ◦ T ε
g2

)

+
∫
M
h div

([
D(T ε

g1)
−1 ◦ (T ε

g1)
−1 − D(T ε

g2)
−1 ◦ (T ε

g2)
−1

]
· ϕ ◦ T ε

g2

)

:= (I.I ) + (I.I I ). (3.23)

We start with (I.I ). Let D(T ε
g1)

−1 ◦(T ε
g1)

−1 ·ϕ = ϕ̂ and Tt = t ·T ε
g1 +(1− t) ·T ε

g2 , t ∈
[0, 1]. We have

(I.I ) = −
∫
M

∇h ·
[
ϕ̂◦T ε

g1 − ϕ̂ ◦ T ε
g2

]

= −
d∑

i=1

∫
M

∂xi h
∫ 1

0
∇ϕ̂i ◦ Tt (T

ε
g2 − T ε

g1)dtdω

= −
d∑

i=1

∫ 1

0

∫
M

∂xi h div(ϕ̂i ◦ Tt (T
ε
g2 − T ε

g1))dωdt

+
d∑

i=1

∫ 1

0

∫
M

∂xi hϕ̂i ◦ Tt Tr D(T ε
g2 − T ε

g1))dωdt

= −
d∑

i=1

∫ 1

0

∫
M

∂xi h div(ϕ̂i ◦ Tt (T
ε
g2 − T ε

g1))dωdt

−
∫ 1

0

∫
M
h div

(
ϕ̂ ◦ Tt Tr D(T ε

g2 − T ε
g1)

)
dωdt

≤ ‖h‖2,q max
i

∫ 1

0
‖ϕ̂i ◦ Tt (T

ε
g2 − T ε

g1)‖
T−1
t W

q+2 dt

+‖h‖1,q+1
∫ 1

0
‖ϕ̂ ◦ Tt Tr D(T ε

g2 − T ε
g1)‖

T−1
t W

q+2 dt (3.24)

Using what we obtained in the course of the Proof of Lemma3.4, we get

(I.I ) ≤ CdCq+2(T ε
g1 , T

ε
g2)‖h‖2,q . (3.25)

As for (I.I I ), using LemmaA.2, we have

‖
[
D(T ε

g1)
−1 ◦ (T ε

g1)
−1 − D(T ε

g2)
−1 ◦ (T ε

g2)
−1

]
· ϕ ◦ T ε

g2‖Wq+1
≤ ‖

[
D(T ε

g1)
−1 ◦ (T ε

g1)
−1 − D(T ε

g2)
−1 ◦ (T ε

g2)
−1

]
‖Cq+1 · ‖ϕ ◦ T ε

g2‖Wq+1
≤ CdCr (T ε

g1 , T
ε
g2)‖ϕ‖Wq+1. (3.26)

This implies

(I.I I ) ≤ CdCr (T ε
g1 , T

ε
g2)‖h‖1,q+1. (3.27)

Combining (3.25) and (3.27) we obtain

(I ) ≤ CdCr (T ε
g1 , T

ε
g2)‖h‖2,q . (3.28)
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We now bound (I I ).

(I I ) =
d∑

l,k=1

∫
M
h∂l

[
D(T ε

g2)
−1

]
lk

(
ϕk ◦ T ε

g2 − ϕk ◦ T ε
g1

)

+
d∑

l,k=1

∫
M
h
(
∂l

[
D(T ε

g2)
−1

]
lk

− ∂l

[
D(T ε

g1)
−1

]
lk

)
ϕk ◦ T ε

g1

:= (I I.I ) + (I I.I I ). (3.29)

For (I I.I ), by Lemma3.4, we have

(I I.I ) =
d∑

l,k=1

∫
M

(LT ε
g2

− LT ε
g1

)
(
h∂l

[
D(T ε

g2)
−1

]
lk

)
· ϕk

≤ C
∥∥∥(LT ε

g2
− LT ε

g1
)
(
h∂l

[
D(T ε

g2)
−1

]
lk

)∥∥∥
0,q+1

≤ CdCr (T ε
g1 , T

ε
g2)‖h‖1,q . (3.30)

For (I I.I I ), by CorollaryA.3 we have

d∑
l,k=1

∫
M
LT ε

g1
h
(
∂l

[
D(T ε

g2)
−1

]
lk

◦ (T ε
g1)

−1 − ∂l

[
D(T ε

g1)
−1

]
lk

◦ (T ε
g1)

−1
)

