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Abstract: We study infinite systems of globally coupled Anosov diffeomorphisms with
weak coupling strength. Using transfer operators acting on anisotropic Banach spaces,
we prove that the coupled system admits a unique physical invariant state, h,. Moreover,
we prove exponential convergence to equilibrium for a suitable class of distributions and
show that the map ¢ — h, is Lipschitz continuous.

1. Introduction

Coupled systems are mathematical models of spatially extended systems consisting of
identical interacting units. They provide a challenging subject of study from a mathe-
matical point of view, give a well-motivated example of infinite dimensional dynamical
systems, and often exhibit phase transition-like parameter-dependent behavior. Their
popularity stems from the fact that they describe considerably well real-world systems
(e.g. coupled oscillator networks [6,26], heterogeneous networks [29] and networks with
higher order interactions [7]).

In the field of dynamical systems coupled maps were introduced by Kaneko [22]
and were first studied rigorously by Bunimovich and Sinai [10] in the case of nearest
neighbhor interacting smooth expanding maps. The results of [10] were later extended
to piecewise expanding maps [24,25] and to coupled map lattices where the dynamics
on each site is given by a smooth Anosov map [28].

An important type of coupled systems, which is different from the coupled map
lattice model, is the globally coupled or mean field model. For example, gas particles
interacting via their mean field give rise to the so-called Vlasov equation, [17,32] or see
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[30, Chapter 5] for a simple derivation. In the case of plasma, a similar procedure gives
the Vlasov-Poisson equation. Other examples of mean field models are the vorticity
formulation of the two-dimensional Euler equation for incompressible fluids [13], and
the time-dependent Hartree equation in quantum mechanics [21] (see [18] for more
details). The study of the corresponding limiting equation is far from obvious as it may
exhibit unexpected phenomena, e.g. Landau damping [27].

The above examples consider individual dynamics given by simple integrable motion.
In the case in which the individual systems are strongly chaotic, statistical properties
of the long-term behavior may be available. This was first shown by Keller [23] in
the case of a toy model of globally coupled expanding maps. In this work, we study,
for the first time, statistical properties of infinite systems of globally coupled Anosov
diffeomorphisms that are motivated by considering an appropriate limit of finitely many
coupled Anosov maps.

As already mentioned, the topic of infinitely many globally coupled maps was pio-
neered by Keller [23]. In [23] the local dynamics was described by an expanding circle
map or a piecewise expanding map of the interval. For such coupled systems Keller
[23] proved, in the case of weak coupling strength, the existence of a unique invariant
state and exponential convergence to equilibrium (see also [8] for a similar result). In
[5] a globally coupled system with site dynamics given by expanding fractional linear
interval maps was studied. It was shown that the system undergoes a supercritical pitch-
fork bifurcation from a unique stable equilibrium to the coexistence of two stable and
one unstable equilibrium. Both [5,23] consider a coupling that only involves a param-
eter computed from the system state according to some fixed scheme. Later in [4] the
work of [23] was extended to a more general coupling that mimics elastic interaction
on the circle [14]. In addition to the analogous results of [23], Lipschitz continuity of
the equilibrium state, as a function of the coupling strength parameter, was proved. This
was taken one step further in [31] where linear response was shown in a rather general,
smooth setting. Recent advances on globally coupled maps can be found in [15]. The
work of [15] includes an abstract framework and applications to study statistical aspects
of globally coupled circle maps. However, up to date there are no ergodic theoretic
results on globally coupled higher dimensional hyperbolic systems in an infinite limit.
This is because the right functional analytic tools to study hyperbolic systems, namely
transfer operators acting on appropriate anisotropic Banach spaces, were not available
until recently.

Starting with the paper [9], there has been a growing interest in developing anisotropic
Banach spaces and spectral properties of transfer operators associated with hyperbolic
dynamical systems. The books [2,11] provide an extensive account of the topic.

Recently, a new family of anisotropic Banach spaces was introduced in [1] which
are not only amenable to perturbations of the dynamics,! but for which the weak norms
‘behave’ like L' and the strong norms ‘behave’ like BV, the space of functions of bounded
variations ([1, Remark 2.15] for more details). These properties significantly simplify
the study of the long-term behavior of the iterates of transfer operators associated with
the globally coupled Anosov systems both for finite systems and in the mean field limit.
Indeed, these spaces allow to define a simple invariant set of distributions under the
action of the associated transfer operator (see (2.10)), where an invariant state of the
system is proven to exist.

1 See the earlier work of [3,12,19,20] where Banach spaces that are amenable to perturbations of the
dynamics were also constructed. See also [16] for Banach spaces amenable to perturbations, although limited
to skew products. Similarly to the present case, the Banach spaces of [16] also resemble L' and BV.
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Yet, to prove finer statistical properties of globally coupled Anosov maps, we must
introduce a higher order version of the spaces in [1] (see (2.6)). An important feature of
this new space is that the transfer operator associated with the globally coupled system
admits exponential memory loss with respect to its weak norm. Using this information
we prove the uniqueness of the invariant state, /., exponential convergence to equilib-
rium and that the map ¢ +— h, is Lipschitz continuous (see Theorem 2.9 below). This
information allows proving that such measure is the unique physical measure of the
system (see Theorem 2.3).

The paper is organised as follows. In Sect. 2 we introduce our system, state our main
results (Theorems 2.3 and 2.9) and provide a strategy of the proof. In Sect.3 we prove
Theorem 2.9 in a series of lemmas and propositions. Theorem 2.3 is proved in the same
section. Appendix A includes results on adapted foliations and test functions needed for
the Banach spaces used in the paper. Appendix B includes statements and proofs about
perturbations of Anosov maps. Appendix C includes properties of projections along
the unstable direction, which are needed in the proof of the Lasota-Yorke inequality in
Lemma3.9.

2. The System and the Statement of the Main Result

2.1. The individual map. Letd > 2 and consider a d-dimensional compact manifold M.
Define the differentiable structure by the open cover {V; }iS=1 and charts ¢; : V; — R4,
¢i € C" for some r > 4. More precisely, consider a fixed smooth partition of unity {2;}
subordinated to {V; }le and define a smooth volume form w by

N
hdw= / hoo ' () Ui o' (2)dz.
/M ; i (Vi)

All integrals will be understood with respect to such a form from now.

Consider an Anosov diffeomorphism 7' € Diff" (M), r > 1; i.e., there exists Ao >
1, v € (0, 1), co € (0, 1) and a continuous cone field C = {C(§)}eecm, C(§) = C(§) C
T¢ M such that D T~'C(&) C int(C(T~'(£))) U {0} and

inf inf
EeMveC(&
inf inf ||DeT"v|| > corgllv].
§eM vgC(§)

DT ™" vl > covy "Il
)
(2.1)

We will sometimes refer to it as the stable cone field (and the unstable cone field will be
the complement.) We also assume that 7 is transitive.

