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The increasing interest in obtaining model-based estimates of attributable risk (AR) and
corresponding confidence intervals, in particular when more than one risk factor and/or several
confounding factors are jointly considered, led us to develop a program based on the procedure
described by Benichou and Gail for case-control data. This program is structured as an SAS-
macro. It is suited to analysis of the relationship between risk factors and disease in case-
control studies with simple random sampling of controls, in terms of relative risks and ARs,
by means of unconditional logistic regression analysis. The variance of the AR is obtained
by the delta method and is based on three components, namely, (i) the variance–covariance
matrix of the vector of the estimated probabilities of belonging to joint levels of the exposure
and confounding factors conditional on being a case, (ii) the variance–covariance matrix of
the odds ratio parameter estimates from the logistic model, and (iii) the covariances between
these probability and parameter estimates. Only a limited number of commands is requested
from the user (i.e., the name of the work file and the names of the variables considered).
The estimated relative risks for all the factors included in the model, the attributable risk for
the exposure factor under consideration, and the corresponding 95% confidence intervals are
given as outputs by the macro. Computational problems, if any, may arise for large numbers
of covariates because of the resulting large size of vectors and matrices. The macro was
tested for reliability and consistency on published data sets of case-control studies.  1996
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Infectious diseases have long been reported to be caused by specific and
‘‘necessary’’ organisms or factors, and this was the basis of Koch’s postulates for
proof of causation. In contrast, for most major chronic diseases, a series of risk
factors or a combination of factors are hypothesized to cause the disease (1). In
this model, each risk factor can explain only a fraction of the disease. The
attributable risk (AR), defined by Levin (2) as [(P(disease)-P(disease u no
exposure))/P(disease)], gives a measure of the proportion of diseased people
attributable to the exposure. AR estimates are mainly derived from observational
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epidemiological studies. In this paper, we will focus on case-control studies. The
attributable risk has major relevance on a public health scale, since it allows one
to quantify the effect of various prevention strategies. This is because the AR
is related not only to the strength of the association between risk factors and
the disease, but also to the prevalence of exposure to the risk factors in the
population. Exhaustive reviews of different aspects of interpretation, estimation,
and application of AR are given, for example, by Benichou (3) and Coughlin et
al. (4).

When estimating AR, it is useful to obtain not only a point estimate of AR,
but also a variance estimate and hence the corresponding confidence interval
(CI), in order to quantify the importance of various risk factors on a public
health level. Over the last two decades, several authors have proposed new
approaches to AR estimation from case-control studies and, correspondingly,
have considered the issue of variance and interval estimation. Walter (5) proposed
a variance estimate for an unadjusted AR estimate for a dichotomous exposure
factor. Whittemore (6) extended Walter’s work and derived point and variance
estimates of AR for a dichotomous exposure, with possible adjustment for a (set
of) counfounder(s) based on a weighted-sum approach. Denman and Schlessel-
man (7) provided point and variance estimates of AR for a risk factor with
multiple levels but with no adjustment for confounding factors. Using Mantel–
Haenszel estimates, both Greenland (8) and Kuritz and Landis (9) provided
point and variance estimates of AR relative to a dichotomous exposure and with
possible adjustment for confounding factors, both for matched and unmatched
case-control studies.

Bruzzi et al. (10) derived model-based estimates that allow one to consider
exposure factors with multiple levels and to control for confounders, which make
this the most general approach. These model-based estimates can be obtained
from the observed prevalence of various risk factors in cases and odds ratio
estimates from logistic analysis provided that: (i) cases are representative of the
diseased individuals in the population and (ii) odds ratio estimates are unbiased
for relative risks (10). Benichou and Gail (11) presented variance estimates and
confidence intervals for these model-based AR estimates.

There is however no available software to implement their work and obtain
variance estimates and confidence intervals for model-based AR estimates. Given
the increasing interest in estimating both the AR and the corresponding CIs
(12–16), we developed an SAS-macro based on the procedure detailed by Beni-
chou and Gail (11). The macro is general and requires only a limited number
of commands to the user. The estimated relative risks (RR) for all the factors
included in the model, the AR for the exposure factor under consideration, and
the corresponding 95% CI are given as outputs by the macro, when the data are
expressed as individual records.