ϕk

≤ ‖LT ε
g1
h‖0,q+1

d∑
l,k=1

∥∥∥∂l
[
D(T ε

g2)
−1

]
lk

◦ (T ε
g1)

−1 − ∂l

[
D(T ε

g1)
−1

]
lk

◦ (T ε
g1)

−1
∥∥∥Cq+1

≤ ACdCr (T ε
g1 , T

ε
g2) · ‖h‖0,q+1. (3.31)

Using (3.28), (3.30) and (3.31) completes the proof of the first inequality of the lemma.
The proof for the second part of the lemma follows similarly. ��
Corollary 3.12. According to (A1), we can write

‖(LT ε
g1

− LT ε
g2

)h‖1,q+1 ≤ C |ε|‖g1 − g2‖1,q+1‖h‖2,q , (3.32)

and similarly, according to (A2)

‖(LT ε
g

− LT ε′
g

)h‖1,q+1 ≤ C |ε − ε′|‖g‖1,q+1‖h‖2,q . (3.33)

Furthermore,

‖(LT ε
gN

. . .LT ε
g1

− LT ε
fN

. . .LT ε
f1
)h‖1,q+1

≤
N∑
i=1

‖LT ε
gN

. . .LT ε
gi+1

(LT ε
gi

− LT ε
fi
)LT ε

fi−1
. . .LT ε

f1
h‖1,q+1

≤ C |ε|
N∑
i=1

θN−i‖gi − fi‖1,q+1‖h‖2,q . (3.34)
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where θ is the contraction factor from Lemma 3.6. Similarly,

‖(LT ε
gN

. . .LT ε
g1

− LT ε′
gN

. . .LT ε′
g1

)h‖1,q+1 ≤ C
N∑
i=1

θN−i‖gi‖1,q+1|ε − ε′|‖h‖2,q .
(3.35)

3.4. Fixed point uniqueness and exponential convergence in B(K1, K2, q).

Recall the definition of the set B(K1, K2, q) (see (2.11)).

Lemma 3.13. There exists N ∈ N, K1,min ≥ Kmin, K2,min ≥ 0 and ε5 > 0, for
which Ln

ε (B(K1, K2, q)) ⊂ B(K1, K2, q) and Ln
ε |B(K1,K2,q) is a strict contraction,

with respect to the ‖ · ‖1,q+1 norm, for all Ki ≥ Ki,min, |ε| < ε5, q ∈ {1, . . . , r − 3} and
n ≥ N.

Proof. Let h ∈ B(K1, K2, q), then by Proposition2.8 we have Ln
ε (h) ⊂ B(K1, q + 1).

Next, by Corollary 3.10, we have

‖Ln
ε (h)‖2,q ≤ A1θ

nK2 + A2K1. (3.36)

Choosing N large enough, such that A1θ
N = β ∈ (0, 1), and K2 such that K2 ≥

K2,min := A2K
1−β

, we have the wanted invariance.
Next, leth1, h2 ∈ B(K1, K2, q). Then forn ≥ N wehaveLn

ε (h1) = LT ε

hn−1
1

. . .LT ε
h1
h1

and Ln
ε (h2) = LT ε

hn−1
2

. . .LT ε
h2
h2 for some h1, . . . , h

n−1
1 and h2, . . . , h

n−1
2 . Choose

γ ∈ (θ, 1) andC > max{1,C1}. We prove by induction that ‖Ln
ε (h1)−Ln

ε (h2)‖1,q+1 ≤
Cγ n‖h1 − h2‖1,q+1.

‖Ln
ε (h1) − Ln

ε (h2)‖1,q+1 = ‖LT ε

hn−1
1

. . .LT ε
h1
h1 − LT ε

hn−1
2

. . .LT ε
h2
h2‖1,q+1

≤ ‖(LT ε

hn−1
1

. . .LT ε
h1

− LT ε

hn−1
2

. . .LT ε
h2

)h1‖1,q+1
+ ‖LT ε

hn−1
2

. . .LT ε
h2

(h1 − h2)‖1,q+1

≤ K2|ε|
n∑

k=1

θn−kγ k‖h1 − h2‖1,q+1 + C1θ
n‖h1 − h2‖1,q+1,

where for the first term we used (3.34) from Corollary3.12, ‖h1‖2,q ≤ K2 and the
induction hypothesis, while for the second term we used Lemma 3.6.