2.2. Motivation for infinite coupled map systems. Denote the N-fold products 7' x - - - X
T and M x --- x M by Ty and My, respectively. We view (Ty, My) as a system of
N units, (called either sites or particles in the coupled maps literature) each with a state
in M evolving in time according to 7. Define a diffeomorphism @3, of the product
manifold My, € close to Idy,~. We interpret (Tx o cbf\,, My) as a coupled system of
N interacting units, where CI>7V accounts for the interaction between individuals, with
strength tuned by the parameter e— in particular we assume that ®%, = Id N -

The system state can be described by the vector (x1, ..., xy), or equivalently, by the
empirical measure % ZlNz | 8x;. More precisely calling M (M) the set of probability
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measures over M, we can define the natural embedding Wy : My — M (M) given by
Uy(x) = 4 3N, 8. Let

Fo - Mx M (M) —> M

be C", r > 3, in the first variable and continuous (with respect to the weak topology)
in the second variable uniformly in x. We assume that the coupling has the form (mean
field coupling)

(P ()i = Fe (x;, ¥n(x)).
For u € M{(M), define

CDZ = FE('7 /'L)
Note that, if uy = & SN | 8, then
1 & 1 &
(T o @}, \)s (ﬁ ;%) =5 ;3T°¢iN (x) 2.2)
1= 1=

and, hence, in this case the dynamics on My induces a dynamics on M (M). Such
dynamics extends naturally on all M (M). Thus, in the case in which y is a probability
measure with a density, the map

(T 0 @)s : Mi(M) — M (M)

can be interpreted as the evolution of a state with infinitely many interacting units
with state distribution given by w. Indeed, given a sequence of empirical measures

UN = % ZZNZ 1 8x; converging in the weak topology to some measure p, as N — oo,
we have by hypothesis

1 N
F, ~,NZISXj — Fe( ), N — oo, (2.3)
j:

where the convergence is in the uniform topology. Then, recalling (2.2), for each ¢ €
CY(M) we have

N
. o1
ngnoo(T oDy )it (@) = ngnoo I E 1 o(T o Dy (xi))-
1=

By 2.3), T o @, ;,, — T o &, uniformly, so for each § > 0 there exists an N5 > 0
large enough such that, for all N > Nj it holds true

Sl_lp lo(T o (Ds,,uN(xi)) — (T o qDE,/L(xi)” <3é.
i

Thus we can write
1 N
Jim (T 0 @ Dy (p) = lim 3 (T 0 &} (x1) = (9 o T 0 )
i=l1
= (T 0 @})u(9).

This construction provides a motivation for the systems studied in the paper including
the examples of Sect.2.8.
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2.3. Statement of the main results. Our aim is to study the long-time behavior of the
self-consistent evolution . +— (T o <I>‘;)* w. In particular, we are interested in classifying
the invariant measures and their stability properties.

Yet, the above setting and question are too general to allow a precise answer. We will
thus introduce two further technical assumptions2 (A1), (A2) on the coupling that will
be detailed in Sect.2.5. As for the imprecision of the task, it arises from the possibility
of having physically irrelevant invariant measures. For example, measures that represent
a finite number of particles or that describe statistical properties we are not interested
in. This problem appears already in the study of the invariant measures of an Anosov
map and a typical solution is to restrict to physical measures. We, therefore, introduce an
analogous definition for physical measures in the present situation of infinitely globally
coupled systems.

Definition 2.1. We call a measure h, € M (M) invariant if

(T 0 @ )ihe = he.

Moreover, we call an invariant measure /i, physical if there exists some & € L', such
that o = hdw € M (M), and, defining for each n € N U {0},

Mne1 = (T o CDSH)*Mn

the sequence {u,} converges weakly to h,.

Remark 2.2. In essence, physical measures are measures that the system can asymptot-
ically attain when starting with an initial condition that is absolutely continuous with
respect to Lebesgue.

Our first main result is as follows.

Theorem 2.3. Under assumptions (A1), (A2) there exists ey > 0suchthat, foralle < &g
the system admits a unique physical measure h..

Theorem 2.3 is the consequence of a more quantitative result, Theorem 2.9. To prove
Theorem 2.9 we need to introduce a more suitable topology. This is done, in analogy with
the strategy used for Anosov maps and flows, by introducing Banach spaces adapted to
the dynamics.

2.4. Anisotropic BV. The following anisotropic Banach spaces, introduced in [1], will
play a crucial role in this paper. To define these spaces, we need to consider appropriate
foliations of M and test functions suited to such foliations. The spaces €21, 4 collect
pairs (W, @) where W is a foliation, ¢ is a test function on M with controlled regularity
on W, while the labels of the L, ¢, [ are numbers: L > 0 is a uniform bound on some
regularity class of the foliations, ¢ € N is the number of derivatives we consider along
the stable direction and / is the dimension of the target Euclidean space of ¢. For a precise

2 These assumption are essentially saying that QDZ is close to the identity, both in ¢ and £, in an appropriate
topology.
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definition see (A.10) in the Appendix A.2 and consult [1] for a detailed discussion. Given
a function & € C'(M, C) we define

Ihllo,g == sup /hw‘
W, 0)eQp 41 1YM

Iy, ==  sup f h dive 24
W, 0)eQp g+1,0 VM

21y, == allhllo.g + A1 4.
q q

for any ¢ € N U {0} and some fixed a > 0. Let B%9 be the Banach space obtained by
completing C' (M, R) in the || - ||lo,; norm. For each € B%9 let

lallg = lim inf{ligll;, - 8 € C'(M,R) and ||g — hllo.q <€} (2.5)

We then define B7 := {h € B9 | lRll1,y < oo}

Remark 2.4. According to [1, Lemma 2.12], there exists a canonical continuous injective
map ¢ : B%9 — (C?)’. In the following, we will use ¢ to identify a positive element
h € B%4 with the measure hdw = t(h) without any further comment. The next lemma
further clarifies this.

Lemma 2.5. A positive element of B4 is a measure. In addition, when restricted to
My (M) N B>, where M (M) denotes the set of probability measures over M, the
norm || - |lo,q is identical to || - ||v, the total variation norm.

Proof. The first claim is standard as positive distributions are measures.? To conclude,
note that, since |u||7y = SUPyeCo fgodu, ifdu = hdw, we have ||hlloy < lull7v.On
the other hand

llizy =/ hdx < hllo.g.
M

O

For further use, we need to define a stronger norm, extending the spaces in [1]. For each
h € C*(M, C), define

d

||h||;q = sup Z/ axihdivgoi;
(W.0)eQ ge2.d j=1 Y M
i=l,....d

I2ll2,q := bllAllg + A1,

(2.6)

Let 3> be the Banach space obtained by completing C>(M, R) in the || - 2,4 norm.

3 IfheC),s >0, is positive, then for each ¢ € C° we have h(||¢|lco £¢) > 0,50 |h(9)| < h(1)]¢llco
and the claim follows by the Riesz theorem.
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2.5. Assumptions on the coupling. We are now able to specify precisely our assumption

on the coupling. Let us define B(l)’q = Mi(M)n B>,
We assume the coupling satisfies the following two conditions:

der (), @) < Clellhi = hallo,—1,  forallhi,hye B~ e eR; (Al

der (@5, @5) < Cle — €], forallh € M;(M), s, € R.  (A2)
As already explained, we define the coupled map as
T, =T o®dj 2.7)

forh e B(l)’q and ¢ € R. This map represents the dynamics of a globally coupled map in
the so-called thermodynamic limit with site dynamics T : M — M, system state given
by the distribution 4 and coupling strength ¢.

Remark 2.6. Note that Eq. (A2) implies that, for each h € M (M), we have
dcr (T, Ty) < Clel.

Accordingly, there exists &g such that, for all ¢ < ¢ the maps 7, satisfy (2.1) uniformly
with the same cones (see Lemma B.1 for details).

2.6. Transfer operators. We can now study the dynamics in the Banach spaces men-
tioned above. This is done by introducing a transfer operator acting on the anisotropic
BV spaces. Recalling that these spaces can be canonically embedded into (C*) (ac-
cording to [1, Lemma 2.12], which can easily be extended to the case i = 2), the transfer
operator associated with 7'

Lr: B — B
can be defined as
(Lrh)p =h(poT) ¢ eCl*, ie{0,1,2). (2.8)
Remark 2.7. Note that the precise version of (2.8) would be
ULrh)e = (th)(¢oT).

As already remarked we allow the above imprecise notation (2.8) to simplify the notation.
In particular, when i € C I we identify 4 with the measure dj, = hdw and the transfer
operator associated to 7 is then given by

Lrh=—— o7}
™= Tdet(pT)| °

Clearly,

d(Tepn) = (LTh)dx.
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It follows that the evolution of the coupled system state is given by the self-consistent
transfer operator L : B4 N M1(M) — M (M) that is defined as

Le(h) = Lrgh (2.9)
where ET; is the transfer operator associated with the map 7}, defined in (2.7). Indeed,
forh e L!

Lrzhdx = (T;))sh.
Notice that
Lrg = LroL:.