The macro requires the Base SAS Module, the SAS/IML Software, and,
obviously, SAS MACRO Language; it runs on version 6.04 of DOS and on
version 6.10 of WINDOWS. The commented complete version of the macro is
available on request from the authors by mail or e-mail (PGDUCA@IMICILEA.
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CILEA.IT). The kernel of the macro is given in the Appendix. In the next section,
we describe methods for point and variance estimation that are implemented in
the macro and refer to the corresponding lines of the macro as we proceed.

MODEL-BASED POINT AND VARIANCE ESTIMATION OF THE ATTRIBUTABLE RISK

Let X be the exposure factor with I levels (i 5 1, . . . , I) and Cl the lth
confounding factor (l 5 1, . . . , L), characterized by Jl different modalities
( jl 5 1, . . . , Jl). The attributable risk is defined as (10)

AR 5 1 2 OI

i51
OJ1

j151
? ? ? OJL

jL51
rij1 ... jL

R 21
iu j1 ... jL

, [1]

where rij1...jL
5 P(X 5 xi , C1 5 cj1

, . . . , CL 5 cjL
uD 5 1) represents the probability

that a subject belonging to the ith category of the exposure factor and to the jl

category of the first counfounder factor C1 , . . . , and to the jL
th category of the

Lth counfounder factor CL , conditional on being a case (D 5 1); Ri u j1 ... jL
is the

relative risk associated with level i of X, conditional on levels j1 , . . . , jL
th of

counfounders Cl , . . . , CL .
In case-control studies, rij1 ... jL

can be estimated by the corresponding observed
proportion r̂ij1 ... jL

. The relative risk Ri u j1 ... jL
, is defined as

Riu j1 ... jL
5

P(D 5 1uX 5 xi , C1 5 cj1
, . . . , CL 5 cjL

)

P(D 5 1uX 5 x1 , C1 5 cj1
, . . . , CL 5 cjL

)

and can be estimated by the odds ratio, when P(D 5 1uX 5 xi , C1 5
cj1

, . . . , CL 5 cjL
) is small. In the absence of interactions between the exposure

factor X and the confounders Cl , . . . , CL , the relative risks Ri u j1 ... jL
do not

depend on the confounder levels. Therefore, for all levels i of exposure (i . 1),
the relative risk can be estimated by e b̂i, where bi is the parameter in the logistic
model relative to the ith category of exposure (bi is the log odds ratio for level i).

The variance of the AR can be obtained by the delta method (11). The delta
method applied to formula [1], yields

var(1 2 AR
`

) 5 var SOI

i51
OJ1

j151
? ? ? OJL

jL51
r̂ij1 ... jL

R̂ 21
i u j1 ... jLD

[2]
5 OI

i51
OJ1

j151
? ? ? OJL

jL51
OI

i951
OJ1

j9
151

? ? ? OJL

j 9
L51

[R 21
i u j1 ... jL

R21
i9u j9

1 ... j9
L

cov(r̂ij1 ... jL
, r̂i9j9

1 ... j 9
L
) (P1)

1 rij1 ... jL
ri9j9

1 ... j 9
L

cov(R̂ 21
i u j1 ... jL

, R̂21
i9u j9

1 ... j9
L
) (P2)

1 2 3 rij1 ... jL
R 21

i9u j9
1 ... j 9

L
cov(R̂ 21

i u j1 ... jL
, r̂i9j9

1 ... j9
L
)], (P3)

where R̂ 21
iu j1 ... jL

denotes the inverse of relative risk estimate, obtained as the odds
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ratio estimate from logistic regression. If we use dummy variables to represent
exposure to X, then R̂ 21

iu j1...jL
is a function of a vector (I 2 1) of parameter estimates.

The AR variance is hence given by summing three components. The first one
(P1) is obtained from the variance–covariance matrix of the vector r̂ of observed
proportions, which has a multinomial structure; the second one (P2) involves
the variance–covariance matrix of the odds ratio estimates and is obtained from
the information matrix of the logistic model; the last component (P3) involves
the covariance between observed proportions in each cell and odds ratio estimates
and is derived through the implicit delta method (17).