Accordingly,

‖Ln
ε (h1) − Ln

ε (h2)‖1,q+1 ≤ K2|ε|γ n
n∑

k=1

(θ/γ )k‖h1 − h2‖1,q+1 + C1θ
n‖h1 − h2‖1,q+1

≤ (K2|ε|(1 − θ/γ )−1 + C1)γ
n‖h1 − h2‖1,q+1

≤ Cγ n‖h1 − h2‖1,q+1 (3.37)

for |ε| sufficiently small. ��
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Proof of Theorem 2.9. We are now in a position to show thatLε has a unique fixed point
in B(K1, K2, q), for Ki ≥ Ki,min. By Lemma 3.13 and the Banach fixed point theorem
it follows that, for N large enough, LN

ε has a unique fixed point in B(K1, K2, q), call it
hε. Then

LN
ε (Lε(hε)) = Lε(LN

ε (hε)) = Lε(hε).

Accordingly, alsoLεhε is afixedpoint ofLN
ε .On theother hand, by equations (3.14),(3.36)

there exist constants A, B, A1, A2 such that Lε(hε) ∈ B(K ′
1, K

′
2, q) ⊃ B(K1, K2, q),

where K ′
1 = AK1 + B and K ′

2 = A1K2 + A2K1. If N has been chosen large enough,
LN

ε must have a unique fixed point in B(K ′
1, K

′
2, q) as well, which must be hε. It fol-

lows Lε(hε) = hε. On the other hand, if gε ∈ B(K1, K2, q) and Lε(gε) = gε, then
LN

ε (gε) = gε and so, by unicity again, gε = hε.
The proof of the first part of Theorem2.9 is completed by (3.37) that implies

‖Ln
ε (h) − hε‖1,q+1 ≤ Cγ n‖h − hε‖1,q+1 (3.38)

for all h ∈ B̄(K1, K2, q).
We now prove the second part of Theorem2.9. Let h ∈ B̄(K1, K2, q). Then

‖Ln
ε (h) − hε′ ‖1,q+1 ≤ ‖Ln

ε (h) − Ln
ε′(h)‖1,q+1 + ‖Ln

ε′(h) − hε′ ‖1,q+1
≤ ‖Ln

ε (h) − Ln
ε′(h)‖1,q+1 + Cθn‖h − hε′ ‖1,q+1.

Choose λ ∈ (0, 1) and fix n∗ such that Cθn
∗

< λ. Then

‖Ln∗
ε (h) − hε′ ‖1,q+1 ≤ ‖Ln∗

ε (h) − Ln∗
ε′ (h)‖1,q+1 + λ‖h − hε′ ‖1,q+1.

According to Corollary3.12, for each n ∈ N there exists C(n) > 0 such that if h ∈
B̄(K1, K2, q),

‖Ln
ε (h) − Ln

ε′(h)‖1,q+1 ≤ C(n)|ε − ε′|.
We thus have

‖Ln∗
ε (h) − hε′ ‖1,q+1 ≤ C(n∗)|ε − ε′| + λ‖h − hε′ ‖1,q+1.

Let B(h, r) = {g ∈ B1,q : ‖g − h‖1,q ≤ r}. Set r0 = C(n∗)|ε−ε′|
1−λ

. Then Ln∗
ε B(hε′ , r0) ⊆

B(hε′ , r0). Indeed, let g be such that ‖g − hε′ ‖1,q+1 ≤ r0. Then

‖Ln∗
ε (g) − hε′ ‖1,q+1 ≤ C(n∗)|ε − ε′| + λr0 = r0.

According to the main theorem, we have ‖Lkn∗
ε (h)−hε‖1,q → 0 for h ∈ B(K1, K2, q).

Note that B(hε′ , r0) ∩ B̄(K1, K2, q) 
= ∅. This implies that hε ∈ B(hε′ , r0), i.e.

‖hε − hε′ ‖1,q+1 ≤ r0 = C(n∗)|ε − ε′|
1 − λ

:= K |ε − ε′|.

��
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3.5. Uniqueness of the physical measure.
We can now conclude with the proof of Theorem2.3.

Proof of Theorem 2.3. Let hε be a physical measure and let h ∈ L1 such that Ln
ε (h)

converges weakly to hε. For each δ > 0 we can find hδ ∈ C∞ such that ‖hδ − h‖L1 ≤ δ.
Then, setting hn = Ln

ε (h), we have

‖LT ε
hn

· · ·LT ε
h
hδ − LT ε

hn
· · ·LT ε

h
h‖L1 ≤ Cδ.

It follows that, given any sequence δn → 0, LT ε
hn

· · ·LT ε
h
hδn converges weakly to hε.