Observe that unlike Erhs, the self-consistent transfer operator L, is nonlinear. Setting
hn = L} (ho), if well defined, we can write

,CZ (hO) = ﬁT’fn—l e ET’fl ﬁT/fo hO

= E & £ & ]’l .
Thnflo oThloTh0 0

Note that if L. (h;) = h,, then the coupled system admits an invariant state.

2.7. A more quantitative result. Our goal is to prove that the self-consistent transfer
operator £, admits a unique fixed point and exhibits exponential convergence to equi-
librium for a certain class of distributions. To do so we first define a compact convex
subset of the B0-9+! space. For K > 0, define

B(K,q) = {h eC' i n>o, /h =1, |hlliy < K} (2.10)

and let B(K, ¢) be the closure of B(K, g) with respect to the || - llo,q+1-norm. The proof
of the following proposition, which shows that £, can be iterated and that B(K, g) is
eventually invariant, can be found in Sect. 3.2.

Proposition 2.8. There exists €] > 0 such that, for all ¢ < &} and q > 0,
LB N M (M) € B0 My (M).

There exists N € N, and Kyin > 0 such that, for all all |e| < &f,n > N and K > K,
LYB(K, q)) C B(K, q).

The above is not enough to obtain uniqueness and exponential convergence. This is
because, on the weak space B%4, L does not admit a spectral gap. To overcome this
hurdle we define a stronger Banach space than "¢ and a set finer than B(K, ¢) to obtain

our desired result.
Let K1 > Kmin, K2 > 0 and define

B(K, K2q) = {h e i he BKi g+, Ihlag = K2} @1D)

Let B(K1, K>, q) be the closure of B(K, K>, ¢) with respect to the | - [l1,4+1-norm.
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Theorem 2.9. There exists €5 > 0, Ky (e3) > 1, such that for all g € {1,...,r — 3},
le| < &5 and Ky > K(e), the following holds:

(i) L¢ has a unique fixed point hg in_E(Kl, K>, q). In addition, there exists y € (0, 1)
and C > 0 such that, for all h € B(K1, K2, q), we have

1L (h) = hell1,g41 < Cy™.
Moreover, for all |¢|, |¢'| < &3,

(ii) if he and h,r are the unique fixed points of L and L, respectively, then there exists
C > 0 (depending on &5 and K ) such that

lhe — h£/||1,q+1 <Cle — 8/|.
The proof of the above Theorem is postponed to Sect.3.4.

Remark 2.10. Ttem (ii) provides statistical stability of the coupled system. In particular,
it implies that the map ¢ + hg, |g| € [0, 2] is Lipschitz continuous.

The strategy to prove Theorem2.9 is as follows: we first show that Lév |E( K.q) is

continuous in the weak norm || - [|o,4+1 to conclude that EQ’ has at least one fixed point
in E(K , q). We then prove that ,Cév is a contraction when acting on E(K 1, K2, g), which
gives the uniqueness and exponential convergence. We then prove that this fixed point
is actually a unique fixed point of L, itself. Finally, we prove Lipschitz continuity of
& — h, by using the exponential convergence result and that ¢ — L, is Lipschitz in a
proper sense.

Note that the above strategy is natural when the transfer operator associated with the
site dynamics admits a spectral gap on a Banach space. See [15] for a general strategy
similar to the one we implement in this work.

Remark 2.11. If one wants to follow [15] in the Anosov setting, one has to choose the
regularity in our spaces carefully. It seems to us that such a choice may then require more
regularity on the map. Moreover, [15] assumes a ‘one step’ Lasota- Yorke inequality (see
assumption (Con1) in [15] required to obtain the exponential convergence to equilibrium)
which seems a strong assumption in a hyperbolic setting (the constant A that appears in
our Lasota-Yorke inequality, does not only depend on the map, but also on the class of
the foliations considered in our norms). Therefore, instead of verifying the assumptions
of [15] which will force us to adding restrictive assumptions on 7', we are going to pursue
a different line of argument.

2.8. Examples. Before proving Theorem 2.3, Proposition 2.8, and Theorem 2.9, we pro-
vide a class of examples that satisfy assumptions (A1)—(A2). In both examples we con-
sider M = T¢ and u € M;(T?%).

Example 2.12. Consider <I>‘; given by the following formula:

w0 =x+e [ KK

for some K, Ky € C®(T9, T4).
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Write this as

D, (x) = x +ey (x, n(Ka)),

where
piie) = [ Koo,
']I‘d

y(x, n(XKy)) = Ki(x) - n(Kp). Assume that [du(x) = [h(x)dx for some h €
C7”(T%). This is analogous to the one dimensional setting of [23].
Since

9% (@) ; = 1 +¢-0%K; - h(Kjy) if3a=3xj
i g 0Ky - h(Ky) otherwise,

we have

der (9, @5) < Ky lcrle — €| < C(Ky, Ka)le — &'lllallo,r

/ Ky (x)h(x)dx
Td

and

der (@5, @5) < [Killcrlel < C(Ky, Ko)lellll = Hllo,r-

/ Ka(x)(h — h)(x)dx
Td

Example 2.13. Now consider
So0) = x +e f K(x. y)h(y)dy
Td

for some K € C®(T?4, T4) (e.g. K(x, y) = k(x — y) for diffusive coupling.) Then

l+¢ f.ﬂ.,, 3K (x, h(y)dy  if 3% = dy;
& fpa 0“K(x, y)h(y)dy otherwise.

34D} = {
Assumptions (A1)-(A2) are checked similarly:

der (®f, @5) < |e — €| < C(K)le — &'|lIhllTy.

/ 8K (x, y)h(y)dy
Td

and

der (@), j) < || < C®lellh = h'llo,r-

/ DK (x, y)(h — 1) (y)dy
Td
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3. Proofs

3.1. Transfer operators for sequential Anosov maps. The following Lasota-Yorke in-
equalities hold for the transfer operator Lr:

Proposition 3.1 [1, Proposition 3.2, Lemma 4.1]. For each 6 € (max{vy, Aal}, 1), there
exist constants A, B > 0 such that, for all h € BY-4, q €1{0,...,r — 1}, holds true

I1L7hll0,q < Allllo,g-
In addition, for h € BY“1 and all q €{l,...,r =2}, holds true

I1L7llo0.g < A" |Ihllo,g + Bllhllo,g+1;
IL7hI,q < AO™[[hll1q + Bllhllo,g+1-

Moreover, {h € B4 l7ll1,4 < 1} is relatively compact in the topology associated to
the norm ||h|lo,q+1-

Since we assumed that 7T is transitive, the above proposition implies that £7 admits
a spectral gap when acting on B9, see [1] for a detailed discussion.

Remark 3.2. Choose ¢* > 0 sufficiently small, and let hg, ..., h,—1 € M|(M). Each
concatenation T,fnil 0-+-0 T}fo is a composition of Anosov diffeomorphisms with prop-
erties that can be uniformly controlled for any sequence %;,i = 0,...,n —1,n € N
and any |¢| < &* (for an argument see LemmaB.1 in the Appendix). We will use this
information to obtain uniform Lasota—Yorke inequalities for all EThsn (00T provided

|e] is sufficiently small.

Proposition 3.3. There exists 1 > 0 such that for each |g| < €1, 0 € (max{v, A~'}, 1)

and constants A, B > O such that forallh, go, ..., gn—1 € B(l)’q, neNgqgel{0,...,r—
1}, holds true

ILre - ooTg hllo.g < Allllo.q- (3.1

1
In addition, forall h, go, ..., gn—1 € Bl ﬂB(l)’q andallg € {1, ...,r —2}, holds true
1L7¢  oorg hlog < A8 [llog + Bllhllo gt

(3.2)
L7z oorg hllig < AO"[IRll1g + BliRllo.g+1-

1

Proof. By Remark B.2, with small changes in notation* the proof follows verbatim as
that of [[1] Proposition 3.2]. 0O

The following statement is an essential perturbation lemma relating the action of the
transfer operators to the distance of the associated coupled Anosov maps.