In the following sections the steps for the evaluation of the three components
are described. From a computational point of view, the main problem in devel-
oping this software is related to the a priori unknown number of covariates and
the increasing size of vectors and matrices as this number increases. It should
be noted that the macro has been derived for a logistic model in which (i) the
data are entered as individual records, (ii) the main effect of the I-level exposure
factor of interest X is represented by I 2 1 dummy variables, (iii) the main effect
of every confounder Cl is also represented by dummy variables, and (iv) there
is no interaction term between exposure factor X and confounders C1 , . . . , CL

(assumption of no effect modification by the confounders). When one of these
assumptions is used to compute the variance component, it is specified in the
text below.

First Component (P1)

The kernel of component P1 is the variance matrix of the vector r̂. It is obtained
from the assumption of a multinomial structure. The computation of the
(I 3 J1 3 ? ? ? 3 JL) 3 (I 3 J1 3 ? ? ? 3 JL) matrix Sr is based on the sum of
two terms. One obtains

Sr 5 2
rrT

n
1 diag Sr

nD ,

in which n represents the total number of cases. Since r is a (I 3 J1 3 ? ? ? 3
JL) 3 1 vector, the first term in the sum is a (I 3 J1 3 ? ? ? 3 JL) 3 (I 3 J1 3
? ? ? 3 JL) matrix and the second term is a diagonal matrix of the same dimension.

This representation allows us to use simple vectors instead of matrices. We
obtain P1 as

OI

i51
OJ1

j1 51
? ? ? OJL

jL51
OI

i951
OJ1

j9
151

? ? ?

OJL

j9
L51

R 21
i u j1 ... jL

R 21
i9 u j9

1 ... j9
L

cov(r̂ij1 ... jL
, r̂i9j9

1 ... j 9
L
) 5 R21 Sr̂(R21)T,

where R21 is the 1 3 (I 3 J1 3 ? ? ? 3 JL) vector with elements R 21
iu j1 ... jL

.
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Lines 5 to 7 in the macro describe the SAS statements calculating component
P1, with the notations rr1 and rho for R21 and r, respectively.

Second Component(P2)

Observing that, in the absence of interaction between the exposure factor X
and the counfounders C1 , . . . , CL , terms Riu j1 ... jL

and Ri9u j9
1 ... j9

L
and their covari-

ance only depend on modalities i and i9 of the exposure factor, component P2
is rearranged as

OI

i51
OJ1

j151
? ? ? OJL

jL51
OI

i951
OJ1

j9
151

? ? ? OJL

j9
L51

rij1 ... jL
ri9j9

1 ... j9
L

cov(R̂ 21
i u j1 ... jL

, R̂ 21
i9 u j9

1 ... j9
L
)

5 OI

i51
OI

i951
SOJ1

j151
? ? ? OJL

jL51
rij1 ... jLDSOJ1

j9
151

? ? ? OJL

j9
L51

ri9j9
1 ... j9

LD [3]

cov(R̂ 21
i u j1 ... jL

, R̂ 21
i9 u j9

1 ... j9
L
).

The variance matrix of the vector R21 can be obtained from the inverse of
the information matrix I21 from the logistic model, including as covariates the
exposure factor and all the counfounding factors. By the delta method, the term
for levels i and i9 of exposure is given by

cov(e2b̂i, e2b̂i9) 5 e2bi 3 e2bi9 3 cov(b̂i , b̂i9),

where b9 5 (b2 , . . . , bI) denotes the (I 2 1) 3 1 vector of parameters correspond-
ing to dummy variables for levels 2, . . . , I of exposure to X, and b1 5 0
by definition.

Only the (I 2 1) 3 (I 2 1) block of the information matrix concerning the
exposure factor needs to be computed. In the macro, it is denoted by cova1.
Line 11 describes the SAS statements used to compute P2. Terms rhor1 and I
represent r 3 R21 and I21, respectively, and de represents the matrix of dummy
variables describing levels of exposure to X.

Third Component (P3)

From the delta method for implicit functions, it is possible to derive the
covariance matrix between the estimates of the ( p 3 1) vector u of parameters
from the logistic model of which b is a subvector and the estimate of vector
(f : r), where fij1 ... jL

5 P(X 5 xi , C1 5 cj1
, . . . , CL 5 cjL

uD 5 0) represents the
probability of belonging to the cell X 5 xi , C1 5 cj1

, . . . , CL 5 cjL
when

D 5 0 (nondiseased subject). This covariance matrix is (11)

cov Sû,
f̂

r̂
D5 I21HS, [4]
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where I21 is the inverse of the information matrix, H is a ( p) 3 (2 3 I 3
J1 3 ? ? ? 3 JL) matrix, and S is the estimated covariance matrix of vector (f̂ : r̂).
If only main effects of X and confounders are considered and if dummy variables
are used, p is equal to I 1 J1 1 ? ? ? 1 JL 2 L. The matrix S is structured as