Moreover,

‖LT ε
hn

· · ·LT ε
h
hδ‖1,q ≤ Cθn‖hδ‖1,q + B‖hδ‖0,q ≤ Cδθ

n + B‖hδ‖T V ≤ Cδθ
n + B,

where Cδ → ∞ when δ → 0 and depends only on the fixed function h. We can thus
choose a sequence δn that goes to zero so slowly that Cδnθ

n → 0 when n → ∞. Thus,
for n large enough, ‖LT ε

hn
· · ·LT ε

h
hδn‖1,q ≤ 2B ≤ K1. On the other hand, computing as

above

‖LT ε
hn

· · ·LT ε
h
hδn‖2,q ≤ K2.

The above implies that there exists a sequence {gn} ⊂ B(K1, K2, q) ∩ Cr such that gn
converges weakly to hε.

Next, notice that LT ε
hε

is the transfer operator associated with the Anosov map T ε
hε
.

Since T ε
hε

is a small perturbation of T , which is transitive, by structural stability T ε
hε

is

transitive as well. It follows that LT ε
hε
, when acting on B1,q , has a spectral gap, see [1],

and consequently T ε
hε

has a unique invariant measure in B1,q , call it g∗. Therefore there
exists constants C∗ > 0 and ν ∈ (0, 1) such that, for each n ∈ N, we have

‖Lm
T ε
hε

gn − g∗‖1,q+1 ≤ C∗νm .

This implies that, for each (W, ϕ) ∈ 
L ,q,1, we have (recalling that hε = Lε(hε) =
LT ε

hε
hε)

∫
(g∗ − hε)ϕ =

∫
(Lm

T ε
hε

gn − Lm
T ε
hε

hε)ϕ +
∫

(Lm
T ε
hε

gn − g∗)ϕ.

From the above, it follows∣∣∣∣
∫

(g∗ − hε)ϕ −
∫

(gn − hε)ϕ ◦ (T ε
hε

)m
∣∣∣∣ ≤ C∗νm .

Taking the limit for n → ∞, since gn converges weakly to hε we have∣∣∣∣
∫

(g∗ − hε)ϕ

∣∣∣∣ ≤ C∗νm,

and taking the limitm → ∞we have g∗ = hε inB0,q , hence, recalling [1, Lemma 2.12],
they are equal as distributions in (Cq)′. But since g∗ is a positive distribution they are both
measures and hence they coincide as measures. It follows that hε = g∗ ∈ B(K1, K2, q)

and since the invariant measure in such a set is unique the theorem follows. ��
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Appendix A. Test Functions and Foliations

A.1 Test functions. Let � ≥ 2 be a parameter chosen as in [1, Equation (3.11)]. Denote
by α the multi-index α = (α1, · · · , αd) with αi ∈ N∪{0}. Let |α| = ∑d

i=1 αi and ∂α =
∂

α1
x1 · · · ∂αd

xd . We thus define the weighted norm in Cρ(M,M(m, n)), where M(m, n) is
the set of the m × n (possibly complex valued) matrices,

‖ϕ‖C0 = sup
x∈M

sup
i∈{1,...,n}

m∑
j=1

|ϕi, j (x)|

‖ϕ‖Cρ =
ρ∑

k=0

�ρ−k sup
|α|=k

‖∂αϕ‖C0 ,

(A.1)

for some � ≥ 2. Note that the above definition implies

‖ϕ‖Cρ+1 = �ρ+1‖ϕ‖C0 + sup
i

‖∂xi ϕ‖Cρ . (A.2)

The next lemma is Lemma 2.9 of [1].

Lemma A.1. For everyρ, n,m, s ∈ N,ψ ∈ Cρ(M,M(m, n))andϕ ∈ Cρ(M,M(m, s))
we have

‖ϕψ‖Cρ ≤ ‖ϕ‖Cρ ‖ψ‖Cρ .

Moreover if ϕ ∈ Cρ(M,M(m, n)) and ψ ∈ Cρ(M, M), then

‖ϕ ◦ ψ‖Cρ ≤
ρ∑

k=0

(
ρ

k

)
�ρ−k‖ϕ‖Ck

k∏
i=1

‖(Dψ)t‖Cρ−i .