Lemma 3.4. Leth € B4 ﬂB?’q,q efl,....,r—2},g,81,8 € M{(M), |g], |¢'| <&
for some g, < €1. Then

I(Lre — L1z Dhllog1 = Cllhllgder (Tg,. Tg,): (3.3)
I(L1g = Lye)hlloger = Clill,qder (T, ng/)- (3.4)

4 Basically by replacing 7" in the proofs of [1] by Tg o-oTg.

1
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Proof. Assume |¢| is small enough, and the domains V; of the charts are small enough
such that there is an open set U; for any i containing both T;l V; and T;2 Vi, on which we

can define functions vy; €

C", mapping U; to R¢. Then we can define T; = 1Ty, + (1 —

t)Tgfz, t € [0, 1], in the chart {U}, ¥;}. The computation below should be understood in

these charts.

According to LemmaB.3, T; is an Anosov diffeomorphism such that the stable and
unstable cones can be chosen uniformly not only in g; and ¢ but also in . We are going

to write ¢; = ¢ o T; for a test function ¢ € C4(M, CYH andF, = TZ_IIE" for a foliation IF.

Notice that the framework

it holds that 7,”' W € F5.

of [1] applies to this foliation, so in particular for T,_1 W e,
Leth € C'(M,C) and ¢ € C?*' (M, C).

/M(ET;I — Lrg)hg do = /M h(go Ty —¢oTy)dw

1
:/h/ (Vg o Ty,
M 0
1
:/ (/ hdiv(p o
0 M

1
< ||h||1,q/0 lg o T(TE, —

1
£ hllogar /0 lp o
— (D) + D).

First consider ||@oT; (T;2

(T¢, — T))dtdow

T,(Tf, — Tf))dew — /M he o T, Te D(T, — T¢ ))da))

T~ 'w

T, Iw
T, Tr D(TE — Ty dt

T 'w .
TNy andforé € Mwrite (F;)z (x, y) == ((Fy)z (x, y), y)

which describes the local foliation.’

l o T (T, —

T, lw
)||({+1

= sup Z Il o Ti(TE, — TE)} o (Fie (x, )]jllcan 1,0y

eroj !

< sup llgoT;
EeM
erO

X sup Zn

éeM
er

— o™, "

o (FI)S (x )”C‘IH(UO C)”

( T;]) o (Fr)e(x, )ljllca (U9,C)

s Z (TS, = TE) o Fe(x, jllesn wo.c

erOJ !

< Aollellyi sup Z IL(TE, = TE) o (Fo)e (x, )]jlleari o o)

5 See subsection A.2 in the ap

rev? /!

pendix for more details about foliations.
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using [1, Lemma 2.15]. By LemmaA.1 we obtain

I(Tg, — Tg)) o (F)e (x, Ijllcari o, o)

g+1
< TE, = TN llean o) Z ( )wq“—l 1Dy EDE () ot o
<const(r,q, L, @) - dpg+ (Tgn’ Tg)

This gives

(1) < Aollgll, - const'(r, g, L, @, d) - deg (TS, TSR

We can do a similar calculation for (IT) and obtain

T, lw
lp o T, Te DTS, — Ty
d
< Aollell iy sup D ITe D(TE, = TE) o (F)e (x, )] llcan o)
feM T )
UOJ

< Aol - const'(r.q. L. w, d)||[Tr D(TE, — TE)]jllcawt 0.y
SO

(I1) < Aollgl ),y - const'(r,q, L, @, d) - dega (TS, , TE) 1 ll0.g+1-
We obtained

‘ / (Lrs — L he do| < Cllgl Y,y Ihlh.gde (TF,. TE).

and the fact that C' (M, C) is dense in B%9*! concludes the proof (3.3).
For (3.4), an analogous argument works. We can prove an analogue of LemmaB.3
for T, = tng + (1 — t)T;, (provided that |¢|, |¢'| < &* of LemmaB.1) and repeat the

above argument for T, Te instead of T;l, ngz. O

Using the assumptions on the coupling, we obtain the following corollary:

Corollary 3.5. By Lemma3.4 and Assumption (A1) it follows
I(Lre = Lrg dhllog+1 = Clelllgr — g2llo.g+1llAll1q- (3.5
and by assumption (A2),
I(£1g = Lye)hlloger = Cle — e'lllgllzvinl.g. (3.6)
The above implies

I(Lrg, -~ Lag = Loz -~ Log Yhllo.g+1

n
< N _
< Z ILzg, - Loy (Lrg = Lre)Lrs o Lg hllog
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< C(n)le|max |lg; — fillo.g+1l2ll1,q
1

and in particular for g;, f; € B(K, q),

ILg, -~ Lag — Lrg - Lt dhlloger = Cln, K)lelmax f[gi — fillo.g+1llll1.q.
3.7

and by a similar argument

ICErg, - Lag = Lyer - Lyedhlloger = Cn. K)le — ¢/l max [Igill7v Il1.q-
(3.8)

Next, we prove memory loss, which will also be needed for the proof of exponential
convergence to equilibrium in the next subsection.

Lemma 3.6. Let K > Kpyin. There exists €3 > 0, C > 0 such that for all |e| < &3,
qgefl,...,r =2}

1Lz, - Lrg hllig < CO"lll1 n €N

holds true for all h € B4 h(1) =0 and all &ls--+r8&n € M{(M).

Proof. By Proposition 3.3, Corollary 3.5 (in particular (3.8)) and the fact that £7 admits
a spectral gap on B4, we have

ILg,,. - Lrg hllig < A0"Lrg ... Lrg hllig + BlILrg ... L1z hllog+
< A0"|Lrg, ... Lz hllig + BILT — Ltz ... L1z Dhllo.ge1 + BILT hllo.g+1
+B|I LT hllo,g+1
< A10"|hll1q + B(m, K)le|llhll1q + BILT hllo.g+1

< (A10" + B(m, K)|e| + Bio™) | hll1q, (3.9)
for some constants B(m, K), By > 0 and o € (0, 1), since £(1) = 0. Choose n so that
A0y < % for some 0 € (0, 1). Then choose m so that Bjo™ < %. Finally, choose ||

small enough so that B(m, K)|e| < %. Therefore,

I£rg ., - Lg hllig < OllAlg-

8n+m

This implies

||,CTgsn .. .,CTgsl/’l”Lq < C9n||/’l||11q foralln € N.
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3.2. The invariance of B(K, q).

We show that £, is well defined and that B(K, ¢), defined in (2.10), is invariant.

Proof of Proposition 2.8. Leth € C'(M).Notethatforh > 0, L, (h) > Oandf Le(h) =
[ h. Consequently, L, (h) € M;(M)NC 1(M). The first invariance results follow then

by closing with respect to the || - [|44+1 norm and recalling Eq. (3.1).
Next, let 1 € B(K, ¢). By (3.1) we have

1L (MW lo.g < Allkllog (3.10)
and by (3.2)
L5 (MNlo.q < A" [I1llo.q + Bllhllo.g+1; 3.11)
1L (Mg < AO" (|11 + Bllhllo.g+- '
Thus, we have
L5 (M)lh.q < AO"K + Bllhllo.g+1- (3.12)

Choose N large enough, such that AN = B € (0,1). By [1, Remark 2.15] we have
lillo,g+1 < Il (Where |||} = fM |h]) and since we work with nonnegative distribu-
tions we have for eachn > N,

LM (h <O0"AK+B | h
1Ly < / .

= BK + B.

Choose K such that K > Ky 1= % holds. This completes the proof of the proposi-
tion. 0O

We are now ready to make a statment about the fixed points of Eév .

Proposition 3.7. There exists N € N, Kimin > 0, and €4 > 0 such that L?’ has a fixed
point in B(K, q) for all K > Ky and all |e] < é&a4.