S 5FSf̂ 0

0 Sr̂

G ,

with Sf̂ and Sr̂ the variance matrices for vectors r̂ and f̂, respectively (both with
multinomial structure). This form is suitable for controls selected by means of
simple random sampling as well as stratified random sampling. In the macro, we
considered the case of simple random sampling of the controls. Finally, the
elements hsm of H are given by

2l
usfij1???jL

for 1 # m 5 (i 2 1) 3 J1 3 ? ? ? 3 JL 1 ( j1 2 1) 3 J2 3 ? ? ? 3 JL

1 ? ? ? 1 ( jL21 2 1) 3 JL 1 jL # I 3 J1 3 ? ? ? 3 JL

2l
usrij1???jL

for I 3 J1 3 ? ? ? 3 JL 1 1 # m 5 (i 2 1) 3 J1 3 ? ? ? 3 JL [5]

1 ( j1 2 1) 3 J2 3 ? ? ? 3 JL 1 ? ? ? 1 ( jL21 2 1) 3 JL

1 jL 1 I 3 J1 3 ? ? ? 3 JL # 2 3 I 3 J1 3 ? ? ? 3 JL ,

where l represents the logistic log-likelihood of the observed data.
An estimate is obtained by replacing all matrices by their estimated matrices.

The element hsm of matrix H is estimated as

H2vpij1???jL
if s 5 i 2 1 or s 5 I 1 j1 2 1 or . . . or s 5 I 1 J1 1 ? ? ? 1 JL21 1 jL 2 L

0 otherwise

for 1 # m 5 (i 2 1) 3 J1 3 ? ? ? 3 JL 1 ( j1 2 1) 3 J2 3 ? ? ? 3 JL 1 ? ? ?

1 ( jL21 2 1) 3 JL 1 jL # I 3 J1 3 ? ? ? 3 JL

Hnqij1???jL
if s 5 i 2 1 or s 5 I 1 j1 2 1 or . . . or s 5 I 1 J1 1 ? ? ? 1 JL21 1 jL 2 L

0 otherwise

for I 3 J1 3 ? ? ? 3 JL 1 1 # m 5 (i 2 1) 3 J1 3 ? ? ? 3 JL 1 ( j1 2 1) 3 J2 3 ? ? ? 3 JL

1 ? ? ? 1 ( jL21 2 1) 3 JL 1 jL 1 I 3 J1 3 ? ? ? 3 JL # 2 3 I 3 J1 3 ? ? ? 3 JL ,

where v is the total number of controls, n is the total number of cases, pij1???jL
is

the predicted probability from the logistic model that a subject belonging to the
(ij1 ? ? ? jL) cell be a case, and qij1???jL

is the predicted probability that a subject
belonging to the (ij1 ? ? ? jL) cell be a control. The element hsm is equal to zero
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if the parameter corresponding to the sth position in u (that is, the parameter
with respect to which we are differentiating) is not relative to a joint category
of the exposure factor X and the confounders. In the macro, lines 12–23 deal
with the computation of matrix H.

The matrix in [4] contains ( p) 3 (2 3 I 3 Jl 3 ? ? ? 3 JL) elements, so it can
have a huge number of columns, but by partitioning the matrices we can simplify
the computation and optimize the memory size requested. The variance–
covariance matrix between r̂ and the vector of estimated exposure parameters,
b̂, is the principal concern. Therefore only a block of the matrix in [4] is of
interest. If the matrices I21, H, and S are considered in blocks, one obtains

I21HS 5FI21
1 I21

2

I21
3 I21

4
GFH1 H2

H3 H4
GFSf 0

0 Sr

G
5FI21

1 H1Sf 1 I21
2 H3Sf I21

1 H2Sr 1 I21
2 H4Sr

I21
3 H1Sf 1 I21

4 H3Sf I21
3 H2Sr 1 I21

4 H4Sr

G .