Lemma A.2. Let ϕ ∈ Ck(M,C) and ψ, ψ̃ ∈ Ck(M, M). Then

‖ϕ ◦ ψ − ϕ̃ ◦ ψ‖Ck ≤
k∑
j=0

ω j sup
|α|=k− j

‖∂αϕ − ∂αϕ̃‖C0

k−1∏
i= j

‖(Dψ)t‖Ci (A.3)

and

http://creativecommons.org/licenses/by/4.0/
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‖ϕ ◦ ψ − ϕ ◦ ψ̃‖Ck

≤
k∑
j=0

ω j sup
|α|=k− j

‖(∂αϕ) ◦ ψ − (∂αϕ) ◦ ψ̃‖C0

k−1∏
i= j

‖(Dψ)t‖Ci

+
k∑
j=1

sup
|α|=k− j

‖∂αϕ ◦ ψ̃‖C j−1‖(Dψ)t − (Dψ̃)t‖C j−1

k−1∏
i= j

‖(Dψ)t‖Ci . (A.4)

Proof. We are going to prove both formulas by induction. First recall that

‖η‖Cρ+1 = �ρ+1‖η‖C0 + sup
i

‖∂xi η‖Cρ . (A.5)

We first prove (A.3). Using the above formula we compute

‖ϕ ◦ ψ − ϕ̃ ◦ ψ‖Ck+1

≤ � k+1‖ϕ − ϕ̃‖C0 + sup
i

‖∂xi (ϕ ◦ ψ − ϕ̃ ◦ ψ)‖Ck

≤ � k+1‖ϕ − ϕ̃‖C0 + sup
i

‖∂xi ϕ − ∂xi ϕ̃‖Ck‖(Dψ)t‖Ck

≤ � k+1‖ϕ − ϕ̃‖C0

+ sup
i

k∑
j=0

ω j sup
|α|=k− j

‖∂α∂xi ϕ − ∂α∂xi ϕ̃‖C0

k−1∏
i= j

‖(Dψ)t‖Ci · ‖(Dψ)t‖Ck

≤ � k+1‖ϕ − ϕ̃‖C0 +
k∑
j=0

ω j sup
|α|=k+1− j

‖∂αϕ − ∂αϕ̃‖C0

k∏
i= j

‖(Dψ)t‖Ci

=
k+1∑
j=0

ω j sup
|α|=k+1− j

‖∂αϕ − ∂αϕ̃‖C0

k∏
i= j

‖(Dψ)t‖Ci

We now prove (A.4) by using (A.5).

‖ϕ ◦ ψ − ϕ ◦ ψ̃‖Ck+1 = � k+1‖ϕ ◦ ψ − ϕ ◦ ψ̃‖C0 + sup
i

‖∂xi (ϕ ◦ ψ − ϕ ◦ ψ̃)‖Ck

≤ � k+1‖ϕ ◦ ψ − ϕ ◦ ψ̃‖C0

+ sup
i

‖(∂xi ϕ) ◦ ψ − (∂xi ϕ) ◦ ψ̃‖Ck‖(Dψ)t‖Ck

+ sup
i

‖(∂xi ϕ) ◦ ψ̃‖Ck‖(Dψ)t − (Dψ̃)t‖Ck

For the second term we use the inductive assumption. This gives us the following:

‖ϕ ◦ ψ − ϕ ◦ ψ̃‖Ck+1

≤ � k+1‖ϕ ◦ ψ − ϕ ◦ ψ̃‖C0

+
k∑
j=0

ω j sup
|α|=k− j,i

‖(∂α∂xi ϕ) ◦ ψ − (∂α∂xiϕ) ◦ ψ̃‖C0

k∏
i= j

‖(Dψ)t‖Ci
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+
k∑
j=1

sup
|α|=k− j,i

‖∂α∂xi ϕ ◦ ψ̃‖C j−1‖(Dψ)t − (Dψ̃)t‖C j−1

k∏
i= j

‖(Dψ)t‖Ci

+ sup
i

‖(∂xi ϕ) ◦ ψ̃‖Ck‖(Dψ)t − (Dψ̃)t‖Ck

= �ρ+1‖ϕ ◦ ψ − ϕ ◦ ψ̃‖C0

+
k∑
j=0

ω j sup
|α|=k+1− j

‖(∂αϕ) ◦ ψ − (∂αϕ) ◦ ψ̃‖C0

k∏
i= j

‖(Dψ)t‖Ci

+
k∑
j=1

sup
|α|=k+1− j

‖∂αϕ ◦ ψ̃‖C j−1‖(Dψ)t − (Dψ̃)t‖C j−1

k∏
i= j

‖(Dψ)t‖Ci

+ sup
i

‖(∂xi ϕ) ◦ ψ̃‖Ck‖(Dψ)t − (Dψ̃)t‖Ck

=
k+1∑
j=0

ω j sup
|α|=k+1− j

‖(∂αϕ) ◦ ψ − (∂αϕ) ◦ ψ̃‖C0

k∏
i= j

‖(Dψ)t‖Ci

+
k+1∑
j=1

sup
|α|=k+1− j

‖∂αϕ ◦ ψ̃‖C j−1‖(Dψ)t − (Dψ̃)t‖C j−1

k∏
i= j

‖(Dψ)t‖Ci .