Proof. Lethy, hy € E(K, q). Note that, by equation (3.12) we have
I1L5hill1,g < AK + B. (3.14)
Then, by Proposition 3.3 and Eq. (3.5) we have, for all ﬁi € B(AK + B, q),
ILeht — Lehallo g1 < ||£T£l hy — ﬁr}fl hallo,g+1 + ||£T5’1 hy — £T52ﬁ2||0,q+1
< (A+eC[AK + BD|h1 — hallo,g+1-

Hence, EQIIE(K,W on
of continuous operators. Moreover, we have shown in Proposition 2.8 that B(K, g) is
invariant under the action of Lév . Since B(K , q) 1s a convex, compact metric space, we
obtain that /Jév has at least one fixed point in B(K, ¢). O

is continuous in the weak norm || - [lo,4+1, being the composition

Remark 3.8. Note that the Proposition3.7 does not say much on the dynamics of L,
just the existence of periodic orbits in B(K, g). To know if £, has a unique fixed point,
some more work is needed.
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3.3. Sequential Anosov maps and a stronger norm. In the following lemma we prove a
Lasota-Yorke inequality for Anosov diffeomorphisms, for the Banach space B>9 (see
(2.6) to recall the definition of this space). In particular, Lemma 3.9 below can be useful
outside the scope of this paper. We note however, that we do not prove that the unit ball
of 82*6’1 is compactly embedded in B:9*! since the latter is not needed for the current
work.

Lemma 3.9. There exists 6 € (max{v, A"}, 1) and constants Ay, A>» > 0 such that for
allh e B>, neN, qge{l,...,r—2), holds true

1L7hl2,q < A10"[1hll2,q + A2llBll1q+1-

Proof. All the operations in this proof are understood in the charts introduced in Sect. 2.1.
We have

h
O, Lrh =0y, | ———oT™"
Xi~T Xi <|dCtDTn| o )

h _ _
=20 (fgaprer) 7107

j=1
d
dy. h
— Z Xj - Tfn . {DTfl’l}jl
= | det DT
4 hdy,|det DT .
Z oT™"-{DT™"};i
= “|det DT2

d
hdy.|det DT"| -

Jj=1 j=1
(3.15)

Accordingly, letting (W, (pi) € Qp ¢+2,4 and using (3.15), we can write
d
Z / Ay, L0 div ¢
_ ZZ/(ath) [DT™}; div ¢! ) o™

i=1j=1
L L, [ (hdy,|det DT"| N
W ({DT }jile@)OT

d d

—Z/(a ) div(g)) o T" — Zf(axjh)zzwloT” o [(DT ™"} 0 T"]

i=1I=1

6 We warn the reader that to obtain information about the spectral properties of L7 when acting on B4,
a compact embedding result is needed.
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hdy,| det DT"| o
—Zf <(divg’/) o T"
|detDT”|
ho,.|det DT\ L &
S (B ) Lt oo o]
i=1I=1

where we have used the notation Z?: DT} jigoi := @/. To continue, we need the
following fact: for &, f, ¢ € C”,

d
[nrave = [navcror - [0y g s
=1

J (3.16)
(divg) o T" = div(DT") '@ o T") — Z Oy, (DT”);Igoj oT.
i=1
Using (3.16) and integrating by part, we can write the above as
d ‘ d ‘
Zf Oy, Lk div ' = Z/(ax_,h) -div ((DT")—1¢J o T")
i=1 j=l1
+/hdiv®1 +/h®0. (3.17)

where ||©! ||§ + 80 ||T ‘W < C,. This follows from the fact that T € C” and [1,
Lemma 2.15].

It remains to control the term with two derivatives. To this end we use the projectors
", ¥ similarly to what is done in [1]. See appendix C for a precise defintion and their
properties.

We can thus write

d
3 /(axjh) . div ((DT")_ng)j ° T”)
j=1

d
-— ¥ /haxjax, {17 w0 T (DT bty 0 T 0 7
],l,k,l,t,t’ 1
Wy [ (DT 7l 0 THDT™ )y o T'ef o0 77

j,t,k,l,t,t’ 1

Jii kLt =1

M&

/ha O | (DT o T DT bty 0 T o 77

hdy,; B, (DT") o T"(DT™) t/n,koT"qolkoT”}.
Jii ket =1
(3.18)
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Let us analyze the above terms one by one. If we set

_ 3 oot
t' k=1

since 7y’ belongs to the unstable cone, using (C.2) twice we have, for the estimate of

the first term

C,
DT~ o T 0 llgy < CA7 I g + — I g

) Cy  _ w
< CAMB ) + 19y

where ||(p||W = sup; ; ||<pl ||W for each ¢’ < r. Consequently, by [1, Lemma 2.11], we

obtain
DT “n/y o T 5" <cr2"||<o||q+2+ — 18145 (3.19)

Note that the second and third terms in (3.18) are essentially the same. Indeed, exchang-
ing i and j in the second yields the third apart from the fact that (plk is substituted by

<p,lc, which is irrelevant. We can thus analyze only the third term. By (C.3) and (C.2), we
have

d

10, LT 7 o Tl o T"LiIIL Y < Culln/ 1
i=1

= Cn _
= G 1B lgha + 1 @lger- (3.20)

To treat the last term in (3.18), let

d
-1 — k
- Z (DT")5 o T "7
t' k=1

we can then write it as

thaxj Za (DT ' 78 0 T"0) o T"

i,t,l=1

Then, by (C.3) and (C.4) we have

I Z 0., (DT"); s o "0 |11V < €, sup 167112 < Cuor 18112,
i,t,l=1

The above implies that the last term is bounded by

Z/haxj Z 05, (DT 75 0 T"0] o T" § < Coor 1111 411
i,t,l=1
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By choosing @ large enough in (3.19), using (3.20) and (3.17), we get
1515, < CA2"(1R15, + Callhll1ge1-

The above equation can be iterated with steps ng such that CA=2" < § < 1. Now
choosing b in the definition of (2.6) large enough (depending on the fixed ng) and using
the Lasota-Yorke inequality in the || - [|1,4, from [1], we getforalln € N

I£5hl2,q < A160"(IRll2,g + A2llAll1g+1-

Using Remark 3.2 and Lemma 3.9, we obtain the following corollary:

Corollary 3.10. Let &1 > 0 be the same as in Proposition 3.3. For each |e| < €1 and 9 €
(max{v, A‘l}, 1) there exist constants Ay, A» > 0 such that for all h, go, ..., gn—1 €

B4 ﬂB(l)’q, neN, qgell,...,r—2} holds true

1L7; oot hlg < AB" g + BllAll1gor: (321)

1
that implies
1L (M)l2.q < A10"[|Rll2.q + A2lltll1 g+1-
Lemma 3.11. For h € B>9 N B?’q, gefl,...,r —2} wehave
11y — Lrghllige < Cder Ty, T hll2g:
I(C1g = L7hllnger < Cder (¢ T 2.

Proof. Recall the definition of 7; in the proof of Lemma3.4. The calculation below is
understood in the charts as explained at the beginning of the Proof of Lemma 3.4. Since

I(Lre = Lrg Il ger = all(Lrg — Lrg Yhllogsr + 1 (Lrg, — ﬁT;Z)hIIT,qH,

it is enough to estimate the latter since the former is covered by Lemma 3.4. We have

/M (L‘,Tés] - ET;,%) B div g

= h div D(Tg)_l-gong —/hdiv D(Ts)_lwpoTs
[ wan (05 g1~ [ i (0107

d d
—1 —1
+/ " [D(ngz) ]lk Y —f nY o [D(T;I) ]lk CoTE
M =1 Mo =1
= () + D). (3.22)

We first give a bound on (7).

hdiv (D(TE)™ - @o T —/ hdiv (D(TE)™ - @oTE
[ na (ot gors) - [ na (ot pory)

= / h div ([D(T;l)—1 o (TE) ™ - plo T — [D(TE) ™ o (TE) ™" - glo Tgi)
M
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- /M h div ([D(T;l)_l o (TE)™ - glo TS — [D(TE) o (TE) ™ - glo T;z)

hdiv (| DTE) Vo (TE) ' = D(TE) o (TE) |- 9o T
o [ nav ([Darg) o @) = Drg) o) poy)
= (I.I) + (I.II). (3.23)