The submatrix of interest is the upper right block, I21
1 H2Sf 1 I21

2 H4Sr . The
required components are: I21

1 , the (I 2 1) 3 (I 2 1) block in the inverse of
information matrix containing the variances and covariances of the estimated
elements of the vector b representing the effect of X; I21

2 , the second (I 2 1) 3
(J1 1 ? ? ? 1 JL 2 L 2 1) block in the inverse of the information matrix containing
the covariances between the elements of vector b̂, and the intercept estimate â
and the elements of the vector of confounding parameters estimates ĉ; H2 , the
second (I 2 1) 3 (I 3 J1 3 ? ? ? 3 JL) block of the matrix H, obtained by
differentiating l with respect to b then r, H4 , the fourth (J1 1 ? ? ? 1
JLL 1 1) 3 (I 3 J1 3 ? ? ? 3 JL) block of the matrix H, obtained by differentiating
l with respect to a and c then r. Thus, the third component, P3, can be written as

2 3 OI

i51
OJ1

j151
? ? ? OJL

jL51
OI

i951
OJ1

j9
151

? ? ? OJL

j9
L51

rij1 ... jL
R 21

i9u j9
1 ... j9

L
cov(R̂ 21

i u j1 ... jL
, r̂i9j9

1 ... j9
L
)

5 2 3 OI

i51
SOJ1

j151
? ? ? OJL

jL51
rij1 ... jLDOI

i951
OJ1

j9
151

? ? ? OJL

j9
L51

R 21
i9u j9

l ... j9
L

cov(R̂ 21
i u jl ... jL

, r̂i9j9
l ... j9

L
)

5 2 3 (e2b2r2• , . . . , e2bIrI•)(I21
1 H2 1 I21

2 H4)Sr(R21)T,

where

ri• 5 OJ1

j151
? ? ? OJL

jL51
rij1 ... jL

, for i 5 1, . . . , I.

In the macro, the evaluation of component P3 is given by lines 24–27. From
line 28 to line 33 we compute three sets of confidence intervals (6) based on
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TABLE 1

MODEL DEFINITION, CORRESPONDING LIKELIHOOD, b̂, AND AR
`

(WITH SD
`

VALUES IN

PARENTHESES) FOR ALCOHOL CONSUMPTION IN THE ILLE-ET-VILAINE STUDY

22 log-
Model log (odds ratio) likelihood b̂(SD

`
) AR

`
(SD
`

)

Ia,d bi 893.506 1.7299(.1752) 0.39489(.04203)
IIa,c,d aj 1 ck 1 bi 764.744 1.5849(.1920) 0.38161(.04393)

IIIb,d b9i 842.991 1.2712(.2323) 2.0545(.2611) 0.70887(.05108)
3.3042(.3237)

IVb,c,d aj 1 ck 1 b9i 709.417 1.3939(.2464) 1.9264(.2791) 0.71811(.05016)
3.5135(.3815)

a The exposure factor is espressed in two levels, (i 5 1, 2), 1 5 0–79 g/day and 2 5 80 1 g/day.
b The exposure factor is expressed in four levels, (i 5 1, 2, 3, 4), 1 5 0–39 g/day; 2 5 40–79

g/day, 3 5 80–119 g/day, and 4 5 120 1 g/day.
c aj ( j 5 1, 2, 3, 4) are the parameters for age, 1 5 25–34 years, 2 5 35–44 years, 3 5 45–54 years,

and 4 5 55 1 years. ck (k 5 1, 2, 3) are the parameters for tobacco consumption, 1 5 0–9 g/day,
2 5 10–29 g/day, and 3 5 30 1 g/day.

d By convention, bi51 5 0 in models I and II, b9i51 5 0 in models III and IV, and aj51 5 0 and
ck51 5 0 in models II and IV.

AR
`

, log (1 2 AR
`

), and loghAR
`

/(1 2 AR
`

)j and labeled inf and sup 1, logl, and
logitl, respectively.

EXAMPLE

To illustrate the use of the Macro, we applied it to the data reported by Breslow
and Day (18, Appendix 1) relative to a case-control study on esophageal cancer,
conducted in the French department of Ille-et-Vilaine (19). We considered alcohol
consumption as the exposure of interest. The odds ratios for alcohol consumption
and their standard deviation, estimated using unconditional logistic regression, the
model-based AR estimate, and its standard deviation estimate are shown in Table
1 for four models. Considering the strong influence that age and tobacco consump-
tion have on the risk of esophageal cancer, these variables were included as con-
founding factors (without terms for interaction) in models II and IV, while they
were ignored in models I and III for means of comparison. In models I and II the
exposure factor has two levels, while in models III and IV it is split into four levels.