��
We obtain a useful corollary:

Corollary A.3. As a consequence of (A.3), we have

‖ϕ ◦ ψ − ϕ̃ ◦ ψ‖Ck ≤ C‖ϕ − ϕ̃‖Ck‖Dψ‖kCk . (A.6)

If furthermore ϕ ∈ Ck+1(M,C), then by (A.4) we have

‖ϕ ◦ ψ − ϕ ◦ ψ̃‖Ck ≤C‖ϕ‖Ck+1‖Dψ‖kCk

×
(
‖ψ − ψ̃‖C0 + ‖Dψ̃‖kCk‖Dψ − Dψ̃‖Ck−1

)
.

(A.7)

A.2 Foliations. To define the anisotropic spaces B0,q and B1,q , we need to define a class
of (stable) foliations adapted to the cone field, whose representation in local coordinates
has certain uniform regularity. Let us recall be basic defintions from [1].

Definition A.4. A Cr t-dimensional foliation W is a collection {Wα}α∈A, for some set
A, such that the Wα are pairwise disjoint, ∪α∈AWα = M and for each ξ ∈ Wα there
exists a neighborhood B(ξ) such that the connected component ofWα ∩B(ξ) containing
ξ , call it W (ξ), is a Cr t-dimensional open submanifold of M . We will call Fr the set
of Cr ds-dimensional foliations.

Definition A.5. A foliation W is adapted to the cone field C if, for each ξ ∈ M ,
TξW (ξ) ⊂ C(ξ). Let Fr

C be the set of Cr ds-dimensional foliations adapted to C.



W. Bahsoun, C. Liverani, F. M. Sélley

Given a ds-foliation adapted to C we can associate to it local coordinates as follows.
Let δ0 > 0 be sufficiently small so that for each ξ ∈ M there exists a chart (Vi , φi )

with ξ ∈ Vi and such that Ui := φi (Vi ) contains the ball Bδ0(φi (ξ)).7 Also, choose
U 0 = U 0

u × U 0
s ⊂ R

du × R
ds with U 0

u = Bδ0/2(0), U
0
s = Bδ0/2(0). Next, for each

z ∈ Ui , letW (z)be the connected component ofφi (W ) containing z.8 Define the function
Fξ : U 0 → R

du by {(Fξ (x, y) + xξ , yξ + y)} = {(w, y + yξ )}w∈Rdu ∩ W (x + xξ , yξ ),
where (xξ , yξ ) = φi (ξ).9 That is, W (x + xξ , yξ ) is exactly the graph of the function
Fξ (x, ·) + xξ . Moreover,

Fξ (x, 0) = x . (A.8)

In addition, we ask δ0 to be small enough that the expression of DT in the above charts
is roughly constant. See Lemma B.5 [1].

Now Fξ (x, y) = (Fξ (x, y), y), (x, y) ∈ U 0 describes the foliation locally. Denote
by F the collection of maps {Fξ }.

For each integer r ≥ 2 and L > 0, let

Fr
C =

{
W ∈ Fr

C : F ∈ Cr (U 0,Rd)
}

Wr
L =

{
W ∈ Fr

C : sup
ξ

sup
x∈U0

u

sup
|α|=k

‖∂α
y Fξ (x, ·)‖C0(U0

s ,Rdu ) ≤ L(k−1)2 , 2 ≤ k ≤ r;

sup
ξ

sup
x∈U0

u

sup
|α|=k

‖∂α
y H

Fξ (x, ·)‖C0(U0
s ,Rds ) ≤ L(k+1)2 , 0 ≤ k ≤ r − 2

}
,

where

HFξ (x, y) =
du∑
j=1

[
∂x j

([
∂y(Fξ ) j

] ◦ F
−1
ξ

)]
◦ Fξ (x, y)

=
∑
i j

∂xi ∂y(Fξ ) j · (∂x Fξ )
−1
i j .