We start with (I.I).LetD(T;l)_l o(T;I)_l o=¢and T, =t-T§ +(1—1)-Tf 1 €
[0, 1]. We have

.1 = —/M Vh - [ﬁoT; —¢o Téfz]
d 1
= Z/ axih/ V@ o Tt(T;z — Tgs1 Ydtdw
i=1 7'M 0
d .1
=-2 f / Oy h div(@i o Ti(Ty, — Tg)))dwdt
i=1 70 /M
d .1
2 / / dxhpi o Ty Tr D(Ty, — Ty,))dwdt
= Jo Jum
d 1
--y / / 0, h div(¢r o T,(TE, — T2))dwdt
i=1 70 M

1
- hdiv (@ o T; Tr D(T:, — T?) ) dwdt
/0 /M ( ! 82 gl)

! T 'w
Il ma fo 16 0 T, — T2, Ve

IA

1 —1
N W
+[|2ll1,g+1 / 1§ o T; Tr D(T,, — Tyl dt (3.24)
0

Using what we obtained in the course of the Proof of Lemma3.4, we get
(1.1) < Cdcqu(T;l, T§2)||h||2’q. (3.25)
As for (1.11), using LemmaA.2, we have
[ D)™ o @)™ = DA™ o (15~ |- 00 Th Il
< I[D@g) " o (@5 = DAL o (5 llew - lo o TSI
< Cder (T4 TE |l - (3.26)
This implies
(1.11) < Cdcr (Tg,, T hll g+ (3.27)
Combining (3.25) and (3.27) we obtain

(1) < Cder (T, Ty hllg- (3.28)
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‘We now bound (/7).

(In = Xd: /Mha, [D(ngz)*l]lk (gok oT,, —¢ro T;)

L k=1

d
+“(2::1 /M h (81 [D(Tgi)—l]lk —y [D(T;I)_l]1k> oo T
= {1+ UI.11). (3.29)

For (11.1), by Lemma 3.4, we have

(I1.1) = Xd: /M(chaz — Lry) (hal [D(T;Z)fl]lk) "

1,k=1
ey—1
=¢ H (Lrg, = Lrg) (hal [D(ng) ]lk) Ho,q+1
< Cder (TS, TE) Al (330)

For (11.11), by Corollary A.3 we have

de /M Lrgh (3 [DAg) ™| 0T = [DAp)T] 0T i

1k=1

d
< ILryhllogn Y [ar[pae)™] o @i —a[pai™] o)™
Lk=1

< ACder (T, Tg,) - 1hllo,g+1- (3.31)

Ca+l

Using (3.28), (3.30) and (3.31) completes the proof of the first inequality of the lemma.
The proof for the second part of the lemma follows similarly. O

Corollary 3.12. According to (A1), we can write
I(L7e = Lrg dhll1g+1 = Clelligr = g2ll1.g+1l1Rll2.4 (3.32)
and similarly, according to (A2)
L7z — ET;')hlll,qu <Cle —¢&lliglhg+1lhl2g (3.33)
Furthermore,

I(Lrg, - Lrg — CT_;N --~ﬁr_;1)h||1,q+1

o L g

N

< . . . —

- Z ”ET;N T £T§i+l (‘CT;,' ET?, )Eng};l
i=1

N
< Clel > 0" lgi = filligeilll2g- (3.34)

i=1
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where 0 is the contraction factor from Lemma 3.6. Similarly,

N
v
ICrg, o L = Lrgr o Lydhllge < C 0N ligillgetle — /1Al
i=1

(3.35)

3.4. Fixed point uniqueness and exponential convergence in B(K{, K2, q).

Recall the definition of the set B(K1, K2, g) (see (2.11)).

Lemma 3.13. There exists N € N, Ki min > Kmin, K2.min > 0 and &5 > 0, for
which L (B(K1, K2,q9)) C B(K1, K2, q) and LBk, k,.q) IS @ strict contraction,
with respect to the || - ||1,q+1 norm, for all K; > K; min, €| < &5, q € {1,...,r —3}and

n>N.

Proof. Let h € B(K1, K2, q), then by Proposition2.8 we have L} (h) C B(K1,q +1).
Next, by Corollary 3.10, we have

I£2(M)l2,g < A10" K2 + A2K. (3.36)

Choosing N large enough, such that AN = B € (0,1), and K7 such that K, >

K2 min 1= 1143_1;’ we have the wanted invariance.

Next,leth, hy € B(K1, K2, q). Thenforn > N wehave L (h1) = Lre 1 ...LThs]hl
/177
1

and L} (hy) = Lre
"=

y € (6, 1) and C > max{1, C}. We prove by induction that || £ (h1) — L (h2)[|1,4+1 <
Cy"lh1 — h2ll1,q+1-

.. -[:T;fzhz for some hy, ..., h’f_l and hy, ..., hg_l. Choose

1£5(h1) — L (h)l1,g41 = IIL"T;?_1 ~--£T,flh1 — ﬁT;g_l --~£Th£2h2||l,q+l
=< ||(£T;,1171 R ET;gfl c L dhill g
+ ||ET;‘;4 oo Lre (= h2)ll1g+1

n
< Kalel Y 0" FyKllh = halliger + C10™ b1 — hall1gs1,
k=1

where for the first term we used (3.34) from Corollary3.12, ||h1]l2,4 < K> and the
induction hypothesis, while for the second term we used Lemma 3.6.
Accordingly,

n

1L (h1) = LE R g1 < Kalsly™ D 0/7) i = halli g1 + C16" 171 = hall1 g+

k=1
< (K2lel(1 = 6/y)" + COY" Iy — hall1g+1
< Cy"llh1 — h2ll1,g41 (3.37)

for |e| sufficiently small. O
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Proof of Theorem 2.9. We are now in a position to show that £, has a unique fixed point
in B(K1, K2, q), for K; > K; min. By Lemma 3.13 and the Banach fixed point theorem

it follows that, for N large enough, LQ’ has a unique fixed point in B(Ky, K3, ¢), call it
he. Then

LY (Le(he)) = Le(LY (he)) = L (he).
Accordingly, also L h, is a fixed point of Eé\’ .Onthe other hand, by equations (3.14),(3.36)

there exist constants A, B, Ay, Az such that £, (h.) € B(K{, K}, q) D B(K1, K2, q),
where K| = AK| + B and K}, = A{K, + A2K . If N has been chosen large enough,

L',év must have a unique fixed point in B(K{, K3, ¢) as well, which must be . It fol-
lows L¢(hg) = hg. On the other hand, if g, € B(K|, K2, q) and L.(g.) = g, then
Cév (g¢) = g and so, by unicity again, g, = h.
The proof of the first part of Theorem 2.9 is completed by (3.37) that implies
125 (h) — hellige1 < Cy" Il — hell1 g+ (3.38)

forall h € B(K1, K2, q). )
We now prove the second part of Theorem?2.9. Let h € B(K{, K3, g). Then

ILZ () — herll1g+1 = L2 (H) — LL (W gt + I1£5 (h) — herll1g+1
<L) — L) [11,g41 + CO™ |h — her |1 g1

Choose A € (0, 1) and fix n* such that C6"" < A. Then
LT (h) — herlltger < 1LY (B) — L% (W) 1141 + MA = hell1ger-

According to Corollary 3.12, for each n € N there exists C(n) > 0 such that if 7 €
B(K1, K2, q),

L2 (h) — L2 (W)|l1,9+1 < C(n)e — &'l
‘We thus have

1LY (h) = hetll1ge1 < C*)e = €]+ Ak — hetl1. g1

Let B(h,r) = {g € B9 : ||g—hll1,4 <r).Setrg = CW =€l Then £ B(h,/, ro) <
B(hg, ro). Indeed, let g be such that ||g — herll1,4+1 < ro. Then

L7 () — herll1ge1 < C(¥)|e — €| + Arg = ro.