The attributable risk estimates and the corresponding SD estimates from the
first two models (I and II) are lower than the ones in the other two models (III
and IV). This is due to the more restrictive definition of the baseline level (11)
in models III and IV (#39 g/day) than in models I and II (#79 g/day). Moreover,
models I and III only include alcohol while models II and IV also include age
and tobacco consumption, therefore yielding adjusted estimates of the effect of
alcohol consumption. For the first two models, the SD for the adjusted AR
estimate for alcohol consumption (model II) is greater than the SD for the crude
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AR estimate (model I), while the inverse is true with models III and IV. However
the ratio SD

`

(1 2 AR
`

)/(1 2 AR
`

) is bigger for adjusted than for crude estimates
in both cases, as noted by Benichou (3) for other models applied to the same data.

Results in Table 1 are identical to those in Benichou and Gail (11) for models
I and III, except for a typo on the standard deviation of AR

`

in that paper for
model III. When the interaction between age and tobacco consumption, as well
as main effects, was considered in models II and IV, our macro also yielded
results identical to those reported by Benichou and Gail (11) and Benichou (3).

In order to illustrate the implementation of the macro, we now describe, as
an example, how to run model II. The data utilized are published in Breslow
and Day (18, Appendix 1) as grouped data. After reassembling the data following
the categories indicated in Table 1, we proceeded to create the data set as
individual records.

The macro only accepts one exposure factor but accepts several counfounding
factors. Moreover, it is assumed that:

(1) The dependent variable (disease status) is coded 1 for cases and 2
for controls.

(2) The independent variables must have the same prefix (for example C,
MAU, or MICKEY), followed by consecutive numbers (i.e., for model
II, we have three independent variables, alcohol, age, and tobacco con-
sumption, hence C1, C2, and C3, respectively). The first one must be
the exposure factor (i.e., C1 5 alcohol). All the variables can assume
only consecutive integer values, without 0 (i.e., C2 5 age has four
categories that assume values from 1 to 4).

(3) The exposure factor must be coded in such a way that the risk increases
with the categories.

The macro is called by means of the instruction %attrib(file,v,name,l), in which
the macro parameters are defined as follows:

file 5 name of the data set containing the response variable, exposure
variable, and all the confounding variables, each categorized following the
above indications;

v 5 name of dependent variable;
name 5 prefix name for the independent variables (see point 2 above);
l 5 total number of independent variables (exposure 1 confounding factors).

In the example, the name of the data set containing individual data was
‘‘esopha,’’ the dependent variable was ‘‘cascon,’’ and the l 5 3 independent
variables (one exposure variable, alcohol, and two confounders, age and tobacco)
were prefixed by the letter C. Therefore, the complete macro was called by
%attrib(esopha,cascon,c,3).

In the Appendix we report only the kernel of the macro, i.e., the evaluation
of the variance of the attributable risk and three different types of confidence
intervals. To run this kernel the macro first generates the following components
from the data:
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—A row vector with dimension given by the number of cells (&t2) deter-
mined by the modalities of all the variables, including the dependent one (i.e.,
for model II &t2 5 24). This vector containing the values exp(2b̂i), i 5 1,
. . . , I(i.e. for model II the first 12 components of rr1 are equal to 1 corresponding
to the reference category, while the last 12 components are equal to
exp(21.5849)) and is denoted by rr1 in the macro.

—A vector (rho) which contains the probabilities that a case belongs to
each cell (i.e., for model II the fifth component of the vector rho is r̂122 5
5/200 5 0.025, because 5 cases belong to the first category of exposure and the
second category of each confounder and 200 is the total number of cases).

—A vector containing the elements of submatrices H2 and H4 of H, which
can all be expressed as products of the total number of cases by the predicted
probability from the unconditional logistic model to be a control conditional on
the fact that a subject belongs to a particular cell, called h (i.e., the fifth component
of the vector h in the model II is 200 3 0.96724).

—A data set containing the matrix I21
1 previously defined, called cova1

(variance and covariance matrix of the exposure parameter estimates; in model
II cova1 is a 1 3 1 matrix).

—A data set containing the matrix I21
2 previously defined, called cova2

(covariance matrix between exposure parameter estimates, and intercept and
the confounder parameter estimates; in model II cova2 is a 1 3 6 matrix).