For each ϕ ∈ Cr (M,Cl) andW ∈ Fr
C let ϕξ,x (·) = ϕ ◦φ−1

i ◦Fξ (x, ·), q ≤ r and define

‖ϕ‖Wq := sup
ξ∈M

sup
x∈U0

u

‖ϕξ,x‖Cq (U0
s ,Cl ) = sup

ξ∈M
sup
x∈U0

u

l∑
j=1

‖(ϕξ,x ) j‖Cq (U0
s ,C). (A.9)

We are finally able to define the sets 
L ,q,l , L > 0, r ≥ 2, q ∈ N ∪ {0} as


L ,q,l =
{
(W, ϕ) ∈ Wr

L × Cq(M,Cl) : ‖ϕ‖Wq ≤ 1
}

. (A.10)

7 Here, and in the following, we use Bδ(x) to designate {z ∈ R
d ′ : ‖x − z‖ ≤ δ} for any d ′ ∈ N.

8 Refer to DefinitionA.4 for the exact meaning of “connected component". Also note the abuse of notation
since we use the same name for the sub-manifond in M and its image in the chart.

9 The fact that the intersection is non void and consists of exactly one point follows trivially from the fact
that the foliation is adapted to the cone field, hence the two manifolds are transversal.
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Appendix B. Some Properties of the Coupled Map Tε
h

Lemma B.1. There exists ε∗ > 0 such that

Dξ (T
ε
h )−1C(ξ) ⊂ int(C((T ε

h )−1(ξ))) ∪ {0} (B.1)

for all |ε| < ε∗ and h ∈ B0,q
1 ; moreover there exists λ > 1, ν ∈ (0, 1), c ∈ (0, 1) such

that

inf
ξ∈M inf

v∈C(ξ)
‖Dξ (T

ε
hn−1

◦ · · · ◦ T ε
h0)

−1v‖ > cν−n‖v‖
inf
ξ∈M inf

v 
∈C(ξ)
‖Dξ (T

ε
hn−1

◦ · · · ◦ T ε
h0)v‖ > cλn‖v‖ (B.2)

for all |ε| < ε∗ and any sequence h0, . . . , hn−1 ∈ B0,q
1 , n ∈ N.

Proof. Fix ε∗ > 0 such that (B.1) holds. Define ν = (1− ε∗)−1ν0 and λ = (1− ε∗)λ0,
where ν0 and λ0 are given by (2.1). Decrease ε∗ further if necessary so that that 0 <

ν < 1 < λ. Via a standard change of metric we may assume that in (2.1) c0 = 1. Note
that for any h, |ε| < ε∗ and v ∈ C(ξ)

‖Dξ (T
ε
h )−1v‖ ≥ ‖DξT

−1v‖ − ‖(DξT
−1 − Dξ (T

ε
h )−1)v‖

> ν−1
0 ‖v‖ − |ε|ν−1

0 ‖v‖ = ν−1‖v‖.
We then proceed by induction on n. Assume that for any v ∈ C(ξ)

‖Dξ (T
ε
hn−2

◦ · · · ◦ T ε
h0)

−1v‖ > ν−(n−1)‖v‖.
Write T ε

hn−2
◦ · · · ◦ T ε

h0
= T ε

n−2. Then using the above two inequalities we obtain

‖Dξ (T
ε
hn−1

◦ · · · ◦ T ε
h0)

−1v‖ = ‖Dξ (T
ε
hn−1

◦ T ε
n−2)

−1v‖
= ‖D(T ε

hn−1
)−1(ξ)(T

ε
n−2)

−1Dξ (T
ε
hn−1

)−1v‖
> ν−(n−1)‖Dξ (T

ε
hn−1

)−1v‖ > ν−n‖v‖.
Similarly, for v /∈ C(ξ) we obtain

‖Dξ (T
ε
hn−1

◦ · · · ◦ T ε
h0)v‖ > λn‖v‖.

Finally, returning to the original metric accounts for the constant c in the statement of
the lemma. ��
Remark B.2. LemmaB.1 implies that for |ε| small enough, each T ε

h is an Anosov diffeo-
morphism and any concatenation T ε

hn−1
◦ · · · ◦ T ε

h0
satisfies (2.1) with uniform constant

c independent of ε.

Lemma B.3. Let Tt = tT ε
h1

+ (1− t)T ε
h2

for t ∈ [0, 1] (understood in the charts defined
in the proof of Lemma 3.4). There exists ε∗∗ > 0 such that

DξT
−1
t C(ξ) ⊂ int(C(T−1

t (ξ))) ∪ {0} (B.3)
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for all |ε| < ε∗∗ and h1, h2 ∈ B0,q
1 ; moreover there exists λ̃ > 1, ν̃ ∈ (0, 1), c̃ ∈ (0, 1)

such that

inf
ξ∈M inf

v∈C(ξ)
‖DξT

−n
t v‖ > c̃ν̃−n‖v‖

inf
ξ∈M inf

v 
∈C(ξ)
‖DξT

n
t v‖ > c̃λ̃n‖v‖ (B.4)

for all |ε| < ε∗∗, n ∈ N.