According to the main theorem, we have ||£’§”* (h) —hell1,g — Oforh € B(K1, K2, q).
Note that B(h,, ro) N B(K1, K2, q) # @. This implies that h, € B(h,, rp), i.e.

C(n*)|e — €|
lhe — hell1g+1 < 1o = T =Kle —¢|.
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3.5. Uniqueness of the physical measure.
We can now conclude with the proof of Theorem 2.3.

Proof of Theorem 2.3. Let h, be a physical measure and let 4 € L' such that L7 (h)
converges weakly to .. For each § > 0 we can find i5 € C°° such that ||hs — hl[;1 < 6.
Then, setting i, = L7 (h), we have

IL7g -+ Lyghs — Lpg -+ Lyehlpr < C8.

It follows that, given any sequence &, — 0, ET; e ,CTihgn converges weakly to &,.
Moreover,

L7z - Laghslig = CO"llhslg + Bllhsllog = Cs0" + Bllhslry = Cs6" + B,

where Cs — 0o when 6 — 0 and depends only on the fixed function 4. We can thus
choose a sequence §, that goes to zero so slowly that Cs 6" — 0 when n — oo. Thus,
for n large enough, ||/3T;’s e ﬁT,fhén ll1,; <2B < K{.On the other hand, computing as
above

ILge - Lrehs,ll2.q < K2.

The above implies that there exists a sequence {g,} C B(K1, K2, q) N C" such that g,
converges weakly to hg.
Next, notice that L'Ta is the transfer operator associated with the Anosov map Tg

Since T;f is a small perturbatlon of T, which is transitive, by structural stability Th‘g 1s
transitive as well. It follows that Lré when acting on B9, has a spectral gap, see [1],

and consequently Ts has a unique invariant measure in 314 , call it g,. Therefore there
exists constants Cy > 0 and v € (0, 1) such that, for each n € N, we have

”‘C% 8n — g*”l,q+l < C™.
&

This implies that, for each (W, ¢) € Q 4.1, we have (recalling that 7, = L. (he) =
»CTS he)
he

/(g* he)p = /(ﬁTs 8n — ”s a)<p+/(ﬁrs gn — 8x)¢-
From the above, it follows

< C".

‘/(g* —he)g — /(gn —he)p o (T )"

Taking the limit for » — oo, since g, converges weakly to i, we have

'/(g* — he)o

and taking the limitm — oo we have g, = h; in B%4_hence, recalling [1, Lemma 2.12],
they are equal as distributions in (C7)’. But since g is a positive distribution they are both
measures and hence they coincide as measures. It follows that h, = g, € E(K 1, K2, q)
and since the invariant measure in such a set is unique the theorem follows. 0O

S C*vma
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Appendix A. Test Functions and Foliations

A.l Test functions. Let @ > 2 be a parameter chosen as in [1, Equation (3.11)]. Denote
by « the multi-index « = (1, - - - , o¢g) with; € NU{0}. Let |o| = Z;jzl o; and 0% =
dy, - dxe. We thus define the weighted norm in C*(M, M(m, n)), where M (m, n) is
the set of the m x n (possibly complex valued) matrices,

m
lglico = sup sup > |g; j(x)]

xeMie{l,...,n}

j=1
) (A.1)
lelice =Y @™ sup [8%¢]co.
k=0 lo|=k
for some @ > 2. Note that the above definition implies
lellcont = @ Hlgllco + sup [[0y; ¢llce - (A.2)
1

The next lemma is Lemma 2.9 of [1].
Lemma A.1. Foreveryp,n,m,s € N,y € CP(M, M(m,n))andp € C°(M, M(m, s))
we have
levllce < llellcell¥lice.
Moreover if ¢ € CP(M, M(m, n)) and yr € C°P(M, M), then

P k
g ovllce < kX:(:) <£)w”"‘ll<pllck l_[ (DY) Nl go-i-

i=1
Lemma A.2. Let ¢ € CK(M, C) and W, € CK(M, M). Then

k—1

k
lpoy —govlo <) | |su}}) 19% = 8“Glleo [ [ 1@ lles (A.3)
j=0 = i=j

and
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lpov —@oic
k kel
< Z | |SllP [(0%@) o — (8%¢) o Yrllco 1_[ (DY) || i
=0 o i=j
k=1
+Z| ‘SUP 8% o Yllci—1 I(DY) — (DY) Il l_[ (DY) i (A4)
11 i=j

Proof. We are going to prove both formulas by induction. First recall that

Inllgess = @”*inllco + sup a5 nlice- (A.5)
1

We first prove (A.3). Using the above formula we compute

lp o ¥ — @ o Yllgrn
< @l = Gllco +sup 35, (9 0 ¥ — G oY)l x
]

< @™o — Glico + sup 1959 — 35, @it | (DY) |
l

k+1

||90 —@lleo
k—1
+suprf| sup 1005, — 3“0, @llco [ [ 1D Nl - (DY) e
LA al=k—j i=j

k k

<o g — Gl + Y o sup 18% — 8“Gllco [ D)
. la|=k+1—j i=i
Jj=0 =/

k+1

k
=Y o sup 0% —Glleo [ [ 1DV llcs

j=0 |Ot|:k+1—j i=j

We now prove (A.4) by using (A.5).

k+1

lgov —@olcw =a*goy —golco+supax(@oy —¢od)lc
1

o poy —goileo
+5up || (9 9) 0 ¥ — (B, ) © ¥ llex I (DY) e

+5up [ By,9) o Pl I (DY)’ — (DY) [lx
l
For the second term we use the inductive assumption. This gives us the following:

||<0 oY — @ oY c
k“ugoow @ oo

k
+wa sup  [[(0%09) 0 ¥ — (3%, 9) 0 Yllco [ [ 1DV i

j=0 loe|=k—j,i i=j
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k k
+Y 0 sup [[0%0g9 0 Yliei-1 (DY) — (DY) llei-1 [ [ 1D llei

j=1 lel=k—j.i i=j
+5up By, 9) o ¥l I (DY) — (DY) [lx
1
=a"llgoy — ol
k . k
+) o sup @) 0 Y = (@) 0 P lley [T e
=0 |a|=k+1—] i=j

k

k
£ s (8% 0 Pl (DY) — (DY) i1 [ 1D lle

(T lal=k+1—j i

+5up |3, 0) © Ve | (DY) — (D) e

k+1 k
= "0 sup 3% oy — (8%9) o Flleo [ [ 1DV e
iTo lal=kti—j Pl

k+1

k
+Y sup (0% 0 Yllei 1Y) — (DY) Nl [ [ 1D Nl

j=1 lo|=k+1—j i=j

O
We obtain a useful corollary:
Corollary A.3. As a consequence of (A.3), we have
lgo —Govle < Cllp — Gllex I DY I (A.6)
If furthermore ¢ € C**1' (M, C), then by (A.4) we have
lo o —¢o e <Cliglen | Dy I
(A7)

x (W — Vlleo + 1DV |1 DY — D1/~f||ck71) :

A.2 Foliations. To define the anisotropic spaces B%9 and B'-9, we need to define a class
of (stable) foliations adapted to the cone field, whose representation in local coordinates
has certain uniform regularity. Let us recall be basic defintions from [1].

Definition A.4. A C" r-dimensional foliation W is a collection {W,}4c4, for some set
A, such that the W,, are pairwise disjoint, Uyea Wy, = M and for each £ € W, there
exists a neighborhood B(&) such that the connected component of W, N B(&) containing
&, call it W (&), is a C" t-dimensional open submanifold of M. We will call F" the set
of C" ds-dimensional foliations.