As already pointed out, the previous components are automatically generated
by the macro.

DISCUSSION

We developed a computer program to obtain model-based estimates of the
AR and corresponding CIs. It relies on methods presented by Bruzzi et al.
(10) and Benichou and Gail (11), in which odds ratios are obtained through
unconditional logistic regression and prevalence of exposure and confounding
factors in cases is directly obtained from observed counts. Greeland and Drescher
(21) proposed a modification of this approach in which prevalence of exposure
and confounding factors in cases is estimated from the model. We did not imple-
ment their approach in this version of the program because simulations showed
that the two approaches yield nearly identical results (21), and Greenland and
Drescher’s approach cannot be extended to conditional logistic regression, which
we plan to consider in a future version of the program.

The program allows one to take into account exposure factors with multiple
levels and to adjust for confounders. Although it does not set any limit to the
number of confounders that can be included, in practice that number depends
on RAM capacity and the number of free bytes on the hard disk. Moreover,
execution time substantially increased with the number of confounding factors.
The running time of the complete macro for the four models in Table 1 were
checked on two different personal computers and one mainframe. The results
are reported in Table 2.
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TABLE 2

TOTAL MACRO RUNNING TIME (IN SECONDS) USING TWO DIFFERENT PCS AND ONE MAINFRAME

Model First PCa Second PCb Mainframec

I 161 32 26
II 229 39 30
II 170 33 26
IV 253 40 30

a 386dx, 20 MHz, 4 Mb of RAM, SAS for DOS version 6.04.
b 486dx, 66 MHz, 16 Mb of RAM, SAS for WINDOWS version 6.08.
c IBM 3090/200s, virtual machine 4 Mb of RAM, SAS for VM/CMS version 6.08.

In addition to the data on esophageal cancer, the program has been tested on
stomach (13) and bladder cancer (20) data against a less general program written
in Fortran. Identical results were found.

This current version only handles simple random sampling of the controls
when data are given as individual records and does not allow for interaction
between exposure and confounding factors. Interactions between confounders
can, however, be introduced by creating new variables by cross-classifying con-
founding factors. In future versions of the program, we plan to (i) allow for
stratified random sampling, frequency-matching, and individual matching of the
controls, the latter option requiring use of conditional rather than unconditional
logistic regression, (ii) allow for interactions between exposure and confounding
factors, and (iii) allow for grouped data as input.

APPENDIX

%ATTRIB
1 proc iml;
2 use dummy var hrr1 rho hj;
3 read all into m1;
4 rr15m1[,1]; rho5m1[,2]; h5m1[,3]; rhor15rr1#rho;
5 prot5(rho)`/&n; *where &n is the number of cases;
6 pro5(rho)/&n;
7 p15-(rr1)`*(rho)*(prot)*(rr1)1(rr1)`*(pro#(rr1));
8 use coval; read all into i1; use cova2; read all into i2; use cova1; read all into I;
9 use dummy var hlist of the names of the dummy variables relative to the exposure factorj

10 read all into de;
11 p25(rhor1)`*de*I*((rhor1)`*de)`;
12 *building of matrix H (gg and gg1 to become matrix H2 , ggg and ggg1 to become matrix H4);
13 ql5h#pro; g5h`; gl5ql`;
14 gg5j(&ii1,&t2,0); *where &ii15number of modalities of exposure factor 21;
15 gg15gg;
16 ggg5j(&t3,&t2,0); *where &t35number of parameters of confounders 11;
17 ggg15ggg;
18 %do k5 1 %to &ii1; gg1[&k,]5g1; gg[&k,]5g; %end;
19 %do k51 %to &t3; ggg1[&k,]5gl; ggg[&k,]5g; %end;
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20 use dummy var hlist of the dummy variables relative to the all confounding factorsj;
21 read all into dc;
22 det5de`; u5j(1,&t2,1); dct5dc`; u15u//dct;
23 gg5gg#det; gg15gg1#det; ggg5ggg#dct; ggg15ggg1#dct;
24 cc15-i1*gg*(rho)*(prot); cc25i1*gg1; ccc15-i2*ggg*(rho)*(prot); ccc25i2*ggg1;
25 cc5cc11cc21ccc11ccc2; *matrix I21