Proof. To simplify notation, let Ti = T ε
hi
. Write T−1

2 ◦ T1 = I d + εS. Then Tt =
[I d + t · εS] ◦ T1 and T−1

t = T−1
1 ◦ [I d + t · εS]−1.

We can see now that it is possible to fix ε∗∗ > 0 such that (B.3) holds. Define
ν̃ = (1 − ε∗∗)−1ν and λ̃ = (1 − ε∗∗)λ, where ν and λ are given by (B.2). Decrease ε∗∗
further if necessary so that that 0 < ν̃ < 1 < λ̃. Via a standard change of metric we may
assume that in (2.1) c = 1. Note that for any h1, h2, |ε| < ε∗∗ and v ∈ C(ξ)

‖DξT
−1
t v‖ ≥ ‖DξT

−1
1 v‖ − ‖(DξT

−1
1 − Dξ (T

−1
1 ◦ [I d + t · εS]−1))v‖

> ν−1‖v‖ − |ε|ν−1‖v‖ = ν̃−1‖v‖.
Similarly, for v /∈ C(ξ) we obtain

‖DξT
n
t v‖ > λ̃n‖v‖.

Finally, returning to the original metric accounts for the constant c in the statement of
the lemma. ��

Appendix C. Projection Along the Unstable Direction

Here we follow [1] and introduce a way to project along the approximate stable and
unstable directions. We do this by introducing projectors πu, π s which are only implicit
in [1]. Note that the construction is local, so we can argue in one chart without further
mentioning it. We start by recalling the construction in [1].

Consider the “almost unstable" foliation � = {γs}s∈Rds made of the leaves γs =
{(u, s)}u∈Rdu and its image T n�. The leaves of T n� can be expressed in the form
{(x, G̃n(x, y)} for some function G̃n , smooth in the x variable, with ‖∂x G̃n‖ ≤ 1 and
the normalization G̃n(F(0, y), y) = y. On the other hand, the leaves ofW have the form
{(F(x, y), y)}. It is then natural to consider the change of variables (x, y) = �n(x ′, y′)
where (x, G̃n(x, y′)) = (F(x ′, y), y). Writing ϕ = (ϕ1, ϕ2), with ϕ1 ∈ R

du , ϕ2 ∈ R
ds

we consider the decomposition defined in [1, Equations (3.5), (3.6)], 10

ϕ(x, y) =: πuϕ(x, y) + π sϕ(x, y)

= (v(x, y), ∂x G̃n(x, y
′)v(x, y)) + (∂y F(x ′, y)w(x, y), w(x, y)).

(C.1)

Where,

v(x, y) = (1 − ∂y F(x ′, y)∂x G̃n(x, y
′))−1(ϕ1(x, y) − ∂y F(x ′, y)ϕ2(x, y))

w(x, y) = (1 − ∂x G̃n(x, y
′)∂y F(x ′, y))−1(ϕ2(x, y) − ∂x G̃n(x, y

′)ϕ1(x, y)).

10 Note that in [1] the projectors where not explicitly defined.
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Let us check that πu, π s are indeed projectors. Note that

(πuϕ)1 − ∂y F(πuϕ)2 = [1 − ∂y F∂x G̃n](1 − ∂y F∂x G̃n)
−1(ϕ1 − ∂y Fϕ2)

= ϕ1 − ∂y Fϕ2,

which immediately implies (πu)2 = πu . The computation for π s is similar.
The key properties of the above projectors are as follows.
By [1, Equation (3.10)] we have, for (W, ϕ) ∈ 
L ,q+2,d ,

‖(DT−n)−1 ◦ T−nπuϕ‖Wq+2 ≤ Cλ−n‖ϕ‖Wq+2 +
Cn

�
‖ϕ‖Wq+1. (C.2)

In addition, by [1, Equation (3.8)], we have

‖
d∑

i=1

∂xi [(DT−n)−1π s ◦ T nϕ ◦ T n]i‖T−nW
q+1 ≤ Cn‖ϕ‖Wq+2. (C.3)

The second of [1, Equation (3.8)] implies also

‖(DT−n)−1 ◦ T−nπ sϕ‖Wq+2 ≤ Cn,� ‖ϕ‖Wq+2. (C.4)
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