Definition A.5. A foliation W is adapted to the cone field C if, for each & € M,
T: W (&) C C(§). Let F, be the set of C" ds-dimensional foliations adapted to C.
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Given a d;-foliation adapted to C we can associate to it local coordinates as follows.
Let 5o > 0O be sufficiently small so that for each § € M there exists a chart (V;, ¢;)
with £ € V; and such that U; := ¢;(V;) contains the ball Bs,(¢; (& )).” Also, choose
U% = U2 x UY C R% x R% with U = Bs,/2(0), U = Bs,2(0). Next, for each
z € Uj,let W(z) be the connected component of ¢; (W) containing 2.8 Define the function
Fg 1 U — R% by {(Fs(x, ») +xg, ys + )} = {(w, ¥ + ye)}hyera N W +xg, ¥e),
where (xg, yg) = ¢; (€).2 That is, W(x + Xg, Ye) is exactly the graph of the function
Fe(x, ) + x¢. Moreover,

Fe(x,0) = x. (A.8)

In addition, we ask §¢ to be small enough that the expression of DT in the above charts
is roughly constant. See Lemma B.5 [1].

Now Fe(x,y) = (Fe(x,y),y), (x,y) € U 0 describes the foliation locally. Denote
by IF the collection of maps {Fg}.
For each integer r > 2 and L > 0, let

Fe={werp:Fecw' r)
Wy = {W € ffc :sup sup sup [0y Fg (x, Moo, vy < L(k_l)z, 2<k<r;
£ xeUllal=k ° ’

sup sup sup 195 H " (x, oo ey = LED7,0 <k <7 =2,
£ xeU? lal=k

where

dy
H% =3 [axj ([ay(Fg).,] ° ]Fgl)] o Fe(x, y)
j=1
=Y 040y (Fe)j - (0 Fe)j; -
i

Foreach g € C"(M,C))and W € Foletge () = (pogbi_l oFe(x,-),q < r and define

I
loll} = sup sup llge.xllcaocry = sup sup ¥ 1@z )jleaqocy-  (A9)

§eM xeU) §eM xeU) j=1

We are finally able to define the sets 27 4, L > 0,7 >2,q € NU {0} as

Qg0 ={(W.9) e W, x 1.« gl <1} (A.10)

’
7 Here, and in the following, we use By (x) to designate {z € R llx — z|| <8} forany d’ € N.
8 Refer to Definition A 4 for the exact meaning of “connected component". Also note the abuse of notation
since we use the same name for the sub-manifond in M and its image in the chart.

9 The fact that the intersection is non void and consists of exactly one point follows trivially from the fact
that the foliation is adapted to the cone field, hence the two manifolds are transversal.
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Appendix B. Some Properties of the Coupled Map T}
Lemma B.1. There exists ¢* > 0 such that
De(TH)™'C (&) < in(C((TH)™1(E))) U {0} (B.1)

forall || < e*and h € B?’q; moreover there exists A > 1,v € (0, 1), ¢c € (0, 1) such
that

inf infg) ||D5(Tfn_I 0---0 Thso)*lvn >cv v

M veC
iE'ef y f || D:(TfF Tf A" ®2)
inf in v|| > cA" v
jnfinfIDe(T, oo T ol > 2]
for all \e| < €* and any sequence hy, ..., h,— € B(l)’q, neN.

Proof. Fix ¢* > 0 such that (B.1) holds. Define v = (1 — &*)"'vg and & = (1 — ™),
where vy and A¢ are given by (2.1). Decrease ¢* further if necessary so that that 0 <
v < 1 < A. Via a standard change of metric we may assume that in (2.1) co = 1. Note
that for any £, |¢| < ¢*and v € C (&)

I De(T) "ol = 1D T~ |l — (D T™" — De(TF) vl
> vy vl = lelvg vl = vl
We then proceed by induction on n. Assume that for any v € C(§)
IDe(Tf o+ 0 TE) vl > v D]

Write T;, o---o0T; = T¢ ,. Then using the above two inequalities we obtain
n—2 0 n

IDe (T o+ o TE) vl = |De(Ty o Ty ||
—1 3 —1
= ||D(T;n71)71(s)(Tns_2) DS(T};O’:—I) vl
> v ID (T Tl > v ]l
Similarly, for v ¢ C(£) we obtain
IDe(T; o0 T vl > A"|v]l.

Finally, returning to the original metric accounts for the constant ¢ in the statement of
the lemma. 0O

Remark B.2. LemmaB.1 implies that for |¢| small enough, each 7} is an Anosov diffeo-
morphism and any concatenation T;fni1 0--0 T}fo satisfies (2.1) with uniform constant
c independent of €.

Lemma B.3. Let T; = tThg1 +(1— t)T;f2 fort € [0, 1] (understood in the charts defined
in the proof of Lemma 3.4). There exists ¢** > 0 such that

DT ' C (&) C int(C(T,71(§))) U {0} (B.3)
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orall |e| <& and hy, hy € Bo’q; moreover there exists .. > 1,7 € 0,1, ce(,1)
1
such that

inf inf || DgT, vl > v "ol
EeMveC(§)

inf inf ||DsT"v|| > EA"[|v]|
EeMvgC()

(B.4)

forall le] < &*, neN.

Proof. To simplify notation, let 7; = Thgi. Write TZ_1 oT; = Id +¢S. Then T; =
[Ud+t-eSloTiand T, =T o [Id +1-S]7".

We can see now that it is possible to fix ¢** > 0 such that (B.3) holds. Define
b= (—¢e")"lvand A = (1 — &**)1, where v and A are given by (B.2). Decrease &™*
further if necessary so that that 0 < ¥ < 1 < A. Via a standard change of metric we may
assume that in (2.1) ¢ = 1. Note that for any &y, ho, |¢] < e** and v € C(§)

IDeT, "ol > |De Ty vl — |(De Ty — De (T o [1d +1 - £S17 )|

> vl = e~ ol = 57 vl
Similarly, for v ¢ C (&) we obtain
IDg T vl > A" ||v]].

Finally, returning to the original metric accounts for the constant c in the statement of
the lemma. O

Appendix C. Projection Along the Unstable Direction

Here we follow [1] and introduce a way to project along the approximate stable and
unstable directions. We do this by introducing projectors 7%, w* which are only implicit
in [1]. Note that the construction is local, so we can argue in one chart without further
mentioning it. We start by recalling the construction in [1].

Consider the “almost unstable" foliation I' = {y;},cgd; made of the leaves y; =
{(u, $)},cran and its image T"I". The leaves of T"I" can be expressed in the form
{(x, Gp(x, y)} for some function G, smooth in the x variable, with [|9,G,| < 1 and
the normalization G,, (F (0, y), y) = y.On the other hand, the leaves of W have the form
{(F(x,y), y)}. Itis then natural to consider the change of variables (x, y) = ¥, (x’, y)
where (x, G, (x, ) = (F(x, y), y). Writing ¢ = (¢1, ¢2), with ¢; € R%_ ¢, € R%
we consider the decomposition defined in [1, Equations (3.5), (3.6)], 10

ex,y) =1 m"px, y) + 7 p(x, y)

- (C.1
= (0(x, ), 3:Gn(x, Y0 (x, y)) + 3y F (', yw(x, ), wix, y)).

Where,

v, y) = (1 — 3, F(x', )3 Gn(x, ¥ g1 (x, y) — 3y F (X', »)ga(x, ¥))
wx, y) = (1 — 8, Gp(x, YD) F(x', ) (@2(x, ¥) — 8:Gulx, YD1 (x, y)).

10 Note that in [1] the projectors where not explicitly defined.
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Let us check that 7%, 7% are indeed projectors. Note that

(") — 3y F (" 9)y = [1 — 8y F3, G, 1(1 — 8, F3,Gn) " (91 — 8, Fp2)
=@ — 0y Foy,

which immediately implies (7%)? = 7*. The computation for 77* is similar.

The key properties of the above projectors are as follows.
By [1, Equation (3.10)] we have, for (W, ¢) € Q 412.4,

e _ _ C
(DT ™)™ o T a gl < CA7"lgllgla + —@lgh- (C2)
In addition, by [1, Equation (3.8)], we have
d
1Y 9 lDT ™) 7 o T o T"NilIL Y < Cullgl)is- (C3)
i=1
The second of [1, Equation (3.8)] implies also
DT o T 0|y < Cawrllollss- (C4)
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