1 H2or 1 I21
2 H4or ;

26 v15((rhor1)`*de)`;
27 p352*v1`*cc*(rr1);
28 var5pl1p22p3; *attributable risk variance;
29 sd5sqrt(var); *attributable risk standard deviation; print sd;
30 ar51-(rho)`*(rr1); infl5ar-1.96*sd; supl5ar11.96*sd;
31 inflogl51-(15ar)*exp(1.96*sd/(1-ar)); suplogl51-(12ar)*exp(-1.96*sd/(1-ar));
32 inflogil51/(11((1-ar)/ar)*exp(11.96*sd/(ar*(1-ar))));

suplogil51/(11((1-ar)/ar)*exp(-1.96*sd/(ar*(1-ar))));
33 print ar infl supl inflogl suplogl inflogitl suplogitl;
34 quit;
%MEND;
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39, 267 (1994).

2. LEVIN, M. L. The occurrence of lung cancer in man. Acta Un. Intern. Cancer 9, 531 (1953).
3. BENICHOU J. Methods of adjustment for estimating the attributable risk in case-control studies:

A review. Statist. Med. 10, 1753 (1991).
4. COUGHLIN, S., BENICHOU, J. AND WEED, D. Attributable Risk Estimation in Case-Control Studies.

Epidem. Rev. 16, 51 (1994).
5. WALTER, S. D. The distribution of Levin’s measure of attributable risk. Biometrika 62, 371 (1975).
6. WHITTEMORE, A. S. Statistical methods for estimating attributable risk from retrospective data.

Statist. Med. 1, 229 (1982).
7. DENMAN, D. W., SCHLESSELMAN, J. J. Interval estimation of the attributable risk for multiple

exposure levels in case-constrol studies. Biometrics 39, 185 (1983).
8. GREENLAND, S. Variance estimators for attributable fraction estimates consistent in both large

strata and sparse data. Statist. Med. 6, 701 (1987).
9. KURTIZ, S. J., AND LANDIS, J. R. Attributable risk ratio estimation from matched-pairs case-

control data. Am. J. Epidemiol. 175, 324 (1987).
10. BRUZZI, P., GREEN, S. B., BYAR, D. P., BRINTON, L. A., et al. Estimating the population attributable

risk for multiple risk factors using case-control data. Am. J. Epidemiol. 122, 904 (1985).
11. BENICHOU, J., AND GAIL, M. H. Variance calculations and confidence intervals for estimates of

the attributable risk based on logistic models. Biometrics 46, 991 (1990).
12. GAO, Y. T., MCLAUGHLIN, J. K., BLOT, W. J., JI, B. T., BENICHOU, J., DAI, Q., AND FRAUMENI,

J. F. Risk factors for esophageal cancer in Shangai, China. I. Role of cigarette smoking and
alcohol drinking. Int. J. Cancer 58, 192 (1994).

13. LA VECCHIA, C., D’AVANZO, B., NEGRI, E., DECARLI, A., BENICHOU, J. Attributable risks for
stomach cancer in northern Italy. Int. J. Cancer 60, 1748 (1995).

14. CAIAFFA, W. T., CHIARI, C. A., FIGUEIREDO, A. R., OREFICE, F., AND ANTUNES, C. M. Toxoplas-



ATTRIBUTABLE RISK AND CONFIDENCE INTERVALS 75

mosis and mental retardation-report of a case control study. Mem. Int. Oswaldo Cruz 88, 253
(1993).

15. MACDONALD, T. M., BEARDON, P. H., MCGILLCHRIST, M. M., DUNCAN, I. D., MCKENDRICK,
A. D., AND MCDEVITT, D. G. The risks of symptomatic vaginal candidiasis after oral antibiotic
therapy. Q. J. Med. 86, 419 (1993).

16. DEVOS IRVINE, H., LAMONT, D. W., HOLE, D. J., AND GILLIS, C. R. Asbestos and lung cancer
in Glasgow and the west of Scotland. Br. Med. J. 306, 1503 (1993).

17. BENICHOU, J., GAIL, M. H. A delta-method for implicitly defined random variables. Am. Statisti-
cian 42, 41 (1989).

18. BRESLOW, N. E., AND DAY, N. E. ‘‘Statistical Methods in Cancer Research. Volume I: The
Analysis of Case-Control Studies’’ International Agency for Research on Cancer, Lyon, 1980.
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